Sample records for yellow river valley

  1. Yellow River, China

    NASA Image and Video Library

    1994-09-30

    STS068-220-033 (30 September-11 October 1994) --- Photographed through the Space Shuttle Endeavour's flight deck windows, this 70mm frame shows a small section of China's Yellow River (Huang Ho) highlighted by sunglint reflection off the surface of the water. The river flows northeastward toward the village of Tung-lin-tzu. The low dissected mountains that cover more than half of this scene rise some 2,000 feet (on the average) above the valley floor. A major east-west transportation corridor (both railway and automobile) is observed traversing the landscape north of the river. This entire region is considered to be part of the Ordos Desert, actually part of the greater Gobi located just north of this area. Approximate center coordinates of this scene are 37.5 degrees north latitude and 105.0 degrees east longitude.

  2. Conservation genetics of the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi): River valleys are critical features for snakes at northern range limits

    PubMed Central

    Graham, Carly F.; Martino, Jessica A.; Frasier, Timothy R.; Lance, Stacey L.; Gardiner, Laura E.; Poulin, Ray G.

    2017-01-01

    On the North American Great Plains, several snake species reach their northern range limit where they rely on sparsely distributed hibernacula located in major river valleys. Independent colonization histories for the river valleys and barriers to gene flow caused by the lack of suitable habitat between them may have produced genetically differentiated snake populations. To test this hypothesis, we used 10 microsatellite loci to examine the population structure of two species of conservation concern in Canada: the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi) in 3 major river valleys in southern Saskatchewan. Fixation indices (FST) showed that populations in river valleys were significantly differentiated for both species (racers, FST = 0.096, P = 0.001; bullsnakes FST = 0.045–0.157, P = 0.001). Bayesian assignment (STRUCTURE) and ordination (DAPC) strongly supported genetically differentiated groups in the geographically distinct river valleys. Finer-scale subdivision of populations within river valleys was not apparent based on our data, but is a topic that should be investigated further. Our findings highlight the importance of major river valleys for snakes at the northern extent of their ranges, and raise the possibility that populations in each river valley may warrant separate management strategies. PMID:29095863

  3. Conservation genetics of the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi): River valleys are critical features for snakes at northern range limits.

    PubMed

    Somers, Christopher M; Graham, Carly F; Martino, Jessica A; Frasier, Timothy R; Lance, Stacey L; Gardiner, Laura E; Poulin, Ray G

    2017-01-01

    On the North American Great Plains, several snake species reach their northern range limit where they rely on sparsely distributed hibernacula located in major river valleys. Independent colonization histories for the river valleys and barriers to gene flow caused by the lack of suitable habitat between them may have produced genetically differentiated snake populations. To test this hypothesis, we used 10 microsatellite loci to examine the population structure of two species of conservation concern in Canada: the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi) in 3 major river valleys in southern Saskatchewan. Fixation indices (FST) showed that populations in river valleys were significantly differentiated for both species (racers, FST = 0.096, P = 0.001; bullsnakes FST = 0.045-0.157, P = 0.001). Bayesian assignment (STRUCTURE) and ordination (DAPC) strongly supported genetically differentiated groups in the geographically distinct river valleys. Finer-scale subdivision of populations within river valleys was not apparent based on our data, but is a topic that should be investigated further. Our findings highlight the importance of major river valleys for snakes at the northern extent of their ranges, and raise the possibility that populations in each river valley may warrant separate management strategies.

  4. A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

    2014-06-01

    Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

  5. Coastline change and marine geo-hazards in the Yellow River Delta (China)

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Liu, J.; Liu, X.

    2003-04-01

    COASTLINE CHANGE AND MARINE GEO-HAZARDS IN THE YELLOW RIVER DELTA (CHINA) Zhou Liangyong(1,2), Liu Jian(1,3), Liu Xiqing(1) (1)Qingdao Institute of Marine Geology,(2)Ocean University of China,(3)Research Centre for Coastal Geology, CGS qdzliangyong@cgs.gov.cn/Fax: +86-532-5720553 Satellite remote sensing, bathymetry and high-resolution seismic data have been used to examine the coastline change during the period from 1976 to 2001 and the offshore marine geo-hazards in the modern Yellow River Delta. Trends in the temporal sequence of the eight coastlines derived from Landsat images were used in the definition of erosional classes of the coastline. Four classes were distinguished, including rapid erosion (>100 m/yr), moderate erosion (20-100 m/yr), no detectable erosion (-1 - 20 m/yr), and accretion (-200--1 m/yr). We revealed the subtle variations in sea floor morphology and sediment geometries using high-resolution acoustic survey. Many kinds of geo-hazards were identified in the active subaqueous delta lobe and abandoned delta lobes, such as seabed erosions, gas-charged sediments, listric faults, synsedimentary rises, incised palaeo-valleys, infilled gullies, diapirs, active slope failures and sediment collapses. The resultant map of geo-envrionment and geo-hazards presents the coastline change and distribution of geo-hazards mentioned above in the Yellow River Delta. The gas-charged sediment distributes mainly in the abandoned delta lobes. The synsedimentary rise outside of the modern river mouth is a new evidence for the seabed mass-movement which modifies the progradational subaquaeous slopes of modern Yellow River Delta.

  6. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ohio River Valley. 9.78... River Valley. (a) Name. The name of the viticultural area described in this section is “Ohio River Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley...

  7. Yellow River Delta, China

    NASA Image and Video Library

    2009-12-08

    The Yellow River is the second-longest river in China, and the sixth longest in the world and makes many dramatic shifts over time. This image was taken with the ASTER instrument aboard NASA Terra spacecraft in 2009.

  8. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  9. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  10. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  11. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  12. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  13. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  14. Birds of the St. Croix River valley: Minnesota and Wisconsin

    USGS Publications Warehouse

    Faanes, Craig A.

    1981-01-01

    The St. Croix River Valley encompasses nearly 11,550 km2 in east-central Minnesota and northwestern Wisconsin. A wide range of habitats are available for birds including upland oak, lowland deciduous, maple-basswood, lowland and upland coniferous forests, natural basin wetlands, and grasslands. Situated in the north-central region of the United States, the valley is a biological 'crossroads' for many species. Because of the mixed affinities of plant communities, the valley includes the northern and southern range limits for a number of species. Also, because the valley lies near the forest-prairie transition zone, many typical western breeding species (e.g. pintail, western meadowlark, yellow-headed blackbird) breed in proximity to typical eastern species such as tufted titmouse, eastern meadowlark, and cardinal. From 1966 to 1980, I conducted extensive surveys of avian distribution and abundance in the St. Croix River Valley. I have supplemented the results of these surveys with published and unpublished observations contributed by many ornithologists. These additional data include compilations from Christmas Bird Counts sponsored by the National Audubon Society and from the Breeding Bird Survey coordinated by the U.S. Fish and Wildlife Service. Three hundred fourteen species have been recorded in the study area; data are presented on the migration period, nesting season distribution, winter distribution, relative abundance, and habitat use of each species. Recognizing the uniqueness of the area, and its importance not only to wildlife but also to man, the U.S. Congress designated the St. Croix a National Scenic Riverway. This action provided a considerable degree of protection to lands along and directly adjacent to the river. Unfortunately, no similar legal measure exists to protect lands away from the river. With the exception of the northern quarter of the St. Croix River Valley, agricultural interests have made significant inroads into the habitat base. The

  15. Variation of dissolved organic carbon transported by two Chinese rivers: The Changjiang River and Yellow River.

    PubMed

    Liu, Dong; Pan, Delu; Bai, Yan; He, Xianqiang; Wang, Difeng; Zhang, Lin

    2015-11-15

    Real-time monitoring of riverine dissolved organic carbon (DOC) and the associated controlling factors is essential to coastal ocean management. This study was the first to simulate the monthly DOC concentrations at the Datong Hydrometric Station for the Changjiang River and at the Lijin Hydrometric Station for the Yellow River from 2000 to 2013 using a multilayer back-propagation neural network (MBPNN), along with basin remote-sensing products and river in situ data. The average absolute error between the modeled values and in situ values was 9.98% for the Changjiang River and 10.84% for the Yellow River. As an effect of water dilution, the variations of DOC concentrations in the two rivers were significantly negatively affected by discharge, with lower values reported during the wet season. Moreover, vegetation growth status and agricultural activities, represented by the gross primary product (GPP) and cropland area percent (CropPer) in the river basin, respectively, also significantly affected the DOC concentration in the Changjiang River, but not the Yellow River. The monthly riverine DOC flux was calculated using modeled DOC concentrations. In particular, the riverine DOC fluxes were affected by discharge, with 71.06% being reported for the Changjiang River and 90.71% for the Yellow River. Over the past decade, both DOC concentration and flux in the two rivers have not shown significant changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 27 CFR 9.214 - Haw River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Haw River Valley. 9.214... River Valley. (a) Name. The name of the viticultural area described in this section is “Haw River Valley”. For purposes of part 4 of this chapter, “Haw River Valley” and “Haw River” are terms of viticultural...

  17. Water security evaluation in Yellow River basin

    NASA Astrophysics Data System (ADS)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  18. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  19. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  20. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  1. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  2. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  3. 27 CFR 9.66 - Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...

  4. 4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROPOSED SECTION OF DIVERSION DAM ACROSS SNAKE RIVER, SHEET 1 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  5. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.

    PubMed

    Jiongxin, Xu

    2004-05-01

    The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The

  6. 2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF DRAWING, PLAN, SHEET 5 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  7. 3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROFILE AND ALIGNMENT OF DAM ACROSS WEST CHANNEL OF SNAKE RIVER, SHEET 3 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  8. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  9. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley... boundary proceeds in a straight line westerly to the town of Dry Ridge in Grant County, Kentucky...

  10. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    NASA Astrophysics Data System (ADS)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  11. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  12. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui

    2018-01-01

    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  13. Wash load and bed-material load transport in the Yellow River

    USGS Publications Warehouse

    Yang, C.T.; Simoes, F.J.M.

    2005-01-01

    It has been the conventional assumption that wash load is supply limited and is only indirectly related to the hydraulics of a river. Hydraulic engineers also assumed that bed-material load concentration is independent of wash load concentration. This paper provides a detailed analysis of the Yellow River sediment transport data to determine whether the above assumptions are true and whether wash load concentration can be computed from the original unit stream power formula and the modified unit stream power formula for sediment-laden flows. A systematic and thorough analysis of 1,160 sets of data collected from 9 gauging stations along the Middle and Lower Yellow River confirmed that the method suggested by the conjunctive use of the two formulas can be used to compute wash load, bed-material load, and total load in the Yellow River with accuracy. Journal of Hydraulic Engineering ?? ASCE.

  14. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    NASA Astrophysics Data System (ADS)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  15. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China.

    PubMed

    Kong, Dongxian; Miao, Chiyuan; Wu, Jingwen; Borthwick, Alistair G L; Duan, Qingyun; Zhang, Xiaoming

    2017-02-01

    The Yellow River is the most hyperconcentrated sediment-laden river in the world. Throughout recorded history, the Lower Yellow River (LYR) experienced many catastrophic flood and drought events. To regulate the LYR, a reservoir was constructed at Xiaolangdi that became operational in the early 2000s. An annual water-sediment regulation scheme (WSRS) was then implemented, aimed at flood control, sediment reduction, regulated water supply, and power generation. This study examines the eco-environmental and socioenvironmental impacts of Xiaolangdi Reservoir. In retrospect, it is found that the reservoir construction phase incurred huge financial cost and required large-scale human resettlement. Subsequent reservoir operations affected the local geological environment, downstream riverbed erosion, evolution of the Yellow River delta, water quality, and aquatic biodiversity. Lessons from the impact assessment of the Xiaolangdi Reservoir are summarized as follows: (1) The construction of large reservoirs is not merely an engineering challenge but must also be viewed in terms of resource exploitation, environmental protection, and social development; (2) long-term systems for monitoring large reservoirs should be established, and decision makers involved at national policy and planning levels must be prepared to react quickly to the changing impact of large reservoirs; and (3) the key to solving sedimentation in the LYR is not Xiaolangdi Reservoir but instead soil conservation in the middle reaches of the Yellow River basin. Proper assessment of the impacts of large reservoirs will help promote development strategies that enhance the long-term sustainability of dam projects.

  16. Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO

    USGS Publications Warehouse

    Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.

    2016-01-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  17. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO

    NASA Astrophysics Data System (ADS)

    Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  18. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    PubMed

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  19. Processing and Analysis of Multibeam Sonar Data and Images near the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Tang, Q.

    2017-12-01

    Yellow River Estuary is a typical high-suspended particulate matter estuary in the world. A lot of sediments from Yellow River and other substances produced by human activity cause high-concentration suspended matter and depositional system in the estuary and adjacent water area. Multibeam echo sounder (MBES) was developed in the 1970s, and it not only provided high-precision bathymetric data, but also provided seabed backscatter strength data and water column data with high temporal and spatial resolution. Here, based on high-precision sonar data of the seabed and water column collected by SeaBat7125 MBES system near the Yellow River Estuary, we use advanced data and image processing methods to generate seabed sonar images and water suspended particulate matter acoustic images. By analyzing these data and images, we get a lot of details of the seabed and whole water column features, and we also acquire their shape, size and basic physical characteristics of suspended particulate matters in the experiment area near the Yellow River Estuary. This study shows great potential for monitoring suspended particulate matter use MBES, and the research results will contribute to a comprehensive understanding of sediment transportation, evolution of river trough and shoal in Yellow River Estuary.

  20. Summer precipitation prediction in the source region of the Yellow River using climate indices

    NASA Astrophysics Data System (ADS)

    Yuan, F.

    2016-12-01

    The source region of the Yellow River contributes about 35% of the total water yield in the Yellow River basin playing an important role in meeting downstream water resources requirements. The summer precipitation from June to September in the source region of the Yellow River accounts for about 70% of the annual total, and its decrease would cause further water shortage problems. Consequently, the objectives of this study are to improve the understanding of the linkages between the precipitation in the source region of the Yellow River and global teleconnection patterns, and to predict the summer precipitation based on revealed teleconnections. Spatial variability of precipitation was investigated based on three homogeneous sub-regions. Principal component analysis and singular value decomposition were used to find significant relations between the precipitation in the source region of the Yellow River and global teleconnection patterns using climate indices. A back-propagation neural network was developed to predict the summer precipitation using significantly correlated climate indices. It was found that precipitation in the study area is positively related to North Atlantic Oscillation, West Pacific Pattern and El Nino Southern Oscillation, and inversely related to Polar Eurasian pattern. Summer precipitation was overall well predicted using these significantly correlated climate indices, and the Pearson correlation coefficient between predicted and observed summer precipitation was in general larger than 0.6. The results are useful for integrated water resources management in the Yellow River basin.

  1. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the

  2. Shoals and valley plugs in the Hatchie River watershed

    USGS Publications Warehouse

    Diehl, Timothy H.

    2000-01-01

    Agricultural land use and gully erosion have historically contributed more sediment to the streams of the Hatchie River watershed than those streams can carry. In 1970, the main sedimentation problem in the watershed occurred in the tributary flood plains. This problem motivated channelization projects (U.S. Department of Agriculture, 1970). By the mid-1980's, concern had shifted to sedimentation in the Hatchie River itself where channelized tributaries were understood to contribute much of the sediment. The Soil Conservation Service [Natural Resources Conservation Service (NRCS) since 1996] estimated that 640,000 tons of bedload (sand) accumulates in the Hatchie River each year and identified roughly the eastern two-thirds of the watershed, where loess is thin or absent, as the main source of sand (U.S. Department of Agriculture, 1986a). The U.S. Geological Survey (USGS), in cooperation with the West Tennessee River Basin Authority (WTRBA), conducted a study of sediment accumulation in the Hatchie River and its tributaries. This report identifies the types of tributaries and evaluates sediment, shoal formation, and valley-plug problems. The results presented here may contribute to a better understanding of similar problems in West Tennessee and the rest of the southeastern coastal plain. This information also will help the WTRBA manage sedimentation and erosion problems in the Hatchie River watershed.The source of the Mississippi section of the Hatchie River is in the sand hills southwest of Corinth, Mississippi (fig. 1). This section of the Hatchie River flows northward in an artificial drainage canal, gathering water from tributary streams that also are channelized. The drainage canal ends 2 miles south of the Tennessee State line. The Tennessee section of the Hatchie River winds north and west in a meandering natural channel to the Mississippi River. Although most of the Hatchie River tributaries are also drainage canals, the river's main stem has kept most of

  3. Flood-inundation maps for the Yellow River at Plymouth, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2016-11-16

    Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within

  4. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  5. Hydrologic conditions in the Bill Williams River National Wildlife Refuge and Planet Valley, Arizona, 2000

    USGS Publications Warehouse

    Wilson, Richard P.; Owen-Joyce, Sandra J.

    2002-01-01

    During a period of sustained base-flow conditions in the Bill Williams River below Alamo Dam in west central Arizona from March to July 2000, the channel of the river through Planet Valley was dry, and the water table sloped almost due west parallel to the main slope of the flood plain. Water from the river infiltrated into the channel bottom at the head of Planet Valley, moved downgradient in the subsurface, and reappeared in the channel about 0.3 mile downstream from the east boundary of the Bill Williams River National Wildlife Refuge. A river aquifer in hydraulic connection with the Bill Williams River was mapped from a point 6.3 miles upstream from Highway 95 to the upstream end of Planet Valley. Formations that make up the river aquifer in Planet Valley are younger alluvium, older alluviums, and fanglomerate. Total thickness of the river aquifer probably is less than 200 feet in the bedrock canyons to as much as 1,035 feet in Planet Valley. The purpose of this study was to investigate the current hydrologic conditions along the Bill Williams River, which included an inventory of wells within the river aquifer of the Colorado River and in Planet Valley, and to determine the configuration of the water table. A map shows the elevation and configuration of the water table from the east end of Planet Valley to the confluence of the Bill Williams River with Lake Havasu.

  6. Simulation of irrigation effect on water cycle in Yellow River catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-12-01

    The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water

  7. Documentation of a Gulf sturgeon spawning site on the Yellow River, Alabama, USA

    USGS Publications Warehouse

    Kreiser, Brian R.; Berg, J.; Randall, M.; Parauka, F.; Floyd, S.; Young, B.; Sulak, Kenneth J.

    2008-01-01

    Parauka and Giorgianni (2002) reported that potential Gulf sturgeon spawning habitat is present in the Yellow River; however, efforts to document spawning by the collection of eggs or larvae have been unsuccessful in the past. Herein, we report on the first successful collection of eggs from a potential spawning site on the Yellow River and the verification of their identity as Gulf sturgeon by using molecular methods.

  8. KAWEAH RIVER VALLEY, WITH GENERALS HIGHWAY AT LEFT, MORO ROCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    KAWEAH RIVER VALLEY, WITH GENERALS HIGHWAY AT LEFT, MORO ROCK IN LEFT BACKGROUND. WITH PHOTO NO. 81, THIS SHOT FORMS A PANORAMA OF THE ROAD ALONG THE KAWEAH RIVER - Generals Highway, Three Rivers, Tulare County, CA

  9. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  10. Habitat and Populations of the Valley Elderberry Longhorn Beetle Along the Sacramento River

    Treesearch

    F. Jordan Lang; James D. Jokerst; Gregory E. Sutter

    1989-01-01

    Prior to 1985, the valley elderberry longhorn beetle, a threatened species protected under the federal Endangered Species Act, was known only from northern California riparian areas along the American River and Putah Creek in the Sacramento Valley, and along several rivers in the northern San Joaquin Valley. During 1985-1987, our study extended the known range of the...

  11. Synthetic river valleys: Creating prescribed topography for form-process inquiry and river rehabilitation design

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Pasternack, G. B.; Wallender, W. W.

    2014-06-01

    The synthesis of artificial landforms is complementary to geomorphic analysis because it affords a reflection on both the characteristics and intrinsic formative processes of real world conditions. Moreover, the applied terminus of geomorphic theory is commonly manifested in the engineering and rehabilitation of riverine landforms where the goal is to create specific processes associated with specific morphology. To date, the synthesis of river topography has been explored outside of geomorphology through artistic renderings, computer science applications, and river rehabilitation design; while within geomorphology it has been explored using morphodynamic modeling, such as one-dimensional simulation of river reach profiles, two-dimensional simulation of river networks, and three-dimensional simulation of subreach scale river morphology. To date, no approach allows geomorphologists, engineers, or river rehabilitation practitioners to create landforms of prescribed conditions. In this paper a method for creating topography of synthetic river valleys is introduced that utilizes a theoretical framework that draws from fluvial geomorphology, computer science, and geometric modeling. Such a method would be valuable to geomorphologists in understanding form-process linkages as well as to engineers and river rehabilitation practitioners in developing design surfaces that can be rapidly iterated. The method introduced herein relies on the discretization of river valley topography into geometric elements associated with overlapping and orthogonal two-dimensional planes such as the planform, profile, and cross section that are represented by mathematical functions, termed geometric element equations. Topographic surfaces can be parameterized independently or dependently using a geomorphic covariance structure between the spatial series of geometric element equations. To illustrate the approach and overall model flexibility examples are provided that are associated with

  12. Change in Sediment Provenance Near the Current Estuary of Yellow River Since the Holocene Transgression

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li

    2018-06-01

    Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.

  13. Refraction seismic studies in the Miami River, Whitewater River, and Mill Creek valleys, Hamilton and Butler Counties, Ohio

    USGS Publications Warehouse

    Watkins, Joel S.

    1963-01-01

    Between September 17 and November 9, 1962, the U.S. Geological Survey, in cooperation with Ohio Division of Water, Miami Conservancy District, and c,ty of Cincinnati, Ohio, co.,:ducted a refraction seismic study in Hamilton and Butler Counties, southwest Ohio. The area lies between Hamilton, Ohio, and the Ohio River and includes a preglacial valley now occupied by portions of the Miami River, Whitewater River, and Mill Creek. The valley is partially filled with glacial debris which yields large quantities of good-quality water. The object of the study was to determine the thickness of these glacial deposits and the shape of the preglacial valley.

  14. Water in the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1966-01-01

    Most of the work of the interagency Humboldt River Research Project in the Winnemucca reach of the Humboldt River valley has been completed. More than a dozen State and Federal agencies and several private organizations and individuals participated in the study. The major objective of the project, which began in 1959, is to evaluate the water resources of the entire Humboldt River basin. However, because of the large size of the basin, most of the work during the first 5 years of the project was done in the Winnemucca area. The purpose of this report is to summarize briefly and simply the information regarding the water resources of the Winnemucca area-especially the quantitative aspects of the flow system-given in previous reports of the project. The Winnemucca reach of the Humboldt River valley, which is in north-central Nevada, is about 200 miles downstream from the headwaters of the Humboldt River and includes that part of the valley between the Comus and Rose Creek gaging stations. Average annual inflow to the storage area (the valley lowlands) in the Winnemucca reach in water years 1949-62 was about 250,000 acre-feet. Of this amount, about 68 percent was Humboldt River streamflow, as measured at the Comus gaging station, 23 percent was precipitation directly on the storage area, 6 percent was ground-water inflow, and about 3 percent was tributary streamflow. Average annual streamflow at the Rose Creek gaging station during the same period was about 155,000 acre-feet, or about 17,000 acre-feet less than that at the Comus gaging station. Nearly all the streamflow lost was consumed by evapotranspiration in the project area. Total average annual evapotranspiration loss during the period was about 115,000 acre-feet, or about 42 percent of the total average annual outflow. The most abundant ions in the ground and surface water in the area are commonly sodium and bicarbonate. Much of the water has a dissolved-solids content that ranges from 500 to 750 parts per

  15. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia

    NASA Astrophysics Data System (ADS)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.

    2017-08-01

    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  16. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    NASA Astrophysics Data System (ADS)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth <300 feet) are recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  17. Remote sensing of cloud distributions over the Bayanhar Mountains - Watershed of the Yangtze and Yellow rivers

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.; Dodge, J. C.; Smith, R. E.

    1986-01-01

    Although the two largest rivers in China originate in the same region separated only by the Bayanhar Mountains as a watershed, the Yangtze and Yellow rivers behave in quite different ways. Most of the warm and humid air currents from the Arabian sea and the Bay of Bengal are blocked by the Bayanhar Mountains. As a result the amount of water in the Yellow River is only 5 percent of that in the Yangtze river. Based on the cloud coverage area and the cloud volumetric distributions, and also the thickness above 9.4 km of the cumulus clouds located north and south of the Bayanhar Mountains from the geosynchronous satellite infrared imagery, the results suggest that a more detailed investigation is warranted in the hope that the proper modification of cumuli north of the Bayanhar Mountains would enhance the rainfall over the fountainhead of the Yellow River.

  18. Study on Spatio-Temporal Change of Ecological Land in Yellow River Delta Based on RS&GIS

    NASA Astrophysics Data System (ADS)

    An, GuoQiang

    2018-06-01

    The temporal and spatial variation of ecological land use and its current distribution were studied to provide reference for the protection of original ecological land and ecological environment in the Yellow River Delta. Using RS colour synthesis, supervised classification, unsupervised classification, vegetation index and other methods to monitor the impact of human activities on the original ecological land in the past 30 years; using GIS technology to analyse the statistical data and construct the model of original ecological land area index to study the ecological land distribution status. The results show that the boundary of original ecological land in the Yellow River Delta had been pushed toward the coastline at an average speed of 0.8km per year due to human activities. In the past 20 years, a large amount of original ecological land gradually transformed into artificial ecological land. In view of the evolution and status of ecological land in the Yellow River Delta, related local departments should adopt differentiated and focused protection measures to protect the ecological land of the Yellow River Delta.

  19. Palaeolake isolation and biogeographical process of freshwater fishes in the Yellow River.

    PubMed

    Kang, Bin; Huang, Xiaoxia; Wu, Yunfei

    2017-01-01

    The Yellow River, one of the very few in the Earth, originated from many dispersive palaeolakes. Taking this unique advantage, we examined the roles of palaeolake isolation vs. geological processes vs. climate in determining current fish biogeographic pattern. We reviewed available data on fish species and their geographical distribution in the river, as well as palaeolake development, geological and climatic parameters. The 138 fish species recorded in the river could be divided into 8 biogeographic regions, corresponding to the distribution of palaeolakes and respective endemic species. Through variation partitioning analysis, palaeolake isolation was the most influential factor explaining 43.6% of the total variance on the current fish distribution. The Quaternary Ice Age produced a transitional distribution for fishes from the glacier to warm water, especially for the subfamily Schizothoracinae, which showed various degrees of specialisation along altitudes. We suggested that fish biogeography in the Yellow river was basically shaped by palaeolake isolation, and further carved under serials of geologic events and contemporary climate change.

  20. Palaeolake isolation and biogeographical process of freshwater fishes in the Yellow River

    PubMed Central

    Wu, Yunfei

    2017-01-01

    The Yellow River, one of the very few in the Earth, originated from many dispersive palaeolakes. Taking this unique advantage, we examined the roles of palaeolake isolation vs. geological processes vs. climate in determining current fish biogeographic pattern. We reviewed available data on fish species and their geographical distribution in the river, as well as palaeolake development, geological and climatic parameters. The 138 fish species recorded in the river could be divided into 8 biogeographic regions, corresponding to the distribution of palaeolakes and respective endemic species. Through variation partitioning analysis, palaeolake isolation was the most influential factor explaining 43.6% of the total variance on the current fish distribution. The Quaternary Ice Age produced a transitional distribution for fishes from the glacier to warm water, especially for the subfamily Schizothoracinae, which showed various degrees of specialisation along altitudes. We suggested that fish biogeography in the Yellow river was basically shaped by palaeolake isolation, and further carved under serials of geologic events and contemporary climate change. PMID:28406965

  1. Makran Mountain Range, Indus River Valley, Pakistan, India

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  2. Polycyclic aromatic hydrocarbons in sediments from the Old Yellow River Estuary, China: occurrence, sources, characterization and correlation with the relocation history of the Yellow River.

    PubMed

    Yuan, Zijiao; Liu, Guijian; Wang, Ruwei; Da, Chunnian

    2014-11-01

    The levels of 16 USEPA priority PAHs were determined in surface sediments and one dated sediment core from the abandoned Old Yellow River Estuary, China. Total PAH concentrations in the surface sediments ranged from 100.4 to 197.3 ng g(-1) dry weight and the total toxic equivalent quantity (TEQ(carc)) values of the carcinogenic PAHs were very low. An evaluation of PAH sources based on diagnostic ratios and principal component analysis suggested that PAHs in the surface sediments mainly derived from combustion sources. The total PAH concentrations altered significantly with year of deposition and showed quite different patterns of change compared with other studies: it is hypothesized that the principal cause of these changes is the relocation of the course of the Yellow River to the sea in 1976 and 1996. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. This Glorious Mud Pile (Rocky River Valley). Revised Edition.

    ERIC Educational Resources Information Center

    Cabbage, Mary Ellen

    This student text focuses on the social and geological history of a river basin. In addition to background information, the text includes student worksheets for 12 field trip stops in Ohio's Rocky River Valley. Material is designed to support a full-day field trip during which students work in small groups. Also included are a geological…

  4. Modeling the Long-term Planform Evolution of Meandering Rivers in Confined Alluvial Valleys: Etsch-Adige River, NE Italy.

    NASA Astrophysics Data System (ADS)

    Zen, S.; Bogoni, M.; Zolezzi, G.; Lanzoni, S.; Scorpio, V.

    2016-12-01

    We combine the use of a morphodynamic model for river meander planform evolution with a geological dataset to investigate the influence of external confinements on the long-term evolution of a meandering river flowing in an Alpine valley. The analysis focuses on a 100 km reach of the Adige River, NE Italy, which had several sinuous/meandering sections before being extensively channelized in the 1800s. Geological surveys and historical maps revealed that many sections of the study reach impinge on the borders of the valley during its evolution. Moreover, a marked spatial heterogeneity in floodplain vertical accretion rates likely reflects preferential positions of the river channel in the floodplain. Valley confinements are represented by bedrock outcrops and by alluvial fans created by lateral tributaries, and were extracted from the geological and historical maps to build the computational domain for the meander morphodynamic model. The model predicts the long-term planform evolution of a meandering river based on a linear solution of the 2D De St Venant-Exner differential system and can manage changes in floodplain erodibility. Model applications allow to isolate the effects of valley bedrock and of alluvial fans in constraining the lateral channel migration. Modeled river channel persistence maps are compared with the available geological information. The present work allows further insights into the role of external confinements to river meander belts, which have been conducted so far mostly assuming the channel to evolve in unconfined floodplains. Future research shall incorporate model components for floodplain vertical accretion rates and for the advancement of alluvial fans occurring at the same time scale considered for meander evolution.

  5. Influence of a water regulation event on the age of Yellow River water in the Bohai

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Haiyan; Guo, Xinyu; Liu, Zhe; Gao, Huiwang; Zhang, Guiling

    2017-10-01

    Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions (without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.

  6. Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Xu, M., III; Liu, X.

    2017-12-01

    In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using

  7. Using hydraulic heads, geochemistry and 3H to understand river bank infiltration; an example from the Ovens Valley, southeast Australia

    NASA Astrophysics Data System (ADS)

    Yu, Matthew; Cartwright, Ian

    2014-05-01

    Defining the relationship between the river and its river bank is important in constraining baseflow to a river and enhancing our ability in protecting water resources and riparian ecology. Hydraulic heads, geochemistry and 3H were measured in river banks along the Ovens River, southeast Australia. The Ovens River is characterised by the transition from a single channel river residing within a mountain valley to a multi-channel meandering river on broad alluvial plains in the lower catchment. The 3H concentrations of most near-river groundwater (less than 10 m from river channel) and bank water (10 - 30 m from the river channel) in the valley range between 1.93 and 2.52 TU. They are similar to those of the river, which are between 2.37 and 2.24 TU. These groundwater also have a Na/Cl ratio of 2.7 - 4.7 and are close to the river Na/Cl ratios. These similarities suggest that most river banks in the valley are recharged by the river. The hydraulic heads and EC values indicate that some of these river banks are recharged throughout the year, while others are only recharged during high flow events. Some near-river groundwater and bank water in the valley have a much lower 3H concentration, ranging from 0.97 to 1.27 TU. They also have a lower Na/Cl ratio of 1.6 - 3.1. These differences imply that some of the river banks in the valley are rarely recharged by the river. The lack of infiltration is supported by the constant head gradient toward the river and the constant EC values in these river banks. The river banks with bank infiltration are located in the first few hundred kilometres in the valley and in the middle catchment where the valley is broaden. In the first few hundred kilometres in the valley, it has a relatively flat landscape and does not allow a high regional water table to form. The river thus is always above the water table and recharges the river banks and the valley aquifers. In the broader valley, the relatively low lateral hydraulic gradient is

  8. Climatic and morphological controls on post-glacial lake and river valley evolution in the Weichselian belt - an example from the Wda valley, Northern Poland

    NASA Astrophysics Data System (ADS)

    Kramkowski, M. A.; Błaszkiewicz, M.; Piotrowski, J. A.; Brauer, A.; Gierszewski, P.; Kordowski, J.; Lamparski, P.; Lorenz, S.; Noryśkiewicz, A. M.; Ott, F.; Slowinski, M. M.; Tyszkowski, S.

    2014-12-01

    The River Wda valley is a classical example of a polygenetic valley, consisting of former lake basins joined by erosive gap sections. In its middle section, which was the subject of our research, a fragment of an abandoned Lateglacial river valley is preserved, which is unique for the Weichselian moraine belt in the Central European Lowlands. The analysis of the relationship between the lacustrine and fluvial sediments and landforms enabled the authors to report many evolutionary connections between the initial period of the river system formation and the emergence of lakes during the Weichselian Lateglacial. The surface drainage essentially determined the progress of melting of dead ice blocks buried in the glacial depressions, which finally led to lake formation there. Most of the lake basins in the study area were formed during the Bølling-Allerød period. However, one section of the subglacial channel was not exposed to the thermokarst conditions and was therefore preserved with dead ice blocks throughout the entire Lateglacial. The dead ice decay at the beginning of the Holocene, as well as the emergence of another lake, created a lower base level of erosion in the close vicinity of the abandoned valley and induced a change of the river's course. Both fluvial and lacustrine deposits and landforms distributed in the central section of the River Wda valley indicate two processes, which proceeded simultaneously: (1) emergence of fluvially joined lake basins within a glacial channel, (2) degradation of the river bed in the gap sections interfering between the lakes. The processes described for the central section of the River Wda channel indicate a very dynamic river valley development during the Weichselian Lateglacial and the early Holocene. The valley formation was tightly interwoven with the morphogenesis of the primary basins within the valley, mainly with the melting of the buried blocks of dead ice and the development of lakes. This study is a contribution

  9. Eco-environmental degradation in the source region of the Yellow River, Northeast Qinghai-Xizang Plateau.

    PubMed

    Feng, Jianmin; Wang, Tao; Xie, Changwei

    2006-11-01

    The Yellow River is the second longest river in China and the cradle of the Chinese civilization. The source region of the Yellow River is the most important water holding area for the Yellow River, about 49.2% of the whole runoff comes from this region. However, for the special location, it is a region with most fragile eco-environment in China as well. Eco-environmental degradation in the source region of the Yellow River has been a very serious ecological and socially economic problem. According to census data, historical documents and climatic information, during the last half century, especially the last 30 years, great changes have taken place in the eco-environment of this region. Such changes are mainly manifested in the temporal-spatial changes of water environment, deglaciation, permafrost reduction, vegetation degeneracy and desertification extent, which led to land capacity decreasing and river disconnecting. At present, desertification of the region is showing an accelerating tendency. This paper analyzes the present status of eco-environment degradation in this region supported by GIS and RS, as well as field investigation and indoor analysis, based on knowledge, multi-source data is gathered and the classification is worked out, deals with their natural and anthropogenic causes, and points out that in the last half century the desertification and environmental degradation of this region are mainly attributed to human activities under the background of regional climate changes. To halt further degradation of the environment of this region, great efforts should be made to use land resources rationally, develop advantages animal agriculture and protect the natural grassland.

  10. Linked Climatic, Environmental, and Societal Changes in the Lower Yellow River Area during the Neolithic-Bronze Age Transition

    NASA Astrophysics Data System (ADS)

    Yu, S. Y.

    2017-12-01

    Understanding human-environment interactions during times of large and rapid climatic changes in the second half of the Holocene may deepen our insight into human adaptation and resilience against potential climate anomalies in the future. However, the drivers and societal responses tend to be different from area to area, and the degree and nature of this link are still a matter of debate. Flooding sediments preserved within the cultural stratigraphical context at archaeological sites in the lower Yellow River area may offer an ideal framework for evaluating the association between evolution of Neolithic cultures and climate fluctuations. Here, we present evidence from a mound site for the prevalence of extreme overbank floods during the Neolithic-Bronze Age transition most likely triggered by excessive summer precipitation in the Yellow River valley when prolonged weak El Niño condition prevailed. Repeated flooding during around 4000-3500 cal yr BP substantially modified the floodplain landscape, thereby driving people to disperse to areas dominated by the Erlitou culture and eventually giving rise to a state-level society in central China historiographically identified as the Xia Dynasty. Changes in the drainage network due to repeated flooding also exerted a profound impact on the rice farming-based communities centered in the region of the floods. Our results provide a precise past analogue of the linked climatic, environmental, and societal changes at a time when human societies were evolving into a hierarchy similar to those of today.

  11. Community Survey Results for Rappahannock River Valley National Wildlife Refuge: Completion Report

    USGS Publications Warehouse

    Sexton, Natalie R.; Stewart, Susan C.; Koontz, Lynne

    2008-01-01

    This report provides a summary of results for the survey of residents of communities adjacent to Rappahannock River Valley NWR conducted from the spring through the summer in 2006. This research was commissioned by the Northeast Region of the U.S. Fish and Wildlife Service in support of the Rappahannock River Valley NWR CCP and conducted by the Policy Analysis and Science Assistance Branch (PASA) of the U.S. Geological Survey/Fort Collins Science Center.

  12. Water resources of the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1965-01-01

    This report, resulting from studies made by the U.S. Geological Survey as part of the interagency Humboldt River Research Project, describes the qualitative and quantitative relations among the components of the hydrologic system in the Winnemucca Reach of the Humboldt River valley. The area studied includes the segment of the Humboldt River valley between the Comus and Rose Creek gaging stations. It is almost entirely in Humboldt County in north-central Nevada, and is about 200 miles downstream from the headwaters of the Humboldt River. Agriculture is the major economic activity in the area. Inasmuch as the valley lowlands receive an average of about 8 inches of precipitation per year and because the rate of evaporation from free-water surfaces is about six times the average annual precipitation, all crops in the area (largely forage crops) are irrigated. About 85 percent of the cultivated land is irrigated with Humboldt River water; the remainder is irrigated from about 20 irrigation wells. The consolidated rocks of the uplifted fault-block mountains are largely barriers to the movement of ground water and form ground-water and surface-water divides. Unconsolidated deposits of late Tertiary and Quaternary age underlie the valley lowlands to a maximum depth of about 5,000 feet. These deposits are in hydraulic continuity with the Humboldt River and store and transmit most of the economically recoverable ground water. Included in the valley fill is a highly permeable sand and gravel deposit having a maximum thickness of about 90-100 feet; it underlies the flood plain and bordering terraces throughout most of the project area. This deposit is almost completely saturated and contains about 500,000 acre-feet of ground water in storage. The Humboldt River is the source of 90-95 percent of the surface-water inflow to the area. In water years 1949-62 the average annual streamflow at the Comus gaging station at the upstream margin of the area was 172,100 acre-feet; outflow

  13. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    USGS Publications Warehouse

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  14. Determination of microwave vegetation optical depth and water content in the source region of the Yellow River

    NASA Astrophysics Data System (ADS)

    Liu, R.; Wen, J.; Wang, X.

    2017-12-01

    In this study, we use dual polarization brightness temperature observational data at the K frequency band collected by the Micro Wave Radiation Imager (MWRI) on board the Fengyun-3B satellite (FY-3B) to improve the τ-ω model by considering the contribution of water bodies in the pixels to radiation in the wetland area of the Yellow River source region. We define a dual polarization slope parameter and express the surface emissivity in the τ-ω model as the sum of the soil and water body emissivity to retrieve the vegetation optical depth (VOD); however, in regions without water body coverage, we still use the τ-ω model to solve for the VOD. By using the field observation data on the vegetation water content (VWC) in the source region of the Yellow River during the summer of 2012, we establish the regression relationship between the VOD and VWC and retrieve the spatial distribution of the VWC. The results indicate that in the entire source region of the Yellow River in 2012, the VOD was in the range of 0.20-1.20 and the VWC was in the range of 0.20 to 1.40, thereby exhibiting a trend of low values in the west and high values in the east. The area with the largest regional variation is along the Yellow River. We compare the results from remote-sensing estimated and ground-measured vegetation water content, and the root-mean-square error is 0.12. The analysis results indicated that by considering the coverage of seasonal wetlands in the source region of the Yellow River, the microwave remote sensing data collected by the FY-3B MWRI can be used to retrieve the vegetation water content in the source region of the Yellow River.

  15. 27 CFR 9.111 - Kanawha River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...

  16. 27 CFR 9.111 - Kanawha River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...

  17. 27 CFR 9.111 - Kanawha River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...

  18. 27 CFR 9.111 - Kanawha River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...

  19. 27 CFR 9.111 - Kanawha River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...

  20. Hydrological responses to climatic changes in the Yellow River basin, China: Climatic elasticity and streamflow prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Liu, Jianyu; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-11-01

    Prediction of streamflow of the Yellow River basin was done using downscaled precipitation and temperature based on outputs of 12 GCMs under RCP2.6 and RCP8.5 scenarios. Streamflow changes of 37 tributaries of the Yellow River basin during 2070-2099 were predicted related to different GCMs and climatic scenarios using Budyko framework. The results indicated that: (1) When compared to precipitation and temperature during 1960-1979, increasing precipitation and temperature are dominant during 2070-2099. Particularly, under RCP8.5, increase of 10% and 30% can be detected for precipitation and temperature respectively; (2) Precipitation changes have larger fractional contribution to streamflow changes than temperature changes, being the major driver for spatial and temporal patterns of water resources across the Yellow River basin; (3) 2070-2099 period will witness increased streamflow depth and decreased streamflow can be found mainly in the semi-humid regions and headwater regions of the Yellow River basin, which can be attributed to more significant increase of temperature than precipitation in these regions; (4) Distinctly different picture of streamflow changes can be observed with consideration of different outputs of GCMs which can be attributed to different outputs of GCMs under different scenarios. Even so, under RCP2.6 and RCP8.5 scenarios, 36.8% and 71.1% of the tributaries of the Yellow River basin are dominated by increasing streamflow. The results of this study are of theoretical and practical merits in terms of management of water resources and also irrigated agriculture under influences of changing climate.

  1. Contribution of wave-induced liquefaction in triggering hyperpycnal flows in Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jia, Y.

    2017-12-01

    Hyperpycnal flows, driven mainly by the gravity of near-bed negatively buoyant layers, are one of the most important processes for moving marine sediment across the earth. The issue of hyperpycnal flows existing in marine environment has drawn increasing scholars' attention since that was observed in situ off the Yellow River estuary in the 1980s. Most researches maintain that hyperpycnal flows in the Yellow River estuary are caused by the high-concentration sediments discharged from the Yellow River into sea, however, other mechanisms have been discounted since the sediment input from the river has been significantly changed due to climate and anthropogenic change. Here we demonstrate that wave-seabed interactions can generate hyperpycnal flows, without river input, by sediment flux convergence above an originally consolidated seabed. Using physical model experiments and multi-sensor field measurements, we characterize the composition-dependent liquefaction properties of the sediment due to wave-induced pore water pressure accumulation. This allows quantification of attenuation of sediment threshold velocity and critical shear stress (predominant variables in transport mechanics) during the liquefaction under waves. Parameterising the wave-seabed interactions in a new concept model shows that high waves propagating over the seabed sediment can act as a scarifier plough remoulding the seabed sediment. This contributes to marine hyperpycnal flows as the sediment is quickly resuspended under accumulating attenuation in strength. Therefore, the development of more integrative numerical models could supply realistic predictions of marine record in response to rising magnitude and frequency of storms.

  2. Land Capability Potential Index (LCPI) and geodatabase for the Lower Missouri River Valley

    USGS Publications Warehouse

    Chojnacki, Kimberly A.; Struckhoff, Matthew A.; Jacobson, Robert B.

    2012-01-01

    The Land Capacity Potential Index (LCPI) is a coarse-scale index intended to delineate broad land-capability classes in the Lower Missouri River valley bottom from the Gavins Point Dam near Yankton, South Dakota to the mouth of the Missouri River near St. Louis, Missouri (river miles 811–0). The LCPI provides a systematic index of wetness potential and soil moisture-retention potential of the valley-bottom lands by combining the interactions among water-surface elevations, land-surface elevations, and the inherent moisture-retention capability of soils. A nine-class wetness index was generated by intersecting a digital elevation model for the valley bottom with sloping water-surface elevation planes derived from eight modeled discharges. The flow-recurrence index was then intersected with eight soil-drainage classes assigned to soils units in the digital Soil Survey Geographic (SSURGO) Database (Soil Survey Staff, 2010) to create a 72-class index of potential flow-recurrence and moisture-retention capability of Missouri River valley-bottom lands. The LCPI integrates the fundamental abiotic factors that determine long-term suitability of land for various uses, particularly those relating to vegetative communities and their associated values. Therefore, the LCPI provides a mechanism allowing planners, land managers, landowners, and other stakeholders to assess land-use capability based on the physical properties of the land, in order to guide future land-management decisions. This report documents data compilation for the LCPI in a revised and expanded, 72-class version for the Lower Missouri River valley bottom, and inclusion of additional soil attributes to allow users flexibility in exploring land capabilities.

  3. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991-2012.

    PubMed

    Herrick, Robert L; Buckholz, Jeanette; Biro, Frank M; Calafat, Antonia M; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M

    2017-09-01

    Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40-60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000-2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209-666 km upstream, is likely the primary exposure source. GAC treatment of drinking water mitigates, but does not eliminate, PFOA exposure. Copyright

  4. Demographic expansion of two Tamarix species along the Yellow River caused by geological events and climate change in the Pleistocene.

    PubMed

    Liang, Hong-Yan; Feng, Zhi-Pei; Pei, Bing; Li, Yong; Yang, Xi-Tian

    2018-01-08

    The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.

  5. Notes on the geology of Green River Valley between Green River, Wyoming, and Green River, Utah

    USGS Publications Warehouse

    Reeside, J.B.

    1925-01-01

    During July, August, and part of September, 1922, I had the privilege of accompanying a party sent out jointly by the Utah Power & Light Co. and the United States Geological Survey to gather such data as were still needed to complete a study of the power resources of Green River between Green River, Wyo., and Green River, Utah. The chief deficiency to be supplied was a continuous topographic map of the valley in sufficient detail to permit calculation of the storage capacity of any reservoir site that might be used, the stream gradient, and similar features. Maps on a satisfactory scale of a number of isolated stretches of the river had already been made by public or private agencies, and it was necessary to verify them and connect them on a uniform datum. Inasmuch as it was deemed unlikely that a dam higher than 300 feet would be constructed anywhere on the part of the river to be examined, a plane 300 feet above the water surface was made the upper limit of mapping. Over such parts of the valley as had been mapped already the progress of the party was naturally very rapid, and even where no mapping had previously been done, the 300-foot limit set upon the work and the usual narrowness of the valley combined to reduce the extent of the area to be mapped, so that the speed maintained was relatively high. Under this condition of rapid movement it was seldom possible to make more than the most cursory examination of the rocks, though occasionally circumstances permitted more or less detailed observation. The notes here recorded are therefore mostly of a rather generalized character, but as they pertain in part to localities that are difficult of access and not often visited by geologists, and that are at the same time classic in the history of American geology, I venture to to record them for whatever value they may have to other geologists.

  6. Distribution of PAEs in the middle and lower reaches of the Yellow River, China.

    PubMed

    Sha, Yujuan; Xia, Xinghui; Yang, Zhifeng; Huang, Gordon H

    2007-01-01

    Samples of water, sediment and suspended particulates were collected from 13 sites in the middle and lower reaches of the Yellow River in China. Phthalic acid esters (PAEs) concentrations in different phases of each sample were determined by Gas Chromatogram GC-FID. The results are shown as follows: (1) In the Xiao Langdi-Dongming Bridge section, PAEs concentrations in water phase from the main river ranged from 3.99 x 10(-3) to 45.45 x 10(-3) mg/L, which were similar to those from other rivers in the world. The PAEs levels in the tributaries of the Yellow River were much higher than those of the main river. (2) In the studied branches, the concentration of PAEs in sediment for Luoyang Petrochemical Channel (331.70 mg/Kg) was the highest. The concentrations of PAEs in sediment phase of the main river were 30.52 to 85.16 mg/Kg, which were much higher than those from other rivers in the world. In the main river, the concentration level of PAEs on suspended solid phases reached 94.22 mg/Kg, and it reached 691.23 mg/Kg in the Yiluo River - one tributary of the Yellow River. (3) Whether in the sediment or on the suspended solid phases, there was no significant correlation between the contents of PAEs and TOC or particle size of the solid phase; and the calculated Koc of Di (2-Ethylhexyl) Phthalate (DEHP) in the river were much less than the theoretical value, which inferred that PAEs were not on the equilibrium between water and suspended solid phases/sediment. (4) Among the measured PAEs compounds, the proportions of DEHP and di-n-butyl phthalate (DBP) were much higher than the others. The concentrations of DEHP exceeded the Quality Standard in all the main river and tributary stations except those in the Mengjin and Jiaogong Bridge of the main river. This indicates that more attention should be paid to pollution control and further assessment in understanding risks associated with human health.

  7. Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River

    NASA Astrophysics Data System (ADS)

    Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver

    2016-04-01

    Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.

  8. Impacts of human activities on nutrient transport in the Yellow River: The role of the Water-Sediment Regulation Scheme.

    PubMed

    Li, Xinyu; Chen, Hontao; Jiang, Xueyan; Yu, Zhigang; Yao, Qingzhen

    2017-08-15

    Anthropogenic activities alter the natural states of large rivers and their surrounding environment. The Yellow River is a well-studied case of a large river with heavy human control. An artificial managed water and sediment release system, known as the Water-Sediment Regulation Scheme (WSRS), has been carried out annually in the Yellow River since 2002. Nutrient concentrations and composition display significant time and space variations during the WSRS period. To figure out the anthropogenic impact of nutrient changes and transport in the Yellow River, biogeochemical observations were carried out in both middle reaches and lower reaches of the Yellow River during 2014 WSRS period. WSRS has a direct impact on water oxidation-reduction environment in the middle reaches; concentrations of nitrite (NO 2 - ) and ammonium (NH 4 + ) increased, while nitrate (NO 3 - ) concentration decreased by enhanced denitrification. WSRS changed transport of water and sediment; dissolved silicate (DSi) in the middle reaches was directly controlled by sediments release during the WSRS while in the lower reaches, DSi changed with both sediments and water released from middle reaches. During the WSRS, the differences of nutrient fluxes and concentrations between lower reaches and middle reaches were significant; dissolved inorganic phosphorous (DIP) and dissolved inorganic nitrogen (DIN) were higher in low reaches because of anthropogenic inputs. Human intervention, especially WSRS, can apparently change the natural states of both the mainstream and estuarine environments of the Yellow River within a short time. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Raptor ecology of Raft River Valley, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; White, C.M.; Howard, R.P.

    1980-09-01

    Raptor data were gathered in the 988-km/sup 2/ Raft River Valley in southcentral Idaho while conducting a tolerance study on the nesting Ferruginous Hawk (Buteo regalis) near the Department of Energy's Raft River Geothermal Site. Prior research from 1972 to 1977 on the nesting activity of the Ferruginous Hawk population provided a historical information base. These data are combined with new Ferruginous Hawk data collected between 1978 and 1980 to give a continuous 9-year breeding survey. Information on the distribution, density, and production of the other raptor species found in the study area during 1978 and 1979 is also provided.

  10. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment

    NASA Astrophysics Data System (ADS)

    Hu, ZhenBo; Pan, BaoTian; Bridgland, David; Vandenberghe, Jef; Guo, LianYong; Fan, YunLong; Westaway, Rob

    2017-06-01

    The upper-middle Yellow River flows through the Fenwei graben, a structure resulting from extensional tectonism that was formed and repeatedly extended during the Cenozoic. The drainage system within this graben was formerly isolated from the lower reaches of the Yellow River system by the Xiaoshan mountains, an actively growing ∼ NW-SE trending range. The modern course of the Yellow River takes it through this range along the Sanmen gorge, the formation of which was of great significance in that it initiated through-going drainage between the upper-middle and lower reaches of the system. The timing of this event, which was clearly a critical point in the evolution of the Yellow River, can be established by dating the terraces in the gorge. Intermittent deepening of this gorge by the Yellow River from a high-level planation surface capping the mountain range has resulted in the formation of five terraces. Magnetostratigraphic records from aeolian deposits accumulated on these surfaces provide a geochronological sequence for this geomorphic archive, in which the ages of the planation surface and of terraces T5, T4, T3, T2, and T1 have been determined as ∼3.63 Ma, ∼1.24 Ma, ∼0.86 Ma, ∼0.62 Ma, ∼129 ka, and ∼12 ka, respectively. Under the constraint of this chronological framework, a model for landscape evolution is proposed here. Uplift of the inner Fenwei graben and of the surrounding mountain ranges led to dissection of the 3.63 Ma old planation surface in conjunction with the formation of the Sanmen gorge. Drainage of the lake previously occupying the basin would have promoted incision into the fluvio-lacustrine graben sediments; indeed, gorge formation through the Xiaoshan may have been initiated or intensified by lake overflow. The ages obtained for the planation surface and uppermost terrace suggest that the formation of the Sanmen gorge and the initiation of the through-going eastward drainage of the Yellow River occurred between 3.63 and 1.24 Ma

  11. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-06-01

    The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.

  12. New Insights Into Valley Formation and Preservation: Geophysical Imaging of the Offshore Trinity River Paleovalley

    NASA Astrophysics Data System (ADS)

    Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.

    2017-12-01

    The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river

  13. Hydrogeology of the western part of the Salt River Valley area, Maricopa County, Arizona

    USGS Publications Warehouse

    Brown, James G.; Pool, D.R.

    1989-01-01

    The Salt River Valley is a major population and agricultural center of more than 3,000 mi2 in central Arizona (fig. 1). The western part of the Salt River Valley area (area of this report) covers about 1,500 mi2. The Phoenix metropolitan area with a population of more than 1.6 million in 1985 (Valley National Bank, 1987) is located within the valley. The watersheds of the Salt, Verde, and Agua Fria Rivers provide the valley with a reliable but limited surface-water supply that must be augmented with ground water even in years of plentiful rainfall. Large-scale ground-water withdrawals began in the Salt River Valley in the early part of the 20th century; between 1915 and 1983, the total estimated ground-water pumpage was 81 million acre-ft (U.S. Geological Survey, 1984). Because of the low average annual rainfall and high potential evapotranspiration, the principal sources of ground-water recharge are urban runoff, excess irrigation, canal seepage and surface-water flows during years of higher-than-normal rainfall. Withdrawals greatly exceed recharge and, in some area, ground-water levels have declines as much as 350 ft (Laney and other, 1978; Ross, 1978). In the study area, ground-water declines of more than 300 ft have occurred in Deer Valley and from Luke Air Force Base north to Beardsley. As a result, a large depression of the water table has developed west of Luke Air Force Base (fig. 2). Ground-water use has decreased in recent years because precipitation and surface-water supplies have been greater than normal. Increased precipitation also caused large quantities of runoff to be released into the normally dry Salt and Gila River channels. From February 1978 to June 1980, streamflow losses of at least 90,000 acre-ft occurred between Jointhead Dam near the east boundary of the study area and Gillespie Dam several miles southwest of the west edge of the study area (Mann and Rhone, 1983). Consequently, ground-water declines in a large part of the basin have

  14. The development and adaption of early agriculture in Huanghe River Valley, China

    NASA Astrophysics Data System (ADS)

    Li, X.

    2017-12-01

    The expanding and developing of agriculture are the basic of population growth, the expansions of material cultures and civilization. The Huanghe River valley, as the origin center of millet agriculture, lies between the heartlands of wheat and rice, which gestates the flourishing Neolithic culture based on agriculture. Recent work using botanical remains has greatly expanded the knowledge concerning early agriculture. Here, we report the new progress on the development and adaption of early agriculture in Huanghe River valley and the surrounding areas. Based on the analysis of phytolith from 13 sites in middle reaches of Huanghe River and the survey of crop seeds from 5 sites in Guanzhong Basin, the rice have been cultivated around 7600 cal BP in semi-humid regions dominated by rain-fed agriculture. The mixed agriculture of common millet, foxtail millet, and rice continued to exist between 7600-3500 BP. In semi-arid region of Huanghe River valley, the agriculture was dominated by the production of common and foxtail millet and 3 major changes have taken place around 6500 BP, 5500 BP, and 4000 BP during Neolithic. The cultivating ratio of common and foxtail millet was adjusted by farmer for adapting the climate changes during Holocene. Approximately 5000 yr BP, the rain-fed agriculture continues to break geographical boundaries to expand to west and southwest from Huanghe River valley. Millet agriculture appeared in southern Ganshu and north eastern Tibetan Plateau. The common and foxtail millet spread to the arid-area of Hexi corridor, a major crossroad of the famous Silk Road, around 4500 yr BP. Wheat was added as a new crop to the existing millet based agricultural systems around 4100-4000 cal yr BP in Hexi corridor. Between 3800 and 3400 cal yr BP, the proportion of wheat and barley in agriculture was up to 90%,which have replaced the local millet and become the main crops. And now, some new evidences of wheat agriculture from NW Xijiang have been obtained and

  15. The Brahmaputra River: a stratigraphic analysis of Holocene avulsion and fluvial valley reoccupation history

    NASA Astrophysics Data System (ADS)

    Hartzog, T. R.; Goodbred, S. L.

    2011-12-01

    The Brahmaputra River, one of the world's largest braided streams, is a major component of commerce, agriculture, and transportation in India and Bangladesh. Hence any significant change in course, morphology, or behavior would be likely to influence the regional culture and economy that relies on this major river system. The history of such changes is recorded in the stratigraphy deposited by the Brahmaputra River during the Holocene. Here we present stratigraphic analysis of sediment samples from the boring of 41 tube wells over a 120 km transect in the upper Bengal Basin of northern Bangladesh. The transect crosses both the modern fluvial valley and an abandoned fluvial valley about 60 km downstream of a major avulsion node. Although the modern Brahmaputra does not transport gravel, gravel strata are common below 20 m with fluvial sand deposits dominating most of the stratigraphy. Furthermore, the stratigraphy preserves very few floodplain mud strata below the modern floodplain mud cap. These preliminary findings will be assessed to determine their importance in defining past channel migration, avulsion frequency, and the reoccupation of abandoned fluvial valleys. Understanding the avulsion and valley reoccupation history of the Brahmaputra River is important to assess the risk involved with developing agriculture, business, and infrastructure on the banks of modern and abandoned channels. Based on the correlation of stratigraphy and digital surface elevation data, we hypothesize that the towns of Jamalpur and Sherpur in northern Bangladesh were once major ports on the Brahmaputra River even though they now lie on the banks of small underfit stream channels. If Jamalpur and Sherpur represent the outer extent of the Brahmaputra River braid-belt before the last major avulsion, these cities and any communities developed in the abandoned braid-belt assume a high risk of devastation if the next major avulsion reoccupies this fluvial valley. It is important to

  16. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Xu, Mengzhen; Li, Zhiwei; Wang, Zhaoyin; Zhou, Hanmi

    2017-09-01

    The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macroinvertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The river ecology was particular in the Ruoergai Wetland with the high beta diversity of macroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macroinvertebrates macroinvertebrates in the Ruoergai Wetland, moderate connectivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.

  17. Ground-water hydrology of the upper Sevier River Basin, south-central Utah, and simulation of ground-water flow in the valley-fill in Panguitch Valley.

    USGS Publications Warehouse

    Thiros, Susan A.; Brothers, William C.

    1993-01-01

    The ground-water hydrology of the upper Sevier River basin, primarily of the unconsolidated valley-fill aquifers, was studied from 1988 to 1989. Recharge to the valley-fill aquifers is mostly by seepage from surface-water sources. Changes in soil-moisture content am water levels were measured in Panguitch Valley both at a flood-irrigated and at a sprinkler-irrigated alfalfa field to quantify seepage from unconsumed irrigation water. Lag time between irrigation and water-level response decreased from 6 to 2 days in the flood-irrigated field as the soil-moisture content increased. Water levels measured in the sprinkler-irrigated field did not respond to irrigation. Discharge from the valley-fill aquifer to the Sevier River in Panguitch Valley is about 53,570 acre-feet per year.Water levels measured in wells from 1951 to 1989 tend to fluctuate with the quantity of precipitation falling at higher elevations. Ground-water discharge to the Sevier River in Panguitch Valley causes a general increase in the specific conductance of the river in a downstream direction.A three-layered ground-water-flow model was used to simulate the effects of changes in irrigation practices am increased ground-water withdrawals in Panguitch Valley. The establishment of initial conditions consisted of comparing simulated water levels and simulated gains and losses from the Sevier River and selected canals with values measured during the 1988 irrigation season. The model was calibrated by comparing water-level changes measured from 1961 to 1963 to simulated changes. A simulated change from flood to sprinkler irrigation resulted in a maximum decline in water level of 0.9 feet after the first year of change. Simulating additional discharge from wells resulted in drawdowns of about 20 feet after the first year of pumping.

  18. [Effects of Long-term Implementation of the Flow-Sediment Regulation Scheme on Grain and Clay Compositions of Inshore Sediments in the Yellow River Estuary].

    PubMed

    Wang, Miao-miao; Sun, Zhi-gao; Lu, Xiao-ning; Wang, Wei; Wang, Chuan-yuan

    2015-04-01

    Based on the laser particle size and X-ray diffraction (XRD) analysis, 28 sediment samples collected from the inshore region of the Yellow River estuary in October 2013 were determined to discuss the influence of long-term implementation of the flow-sediment regulation scheme (FSRS, initiated in 2002) on the distributions of grain size and clay components (smectite, illite, kaolinite and chlorite) in sediments. Results showed that, after the FSRS was implemented for more than 10 years, although the proportion of sand in inshore sediments of the Yellow River estuary was higher (average value, 23.5%) than those in sediments of the Bohai Sea and the Yellow River, silt was predominated (average value, 59.1%) and clay components were relatively low (average value, 17.4%). The clay components in sediments of the inshore region in the Yellow River estuary were close with those in the Yellow River. The situation was greatly changed due to the implementation of FSRS since 2002, and the clay components were in the order of illite > smectite > chlorite > kaolinite. This study also indicated that, compared to large-scale investigation in Bohai Sea, the local study on the inshore region of the Yellow River estuary was more favorable for revealing the effects of long-term implementation of the FSRS on sedimentation environment of the Yellow River estuary.

  19. Gypsum scarps and asymmetric fluvial valleys in evaporitic terrains. The role of river migration, landslides, karstification and lithology (Ebro River, NE Spain)

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Gutiérrez, F.

    2017-11-01

    Most of the Spanish fluvial systems excavated in Tertiary evaporitic gypsum formations show asymmetric valleys characterized by a stepped sequence of fluvial terraces on one valley flank and kilometric-long and > 100-m high prominent river scarp on the opposite side of the valley. Scarp undermining by the continuous preferential lateral migration of the river channel toward the valley margin leads to vertical to overhanging unstable slopes affected by a large number of slope failures that become the main geological hazard for villages located at the toe of the scarps. Detailed mapping of the gypsum scarps along the Ebro and Huerva Rivers gypsum scarps demonstrates that landslides and lateral spreading processes are predominant when claystones crop out at the base of the scarp, while rockfalls and topples become the dominant movement in those reaches where the rock mass is mainly constituted by evaporites. The dissolution of gypsum nodules, seasonal swelling and shrinking, and dispersion processes contribute to a decrease in the mechanical strength of claystones. The existence of dissolution-enlarged joints, sinkholes, and severely damaged buildings at the toe of the scarp from karstic subsidence demonstrates that the interstratal karstification of evaporites becomes a triggering factor in the instability of the rock mass. The genesis of asymmetric valleys and river gypsum scarps in the study area seem to be caused by the random migration of the river channel in the absence of lateral tilting related to tectonics or dissolution-induced subsidence. Once the scarp is developed, its preservation depends on the physicochemical properties of the substratum, the ratio between bedrock erosion and river incision rates, and climatic conditions that favour runoff erosion versus dissolution.

  20. Salinity in the Colorado River in the Grand Valley, western Colorado, 1994-95

    USGS Publications Warehouse

    Butler, David L.; von Guerard, Paul B.

    1996-01-01

    Salinity, or the dissolved-solids concentration, is the measure of salts such as sodium chloride, calcium bicarbonate, and calcium sulfate that are dissolved in water. About one-half of the salinity in the Colorado River Basin is from natural sources (U.S. Department of the Interior, 1995), such as thermal springs in the Glenwood-Dotsero area, located about 90 miles upstream from Grand Junction (fig. 1). Effects of human activities, such as irrigation, reservoir evaporation, and transbasin diversions, have increased the levels of salinity in the Colorado River. High salinity can affect industrial and municipal water users by causing increased water-treatment costs, increased deterioration of plumbing and appliances, increased soap needs, and undesirable taste of drinking water. High salinity also can cause lower crop yields by reducing water and nutrient uptake by plants and can increase agricultural production costs because of higher leaching and drainage requirements. Agricultural losses might occur when salinity reaches about 700?850 milligrams per liter (U.S Department of the Interior, 1994). Figure 1. Irrigated area in the Grand Valley and locations of sampling sites for the 1994?95 salinity study of the Colorado River. The Colorado River is the major source of irrigation water to the Grand Valley (fig. 1) and also is one source of water for the Clifton Water District, which supplies domestic water to part of the eastern Grand Valley. During spring and early summer in 1994, the Colorado River in the Grand Valley had lower than average streamflow. There was concern by water users about the effect of this low streamflow on salinity in the river. In 1994, the U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, began a study to evaluate salinity in the Colorado River. This fact sheet describes results of that study. The specific objectives of the fact sheet are to (1) compare salinity in the Colorado River among

  1. Fertilisation of the Southern Atlantic: Ephemeral River Valleys as a replenishing source of nutrient-enriched mineral aerosols

    NASA Astrophysics Data System (ADS)

    Dansie, Andrew; Wiggs, Giles; Thomas, David

    2016-04-01

    Oceanic dust deposition provides biologically important iron and macronutrients (Phosphorus (P) and Nitrogen-based (N) compounds) that contribute to phytoplankton growth, marine productivity and oceanic atmospheric CO2 uptake. Research on dust emission sources to date has largely focused on the northern hemisphere and on ephemeral lakes and pans. Our work considers the ephemeral river valleys of the west coast of Namibia as an important yet overlooked source of ocean-fertilizing dust. Dust plumes are frequently emitted from the river valleys by strong easterly winds during the Southern Hemisphere winter, when the upwelling of the Benguela Current is at its weakest. We present field data from dust emission source areas along the main river channels near the coastal termini of the Huab, Kuiseb and Tsauchab river valleys. Collected data include erodible surface sediment, wind-blown flux, and associated meteorological data. Extensive surface sediment sampling was also undertaken throughout the combined 34,250 km2 extent of each river valley catchment with samples collected from within the main river channels, the main branches of each river system, selected tributaries, and into the upper watersheds. Geochemical data show valley sediment and wind-blown flux material have high concentrations of bioavailable Fe, P and N, exceeding that measured at the major dry lake basin dust sources in southern Africa. The contribution of fertilising deposition material is enhanced by both the spatial proximity of the source areas to the ocean and enrichment of source material by ephemeral fluvial accumulation and desiccation. Results show that geographical factors within each watershed play a key role in the nutrient composition of the emitting fluvial deposits in the river valleys. Analysis explores potential relationships between land use, geology, climate and precipitation in the upper watersheds and their influence on bioavailability of Fe, P and N compounds in wind

  2. Utilization potential evaluation of plant resources in the dry-hot valley of Jinsha River

    NASA Astrophysics Data System (ADS)

    Xi, Rong; Xu, Naizhong; Liu, Shengxiang; Ren, Tingyan

    2017-08-01

    Plant resources in the dry-hot valley of Jinsha River are endemic to a class of district. The article adopts the analytic hierarchy process method to evaluate the exploitation and utilization potential of plant resources of thirty typical plant resources on the basis of their characteristics in the dry-hot valley of Jinsha River, which provide scientific evidence for quantitative evaluation of regional plant resources, and we also suggest pathways offering protection and development.

  3. Paper birch: Sentinels of climate change in the Niobrara River Valley, Nebraska

    USGS Publications Warehouse

    Stroh, Esther D.

    2011-01-01

    The Niobrara River Valley in the northern Great Plains supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation. Localized summer microclimates have likely facilitated the persistence of birch populations in a region otherwise unsuitable for the species. Dieback of canopy-sized birch has been observed throughout the valley in recent years, although no onset dates are documented. Changes in spring weather patterns may be causing rootlet injury so that trees die in spite of the still-cool summer microclimates. Current weather patterns, combined with little evidence of recruitment of young birch and great geographic distances from potential immigrant sources, make the future persistence of birch in the Niobrara River Valley stands uncertain.

  4. Sediment suspension and the dynamic mechanism during storms in the Yellow River Delta.

    PubMed

    Bian, Shuhua; Hu, Zjian; Liu, Jianqiang; Zhu, Zichen

    2016-12-01

    The suspension and hydrodynamic characteristics of the Yellow River Delta during storms were analyzed based on suspended samples obtained using automatic samplers during a storm event in the Yellow River Delta. Synchronous data for winds, waves, and tides were also collected from a nearby station. The results show that under wind speeds of 5-15 m/s and wave heights of 50-150 cm, the suspended content reached 5.7-49.6 kg/m 3 , which is 10-100 times higher than that under normal weather conditions. The medium diameter of suspended particles was 1.2-2.1 μm (8.9-9.7 Φ), which was approximately 1-2 Φ finer than that under normal weather conditions. During the early stages of the measurements, the sea level had risen by 50 cm owing to the storm, which was in addition to the tidal sea level change. We suggest that during the storms, the waves strengthened and the storm-induced sea level change, which was combined with tidal currents moving in the same direction, produced high-speed currents. This overcame the cohesive forces among the fine sediment particles and suspended a large amount of sediment. As a result, the suspended content increased markedly and the suspended particle size became finer. This explains the intense siltation and erosion of the Yellow River Delta during storms.

  5. Biological control of yellow starthistle (Centaurea solstitialis) in the Salmon River Canyon of Idaho

    Treesearch

    Jennifer L. Birdsall; George P. Markin

    2010-01-01

    Yellow starthistle is an invasive, annual, spiny forb that, for the past 30 yr has been steadily advancing up the Salmon River Canyon in west central Idaho. In 1994, a decision was made to attempt to manage yellow starthistle by establishing a complex of biological control agents in a containment zone where the weed was most dense. Between 1995 and 1997, six species of...

  6. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    PubMed

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  7. Distribution and assessment of heavy metals in the surface sediment of Yellow River, China.

    PubMed

    Yan, Nan; Liu, Wenbin; Xie, Huiting; Gao, Lirong; Han, Ying; Wang, Mengjing; Li, Haifeng

    2016-01-01

    Large amounts of heavy metals discharged by industrial cities that are located along the middle reach of Yellow River, China have detrimental impacts on both the ecological environment and human health. In this study, fourteen surface sediment samples were taken in the middle reach of the Yellow River. Contents of Zn, Pb, Ni, Cu, Cr, Cd, As were measured, and the pollution status was assessed using three widely used pollution assessment methods, including the single factor index method, Nemerow pollution index method and potential ecological risk index. The concentrations of the studied heavy metals followed the order: Zn>Cr>Cu>Ni>Pb>As>Cd. Nearly 50% of sites had Cu and Cr accumulation. The concentration of Cu at the Yiluo River exceeded the secondary standard value of the Environmental quality standard for soils. Comparison of heavy metal concentrations between this study and other selected rivers indicated that Cu and Cr may be the major pollutants in our case. The single factor index indicated that many samples were at high levels of pollution for Cu and Cd; the Nemerow pollution index indicated that the Yihe River, Luohe River, Yiluo River and Huayuankou were polluted. According to the results of potential ecological risk assessment, Cd in the tributaries of Luo River, Yihe River, and Yiluo River showed high risk toward the ecosystem and human health, Cd in Huanyuankou and Cu in Yiluo River showed a middle level of risk and other samples were at a low level of risk. Copyright © 2015. Published by Elsevier B.V.

  8. Accounting System for Water Use by Vegetation in the Lower Colorado River Valley

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1992-01-01

    The Colorado River is the principal source of water in the valley of the Colorado River between Hoover Dam and the international boundary with Mexico (fig. 1). Agricultural, domestic, municipal, industrial, hydroelectric-power genera-tion, and recreation are the primary uses of river water in the valley. Most of the consumptive use of water from the river occurs downstream from Davis Dam, where water is diverted to irrigate crops along the river or is exported to interior regions of California and Arizona. Most of the agricultural areas are on the alluvium of the flood plain; in a few areas, land on the alluvial terraces has been cultivated. River water is consumed mainly by vegetation (crops and phreatophytes) on the flood plain. Crops were grown on 70.3 percent of the vegetated area classified by using 1984 digital image satellite data. Phreatophytes, natural vege-tation that obtain water from the alluvial aquifer, covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped from the river. In some areas, water is pumped from wells completed in the alluvial aquifer, which is hydraulically connected to the river.

  9. Carbon Emission from Tibet Plateau Rivers: a Case Study of the Yellow River Headwater Region

    NASA Astrophysics Data System (ADS)

    Lu, X. X.; Yang, X.; Tian, M. Y.; Su, Y. R.; Ran, L.; Hu, H. Z.; Yu, R. H.

    2017-12-01

    Global warming will have major impacts on the high-altitude environments, including glacier retreats and permafrost thawing. Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. Study on riverine sediment and carbon fluxes from permafrost thawing and glacial retreat at high latitudes can help to identify the potential hazards of carbon emissions and provide scientific references for formulating climate adaptation strategy. The headwater region of the Yellow River, located in the north eastern Tibetan Plateau, retains a huge amount of organic carbon stored in the widely distributed meadow and steppe soils, which has been and will be affected by climate change. For example, carbon storage in the Ruoergai (Zoige) wetlands surrounded by mountain glaciers and permafrost is estimated at 23.2 Gt, representing a very high percentage of the soil carbon in the entire Tibet Plateau. Global warming will have far-reaching impacts on riverine sediment and carbon fluxes in this region. However, the amount of riverine carbon released by glacier retreat and permafrost thawing has not been well studied in this region. This talk will report our results obtained from 4 rounds of field campaign in the headwater region of the Yellow River, with a focus of the river and stream systems in the Ruoergai peatland and the Anyemaqen glacier. Our preliminary results indicated that riverine carbon emission from the headwater region was much higher than our previous report estimated from water chemistry data. With increase in temperature the rivers in Himalayas and Tibet Plateau are potential carbon source areas.

  10. Stratigraphy of the Mississippi-Alabama shelf and the Mobile River incised-valley system

    USGS Publications Warehouse

    Kindinger, Jack G.; Balson, Peter S.; Flocks, James G.; Dalrymple, Robert W.; Boyd, Ron; Zaitlin, Brian A.

    1994-01-01

    The Holocene incised-valley fill (estuarine facies) underlying Mobile Buy fit well into the conceptual facies model of a microtidal wave-dominated estuary. The model does not fit as well, however, with the rapidly transgressed shelf portion of the incised valley. The down dip section does not contain a clearly identifiable (from seismic profiles) estuarine facies; the valley fill is primarily fluvial and is overlain by marine shoals. In the Mobile River incised valley, the distal portion of the valley was rapidly drowned, allowing the thin estuarine facies to be reworked. The proximal portion was drowned more slowly, leaving the estuarine facies intact. Thus, the single incised valley contains two very different types of fill.

  11. Characterization and simulation of ground-water flow in the Kansas River Valley at Fort Riley, Kansas, 1990-98

    USGS Publications Warehouse

    Myers, Nathan C.

    2000-01-01

    Hydrologic data and a ground-water flow model were used to characterize ground-water flow in the Kansas River alluvial aquifer at Fort Riley in northeast Kansas. The ground-water flow model was developed as a tool to project ground-water flow and potential contaminant-transport paths in the alluvial aquifer on the basis of past hydrologic conditions. The model also was used to estimate historical and hypothetical ground-water flow paths with respect to a private- and several public-supply wells. The ground-water flow model area extends from the Smoky Hill and Republican Rivers downstream to about 2.5 miles downstream from the city of Ogden. The Kansas River Valley has low relief and, except for the area within the Fort Riley Military Reservation, is used primarily for crop production. Sedimentary deposits in the Kansas River Valley, formed after the ancestral Kansas River eroded into bedrock, primarily are alluvial sediment deposited by the river during Quaternary time. The alluvial sediment consists of as much as about 75 feet of poorly sorted, coarse-to-fine sand, silt, and clay, 55 feet of which can be saturated with ground water. The alluvial aquifer is unconfined and is bounded on the sides and bottom by Permian-age shale and limestone bedrock. Hydrologic data indicate that ground water in the Kansas River Valley generally flows in a downstream direction, but flow direction can be quite variable near the Kansas River due to changes in river stage. Ground-water-level changes caused by infiltration of precipitation are difficult to detect because they are masked by larger changes caused by fluctuation in Kansas River stage. Ratios of strontium isotopes Sr87 and Sr86 in water collected from wells in the Camp Funston Area indicate that the ground water along the northern valley wall originates, in part, from upland areas north of the river valley. Water from Threemile Creek, which flows out of the uplands north of the river valley, had Sr87:Sr86 ratios similar to

  12. Riparian valley oak (Quercus lobata) forest restoration on the middle Sacramento River, California

    Treesearch

    F. Thomas Griggs; Gregory H. Golet

    2002-01-01

    In 1989 The Nature Conservancy initiated a riparian horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all restoration sites Valley oak (Quercus lobata Nee) comprised a major component of the planting design. Valley oaks are a keystone tree species of lowland floodplain habitats in California...

  13. Paleogeomorphology of the early Colorado River inferred from relationships in Mohave and Cottonwood Valleys, Arizona, California and Nevada

    USGS Publications Warehouse

    Pearthree, Philip; House, P. Kyle

    2014-01-01

    Geologic investigations of late Miocene–early Pliocene deposits in Mohave and Cottonwood valleys provide important insights into the early evolution of the lower Colorado River system. In the latest Miocene these valleys were separate depocenters; the floor of Cottonwood Valley was ∼200 m higher than the floor of Mohave Valley. When Colorado River water arrived from the north after 5.6 Ma, a shallow lake in Cottonwood Valley spilled into Mohave Valley, and the river then filled both valleys to ∼560 m above sea level (asl) and overtopped the bedrock divide at the southern end of Mohave Valley. Sediment-starved water spilling to the south gradually eroded the outlet as siliciclastic Bouse deposits filled the lake upstream. When sediment accumulation reached the elevation of the lowering outlet, continued erosion of the outlet resulted in recycling of stored lacustrine sediment into downstream basins; depth of erosion of the outlet and upstream basins was limited by the water levels in downstream basins. The water level in the southern Bouse basin was ∼300 m asl (modern elevation) at 4.8 Ma. It must have drained and been eroded to a level <150 m asl soon after that to allow for deep erosion of bedrock divides and basins upstream, leading to removal of large volumes of Bouse sediment prior to massive early Pliocene Colorado River aggradation. Abrupt lowering of regional base level due to spilling of a southern Bouse lake to the Gulf of California could have driven observed upstream river incision without uplift. Rapid uplift of the entire region immediately after 4.8 Ma would have been required to drive upstream incision if the southern Bouse was an estuary.

  14. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  15. 76 FR 14897 - Boundary Establishment for the Yellow Dog National Wild and Scenic River, Ottawa National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF AGRICULTURE Forest Service Boundary Establishment for the Yellow Dog National Wild... Dog National Wild and Scenic River to Congress. FOR FURTHER INFORMATION CONTACT: Information may be..., Ironwood, MI 49938, (906) 932-1330, ext. 342. SUPPLEMENTARY INFORMATION: The Yellow Dog Wild and Scenic...

  16. Selection of growth-related genes and dominant genotypes in transgenic Yellow River carp Cyprinus carpio L.

    PubMed

    Luo, Lifei; Huang, Rong; Zhang, Aidi; Yang, Cheng; Chen, Liangming; Zhu, Denghui; Li, Yongming; He, Libo; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2018-07-01

    Transgenic Yellow River carp is characterized by rapid growth rate and high feed-conversion efficiency and exhibits a great application prospect. However, there is still a significant separation of growth traits in the transgenic Yellow River carp family; as such, growth-related genotypes must be screened for molecular marker-assisted selection. In this study, 23 growth-related candidate genes containing 48 SNP markers were screened through bulked segregant analysis (BSA) among transgenic Yellow River carp family members showing significant separation of growth traits. Then, two growth-related genes (Nos. 17 and 14 genes) were identified through combined genome-wide association study (GWAS) of candidate genes and validation of the full-sibling family approach. Nos. 17 and 14 genes encode BR serine/threonine-protein kinase 2 (BRSK2) and eukaryotic translation-initiation factor 2-alpha kinase 3 (Eif2ak3), respectively. The average body weight of three subgroups carrying the genotypes 17GG, 17GG + 14CC, and 17GG + 14TT of these two genes increased by 27.96, 38.28, and 33.72%, respectively, compared with the controls. The proportion of individuals with body weight > 500 g in these subgroups increased by 19.22, 26.82, and 30.92%, respectively. The results showed that appropriate genotype carriers can be selected from the progeny population through BSA sequencing combined with simplified GWAS analysis. Hence, basic population for breeding can be constructed and transgenic Yellow River carp strains with stable production performance and uniform phenotypic properties can be bred.

  17. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  18. Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.

    2001-01-01

    In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down-valley

  19. Change in Spatial Distribution of Permafrost in the Source Area of the Yellow River: A Numerical Prediction

    NASA Astrophysics Data System (ADS)

    Ma, S.; Sheng, Y.; Wu, J.; Hu, X.; Li, J.

    2017-12-01

    Permafrost plays an important role in the climate system through its influence on energy exchanges, hydrological processes, natural hazards and carbon budgets. As a response to the global warming, permafrost is degrading with various manifestations, such as increase in permafrost temperature, thickening of active layer, permafrost disappearance. The Source Area of the Yellow River is located in the mosaic transition zones of seasonally frozen ground, and discontinuous and continuous permafrost on the northeastern Qinghai-Tibet Plateau. Based on the prediction results of the climate model in the IPCC Fifth Assessment Report, this article attempts to forecast the change of the typical permafrost types in the SAYR by using the numerical simulation method. And we calculate the spatial distribution of permafrost in the past and predict the change trend of permafrost in the future. The results show that only a small part of the permafrost in this region has degraded in1972 2012 and the degraded area is about 279 km2. The seasonal frozen soil is mainly distributed in the valley of Re Qu, Xiaoyemaling and Tangchama in the south of the two lake basins. There is little area difference on the permafrost degrading into the seasonal frozen soil under the scenarios of RCP2.6, RCP6.0, RCP8.5 in 2050. The degrading area of permafrost is 2224 km2, 2347 km2, 2559 km2. They account for 7.5%, 7.9%, 8.6% of the Source Area, respectively. And the seasonal frozen soil is sporadically distributed in Lena Qu, Duo Qu, Baima Qu. They widely spread on Yeniugou, Yeniutan and four Madio lakes being located in the Yellow River valley of the eastern part of Ngoring Lake. In 2100, the area of permafrost degradation is 5636 km2, 9769 km2, 15548 km2. They accounts for 19%, 32.9% and 52.3% of the source area, respectively. The permafrost mainly degenerate in the area of Xingsuhai, Gamaletan, Duogerong. Permafrost influences hydrology by providing an impermeable barrier to the movement of liquid water

  20. Long-term measurements of agronomic crop irrigation in the Mississippi Delta portion of the Lower Mississippi River Valley

    USDA-ARS?s Scientific Manuscript database

    With over 4 million ha irrigated cropland, the Lower Mississippi River Valley (LMRV) is a highly productive agricultural region where irrigation practices are similar and the Mississippi River Valley alluvial aquifer (MRVA) is a primary source of on-demand irrigation. Owing to agricultural exports, ...

  1. Satellite remote sensing of water resources in the Yangtze and Yellow Rivers of China based on infrared imagery of cloud distributions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Dodge, James C.

    1990-01-01

    Although the two largest rivers in China originate in the same region, separated only by the Bayanhar Mountains as a watershed, the Yangtze and Yellow Rivers behave in quite different ways. Most of the warm and humid air currents from the Arabian Sea and Bay of Bengal are blocked by the Bayanhar Mountains. As a result, the amount of water in the Yellow River is only 5 percent of that in the Yangtze River. Based on the cloud coverage area and the cloud volumetric distributions, and also the thickness above 9.4 kms of the cumulus clouds located north and south of the Bayanhar Mountains, from GEO satellite IR imagery, the results suggest that a more detailed investigation is warranted in the hope that the proper modification of cumuli north of the Bayanhar Mountains would enhance the rainfall over the fountainhead of the Yellow River.

  2. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux

    PubMed Central

    Wang, Xuejing; Li, Hailong; Jiao, Jiu Jimmy; Barry, D. A.; Li, Ling; Luo, Xin; Wang, Chaoyue; Wan, Li; Wang, Xusheng; Jiang, Xiaowei; Ma, Qian; Qu, Wenjing

    2015-01-01

    Near- and off-shore fresh groundwater resources become increasingly important with the social and economic development in coastal areas. Although large scale (hundreds of km) submarine groundwater discharge (SGD) to the ocean has been shown to be of the same magnitude order as river discharge, submarine fresh groundwater discharge (SFGD) with magnitude comparable to large river discharge is never reported. Here, we proposed a method coupling mass-balance models of water, salt and radium isotopes based on field data of 223Ra, 226Ra and salinity to estimate the SFGD, SGD. By applying the method in Laizhou Bay (a water area of ~6000 km2), we showed that the SFGD and SGD are 0.57 ~ 0.88 times and 7.35 ~ 8.57 times the annual Yellow River flux in August 2012, respectively. The estimate of SFGD ranges from 4.12 × 107 m3/d to 6.36 × 107 m3/d, while SGD ranges from 5.32 × 108 m3/d to 6.20 × 108 m3/d. The proportion of the Yellow River input into Laizhou Bay was less than 14% of the total in August 2012. Our method can be used to estimate SFGD in various coastal waters. PMID:25742712

  3. Natural curiosities of the Bug river valley near Janów Podlaski as a chance of the specialized tourism development

    NASA Astrophysics Data System (ADS)

    Kusznerczuk, Marta

    2009-01-01

    This paper presents the most precious natural curiosities of the Bug river valley near Janów Podlaski (between Zaczopki and Gnojno). This area is protected as the landscape park - "Podlasie Bug Water Gap". The natural abiotic elements, among others geomorphological ones significantly conditioning unrepeatable charms of the Bug river valley landscape, are regarded as marginal in many papers concerning the unique values of this valley. The presented natural curiosities are arranged in genetic and chronological order. These main relief elements of the Bug river valley are associated with different morphogenetic processes, i.e. the gap formation, the Bug river metamorphosis and gully erosion. These elements can be a chance of the development of specialised tourism, which will influence the economic mobilization of this undeveloped region.

  4. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    USGS Publications Warehouse

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  5. Streamflow trends in the Spokane River and tributaries, Spokane Valley/Rathdrum Prairie, Idaho and Washington

    USGS Publications Warehouse

    Hortness, Jon E.; Covert, John J.

    2005-01-01

    A clear understanding of the aquifer and river dynamics within the Spokane Valley/Rathdrum Prairie is essential in making proper management decisions concerning ground-water and surface-water appropriations. Management of the Spokane Valley/Rathdrum Prairie aquifer is complicated because of interstate, multi-jurisdictional responsibilities, and by the interaction between ground water and surface water. Kendall?s tau trend analyses were completed on monthly mean (July through December) and annual 7-day low streamflow data for the period 1968?2002 from gaging stations located within the Spokane Valley/Rathdrum Prairie. The analyses detected trends of decreasing monthly mean streamflow at the following gaging stations: Spokane River near Post Falls, Idaho (August and September); Spokane River at Spokane, Washington (September); and Little Spokane River at Dartford, Washington (September and October); and decreasing annual 7-day low streamflows at the following gaging stations: Spokane River near Post Falls, Idaho and Spokane River at Spokane, Washington. Limited analyses of lake-level, precipitation, tributary inflow, temperature, and water-use data provided little insight as to the reason for the decreasing trends in streamflow. A net gain in streamflow occurs between the gaging stations Spokane River near Post Falls, Idaho and Spokane River at Spokane, Washington. Significant streamflow losses occur between the gaging stations Spokane River near Post Falls, Idaho and Spokane River at Greenacres, Washington; most, if not all, of the gains occur downstream from the Greenacres gaging station. Trends of decreasing net streamflow gains in the Spokane River between the near Post Falls and at Spokane gaging stations were detected for the months of September, October, and November.

  6. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in sediments from the Yellow and Yangtze Rivers, China.

    PubMed

    Gao, Lirong; Huang, Huiting; Liu, Lidan; Li, Cheng; Zhou, Xin; Xia, Dan

    2015-12-01

    Polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are toxic environmental pollutants that are often found in sediments. The Yangtze and Yellow rivers in China are two of the largest rivers in Asia and are therefore important aquatic ecosystems; however, few studies have investigated the PCDD/F and PCB content in the sediments of these rivers. Accordingly, this study was conducted to generate baseline data for future environmental risk assessments. In the present study, 26 surface sediments from the middle reaches of the Yellow and Yangtze rivers were analyzed for PCDD/Fs and dioxin-like (dl) PCBs by high-resolution gas chromatography and high-resolution mass spectrometry. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yellow River were 2.1-19.8, 1.11-9.9, and 0.08-0.57 pg/g (dry weight), respectively. The ranges of PCDD/F, dl-PCB, and WHO-TEQ content in sediments from the Yangtze River were 6.1-84.9, 1.8-24.1, and 0.13-0.29 pg/g (dry weight), respectively. Total organic carbon and dl-PCB contents in the Yellow River were significantly correlated (Spearman's correlation coefficient, r = 0.64, P < 0.05). It is well known that total organic carbon plays a role in the transport and redistribution of dl-PCB. Principal component analysis indicated that PCDD/Fs may arise from pentachlorophenol, sodium pentachlorophenate, and atmospheric deposition, while dl-PCBs likely originate from burning of coal and wood for domestic heating. The dioxin levels in the river sediments examined in this study were relatively low. These findings advance our knowledge regarding eco-toxicity and provide useful information regarding contamination sources.

  7. Evaluation of blue and green water resources in the upper Yellow River basin of China

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoxi; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Xianming, Han

    2018-06-01

    The total amount of water resources severely affects socioeconomic development of a region or watershed, which means that accurate quantification of the total amount of water resources is vital for the area, especially for the arid and semi-arid regions. Traditional evaluation of water resources only focused on the qualification of blue water, while the importance of green water was not fully considered. As the second largest river in China, the Yellow River plays an important role in socioeconomic development of the Yellow River basin. Therefore, the blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability of the blue water and green water is relatively similar during the same period. The higher temperature, the greater difference between the blue and green water. The inter-annual variability of the blue and green water shows that the trends in precipitation, blue and green water have a relatively similar characteristic. The spatial distribution of the blue and green water is characteristic with gradually decreasing from the northwest to the southeast, and the blue water around the main stream is greater than that in the other areas.

  8. [Present status of an arbovirus infection: yellow fever, its natural history of hemorrhagic fever, Rift Valley fever].

    PubMed

    Digoutte, J P

    1999-12-01

    . Intermediate yellow fever--a term coined to define epidemia which do not correspond exactly to urban yellow fever. The cycle involves men and monkeys through wild vectors as Aedes furcifer but also through Aedes aegypti and the mortality rate is much lower than for urban epidemics. In urban yellow fever, man is the only vertebrate host involved in the circulation of the virus, the vector being generally Aedes aegypti. This vector maintains a selective pressure, increasing the transmission of virus capable of producing high viremia in man. In the selvatic cycles, two cycles can be distinguished: one of maintenance which does not increase the quantity of virus in circulation and one of amplification which does increase this quantity. As we shall see, it develops into an epizootic form but also in an epidemic form in man. When the decrease in yellow fevers across Africa is considered, it appears that all major epidemics occur in West Africa inspite of the presence of wild cycles of the yellow fever virus in Central and East Africa. For the rare epidemics that have occurred there, the vector has never been Aedes aegypti. In a recent outbreak in Kenya, the vector was Aedes bromeliae. The examination of part of the gene encoding for envelope protein showed the presence of two geographical types corresponding to West-Africa and Central East-Africa. Clinically speaking, yellow fever is an haemorrhagic fever with hepatitis similar to other haemorrhagic fevers such as Rift Valley fever. When, in 1987, an outbreak of haemorrhagic fever occurred in southern Mauritania, for several days it was thought to be yellow fever. Four days later, the diagnosis was corrected by isolating and identifying the virus as that of Rift Valley fever (RVFV). RVFV causes several pathogenic syndromes in human beings: acute febrile illness, haemorrhagic fever, haemorrhagic fever with hepatitis, nervous syndromes or ocular disease. Mortality rate was high for haemorrhagic fever with hepatitis, reaching 36

  9. Estimation of salt loads for the Dolores River in the Paradox Valley, Colorado, 1980–2015

    USGS Publications Warehouse

    Mast, M. Alisa

    2017-07-13

    Regression models that relate total dissolved solids (TDS) concentrations to specific conductance were used to estimate salt loads for two sites on the Dolores River in the Paradox Valley in western Colorado. The salt-load estimates will be used by the Bureau of Reclamation to evaluate salt loading to the river coming from the Paradox Valley and the effect of the Paradox Valley Unit (PVU), a project designed to reduce the salinity of the Colorado River. A second-order polynomial provided the best fit of the discrete data for both sites on the river. The largest bias occurred in samples with elevated sulfate concentrations (greater than 500 milligrams per liter), which were associated with short-duration runoff events in late summer and fall. Comparison of regression models from a period of time before operation began at the PVU and three periods after operation began suggests the relation between TDS and specific conductance has not changed over time. Net salt gain through the Paradox Valley was estimated as the TDS load at the downstream site minus the load at the upstream site. The mean annual salt gain was 137,900 tons per year prior to operation of the PVU (1980–1993) and 43,300 tons per year after the PVU began operation (1997–2015). The difference in annual salt gain in the river between the pre-PVU and post-PVU periods was 94,600 tons per year, which represents a nearly 70 percent reduction in salt loading to the river.

  10. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  11. Comparison of plant cover of river valley fragments by using GIS tools and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Waldon-Rudzionek, Barbara

    2017-11-01

    Selected landscape registers and results of ecological analyses of flora used in studies of transformations of anthropogenic plant cover and river valley landscapes were presented. The results were shown pursuant to a comparison of fragments of two adjacent valleys in north-western Poland.

  12. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    USGS Publications Warehouse

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  13. Distribution characteristics of organochlorine pesticide in the water environment in Lanzhou section of Yellow River

    NASA Astrophysics Data System (ADS)

    Yang, L.; Zhao, X.; Shen, J. M.; Chen, Z. L.; Wang, X. C.; Qiu, H. R.

    2017-04-01

    Surface water, surface sediments and suspended particles in the Lanzhou section of Yellow River were collected. After the samples were lyophilised, extracted, concentrated, purified and separated, organochlorine pesticides in the samples were analysed by GC-MS. Results showed that organochlorine pesticide contents in surface water, surface sediments and suspended particles ranged from 28.63 ng/L to 123.2 ng/L, from 0.86 ng/g to 4.51 ng/g and from 23.29 ng/g to 126.14 ng/g, respectively. HCHs, DDTs and HCB were high; among these contents, HCH contents ranged from 1.49 ng/L to 18.1 ng/L, from 0.04ng/g to 1.53 ng/g and from 2.74ng/g to 25.64 ng/g, respectively. DDT contents ranged from 1.49 ng/Lto 18.1 ng/L, from 0.04 ng/g to 1.53 ng/g and from 2.74 ng/g to 25.64 ng/g, respectively. Component analysis results showed that organochlorine pesticide in the Lanzhou section of Yellow River was mainly from early residues or soil after pesticides were applied and long-term weathering occurred. Correlation analysis results showed that total organic carbon was an important factor affecting the distribution of organochlorine pesticide in sediments. Moderate organochlorine pesticide contents were detected in surface water in Lanzhou section of Yellow River compared with other rivers in our country and in other countries. Furthermore, the ecological risk of organochlorine pesticide in surface sediments was low.

  14. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    USGS Publications Warehouse

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  15. Vegetative impacts upon bedload transport capacity and channel stability for differing alluvial planforms in the Yellow River source zone

    NASA Astrophysics Data System (ADS)

    Li, Zhi Wei; Yu, Guo An; Brierley, Gary; Wang, Zhao Yin

    2016-07-01

    The influence of vegetation upon bedload transport and channel morphodynamics is examined along a channel stability gradient ranging from meandering to anabranching to anabranching-braided to fully braided planform conditions along trunk and tributary reaches of the Upper Yellow River in western China. Although the regional geology and climate are relatively consistent across the study area, there is a distinct gradient in the presence and abundance of riparian vegetation for these reaches atop the Qinghai-Tibet Plateau (elevations in the study area range from 2800 to 3400 m a.s.l.). To date, the influence of vegetative impacts upon channel planform and bedload transport capacity of alluvial reaches of the Upper Yellow River remains unclear because of a lack of hydrological and field data. In this region, the types and pattern of riparian vegetation vary with planform type as follows: trees exert the strongest influence in the anabranching reach, the meandering reach flows through meadow vegetation, the anabranching-braided reach has a grass, herb, and sparse shrub cover, and the braided reach has no riparian vegetation. A non-linear relation between vegetative cover on the valley floor and bedload transport capacity is evident, wherein bedload transport capacity is the highest for the anabranching reach, roughly followed by the anabranching-braided, braided, and meandering reaches. The relationship between the bedload transport capacity of a reach and sediment supply from upstream exerts a significant influence upon channel stability. Bedload transport capacity during the flood season (June-September) in the braided reach is much less than the rate of sediment supply, inducing bed aggradation and dynamic channel adjustments. Rates of channel adjustment are less pronounced for the anabranching-braided and anabranching reaches, while the meandering reach is relatively stable (i.e., this is a passive meandering reach).

  16. Monitoring of heavy flooding by orbital remote sensing: The example of the Doce river valley. [Doce River Valley, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Novo, E. M. L. D.; Dossantos, A. P.

    1981-01-01

    The application of temporal LANDSAT data to study floods was verified, and the natural features responsible for this phenomenon were surveyed using the Doce river valley as a test site, because of the catastrophic (1978-1979) flood. Data from LANDSAT images and CCT's were used. Geomorphical mapping evaluated morphostructural features. Seven and nine classes of water surfaces for dry and rainy seasons were analyzed. The magnitude of the changes from preflood to postflood stage are estimated. The single Pixel program was applied to correlate the drainage basin characteristics to the grey level of LANDSAT data.

  17. Reconstructing late Pliocene to middle Pleistocene Death Valley lakes and river systems as a test of pupfish (Cyprinodontidae) dispersal hypotheses

    USGS Publications Warehouse

    Knott, J.R.; Machette, M.N.; Klinger, R.E.; Sarna-Wojcicki, A. M.; Liddicoat, J.C.; Tinsley, J. C.; David, B.T.; Ebbs, V.M.

    2008-01-01

    During glacial (pluvial) climatic periods, Death Valley is hypothesized to have episodically been the terminus for the Amargosa, Owens, and Mojave Rivers. Geological and biological studies have tended to support this hypothesis and a hydrological link that included the Colorado River, allowing dispersal of pupfish throughout southeastern California and western Nevada. Recent mitochondrial deoxyribonucleic acid (mtDNA) studies show a common pupfish (Cyprinodontidae) ancestry in this region with divergence beginning 3-2 Ma. We present tephrochronologic and paleomagnetic data in the context of testing the paleohydrologic connections with respect to the common collection point of the Amargosa, Owens, and Mojave Rivers in Death during successive time periods: (1) the late Pliocene to early Pleistocene (3-2 Ma), (2) early to middle Pleistocene (1.2-0.5 Ma), and (3) middle to late Pleistocene (<0.70.03 Ma; paleolakes Manly and Mojave). Using the 3.35 Ma Zabriskie Wash tuff and 3.28 Ma Nomlaki Tuff Member of the Tuscan and Tehama Formations, which are prominent marker beds in the region, we conclude that at 3-2 Ma, a narrow lake occupied the ancient Furnace Creek Basin and that Death Valley was not hydrologically connected with the Amargosa or Mojave Rivers. A paucity of data for Panamint Valley does not allow us to evaluate an Owens River connection to Death Valley ca. 3-2 Ma. Studies by others have shown that Death Valley was not hydrologically linked to the Amargosa, Owens, or Mojave Rivers from 1.2 to 0.5 Ma. We found no evidence that Lake Manly flooded back up the Mojave River to pluvial Lake Mojave between 0.18 and 0.12 Ma, although surface water flowed from the Amargosa and Owens Rivers to Death Valley at this time. There is also no evidence for a connection of the Owens, Amargosa, or Mojave Rivers to the Colorado River in the last 3-2 m.y. Therefore, the hypothesis that pupfish dispersed or were isolated in basins throughout southeastern California and western

  18. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-11-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged

  19. Don't Fence Me In: Free Meanders in a Confined River Valley

    NASA Astrophysics Data System (ADS)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  20. Depth to water, 1991, in the Rathdrum Prairie, Idaho; Spokane River valley, Washington; Moscow-Lewiston-Grangeville area, Idaho; and selected intermontane valleys, east-central Idaho

    USGS Publications Warehouse

    Berenbrock, Charles E.; Bassick, M.D.; Rogers, T.L.; Garcia, S.P.

    1995-01-01

    This map report illustrates digitally generated depth-to-water zones for the Rathdrum Prairie in Idaho; part of the Spokane River Valley in eastern Washington; and the intermontane valleys of the upper Big Wood, Big Lost, Pahsimeroi, Little Lost, and Lemhi Rivers and Birch Creek in Idaho. Depth to water is 400 to 500 feet below land surface in the northern part of Rathdrum Prairie, 100 to 200 feet below land surface at the Idaho-Washington State line, and 0 to 250 feet below land surface in the Spokane area. Depth to water in the intermontane valleys in east-central Idaho is least (usually less than 50 feet) near streams and increases toward valley margins where mountain-front alluvial fans have formed. Depths to water shown in the Moscow-Lewiston-Grangeville area in Idaho are limited to point data at individual wells because most of the water levels measured were not representative of levels in the uppermost aquifer but of levels in deeper aquifers.

  1. D GIS for Flood Modelling in River Valleys

    NASA Astrophysics Data System (ADS)

    Tymkow, P.; Karpina, M.; Borkowski, A.

    2016-06-01

    The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  2. Upper Cenozoic sediments of the lower Delaware Valley and the northern Delmarva Peninsula, New Jersey, Pennsylvania, Delaware, and Maryland

    USGS Publications Warehouse

    Owens, James Patrick; Minard, James Pierson

    1979-01-01

    The 'yellow gravels' referred to by R. D. Salisbury in 1898 and the 'Trenton gravel,' as defined by H. C. Lewis in 1880, were investigated along the inner edge of the New Jersey Coastal Plain in southern New Jersey and in the northern Delmarva Peninsula. The highest level deposits, the Beacon Hill gravel, are found on only the highest hills in the New Jersey Coastal Plain. Their distribution suggests deposition from north to south across the plain. After deposition of the Beacon Hill, probably in middle or late Miocene time, a narrow valley was formed paralleling the inner edge of the New Jersey Coastal Plain between Raritan Bay and Camden. South of Camden, the valley broadened, covering much of southern New Jersey. The deposits in this valley are largely the Bridgeton Formation as we have redefined it. A second narrow valley was entrenched through the Bridgeton between Trenton and Salem, N.J. This valley broadens and covers much of the northern Delmarva Peninsula west of the Delaware River. The fill in the valley is largely the Pensauken Formation, as we have redefined it in our report. Collectively, the Beacon Hill, the Bridgeton, and the Pensauken were originally the 'yellow gravels' of Salisbury. These deposits are all fluviatile in origin and were largely formed as a series of step like downcutting channels. The Delaware Valley between Trenton and the lower Delaware Bay region is occupied by the 'Trenton gravel,' which is below the average level of the 'yellow gravels.' Two units recognized throughout the area and informally named the Spring Lake beds and the Van Sciver Lake beds are lithologically distinct from the 'yellow gravel' formations. The lithologies of the Spring Lake beds and the Van Sciver Lake beds are much more heterogeneous than those of the older formations. These two units, particularly, contain much greater amounts of silt and clay, often in thick beds. The depositional environments associated with the two units include fluviatile, estuarine

  3. Holocene intramontane lake development: A new model in the Jáchal River Valley, Andean Precordillera, San Juan, Argentina

    NASA Astrophysics Data System (ADS)

    Colombo, Ferran; Busquets, Pere; Sole de Porta, Nuria; Limarino, Carlos Oscar; Heredia, Nemesio; Rodriguez-Fernandez, Luis Roberto; Alvarez-Marron, Joaquina

    2009-10-01

    The Jáchal River Valley displays a number of significant Holocene sedimentary accumulations made up of fine-grained materials. These deposits are interpreted as the sedimentary infill of shallow temporary lakes that were generated by slow growing episodes of alluvial fans that obstructed the Jáchal River Valley. The association of fossil remains through the Holocene sedimentary sequence suggests that the accumulation of lacustrine sediments was affected by climate variations. The predominant aridity was punctuated by very few humid episodes characterised by fresh-water gastropoda and the intercalations of muddy sediments. The high proportion of charcoal particles in some samples indicates periodic forest fires. Abundant non-pollen forest remains suggest that an open zone dominated by several types of grasses underwent a dry season during part of the year. The palynomorph associations found in the Jáchal River Valley Holocene lacustrine sediments suggest that the humid conditions were less intense than those in the San Juan River Valley located more than one hundred kilometres southwards. Our study suggests that lake formation could have been controlled by climate oscillation probably related to the ENSO variation at 30° south latitude.

  4. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial

  5. Mapping Robinia pseudoacacia forest health in the Yellow River delta by using high-resolution IKONOS imagery and object-based image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Lu, Kaiyu; Pu, Ruiliang

    2016-10-01

    The Robinia pseudoacacia forest in the Yellow River delta of China has been planted since the 1970s, and a large area of dieback of the forest has occurred since the 1990s. To assess the condition of the R. pseudoacacia forest in three forest areas (i.e., Gudao, Machang, and Abandoned Yellow River) in the delta, we combined an estimation of scale parameters tool and geometry/topology assessment criteria to determine the optimal scale parameters, selected optimal predictive variables determined by stepwise discriminant analysis, and compared object-based image analysis (OBIA) and pixel-based approaches using IKONOS data. The experimental results showed that the optimal segmentation scale is 5 for both the Gudao and Machang forest areas, and 12 for the Abandoned Yellow River forest area. The results produced by the OBIA method were much better than those created by the pixel-based method. The overall accuracy of the OBIA method was 93.7% (versus 85.4% by the pixel-based) for Gudao, 89.0% (versus 72.7%) for Abandoned Yellow River, and 91.7% (versus 84.4%) for Machang. Our analysis results demonstrated that the OBIA method was an effective tool for rapidly mapping and assessing the health levels of forest.

  6. Environmental correlates of upstream migration of yellow-phase American eels in the Potomac River drainage

    USGS Publications Warehouse

    Welsh, Stuart A.; Heather L. Liller,

    2013-01-01

    Assessing the relationships between upstream migration and environmental variables is important to understanding the ecology of yellow-phase American Eels Anguilla rostrata. During an American Eel migration study within the lower Shenandoah River (Potomac River drainage), we counted and measured American Eels at the Millville Dam eel ladder for three periods: 14 May–23 July 2004, 7–30 September 2004, and 1 June–31 July 2005. Using generalized estimating equations, we modeled each time series of daily American Eel counts by fitting time-varying environmental covariates of lunar illumination (LI), river discharge (RD), and water temperature (WT), including 1-d and 2-d lags of each covariate. Information-theoretic approaches were used for model selection and inference. A total of 4,847 American Eels (19–74 cm total length) used the ladder during the three periods, including 2,622 individuals during a 2-d span following a hurricane-induced peak in river discharge. Additive-effects models of RD + WT, a 2-d lag of LI + RD, and LI + RD were supported for the three periods, respectively. Parameter estimates were positive for river discharge for each time period, negative for lunar illumination for two periods and positive for water temperature during one period. Additive-effects models supported synergistic influences of environmental variables on the upstream migration of yellow-phase American Eels, although river discharge was consistently supported as an influential correlate of upstream migration.

  7. West Harlem Walk (Hudson River Valley Greenway) beneath Henry Hudson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West Harlem Walk (Hudson River Valley Greenway) beneath Henry Hudson Parkway (HHP) Viaduct at West 155th Street vicinity, with Palisades, George Washington Bridge, and Little Red Lighthouse (visible to left of bridge tower) in background, looking northeast. - Henry Hudson Parkway, Extending 11.2 miles from West 72nd Street to Bronx-Westchester border, New York County, NY

  8. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  9. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    PubMed

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  10. Legacy and emerging halogenated flame retardants in the middle and lower stream of the Yellow River.

    PubMed

    Su, Xianfa; Li, Qilu; Feng, Jinglan; Guo, Liya; Sun, Jianhui

    2017-12-01

    Halogenated flame retardants (HFRs), mainly encompassing polybrominated diphenylethers (PBDEs), dechlorane plus (DP) and emerging bromine flame retardants (EBFRs), are widely employed nowadays in daily lives. However, limited knowledge has been gained to date on the concentrations and distributions of HFRs in particular within certain regions. In the present study, legacy and emerging HFRs were systematically measured in suspended particle matter (SPM) and sediments collected in 2014 from the middle and lower reach of the Yellow River in Henan province. The total concentrations of HFRs in SPM among the three seasons were 42.2±91.2ngg -1 , which was far higher than the corresponding values of HFRs in sediments (1.82±2.94ngg -1 ). In this study, PBDEs, DP and EBFRs in sediment almost exhibited relatively lower levels as compared to those found in other studies, where the limited usage of HFRs in the middle and lower stream of the Yellow River was probably the major impact factor. EBFR was the predominate pollutant from SPM and sediments in most of the sampling sites, suggesting that EBFRs were widely used nowadays as substitute materials of 'old' FRs. The mean concentration values of DBDPE/BDE-209 in SPM and sediments were apparently higher than those of previous studies. Furthermore, it is interesting to reveal that herein almost all of the HFR concentrations were unrelated to the population and GDP, which might be attributed to the characteristics of 'elevated stream' of the Yellow River as well as the complex river systems in Henan province. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Historical trajectories and restoration strategies for the Mississippi River alluvial valley

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Hong S. He; Brian J. Palik

    2012-01-01

    Unlike upland forests in the eastern United States, little research is available about the composition and structure of bottomland forests before Euro-American settlement. To provide a historical reference encompassing spatial variation for the Lower Mississippi River Alluvial Valley, we quantified forest types, species distributions, densities, and stocking of...

  12. An intimate understanding of place: Charles Sauriol and Toronto’s Don River Valley, 1927-1989.

    PubMed

    Bonnell, Jennifer

    2011-01-01

    Every summer from 1927 to 1968, Toronto conservationist Charles Sauriol and his family moved from their city home to a rustic cottage just a few kilometres away, within the urban wilderness of Toronto’s Don River Valley. In his years as a cottager, Sauriol saw the valley change from a picturesque setting of rural farms and woodlands to an increasingly threatened corridor of urban green space. His intimate familiarity with the valley led to a lifelong quest to protect it. This paper explores the history of conservation in the Don River Valley through Sauriol’s experiences. Changes in the approaches to protecting urban nature, I argue, are reflected in Sauriol’s personal experience – the strategies he employed, the language he used, and the losses he suffered as a result of urban planning policies. Over the course of Sauriol’s career as a conservationist, from the 1940s to the 1990s, the river increasingly became a symbol of urban health – specifically, the health of the relationship between urban residents and the natural environment upon which they depend. Drawing from a rich range of sources, including diary entries, published memoirs, and unpublished manuscripts and correspondence, this paper reflects upon the ways that biography can inform histories of place and better our understanding of individual responses to changing landscapes.

  13. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  14. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    PubMed Central

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area. PMID:24171160

  15. Sublacustrine river valley in the shelf zone of the Black Sea parallel to the Bulgarian coast

    NASA Astrophysics Data System (ADS)

    Preisinger, A.; Aslanian, S.; Beigelbeck, R.; Heinitz, W.-D.

    2009-04-01

    The considered sublacustrine river valley is situated in the shelf zone of the Black Sea. It runs in parallel to the Bulgarian coast, was formed in the time period of the Younger Dryas (Preisinger et al., 2005), and features an inclination of about 0.5 m/km. An about 200 km long sediment wall separates the approximately 10 km broad river valley from the outside shelf zone. This wall was generated during the Older Dryas until the beginning of the Younger Dryas. Its shape was formed by transportation of water and sediment from the Strait of Kerch by a circulating rim current in the Black Sea and water as well as sediment flow of the Danube in direction to the Bosporus. New investigations of the sediments of this river valley were performed by utilizing a Sediment Echo Sounder (SES 2000). This Echo Sounder is a parametric sub-bottom profiler enabling a high resolution sub-bottom analyses. It is capable of penetrating sea beds up to more than 50 m of water depth. The received echo data are real-time processed. The signal amplitudes are valuated in context to a logarithmic scale and graphically visualized by means of a colorized echogram utilizing false colours ranging from red for a high to blue representing a low signal (W.-D. Heinitz et al., 1998). The highest signal (red) is given by the acoustic impedance of the boundary between sea water and river sediment. The echograms of the river valley depict spatially isolated (red) high-signal peaks, which are periodically repeated in vertical direction between the sediment surface and the bottom of the valley. The number of these high-signal parts increase with an increasing valley depth. Studying of the distribution of these peaks allows to draw conclusions regarding the content and composition of the sediment. This prediction of the sediment composition obtained by means of the SES 2000 was successfully verified by analyzing a gravity core taken near Nos Maslen (at 44 m water depth) with a particular focus on the water

  16. Quaternary Sedimentary and Geomorphic History of River Valleys in the Lake Titicaca Basin, Peru and Bolivia

    NASA Astrophysics Data System (ADS)

    Rigsby, C. A.; Farabaugh, R. L.; Baker, P. A.

    2002-12-01

    Lacustrine sediments have become important archives of paleoclimatic history in the tropical Andes of South America. The history of lake level of Lake Titicaca (LT) has played a central role in these reconstructions. Here we report on our ongoing studies of the late Quaternary sedimentary and geomorphic histories of two of the major tributaries to LT (the Rios Ramis and Ilave) and on our earlier studies of LT's only outlet (the Rio Desaguadero). The strata and fluvial terraces in these valleys record large-scale aggradation and downcutting events that are apparently correlative with both climate changes in the LT basin and local complex response mechanisms (changes in sediment source, topographic variability, etc.). Both the Ramis and Ilave valleys have 5 terrace tracts, ranging from less than 1 m to approximately 53 m above the river level and occurring as both paired and unpaired tracts and as cut-fill, fill-, and strath terraces. The Rio Desaguadero valley has 4, locally paired, cut-fill and fill terrace tracts that range in height from approximately 2 m to 40 m above river level. In all three valleys, the terraces are underlain by meandering- and braided-river sands and gravels and by lacustrine muds. Radiocarbon dates from the Ilave and Desaguadero valleys suggest that strata in these valleys aggraded during periods of high or rising levels of LT, high or increasing sedimentation rates in the Rio Ilave delta, high (but variable) regional precipitation, and lacustrine sedimentation in the upstream-most reaches of the Rio Desaguadero valley. These same strata were downcut during periods of low or falling levels of LT, low or rapidly decreasing sedimentation rates in the Rio Ilave delta, and lower regional precipitation and runoff. In all three valleys, aggradational periods are punctuated by equilibrium periods of soil formation, downcutting events are episodic, and the most recent events are aggradation and subsequent downcutting of a low, young fill

  17. Dynamics of organic and inorganic carbon in surface sediments of the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Wang, X.; Liu, X.; Zhang, E.; Hang, F.

    2017-12-01

    Estuarine sediment is an important carbon reservoir thus may play an important role in the global carbon cycle. However, little is known on the dynamics of organic carbon (OC) and inorganic carbon (IC) in the surface sediment of the Yellow River Estuary, a large estuary in northern China. In this study, we applied element analyses and isotopic approach to study spatial distribution and sources of OC and IC in the Yellow River Estuary. We found that TIC concentration (6.3-20.1 g kg-1) was much higher than TOC (0.2-4.4 g kg-1) in the surface sediment. There showed a large spatial variability in TOC and TIC and their stable isotopes. Both TOC and TIC were higher to the north (2.6 and 14.5 g kg-1) than to the south (1.6 and 12.2 g kg-1), except in the southern bay where TOC and TIC reached 2.7 and 15.4 g kg-1, respectively. Generally, TOC and TIC in our study area was mainly autochthonous. The lower TOC values in the south section were due to relatively higher kinetic energy level whereas the higher values in the bay was attributable to terrigenous matters accumulation and lower kinetic energy level. However, the southern bay revealed the most negative δ13Corg and δ13Ccarb, suggesting that there might exist some transfer of OC to IC in the section. Our study points out that the dynamics of sedimentary carbon in the Yellow River Estuary is influenced by multiple and complex processes, and highlights the importance of carbonate in carbon sequstration.

  18. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    USGS Publications Warehouse

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in

  19. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  20. [Analysis of trend of Oncomelania snail status in Yangtze River valley of Anhui Province, 1998-2009].

    PubMed

    He, Jia-Chang; Wang, Jia-Sheng; Lu, Jin-You; Li, Ting-Ting; Gao, Feng-Hu; Zhou, Ping; Zhu, Chuan-Ming; He, Long-Zhu; Yu, Bei-Bei; Zhang, Shi-Qing

    2011-04-01

    To understand the trend of Oncomelania hupensis snail distribution in Yangtze River valley of Anhui Province so as to provide an evidence for making out schistosomiasis prevention and control strategies in the future. The snail data from 1998 to 2009 of the Yangtze River valley in Anhui Province were collected including the snail area, newly occurred and re-occurred snail areas, densities of snails and infected snails, etc., and the trend and influence factors were analyzed. With several fluctuations, the snail area showed a trend of declining in general after the devastating summer flooding in 1998. From 1998 to 2009, 3 peaks of newly occurred snail areas appeared in 1998, 2004 and 2006 and 2 peaks of reoccurred snail areas appeared in 1998 and 2004. The densities of living snails and infected snails were more severe in banks of the Yangtze River than in islets of the Yangtze River. During 12 years, 1 peak of living snail density appeared in 2003, and 3 peaks of infected snail density appeared in 1999, 2003-2004 and 2006 in the islets of the Yangtze River. The densities of living snails and infected snails in banks of the Yangtze both appeared 1 peak in 1998. The distribution of snails in the Yangtze River valley is related to nature, society and financial circumstances, and it is hard to completely perform the snail control in a short-term. Therefore, at the same time of strengthening snail control, we should also strengthen infectious source control.

  1. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    NASA Image and Video Library

    2000-12-14

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated by using data from the Shuttle Radar Topography Mission and an enhanced Landsat image.

  2. Health monitoring of Binzhou Yellow River highway bridge using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ou, Jinping; Zhao, Xuefeng; Li, Hui; Zhou, Zhi; Zhang, Zhichun; Wang, Chuan

    2005-05-01

    Binzhou yellow river Highway Bridge with 300 meter span and 768 meter length is located in the Shandong province of China and is the first cable stayed bridge with three towers along the yellow river, one of the biggest rivers in China. In order to monitoring the strain and temperature of the bridge and evaluate the health condition, one fiber Bragg grating sensing network consists of about one hundred and thirty FBG sensors mounted in 31 monitoring sections respectively, had been built during three years time. Signal cables of sensors were led to central control room located near the main tower. One four-channel FBG interrogator was used to read the wavelengths from all the sensors, associated with four computer-controlled optic switches connected to each channel. One program was written to control the interrogator and optic switches simultaneously, and ensure signal input precisely. The progress of the monitoring can be controlled through the internet. The sensors embedded were mainly used to monitor the strain and temperature of the steel cable and reinforced concrete beam. PE jacket opening embedding technique of steel cable had been developed to embed FBG sensors safely, and ensure the reliability of the steel cable opened at the same time. Data obtained during the load test can show the strain and temperature status of elements were in good condition. The data obtained via internet since the bridge's opening to traffic shown the bridge under various load such as traffic load, wind load were in good condition.

  3. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    NASA Astrophysics Data System (ADS)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  4. Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales

    NASA Astrophysics Data System (ADS)

    Su, Lu; Miao, Chiyuan; Duan, Qingyun

    2017-04-01

    Water scarcity in the Yellow River, China, has become increasingly severe over the past half century. In this paper, wavelet transform analysis was used to detect the variability of observed and reconstructed streamflow in the Yellow River at 500-, 100-, and 50-year timescales. The periodicity of the streamflow series and the co-varying relationships between streamflow and atmospheric circulation indices / sunspot number were assessed via the continuous wavelet transform (CWT) and the wavelet coherence transform (WTC). The CWT results showed intermittent oscillations in streamflow with increasing periodicities of 1-6 years at all timescales. Significant multidecadal and century-scale periodicities were identified in the 500-year streamflow series. The WTC results showed intermittent interannual covariance of streamflow with atmospheric circulation indices and sunspots. At the 50-year timescale, there were significant decadal oscillations between streamflow and the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), and bidecadal oscillations with the PDO. At the 100-year timescale, there were significant decadal oscillations between streamflow and Niño 3.4, the AO, and sunspots. At the 500-year timescale, streamflow in the middle reaches of the Yellow River showed prominent covariance with the AO with an approximately 32-year periodicity, and with sunspots with an approximately 80-year periodicity. Atmospheric circulation indices modulate streamflow by affecting temperature and precipitation. Sunspots impact streamflow variability by influencing atmospheric circulation, resulting in abundant precipitation. In general, for both the CWT and the WTC results, the periodicities were spatially continuous, with a few gradual changes from upstream to downstream resulting from the varied topography and runoff. At the temporal scale, the periodicities were generally continuous over short timescales and discontinuous over longer timescales.

  5. Wavelet-based Variability of Yellow River Discharge at 500-, 100-, and 50-Year Timescales

    NASA Astrophysics Data System (ADS)

    Su, L.

    2017-12-01

    Water scarcity in the Yellow River, China, has become increasingly severe over the past half century. In this paper, wavelet transform analysis was used to detect the variability of natural, observed, and reconstructed streamflow in the Yellow River at 500-, 100-, and 50-year timescales. The periodicity of the streamflow series and the co-varying relationships between streamflow and atmospheric circulation indices/sunspot number were assessed by means of continuous wavelet transform (CWT) and wavelet transform coherence (WTC) analyses. The CWT results showed intermittent oscillations in streamflow with increasing periodicities of 1-6 years at all timescales. Significant multidecadal and century-scale periodicities were identified in the 500-year streamflow series. The WTC results showed intermittent interannual covariance of streamflow with atmospheric circulation indices and sunspots. At the 50-year timescale, there were significant decadal oscillations between streamflow and the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), and bidecadal oscillations with the PDO. At the 100-year timescale, there were significant decadal oscillations between streamflow and Niño 3.4, the AO, and sunspots. At the 500-year timescale, streamflow in the middle reaches of the Yellow River showed prominent covariance with the AO with an approximately 32-year periodicity, and with sunspots with an approximately 80-year periodicity. Atmospheric circulation indices modulate streamflow by affecting temperature and precipitation. Sunspots impact streamflow variability by influencing atmospheric circulation, resulting in abundant precipitation. In general, for both the CWT and the WTC results, the periodicities were spatially continuous, with a few gradual changes from upstream to downstream resulting from the varied topography and runoff. At the temporal scale, the periodicities were generally continuous over short timescales and discontinuous over longer timescales.

  6. Ten key questions about the management of water in the Yellow River basin.

    PubMed

    Barnett, Jon; Webber, Michael; Wang, Mark; Finlayson, Brian; Dickinson, Debbie

    2006-08-01

    Water is scarce in many regions of the world, clean water is difficult to find in most developing countries, there are conflicts between irrigation needs and urban demands, and there is wide debate over appropriate means of resolving these problems. Similarly, in China, there is limited understanding of the ways in which people, groups, and institutions contribute to, are affected by, and respond to changes in water quantity and quality. We use the example of the Yellow River basin to argue that these social, managerial, and policy dimensions of the present water problems are significant and overshadow the physical ones. Despite this, they receive relatively little attention in the research agenda, particularly of the lead agencies in the management of the Yellow River basin. To this end, we ask ten research questions needed to address the policy needs of water management in the basin, split into two groups of five. The first five relate to the importance of water in this basin and the changes that have affected water problems and will continue to do so. The second five questions represent an attempt to explore possible solutions to these problems.

  7. Timing and origin for sand dunes in the Green River Lowland of Illinois, upper Mississippi River Valley, USA

    USGS Publications Warehouse

    Miao, X.; Hanson, P.R.; Wang, Hongfang; Young, A.R.

    2010-01-01

    The recent increase in dune studies in North America has been heavily focused in the Great Plains, while less attention has historically been given to the dune fields east of the Mississippi River. Here we report ages and suggest a potential sediment source for sand dunes in the Green River Lowland, Illinois, which may provide a better understanding of the dynamic interactions between eolian, glacial, lacustrine and fluvial processes that shaped the landscapes of the upper Midwest. Seven coherent optically stimulated luminescence ages (OSL, or optical ages) obtained from four sites suggest that major dune construction in the Green River Lowland occurred within a narrow time window around 17,500 ago. This implies either an enhanced aridity or an episodic increase of sediment supply at 17,500 years ago, or combination of the both. Contrary to previous assertions that dune sand was sourced from the deflation of the underlying outwash sand deposited when the Lake Michigan Lobe retreated from the area, we propose that Green River Lowland dunes sand originated from the Green Bay Lobe through the Rock River. Specifically, sediment supply increased in the Rock River valley during drainage of Glacial Lake Scuppernong, which formed between ???18,000 and 17,000 years ago, when the Green Bay Lobe retreated from its terminal moraine. The lake drained catastrophically through the Rock River valley, providing glacial sediment and water to erode the preexisting sandy sediments. Throughout the remainder of the late Pleistocene, the Laurentide Ice Sheet drained into larger more northerly glacial lakes that in turn drained through other river valleys. Therefore, the dunes in the Green River Lowland formed only during the catastrophic drainage of Glacial Lake Scuppernong, but were stabilized through the remainder of the Pleistocene. This scenario explains the abrupt dune construction around 17,500 years ago, and explains the lack of later dune activity up to the Pleistocene

  8. Fuel regulation in inland navigation: reduced soil black carbon and PAH deposition in river valleys

    NASA Astrophysics Data System (ADS)

    Bläsing, M.; Schwark, L.; Amelung, W.; Lehndorff, E.

    2016-12-01

    Inland navigation (IN) is of increasing importance in the transport sector. Most inland waterways and inland ports are located in/near urban regions; hence many people are exposed to emissions from IN. However, its contribution to environmental quality is not yet known. Accordingly, we aimed at identifying IN emissions in the environment, and investigating consequences of the S-reduction in ship diesel (EU regulation 2009/30/EC) on IN emissions. To do so, topsoil samples were taken from vineyards in valley transects (perpendicular to rivers) at two German inland waterways (Rhine, Moselle) and one ship-free reference valley (Ahr) and analyzed for polycyclic aromatic hydrocarbons (PAHs) and black carbon (BC). To elucidate the effect of fuel regulation (effective since 2011), samplings were performed from 2010 to 2013. Additionally, the potential dispersal of IN emissions was simulated by a Lagrangian stochastic model. Before regulating the S-content of ship diesel by the EU directive soil samples indicated a clear impact of IN emissions on BC and PAH deposits, in at least 200 and 350 m distance to the Moselle and Rhine river, respectively. IN emissions accounted for approximately 30% of total soil BC. However, soils along waterways comprised only slightly more BC than soils in the ship-free Ahr Valley, with BC contents comparable to rural to suburban European soils. Contents of PAHs in river valleys compared to remote to urban pollution load. In the course of the fuel regulation, BC and PAH deposits in soil were reduced within three years by 30-60%, respectively. Also the quality of emissions changed to higher shares of low molecular weight PAHs and smaller proportions of soot-BC, indicating less deposition of IN emissions. The impact of the fuel regulation was more obvious at the Rhine Valley than at the Moselle Valley, likely because of higher ship traffic volume at the former. Overall, fuel regulation was effective in reducing IN emissions along inland waterways.

  9. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    PubMed

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  10. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals

    NASA Astrophysics Data System (ADS)

    Green, William J.; Stage, Brian R.; Preston, Adam; Wagers, Shannon; Shacat, Joseph; Newell, Silvia

    2005-02-01

    We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system. For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink. Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.

  11. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. Anmore » extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The

  12. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5

  13. Geologic evolution of the lower Connecticut River valley: Influence of bedrock geology, glacial deposits, and sea level

    USGS Publications Warehouse

    Stone, Janet R.; Lewis, Ralph S.

    2016-01-01

    This fieldtrip illustrates the character of the lower Connecticut River bedrock valley, in particular its depth, and the lithology and structure of bedrock units it crosses. It examines the character and distribution of the glaciodeltaic terraces that partially fill the valley and discusses the depth of postglacial incision into them.

  14. Characteristics of a Recent and Prehistoric Landslides in the Pine River Valley, BC: a Mapping Effort

    NASA Astrophysics Data System (ADS)

    Heijenk, R.; Geertsema, M.; Miller, B.; de Jong, S. M.

    2015-12-01

    Spreads and other low gradient landslides are common in glacial lake sediments in north eastern British Columbia. Both pre and post glacial lake sediments, largely derived from shale bedrock are susceptible to low-gradient landslides. Bank erosion by rivers and streams and high pore pressures, have contributed to the landslides. We used LiDAR for mapping the extent of the glaciolacustrine sediments and map and characterise landslides in the Pine River valley, near Chetwynd, British Columbia. We included metrics such as travel angle, length, area, and elevation to distinguish rotational and translational landslides. We mapped 45 landslides in the Pine River valley distinguishing between rotational and translational landslides. The rotational landslides commonly have a smaller area and smaller travel length than translational landslides. Most rotational slides involved overlying alluvial fans, while most translational slides involved terraces.

  15. Seismic refraction survey in the Great Miami River Valley and vicinity, Montgomery, Warren, and Butler Counties, Ohio

    USGS Publications Warehouse

    Watkins, Joel S.; Spieker, Andrew M.

    1964-01-01

    As part of a continuing program to define the thickness and extent of water-bearing sand and gravel deposits in southwestern Ohio, the U.S. Geological Survey, in cooperation with the Ohio Division of Water and The Miami Conservancy District, completed a seismic refraction survey of the Great Miami River valley and adjacent areas between Dayton and Hamilton, Ohio, in the fall of 1963. A similar survey of the adjoining lower Great Miami River and Whitewater River valleys was completed in 1962 (Watkins, 1963; Spieker and Watkins, unpublished data).The area of the survey includes known or inferred portions of an interglacial drainage system which is deeply entrenched into bedrock. Ohio was covered by glaciers at least three times during the Pleistocene epoch. As each glacier melted, rock fragments absorbed by the glacier were transported and deposited in these buried valleys by torrents of meltwater. The total thickness of glacial drift is over 300 feet in some places. Much of the glacial material is highly permeable and saturated with large quantities of water of good quality. The underlying bedrock is virtually impermeable and yields only meager quantities of water. The cities of Dayton, Middletown, Hamilton, and many industries in the Miami River valley rely on wells in the glacial deposits as their principal source of water. The purpose of the present survey is to define the thickness and extent of these important water-bearing formations. Such information will make possible a more accurate evaluation of the area's water resources than has previously have been possible.

  16. Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?

    NASA Astrophysics Data System (ADS)

    An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.

    2017-12-01

    Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the

  17. Uplifted Yellow river terraces across the Haiyuan fault, China and their implications to geometrical complexity of strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Liu, J.; van der Woerd, J.; Li, Z.; Klinger, Y.; Matrau, R.; Shao, Y.; Zhang, J.; Wang, P.

    2016-12-01

    Geometrical complexities and discontinues, such as fault bends, splays and step-overs, are common along large strike-slip faults. Numerical and observational studies show that geometrical complexities above some threshold degree may inhibit thoroughgoing rupture, limiting rupture length and the size of the resulting earthquake. Studying the fine structure and long-term evolution of fault step-overs would help us better understand their effect on earthquake ruptures. In this study, we focus on a prominent geometrical "knot" on the left-lateral Haiyuan fault, where the fault curves with multi-strand splays bounding the Mijia Shan-Hasi Shan ranges. Incidentally, the Yellow river flows between the Mijia Shan and Hasi Shan and cuts a deep gorge when crossing the fault. On the western bank of the river, a series of at least twelve levels of fluvial strath terraces perch above river bed, and are capped with no more than 5 meters of alluvial deposits. We measured the terrace heights above river bed, using RTK and UAV surveys. We collected quartz-rich pebbles of yellow river gravel for cosmogenic radio nuclide (CRN), and silt layers within gravel and the overlying loess cap for optimally stimulated luminescence (OSL) dating to constrain the terrace formation ages. Quartz-rich pebbles were sampled both in hand-dug pit for depth-profile method and surface samples on terrace surfaces. The CRN age results were corrected in terms of inheritance and shielding by loess. The dates and heights of serial terraces yielded an average uplift rate of 2±0.34 mm/yr, which represents the late Quaternary uplifting rate of the Mijia Shan. The uplift of the Mijia Shan-Hasi Shan may result from the oblique shear of positive flower in the deep crust of the left-lateral Haiyuan fault. We further speculate that with progressively uplifted mountain ranges, the active fault trace shifts with time among the multi-strands of the fault system. In addition, the coincidence of prominent uplifted

  18. Sustainability of massively anthropic deltas via dispersal of sediment to manage land building: results from two unique case studies, the Mississippi River (U.S.A.) and the Yellow River (China) deltas

    NASA Astrophysics Data System (ADS)

    Nittrouer, Jeffrey

    2016-04-01

    Owing to their extraordinary natural resources and ecosystem services, deltaic coastlines host hundreds of millions of people worldwide. Societal sustainability on these coastal landscapes is far from certain, however, due to anthropogenic influences including sediment-supply reduction, accelerated subsidence from sub-surface fluid extraction, and leveeing of rivers. The crucial resource in building stable deltaic coastlines is sediment, and the key control on sediment delivery, whether natural or engineered, is by way river channel diversions. Two case studies, based on previous and ongoing research efforts, are presented here to describe the effects of engineered diversions for the removal of river water and associated sediment: the Mississippi River (U.S.A) and the Yellow River (China). Comparatively speaking, these two systems are end-members: Mississippi River water discharge is five times greater than the Yellow River, and yet historically, the Yellow River sediment discharges five times more sediment than the Mississippi system. As such, diversions for the two systems have contrasting goals. During flood events, the Mississippi water stage threatens major metropolitan regions with levee overtopping; spillways are therefore utilized to reduce water flux through the main channel. For the Yellow River, extremely high sediment loads result in significant sedimentation within the main channel, and so there is a concerted effort to divert and shorten the main channel, in order to enhance the water surface slope and increase sediment transport capacity. Interestingly, the net effect of these two projects has been to deposit a significant amount of sediment into the respective receiving basins, which in turn has led to the development of subaerial land. In essence, this represents two compelling case studies documenting how managed (engineered) land building practices can be implemented for other large fluvial-deltaic systems. Observational data collected from field

  19. Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Pan, Shunqi; Chen, Shenliang

    2017-09-01

    The Yellow River (Huanghe) submerged delta (YRSD) has been under the threat of erosion and retreat during the Anthropocene due to dramatic climatic and anthropogenic changes in the Yellow River basin. The analysis of field data shows that over the period of 1977-2005, the changes in climate (decrease in precipitation and increase in air temperature) and human interventions (increase in water diversion projects) throughout the watershed have resulted in the sharp reductions of river flow and sediment discharges into the Bohai Sea. Consequently, over the decadal timescale, morphological evolution of the YRSD has gone through three stages: i.e. rapid accumulation (5.77 × 108 m3/year) in 1977-1985, moderate accumulation (3.80 × 108 m3/year) in 1986-1995 and slow accumulation (0.91 × 108 m3/year) in 1996-2005. Climatic change within the catchment characterized by the rapid increase of air temperature contributed significantly to the transitions from the rapid accumulation to the moderate accumulation, and to the subsequent slow accumulation. The decadal morphological changes of the YRSD also show peculiar deposition/erosion characteristics over the medium timescale under river input reduction. Within the three decades, the patterns of the main sedimentary body exhibit irregular ellipses with the long axis parallel to the - 5 or - 10 m isobaths and short axis perpendicular to the isobaths. The depocentres of the YRSD are located between the - 10 and - 15 m isobaths close to the respective river mouths, with a high vertical accretion rate of 1.20 m/year. The time series data of annual volumetric change of the YRSD and river sediment load from 1977 to 2005 further demonstrate significant linear positive relationships between deltaic geomorphic change and fluvial input over shorter timescales (annual and 3-year). The critical sediment discharges for maintaining the deposition/erosion equilibrium state of the YRSD over the annual and 3-year timescales are found to be 1

  20. Sediment records of Yellow River channel migration and Holocene environmental evolution of the Hetao Plain, northern China

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhong; Wu, Jinglu; Pan, Baotian; Jia, Hongjuan; Li, Xiao; Wei, Hao

    2018-05-01

    The origin and evolution of lakes in the Hetao Plain, northern China, were influenced by climate variation, channel migration, and human activity. We analyzed a suite of sediment cores from the region to investigate Yellow River channel migration and environmental change in this region over the Holocene. Short sediment cores show that environmental indicators changed markedly around CE 1850, a time that corresponds to flood events, when large amounts of river water accumulated in the western part of the Hetao Plain, giving rise to abundant small lakes. Multiple sediment variables (environmental proxies) from two long cores collected in the Tushenze Paleolake area show that sediments deposited between 12.0 and 9.0 cal ka BP were yellow clay, indicative of fluvial deposition and channel migration. From 9.0 to 7.5 cal ka BP, sand was deposited, reflecting a desert environment. From 7.5 to 2.2 cal ka BP, however, the sediments were blue-gray clay that represents lacustrine facies of Lake Tushenze, which owes its origin to an increase in strength of the East Asian monsoon. At about 2.2 cal ka BP, the north branch of the Yellow River was flooded, and the Tushenze Paleolake developed further. Around 2.0 cal ka BP, the paleolake shrank and eolian sedimentation was recorded. The analyzed sediment records are consistent with the written history from the region, which documents channel migration and environmental changes in the Hetao Plain over the Holocene.

  1. Sedimentary and hydrological studies of the Holocene palaeofloods in the Shanxi-Shaanxi Gorge of the middle Yellow River, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaogang; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Ma, Yugai

    2015-01-01

    Holocene slackwater deposits along the river channels were used to study the magnitude and frequency of the palaeofloods that occurred prior to gauged and historical data sets all over the world. Palaeohydrological investigations along the Shanxi-Shaanxi Gorge of the middle Yellow River, China, identified palaeoflood slackwater deposits (SWDs) at several sites along the cliffs bordering the river channel. The SWDs are intercalated within Holocene eolian loess-soil profiles and clastic slope deposits. The palaeoflood SWDs were differentiated from eolian loess and soil by the sedimentary criteria and analytical results including magnetic susceptibility and particle-size distribution, similar to the flood SWDs in 2012, which indicated that these well-sorted palaeoflood SWD beds were deposited from the suspended sediment load in floodwaters. They have recorded the extraordinary palaeoflood events which occurred between 3200 and 3000 a BP as dated by the optically stimulated luminescence method in combination with pedostratigraphic correlations with the previously studied Holocene pedo-stratigraphy in the Yellow River drainage basin. Manning slope-area calculations estimate the peak discharged for these palaeoflood events to range from 43,290 to 49,830 m3/s. The drainage area of the study site is 489,900 km2. It is 2.0-2.5 times the largest gauged flood (21,000 m3/s) that has ever occurred since 1934. These events also occurred on Yellow River tributaries, including the Weihe, Jinghe and Qishuihe Rivers. These flood events are therefore considered to be a regional expression of known climatic events in the northern hemisphere and demonstrate Holocene climatic instability. This study provides important data in understanding the interactions between regional hydro-climatic systems and global change in semiarid and subhumid regions.

  2. View of the Salinas River Valley area south of Monterey Bay, California

    NASA Image and Video Library

    1973-08-15

    SL3-88-004 (July-September 1973) --- A vertical view of the Salinas River Valley area south of Monterey Bay, California area is seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The valley is an irrigated agricultural area, and is indicated by the dark-green and light-gray rectangular patterns in the centre of the picture. The city of Salinas is barely visible under the cloud cover at the top (north) end of the valley. The dark mass on the left (west) side of the valley is the Santa Lucia mountain range. The Big Sur area is on the left and partly covered by clouds. The Diablo Range forms the dark mass in the lower right (southeast) corner of the photograph. The town of Hollister is the gray area in the dark-green rectangular farm tracts which occupy the floor of the San Benito Valley in the upper right (northeast) corner of the photograph. The Salinas River flows northwestward toward Monterey Bay. The towns of Soledad, Greenfield and King City appear as gray areas along U.S. 101 in the Salinas Valley. The geology of the area is complex, and has been racked by several earthquakes resulting from movement along the San Andreas and subsidiary faults. Here, the surface expression of the San Andreas Fault can be traced from a point just west of Hollister at the contrast of dark brown and tan to a point about one inch left of the lower right (southeast) corner of the picture. Subsidiary faults are indicated by the curving trend of the rocks along the right side. The photograph will provide detailed information on land use patterns (Dr. R. Colwell, University of California, Berkeley) and fault tectonics (Dr. P. Merifield, Earth Science Res., Inc. and Dr. M. Abdel-Gawad, Rockwell International). Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of

  3. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  4. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa

    USGS Publications Warehouse

    Bettis, E. Arthur; Baker, R.G.; Nations, B.K.; Benn, D.W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ?? 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan. ?? 1990.

  5. Digital Map of Surficial Geology, Wetlands, and Deepwater Habitats, Coeur d'Alene River Valley, Idaho

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Jackson, Berne L.; Brandt, Theodore R.; Derkey, Pamela D.; Munts, Steven R.

    1999-01-01

    The Coeur d'Alene (CdA) River channel and its floodplain in north Idaho are mostly covered by metal-enriched sediments, partially derived from upstream mining, milling and smelting wastes. Relative to uncontaminated sediments of the region, metal-enriched sediments are highly enriched in silver, lead, zinc, arsenic, antimony and mercury, copper, cadmium, manganese, and iron. Widespread distribution of metal-enriched sediments has resulted from over a century of mining in the CdA mining district (upstream), poor mine-waste containment practices during the first 80 years of mining, and an ongoing series of over-bank floods. Previously deposited metal-enriched sediments continue to be eroded and transported down-valley and onto the floodplain during floods. The centerpiece of this report is a Digital Map Surficial Geology, Wetlands and Deepwater Habitats of the Coeur d'Alene (CdA) River valley (sheets 1 and 2). The map covers the river, its floodplain, and adjacent hills, from the confluence of the North and South Forks of the CdA River to its mouth and delta front on CdA Lake, 43 linear km (26 mi) to the southwest (river distance 58 km or 36 mi). Also included are the following derivative theme maps: 1. Wetland System Map; 2. Wetland Class Map; 3. Wetland Subclass Map; 4. Floodplain Map; 5. Water Regime Map; 6. Sediment-Type Map; 7. Redox Map; 8. pH Map; and 9. Agricultural Land Map. The CdA River is braided and has a cobble-gravel bottom from the confluence to Cataldo Flats, 8 linear km (5 mi) down-valley. Erosional remnants of up to four alluvial terraces are present locally, and all are within the floodplain, as defined by the area flooded in February of 1996. High-water (overflow) channels and partly filled channel scars braid across some alluvial terraces, toward down-valley marshes and (or) oxbow ponds, which drain back to the river. Near Cataldo Flats, the river gradient flattens, and the river coalesces into a single channel with a large friction

  6. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment

    PubMed Central

    Nie, Junsheng; Stevens, Thomas; Rittner, Martin; Stockli, Daniel; Garzanti, Eduardo; Limonta, Mara; Bird, Anna; Andò, Sergio; Vermeesch, Pieter; Saylor, Joel; Lu, Huayu; Breecker, Daniel; Hu, Xiaofei; Liu, Shanpin; Resentini, Alberto; Vezzoli, Giovanni; Peng, Wenbin; Carter, Andrew; Ji, Shunchuan; Pan, Baotian

    2015-01-01

    Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river's upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records. PMID:26449321

  7. Aquifer-test results, direction of ground-water flow, and 1984-90 annual ground-water pumpage for irrigation, lower Big Lost River Valley, Idaho

    USGS Publications Warehouse

    Bassick, M.D.; Jones, M.L.

    1992-01-01

    The study area (see index map of Idaho), part of the Big Lost River drainage basin, is at the northern side of the eastern Snake River Plain. The lower Big Lost River Valley extends from the confluence of Antelope Creek and the Big Lost River to about 4 mi south of Arco and encompasses about 145 mi2 (see map showing water-level contours). The study area is about 18 mi long and, at its narrowest, 4 mi wide. Arco, Butte City, and Moore, with populations of 1,016, 59, and 190, respectively, in 1990, are the only incorporated towns. The entire study area, except the extreme northwestern part, is in Butte City. The study area boundary is where alluvium and colluvium pinch out and abut against the White Knob Mountains (chiefly undifferentiated sedimentary rock with lesser amounts of volcanic rock) on the west and the Lost River Range (chiefly sedimentary rock) on the east. Gravel and sand in the valley fill compose the main aquifer. The southern boundary is approximately where Big Lost River valley fill intercalates with or abuts against basalt of the Snake River Group. Spring ground-water levels and flow in the Big Lost River depend primarily on temperature and the amount and timing of precipitation within the entire drainage basin. Periods of abundant water supply and water shortages are, therefore, related to the amount of annual precipitation. Surface reservoir capacity in the valley (Mackay Reservoir, about 20 mi northwest of Moore) is only 20 percent of the average annual flow of the Big Lost River (Crosthwaite and others, 1970, p. 3). Stored surface water is generally unavailable for carryover from years of abundant water supply to help relieve drought conditions in subsequent years. Many farmers have drilled irrigation wells to supplement surface-water supplies and to increase irrigated acreage. Average annual flow of the Big Lost River below Mackay Reservoir near Mackay (gaging station 13127000, not shown) in water years 1905, 1913-14, and 1920-90 was about 224

  8. Assessment of heavy metal contamination in the sediments from the Yellow River Wetland National Nature Reserve (the Sanmenxia section), China.

    PubMed

    Cheng, Qingli; Wang, Ruiling; Huang, Wenhai; Wang, Wenlin; Li, Xudong

    2015-06-01

    The Yellow River Wetland National Nature Reserve (the Sanmenxia section) is an important area of the Yellow River for two important hydrologic gauging stations: the Sanmenxia reservoir and the Xiaolangdi reservoir. Seven sites along the section were selected: Jiziling, Dinghuwan, Houdi, Canglonghu, Shangcun, Wangguan, and Nancun. After the microwave digestion with aqua regia, concentrations of Cu, Pb, Cd, Cr, Zn, and Mn in the sediments were analyzed by flame atomic absorption spectrometry with air-acetylene flame. The results showed that all the concentrations of Cr detected were from the lithogenic source, and 63 % Mn, 48 % Pb, 41 % Cu, 20 % Cd, and 12 % Zn were from the anthropogenic source. The values of the index of geo-accumulation pointed out that there was moderate contamination of Mn at the Dinghuwan (1.04) and Houdi (1.00) sites (class 2), while the modified degree of contamination denoted that the contamination at the Houdi site (2.02) was moderate, nil to very low at the Nancun and Shangcun sites and low at the other sites, consisting with the tendency of pollution load index. For metal toxicity, the sediment pollution index indicated that the sediments of the Canglonghu site were low polluted, that of the Houdi site is nearly slightly contaminated, and those of others were natural and uncontaminated. It was vital to evaluate the degree of contamination with individual and overall elements and even with the metal toxicity. Cu, Pb, and Mn contaminations were aggravated in the Sanmenxia section, and there maybe was one of the main anthropogenic sources of these metals along the Yellow River. The findings were expected to update the current status of the heavy metal pollution in the Sanmenxia section as well as to create awareness concerning the sound condition of the whole reaches of the Yellow River.

  9. Characteristics of soil C:N ratio and δ13C in wheat-maize cropping system of the North China Plain and influences of the Yellow River.

    PubMed

    Shi, Huijin; Wang, Xiujun; Xu, Minggang; Zhang, Haibo; Luo, Yongming

    2017-12-04

    To better understand the characteristics of soil organic matter (SOM) in the North China Plain, we evaluate the large scale variations of soil organic carbon (SOC), total nitrogen (TN), carbon to nitrogen (C:N) ratio and stable carbon isotopic compositions (δ 13 C) in SOC over 0-100 cm. To assess the influence of the Yellow River, 31 sites are selected from the wheat-maize double cropping system, and grouped into two: 10 sites near and 21 sites far from the river. Our data show that mean soil C:N ratio is low (7.6-9.9) across the region, and not affected by the Yellow River. However, SOC and TN are significantly (P < 0.05) lower in subsoil near the Yellow River (2.0 and 0.2-0.3 g kg -1 for SOC and TN) than far away (3.1 and 0.4 g kg -1 ); δ 13 C is significantly more negative below 60 cm near the river (-23.3 to -22.6‰) than far away (-21.8 to -21.4‰). We estimate that the contributions of wheat and maize to SOC are 61.3-68.1% and 31.9-38.8%, respectively. Our analyses indicate that the overall low levels of SOC in the North China Plain may be associated with the low soil C:N ratio and less clay content. The hydrological processes may also partly be responsible, particularly for those near the Yellow River.

  10. Hazardous geology zoning and influence factorsin the near-shore shallow strata and seabed surfaceof the modern Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Li, P.

    2016-12-01

    In this study, on the basis of 3,200 km shallow stratigraphic section and sidescan sonar data of the coastal area of the Yellow River Delta, we delineated and interpreted a total of seven types of typical hazardous geologies, including the hazardous geology in the shallow strata (buried ancient channel and strata disturbance) and hazardous geology in the seabed surface strata (pit, erosive residual body, sand patch, sand wave and scour channel). We selected eight parameters representing the development scale of the hazardous geology as the zoning indexes, including the number of hazardous geology types, pit depth, height of erosive residual body, length of scour channel, area of sand patch, length of sand wave, width of the buried ancient channel and depth of strata disturbance, and implemented the grid processing of the research area to calculate the arithmetic sum of the zoning indexes of each unit grid one by one. We then adopted the clustering analysis method to divide the near-shore waters of the Yellow River Delta into five hazardous geology areas, namely the serious erosion disaster area controlled by Diaokou lobe waves, hazardous geology area of multi-disasters under the combined action of the Shenxiangou lobe river wave flow, accumulation type hazardous geology area controlled by the current estuary river, hazardous geology area of single disaster in the deep water area and potential hazardous geology area of the Chengdao Oilfield. All four of the main factors affecting the development of hazardous geology, namely the diffusion and movement of sediment flux of the Yellow River water entering the sea, seabed stability, bottom sediment type and distribution, as well as the marine hydrodynamic characteristics, show significant regional differentiation characteristics and laws. These characteristics and laws are consistent with the above-mentioned zoning results, in which the distribution, scale and genetic mechanism of hazardous geology are considered

  11. Effects of hydrologic infrastructure on flow regimes of California's Central Valley rivers: Implications for fish populations

    USGS Publications Warehouse

    Brown, Larry R.; Bauer, Marissa L.

    2010-01-01

    Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.

  12. Assessment and potential sources of metals in the surface sediments of the Yellow River Delta, Eastern China.

    PubMed

    Cheng, Qingli; Lou, Guangyan; Huang, Wenhai; Li, Xudong

    2017-07-01

    The Yellow River Delta is the most intact estuary wetland in China and suffers from great pressure of metals. Seventy-seven surface sediment samples were collected in the delta, and contents of Cu, Pb, Cd, Cr, Zn, Ni, and Mn were analyzed by inductively coupled plasma spectrometry and those of Hg and As by atomic fluorescence spectrometry. The results showed that means of metal contents (ppm, dry weight) were as follows: Hg, 0.04; Cr, 61.72; Cu, 20.97; Zn, 60.73; As, 9.47; Pb, 21.91; Cd, 0.12; Ni, 27.24; and Mn, 540.48. 43.8% of Hg and 14.3% of Cd were from the allogenic source while others from the authigenic source. The results of the geoaccumulation indexes appeared that 6.5% of sites from the estuarine and the Gudao areas were moderately polluted by Hg. All ecological risk index values of Hg and 37.7% of Cd were more than 40, which were the main factors of strongly and moderately potential ecological risks of 37.7% of sites in the delta. High Cd contents may be due to the alkaline conditions of the delta and the unreasonable management of the farmland, while the abnormal distribution of Hg to the wet or dry deposition and the erosion of the seawater. It was suggested to monitor Hg content in the atmosphere of the Yellow River Delta. The results were expected to update the pollution status of metals in the delta and created awareness of preserving the sound condition of the Yellow River Delta.

  13. Measuring Density Stratification and Understanding its Impact on Sediment Transport in Fine-grained Rivers, Based on Observations from the Lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.

    2017-12-01

    High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are

  14. Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012

    NASA Astrophysics Data System (ADS)

    Kong, D.

    2017-12-01

    Runoff in the Yellow River Basin (YRB) has changed constantly during the past six decades. This study investigates the features of variations in runoff increment in the YRB and evaluates the impact of climate change and human activities on the mean annual net runoff. Residual analysis based on double mass curves (RA-DMC) was performed to quantitatively assess the separate contributions of climate change and human activities to the changes in net runoff. There was a significant downward trend in annual net runoff for each of the Yellow River sub-basins. For the basin as a whole, net runoff decreased at a rate of 0.721 × 109 m3 yr-1, with the upper, middle, and lower sub-basins separately accounting for 28.4%, 40.5% and 31.1% of the decrease. Human activities were responsible for more than 90% of the change in runoff in each separate sub-basin between 1960 and 2012. For the entire YRB, 91.7% of the change in net runoff from baseline was attributed to human activities. This indicates that human activities have become the dominant factor in net runoff changes in the Yellow River Basin. Among the upper, middle, and lower reaches, the effect of human activities was greatest in the lower reaches.

  15. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    USGS Publications Warehouse

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  16. Benefits of Turbid River Plume Habitat for Lake Erie Yellow Perch (Perca flavescens) Recruitment Determined by Juvenile to Larval Genotype Assignment

    PubMed Central

    Carreon-Martinez, Lucia B.; Walter, Ryan P.; Johnson, Timothy B.; Ludsin, Stuart A.; Heath, Daniel D.

    2015-01-01

    Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process. PMID:25954968

  17. [Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta].

    PubMed

    Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo

    2013-01-01

    Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.

  18. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra

    NASA Astrophysics Data System (ADS)

    Shang, Yuan; Prins, Maarten A.; Beets, Christiaan J.; Kaakinen, Anu; Lahaye, Yann; Dijkstra, Noortje; Rits, Daniël S.; Wang, Bin; Zheng, Hongbo; van Balen, Ronald T.

    2018-02-01

    The thick loess-palaeosol sequences in the Mangshan Loess Plateau (MLP; central China) along the south bank of the lower reach of the Yellow River provide high-resolution records of Quaternary climate change. In addition, substantial increases in grain-size and accumulation rate have been inferred in the upper part of the loess sequence, above palaeosol layer S2. This study investigates the sources of the long-term dust supply to the MLP and explores the mechanism behind the sudden increase in sediment delivery and coarsening of the loess deposits since S2 (∼240 ka) by using end member modelling of the loess grain-size dataset and single-grain zircon U-Pb dating. Our results indicate that the lower Yellow River floodplain, directly north of the MLP, served as a major dust supply for the plateau at least since the deposition of loess unit L9 and indirectly suggest that the integration of the Yellow River and the disappearance of the Sanmen palaeolake took place before L9 (∼900 ka). The sudden change in sedimentology of the Mangshan sequence above palaeosol unit S2 may result from an increased fluvial sediment flux being transported to the lower reaches of the Yellow River because of tectonic movements (initiated) in the Weihe Basin around 240 ka. Furthermore, sediment coarsening can be explained by the gradual southward migration of the lower Yellow River floodplain towards the MLP since the deposition of palaeosol S2. The migration is evidenced by the formation of an impressive scarp, and is likely caused by tectonic tilting of the floodplain area.

  19. 75 FR 7286 - Rappahannock River Valley National Wildlife Refuge, Caroline, Essex, King George, Lancaster...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R5-R-2009-N203; BAC-4311-K9-S3] Rappahannock River Valley National Wildlife Refuge, Caroline, Essex, King George, Lancaster, Middlesex, Richmond, and Westmoreland Counties, VA AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of...

  20. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa*1

    NASA Astrophysics Data System (ADS)

    Bettis, E. Arthur; Baker, Richard G.; Nations, Brenda K.; Benn, David W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ± 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan.

  1. Understory vegetation as an indicator for floodplain forest restoration in the Mississippi River Alluvial Valley, U.S.A

    Treesearch

    Diane De Steven; Stephen P. Faulkner; Bobby D. Keeland; Michael J. Baldwin; John W. McCoy; Steven C. Hughes

    2015-01-01

    In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (...

  2. Geological Carbon Sequestration in the Ohio River Valley: An Evaluation of Possible Target Formations

    NASA Astrophysics Data System (ADS)

    Dalton, T. A.; Daniels, J. J.

    2009-12-01

    The development of geological carbon sequestration within the Ohio River Valley is of major interest to the national electricity and coal industries because the Valley is home to a heavy concentration of coal-burning electricity generation plants and the infrastructure is impossible to eliminate in the short-term. It has been determined by Ohio's politicians and citizenry that the continued use of coal in this region until alternative energy supplies are available will be necessary over the next few years. Geologic sequestration is the only possible means of keeping the CO2 out of the atmosphere in the region. The cost of the sequestration effort greatly decreases CO2 emissions by sequestering CO2 directly on site of these plants, or by minimizing the distance between fossil-fueled generation and sequestration (i.e., by eliminating the cost of transportation of supercritical CO2 from plant to sequestration site). Thus, the practicality of CO2 geologic sequestration within the Ohio River Valley is central to the development of such a commercial effort. Though extensive work has been done by the Regional Partnerships of the DOE/NETL in the characterization of general areas for carbon sequestration throughout the nation, few projects have narrowed their focus into a single geologic region in order to evaluate the sites of greatest commercial potential. As an undergraduate of the Earth Sciences at Ohio State, I have engaged in thorough research to obtain a detailed understanding of the geology of the Ohio River Valley and its potential for commercial-scale carbon sequestration. Through this research, I have been able to offer an estimate of the areas of greatest interest for CO2 geologic sequestration. This research has involved petrological, mineralogical, geochemical, and geophysical analyses of four major reservoir formations within Ohio—the Rose Run, the Copper Ridge, the Clinton, and the Oriskany—along with an evaluation of the possible effects of injection

  3. Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2012-01-01

    The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and southeastern Chenango Counties, New York. The surficial geology, inferred ice-marginal positions, and distribution of stratified-drift aquifers were mapped from existing data. Ice-marginal positions, which represent pauses in the retreat of glacial ice from the region, favored the accumulation of coarse-grained deposits whereas more steady or rapid ice retreat between these positions favored deposition of fine-grained lacustrine deposits with limited coarse-grained deposits at depth. Unconfined aquifers with thick saturated coarse-grained deposits are the most favorable settings for water-resource development, and three several-mile-long sections of valley were identified (mostly in Broome County) as potentially favorable: (1) the southernmost valley section, which extends from the New York–Pennsylvania border to about 1 mile north of South Windsor, (2) the valley section that rounds the west side of the umlaufberg (an isolated bedrock hill within a valley) north of Windsor, and (3) the east–west valley section at the Broome County–Chenango County border from Nineveh to East of Bettsburg (including the lower reach of the Cornell Brook valley). Fine-grained lacustrine deposits form extensive confining units between the unconfined areas, and the water-resource potential of confined aquifers is largely untested. Recharge, or replenishment, of these aquifers is dependent not only on infiltration of precipitation directly on unconfined aquifers, but perhaps more so from precipitation that falls in adjacent upland areas. Surface runoff and shallow groundwater from the valley walls flow downslope and recharge valley aquifers. Tributary streams that drain upland areas lose flow as they enter main valleys on permeable alluvial fans. This infiltrating water also recharges valley aquifers. Current (2012) use of

  4. [Secondary metabolites of halotolerant fungus Penicillium chrysogenum HK14-01 from the Yellow River Delta area].

    PubMed

    Qu, Peng; Liu, Peipei; Fu, Peng; Wang, Yi; Zhu, Weiming

    2012-09-04

    To search for structurally novel and biologically active compounds from the secondary metabolites of halotolerant fungi from the Yellow River Delta area. We screened halotolerant fungi with rich chemical diversity and antitumor or antimicrobial activity by means of integrated chemical and biological method. We cultured halotolerant fungi under different conditions at first. Then we investigated the chemical diversity and the bioactivity of the EtOAc extracts of the fermentation broth by HPLC and TLC, and cytotoxic assay or antimicrobial assay. We selected Penicillium chrysogenum HK14-01 to further study for the large yield, producing alkaloids and cytotoxicity on P388 cells in YMDP culture medium containing 10% NaCl. We fermented P. chrysogenum HK14-01 on a large scale; we isolated and purified the compounds by column chromatography over silica gel, Sephadex LH-20, and semipreparative HPLC; and we identified the structures by spectroscopic analysis, X-ray diffraction (Mo-Kalpha), CD spectra and the time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculation. We isolated and identified a halotolerant fungal strain, P. chrysogenum HK14-01, from the sediments collected in the Yellow River Delta area. From the fermentation broth of P. chrysogenum HK14-01, we isolated and identified eight compounds, i.e. (2S,3R)-oxaline (1, a major product), (3R, 4R)-3,4,8-trihydroxy-3,4-dihydronaphthalen-1 (2H)-one (2), (Z)-N-(4-hydroxy styryl) formamide (3), (E)-N-(4-hydroxystyryl) formamide (4), emodin (5), 4-(2-hydroxyethyl) benzene-1,2-diol (6), methyl 2-(4-hydroxyphenyl) acetate (7), and 2-(4-hydroxyphenyl) acetonitrile (8). Bioactive compounds can be obtained from the secondary metabolites of halotolerant microorganisms from the Yellow River Delta area.

  5. High-precision U-Pb geochronology in the Minnesota River Valley subprovince and its bearing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province

    USGS Publications Warehouse

    Schmitz, M.D.; Bowring, S.A.; Southwick, D.L.; Boerboom, Terrence; Wirth, K.R.

    2006-01-01

    High-precision U-Pb ages have been obtained for high-grade gneisses, late-kinematic to postkinematic granitic plutons, and a crosscutting mafic dike of the Archean Minnesota River Valley tectonic subprovince, at the southern ramparts of the Superior craton of North America. The antiquity of the Minnesota River Valley terranes is confirmed by a high-precision U-Pb zircon age of 3422 ?? 2 Ma for a tonalitic phase of the Morton Gneiss. Voluminous, late-kinematic monzogranites of the Benson (Ortonville granite) and Morton (Sacred Heart granite) blocks yield identical crystallization ages of 2603 ?? 1 Ma, illustrating the synchrony and rapidity of deep crustal melting and plutonism throughout the Minnesota River Valley terranes. Postkinematic, 2591 ?? 2 Ma syenogranites and aplitic dikes in both blocks effectively constrain the final penetrative deformation of the Minnesota River Valley subprovince. Monazite growth from 2609 to 2595 Ma in granulitic paragneisses of the Benson and Montevideo blocks is interpreted to record prograde to peak granulite facies metamorphic conditions associated with crustal thickening and magmatism. Neoarchean metamorphism and plutonism are interpreted to record the timing of collisional accretion and terminal suturing of the Mesoarchean continental Minnesota River Valley terranes to the southern margin of the Superior Province, along the western Great Lakes tectonic zone. Subsequent Paleoproterozoic rifting of this margin is recorded by voluminous basaltic dike intrusion, expressed in the Minnesota River Valley by major WNW-trending tholeiitic diabase dikes dated at 2067 ?? 1 Ma, only slightly younger than the structurally and geochemically similar 2077 ?? 4 Ma Fort Frances (Kenora-Kabetogama) dike swarm of northern Minnesota and adjoining Canada. ?? 2006 Geological Society of America.

  6. [Investigation of toxigenic microcystis and microcystin pollution in Huayuankou Conservation Pool of Yellow River].

    PubMed

    Ban, Haiqun; Ba, Yue; Cheng, Xuemin; Wang, Guangzhou

    2007-09-01

    To investigate the contaminative, condition of planktonic algae, cyanobacteria, toxigenic microcystis and microcystin in Huayuankou Conservation Pool of Yellow River. From March 2005 to January 2006, water samples were taken 15 times by 2. 5L plastic sampler from Huayuankou Conservation Pool. The density of algae were counted by using blood cell counter. Phycocyanin intergenic spacer region (PC-IGS) and microcystin synthetase gene B (mcyB) of toxigenic microcystis was identified by the whole cell PCR. The concentration of microcystin was determined by ELISA kit. The positive results of PCR and ELISA were compared. Bacillariophyta, chlorophyta, cyanophyta (cyanobacteria) and euglenophyta were main algaes in Huayuankou conservation pool, and the dominant algae and cell density changed seasonally. Algae cell density and cyanobacteria cell density were higher in summer and autumn than in spring and winter. From July to November, 2005, PC-IGS and mcyB were detected positively by whole cell PCR. Microcystin was positively detected from July, the concentration of microcystin changed from 0 to 0.25microg/L, it was more higher in summer than other seasons. Toxigenic microcystis and microcystin could be detected in Huayuankou Conservation Pool of Yellow River. Whole cell PCR could be used to identify toxigenic microcystis.

  7. Influence of Tectonics on the Channel Pattern of Alaknanda River in Srinagar Valley (Garhwal Himalaya)

    NASA Astrophysics Data System (ADS)

    Datt, Devi

    2017-04-01

    This paper describes the results of a continuing investigation of tectonic influence on channel pattern and morphology of Alaknanda River in Lesser Garhwal Himalaya, Uttarakhand, India. Extensive field investigations using conventional methods supported by topographical sheets and remote sensing data (LISS IV), were undertaken.The results are classified into three sections :- tectonics, channel pattern and impact of tectonics on channel pattern. The channel length is divided into 8 meanders sets of 3 segments from Supana to Kirtinagar. Thereafter, a litho-tectonic map of the Srinagar valley was prepared. The style of active tectonics on deformation and characterization of fluvial landscape was investigated on typical strike-slip transverse faults near the zone of North Almora Thrust (NAT). NAT is a major tectonic unit of the Lesser Himalaya which passes through the northern margin from NW to SE direction.. The structural and lithological controls on the Alaknanda River system in Srinagar valley are reflected on distinct drainage patterns, abrupt change in flow direction, incised meandering, offset river channels, straight river lines, palaeo-channels, multi levels of terraces, knick points and pools in longitudinal profile. The results of the study show that the sinuosity index of the river is 1.35. Transverse faulting is very common along the NAT. An earlier generation of linear tectonic features were displaced by the latter phase of deformation. Significant deviations were observed in river channel at deformation junctions. Moreover, all 8 sets of meanders are strongly influenced by tectonic features. The meandering course is, thereby, correlated with tectonic features. It is shown that the river channel is strongly influenced by the tectonic features in the study area. Key Words: Tectonic, Meander, Channel pattern, deformation, Knick point.

  8. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    PubMed

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  9. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    PubMed Central

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  10. Land Capability Potential Index (LCPI) for the Lower Missouri River Valley

    USGS Publications Warehouse

    Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.

    2007-01-01

    The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.

  11. Reconnaissance of the chemical quality of water in western Utah, Part I: Sink Valley area, drainage basins of Skull, Rush, and Government Creek Valleys, and the Dugway Valley-Old River Bed area

    USGS Publications Warehouse

    Waddell, K.M.

    1967-01-01

    This report presents data collected during the first part of an investigation that was started in 1963 by the U.S. Geological Survey in cooperation with the Utah Geological and Mineralogical Survey. The investigation has the purpose of providing information about the chemical quality of water in western Utah that will help interested parties to evaluate the suitability of the water for various uses in a broad area of Utah where little information of this type previously has been available. The area studied includes the Sink Valley area, the drainage basins of Skull, Rush, and Government Creek Valleys, and the Dugway Valley-Old River Bed area (fig. 1). Osamu Hattori and G. L. Hewitt started the investigation, and the author completed it and prepared the report.

  12. Degradation and Preservation of Terrestrial Organic Carbon in the Intertidal Mudflat of Yellow River Delta: Indicated by Lignin and Lipid Molecular

    NASA Astrophysics Data System (ADS)

    Zou, L.; Yu, W.; Gao, H.; Sun, M.

    2017-12-01

    The highest input of suspended particles from the Yellow River, accumulated and formed one of the largest intertidal mudflats, the Yellow River Delta in the world. The higher nutrients originated from ambient drainage areas supported a higher primary productivity, as well as a higher secondary productivity in the estuarine and intertidal mudflats of Yellow River Delta (YRD). However, the preservation and accumulation of organic carbon were quite low in the intertidal sediments, indicated by the standing stock of organic carbon. Molecular of lignin and long chain lipid were applied to explore the degradation and preservation of organic carbon in the southern intertidal mudflats of YRD, especially the behavior of terrestrial organic molecular. Lignin Σ8 ranged at 0.13-0.54 mg/10 g dw (0.23 mg/10 gdw at avg.) in the surface sediments of estuarine and intertidal mudflats, which were about 50 % higher than those in the river sediments. LVPI suggested that, lignin was primarily originated from woody tissues of angiosperms in riverine sediments, and then was dominated by herbaceous tissues of angiosperms in the estuarine and intertidal mudflats. (Ad/Al)V and P/(S+V) indicated that, demethylation/ demethoxyhaleniaside contributed more than oxidation in lignin degradation in the estuarine and intertidal mudflats, while oxidation contributed more in the riverine sediments. Long chain fatty acids accounted for <10 % of total fatty acids in both the estuarine and riverine sediments. The input of long chain fatty acids from terrestrial higher plants varied seasonally, and followed in the turn of autumn, winter, summer and spring from river to estuary. The comparable percentages of free and bound long chain fatty acids suggested that, organic carbon from terrestrial higher plants degraded rapidly from river to estuary, and kept at a middle stage of mineralization.

  13. [Study on distribution characteristics and potential ecological risk of soil heavy metals in the Yellow River beach region in Kaifeng City].

    PubMed

    Zhang, Peng-yan; Qin, Ming-zhou; Chen, Long; Hu, Chang-hui; Zhao, Ya-ping; Dong, Wei-jun

    2013-09-01

    The distributions, soil environment status and potential ecological risk of heavy metals were studied in beach soil of returning the cropland into Yellow River beach region in Kaifeng by the Nemerows and Håkansons methods. The results showed that (1) as Among the average contents of the five heavy metals Pb, Cr, Hg, As and Cd, the highest was the average content of Cr, and the lowest was the average content of Pb and Hg. In addition to Hg, the coefficients of variation of other heavy metals were relatively small, indicating that the content of heavy metals was quite different at different sites, and to some extent, relecting that Hg, As and Pb were the major elements polluting the soil, among which, Pb pollution was the pollution with universality. There was little difference in the contents of Cr and Cd from village to village the coefficient of variation was small, and the contents were below the national standard level. (2) There was significant difference in the spatial distribution of soil heavy metal elements in the upper, the middle and lower sections of the study area. The upper section was clean, the middle section was slightly polluted, and the lower section was enriched with pollutants. (3) The distribution of heavy metals in the beach region inside and outside the levees of Yellow River was closely related to the distribution of the residential regions. In the upper section of the beach region (southwest), the population was large and the contents of heavy metals were high. The contents of heavy metals were lower in the near river zone than outside the levees of Yellow River. And the heavy metal contents in the middle and lower section were higher than those outside the levees of Yellow River, while the lower section (northwest) showed a tendency of pollution enrichment. (4) In the view of the average individual potential ecological risk index of heavy metals (E(r)i), the potential ecological risk of Hg reached intense levels, and the potential

  14. Flood-Inundation Maps for the Meramec River at Valley Park and at Fenton, Missouri, 2017

    DOT National Transportation Integrated Search

    2017-01-01

    Two sets of digital flood-inundation map libraries that spanned a combined 16.7-mile reach of the Meramec River that extends upstream from Valley Park, Missouri, to downstream from Fenton, Mo., were created by the U.S. Geological Survey (USGS) in coo...

  15. Using a novel flood prediction model and GIS automation to measure the valley and channel morphology of large river networks

    EPA Science Inventory

    Traditional methods for measuring river valley and channel morphology require intensive ground-based surveys which are often expensive, time consuming, and logistically difficult to implement. The number of surveys required to assess the hydrogeomorphic structure of large river n...

  16. The environmental conditionings of the location of primeval settlements in the Wieprz River valley

    NASA Astrophysics Data System (ADS)

    Kozieł, Marcin; Kozieł, Wojciech

    2012-01-01

    The Wieprz River along the section currently occupied by the Nadwieprzański Landscape Park (NLP) constituted a convenient place of human settlement from the moment of retreat of the last ice sheet. Depending on the types of economy preferred by representatives of individual archaeological cultures, the river valley from Spiczyn to Dorohucza offered continuous access to water. This obviously gained additional importance from the moment of appearance of Neolithic cultures, particularly the Globular Amphora culture and Corded Ware culture with semi-nomadic style of life, dealing with breeding. Neolithic hunters-gatherers exploited the animal resources available in the river and its vicinity. The further role of fishing, i.e. providing a diet element or supplementation already in the conditions of agricultural-breeding economy, seems to be evidenced by findings of fishing hooks at Lusatian and Wielbark sites. Another factor affecting the location of settlements in NLP was also its close vicinity to the crops of the Rejowiec flint. According to archaeologists, this is particularly obvious in the case of the Late Palaeolithic and the turn of the Neolithic and Bronze Age. The communication function of the river could also be of importance: in the case of seasonal animal migrations of animals and hunters (Late Palaeolithic); livestock and shepherds (Globular Amphora culture and Corded Ware culture); or people alone (migration of the population of the Wielbark culture to the Red Sea). The fact that a commercial trail fragment was located along the Wieprz River is probably evidenced by the abundance of import from various parts of Europe at site 53 in Spiczyn. Fertile soils (black soils, silt-peat soils) prevailing in the valley also favoured the settlement of cultures with an agricultural-breeding model of economy, providing good conditions for horticulture. Meadows near the river could be used as pastures.

  17. Stream seepage and groundwater levels, Wood River Valley, south-central Idaho, 2012-13

    USGS Publications Warehouse

    Bartolino, James R.

    2014-01-01

    Stream discharge and water levels in wells were measured at multiple sites in the Wood River Valley, south-central Idaho, in August 2012, October 2012, and March 2013, as a component of data collection for a groundwater-flow model of the Wood River Valley aquifer system. This model is a cooperative and collaborative effort between the U.S. Geological Survey and the Idaho Department of Water Resources. Stream-discharge measurements for determination of seepage were made during several days on three occasions: August 27–28, 2012, October 22–24, 2012, and March 27–28, 2013. Discharge measurements were made at 49 sites in August and October, and 51 sites in March, on the Big Wood River, Silver Creek, their tributaries, and nearby canals. The Big Wood River generally gains flow between the Big Wood River near Ketchum streamgage (13135500) and the Big Wood River at Hailey streamgage (13139510), and loses flow between the Hailey streamgage and the Big Wood River at Stanton Crossing near Bellevue streamgage (13140800). Shorter reaches within these segments may differ in the direction or magnitude of seepage or may be indeterminate because of measurement uncertainty. Additional reaches were measured on Silver Creek, the North Fork Big Wood River, Warm Springs Creek, Trail Creek, and the East Fork Big Wood River. Discharge measurements also were made on the Hiawatha, Cove, District 45, Glendale, and Bypass Canals, and smaller tributaries to the Big Wood River and Silver Creek. Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established by the U.S. Geological Survey in 2006. Maps of the October 2012 water-table altitude in the unconfined aquifer and the potentiometric-surface altitude of the confined aquifer have similar topology to those on maps of October 2006 conditions. Between October 2006 and October 2012, water-table altitude in the unconfined aquifer rose by

  18. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image. The Santa Clara River, which lends its name to this valley, flows from headwaters near Acton, California, 160 km (100 miles) to the Pacific Ocean, and is one of only two natural river systems remaining in southern California. In the foreground of this image, the largely dry riverbed can be seen as a bright feature as it winds its way along the base of South Mountain. The bright region at the right end of this portion of the valley is the city of Santa Paula, California. Founded in 1902, this small, picturesque town at the geographic center of Ventura County is referred to as the 'Citrus Capital of the World.' The city is surrounded by orange, lemon, and avocado groves and is a major distribution point for citrus fruits in the United States. The bright, linear feature in the center of the valley is State Highway 126, the valley's 'main drag.' For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  19. Regulating N application for rice yield and sustainable eco-agro development in the upper reaches of Yellow River basin, China.

    PubMed

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region.

  20. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. The boundary of the ERWVFA was developed by combining information from two data sources. The first data source was a 1:250,000-scale geologic map of the Leadville quadrangle developed by Day and others (1999). The location of Quaternary sediments was used as a first approximation of the ERWVFA. The boundary of the ERWVFA was further refined by overlaying the geologic map with Digital Raster Graphic (DRG) scanned images of 1:24,000 topographic maps (U.S. Geological Survey, 2001). Where appropriate, the boundary of the ERWVFA was remapped to correspond with the edge of the valley-fill aquifer marked by an abrupt change in topography at the edge of the valley floor throughout the Eagle River watershed. The boundary of the ERWVFA more closely resembles a hydrogeomorphic region presented by Rupert (2003, p. 8) because it is based upon general geographic extents of geologic materials and not on an actual aquifer location as would be determined through a rigorous hydrogeologic investigation.

  1. Effects of ground-water withdrawals on flow in the Sauk River Valley Aquifer and on streamflow in the Cold Spring area, Minnesota

    USGS Publications Warehouse

    Lindgren, R.J.

    2001-01-01

    The simulated contributing areas for selected watersupply wells in the Cold Spring area generally extend to and possibly beyond the model boundaries to the north and to the southeast. The contributing areas for the Gold'n Plump Poultry Processing Plant supply wells extend: (1) to the Sauk River, (2) to the north to and possibly beyond to the northern model boundary, and (3) to the southeast to and possibly beyond the southeastern model boundary. The primary effects of projected increased ground-water withdrawals of 0.23 cubic feet per second (7.5 percent increase) were to: (1) decrease outflow from the Sauk River Valley aquifer through constant-head boundaries and (2) decrease leakage from the valley unit of the Sauk River Valley aquifer to the streams. No appreciable differences were discernible between the simulated steady-state contributing areas to wells with 1998 pumpage and those with the projected pumpage.

  2. A subsynoptic-scale kinetic energy study of the Red River Valley tornado outbreak (AVE-SESAME 1)

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Fuelberg, H. E.

    1981-01-01

    The subsynoptis-scale kinetic energy balance during the Red River Valley tornado outbreak is presented in order to diagnose storm environment interactions. Area-time averaged energetics indicate that horizontal flux convergence provides the major energy source to the region, while cross contour flow provides the greatest sink. Maximum energy variability is found in the upper levels in association with jet stream activity. Area averaged energetics at individual observation times show that the energy balance near times of maximum storm activity differs considerably from that of the remaining periods. The local kinetic energy balance over Oklahoma during the formation of a limited jet streak receives special attention. Cross contour production of energy is the dominant local source for jet development. Intense convection producing the Red River Valley tornadoes may have contributed to this local development by modifying the surrounding environment.

  3. Chlordane, DDT, PCB's, and other selected organic compounds in Asiatic clams and yellow bullhead in the Potomac River Basin, 1992

    USGS Publications Warehouse

    Zappia, Humbert

    1996-01-01

    Chlordane, DDT (dichlor-diphenyl-trichloroethane), and PCB's (polychlorinated biphenyls) were the most widespread organic contaminants detected during a 1992 survey of aquatic biological tissues in the Potomac River Basin. On the basis of existing U.S. Food and Drug Administration criteria, no new threats to human health were discovered, although chlordane concentrations may pose a threat to fish-eating wildlife. Chlordane exceeded the National Academy of Science and National Academy of Engineering recommended maximum concentration for the protection of fish-eating wildlife at two sites. The survey, conducted by the U.S. Geological Survey's National Water-Quality Assessment Program, sampled Asiatic clams (Corbicula fluminea) and yellow bullhead (Ameiurus natalis) at 16 sites to determine the occurrence and distribution of 29 hydrophobic organic compounds. Thirteen of these organic compounds were detected in the survey. Sites with the greatest number of compounds detected include the Potomac River near Alexandria, Va., with 6 compounds detected in Asiatic clam tissue, and Accotink Creek near Annandale, Va., with 11 compounds in yellow bullhead tissue. Chlordane was detected at six sites, with maximum concentrations of 31.1 ?g/kg (micrograms per kilograms) in Asiatic clam tissue and 127 ?g/kg in yellow bullhead whole-fish tissue. DDT was detected at five sites, with maximum concentrations of 12.9 ?g/kg in Asiatic clam tissue and 7.6 ?g/kg in yellow bullhead whole-fish tissue. PCB's were detected at nine sites, with maximum concentrations of 162 ?g/kg in Asiatic clam tissue and 146 mg/ kg in yellow bullhead whole-fish tissue.

  4. Statistical Characteristics of Mesoscale Convective Systems over the Middle Reaches area of the Yellow River During 2005-2014

    NASA Astrophysics Data System (ADS)

    Zhao, Guixiang

    2017-04-01

    Based on the hourly TBB and cloud images of FY-2E, meteorological observation data, and NCEP reanalysis data with 1°×1° spatial resolution from May to October during 2005-2014, the climatic characteristics of mesoscale convective systems (MCS) over the middle reaches area of the Yellow River were analyzed, including mesoscale convective complex (MCC), persistent elongated convective systems (PECS), meso-βscale MCC (MβCCS) and Meso-βscale PECS (MβECS). The results are as follows: (1) MCS tended to occur over the middle and south of Gansu, the middle and south of Shanxi, the middle and north of Shaanxi, and the border of Shanxi, Shaanxi and Inner Mongolia. MCS over the middle reaches area of the Yellow River formed in May to October, and was easy to develop the mature in summer. MCC and MβECS were main MCS causing precipitation in summer. (2) The daily variation of MCS was obvious, and usually formed and matured in the afternoon and the evening to early morning of the next day. Most MCS generated fast and dissipated slowly, and were mainly move to the easterly and southeasterly, but the moving of round shape MCS was less than the elongated shape's. (3) The average TBB for the round shape MCS was lower than the elongated shape MCS. The development of MCC was most vigorous and strong, and it was the strongest in August, while that of MβECS wasn't obviously influenced by the seasonal change. The average eccentricity of the mature MCC and PECS over the middle reaches area of the Yellow River was greater than that in USA, and the former was greater than in the lower reaches area of the Yellow River, while the latter was smaller. (4) The characteristics of rainfall caused by MCS were complex over the middle reaches area of the Yellow River, and there were obvious regional difference. There was wider, stronger and longer precipitation when the multiple MCS merged. The rainfall in the center of cloud area was obviously greater than in other region of cloud area. The

  5. Use Of limestone resources in flue-gas desulfurization power plants in the Ohio River Valley

    USGS Publications Warehouse

    Foose, M.P.; Barsotti, A.F.

    1999-01-01

    In 1994, more than 41 of the approximately 160 coal-fired, electrical- power plants within the six-state Ohio River Valley region used flue-gas desulfurization (FGD) units to desulfurize their emissions, an approximately 100% increase over the number of plants using FGD units in 1989. This increase represents a trend that may continue with greater efforts to meet Federal Clean Air Act standards. Abundant limestone resources exist in the Ohio River Valley and are accessed by approximately 975 quarries. However, only 35 of these are believed to have supplied limestone for FGD electrical generating facilities. The locations of these limestone suppliers do not show a simple spatial correlation with FGD facilities, and the closest quarries are not being used in most cases. Thus, reduction in transportation costs may be possible in some cases. Most waste generated by FGD electrical-generating plants is not recycled. However, many FGD sites are relatively close to gypsum wallboard producers that may be able to process some of their waste.

  6. Fuel regulation in inland navigation: Reduced soil black carbon deposition in river valleys in Germany

    NASA Astrophysics Data System (ADS)

    Bläsing, M.; Shao, Y.; Lehndorff, E.

    2015-11-01

    Inland navigation is of increasing economic and ecological interest, however its contribution to environmental quality is hardly known. We hypothesized that i) inland navigation emits considerable amounts of soot-Black Carbon (BC) as a product of incomplete combustion of diesel fuel, which is then deposited on soils along river valleys, that ii) improvement of fuel quality by sulfur reduction in 2011 decreased BC inputs to soil, and that iii) this provides a tracer for the spatial impact of inland navigation emissions. The spatial and temporal patterns of soil BC deposits from inland navigation were investigated yearly (2010-2013) working within transects perpendicular to the rivers Rhine, Moselle and Ahr, Germany (the Ahr Valley is free of shipping and served as a reference). In rural areas at inland waterways navigation likely represented the dominant BC emitter. Topsoils (0-10 cm depth) were sampled in vineyards. Their BC content and composition was determined via oxidation of bulk soil organic matter to benzene polycarboxylic acids (BPCAs). The highly trafficked Rhine Valley yielded only little more BC (64.7 ± 12 g BC kg-1 soil organic carbon (SOC) compared to 51.7 ± 9 at the Moselle, and 53.6 ± 6 at the reference Ahr Valley). At both inland waterways soil BC increased towards the river, following the simulated dispersal of ship-derived BC using a Lagrangian model. In the course of ship fuel regulation, soil BC deposits at the Rhine and Moselle waterways decreased significantly from 70.2 ± 3.2 to 47.9 ± 1.1 and 57.6 ± 1.3 to 41.7 ± 0.9 g BC kg-1 SOC within 3 years. Even more pronounced was the change in BC composition, i.e., the ratio of pentacarboxylated to mellitic acid increased from 0.75 to 1.3 (Rhine) and 1 to 1.4 (Moselle) during this time span. From this we calculated that ∼30% less BC was deposited by inland navigation likely due to reduced BC emissions after sulfur regulation in ship diesel.

  7. Design and implementation of expert decision system in Yellow River Irrigation

    NASA Astrophysics Data System (ADS)

    Fuping, Wang; Bingbing, Lei; Jie, Pan

    2018-03-01

    How to make full use of water resources in the Yellow River irrigation is a problem needed to be solved urgently. On account of the different irrigation strategies in various growth stages of wheat, this paper proposes a novel irrigation expert decision system basing on fuzzy control technique. According to the control experience, expert knowledge and MATLAB simulation optimization, we obtain the irrigation fuzzy control table stored in the computer memory. The controlling irrigation is accomplished by reading the data from fuzzy control table. The experimental results show that the expert system can be used in the production of wheat to achieve timely and appropriate irrigation, and ensure that wheat growth cycle is always in the best growth environment.

  8. From yellow perch to round goby: A review of double-crested cormorant diet and fish consumption at three St. Lawrence River colonies, 1999–2013

    USGS Publications Warehouse

    Johnson, James H.; Farquhar, James F.; Klindt, Rodger M; Mazzocchi, Irene; Mathers, Alastair

    2015-01-01

    The number of double-crested cormorants (Phalacrocorax auritus) in the upper St. Lawrence River has increased markedly since the early 1990s. In 1999, a binational study was initiated to examine the annual diet composition and fish consumption of cormorants at colonies in the upper river. Since 1999, 14,032 cormorant pellets, collected from May through September each year, have been examined from St. Lawrence River colonies to estimate fish consumption and determine temporal and spatial variation in diet. Seasonal variation in diet composition within a colony was low. Prior to 2006 yellow perch was the primary fish consumed by cormorants in the upper St. Lawrence River. Round goby were first observed in cormorant diets in 2003 and by 2006 were the main fish consumed at two of the three colonies. The time interval it took from the first appearance of round goby in the diet at a colony to when goby were the dominant prey species varied by island, ranging from two to five years. Daily fish consumption at each cormorant colony increased significantly from the pre-round goby to post-round goby period. The mean annual biomass of yellow perch consumed decreased significantly during the post-round goby period at the three colonies. Reduced consumption of yellow perch by cormorants may alleviate suspected localized impacts on perch near some of the larger river colonies.

  9. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    NASA Astrophysics Data System (ADS)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  10. The diatraea complex (Lepidoptera: Crambidae) in Colombia’s Cauca River Valley: identity, distribution, and parasitoids

    USDA-ARS?s Scientific Manuscript database

    The sugarcane stem borers Diatraea saccharalis (Fabricius) and D. indigenella Dyar & Heinrich are common pests of sugarcane crops in Colombia’s Cauca river valley (CRV). In 2012, however, D. tabernella Dyar was recorded for the first time in northern CRV and just one year later D. busckella Dyar & H...

  11. Effects of water temperature on breeding phenology, growth and timing of metamorphosis of foothill yellow-legged frogs (Rana boylii) on the mainstem and selected tributaries of California's Trinity River - 2004-2009.

    Treesearch

    Clara Wheeler; James Bettaso; Donald Ashton; Hartwell Welsh

    2013-01-01

    The cold temperatures maintained in the Trinity River are beneficial to fish but may be problematic for foothill yellow-legged frogs. We examined the timing of breeding, reproductive output, and growth and development of tadpoles for populations of foothill yellow-legged frogs on the mainstem and six tributaries of the Trinity River. On the colder mainstem, onset of...

  12. Study on Remote Sensing Image Characteristics of Ecological Land: Case Study of Original Ecological Land in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    An, G. Q.

    2018-04-01

    Takes the Yellow River Delta as an example, this paper studies the characteristics of remote sensing imagery with dominant ecological functional land use types, compares the advantages and disadvantages of different image in interpreting ecological land use, and uses research results to analyse the changing trend of ecological land in the study area in the past 30 years. The main methods include multi-period, different sensor images and different seasonal spectral curves, vegetation index, GIS and data analysis methods. The results show that the main ecological land in the Yellow River Delta included coastal beaches, saline-alkaline lands, and water bodies. These lands have relatively distinct spectral and texture features. The spectral features along the beach show characteristics of absorption in the green band and reflection in the red band. This feature is less affected by the acquisition year, season, and sensor type. Saline-alkali land due to the influence of some saline-alkaline-tolerant plants such as alkali tent, Tamarix and other vegetation, the spectral characteristics have a certain seasonal changes, winter and spring NDVI index is less than the summer and autumn vegetation index. The spectral characteristics of a water body generally decrease rapidly with increasing wavelength, and the reflectance in the red band increases with increasing sediment concentration. In conclusion, according to the spectral characteristics and image texture features of the ecological land in the Yellow River Delta, the accuracy of image interpretation of such ecological land can be improved.

  13. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    PubMed

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Regulating N Application for Rice Yield and Sustainable Eco-Agro Development in the Upper Reaches of Yellow River Basin, China

    PubMed Central

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region. PMID:25045728

  15. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which

  16. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)

    NASA Astrophysics Data System (ADS)

    Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng

    2016-08-01

    Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.

  17. Hydrogeology of, and simulation of ground-water flow in a mantled carbonate-rock system, Cumberland Valley, Pennsylvania

    USGS Publications Warehouse

    Chichester, D.C.

    1996-01-01

    The U.S. Geological Survey conducted a study in a highly productive and complex regolith-mantled carbonate valley in the northeastern part of the Cumberland Valley, Pa., as part of its Appalachian Valleys and Piedmont Regional Aquifer-system Analysis program. The study was designed to quantify the hydrogeologic characteristics and understand the ground-water flow system of a highly productive and complex thickly mantled carbonate valley. The Cumberland Valley is characterized by complexly folded and faulted carbonate bedrock in the valley bottom, by shale and graywacke to the north, and by red-sedimentary and diabase rocks in the east-southeast. Near the southern valley hillslope, the carbonate rock is overlain by wedge-shaped deposit of regolith, up to 450 feet thick, that is composed of residual material, alluvium, and colluvium. Locally, saturated regolith is greater than 200 feet thick. Seepage-run data indicate that stream reaches, near valley walls, are losing water from the stream, through the regolith, to the ground-water system. Results of hydrograph-separation analyses indicate that base flow in stream basins dominated by regolith-mantled carbonate rock, carbonate rock, and carbonate rock and shale are 81.6, 93.0, and 67.7 percent of total streamflow, respectively. The relative high percentage for the regolith-mantled carbonate-rock basin indicates that the regolith stores precipitation and slowly, steadily releases this water to the carbonate-rock aquifer and to streams as base flow. Anomalies in water-table gradients and configuration are a result of topography and differences in the character and distribution of overburden material, permeability, rock type, and geologic structure. Most ground-water flow is local, and ground water discharges to nearby springs and streams. Regional flow is northeastward to the Susquehanna River. Average-annual water budgets were calculated for the period of record from two continuous streamflow-gaging stations. Average

  18. Seismic local site effects characterization in the Andarax River Valley (SE Spain) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José

    2014-05-01

    This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax

  19. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    NASA Astrophysics Data System (ADS)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2015-03-01

    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (-23.8 to -24.2‰), and old radiocarbon ages (4000-4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500-1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53-57%) is substantially pre-aged (1510-1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of

  20. Fish communities of the Sacramento River Basin: Implications for conservation of native fishes in the Central Valley, California

    USGS Publications Warehouse

    May, J.T.; Brown, L.R.

    2002-01-01

    The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.

  1. Evaluation of volatile organic compounds in two Mojave Desert basins-Mojave River and Antelope Valley-in San Bernardino, Los Angeles, and Kern Counties, California, June-October 2002

    USGS Publications Warehouse

    Densmore, Jill N.; Belitz, Kenneth; Wright, Michael T.; Dawson, Barbara J.; Johnson, Tyler D.

    2005-01-01

    The California Aquifer Susceptibility Assessment of the Ground-Water Ambient Monitoring and Assessment Program was developed to assess water quality and susceptibility of ground-water resources to contamination from surficial sources. This study focuses on the Mojave River and the Antelope Valley ground-water basins in southern California. Volatile organic compound (VOC) data were evaluated in conjunction with tritium data to determine a potential correlation with aquifer type, depth to top of perforations, and land use to VOC distribution and occurrence in the Mojave River and the Antelope Valley Basins. Detection frequencies for VOCs were compiled and compared to assess the distribution in each area. Explanatory variables were evaluated by comparing detection frequencies for VOCs and tritium and the number of compounds detected. Thirty-three wells were sampled in the Mojave River Basin (9 in the floodplain aquifer, 15 in the regional aquifer, and 9 in the sewered subset of the regional aquifer). Thirty-two wells were sampled in the Antelope Valley Basin. Quality-control samples also were collected to identify, quantify, and document bias and variability in the data. Results show that VOCs generally were detected slightly more often in the Antelope Valley Basin samples than in the Mojave River Basin samples. VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Tritium was detected more frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples, and it was detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Most of the samples collected in both basins for this study contained old water (water recharged prior to 1952). In general, in these desert basins, tritium need not be present for VOCs to be present. When VOCs were detected, young water (water recharge after 1952) was slightly more likely to be contaminated than old water

  2. Dramatic decreases in runoff and sediment load in the Huangfuchuan Basin of the Middle Yellow River, China: historical records and future projections

    NASA Astrophysics Data System (ADS)

    LI, E.; Li, D.; Wang, Y.; Fu, X.

    2017-12-01

    The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.

  3. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China.

    PubMed

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×10(3) to 2.10±0.13×10(5) copies g(-1) (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×10(3) to 1.83±0.18×10(5) copies g(-1) (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4(+)) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.

  4. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    USGS Publications Warehouse

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  5. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  6. Using destination image to predict visitors' intention to revisit three Hudson River Valley, New York, communities

    Treesearch

    Rudy M. Schuster; Laura Sullivan; Duarte Morais; Diane Kuehn

    2009-01-01

    This analysis explores the differences in Affective and Cognitive Destination Image among three Hudson River Valley (New York) tourism communities. Multiple regressions were used with six dimensions of visitors' images to predict future intention to revisit. Two of the three regression models were significant. The only significantly contributing independent...

  7. Inversion and Prediction of Consolidation Settlement Characteristics of the Fluvial Sediments Based on Void Ratio Variation in the Northern Modern Yellow River Subaqueous Delta, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Liu, Jie; Feng, Xiuli

    2018-06-01

    The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacted and consolidate under the geostatic stress and overburden stress. It is one of the key areas with land subsidence disasters in China, bringing a series of safety hazards to production and living. Based on the data of massive surface cores and ten drill holes ranging from 12 to 40 m obtained from the northern modern Yellow River subaqueous delta, the inversion method suitable for the calculation of consolidation settlement characteristics of the modern Yellow River subaqueous delta is discussed, and the consolidation settlement characteristics of the delta sediments are inversed and predicted in this paper. The actual void ratio of the delta sediments at the depth from 3 to 15 m shows a significant power function relationship with the depth, while the void ratio of the sediments below 15 m changes little with depth. The pre-consolidation settlement (from deposition to sampling) of the delta sediments is between 0.91 and 1.96 m, while the consolidation settlement of unit depth is between 9.6 and 14.0 cm m-1. The post-consolidation settlement (from sampling to stable) of the subaqueous delta sediments is between 0.65 and 1.56 m in the later stage, and the consolidation settlement of unit depth is between 7.6 and 13.1 cm m-1 under the overburden stress. The delta sediments with a buried depth of 3 to 7 m contribute the most to the possible consolidation settlement in the later stage.

  8. Topographic growth around the Orange River valley, southern Africa: A Cenozoic record of crustal deformation and climatic change

    NASA Astrophysics Data System (ADS)

    Dauteuil, Olivier; Bessin, Paul; Guillocheau, François

    2015-03-01

    We reconstruct the history of topographic growth in southern Africa on both sides of the Orange River valley from an integrated analysis of erosion surfaces, crustal deformation and climate change. First, we propose an inventory of erosion surfaces observed in the study area and classify them according to their most likely formative process, i.e. chemical weathering or mechanical erosion. Among the various land units observed we define a new class of landform: the pedivalley, which corresponds to a wide valley with a flat erosional floor. In the Orange River valley, we mapped three low-relief erosion surfaces, each bevelling a variety of lithologies. The oldest and most elevated is (1) a stripped etchplain evolving laterally into (2) a stepped pediplain bearing residual inselbergs; (3) a younger pediplain later formed in response to a more recent event of crustal deformation. These are all Cenozoic landforms: the etchplain is associated with a late Palaeocene to middle Eocene weathering event, and the two pediplains are older than the middle Miocene alluvial terraces of the Orange River. Landscape evolution was first driven by slow uplift (10 m/Ma), followed by a second interval of uplift involving a cumulative magnitude of at least 200 m. This event shaped the transition between the two pediplains and modified the drainage pattern. A final phase of uplift (magnitude: 60 m) occurred after the Middle Miocene and drove the incision of the lower terraces of the Orange River. Climate exerted a major control over the denudation process, and involved very humid conditions responsible for lateritic weathering, followed by more arid conditions, which promoted the formation of pedivalleys. Collectively, these produce pediplains.

  9. Geologic map of the upper Arkansas River valley region, north-central Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.

    2017-11-17

    This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are

  10. Sinking Coastlines: Land Subsidence at Aquaculture Facilities in the Yellow River Delta, China, measured with Differential Synthetic Aperture Radar (D-InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J. P.

    2013-12-01

    Land subsidence in river deltas is a global problem. It heightens storm surges, salinates groundwater, intensifies river flooding, destabilizes infrastructure and accelerates shoreline retreat. Measurements of delta subsidence typically rely on point measures such as GPS devices, tide gauges or extensometers, but spatial coverage is needed to fully assess risk across river deltas. Differential Interferometric Synthetic Aperture Radar (D-InSAR) is a satellite-based technique that can provide maps of ground deformation with mm to cm-scale vertical resolution. We apply D-InSAR to the coast of the Yellow River Delta in China, which is dominated by aquaculture facilities and has experienced severe coastal erosion in the last twenty years. We extract deformation patterns from dry land adjacent to aquaculture facilities along the coast, allowing the first measurements of subsidence at a non-urban delta shoreline. Results show classic cones-of-depression surrounding aquaculture facilities, likely due to groundwater pumping. Subsidence rates are as high as 250 mm/y at the largest facility on the delta. These rates exceed local and global average sea level rise by nearly two orders of magnitude. If these rates continue, large aquaculture facilities in the area could induce more than a meter of relative sea level rise every five years. Given the global explosion in fish farming in recent years, these results also suggest that similar subsidence and associated relative sea level rise may present a significant hazard for other Asian megadeltas. False-color MODIS image of the Yellow River delta in September 2012. Water appears dark blue, highlighting the abundance of aquaculture facilities along the coast. Green land is primarily agricultural; brown is urban. Red boxes indicate locations of aquaculture facilities examined in this study. Figure from Higgins, S., Overeem, I., Tanaka, A., & Syvitski, J.P.M., (2013), Land Subsidence at Aquaculture Facilities in the Yellow River

  11. Modelling the Effects of Sea-level, Climate Change, Geology, and Tectonism on the Morphology of the Amazon River Valley and its Floodplain

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.; Cremon, E.; Dunne, T.

    2017-12-01

    How continental-scale rivers respond to climate, geology, and sea level change is not well represented in morphodynamic models. Large rivers respond to influences less apparent in the form and deposits of smaller streams, as the huge scales require long time periods for changes in form and behavior. Tectonic deformation and excavation of resistant deposits can affect low gradient continental-scale rivers, thereby changing flow pathways, channel slope and sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley topography. Nowhere are such scales of morphodynamic response grander than the Amazon River, as described in papers by L.A.K. Mertes. Field-based understanding has improved over the intervening decades, but mechanistic models are needed to simulate and synthesize key morphodynamic components relevant to the construction of large river valleys, with a focus on the Amazon. The Landscape-Linked Environmental Model (LLEM) utilizes novel massively parallel computer architectures to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per compute unit) lowland dispersal systems. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology, `badlands dissection' of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic deformation, and provides a 3D record of created stratigraphy and underlying bedrock. We used LLEM to simulate the development of the main valley of the Amazon over the last million years, exploring the propagation of incision waves and system dissection during glacial lowstands, followed by rapid valley filling and extreme lateral mobility of channels during interglacials. We present metrics, videos, and 3D fly-throughs characterizing how system development responds to key assumptions

  12. Impact of climate and parent material on chemical weathering in Loess-derived soils of the Mississippi River valley

    USGS Publications Warehouse

    Muhs, D.R.; Bettis, E. Arthur; Been, J.; McGeehin, J.P.

    2001-01-01

    Peoria Loess-derived soils on uplands east of the Mississippi River valley were studied from Louisiana to Iowa, along a south-to-north gradient of decreasing precipitation and temperature. Major element analyses of deep loess in Mississippi and Illinois show that the composition of the parent material is similar in the northern and southern parts of the valley. We hypothesized that in the warmer, wetter parts of the transect, mineral weathering should be greater than in the cooler, drier parts of the transect. Profile average values of CaO/TiO2, MgO/ TiO2, K2O/TiO2, and Na2O/TiO2, Sr/Zr, Ba/Zr, and Rb/Zr represent proxies for depletion of loess minerals such as calcite, dolomite, hornblende, mica, and plagioclase. All ratios show increases from south to north, supporting the hypothesis of greater chemical weathering in the southern part of the valley. An unexpected result is that profile average values of Al2O3/TiO2 and Fe2O3/TiO2 (proxies for the relative abundance of clay minerals) show increases from south to north. This finding, while contrary to the evidence of greater chemical weathering in the southern part of the transect, is consistent with an earlier study which showed higher clay contents in Bt horizons of loess-derived soils in the northern part of the transect. We hypothesize that soils in the northern part of the valley received fine-grained loess from sources to the west of the Mississippi River valley either late in the last glacial period, during the Holocene or both. In contrast, soils in the southern part of the valley were unaffected by such additions.

  13. Seedling Quality Standards for Bottomland Hardwood Afforestation in the Lower Mississippi River Alluvial Valley: Preliminary Results

    Treesearch

    Douglass F. Jacobs; Emile S. Gardiner; K. Francis Salifu; Ronald P. Overton; George Hernandez; M. Elizabeth Corbin; Kevyn E. Wightman; Marcus F. Selig

    2005-01-01

    Afforestation of bottomland hardwood species has increased in the Lower Mississippi River Alluvial Valley (LMRAV) in recent years. Rising demand for hardwood nursery stock and poor performance of some planted seedlings has created concern regarding the quality of seedlings currently available for afforestation in the LMRAV. Furthermore, no definitive guidelines for...

  14. INFLUENCE OF SNOWFALL ON BLOOD LEAD LEVELS OF FREE-FLYING BALD EAGLES (HALIAEETUS LEUCOCEPHALUS) IN THE UPPER MISSISSIPPI RIVER VALLEY.

    PubMed

    Lindblom, Ronald A; Reichart, Letitia M; Mandernack, Brett A; Solensky, Matthew; Schoenebeck, Casey W; Redig, Patrick T

    2017-10-01

    Lead poisoning of scavenging raptors occurs primarily via consumption of game animal carcasses containing lead, which peaks during fall firearm hunting seasons. We hypothesized that snowfall would mitigate exposure by concealing carcasses. We categorized blood lead level (BLL) for a subsample of Bald Eagles (Haliaeetus leucocephalus) from the Upper Mississippi River Valley and described BLL with respect to age, sex, and snowfall. We captured Bald Eagles overwintering in the Upper Mississippi River Valley (n=55) between December 1999 and January 2002. Individual BLL ranged from nondetectable to 335 μg/dL, with 73% of the samples testing positive for acute exposure to lead. Eagle BLL did not significantly differ between age or sex, but levels were higher immediately following the hunting season, and they were lower when the previous month's snowfall was greater than 11 cm. This study suggests a window of time between the white-tailed deer (Odocoileus virginianus) hunting season and the onset of snow when the population experienced peak exposure to lead. Combining these findings with existing research, we offer a narrative of the annual lead exposure cycle of Upper Mississippi River Valley Bald Eagles. These temporal associations are necessary considerations for accurate collection and interpretation of BLL.

  15. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  16. Expected irrigation reductions using multiple-inlet rice irrigation under rainfall conditions in the lower Mississippi River Valley.

    USDA-ARS?s Scientific Manuscript database

    A model was developed to compare irrigation applications made using single-inlet and multiple-inlet rice flood distribution practices commonly used in the Lower Mississippi River Valley. The model was used to determine potential irrigation reductions under a wide range of natural rainfall amounts an...

  17. Rhone River Valley & Lower Lake Geneva, Switzerland as seen from STS-60

    NASA Image and Video Library

    1994-02-09

    STS060-90-007 (3-11 Feb 1994) --- Parts of the Swiss Cantons of Vaud and Valois and the French province of Chablais are shown. These mountains were created in the last great mountain-building episode in Europe around 50 million years ago. They have been reshaped by glaciers during the Pleistocene. The glaciers created the wide valley of the Rhone River by scouring a pre-existing stream. The fertile Swiss Plateau runs northwest from the shore of Lake Geneva and is visible in the upper right. The Franco-Swiss border is located in the center of the lake and follows a mountain divide east of the Rhone Valley. According to NASA geologists eutrofication is a problem in Lake Geneva. In 1971 a Swiss Commission was formed to try to slow the problem. Strong discharge laws were enacted, but they are hard to enforce due to the multi-national and multi-organizational parties contributing to the problem.

  18. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  19. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary.

    PubMed

    Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui; Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen

    2017-12-01

    Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m 3 . Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m 2 /s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Selected well and ground-water chemistry data for the Boise River Valley, southwestern Idaho, 1990-95

    USGS Publications Warehouse

    Parliman, D.J.; Boyle, Linda; Nicholls, Sabrina

    1996-01-01

    Water samples were collected from 903 wells in the Boise River Valley, Idaho, from January 1990 through December 1995. Selected well information and analyses of 1,357 water samples are presented. Analyses include physical properties ad concentrations of nutrients, bacteria, major ions, selected trace elements, radon-222, volatile organic compounds, and pesticides.

  1. Water circulation within a high-Arctic glaciated valley (Petunia Bay, Central Spitsbergen): Recharge of a glacial river

    NASA Astrophysics Data System (ADS)

    Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz

    2014-05-01

    This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.

  2. Long Valley Caldera Lake and reincision of Owens River Gorge

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  3. The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Zhang, Chun-Lai; Wu, Xiao-Xu; Wang, Xun-ming; Kang, Li-qiang

    2014-11-01

    This paper systematically analyzes a valley's aeolian landforms in a semi-humid region and presents a model of its contemporary evolution. Mainling Valley of the Yarlung Zangbo River on the Qinghai-Tibet Plateau was chosen as the case study for the analysis of morphometric characteristics and the evolution sequence of aeolian landforms via field data and remote sensing images. The aeolian landforms were primarily composed of aeolian sand belts on river terraces and dunes (sheets) on hillside slopes. Three types of aeolian sand belts were identified based on their dune types. In type I belts, an erosive air stream combined with relatively high vegetation cover (10%) produced sparsely distributed parabolic dunes with a high variability of dune heights; in type II belts, the continual reworking by the erosive air stream in combination with low vegetation cover (3%) formed more densely distributed barchans and transitional dunes with a moderate variability of dune heights; and in type III belts, the gradual evolution from an erosive sand-laden air stream to a saturated sand-laden air stream in combination with low vegetation cover (2%) produced the densest crescentic dunefields but with the least variability in dune heights. Dune sizes increase, dune shapes become uniform, and dune distribution becomes close from type I to III belts. Lateral linking and merging of the dunes were also observed within the belts. Together this evidence indicates that an evolution sequence may exist. Aeolian dunefields in the belt appear to evolve from embryonic parabolic dunefields to adolescent barchan dunefields and, subsequently, to mature compound crescentic dunefields. As the aeolian sand belt evolves into the mature stage, sand accumulations at the foot of the mountain valley can be steps for sand accumulation on valley-side slopes.

  4. Challenges of flood monitoring in the Senegal river valley using multi-temporal data

    NASA Astrophysics Data System (ADS)

    Bruckmann, Laurent; Delbart, Nicolas

    2017-04-01

    In Sub-Saharan Africa, floodplains wetlands play an important role for livelihoods and economy, especially for agriculture and fishing. However, tropical rivers flows are increasingly modified by climate change and dam regulation. In the Senegal river valley, the annual flood, from August to November, is an important water resources creating ecosystems services for people. Senegal river basin face to hydrological changes, due to rainfall diminution during the 1970's and building of large dams during 1980's to secure water resources. Water management and development of irrigation have modified the floodplain functioning. Flood recession agriculture, grazing and fishing are now confronted to a high uncertainty about floods level, duration and extension. Thus, spatiotemporal information of flood extension and duration are important for local communities and stakeholders to ensure food security and ecosystems services. Multi-temporal satellite data demonstrates an important applicability for flood mapping. Aims of this work is to present potentiality of using multi-temporal data from MODIS and new satellite Sentinel-2 for flood monitoring in a Sahelian context. It will also discuss the potential of flood mapping for the analysis of the dynamics of riparian vegetation and flood recession agriculture. This study uses two datasets to explore flood monitoring in Senegal river valley. Firstly, MODIS 8-days data (MOD09A) are first used, because of its temporal resolution of 8 days covering the period from 2000 to 2016. However, MODIS data are limited due to a low spatial resolution, that's why we also use Sentinel-2 data, available since summer 2015. The data were processed by constructing NDWI time-series (NDWI threshold is empirically defined) and extracting NDWI values for each inundated pixel during flood. First results demonstrate that using MODIS on a large scale is enough for analyze interannual variability of the flooded surfaces. We present here maps of flood

  5. More Water Resources but Less for Irrigation: Adaptation Strategy of the Yellow River in a Changing Environment

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Yin, Y. Y.

    2015-12-01

    The Yellow River is the primary source of freshwater to the northern China. Increasing population and socio-economic development have put great pressure on water resources of the river basin. The anticipated climate and socio-economic changes may further increase water stress. Development of adaptation strategies would have significant implications for water and food security of this region. In this study, the outputs of multiple hydrological models forced with the bias-corrected climatic variables from multiple global climate models were used to assess the change in renewable water resources of the river basin in the 21st century. The outputs of multiple crop models were used to assess the change in agricultural water demand. The domestic and industrial water demands were estimated based on the future socio-economic conditions under the Shared Socio-economic Pathways (SSPs). Besides basic ecosystem needs for water which must be met, the water use in domestic and industrial sectors is considered to have a higher priority than the agricultural water use when water is insufficient. The results show that the renewable water resources of the basin would increase as global mean temperature increases while the water demand would grow much more rapidly, largely due to water demand increase in domestic and industrial sectors. In most of the sub-basins of the Yellow River basin, the available water resources can not sustain all the water use sectors starting from the next a few decades. As more water resources would be appropriated by domestic and industrial sectors, a part of irrigated area had to be converted to rainfed agriculture which led to a large reduction in food production. This study highlights the linked water and food security in a changing environment and suggests that the trade-off should be considered when developing regional adaptation strategies.

  6. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    USGS Publications Warehouse

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Ackermann, Hans D.; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  7. Extraction of Martian valley networks from digital topography

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  8. [Spatial-temporal distributions of dissolved inorganic carbon and its affecting factors in the Yellow River estuary].

    PubMed

    Guo, Xing-Sen; Lü, Ying-Chun; Sun, Zhi-Gao; Wang, Chuan-Yuan; Zhao, Quan-Sheng

    2015-02-01

    Estuary is an important area contributing to the global carbon cycle. In order to analyze the spatial-temporal distribution characteristics of the dissolved inorganic carbon (DIC) in the surface water of Yellow River estuary. Samples were collected in spring, summer, fall, winter of 2013, and discussed the correlation between the content of DIC and environmental factors. The results show that, the DIC concentration of the surface water in Yellow River estuary is in a range of 26.34-39.43 mg x L(-1), and the DIC concentration in freshwater side is higher than that in the sea side. In some areas where the salinity is less than 15 per thousand, the DIC concentration appears significant losses-the maximum loss is 20.46%. Seasonal distribution of performance in descending order is spring, fall, winter, summer. Through principal component analysis, it shows that water temperature, suspended solids, salinity and chlorophyll a are the main factors affecting the variation of the DIC concentration in surface water, their contribution rate is as high as 83% , and alkalinity, pH, dissolved organic carbon, dissolved oxygen and other factors can not be ignored. The loss of DIC in the low area is due to the calcium carbonate sedimentation. DIC presents a gradually increasing trend, which is mainly due to the effects of water retention time, temperature, outside input and environmental conditions.

  9. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China

    NASA Astrophysics Data System (ADS)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng

    2013-03-01

    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  10. Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer

    USGS Publications Warehouse

    Morrissey, Daniel J.

    1989-01-01

    The highly permeable, unconfined, glacial-drift aquifers that occupy most New England river valleys constitute the principal source of drinking water for many of the communities that obtain part or all of their public water supply from ground water. Recent events have shown that these aquifers are highly susceptible to contamination that results from a number of sources, such as seepage from wastewater lagoons, leaking petroleum-product storage tanks, and road salting. To protect the quality of water pumped from supply wells in these aquifers, it is necessary to ensure that potentially harmful contaminants do not enter the ground in the area that contributes water to the well. A high degree of protection can be achieved through the application of appropriate land-use controls within the contributing area. However, the contributing areas for most supply wells are not known. This report describes the factors that affect the size and shape of contributing areas to public supply wells and evaluates several methods that may be used to delineate contributing areas of wells in glacial-drift, river-valley aquifers. Analytical, two-dimensional numerical, and three-dimensional numerical models were used to delineate contributing areas. These methods of analysis were compared by applying them to a hypothetical aquifer having the dimensions and geometry of a typical glacial-drift, river-valley aquifer. In the model analyses, factors that control the size and shape of a contributing area were varied over ranges of values common to glacial-drift aquifers in New England. The controlling factors include the rate of well discharge, rate of recharge to the aquifer from precipitation and from adjacent till and bedrock uplands, distance of a pumping well from a stream or other potential source of induced recharge, degree of hydraulic connection of the aquifer with a stream, horizontal hydraulic conductivity of the aquifer, ratio of horizontal to vertical hydraulic conductivity, and

  11. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  12. Contrastive Analysis of Meteorological Element Effect Simulated by parameterization schemes Land Surface Process of Noah and CLM4 over the Yellow River Source Region

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wen, X.

    2017-12-01

    The Yellow River source region is situated in the northeast Tibetan Plateau, which is considered as a global climate change hot-spot and one of the most sensitive areas in terms of response to global warming in view of its fragile ecosystem. This region plays an irreplaceable role for downstream water supply of The Yellow River because of its unique topography and variable climate. The water energy cycle processes of the Yellow River source Region from July to September in 2015 were simulated by using the WRF mesoscale numerical model. The two groups respectively used Noah and CLM4 parameterization schemes of land surface process. Based on the observation data of GLDAS data set, ground automatic weather station and Zoige plateau wetland ecosystem research station, the simulated values of near surface meteorological elements and surface energy parameters of two different schemes were compared. The results showed that the daily variations about meteorological factors in Zoige station in September were simulated quite well by the model. The correlation coefficient between the simulated temperature and humidity of the CLM scheme were 0.88 and 0.83, the RMSE were 1.94 ° and 9.97%, and the deviation Bias were 0.04 ° and 3.30%, which was closer to the observation data than the Noah scheme. The correlation coefficients of net radiation, surface heat flux, upward short wave and upward longwave radiation were respectively 0.86, 0.81, 0.84 and 0.88, which corresponded better than the observation data. The sensible heat flux and latent heat flux distribution of the Noah scheme corresponded quite well to GLDAS. the distribution and magnitude of 2m relative humidity and soil moisture were closer to surface observation data because the CLM scheme described the photosynthesis and evapotranspiration of land surface vegetation more rationally. The simulating abilities of precipitation and downward longwave radiation need to be improved. This study provides a theoretical basis for

  13. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions

    USGS Publications Warehouse

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  14. Infill of tunnel valleys associated with landward-flowing ice sheets: The missing Middle Pleistocene record of the NW European rivers?

    NASA Astrophysics Data System (ADS)

    Moreau, Julien; Huuse, Mads

    2014-01-01

    The southern termination of the Middle and Late Pleistocene Scandinavian ice sheets was repeatedly located in the southern North Sea (sNS) and adjacent, north-sloping land areas. Giant meltwater-excavated valleys (tunnel valleys) formed at the southern termination of the ice sheets and contain a hitherto enigmatic succession of northward prograding clinoforms, comprising 1000s km3 of sediment. This study analyses 3D seismic data, covering the entire sNS, and demonstrates for the first time that the formation of these tunnel valleys was separate from their infill. The infill constitutes the postglacial record of the NW European river deltas, which had so far been considered missing.

  15. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  16. Summary of public water-supply withdrawals and geohydrologic data for the lower Connecticut River valley from Windsor to Vernon, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph

    1989-01-01

    Public water supply withdrawal data and geohydrologic data were collected along a 50 mile segment of the Connecticut River valley from Windsor to Vernon, Vermont. An inventory of wells indicates that domestic groundwater supplies come primarily from bedrock, whereas public water supplies are derived from discontinuous, glacial sand and gravel deposits. Self supplied industries generally use surface water supplies. Data from eight seismic-refraction surveys, and from a seismic-reflection survey along this 50-mile reach of the Connecticut River, were compared with stratigraphic information from 217 drillers ' logs. Stratified-drift deposits range from 0 to 270 ft and average about 65 ft. Stratigraphic information from drillers ' logs and seismic-reflection records show that predominantly fine-grained stratified drift fills the valley and that coarse sand and gravel deposits exist discontinuously within this area. (USGS)

  17. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    NASA Astrophysics Data System (ADS)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  18. Hydrological role of large icings within glacierized Sub-Arctic watershed: case study in Upper Duke River valley, Yukon, Canada.

    NASA Astrophysics Data System (ADS)

    Chesnokova, Anna; Baraer, Michel

    2017-04-01

    Sub-Arctic glacierized catchments are complex hydrological systems of paramount importance for water resources management as well as for various ecosystem services. Such systems host many climate-sensitive water sources. Among those, icing is an important component as they provide substantial amount of water during the melt season. Moreover, collecting water of different origins during their formation, icings can be seen as an indicator for different water sources and water pathways that remain active during the freezing period. The present study focuses on genesis and dynamics of large icings within both proglacial field and neighboring alpine meadow in Upper Duke River valley, Yukon, in order to i) provide new insights on water sources and pathways within Sub-Arctic glacierized watersheds, and ii) to quantify contribution of icings to the total runoff of those hydrological systems. A multi-approach technique was applied to cope with the high hydrological complexity met in Sub-Arctic mountainous environments. Time series of positions of large river icings within the study area were obtained using Landsat images for the period 1980-2016. Four time-lapse cameras (TLC) were installed in the watershed targeting two proglacial fields and two alpine meadows in order to monitor icing dynamics all year long. Meteorological data was measured by an Automatic Weather Station in the main valley. In addition air temperature and relative humidity were measured at the location of each TLC. Finally, four icings along the Duke River valley, as well as 2 icings in its main tributary were sampled for stable water isotopes, solutes concentrations and total organic carbon. In addition, samples of freezing exclusion precipitates from icing surfaces were taken. Remote sensing data shows the persistence of large icing complexes in the area during last 30 years: icing within proglacial field appear with almost constant position relative to main glacier tongue on the 30 years long period

  19. Analysis of flow process variation degree and influencing factors in inner Mongolia reach of the Yellow River

    NASA Astrophysics Data System (ADS)

    Jin, S. Y.; Zhang, P.; Zhao, W. R.

    2017-06-01

    The provincial hydrological sections of Shizuishan and Toudaoguai are selected as the object of study to analyze flow process variation degree and influencing factor in Inner Mongolia reach of the Yellow River, according to observe and natural monthly runoff from 1956 to 2013. The result shows that there are three phases of the flow process variation degree of the two sections, namely the year 1956 to 1968, 1969 to 1986 and 1987 to 2013, and which increase by phases. The markings appear to decrease by phases and the marking in Toudaoguai section is lower than that in Shizuishan section. The key reasons of the above features are water consumption of industry and agriculture along the river and reservoir operation of Longyangxia and Liujiaxia.

  20. Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta.

    PubMed

    Wu, Chunsheng; Liu, Gaohuan; Huang, Chong; Liu, Qingsheng; Guan, Xudong

    2018-04-25

    The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich ecological system types, and provides habitats or migration stations for wild birds, all of which makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant natural resources of YRD have brought huge challenges to the area, and frequent human activities and natural disasters have damaged the ecological systems seriously, and certain ecological functions have been threatened. Therefore, it is necessary to determine the status of the ecological environment based on scientific methods, which can provide scientifically robust data for the managers or stakeholders to adopt timely ecological protection measures. The aim of this study was to obtain the spatial distribution of the ecological vulnerability (EV) in YRD based on 21 indicators selected from underwater status, soil condition, land use, landform, vegetation cover, meteorological conditions, ocean influence, and social economy. In addition, the fuzzy analytic hierarchy process (FAHP) method was used to obtain the weights of the selected indicators, and a fuzzy logic model was constructed to obtain the result. The result showed that the spatial distribution of the EV grades was regular, while the fuzzy membership of EV decreased gradually from the coastline to inland area, especially around the river crossing, where it had the lowest EV. Along the coastline, the dikes had an obviously protective effect for the inner area, while the EV was higher in the area where no dikes were built. This result also showed that the soil condition and groundwater status were highly related to the EV spatially, with the correlation coefficients −0.55 and −0.74 respectively, and human activities had exerted considerable pressure on the ecological environment.

  1. One hour of catastrophic landscape change in the upper Rhine River valley 9400 years ago

    NASA Astrophysics Data System (ADS)

    Clague, John; von Poschinger, Andreas; Calhoun, Nancy

    2017-04-01

    The Flims rockslide, which happened about 9400 years ago in the eastern Swiss Alps, is the largest postglacial terrestrial landslide in Europe. The landslide and the huge secondary mass flow it induced completely changed the floor and lower slopes of the Vorderrhein valley over a distance of several tens of kilometres, probably in one hour or less. The landslide began with the sudden detachment of 10-12 km3 of Jurassic and Cretaceous limestone from the north wall of the Vorderrhein valley. The detached rock mass rapidly fragmented as it accelerated and then struck the Rhein valley floor and the opposing valley wall. Tongues of debris traveled up and down the Vorderrhein. The impact liquefied approximately 1 km3 of valley-fill sediments, mainly fluvial and deltaic gravel and sand. The liquefied sediment moved as a slurry - the Bonaduz gravel - tens of kilometres downvalley from the impact site, carrying huge fragments of rockslide debris that became stranded on the valley floor, forming hills termed 'tumas'. Part of the flow was deflected by a cross-valley barrier and flowed 16 km up the Hinterrhein valley (the main tributary of the Vorderrhein), carrying tumas with it. Bonaduz gravel is >65 m thick and fines upward from massive sandy cobble gravel at its base to silty sand at its top. Sedimentologic and geomorphic evidence indicates that the liquefied sediment was transported as a hyperconcentated flow, possibly above a basal carpet of coarse diamictic sediment that behaved as a debris flow. The large amount of water involved in the Bonaduz flow indicates that at least part of the Flims rockslide entered a former lake in Vorderrhein valley. The rockslide debris impounded the Vorderrhein and formed Lake Ilanz, which persisted for decades or longer before the dam was breached in series of outburst floods. These floods further changed the valley floor below the downstream limit of the landslide. Today, Vorderrhein flows in a spectacular 8-km-long gorge incised up to

  2. Controls of channel morphology and sediment concentration on flow resistance in a large sand-bed river: A case study of the lower Yellow River

    NASA Astrophysics Data System (ADS)

    Ma, Yuanxu; Huang, He Qing

    2016-07-01

    Accurate estimation of flow resistance is crucial for flood routing, flow discharge and velocity estimation, and engineering design. Various empirical and semiempirical flow resistance models have been developed during the past century; however, a universal flow resistance model for varying types of rivers has remained difficult to be achieved to date. In this study, hydrometric data sets from six stations in the lower Yellow River during 1958-1959 are used to calibrate three empirical flow resistance models (Eqs. (5)-(7)) and evaluate their predictability. A group of statistical measures have been used to evaluate the goodness of fit of these models, including root mean square error (RMSE), coefficient of determination (CD), the Nash coefficient (NA), mean relative error (MRE), mean symmetry error (MSE), percentage of data with a relative error ≤ 50% and 25% (P50, P25), and percentage of data with overestimated error (POE). Three model selection criterions are also employed to assess the model predictability: Akaike information criterion (AIC), Bayesian information criterion (BIC), and a modified model selection criterion (MSC). The results show that mean flow depth (d) and water surface slope (S) can only explain a small proportion of variance in flow resistance. When channel width (w) and suspended sediment concentration (SSC) are involved, the new model (7) achieves a better performance than the previous ones. The MRE of model (7) is generally < 20%, which is apparently better than that reported by previous studies. This model is validated using the data sets from the corresponding stations during 1965-1966, and the results show larger uncertainties than the calibrating model. This probably resulted from the temporal shift of dominant controls caused by channel change resulting from varying flow regime. With the advancements of earth observation techniques, information about channel width, mean flow depth, and suspended sediment concentration can be

  3. Yellow-billed Cuckoo Distribution, Abundance, and Habitat Use Along the Lower Colorado River and Its Tributaries, 2007 Annual Report

    USGS Publications Warehouse

    Johnson, Matthew J.; Durst, Scott L.; Calvo, Christopher M.; Stewart, Laura; Sogge, Mark K.; Bland, Geoffrey; Arundel, Terry R.

    2008-01-01

    This 2007 annual report details the second season of a 2-year study documenting western yellow-billed cuckoo (Coccyzus americanus occidentalis) distribution, abundance, and habitat use throughout the Lower Colorado River Multi-Species Conservation Program boundary area. We conducted cuckoo surveys at 40 sites within 14 areas, between 11 June and 9 September 2007. The 169 surveys across all sites yielded 163 yellow-billed cuckoo detections. Cuckoos were detected at 25 of the 40 sites, primarily at the Bill Williams River National Wildlife Refuge (NWR) study area (n = 139 detections; 85 percent of all detections). Detections declined slightly through the cuckoo breeding season, with most detections occurring in the first and second survey periods (n = 92; 54 percent). We detected breeding activity only at the Bill Williams River NWR, where we confirmed 27 breeding events, including two nesting observations. However, the breeding status of most detected birds was unknown. We used playback broadcast recordings to survey for yellow-billed cuckoos. Compared to simple point counts or surveys, this method increases the number of detections of this secretive, elusive species. It has long been suspected that cuckoos have a fairly low response rate, and that the standard survey method of using broadcast recordings might fail to detect all birds present in an area. In 2007, we found that the majority (84 percent) of cuckoo detections were solicited through broadcast at all study sites. The number of solicited detections was highest during the first survey period and declined as the breeding season progressed, while the number of unsolicited detections (cuckoos heard calling before broadcast was initiated) remained fairly constant through the first, second, and third survey periods. The majority (66 percent) of cuckoo detections, solicited or unsolicited, were aural, 23 percent were both heard and seen, and 11 percent were visual detections only. We also found that 50 percent

  4. [Ethnic dimension to migration in the Senegal river valley].

    PubMed

    Traore, S

    1993-08-01

    Studies of the factors determining migratory patterns in the Senegal River Valley usually stress the importance of economic factors related to colonial domination. But when cultural factors and the social relations governing them are examined in a comparative study of ethnic groups, distinct population subgroups may be revealed to have differential migratory patterns. The Soninka and the Poular, two groups highly affected by migration, were chosen for an analysis of the impact of specific historical experiences on migratory behavior. A historical analysis of colonial archives and anthropological and historical monographs and the 1982-83 "Survey of Migration in the Valley of the Senegal River" provided data. The survey indicated that Soninka and Poular migratory patterns differed from each other, but that both differed from the migratory patterns of all other ethnic groups in the region. Soninka migration is international and oriented primarily toward Europe. It has recently become more intense than that of the poular. The determinants of migration in the two groups appear related more to the structure of households than to lack of educational and health facilities or even of food at the village level. Pastoral life and its associated beliefs and religious ideology appear to have been the principal determinants of precolonial movement among the Poular, while Soninka migration responded more to competition over control of manpower. Itinerant commercial activity was coupled with use of slave labor to ensure food production. But the suppression of slavery and crises of subsistence aggravated by colonial policy provoked ever more distant migration, which found a focus in the French demand for labor after World War II. Migration as an alternative does not appear to have been as significant for the Poular until more recently, when subsistence agriculture and the sale of animals were no longer sufficient to cover monetary needs. Male migration among the Soninka is a

  5. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    PubMed

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Investigation of the heavy metal contamination of the sediments from the yellow river wetland nature reserve of zhengzhou, china.

    PubMed

    Cheng, Q; Wang, W; Wang, H; Wang; Zhao, Z

    2012-01-01

    Heavy metal pollution in the sediment of the Yellow River draws wide attention in the recent years. The Yellow River Wetland Nature Reserve of Zhengzhou is one of the major wetlands of the river and located at the beginning of the lower reach. In this article, we aimed to investigate the degree and the sources of the metal pollution in the reserve. Metals as Cu, Pb, Cr, Cd and Mn in the sediment were monitored using flame atomic absorption spectrometry. The index of geo-accumulation (I(geo)) and the modified degree of contamination (mC(d)) were developed to evaluate individual metal pollution and overall enrichment impact of the elements. Compared with sediment quality guidelines, the effect of Cr and Pb are more serious than others. I(geo) values show Pb pollution are moderate at the Xinzhai, Langchenggang and Nansutan sites, and mC(d) analysis indicate the whole contamination at the Wantan, Langchenggang and Nansutan sites was low. Principal component analysis indicated that the first factor was Cu, Mn and Cd, mainly from soil erosion and the irrational use of phosphate fertilizers; the second Pb from fossil fuel burning; and the third Cr from weathering process. We conclude that Pb contamination is serious in the reserve, and the main sources of the metal are crude oil consumption and coal combustion of the brick kilns around. We also draw a conclusion that it is vital to evaluate contamination degree with both individual elements and overall average.

  7. 27 CFR 9.90 - Willamette Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) “Roseburg,” Location Diagram NL 10-2, 1958 (revised 1970). (c) Boundaries. The Willamette Valley... valleys of Little River, Mosby Creek, Sharps Creek and Lost Creek to the intersection of R1W/R1E and State...

  8. Plant community succession in modern Yellow River Delta, China*

    PubMed Central

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-01-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  9. Effects of fluvial processes in different order river valleys on redistribution and storage of particle-bound radioactive caesium-137 in area of significant Chernobyl fallout and impact on linked rivers with lower contamination levels

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier

    2015-04-01

    Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth

  10. Treponemal disease in the middle Archaic to early Woodland periods of the western Tennessee River Valley.

    PubMed

    Smith, Maria Ostendorf

    2006-10-01

    The high frequency of late prehistoric New World treponemal disease is attributable to the demographic changes concomitant with the adoption of agriculture. However, these demographic changes in group mobility and site density episodically preceded intensive plant domestication, suggesting possible staggered temporal change in observed treponemal disease case frequency. Thirteen convincing and an additional two probable (N = 581) cases of treponemal disease were identified in an eight-site skeletal sample spanning the Middle (6,000-3,000 BCE) to Late (2,500-ca. 1,000 to 500 BCE) Archaic and Early Woodland (500 BCE-0 CE) periods from the western Tennessee River Valley. Treponemal disease cases are infrequent in both the Middle (3/115, 2.6%) and Late (2 to 4 cases, River Valley remained, as elsewhere, based on intensive hunting and collecting, the demographic corollaries of treponemal disease would apparently not be met. However, the traditional horizon marker of the Woodland period is the adoption of pottery, an activity associated with sedentism.

  11. [Growth analysis on modules of Cynodon dactylon clones in Yili River Valley Plain of Xinjiang].

    PubMed

    Zhao, Yu; Janar; Li, Hai-Yan; Liu, Ying; Yang, Yun-Fei

    2009-04-01

    By the method of randomly digging up whole ramet tuft while maintaining natural integrity, large samples of Cynodon dactylon clones were collected from a grape orchard abandoned for 2 years without any management in the Yili River Valley Plain of Xinjiang, aimed to quantitatively analyze the growth patterns of their modules. The results showed that the average ramet number of test 30 clones reached 272.6 +/- 186. 6, among which, vegetative ramets occupied 82.3%, being 4.3 times higher than reproductive ones. The total biomass of the clones was 45.4 +/- 40.0 g, in which, rhizomes accounted for 54.4%, while the vegetative ramets, stolons, and reproductive ramets occupied 21.0%, 14.8%, and 9.4% of the total, respectively. The accumulative length of rhizomes and stolons reached 5.1 + 4.7 m and 3.3 +/- 3.4 m, while the bud number on stolons and rhizomes was 291.5 +/- 246.8 and 78.8 +/- 87.4, respectively. The bud number on stolons and rhizomes was positively correlated to the quantitative characters of vegetative ramets, reproductive ramets, stolons, and rhizomes (P < 0.01), indicating that in Yili River Valley Plain, C. dactylon clone could achieve and maintain its continuous renovation via rhizome buds.

  12. Early and abrupt retreat of the Laurentide Ice Sheet margin from the Mackenzie River valley, southern Northwest Territories

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Froese, Duane G.; Gosse, John C.; Yang, Guang; McKenna, Jillian; Hidy, Alan J.

    2017-04-01

    The detachment of the Laurentide Ice Sheet margin from the Canadian Cordillera opened the present-day drainage route of the Mackenzie River to the Arctic Ocean and an ice-free corridor that allowed for migration of species between Beringia and the mid-latitudes of North America. The existing ice-margin chronology depicts the southern reach of the Mackenzie River between 61 and 63° N as glaciated until about 13 ka, representing the last portion of the Laurentide Ice Sheet margin abutting the eastern foot of the Cordillera. A substantial retreat of the ice sheet margin in this region has been suggested to have occurred during the subsequent Younger Dryas cold period, despite the fact that in many other regions ice masses stabilised or even re-grew at this time. However, until now, deglacial chronometry for this region and the western LIS margin is sparse and consists mostly of minimum-limiting macrofossil and bulk C-14 ages from organics materials overlying glacial sediment. With the aim to bring new data on the deglaciation history of the Mackenzie River valley, we collected samples for Be-10 exposure dating from glacial erratic boulders in the southern Franklin Mountains that bound the Mackenzie River valley from the east. The sampling elevations ranged between 1480 and 800 m a.s.l., however, the measured ages show only a weak correlation with elevation. Instead, 10 out of 12 measured samples cluster tightly around 15 ka, with the remaining two samples likely containing Be-10 inherited from previous periods of exposure. Our results thus indicate a pre-Younger Dryas rapid down-wasting of the ice sheet surface, which we infer was accompanied by an ice margin retreat to the southeast. The southern reach of the Mackenzie River valley at the eastern foot of the Cordillera was, according to our results, ice free shortly after 15 ka, with the prospect that the ice-free corridor might have opened significantly earlier than hitherto anticipated. Further research is

  13. Distribution features and controls of heavy metals in surface sediments from the riverbed of the Ningxia-Inner Mongolian reaches, Yellow River, China.

    PubMed

    Guan, Qingyu; Wang, Lei; Pan, Baotian; Guan, Wenqian; Sun, Xiazhong; Cai, Ao

    2016-02-01

    Fifty-six riverbed surface sediment (RSS) samples were collected along the Ningxia-Inner Mongolian reaches of the Yellow River (NIMYR). These samples were analyzed to determine their heavy metal concentrations (Co, Cr, Ni, Cu, V and Zn), grain sizes, sediment sources and the causes of their heavy metal contamination. The cumulative distribution functions of the heavy metals in RSS of these reaches are plotted to identify the geochemical baseline level (GBL) of each element and determine the average background concentration of each heavy metal. Principal component analysis and hierarchical cluster analysis are conducted based on the grain sizes of RSS, and the samples are classified into two groups: coarse grained samples (CGS) and fine grained samples (FGS). The degree of heavy metal contamination for each sample is identified by its enrichment factor (EF). The results reveal that the coarse particle component (medium sand and coarse sand) in the bed materials is chiefly from the bordering deserts along the Yellow River. The clay and silt in the bed materials chiefly originate from the upper reaches of the Yellow River, and the fine sand is identified as a hybrid sediment derived from the upper reaches of the Yellow River and the bordering deserts. The CGS primarily appear in the reaches bordering deserts, and the sites are near the confluence of gullies and the Yellow River. The FGS are located adjacent to cities with especially strong industrial activity such as Wuhai, Bayan Nur, Baotou and Togtoh. The Cr, Ni, Cu, V and Zn concentrations (mg kg(-1)) are 84.34 ± 49.46, 30.21 ± 7.90, 25.01 ± 7.61, 73.17 ± 18.92 and 55.62 ± 18.93 in the FGS and 65.07 ± 19.51, 23.86 ± 6.84, 18.04 ± 3.8, 53.47 ± 10.57 and 34.89 ± 9.19 in the CGS respectively, and the concentrations of Co in the CGS (213.40 ± 69.71) are notably higher than in the FGS (112.02 ± 48.87) and greater than the Co GBL (210). The most contaminated samples in the NIMYR are adjacent to the cities of

  14. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review

    NASA Astrophysics Data System (ADS)

    Wang, Houjie; Wu, Xiao; Bi, Naishuang; Li, Song; Yuan, Ping; Wang, Aimei; Syvitski, James P. M.; Saito, Yoshiki; Yang, Zuosheng; Liu, Sumei; Nittrouer, Jeffrey

    2017-10-01

    The water-sediment regulation scheme (WSRS), beginning in 2002, is an unprecedented engineering effort to manage the Yellow River with the aims to mitigate the siltation both in the lower river channel and within the Xiaolangdi Reservoir utilizing the dam-regulated flood water. Ten years after its initial implementation, multi-disciplinary indicators allow us to offer a comprehensive review of this human intervention on a river-coastal system. The WSRS generally achieved its objective, including bed erosion in the lower reaches with increasing capacity for flood discharge and the mitigation of reservoir siltation. However, the WSRS presented unexpected disturbances on the delta and coastal system. Increasing grain size of suspended sediment and decreasing suspended sediment concentration at the river mouth resulted in a regime shift of sediment transport patterns that enhanced the disequilibrium of the delta. The WSRS induced an impulse delivery of nutrients and pollutants within a short period ( 20 days), which together with the altered hydrological cycle, impacted the estuarine and coastal ecosystem. We expect that the sediment yield from the loess region in the future will decrease due to soil-conservation practices, and the lower channel erosion will also decrease as the riverbed armors with coarser sediment. These, in combination with uncertain water discharge concomitant with climate change, increasing water demands and delta subsidence, will put the delta and coastal ocean at high environmental risks. In the context of global change, this work depicts a scenario of human impacts in the river basin that were transferred along the hydrological pathway to the coastal system and remotely transformed the different components of coastal environment. The synthesis review of the WSRS indicates that an integrated management of the river-coast continuum is crucially important for the sustainability of the entire river-delta system. The lessons learned from the WSRS in

  15. Histoplasmosis infections worldwide: thinking outside of the Ohio River valley

    PubMed Central

    Bahr, Nathan C; Antinori, Spinello; Wheat, L. Joseph; Sarosi, George A.

    2015-01-01

    In the United States, histoplasmosis is generally thought to occur mainly in the Ohio and Mississippi River Valleys, and the classic map of histoplasmosis distribution reflecting this is second nature to many U.S. physicians. With the advent of the HIV pandemic reports of patients with progressive disseminated histoplasmosis and AIDS came from regions of known endemicity, as well as from regions not thought to be endemic for histoplasmosis throughout the world. In addition, our expanding armamentarium of immunosuppressive medications and biologics has increased the diagnosis of histoplasmosis worldwide. While our knowledge of areas in which histoplasmosis is endemic has improved, it is still incomplete. Our contention is that physicians should consider histoplasmosis with the right constellations of symptoms in any febrile patient with immune suppression, regardless of geographic location or travel history. PMID:26279969

  16. Yellow Fever in an Unvaccinated Traveler to Peru.

    PubMed

    Winnicka, Lydia; Abdullah, Amirahwaty; Yang, Tsujung; Norville, Kim; Irizarry-Acosta, Melina

    2017-01-01

    We present a case of an unvaccinated traveler who traveled from New York to Peru and contracted yellow fever. He likely acquired the infection while visiting the Amazon River, with a point of exit of Lima, Peru. Our case illustrates the dramatic course that yellow fever may take, as well as the importance of pretravel vaccination.

  17. Simulated effects of irrigation on salinity in the Arkansas River Valley in Colorado

    USGS Publications Warehouse

    Goff, K.; Lewis, M.E.; Person, M.A.; Konikow, Leonard F.

    1998-01-01

    Agricultural irrigation has a substantial impact on water quantity and quality in the lower Arkansas River valley of southeastern Colorado. A two-dimensional flow and solute transport model was used to evaluate the potential effects of changes in irrigation on the quantity and quality of water in the alluvial aquifer and in the Arkansas River along an 17.7 km reach of the fiver. The model was calibrated to aquifer water level and dissolved solids concentration data collected throughout the 24 year study period (197195). Two categories of irrigation management were simulated with the calibrated model: (1) a decrease in ground water withdrawals for irrigation; and (2) cessation of all irrigation from ground water and surface water sources. In the modeled category of decreased irrigation from ground water pumping, there was a resulting 6.9% decrease in the average monthly ground water salinity, a 0.6% decrease in average monthly river salinity, and an 11.1% increase in ground water return flows to the river. In the modeled category of the cessation of all irrigation, average monthly ground water salinity decreased by 25%; average monthly river salinity decreased by 4.4%; and ground water return flows to the river decreased by an average of 64%. In all scenarios, simulated ground water salinity decreased relative to historical conditions for about 12 years before reaching a new dynamic equilibrium condition. Aquifer water levels were not sensitive to any of the modeled scenarios. These potential changes in salinity could result in improved water quality for irrigation purposes downstream from the affected area.

  18. 77 FR 47493 - DMH Trust fbo Martha M. Head-Acquisition of Control Exemption-Red River Valley & Western Railroad...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Martha M. Head--Acquisition of Control Exemption-- Red River Valley & Western Railroad and Rutland Line, Inc. DMH Trust fbo Martha M. Head (the Trust), a noncarrier, has filed a verified notice of exemption...\\ both Class III rail carriers. \\1\\ RLI is a wholly owned subsidiary of RRVW. According to the Trust...

  19. Hydraulic conductivity changes in river valley sediments caused by river bank filtration - an analysis of specific well capacity

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Piotr M. J.

    2017-06-01

    Parameters from archive data of the Kalisz-Lis waterworks, located in the Prosna River valley south of Kalisz, have been analysed. Well barrier discharges groundwater from Quaternary sediments which is mixed with riverbank filtration water. The analysis focused on specific well capacity, a parameter that represents the technical and natural aspects of well life. To exclude any aging factor, an examination of specific well capacity acquired only in the first pumping tests of a new well was performed. The results show that wells drilled between 1961 and 2004 have similar values of specific well capacity and prove that > 40 years discharge has had little influence on hydrodynamic conditions of the aquifer, i.e., clogging has either not occurred or is of low intensity. This implies that, in the total water balance of the Kalisz- Lis well barrier, riverbank filtration water made little contribution. In comparison, a similar analysis of archive data on the Mosina-Krajkowo wells of two generations of well barriers located in the Warta flood plains was performed; this has revealed a different trend. There was a significant drop in specific well capacity from the first pumping test of substitute wells. Thus, long-term groundwater discharge in the Warta valley has had a great impact on the reduction of the hydraulic conductivity of sediments and has worsened hydrodynamic conditions due to clogging of river bed and aquifer, which implies a large contribution of riverbank filtration water in the total water well balance. For both well fields conclusions were corroborated by mathematical modeling; in Kalisz-Lis 16.2% of water comes from riverbank filtration, whereas the percentage for Mosina-Krajkowo is 78.9%.

  20. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  1. Flood-inundation maps for the Meramec River at Valley Park and at Fenton, Missouri, 2017

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Sappington, Jacob N.

    2017-09-29

    Two sets of digital flood-inundation map libraries that spanned a combined 16.7-mile reach of the Meramec River that extends upstream from Valley Park, Missouri, to downstream from Fenton, Mo., were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, St. Louis Metropolitan Sewer District, Missouri Department of Transportation, Missouri American Water, and Federal Emergency Management Agency Region 7. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the cooperative USGS streamgages on the Meramec River at Valley Park, Mo., (USGS station number 07019130) and the Meramec River at Fenton, Mo. (USGS station number 07019210). Near-real-time stage data at these streamgages may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites (listed as NWS sites vllm7 and fnnm7, respectively).Flood profiles were computed for the stream reaches by means of a calibrated one-dimensional step-backwater hydraulic model. The model was calibrated using a stage-discharge relation at the Meramec River near Eureka streamgage (USGS station number 07019000) and documented high-water marks from the flood of December 2015 through January 2016.The calibrated hydraulic model was used to compute two sets of water-surface profiles: one set for the streamgage at Valley Park, Mo. (USGS station number 07019130), and one set for the USGS streamgage on the Meramec River at Fenton, Mo. (USGS station number 07019210). The water-surface profiles were produced for stages at 1-foot (ft) intervals referenced to the datum from each streamgage and

  2. Studies in western yellow pine nursery practice

    Treesearch

    Donald R. Brewster; J. A. Larsen

    1925-01-01

    In 1912 and 1913, when nursery experiments were started under direction of the then "Priest River'' Forest Experiment Station, at Priest River, Idaho, and elsewhere, western yellow pine (Pinus ponderosa) was one of the principal species being planted on a large scale in the northern Rocky Mountain region and millions of plants were being raised each year...

  3. First recorded outbreak of yellow fever in Kenya, 1992-1993. II. Entomologic investigations.

    PubMed

    Reiter, P; Cordellier, R; Ouma, J O; Cropp, C B; Savage, H M; Sanders, E J; Marfin, A A; Tukei, P M; Agata, N N; Gitau, L G; Rapuoda, B A; Gubler, D J

    1998-10-01

    The first recorded outbreak of yellow fever in Kenya occurred from mid-1992 through March 1993 in the south Kerio Valley, Rift Valley Province. We conducted entomologic studies in February-March 1993 to identify the likely vectors and determine the potential for transmission in the surrounding rural and urban areas. Mosquitoes were collected by landing capture and processed for virus isolation. Container surveys were conducted around human habitation. Transmission was mainly in woodland of varying density, at altitudes of 1,300-1,800 m. The abundance of Aedes africanus in this biotope, and two isolations of virus from pools of this species, suggest that it was the principal vector in the main period of the outbreak. A third isolate was made from a pool of Ae. keniensis, a little-known species that was collected in the same biotope. Other known yellow fever vectors that were collected in the arid parts of the valley may have been involved at an earlier stage of the epidemic. Vervet monkeys and baboons were present in the outbreak area. Peridomestic mosquito species were absent but abundant at urban sites outside the outbreak area. The entomologic and epidemiologic evidence indicate that this was a sylvatic outbreak in which human cases were directly linked to the epizootic and were independent of other human cases. The region of the Kerio Valley is probably subject to recurrent wandering epizootics of yellow fever, although previous episodes of scattered human infection have gone unrecorded. The risk that the disease could emerge as an urban problem in Kenya should not be ignored.

  4. Water storage capacity of the natural river valley - how sedge communities influence it. Case study of Upper Biebrza Basin (Poland) based on ALS and TLS data

    NASA Astrophysics Data System (ADS)

    Brach, Marcin; Chormański, Jarosław

    2014-05-01

    The exact determination of water storage capacity in river valley is an important issue for hydrologists, ecologist and flood modellers. In case of natural river valley, the dense and complexity vegetation of the natural ecosystems can influence the proper identification of the water storage. Methods considered to be sufficient in other cases (urbanized, agricultural) may not produce correct results. Sedge communities in natural river valleys form characteristic tussocks, built from the species roots, other organic material and silt or mud. They are formed due to partial flooding during the inundation, so the plants can survive in hard, anaerobic conditions. They can growth even up to 0.5 meters, which is not so visible due to very dense vegetation in the valleys. These tussocks form a microtopography or a river valley. Currently, the most commonly used technology to register the terrain topography is an Airborne Laser Scanning (ALS), but in the case of the tussocks and the dense vegetation it generates high errors on elevation in the areas of the sedges (Carex appropinquata). This study concerns the Upper Biebrza Valley which is located in the northeastern Poland. For purpose of our work we used Terrestrial Laser Scanner (TLS) technology to determine microtopography of selected fields. Before measurements, the green part of the sedge was cut in selected measurements fields. It make possible to register only tussocks shape. Next, step was collection of the airborne ALS data of the valley with density of 8 points/sq m. The experimental field was divided on two sub-fields: one was cut and scanned using TLS before ALS collection, while the second after. Data collected as ALS and the TLS were then compared. The accuracy of the ALS data depends on the land cover of an area, while TLS accuracy is around 2 millimeters (when georeferenced it depends on the accuracy of reference points - in our case it was made using GPS RTK which gave us accuracy of few centimeters). The

  5. Spatial and temporal variations of aeolian sediment input to the tributaries (the Ten Kongduis) of the upper Yellow River

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Shi, Changxing

    2018-02-01

    The Ten Kongduis of the upper Yellow River, located in Inner Mongolia, northern China, is an area with active wind-water coupled erosion and hence one of the main sediment sources of the Yellow River. In this study, we analyzed the characteristics of spatial and temporal variations of aeolian sediment input to the river channel. For this purpose, three segments of sand dune-covered banks of the Maobula and the Xiliugou kongduis were investigated three times from November 2014 to November 2015 using a 3-D laser scanner, and the displacement of banks of desert reaches of three kongduis was derived from interpreting remote sensing images taking in the years from 2005 to 2015. The data of the surveyed sand dunes reveal that the middle kongduis were fed by aeolian sand through the sand dunes moving towards the river channels. The amount of aeolian sediment input was estimated to be about 14.94 × 104 t/yr in the Maobula Kongdui and about 5.76 × 104 t/yr in the Xiliugou Kongdui during the period from November 2014 to November 2015. According to the interpretation results of remote sensing images, the amount of aeolian sediment input to the Maobula Kongdui was about 15.74 × 104 t in 2011 and 18.2 × 104 t in 2012. In the Xiliugou Kongdui, it was in the range of 9.52 × 104 - 9.99 × 104 t in 2012 and in the springs of 2013 and 2015. In the Hantaichuan Kongdui, it was 7.04 × 104 t in 2012, 7.53 × 104 t in the spring of 2013, and 8.52 × 104 t in the spring of 2015. Owing to the changes in wind and rainfall, both interseasonal and interannual sediment storage and release mechanisms exist in the processes of aeolian sand being delivered into the kongduis. However, all of the aeolian sediment input to the Ten Kongduis should be delivered downstream by the river flows during a long term.

  6. Impacts of sea cucumber farming on biogeochemical characteristics in the Yellow River estuary, Northern China

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Yokoyama, Hisashi; Cui, Baoshan; Zhou, Jin; Yan, Jiaguo; Ma, Xu; Shibata, Shozo

    2017-02-01

    To investigate the potential environmental effects of pond farming for Apostichopus japonicas in Yellow River estuary, we examined discrepancies of distance-based typical pollution indicators (TOC, TN, NO3-, NH4+, NO2- and PO43-) and biochemical tracers (δ13C and δ15N) in water column and sediment, as well as dietary characteristics of dominant macrobenthos between farming and non-farming areas. The results revealed that studied variables in water column showed no uniform spatial differences. Meanwhile, those in sediment displayed similar decrease tendencies from farming pond to the adjacent tidal flat, which was considered to represent the environmental effects of farming. Biochemical tracers (δ13C and δ15N) in both water column and sediment confirmed the origin of organic matters from the aquaculture waste. The detectable dispersion distance of aquaculture waste was restricted to an area within 50 m distance as determined by most variables in sediment (TOC, TN, NO3- and NH4+), particularly by C:N ratio and δ13C with which origins of the wastes were traced. Bayesian mixing models indicated that in the farming area BMA had a larger contribution, while POM(marine) showed a smaller contribution to the diets of Helice tridens and Macrophthalmus abbreviates compared to those in the non-farming area. The overall results showed that pond farming for Apostichopus japonicus in the Yellow River estuary altered the local environment to a certain extent. For methodological consideration, sediment biogeochemical characteristics as a historical recorder much more effectively reflected aquaculture waste accumulation, and stable isotope approaches are efficient in tracing the origin and extent of various allogenous sources.

  7. [Study on the present status of the areas with high iodine concentration in drinking water and edible salt at household levels in Ohio of Yellow River].

    PubMed

    Guo, Xiao-wei; Zhai, Li-ping; Liu, Yuan; Wang, Xin

    2005-11-01

    To understand the present condition of iodine excess areas and edible salt at household levels in Ohio of Yellow River,which will provide the evidence to control it. A cross section in one time was adopted for the epidemiological survey based on the east, west, south, north and central in all of townships from 8 counties. 2 samples of drinking water from each village were tested their water iodine content as well as the data regarding to their recourses and the depth of wells. 5 samples of edible salt were collected from each village for quantitative analysis. We investigated 451 villages in 92 townships of 8 counties. 800 samples of drinking water were tested which values of iodine content were (110.93 +/- 152.26) microg/L in main, 55.83 microg/L (0.84 - 997.82 microg/L) in medium. 102.39 thousand population are at risk for iodine excess and living in 24 townships of 7 counties where iodine concentration is over 150 microg/L in drinking water, with (327.72 +/- 192.19) microg/L in mean value or 253.87 microg/L (150.78 - 997.82 microg/L) in medium. The rate of iodized salt is 97.2%. All the iodine excess areas are located in alluvial plain of Yellow River. The etiology of high iodine in shallow well water may be supposed to be iodine aggregation formed by Yellow River in terms of thousands of flood in thousands of years. But iodine excess in deep well water may be related to rotten, deposit marine living beings rich in iodine millions upon millions years ago. There were distinctive features of iodine excess in drinking water from both shallow well and deep well, 24 iodine excess areas in Ohio of Yellow River. It has suggested that iodized salt intervention should be stopped in the areas and starting the health education project, survey of iodized salt in the region.

  8. 7. Photocopy of map of the Agua Fria Valley and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of map of the Agua Fria Valley and lands to be irrigated by the Agua Fria Water and Land Company. Photographer Mark Durben, 1987 Source: 'Map of the Agua Fria Valley and the Western Portion of the Salt River Valley Showing the System of Reservoirs and Canals of the Agua Fria Water and Land Company and the Land to be Irrigated Thereby 160,000 Acres of New Land to be Reclaimed in the Maricopa County, Arizona Territory,' (Brochure) Union Photo Engraving Company, c. 1895, Salt River Project Research Archives, Tempe, Arizona. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  9. Investigation of the Heavy Metal Contamination of the Sediments from the Yellow River Wetland Nature Reserve of Zhengzhou, China

    PubMed Central

    Cheng, Q; Wang, W; Wang, H; Wang; Zhao, Z

    2012-01-01

    Background Heavy metal pollution in the sediment of the Yellow River draws wide attention in the recent years. The Yellow River Wetland Nature Reserve of Zhengzhou is one of the major wetlands of the river and located at the beginning of the lower reach. In this article, we aimed to investigate the degree and the sources of the metal pollution in the reserve. Methods: Metals as Cu, Pb, Cr, Cd and Mn in the sediment were monitored using flame atomic absorption spectrometry. The index of geo-accumulation (Igeo) and the modified degree of contamination (mCd) were developed to evaluate individual metal pollution and overall enrichment impact of the elements. Results: Compared with sediment quality guidelines, the effect of Cr and Pb are more serious than others. Igeo values show Pb pollution are moderate at the Xinzhai, Langchenggang and Nansutan sites, and mCd analysis indicate the whole contamination at the Wantan, Langchenggang and Nansutan sites was low. Principal component analysis indicated that the first factor was Cu, Mn and Cd, mainly from soil erosion and the irrational use of phosphate fertilizers; the second Pb from fossil fuel burning; and the third Cr from weathering process. Conclusion: We conclude that Pb contamination is serious in the reserve, and the main sources of the metal are crude oil consumption and coal combustion of the brick kilns around. We also draw a conclusion that it is vital to evaluate contamination degree with both individual elements and overall average. PMID:23113147

  10. Historical Causes and Future Projections of Hydrological Drought Change over a Semi-arid Watershed in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Yuan, X.; Yang, D.

    2017-12-01

    During the past five decades, significant decreasing trends in streamflow records were observed at many hydrological gauges within the middle reaches of the Yellow River basin, China, leading to an intensified water resource shortage and a rising hydrological drought risk. This phenomenon is generally considered as a consequence of climate changes and human interventions, such as greenhouse gas emissions, regional land use/cover changes, dam and reservoir constructions and direct water withdrawals. There are many studies on the attribution of streamflow decline and hydrological drought change in this region, while a consolidated conclusion is missing.In this study, we focus on historical and future hydrological drought characteristics over a semi-arid watershed located in the middle reaches of the Yellow River basin. Daily climate simulations from several IPCC CMIP5 models were collected to drive a newly developed eco-hydrological model CLM-GBHM with detailed description of river network and sub-basin topological relationship, to simulate streamflow series under different forcings and scenarios. The standard streamflow index was calculated and used to figure out the characteristics (e.g., frequency, duration and severity) of both historical and future hydrological droughts. The causes and contributions in terms of natural and anthropogenic influences will be investigated based on an optimal fingerprinting method, and the relative importance of internal variability, model and scenario uncertainties for future projections will also be estimated using a separation method. This study will facilitate the implementation of adaptation strategies for hydrological drought over the semi-arid watershed in a changing environment.

  11. Relating streamflow characteristics to specialized insectivores in the Tennessee River Valley: a regional approach

    USGS Publications Warehouse

    Knight, Rodney R.; Gregory, M. Brian; Wales, Amy K.

    2008-01-01

    Analysis of hydrologic time series and fish community data across the Tennessee River Valley identified three hydrologic metrics essential to habitat suitability and food availability for insectivorous fish communities in streams of the Tennessee River Valley: constancy (flow stability or temporal invariance), frequency of moderate flooding (frequency of habitat disturbance), and rate of streamflow recession. Initial datasets included 1100 fish community sites and 300 streamgages. Reduction of these datasets to sites with coexisting data yielded 33 sites with streamflow and fish community data for analysis. Identification of critical hydrologic metrics was completed using a multivariate correlation procedure that maximizes the rank correlation between the hydrologic metrics and fish community resemblance matrices. Quantile regression was used to define thresholds of potential ranges of insectivore scores for given values of the hydrologic metrics. Increased values of constancy and insectivore scores were positively correlated. Constancy of streamflow maintains wetted perimeter, which is important for providing habitat for fish spawning and increased surface area for invertebrate colonization and reproduction. Site scores for insectivorous fish increased as the frequency of moderate flooding (3 times the median annual streamflow) decreased, suggesting that insectivorous fish communities respond positively to less frequent disturbance and a more stable habitat. Increased streamflow recession rates were associated with decreased insectivore scores. Increased streamflow recession can strand fish in pools and other areas that are disconnected from flowing water and remove invertebrates as food sources that were suspended during high-streamflow events.

  12. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China.

    PubMed

    Chen, Jun; Quan, Wenting; Cui, Tingwei

    2015-01-01

    In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).

  13. Nursery stock quality as an indicator of bottomland hardwood forest restoration success in the Lower Mississippi River Alluvial Valley

    Treesearch

    Douglass F. Jacobs; Rosa C. Goodman; Emile S. Gardiner; K Frances Salifu; Ronald P. Overton; George Hernandez

    2012-01-01

    Seedling morphological quality standards are lacking for bottomland hardwood restoration plantings in the Lower Mississippi River Alluvial Valley, USA, which may contribute toward variable restoration success. We measured initial seedling morphology (shoot height, root collar diameter, number of first order lateral roots, fresh mass, and root volume), second year field...

  14. Virus incidence in orchardgrass (Dactylis glomerata L.) seed production fields in the Willamette Valley

    USDA-ARS?s Scientific Manuscript database

    A survey was conducted over the course of three years (2014-2016) for the presence of Barley yellow dwarf virus (BYDV-MAV and BYDV-PAV), Cereal yellow dwarf virus (CYDV-RPV), and Cocksfoot mottle virus (CfMV) in orchardgrass (Dactylis glomerata) fields in the Willamette Valley, Oregon. There was an ...

  15. [Radon levels in interiors in Valtellina, on the Angera hills and in the high valley of the Cervo river].

    PubMed

    Facchini, U; Valli, G; Vecchi, R; Dezzuto, C; Lainati, D; Trabucchi, M T; Bonetti, R; Capra, L

    1992-10-01

    The results are reported of an investigation carried out from 1988 to 1990 in many houses in various sites in Lombardy and Piedmont. Measurements were actually carried out in Valtellina, in Angera--on the Lombard side of lake Maggiore--and in the high valley of the river Cervo, north of Biella. The patterns of radon immission in houses due to buildings materials and also to soil emissions are described. Average values of radon levels were obtained using track-etch detectors, whereas fluctuations were recorded daily with a unit capable of detecting alpha particles in real time. Some of the values obtained in 28 Valtellina towns were quite high--e.g., about 1,000 Bq/m3 in towns along the Insubrica fault. The area around Bormio and the Masino valley did not exhibit high radioactivity levels. A total number of nearly 100 houses were investigated in Angera; the highest radon concentrations were observed in cellars and especially in the areas where fractures are bigger and more diffuse. One particular house was accurately examined with real-time analysis of radon fluctuations. Four small towns in the pluton area were investigated in the valley of the river Cervo. In this instance, values were generally high (mean concentration: 842 Bq/m3); the highest concentrations were found in cellars and in ground-floor rooms.

  16. Rivers and valleys of Pennsylvania, revisited

    NASA Astrophysics Data System (ADS)

    Morisawa, Marie

    1989-09-01

    The 1889 paper by William Morris Davis on the "Rivers and Valleys of Pennsylvania" is a landmark in the history of geomorphology. It was in this manuscript that he set forth what came to be known as the Davisian system of landscape. It is important to understand that Davis' interpretation of landforms was restricted by the geologic paradigms of his day. Uniformitarianism was strongly entrenched and Darwin's theory of evolution had become popularly accepted. The concept of the landmass Appalachia and then current theories on mountain building affected the approach that Davis took in hypothesizing the origin and development of the Folded Appalachian drainage. All of these geologic precepts influenced the formulation and explanation of his theories. In his exposition he adapted, synthesized and embellished on ideas he derived from fellow geologists such as Gilbert, Dutton, Powell, and McGee. A number of the concepts he proposed in the 1889 paper quickly became the bases for geomorphic studies by others: the cycles of river erosion and landscape evolution and the peneplain (here called base level erosion). The cycle of erosion became the model for subsequent geomorphic analyses, and peneplain hunting became a popular sport for geomorphologists. Davis' hypothesis of the origin and development of Pennsylvanian drainage stimulated subsequent discussion and further hypotheses by others. In fact, many of the later theories were refinements and/or elaborations of ideas mentioned in this paper of Davis. He proposed the origin of the drainage as consequent streams, then antecedence, superposition, headward extension of divides by piracy, erosion along lines of weaknesses (faults, easily erodible beds) through resistant ridges and normal fluvial erosion. Thus, the hypotheses of regional superposition (Johnson), extended consequents (Ruedemann), consequents and local superposition (Meyerhoff and Olmstead), the utilization of structural weaknesses in development of transverse

  17. Temporal Variation Analysis on Climate of Dry-Hot Valley Since 1950s in Upper Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Cai, Y.

    2017-12-01

    Climate of dry-hot valley areas regarding their long term temporal changes are seldom studied. In this paper, climate change in lower reach of Yalongjiang River, a typical dry-hot valley area locating in upper Yangtze River Basin, was analyzed. Ten single meteorological factors were used to investigate basic climatic characteristics, and two integrated index (i.e. relative evapotranspiration(AET/P), standard precipitation evapotranspiration index(SPEI)) were selected to reflect changes from human activities and gauge climate drought regime. Mann-Kendall mutation test was applied to identify mutation year, and variation trends were diagnosed with linear regression and distance average analysis. Mean values were tested to find if there were significant changes resulting from a large artificial reservoir constructed in 1999. Results of mutation test showed that minimum temperature, relative humidity, and AET/P in two stations changed significantly in 2000s. Temperature increased since 1990s, and other single index fluctuated in recent 50 years. Precipitation decreased and temperature increased in autumn significantly, while precipitation in summer decreased slightly. The variation of SPEI implied that the area was humid from 1980s to 2000s, but drought in 2010s. The results of mean test indicated that 56% meteorological index changed significantly, which might be related to the construction of the large reservoir. This research not only reveals the climate change in a dry-hot valley, but also helps study concerning human activities especially the construction of cascade reservoirs in the future in this area.

  18. Age, distribution, and formation of late cenozoic paleovalleys of the lower Colorado River and their relation to river aggradation and degradation

    USGS Publications Warehouse

    Howard, K.A.; Lundstrom, S.C.; Malmon, D.V.; Hook, S.J.

    2008-01-01

    Distinctive far-traveled fluvial sediment of the lower Colorado River fills 20 paleo-valleys now stranded by the river downstream of Grand Canyon as it crosses the Basin and Range Province. These sediments resulted from two or more aggradational epi sodes in Pliocene and Pleistocene times following initial incision during the early Pliocene. A review of the stratigraphic evidence of major swings in river elevation over the last 5 m.y. from alternating degradation and aggradation episodes establishes a framework for understanding the incision and filling of the paleovalleys. The paleo-valleys are found mostly along narrow bedrock canyon reaches of the river, where divides of bedrock or old deposits separate them from the modern river. The paleo-valleys are interpreted to have stemmed from periods of aggradation that filled and broadened the river valley, burying low uplands in the canyon reaches into which later channel positions were entrenched during subsequent degradation episodes. The aggradation-degradation cycles resulted in the stranding of incised river valleys that range in elevation from near the modern river to 350 m above it. ?? 2008 The Geological Society of America.

  19. Changes in river discharge and hydrograph separation in the upper basins of Yangtze and Yellow Rivers on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ding, Y.

    2017-12-01

    Systematic changes of river discharge and the concentration-discharge relation were explored to elucidate the response of river discharge to climate change as well as the connectivity of hydrologic and hydrochemical processes using hydrological data during 1956-2015 and chemical data during 2013-2015 at Yanshiping (YSP, 4,538 km2), Tuotuohe (TTH, 15,924 km2) and Zhimenda (ZMD, 137,704 km2) gauging sections in the upper basin of Yangtze River (UBYA), and at Huangheyan (HHY, 20,930 km2), Jimai (JM, 45,019 km2), Jungong (JG, 98,414 km2) and Tangnaihai (TNH, 121,972 km2) gauging sections in the upper basin of Yellow River (UBYE) on the Tibetan Plateau (TP). Results showed that annual discharge in UBYA presents a decreasing trend from 1950s to late 1970s and exhibits an increasing trend since 1970s due to increased temperature and precipitation. However, discharge in UBYE increases from 1950s to 1980s and decrease since late 1980s due to increased temperature and decreased precipitation. Snow/ice meltwater may play an important role on changes in river discharge from the most upper catchments, particularly for periods with increasing temperature, where snow cover, glaciers and frozen soils are widely distributed. Concentration/flux-discharge in discharge was dominated by a well-defined power law relation, with R2 values lower on rising than falling limbs. This finding has important implications for efforts to estimate annual concentrations and export of major solutes from similar catchments in cold regions where only river discharge is available. Concentrations of conservative solutes in discharge resulted from mixing of two end-members at the most upper gauging sections (YSP, TTH and HHY), and three end-members at the lower gauging sections (ZMD, JM, JG and TNH), with relatively constant solute concentrations in end-members. Relationship between the fractional contributions of meltwater and/or precipitation and groundwater and river discharge followed the same relation

  20. Water-Resource Trends and Comparisons Between Partial-Development and October 2006 Hydrologic Conditions, Wood River Valley, South-Central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.; Bartolino, James R.; Tranmer, Andrew W.

    2007-01-01

    This report analyzes trends in ground-water and surface-water data, documents 2006 hydrologic conditions, and compares 2006 and historic ground-water data of the Wood River Valley of south-central Idaho. The Wood River Valley extends from Galena Summit southward to the Timmerman Hills. It is comprised of a single unconfined aquifer and an underlying confined aquifer present south of Baseline Road in the southern part of the study area. Streams are well-connected to the shallow unconfined aquifer. Because the entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth since the 1970s has raised concerns about the continued availability of ground and surface water to support existing uses and streamflow. To help address these concerns, this report evaluates ground- and surface-water conditions in the area before and during the population growth that started in the 1970s. Mean annual water levels in three wells (two completed in the unconfined aquifer and one in the confined aquifer) with more than 50 years of semi-annual measurements showed statistically significant declining trends. Mean annual and monthly streamflow trends were analyzed for three gaging stations in the Wood River Valley. The Big Wood River at Hailey gaging station (13139500) showed a statistically significant trend of a 25-percent increase in mean monthly base flow for March over the 90-year period of record, possibly because of earlier snowpack runoff. Both the 7-day and 30-day low-flow analyses for the Big Wood River near Bellevue gaging station (13141000) show a mean decrease of approximately 15 cubic feet per second since the 1940s, and mean monthly discharge showed statistically significant decreasing trends for December, January, and February. The Silver Creek at Sportsman Access near Picabo gaging station (13150430) also showed statistically significant decreasing trends in annual and mean monthly

  1. Soil phosphorus forms and profile distributions in the tidal river network region in the Yellow River Delta estuary.

    PubMed

    Yu, Junbao; Qu, Fanzhu; Wu, Huifeng; Meng, Ling; Du, Siyao; Xie, Baohua

    2014-01-01

    Modified Hedley fraction method was used to study the forms and profile distribution in the tidal river network region subjected to rapid deposition and hydrologic disturbance in the Yellow River Delta (YRD) estuary, eastern China. The results showed that the total P (Pt) ranged from 612.1 to 657.8 mg kg(-1). Dilute HCl extractable inorganic P (Pi) was the predominant form in all profiles, both as absolute values and as a percentage of total extracted Pi. The NaOH extractable organic P (Po) was the predominant form of total extracted Po, while Bicarb-Pi and C.HCl-Po were the lowest fractions of total extracted Pi and Po in all the P forms. The Resin-P concentrations were high in the top soil layer and decreased with depth. The Pearson correlation matrix indicated that Resin-P, Bicarb-Pi, NaOH-Pi, and C.HCl-Pi were strongly positively correlated with salinity, TOC, Ca, Al, and Fe but negatively correlated with pH. The significant correlation of any studied form of organic P (Bicarb-Po, NaOH-Po, and C.HCl-Po) with geochemical properties were not observed in the study. Duncan multiple-range test indicated that the P forms and distribution heterogeneity in the profiles could be attributed to the influences of vegetation cover and hydrologic disturbance.

  2. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    USGS Publications Warehouse

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  3. Modern geomorphology in a post-glacial landscape and implications for river restoration, eastern Yosemite Valley, Yosemite National Park, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.; Roche, J. W.

    2011-12-01

    Yosemite National Park, USA, is one of the most popular national parks in the country with over 3.9 million visitors annually. The majority of tourists visit a relatively small area around the Merced River in scenic eastern Yosemite Valley, which has resulted in degradation to the river and streambanks. The National Park Service is updating the long-term management plan for the Merced River which includes river restoration. A key component determining the success of future river restoration efforts is the transport and supply of sediment. For this study, we investigate the modern geomorphology of the eastern Yosemite Valley region. For the watershed and reach analyses, we draw from a variety of topographic and hydrologic records, including 20-years of data from permanent cross sections, aerial and ground-based LiDAR surveys, and a nearly 100-year hydrologic record. In addition, we utilize hydraulic and sediment transport models to investigate channel velocities, bed shear stress and sediment transport at the reach scale. From the watershed-scale analysis, it is likely that large-scale remnant glacial features exert a primary control on the sediment supply to the study area with relatively small volumes of both suspended and bedload sediment being contributed to the study site. Two of the three major watersheds, Tenaya Creek and the upper Merced River, likely contribute only small amounts of bedload downstream due to low-gradient depositional reaches. Though little-known, the third major watershed, Illilouette Creek, is the only watershed capable of contributing larger amounts of bedload material, though the bedload material is likely contributed only during high flow events. High flows in the Yosemite Valley region have two different distributions: large early winter storm events above the 20-year return interval, and moderate snowmelt flows at and below the 20-year return interval. Sediment transport analyses indicate that bedload transport is dominated by

  4. Feeding habitats of the Gulf sturgeon, Acipenser oxyrinchus desotoi, in the Suwannee and Yellow rivers, Florida, as identified by multiple stable isotope analyses

    USGS Publications Warehouse

    Sulak, Kenneth J.; Berg, James J.; Randall, Michael T.

    2012-01-01

    Stable 13C, 15N, and 34S isotopes were analyzed to define the feeding habitats of Acipenser oxyrinchus desotoi in the Suwannee and Yellow River populations. For the majority (93.9%) of Suwannee subadults and adults, 13C and 34S signatures indicate use of nearshore marine waters as primary winter feeding habitat, probably due to the limiting size of the Suwannee Sound estuary. In the Yellow River population, 13C isotope signatures indicate that adults remain primarily within Pensacola Bay estuary to feed in winter, rather than emigrating to the open Gulf of Mexico. A minor Suwannee River subset (6% of samples), comprised of juveniles and subadults, displayed 13C signatures indicating continued feeding in freshwater during the spring immigration and fall emigration periods. This cannot be interpreted as incidental feeding since it resulted in a 20.5% turnover in tissue δ13C signatures over a 1–3 month period. Cessation of feeding in the general population does not coincide with high river water temperatures. The hypothesis of reduced feeding in freshwater due to localized prey depletion as a result of spatial activity restriction is not supported by the present study. Instead, Suwannee River A. o. desotoi appear to follow two trophic alternatives; 1) complete cessation of feeding immediately upon immigration in spring, continuing through emigration 8–9 months later (the predominant alternative); 2) continued intensive feeding for 1–3 months following immigration, switching to freshwater prey, selected primarily from high trophic levels (i.e., large prey). Stable –34S data verifies that recently immigrated, fully-anadromous A. o. desotoi adults had fed in nearshore marine waters, not offshore waters.

  5. Prevalence of Anguillicoloides crassus and growth variation in migrant yellow-phase American eels of the upper Potomac River drainage.

    PubMed

    Zimmerman, Jennifer L; Welsh, Stuart A

    2012-11-08

    Prevalence of the non-native swim bladder nematode Anguillicoloides crassus has recently increased in American eels from estuaries of the North American Atlantic coast, but little is known about parasite prevalence or conditions of previous infection in upstream migrant eels within upper watersheds. This study is the first to confirm presence of A. crassus in the upper Potomac River watershed. We estimated A. crassus prevalence during 3 time periods: September to October 2006 (5/143 eels, 3.5%), August to October 2007 (0/49 eels), and June 2008 (0/50 eels). All eels were sampled from the Millville Dam eel ladder on the lower Shenandoah River, a Potomac River tributary located approximately 285 km upstream of Chesapeake Bay, USA. Of the 5 infected eels, parasite intensity was 1 for each eel, and mean intensity was also 1.0. A swim bladder degenerative index (SDI) was calculated for the 50 eels from the final sampling period, and 38% of those eels (19 of 50) showed signs of previous infection by A. crassus. We also aged 42 of the 50 eels (mean ± SE = 6.7 ± 0.29 yr, range 4 to 11 yr) from the final sampling period. Based on the range of possible SDI scores (0 to 6), severity of previously infected swim bladders was moderate (SDI = 1 or 2). Previously infected eels, however, had a lower length-at-age than that of uninfected eels. Female yellow-phase eels in upper watersheds develop into large highly fecund silver-phase adults; hence, a parasite-induced effect on growth of yellow-phase eels could ultimately reduce reproductive potential.

  6. Creating Habitat for the Yellow-Billed Cuckoo (Coccyzus americana)

    Treesearch

    Bertin W. Anderson; Stephen A. Laymon

    1989-01-01

    Yellow-billed Cuckoo numbers have decreased alarmingly in recent decades. This is associated with demise of their riparian habitats. Study of habitat along the lower Colorado River and along the South Fork Kern River led to the conclusion that they require dense habitats dominated by cottonwood (Populus fremontii) and willow (Salix...

  7. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  8. Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Pasternack, G. B.

    2017-04-01

    Floodplain inundation regime defines hydrological connectivity between river channel and floodplain and thus strongly controls structure and function of these highly diverse and productive ecosystems. We combined an extensive LiDAR data set on topography and vegetation, long-term hydrological records, as well as the outputs of hydrological and two-dimensional hydraulic models to examine how floodplain inundation regimes in a dynamic, regulated, gravel-cobble river in a Mediterranean-climate region are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and cumulative duration of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. Although the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter controls sensitivity of floodplain hydroperiod to flow regime changes and should not be ignored. These quantitative estimates of the relative importance of factors that control floodplain processes in Mediterranean, semiarid rivers contributes to better understanding of hydrology and geomorphology of this important class of channels. We also discuss implications of our findings for processes that shape floodplain habitat for riparian vegetation and salmonid fish, especially in the context of ecological restoration.

  9. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    USGS Publications Warehouse

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  10. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  11. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry.

    PubMed

    Li, Jing; Li, Fadong; Liu, Qiang

    2017-07-01

    Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ 18 O and δ 2 H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ 18 O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mercury Loads in the South River and Simulation of Mercury Total Maximum Daily Loads (TMDLs) for the South River, South Fork Shenandoah River, and Shenandoah River: Shenandoah Valley, Virginia

    USGS Publications Warehouse

    Eggleston, Jack

    2009-01-01

    Due to elevated levels of methylmercury in fish, three streams in the Shenandoah Valley of Virginia have been placed on the State's 303d list of contaminated waters. These streams, the South River, the South Fork Shenandoah River, and parts of the Shenandoah River, are downstream from the city of Waynesboro, where mercury waste was discharged from 1929-1950 at an industrial site. To evaluate mercury contamination in fish, this total maximum daily load (TMDL) study was performed in a cooperative effort between the U.S. Geological Survey, the Virginia Department of Environmental Quality, and the U.S. Environmental Protection Agency. The investigation focused on the South River watershed, a headwater of the South Fork Shenandoah River, and extrapolated findings to the other affected downstream rivers. A numerical model of the watershed, based on Hydrological Simulation Program-FORTRAN (HSPF) software, was developed to simulate flows of water, sediment, and total mercury. Results from the investigation and numerical model indicate that contaminated flood-plain soils along the riverbank are the largest source of mercury to the river. Mercury associated with sediment accounts for 96 percent of the annual downstream mercury load (181 of 189 kilograms per year) at the mouth of the South River. Atmospherically deposited mercury contributes a smaller load (less than 1 percent) as do point sources, including current discharge from the historic industrial source area. In order to determine how reductions of mercury loading to the stream could reduce methylmercury concentrations in fish tissue below the U.S. Environmental Protection Agency criterion of 0.3 milligrams per kilogram, multiple scenarios were simulated. Bioaccumulation of mercury was expressed with a site-specific exponential relation between aqueous total mercury and methylmercury in smallmouth bass, the indicator fish species. Simulations indicate that if mercury loading were to decrease by 98.9 percent from 189

  13. 27 CFR 9.165 - Applegate Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... within Jackson and Josephine Counties, and entirely within the existing Rogue Valley viticultural area. The boundaries are as follows: (1) Beginning at the confluence of the Applegate River with the Rogue... until it joins the northern boundary of the Rogue River National Forest; (7) Then easterly along the...

  14. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    PubMed Central

    Gong, Yao; Yu, Zhigang; Yao, Qingzhen; Chen, Hongtao; Mi, Tiezhu; Tan, Jiaqiang

    2015-01-01

    The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR) watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1) with a lower concentration of dissolved silicate (average 131 μmol·L−1) and relatively low dissolved phosphate (average 0.35 μmol·L−1). Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth. PMID:26287226

  15. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    NASA Astrophysics Data System (ADS)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated

  16. Use of Remotely Piloted Aircraft System (RPAS) in the analysis of historical landslide occurred in 1885 in the Rječina River Valley, Croatia

    NASA Astrophysics Data System (ADS)

    Dugonjić Jovančević, Sanja; Peranić, Josip; Ružić, Igor; Arbanas, Željko; Kalajžić, Duje; Benac, Čedomir

    2016-04-01

    Numerous instability phenomena have been recorded in the Rječina River Valley, near the City of Rijeka, in the past 250 years. Large landslides triggered by rainfall and floods, were registered on both sides of the Valley. Landslide inventory in the Valley was established based on recorded historical events and LiDAR imagery. The Rječina River is a typical karstic river 18.7km long, originating from the Gorski Kotar Mountains. The central part of the Valley, belongs to the dominant morphostructural unit that strikes in the northwest-southeast direction along the Rječina River. Karstified limestone rock mass is visible on the top of the slopes, while the flysch rock mass is present on the lower slopes and at the bottom of the Valley. Different types of movements can be distinguished in the area, such as the sliding of slope deposits over the flysch bedrock, rockfalls from limestone cliffs, sliding of huge rocky blocks, and active landslide on the north-eastern slope. The paper presents investigation of the dormant landslide located on the south-western slope of the Valley, which was recorded in 1870 in numerous historical descriptions. Due to intense and long-term rainfall, the landslide was reactivated in 1885, destroying and damaging houses in the eastern part of the Grohovo Village. To predict possible reactivation of the dormant landslide on the south-western side of the Valley, 2D stability back analyses were performed on the basis of landslide features, in order to approximate the position of sliding surface and landslide dimensions. The landslide topography is very steep, and the slope is covered by unstable debris material, so therefore hard to perform any terrestrial geodetic survey. Consumer-grade DJI Phantom 2 Remotely Piloted Aircraft System (RPAS) was used to provide the data about the present slope topography. The landslide 3D point cloud was derived from approximately 200 photographs taken with RPAS, using structure-from-motion (SfM) photogrammetry

  17. Distribution and dissipation pathways of nonylphenol polyethoxylates in the Yellow River: Site investigation and lab-scale studies.

    PubMed

    Wang, Lei; Wu, Yinghong; Sun, Hongwen; Xu, Jian; Dai, Shugui

    2006-09-01

    Spatial distribution of nonylphenol polyethoxylates (NPEOs) and nonylphenol (NP) was investigated in a field study in Lanzhou Reach of the Yellow River. NPEOs and their metabolites were found in the river, with the maximum dissolved concentrations of 6.38 nmol/L for NPEOs, 0.19 nmol/L for nonylphenol ethoxy acetic acids (NPECs) and 0.79 nmol/L for NP, respectively. The maximum concentrations in the sediment and suspended particle samples were 1.50 and 5.09 nmol/g for NPEOs and NP, respectively. The effects of particles, light and microorganism on the dissipation of NPEOs in the river water were investigated based on lab-scale experiments. When natural particles were removed, 72% and 22% degradation of NPEOs were achieved at 120 h in non-sterile and sterile conditions with light, respectively. Different concentrations of NPECs were also observed in these experiments. When suspended particle matters (SPMs) were present, about 38-50% of NPEOs were sorbed to the particulate phase in only 1 h. As a result, the degradation of NPEOs and production of NPECs were inhibited. However, the combined sorption and degradation in the presence of SPMs resulted in lower dissolved NPEO concentrations than those in the absence of SPMs. Biodegradation was the most important pathway for NPEOs degradation in the river water, while NPECs seemed to be produced through both biological and abiological pathways.

  18. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    NASA Astrophysics Data System (ADS)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  19. Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    2001-01-01

    The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 < Qp < 106 m3 s-1 for plausible breach erosion rates of 10-100 m h-1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103 < Qp < 104 m3 s-1 for plausible breach erosion rates. Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.

  20. Groundwater Quality, Age, and Probability of Contamination, Eagle River Watershed Valley-Fill Aquifer, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    The Eagle River watershed is located near the destination resort town of Vail, Colorado. The area has a fastgrowing permanent population, and the resort industry is rapidly expanding. A large percentage of the land undergoing development to support that growth overlies the Eagle River watershed valley-fill aquifer (ERWVFA), which likely has a high predisposition to groundwater contamination. As development continues, local organizations need tools to evaluate potential land-development effects on ground- and surface-water resources so that informed land-use and water management decisions can be made. To help develop these tools, the U.S. Geological Survey (USGS), in cooperation with Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority, conducted a study in 2006-2007 of the groundwater quality, age, and probability of contamination in the ERWVFA, north-central Colorado. Ground- and surface-water quality samples were analyzed for major ions, nutrients, stable isotopes of hydrogen and oxygen in water, tritium, dissolved gases, chlorofluorocarbons (CFCs), and volatile organic compounds (VOCs) determined with very low-level laboratory methods. The major-ion data indicate that groundwaters in the ERWVFA can be classified into two major groups: groundwater that was recharged by infiltration of surface water, and groundwater that had less immediate recharge from surface water and had elevated sulfate concentrations. Sulfate concentrations exceeded the USEPA National Secondary Drinking Water Regulations (250 milligrams per liter) in many wells near Eagle, Gypsum, and Dotsero. The predominant source of sulfate to groundwater in the Eagle River watershed is the Eagle Valley Evaporite, which is a gypsum deposit of Pennsylvanian age located predominantly in the western one-half of Eagle County.

  1. Towards Optimal Operation of the Reservoir System in Upper Yellow River: Incorporating Long- and Short-term Operations and Using Rolling Updated Hydrologic Forecast Information

    NASA Astrophysics Data System (ADS)

    Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.

    2016-12-01

    The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model

  2. The role of the Wetland Reserve Program in conservation efforts in the Mississippi River Alluvial Valley

    USGS Publications Warehouse

    King, Sammy L.; Twedt, Daniel J.; Wilson, R. Randy

    2006-01-01

    The Mississippi River Alluvial Valley includes the floodplain of the Mississippi River from Cairo, Illinois, USA, to the Gulf of Mexico. Originally this region supported about 10 million ha of bottomland hardwood forests, but only about 2.8 million ha remain today. Furthermore, most of the remaining bottomland forest is highly fragmented with altered hydrologic processes. During the 1990s landscape-scale conservation planning efforts were initiated for migratory birds and the threatened Louisiana black bear (Ursus americanus luteolus). These plans call for large-scale reforestation and restoration efforts in the region, particularly on private lands. In 1990 the Food, Agriculture, Conservation and Trade Act authorized the Wetlands Reserve Program (WRP). The WRP is a voluntary program administered by the United States Department of Agriculture that provides eligible landowners with financial incentives to restore wetlands and retire marginal farmlands from agricultural production. As of 30 September 2005, over 275,700 ha have been enrolled in the program in the Mississippi River Alluvial Valley, with the greatest concentration in Louisiana, Arkansas, and Mississippi, USA. Hydrologic restoration is common on most sites, with open-water wetlands, such as moist-soil units and sloughs, constituting up to 30% of a given tract. Over 33,200 ha of open-water wetlands have been created, potentially providing over 115,000,000 duck-use days. Twenty-three of 87 forest-bird conservation areas have met or exceed core habitat goals for migratory songbirds and another 24 have met minimum area requirements. The WRP played an integral role in the fulfillment of these goals. Although some landscape goals have been attained, the young age of the program and forest stands, and the lack of monitoring, has limited evaluations of the program's impact on wildlife populations.

  3. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  4. [Methane fluxes and controlling factors in the intertidal zone of the Yellow River estuary in autumn].

    PubMed

    Jiang, Huan-Huan; Sun, Zhi-Gao; Wang, Ling-Ling; Mou, Xiao-Jie; Sun, Wan-Long; Song, Hong-Li; Sun, Wen-Guang

    2012-02-01

    The characteristics of methane (CH4) fluxes from tidal wetlands of the Yellow River estuary were observed in situ with static-chamber and GC methods in September and October 2009, and the key factors affecting CH4 fluxes were discussed. From the aspect of space, the CH4 flux ranges in high tidal wetland, middle tidal wetland, low tidal wetland, bare flat are - 0.206-1.264, -0.197-0.431, -0.125-0.659 and -0.742-1.767 mg x (m2 x h)(-1), the day average fluxes are 0.089, 0.038, 0.197 and 0.169 mg x (m2 x h)(-1), respectively, indicating that the tidal wetlands are the sources of CH4 and the source function of CH4 differed among the four study sites, in the order of low tidal wetland > bare flat > high tidal wetland > middle tidal wetland. From the aspect of time, the ranges of CH4 fluxes from the tidal wetland ecosystems are -0.444-1.767 and - 0.742- 1.264 mg x (m2 x h)(-1), and the day average fluxes are 0.218 and 0.028 mg x (m2 x h)(-1) in September and October, respectively. The CH4 fluxes in each tidal wetland in September are higher than those in October except that the high tidal wetland acts as weak sink in September. Further studies indicate that the changes of environmental factors in the Yellow River estuary are complicated, and the CH4 fluxes are affected by multiple factors. The differences of CH4 fluxes characteristics among different tidal wetlands in autumn are probably related to temperature (especially atmospheric temperature) and vegetation growth status, while the effects of water or salinity condition and tide status on the CH4 flux characteristics might not be ignored.

  5. Tectonic controls on the morphodynamics of the Brahmaputra River system in the upper Assam valley, India

    NASA Astrophysics Data System (ADS)

    Lahiri, Siddhartha K.; Sinha, Rajiv

    2012-10-01

    The Brahmaputra is one of the largest tropical rivers of the world and is located in an area of high structural instability as evidenced from the presence of a large number of earthquakes in the Himalayan catchment through which it flows. Syntectonic evidence of changes in the morphodynamics is difficult to identify for the large rivers. Nevertheless, we note that the Brahmaputra River has become astonishingly large in planform in a historical timescale. Reconstruction of planform changes over a period of 90 years in the upper reaches of the Assam valley shows that the 240-km-long channel belt is widening all along its course in the region. From the average width of 9.74 km in 1915, the channel belt has widened to the average width of 14.03 km in 2005 (44% widening), and in certain reaches the average widening is as high as 250%. However, the bank line shift is not symmetric along both banks. Further, the planform characteristics of the Brahmaputra River reveal significant spatial and temporal variability from upstream to downstream reaches, and we attribute this variability to tectonogeomorphic zonation of the river based on subsurface configuration and channel slope. Further, the tributaries joining the northern and southern banks of the Brahmaputra differ remarkably in terms of river dynamics, and this is attributed to the differences in tectonic regimes of the Himalaya in the north and the Naga Patkai hills in the south.

  6. Evaluating the applicability of four recent satellite–gauge combined precipitation estimates for extreme precipitation and streamflow predictions over the upper Yellow river basin in China

    USDA-ARS?s Scientific Manuscript database

    This study aimed to statistically and hydrologically assess the performance of four latest and widely used satellite–gauge combined precipitation estimates (SGPEs), namely CRT, BLD, 3B42CDR, and 3B42 for the extreme precipitation and stream'ow scenarios over the upper Yellow river basin (UYRB) in ch...

  7. Morphological Adjustment in the Wandering Reach of the Lower Yellow River in Response to the Changes in Water and Sediment Supply over the Recent Decades

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Huang, H. Q.; Yu, G.

    2017-12-01

    The flow-sediment regime entering into the LYR has changed significantly since the 1970s due to the increasing intensity of human activities. To understand how the wandering reach of the LYR adjusts its channel morphology in response to the change in the flow-sediment regime, this study extracts a series of channel cross-profiles from remote sensing images taken since 1979. It is shown clearly that at one-year timescale, the main flow has shifted significantly, while the sinuosity of the pathways of main flow increased initially, then decreased significantly from 2006 and experienced little variation since 2010. Meanwhile, the width of the wandering belt has been increasing at a very slow stepwise fashion since 2002, and the area of central bars varied with fluctuations before 2009 and yet took a rapidly increasing trend since then. In contrast, the braiding intensity of the wandering reach has shown little change, while the river channel bed and the width/depth ratio of the main channel have taken significant adjustments, with the channel bed being scoured down to a considerable degree and the width/depth ratio varying in a gradually declining trend. These adjustments in the morphology of the Lower Yellow River implicate that the perched situation of the Lower Yellow River can be reversed.

  8. Pinedale glacial history of the upper Arkansas River valley: New moraine chronologies, modeling results, and geologic mapping

    USGS Publications Warehouse

    Schweinsberg, Avriel D.; Briner, Jason P.; Shroba, Ralph R.; Licciardi, Joseph M.; Leonard, Eric M.; Brugger, Keith A.; Russell, Charles M.

    2016-01-01

    This field-trip guide outlines the glacial history of the upper Arkansas River valley, Colorado, and builds on a previous GSA field trip to the area in 2010. The following will be presented: (1) new cosmogenic 10Be exposure ages of moraine boulders from the Pinedale and Bull Lake glaciations (Marine Isotope Stages 2 and 6, respectively) located adjacent to the Twin Lakes Reservoir, (2) numerical modeling of glaciers during the Pinedale glaciation in major tributaries draining into the upper Arkansas River, (3) discharge estimates for glacial-lake outburst floods in the upper Arkansas River valley, and (4) 10Be ages on flood boulders deposited downvalley from the moraine sequences. This research was stimulated by a new geologic map of the Granite 7.5′ quadrangle, in which the mapping of surficial deposits was revised based in part on the interpretation of newly acquired LiDAR data and field investigations. The new 10Be ages of the Pinedale terminal moraine at Twin Lakes average 21.8 ± 0.7 ka (n = 14), which adds to nearby Pinedale terminal moraine ages of 23.6 ± 1.4 ka (n = 5), 20.5 ± 0.2 ka (n = 3), and 16.6 ± 1.0 ka (n = 7), and downvalley outburst flood terraces that date to 20.9 ± 0.9 ka (n = 4) and 19.0 ± 0.6 ka (n = 4). This growing chronology leads to improved understanding of the controls and timing of glaciation in the western United States, the modeling of glacial-lake outburst flooding, and the reconstruction of paleotemperature through glacier modeling.

  9. Development of communication networks and water quality early warning detection systems at drinking water utilities in the Ohio River Valley Basin.

    PubMed

    Schulte, J G; Vicory, A H

    2005-01-01

    Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.

  10. Spatial relations between floodplain environments and land use - land cover of a large lowland tropical river valley: Pánuco basin, México.

    PubMed

    Hudson, Paul F; Colditz, René R; Aguilar-Robledo, Miguel

    2006-09-01

    Large lowland river valleys include a variety of floodplain environments that represent opportunities and constraints for human activities. This study integrates extensive field observations and geomorphic data with analysis of satellite remote sensing data to examine spatial relations between land use/land cover (LULC) and floodplain environments in the lower Pánuco basin of eastern Mexico. The floodplain of the lower Pánuco basin was delineated by combining a digital elevation model with a satellite image of a large flood event. The LULC was classified by combining a hybrid classification strategy with image stratification, applied to 15-m-resolution ASTER data. A geomorphic classification of floodplain environments was performed using a dry-stage image (ASTER data) and a 1993 Landsat image acquired during a large flood event. Accuracy assessment was based on aerial photographs (1:38,000), global positioning satellite ground-truthing, and a Landsat 7ETM(+) image from 2000, which resulted in an overall accuracy of 82.9% and a KHAT of 79.8% for the LULC classification. The geomorphic classification yielded 83.5% overall accuracy, whereas the KHAT was 81.5%. LULC analysis was performed for the entire floodplain and individually within four valley segments. The analysis indicates that the study area is primarily utilized for grazing and farming. Agriculture is primarily associated with coarse-grained (sandy/silty) natural levee and point bar units close to the river channel, whereas cattle grazing occurs in distal and lower-lying reaches dominated by cohesive fine-grained (clayey) deposits, such as backswamps. In the Pánuco valley, wetlands and lakes occur within backswamp environments, whereas in the Moctezuma segments, wetlands and lakes are associated with relict channels. This study reveals considerable variation in LULC related to spatial differences in floodplain environments and illustrates the importance of considering older anthropogenic influences on the

  11. Lithologic controls on valley width and strath terrace formation

    NASA Astrophysics Data System (ADS)

    Schanz, Sarah A.; Montgomery, David R.

    2016-04-01

    Valley width and the degree of bedrock river terrace development vary with lithology in the Willapa and Nehalem river basins, Pacific Northwest, USA. Here, we present field-based evidence for the mechanisms by which lithology controls floodplain width and bedrock terrace formation in erosion-resistant and easily friable lithologies. We mapped valley surfaces in both basins, dated straths using radiocarbon, compared valley width versus drainage area for basalt and sedimentary bedrock valleys, and constructed slope-area plots. In the friable sedimentary bedrock, valleys are 2 to 3 times wider, host flights of strath terraces, and have concavity values near 1; whereas the erosion-resistant basalt bedrock forms narrow valleys with poorly developed, localized, or no bedrock terraces and a channel steepness index half that of the friable bedrock and an average channel concavity of about 0.5. The oldest dated strath terrace on the Willapa River, T2, was active for nearly 10,000 years, from 11,265 to 2862 calibrated years before present (cal YBP), whereas the youngest terrace, T1, is Anthropocene in age and recently abandoned. Incision rates derived from terrace ages average 0.32 mm y- 1 for T2 and 11.47 mm y- 1 for T1. Our results indicate bedrock weathering properties influence valley width through the creation of a dense fracture network in the friable bedrock that results in high rates of lateral erosion of exposed bedrock banks. Conversely, the erosion-resistant bedrock has concavity values more typical of detachment-limited streams, exhibits a sparse fracture network, and displays evidence for infrequent episodic block erosion and plucking. Lithology thereby plays a direct role on the rates of lateral erosion, influencing valley width and the potential for strath terrace planation and preservation.

  12. [Epidemiologic studies on the health status of the population living in the Sacco River Valley].

    PubMed

    Fantini, Fiorella; Porta, Daniela; Fano, Valeria; De Felip, Elena; Senofonte, Oreste; Abballe, Annalisa; D'Ilio, Sonia; Ingelido, Anna Maria; Mataloni, Francesca; Narduzzi, Silvia; Blasetti, Francesco; Forastiere, Francesco

    2012-01-01

    OBIETTIVO: to analyze the health status of the population living in an area close to the Colleferro industrial plant. the area of the Sacco River Valley, Central Italy nearby Rome, has been heavily polluted over the years by industrial wastes deriving from the chemical industrial plant in Colleferro. In 2006, it was discovered that the herds of livestock were contaminated by beta-hexachlorocycloexane (β-HCH, an industrial waste belonging, as well as lindane, to the group of hexachlorocycloexane isomers). the analyses of mortality and morbidity were carried out for the 1998-2007 period (calculation of standardized mortality ratios, SMR), and for the period 2003-2007 (calculation of standardized hospitalization ratios, SHR), respectively. The general population in the Lazio Region has been considered as reference. In addition, a biomonitoring study was conducted on a sample of the population living in 4 areas of the Sacco River Valley with different levels of exposure and the following persistent organic pollutants were measured in the blood (α, β and γ-HCH, HCB p,p'-DDT and p,p'- DDE, 6 NDL-PCB congeners and 12 DL-PCBs, PCDDs and PCDFs), and heavy metals (Cd, Hg, Pb). cancer mortality in men was increased in the area (SMR=1.20), especially for specific cancer sites (stomach, larynx, lungs, pleura, myeloma); in women an excess of mortality from diabetes was detected (SMR=1.44). The analysis of morbidity indicated an excess of hospitalization for various cancers (larynx, myeloma) in men, for respiratory illness and asthma in both genders and for thyroid disease in women. The biomonitoring study found high mean concentration of β-HCH (mean: 99.05 ng/g fat, SD=121.3), with higher levels in the population living along the river (mean=150 ng/g fat; SD=153.5), likely occurred through water and local food. the area of Colleferro has been polluted by multiple sources and the human population has been exposed to industrial chemicals, toxic substances in the workplace

  13. Roles of Sea Level and Climate Change in the Development of Holocene Deltaic Sequences in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, J.; Milliman, J. D.

    2002-12-01

    Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.

  14. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    NASA Astrophysics Data System (ADS)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  15. Water quality in the lower Puyallup River valley and adjacent uplands, Pierce County, Washington

    USGS Publications Warehouse

    Ebbert, J.C.; Bortleson, Gilbert C.; Fuste, L.A.; Prych, E.A.

    1987-01-01

    The quality of most ground and surface water within and adjacent to the lower Puyallup River valley is suitable for most typical uses; however, some degradation of shallow groundwater quality has occurred. High concentrations of iron and manganese were found in groundwater, sampled at depths of < 40 ft, from wells tapping alluvial aquifers and in a few wells tapping deeper aquifers. Volatile and acid- and base/neutral-extractable organic compounds were not detected in either shallow or deep groundwater samples. The quality of shallow groundwater was generally poorer than that of deep water. Deep ground water (wells set below 100 ft) appears suitable as a supplementary water supply for fish-hatchery needs. Some degradation of water quality, was observed downstream from river mile 1.7 where a municipal wastewater-treatment plant discharges into the river. In the Puyallup River, the highest concentrations of most trace elements were found in bed sediments collected downstream from river mile 1.7. Median concentrations of arsenic, lead, and zinc were higher in bed sediments from small streams compared with those from the Puyallup River, possibly because the small stream drainages, which are almost entirely within developed areas, receive more urban runoff as a percentage of total flow. Total-recoverable trace-element concentrations exceeded water-quality criteria for acute toxicity in the Puyallup River and in some of the small streams. In most cases, high concentrations of total-recoverable trace elements occurred when suspended-sediment concentrations were high. Temperatures in all streams except Wapato Creek and Fife Dutch were within limits (18 C) for Washington State class A water. Minimum dissolved oxygen concentrations were relatively low at 5.6 and 2.0 mg/L, respectively, for Wapato Creek and Fife Dutch. The poorest surface-water quality, which can be characterized as generally unsuitable for fish, was in Fife Dutch, a manmade channel and therefore

  16. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    NASA Astrophysics Data System (ADS)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  17. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    USGS Publications Warehouse

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  18. Coastal environmental monitoring using remotely sensed data and GIS techniques in the Modern Yellow River delta, China.

    PubMed

    Zhang, Yang

    2011-08-01

    On the basis of remote sensing and GIS techniques, the Landsat data obtained in 1987, 1996, and 2008 were used to examine coastline changes in the Modern Yellow River (MYR) delta in China. The coastal land lost and gained illustrations were derived, the rates of coastal change were estimated, and the coastal parts that experienced severe changes were identified. The results revealed that the accretion rates in the MYR delta coast has been decelerating while the accretion effect remained. Taken the artificial coast from the south of ShenXianGou (SXG) to Gudong Oil Field (GOF) as the landmark, the coast in the south of the landmark showed an accretion pattern, while the coast in the west of the landmark showed an erosion pattern. Wherein, the coast from Chao River Estuary (CRE) to Zhuang 106 (Z106) showed an erosion pattern with the transition from erosion to accretion and the accelerated rates from east to west. The coast from Z106 to the south border of GOF also showed erosion pattern but significant differences existed among the internal coastal parts. The coast from the south border of GOF to XiaoDao River Estuary (XDRE) showed a pattern from rapid accretion to dynamic balance of accretion/erosion, and the trend towards erosion. The coast from XDRE to XiaoQing River Estuary (XQRE) showed slow accretion pattern. Human activities have heavily influenced the natural evolution of the MYR delta coast.

  19. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the lower-Colorado River valley, Arizona, California, and Nevada

    USGS Publications Warehouse

    Radtke, D.B.; Kepner, W.G.; Effertz, R.J.

    1988-01-01

    The Lower Colorado River Valley Irrigation Drainage Project area included the Colorado River and its environs from Davis Dam to just above Imperial Dam. Water, bottom sediment, and biota were sampled at selected locations within the study area and analyzed for selected inorganic and synthetic organic constituents that are likely to be present at toxic concentrations. With the exceptions of selenium and DDE, this study found sampling locations to be relatively free of large concentrations of toxic constituents that could be a threat to humans, fish, and wildlife. Selenium was the only inorganic constituent to exceed any existing standard, criterion, or guideline for protection of fish and wildlife resources. Concentrations of DDE in double-crested cormorants, however, exceeded the criterion of 1.0 microgram per gram established by the National Academy of Sciences and the National Academy of Engineering for DDT and its metabolites for protection of wildlife. Dissolved-selenium concentrations in water from the lower Colorado River appear to be derived from sources above Davis Dam. At this time, therefore , agricultural practices in the lower Colorado River valley do not appear to exacerbate selenium concentrations. This fact, however, does not mean that the aquatic organisms and their predators are not in jeopardy. Continued selenium loading to the lower Colorado environment could severely affect important components of the ecosystem. (Author 's abstract)

  20. Space Radar Image of Owens Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Owens Valley, near the town of Bishop, California that was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southeast along the eastern edge of Owens Valley. The White Mountains are in the center of the image, and the Inyo Mountains loom in the background. The high peaks of the White Mountains rise more than 3,000 meters (10,000 feet) above the valley floor. The runways of the Bishop airport are visible at the right edge of the image. The meandering course of the Owens River and its tributaries appear light blue on the valley floor. Blue areas in the image are smooth, yellow areas are rock outcrops, and brown areas near the mountains are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar data were taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is

  1. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  2. Hydrology of the Little Androscoggin River Valley aquifer, Oxford County, Maine

    USGS Publications Warehouse

    Morrissey, D.J.

    1983-01-01

    The Little Androscoggin River valley aquifer, a 15-square-mile sand and gravel valley-fill aquifer in southwestern Maine, is the source of water for the towns of Norway, Oxford, and South Paris. Estimated inflows to the aquifer during the 1981 water year were 16.4 cubic feet per second from precipitation directly on the aquifer, 11.2 cubic feet per second from till covered uplands adjacent to the aquifer, and 1.4 cubic feet per second from surface-water leakage. Outflows from the aquifer were 26.7 cubic feet per second to surface water and 2.3 cubic feet per second to wells. A finite-difference ground-water flow model was used to simulate conditions observed in the aquifer during 1981. Model conditions observed in the aquifer during 1981. Model simulations indicate that a 50 percent reduction of average 1981 recharge to the aquifer would cause water level declines of up to 20 feet in some areas. Model simulations of increased pumping at a high yield well in the northern part of the aquifer indicate that resulting changes in the water table will not be sufficient to intercept groundwater contaminated by a sludge disposal site. Water in the aquifer is low in dissolved solids (average for 38 samples was 67 mg/L), slightly acidic and soft. Ground-water contamination has occurred near a sludge-disposal site and in the vicinity of a sanitary landfill. Dissolved solids in ground water near the sludge disposal site were as much as ten times greater than average background values for the aquifer. (USGS)

  3. Channel Evolution Following Avulsion: an Example from the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Zheng, S.

    2017-12-01

    Long-term field observation of morphological adjustments of rivers following avulsions is lacked when studying the evolution of avulsive channel on deltas. Avulsion at the Yellow River Delta (YRD) is frequent with average lifespan of channels of only about a decade. The Qing-shui-gou channel, the recent lobe on the YRD, provides a rare opportunity for investigating channel evolution following artificial avulsion. The reasons for its longer lifespan also needs investigation of the channel evolution. In this study, we comprehensively analyzed the geomorphic adjustment of the channel based on filed survey data during 1976-2014. The evolution of the channel was impacted by anthropogenic activities, including artificial avulsion at the downstream channel reaches in 1996, alteration of runoff and sediment load through Water and Sediment Regulation Scheme (WSRS), construction of levees and dikes. Analysis on channel geometry showed that avulsions in 1976 and in 1996 both caused short-term (1 2 years) erosion at the upstream channel reaches. Following the avulsion in 1976, massive aggradation occurred at the channel reaches at the downstream of the avulsion point. A single-thread channel gradually formed, widened and enlarged as channel bed under-cut on the deposition material. As delta extended seaward and the longitudinal slope decreased with time, aggradation occurred and an alluvial ridge formed. The ratio of lateral slope to the longitudinal slope (i.e. gradient advantage) and the relative super-elevation of the channel were calculated to estimate the possibility of avulsion at the channel in the late 1990. Results showed that the slope ratio was greater than 20 locally and super-elevation near its critical value for avulsion. The fact, that natural avulsion did not occurred despite of high values of gradient advantage and super elevation, may indicate that they are not sufficient conditions for avulsion at highly human-controlled rivers, where channel boundaries are

  4. Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history

    USGS Publications Warehouse

    Muhs, Daniel; Bettis, E. Arthur; Skipp, Gary L.

    2018-01-01

    The midcontinent of North America contains some of the thickest and most extensive last-glacial loess deposits in the world, known as Peoria Loess. Peoria Loess of the upper Mississippi River valley region is thought to have had temporally varying glaciogenic sources resulting from inputs of sediment to the Mississippi River from different lobes of the Laurentide Ice Sheet. Here, we explore a new method of determining loess provenance using K/Rb and K/Ba values (in K-feldspars and micas) in loess from a number of different regions in North America. Results indicate that K/Rb and K/Ba values can distinguish loess originating from diverse geologic terrains in North America. Further, different loess bodies that are known to have had the same source sediments (using other criteria) have similar K/Rb and K/Ba values. We also studied three thick loess sections in the upper Mississippi River valley region. At each site, the primary composition of the loess changed over the course of the last glacial period, and K/Rb and K/Ba values parallel changes in carbonate mineral content and clay mineralogy. We thus confirm conclusions of earlier investigators that loess composition changed as a result of the shifting dominance of different lobes of the Laurentide Ice Sheet and the changing course of the Mississippi River. We conclude that K/Rb and K/Ba values are effective, robust, and rapid indicators of loess provenance that can be applied to many regions of the world.

  5. Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Bettis, E. Arthur; Skipp, Gary L.

    2018-05-01

    The midcontinent of North America contains some of the thickest and most extensive last-glacial loess deposits in the world, known as Peoria Loess. Peoria Loess of the upper Mississippi River valley region is thought to have had temporally varying glaciogenic sources resulting from inputs of sediment to the Mississippi River from different lobes of the Laurentide Ice Sheet. Here, we explore a new method of determining loess provenance using K/Rb and K/Ba values (in K-feldspars and micas) in loess from a number of different regions in North America. Results indicate that K/Rb and K/Ba values can distinguish loess originating from diverse geologic terrains in North America. Further, different loess bodies that are known to have had the same source sediments (using other criteria) have similar K/Rb and K/Ba values. We also studied three thick loess sections in the upper Mississippi River valley region. At each site, the primary composition of the loess changed over the course of the last glacial period, and K/Rb and K/Ba values parallel changes in carbonate mineral content and clay mineralogy. We thus confirm conclusions of earlier investigators that loess composition changed as a result of the shifting dominance of different lobes of the Laurentide Ice Sheet and the changing course of the Mississippi River. We conclude that K/Rb and K/Ba values are effective, robust, and rapid indicators of loess provenance that can be applied to many regions of the world.

  6. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  7. Modeling potential river management conflicts between frogs and salmonids

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Sarah J. Kupferberg; Margaret M. Lang; Scott McBain; Hart H. Welsh

    2016-01-01

    Management of regulated rivers for yellow-legged frogs (Rana boylii) and salmonids exemplifies potential conflicts among species adapted to different parts of the natural flow and temperature regimes. Yellow-legged frogs oviposit in rivers in spring and depend on declining flows and warming temperatures for egg and tadpole survival and growth,...

  8. Owyhee River intracanyon lava flows: does the river give a dam?

    USGS Publications Warehouse

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  9. Lithology, hydrologic characteristics, and water quality of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas

    USGS Publications Warehouse

    Kresse, Timothy M.; Westerman, Drew A.; Hart, Rheannon M.

    2015-01-01

    The hydrologic and geochemical data gathered for this study provide a qualitative assessment of the potential of the Arkansas River Valley alluvial aquifer as a source of public water supply in the Van Buren area. Results indicate minimal influx of water from the Arkansas River, and recharge to the aquifer appears to be dominantly by infiltration of precipitation through overlying alluvium. If vertical wells are used as a source of public water supply, then several wells will have to be used in combination at relatively low pumping rates and placed in areas with a greater percent sand. Use of a horizontal well configuration near the river to increase production may depend on infiltration of river water to supplement water removed from storage, especially where areas of lower permeability sediments might be encountered within the surrounding alluvium. If a poor hydraulic connection exists between the river and the alluvium, as indicated by this study, then production will depend on ample precipitation and recharge throughout the year and groundwater storage sufficient to prevent declining water levels where pumping rates exceed recharge.

  10. Invisible geomorphosites. A case study in the Rhone River valley (Switzerland)

    NASA Astrophysics Data System (ADS)

    Clivaz, Mélanie; Reynard, Emmanuel

    2016-04-01

    During the last two decades, numerous inventories of geosites have been carried out at various scales. As all kinds of inventory, they aim at documenting the state of the geological heritage, which is the basis for management strategies (geoconservation, geoeducation, geotourism, etc.). In very humanized regions, where the original geomorphology has been highly modified by human infrastructures, agriculture, urban sprawling, and various modifications of the landforms, it is interesting to inventory not only the landforms visible today but also former landforms that have been destroyed or hidden by human activities. To address the issue of the inventory of invisible geomorphosites, two approaches have been tested in the Rhone River valley, in Switzerland. For centuries the river was flowing quite freely on the floodplain and alternated - both in time and space - braided and meandering sectors. Tributaries fed by glaciers and snow-melting as well as torrential systems were building alluvial fans at their confluence with the Rhone River, and more or less extensive wetlands were isolated by these alluvial fans and the braided sectors of the main river. Floods were frequent and temporary lakes were formed during the snow-melting season and during intensive rainfall events, especially in autumn. Even sand dunes were visible in several places due to the remobilisation of fine fluvial deposits by wind processes. During the second half of the 19th century, the Rhone River and the majority of its tributaries was channelized, the sand dunes were completely destroyed - partly for filling the depressions -, and most wetlands were drained during the first half of the 20th century and replaced by intensive agricultural crops. The first study consisted to inventory the geomorphosites of the research area. Not only the visible landforms but also the landforms that had completely disappeared were evaluated using the assessment method of Reynard et al. (2015). A total of 28

  11. Stages of the development of alluvial soils in the Bikin River valley (the Amur River basin) in the Middle and Late Holocene

    NASA Astrophysics Data System (ADS)

    Nazarkina, A. V.; Belyanin, P. S.

    2014-05-01

    The evolution of alluvial soils in the Bikin River basin in the Middle and the Late Holocene is discussed. On the basis of biostratigraphic data, four pollen zones have been identified in the soils: Pinus koraiensis- Picea, Pinus koraiensis- Quercus- Sphagnum, Betula- Alnus- Alnaster, and Quercus. A set of soil characteristics (texture, acid-base properties, and the organic matter content and group composition) have also been determined. These data allow us to distinguish between four stages of alluvial soil formation in the Bikin River basin. They characterize humus-forming conditions in the Middle and the Late Holocene. Reconstruction of ancient vegetation conditions makes it possible to conclude that climatic fluctuations were synchronous with changes in the soil characteristics. During the Holocene climatic optimum, humus was formed in a slightly acid medium, and humic acids predominated. In cold periods with increased precipitation, fulvic acids predominated in the composition of humus, and the portion of insoluble residue was high because of the more acid medium. The stages of alluvial pedogenesis in the Bikin River valley follow the sedimentation model of soil evolution. Alluvial gray humus soils evolved from typical gray humus soils under meadow communities during warm periods to gleyic and gleyed soils under birch shrubs and alder groves in colder and wetter periods.

  12. Contribution of local knowledge to understand socio-hydrological dynamics. Examples from a study in Senegal river valley

    NASA Astrophysics Data System (ADS)

    Bruckmann, Laurent

    2017-04-01

    In developing countries many watersheds are low monitored. However, rivers and its floodplains provides ecosystem services to societies, especially for agriculture, grazing and fishing. This uses of rivers and floodplains offer to communities an important local knowledge about hydrological dynamics. This knowledge can be useful to researchers studying ecological or hydrological processes. This presentation aims to discuss and present the interest of using qualitative data from surveys and interviews to understand relations between society and hydrology in floodplain from developing countries, but also to understand changes in hydrological dynamics. This communication is based on a PhD thesis held on from 2012 and 2016, that analyzes socio-ecological changes in the floodplain of the Senegal river floodplain following thirty years of transboundary water management. The results of this work along Senegal river valley suggest that the use of social data and qualitative study are beneficial in understanding the hydrological dynamics in two dimensions. First, it established the importance of perception of hydrological dynamics, particularly floods, on local water management and socio-agricultural trajectories. This perception of people is strictly derived from ecosystems services provided by river and its floodplain. Second, surveys have enlightened new questions concerning the hydrology of the river that are often cited by people, like a decrease of flood water fertility. This type of socio-hydrological study, combining hydrological and qualitative data, has great potential for guiding water management policies. Using local knowledge in their analyzes, researchers also legitimize river users, who are for the most part forgotten by water policies.

  13. Sediment and Particular Organic Carbon (POC) fluxes changes over the past decades in the Yellow River system

    NASA Astrophysics Data System (ADS)

    Lu, Xixi; Ran, Lishan

    2015-04-01

    The Yellow River system used to have very high sediment export to ocean (around 1.5 Gt/yr in the 1950s) because of severe soil erosion on the Loess Plateau. However, its sediment export has declined to <0.25 Gt/yr in recent years (in the 2000s), mainly due to human activities like construction of reservoirs and check dams and other soil and water conservations such as construction of terraces and vegetation restoration. Such drastic reduction in soil erosion and sediment flux and subsequently in associated Particular Organic Carbon (POC) transport can potentially play a significant role in carbon cycling. Through the sediment flux budget we examined POC budget and carbon sequestration through vegetation restoration and various soil and water conservations including reservoirs construction over the past decades in the Yellow River system. Landsat imageries were used to delineate the reservoirs and check dams for estimating the sediment trapping. The reservoirs and check dams trapped a total amount of sediment 0.94 Gt/yr, equivalent to 6.5 Mt C. Soil erosion controls through vegetation restoration and terrace construction reduced soil erosion 1.82 Gt/yr, equivalent to 12 Mt C. The annual NPP increased from 0.150 Gt C in 2000 to 0.1889 Gt C in 2010 with an average increment rate of 3.4 Mt C per year over the recent decade (from 2000 to 2010) through vegetation restoration. The total carbon stabilized on slope systems through soil erosion controls (12 Mt C per year) was much higher than the direct carbon sequestration via vegetation restoration (3.4 Mt C per year), indicating the importance of horizontal carbon mobilization in carbon cycling, albeit a high estimate uncertainty.

  14. Valley-fill alluviation during the Little Ice Age (ca. A.D. 1400-1880), Paria River basin and southern Colorado Plateau, United States

    USGS Publications Warehouse

    Hereford, R.

    2002-01-01

    Valley-fill alluvium deposited from ca. A.D. 1400 to 1880 is widespread in tributaries of the Paria River and is largely coincident with the Little Ice Age epoch of global climate variability. Previous work showed that alluvium of this age is a mappable stratigraphic unit in many of the larger alluvial valleys of the southern Colorado Plateau. The alluvium is bounded by two disconformities resulting from prehistoric and historic arroyo cutting at ca. A.D. 1200-1400 and 1860-1910, respectively. The fill forms a terrace in the axial valleys of major through-flowing streams. This terrace and underlying deposits are continuous and interfinger with sediment in numerous small tributary valleys that head at the base of hillslopes of sparsely vegetated, weakly consolidated bedrock, suggesting that eroded bedrock was an important source of alluvium along with in-channel and other sources. Paleoclimatic and high-resolution paleoflood studies indicate that valley-fill alluviation occured during a long-term decrease in the frequency of large, destructive floods. Aggradation of the valleys ended about A.D. 1880, if not two decades earlier, with the beginning of historic arroyo cutting. This shift from deposition to valley entrenchment near the close of the Little Ice Age generally coincided with the beginning of an episode of the largest floods in the preceding 400-500 yr, which was probably caused by an increased recurrence and intensity of flood-producing El Nin??o events beginning at ca. A.D. 1870.

  15. Illicit drugs and their metabolites in 36 rivers that drain into the Bohai Sea and north Yellow Sea, north China.

    PubMed

    Wang, De-Gao; Zheng, Qiu-Da; Wang, Xiao-Ping; Du, Juan; Tian, Chong-Guo; Wang, Zhuang; Ge, Lin-Ke

    2016-08-01

    Illicit drugs and their metabolites have recently been recognized as an emerging group of contaminants due to their potential ecotoxicological impact in aquatic ecosystems. To date, information on the occurrence of these compounds in the aquatic environment of China remains limited. In this study, we collected surface water samples from 36 rivers in north China that discharge into the Bohai Sea and north Yellow Sea and measured the concentrations of amphetamine-like compounds, ketamines, cocainics, and opioids. The occurrence and spatial patterns of these substances show significant differences between the rivers and regions. Two designer drugs, methamphetamine (METH) and ketamine (KET), were the most abundant compounds detected in the entire set of samples (detection frequency of 92 and 69 %). The concentrations of METH and KET ranged from <0.1 to 42.0 ng L(-1) (mean = 4.53 ng L(-1)) and <0.05 to 4.50 ng L(-1) (mean = 0.49 ng L(-1)), respectively. The high detection frequencies of METH and KET are consistent with the fact that they are the main illicit drugs consumed in China. The high concentrations of these illicit drugs and their metabolites were found in areas that have a high population density. The riverine input of total illicit drugs into the Bohai Sea and north Yellow Sea was estimated to be in the range of 684 to 1160 kg per year.

  16. Impacts of Change in Irrigation Water Availability on Food Production in the Yellow River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, Y. Y.; Tang, Q.

    2014-12-01

    Approximately 9 percent of China's population and 17 percent of its agricultural area are settled in the Yellow River Basins. Irrigation, which plays an important role in agricultural production, occupies the largest share of human consumptive water use in the basin. Given increasing water demands, the basin faces acute water scarcity. Previous studies have suggested that decrease in irrigation water availability under climate change might have an overall adverse impact on the food production of the basin. The timing and area that would face severe water stress are yet to be identified. We used a land surface hydrological model forced with the bias-corrected climatic variables from 5 climate models under 4 Representative Concentration Pathways (RCPs) to estimate total water availability in the sub-basins of the Yellow River basin. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement in the nonagricultural water use sectors. The irrigation water availability was estimated from the total water availability and nonagricultural water use, and the irrigation water demands were estimated based on the current irrigation project efficiencies. The timing and area of irrigation water shortage were shown and the implication of change in irrigation water availability on food production was assessed. The results show that the sub-basins with high population density and gross domestic product (GDP) are likely to confront severe water stress and reduction in food production earlier because irrigation water was to be appropriated by the rapid increase in nonagricultural water use sectors. The study stresses the need for adaptive management of water to balance agriculture and nonagricultural demands in northern China.

  17. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of

  18. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico, and Influence on Ground-Water Flow in the Shallow Alluvial Aquifer

    USGS Publications Warehouse

    Vincent, Kirk R.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley of north-central New Mexico. This report is one in a series of reports that can be used to determine pre-mining ground-water conditions at the mine site. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The bedrock of the Taos Range surrounding the Red River is composed of Proterozoic rocks of various types, which are intruded and overlain by Oligocene volcanic rocks associated with the Questa caldera. Locally, these rocks were altered by hydrothermal activity. The alteration zones that contain sulfide minerals are particularly important because they constitute the commercial ore bodies of the region and, where exposed to weathering, form sites of rapid erosion referred to as alteration scars. Over the past thousand years, if not over the entire Holocene, erosion rates were spatially variable. Forested hillslopes eroded at about 0.04 millimeter per year, whereas alteration scars eroded at about 2.7 millimeters per year. The erosion rate of the alteration scars is unusually rapid for naturally occurring sites that have not been disturbed by humans. Watersheds containing large alteration scars delivered more sediment to the Red River Valley than the Red River could remove. Consequently, large debris fans, as much as 80 meters thick, developed within the valley. The geomorphology of the Red River Valley has had several large influences on the hydrology of the shallow alluvial aquifer, and those influences were in effect before the onset of mining within the watershed. Several reaches where alluvial ground water emerges to become Red River streamflow were observed by a tracer dilution study conducted in 2001. The aquifer narrows

  19. Polychlorinated biphenyls in adult black bass and yellow perch were not associated with their reproductive success in the upper Hudson River, New York, USA.

    PubMed

    Maceina, Michael J; Sammons, Steven M

    2013-07-01

    Although production and use of polychlorinated biphenyls (PCBs) ceased nearly 35 yr ago, questions still remain concerning the potential chronic effects these compounds may have on wild fish, including their reproductive success. In the upper Hudson River, New York, USA, fish were exposed to PCBs primarily from 2 manufacturing plants located approximately 320 km upstream of New York City, New York, from the 1940s to 1977. The authors collected yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieu), and largemouth bass (M. salmoides) using electrofishing, measured PCBs in these adults, and estimated abundance and size of their offspring at age 1 yr (age-1 fish). Fish were collected annually from 2004 to 2009 from 1 control site upstream of the PCB discharge sites and from 2 sites downstream from where PCBs were released. These sites (pools) are separated by a series of dams, locks, and canals. Muscle tissue wet weight PCB and lipid-based PCB concentrations in adults in the 2 PCB exposure pools averaged approximately 1 to 3 µg/g and 100 to 500 µg/g, respectively. Age-1 abundances were not related to adult PCB concentrations but were inversely related to river flow. Size of age-1 fish was slightly greater at the PCB-exposure sites. Levels of PCBs in yellow perch, largemouth bass, and smallmouth bass in the upper Hudson River did not impair or reduce recruitment or reproductive success. Copyright © 2013 SETAC.

  20. Shoreline dynamics of the active Yellow River delta since the implementation of Water-Sediment Regulation Scheme: A remote-sensing and statistics-based approach

    NASA Astrophysics Data System (ADS)

    Fan, Yaoshen; Chen, Shenliang; Zhao, Bo; Pan, Shunqi; Jiang, Chao; Ji, Hongyu

    2018-01-01

    The Active Yellow River (Huanghe) Delta (AYRD) is a complex landform in which rapid deposition takes place due to its geologic formation and evolution. Continuous monitoring of shoreline dynamics at high-temporal frequency is crucial for understanding the processes and the driving factors behind this rapidly changing coast. Great efforts have been devoted to map the changing shoreline of the Yellow River delta and explain such changes through remote sensing data. However, the temporal frequency of shoreline in the obtained datasets are generally not fine enough to reflect the detailed or subtly variable processes of shoreline retreat and advance. To overcome these limitations, we continuously monitored the dynamics of this shoreline using time series of Landsat data based on tidal-level calibration model and orthogonal-transect method. The Abrupt Change Value (ACV) results indicated that the retreat-advance patterns had a significant impact regardless of season or year. The Water-Sediment Regulation Scheme (WSRS) plays a dominant role in delivering river sediment discharge to the sea and has an impact on the annual average maximum ACV, especially at the mouth of the river. The positive relationship among the average ACV, runoff and sediment load are relatively obvious; however, we found that the Relative Exposure Index (REI) that measures wave energy was able to explain only approximately 20% of the variation in the data. Based on the abrupt change at the shoreline of the AYRD, river flow and time, we developed a binary regression model to calculate the critical sediment load and water discharge for maintaining the equilibrium of the active delta from 2002 to 2015. These values were approximately 0.48 × 108 t/yr and 144.37 × 108 m3/yr. If the current water and sediment proportions released from the Xiaolangdi Reservoir during the WSRS remain stable, the erosion-accretion patterns of the active delta will shift from rapid accretion to a dynamic balance.

  1. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda

    NASA Astrophysics Data System (ADS)

    Green, William J.; Canfield, Donald E.

    1984-12-01

    The Onyx River (Wright Valley, Antarctica) is a dilute meltwater stream originating in the vicinity of the Wright Lower Glacier. It acquires a significant fraction of its salt content when glacial meltwaters contact Wright Valley soils at Lake Brownworth and the concentrations of all ions increase with distance along the 28-km channel down to Lake Vanda. Average millimolar concentrations of major ions at the Vanda weir during the 1980-1981 flow season were: Ca = 0.119; Mg = 0.061; Na = 0.212; K = 0.033; Q = 0.212; SO4 = 0.045; HCO3 = 0.295; and SiO2 = 0.049. Based on the flow measurements of Chinn (1982), this amounts to an annual flux (in moles) to Lake Vanda of: Ca = 0.238 × 10 6; Mg = 0.122 × 10 6; Na = 0.424 × 10 6; K = 0.066 × 10 6; Cl = 0.424 × 10 6; SO4 = 0.09 × 10 6; HCO3 = 0.59 × 10 6; SiO2 = 0.098 × 10 6. In spite of the large salt input from this source, equilibrium evaporation of Onyx River water would have resulted in early calcite deposition and in the formation of a Na-Mg-Cl-HCO 3 brine rather than in the Ca-Na-Mg-Cl waters observed in Lake Vanda. The river alone could not have produced a brine having the qualitative geochemical features of the lower saline waters of Lake Vanda. It is proposed that the Vanda brine is instead the result of past ( > 1200 yrs BP) mixing events between Onyx River inflows and calcium chloride-rich deep groundwaters derived from the Don Juan Basin. The mixing model presented here shows that the Onyx River is the major contributor of K, HCO 3, SO 4, and (possibly) Mg found in the lake and a significant contributor (approximately one half) of the observed Na. Calcium and Cl, on the other hand, came largely from deep groundwater sources in the Don Juan Basin. All concentrations except Mg are well predicted by this model. The chemical composition of the geologically recent upper lake is explained in terms of ionic diffusion from the pre-formed brine, coupled with Onyx River inflow. Ionic ratios calculated from this

  2. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  3. Connections between meteorological and hydrological droughts in a semi-arid basin of the middle Yellow River

    NASA Astrophysics Data System (ADS)

    Li, Binquan; Zhu, Changchang; Liang, Zhongmin; Wang, Guoqing; Zhang, Yu

    2018-06-01

    Differences between meteorological and hydrological droughts could reflect the regional water consumption by both natural elements and human water-use. The connections between these two drought types were analyzed using the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Streamflow Index (SSI), respectively. In a typical semi-arid basin of the middle Yellow River (Qingjianhe River basin), annual precipitation and air temperature showed significantly downward and upward trends, respectively, with the rates of -2.37 mm yr-1 and 0.03 °C yr-1 (1961-2007). Under their synthetic effects, water balance variable (represented by SPEI) showed obviously downward (drying) trend at both upstream and whole basin areas. For the spatial variability of precipitation, air temperature and the calculated SPEI, both upstream and downstream areas experienced very similar change characteristics. Results also suggested that the Qingjianhe River basin experienced near normal condition during the study period. As a whole, this semi-arid basin mainly had the meteorological drought episodes in the mid-1960s, late-1990s and the 2000s depicted by 12-month SPEI. The drying trend could also be depicted by the hydrological drought index (12-month SSI) at both upstream and downstream stations (Zichang and Yanchuan), but the decreasing trends were not significant. A correlation analysis showed that hydrological system responds rapidly to the change of meteorological conditions in this semi-arid region. This finding could be an useful implication to drought research for those semi-arid basins with intensive human activities.

  4. Development of an Interactive Shoreline Management Tool for the Lower Wood River Valley, Oregon - Phase I: Stage-Volume and Stage-Area Relations

    USGS Publications Warehouse

    Haluska, Tana L.; Snyder, Daniel T.

    2007-01-01

    This report presents the parcel and inundation area geographic information system (GIS) layers for various surface-water stages. It also presents data tables containing the water stage, inundation area, and water volume relations developed from analysis of detailed land surface elevation derived from Light Detection and Ranging (LiDAR) data recently collected for the Wood River Valley at the northern margin of Agency Lake in Klamath County, Oregon. Former shoreline wetlands that have been cut off from Upper Klamath and Agency Lakes by dikes might in the future be reconnected to Upper Klamath and Agency Lakes by breaching the dikes. Issues of interest associated with restoring wetlands in this way include the area that will be inundated, the volume of water that may be stored, the change in wetland habitat, and the variation in these characteristics as surface-water stage is changed. Products from this analysis can assist water managers in assessing the effect of breaching dikes and changing surface-water stage. The study area is in the approximate former northern margins of Upper Klamath and Agency Lakes in the Wood River Valley.

  5. Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.

    2016-12-01

    Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in

  6. Transformation of a landscape in the upper mid-west, USA: The history of the St. Croix river valley, 1830 to present

    Treesearch

    Osh (Barbara) Andersen; Thomas R. Crow; Sue M. Lietz; Forest Stearns

    1996-01-01

    Learning the history of a landscape is critical to understanding present land-use patterns. We document the history of landscape change in the lower St. Croix River valley from 1830 to the present. Significant changes in land use and cover have occurred during this time. Because of the convergence of prairie, savanna and forest vegetation in this area, and because of...

  7. Geomorphic process from topographic form: automating the interpretation of repeat survey data in river valleys

    USGS Publications Warehouse

    Kasprak, Alan; Caster, Joshua J.; Bangen, Sara G.; Sankey, Joel B.

    2017-01-01

    The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High-resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process-based river management and restoration.

  8. Late Cenozoic surficial deposits and valley evolution of unglaciated northern New Jersey

    USGS Publications Warehouse

    Stanford, S.D.

    1993-01-01

    Multiple alluvial, colluvial, and eolian deposits in unglaciated northern New Jersey, and the eroded bedrock surfaces on which they rest, provide evidence of both long-term valley evolution driven by sustained eustatic baselevel lowering and short-term filling and excavation of valleys during glacial and interglacial climate cycles. The long-term changes occur over durations of 106 years, the short-term features evolve over durations of 104 to 105 years. Direct glacial effects, including blockage of valleys by glacial ice and sediment, and valley gradient reversals induced by crustal depression, are relatively sudden changes that account for several major Pleistocene drainage shifts. After deposition of the Beacon Hill fluvial gravel in the Late Miocene, lowering of sea level, perhaps in response to growth of the Antarctic ice sheet, led to almost complete dissection of the gravel. A suite of alluvial, colluvial, and eolian sediments was deposited in the dissected landscape. The fluvial Bridgeton Formation was deposited in the Raritan lowland, in the Amboy-Trenton lowland, and in the Delaware valley. Following southeastward diversion of the main Bridgeton river, perhaps during Late Pliocene or Early Pleistocene glaciation, northeastward drainage was established on the inactive Bridgeton fluvial plain. About 30 to 45 m of entrenchment followed, forming narrow, incised valleys within which Late Pleistocene deposits rest. This entrenchment may have occurred in response to lowered sea level caused by growth of ice sheets in the northern hemisphere. Under periglacial conditions in the Middle and Late Pleistocene, valleys were partially filled with alluvium and colluvium. During interglacials slopes were stabilized by vegetation and the alluvial and colluvial valley-fill was excavated by gullying, bank erosion, and spring sapping. During Illinoian and late Wisconsinan glaciation, the lower Raritan River was diverted when glacial deposits blocked its valley, and the

  9. River-spring connectivity and hydrogeochemical interactions in a shallow fractured rock formation. The case study of Fuensanta river valley (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Barberá, J. A.; Andreo, B.

    2017-04-01

    In upland catchments, the hydrology and hydrochemistry of streams are largely influenced by groundwater inflows, at both regional and local scale. However, reverse conditions (groundwater dynamics conditioned by surface water interferences), although less described, may also occur. In this research, the local river-spring connectivity and induced hydrogeochemical interactions in intensely folded, fractured and layered Cretaceous marls and marly-limestones (Fuensanta river valley, S Spain) are discussed based on field observations, tracer tests and hydrodynamic and hydrochemical data. The differential flow measurements and tracing experiments performed in the Fuensanta river permitted us to quantify the surface water losses and to verify its direct hydraulic connection with the Fuensanta spring. The numerical simulations of tracer breakthrough curves suggest the existence of a groundwater flow system through well-connected master and tributary fractures, with fast and multi-source flow components. Furthermore, the multivariate statistical analysis conducted using chemical data from the sampled waters, the geochemical study of water-rock interactions and the proposed water mixing approach allowed the spatial characterization of the chemistry of the springs and river/stream waters draining low permeable Cretaceous formations. Results corroborated that the mixing of surface waters, as well as calcite dissolution and CO2 dissolution/exsolution, are the main geochemical processes constraining Fuensanta spring hydrochemistry. The estimated contribution of the tributary surface waters to the spring flow during the research period was approximately 26-53% (Fuensanta river) and 47-74% (Convento stream), being predominant the first component during high flow and the second one during the dry season. The identification of secondary geochemical processes (dolomite and gypsum dissolution and dedolomitization) in Fuensanta spring waters evidences the induced hydrogeochemical

  10. HLA haplotype map of river valley populations with hemochromatosis traced through five centuries in Central Sweden.

    PubMed

    Olsson, K Sigvard; Ritter, Bernd; Hansson, Norbeth; Chowdhury, Ruma R

    2008-07-01

    The hemochromatosis mutation, C282Y of the HFE gene, seems to have originated from a single event which once occurred in a person living in the north west of Europe carrying human leukocyte antigen (HLA)-A3-B7. In descendants of this ancestor also other haplotypes appear probably caused by local recombinations and founder effects. The background of these associations is unknown. Isolated river valley populations may be fruitful for the mapping of genetic disorders such as hemochromatosis. In this study, we try to test this hypothesis in a study from central Sweden where the haplotyope A1-B8 was common. HLA haplotypes and HFE mutations were studied in hemochromatosis patients with present or past parental origin in a sparsely populated (1/km(2)) rural district (n = 8366 in the year of 2005), in central Sweden. Pedigrees were constructed from the Swedish church book registry. Extended haplotypes were studied to evaluate origin of recombinations. There were 87 original probands, 36 females and 51 males identified during 30 yr, of whom 86% carried C282Y/C282Y and 14% C282Y/H63D. Of 32 different HLA haplotypes A1-B8 was the most common (34%), followed by A3-B7 (16%), both in strong linkage disequilibrium with controls, (P < 0.001). Twenty-nine different families with A1-B8 had a common founder origin 15 generations ago in small bottleneck populations of the late 16th century. A second A1-B8 founder born 1655 was of Norwegian origin. Most of the A3 carriers (n = 26) had a common founder origin 16 generations ago in an even smaller nearby river valley. A fourth founder family carrying HLA-A2 seems to have originated from a recombination along the descendant lines from the A3 ancestor supported by extended haplotype studies. A1-haplotypes with alleles at the B locus different from B8 had a similar recombination origin as HLA-A2 alleles and a common founder origin 11 generations ago. The intergenerational time interval averaged 35.5 +/- 7.9 yr in men and 31.9 +/- 5.9 in

  11. Practical aspects of registration the transformation of a river valley by beavers using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Błaszkiewicz, Mirosław; Brykała, Dariusz; Gierszewski, Piotr; Kaczmarek, Halina; Kordowski, Jarosław; Słowiński, Michał

    2016-04-01

    Activity of beavers (Castor fiber) often significantly affects the environment in which they life. The most commonly observed effect of their being in environment is construction of beaver dams and formation a pond upstream. However, in case of a sudden break of a dam and beaver pond drainage, the valley below the dam may also undergo remodelling. The nature and magnitude of these changes depends on the quantity of water and its energy as well as on the geological structure of the valley. The effects of such events can be riverbank erosion, and the deposition of the displaced of erosion products in the form of sandbars or fans. The material can also be accumulated in local depressions or delivered to water bodies. Such events may occur multiple times in the same area. To assess their impact on the environment it is important to quantify the displaced material. The study of such transformations was performed within a small valley of the river of Struga Czechowska (Tuchola Pinewood Forest, Poland). The valley is mainly cut in sands and gravels. Its steep banks are overgrown with bushes and trees. The assessment of changes in morphology were based on the event of the beaver pond drainage of 2015. The study uses the measurements from the terrestrial laser scanning (scanner Riegl VZ-4000). The measurements were performed before and after the event. Each of the two models obtained for comparison was made up of more than 20 measurement stations. Point clouds were joined by Multi-Station Adjustment without placing in the terrain any objects of reference. During measurements attention was paid to the changes in morphology of both riverbed and valley surrounding. The paper presents the example of the recorded changes as well as the measurement procedure. Moreover, the aspects of fieldwork and issues related to post-processing, such as merging, filtering of point clouds and detection of changes, are also presented. This study is a contribution to the Virtual Institute of

  12. Hazard assessment of landslide and debris flow in the Rjeina river valley, Croatia

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiang; Watanabe, Naoki; Marui, Hideaki

    2013-04-01

    The Rječina River extends approximately 18.7km long and flows into the Adriatic Sea at the center of Rijeka City, Croatia. Landslide, debris flow and rockfall are main geohazards in the middle part of the Rječina river basin. The zone between the Valići reservoir dam and the Pasac Bridge is particularly the most unstable and hazardous area in the river basin. The Grohovo landslide in the middle part of the river basin is located on the valley's slope facing southwest and situated at just downstream of the Valići dam. This landslide is the largest active landslide along the Adriatic Sea coast in Croatia. Assuming that serious heavy rainfall or earthquake occurs, it is most likely to occur two types of geohazard event. One scenario is that the debris deposited on the Grohovo landslide will move down to the channel of the Rječina River and dam up the river course. Another scenario is that the slope deposits on the landslide will be mixed with water and subsequently turn into a debris flow reaching to Rijeka City. We simulate both two cases of the formation of landslide-dam and the occurrence of debris-flow by two integrated models using GIS to represent the dynamic process across 3D terrains. In the case of the formation of landslide-dam, it is assumed that slope deposits will move downhill after failing along a shear zone. GIS-based revised Hovland's 3D limit equilibrium model is used to simulate the movement and stoppage of the slope deposits to form landslide-dam. The 3D factor of safety will be calculated step by step during the sliding process simulation. Stoppage is defined by the factor of safety much greater than one and the velocity equal to zero. The simulation result shows that the height of the landslide-dam will be nine meters. In case of debris flow, the mixture of slope deposits and water will be differentiated from landslide by fluid-like deformation of the mobilized material. GIS-based depth-averaged 2D numerical model is used to predict the

  13. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium-An indicator of large river valleys.

    PubMed

    Nobis, Agnieszka; Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent.

  14. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium—An indicator of large river valleys

    PubMed Central

    Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent. PMID:29543919

  15. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-06-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input

  16. Beaver assisted river valley formation

    USGS Publications Warehouse

    Westbrook, Cherie J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  17. Transformation of Raindrop characteristics (Nov 24, 2015) of natural rainfall of Yellow River basin

    NASA Astrophysics Data System (ADS)

    Shen, Zhenzhou; Liu, Ke; Wu, Zhiqiang; Liu, Jun; Qi, Kuan; Niu, Xinnian; Wang, Guiying; Yao, Wenyi

    2018-02-01

    Raindrop characteristics, including speed and size of raindrops, in Zhengzhou city of Yellow River basin were analyzed through a natural rainfall on the loess slope. Results showed that the process of natural rainfall belonged to a parabola and counts, size and terminal velocity would increase with the rainfall intensity rising. Besides, the size and terminal velocity of natural raindrops were relatively scattered; In the process of individual rainfall, the terminal velocity and its peak value were mainly focused between 1∼3.4m/s and 1.4m/s, respectively. Size of raindrops were mainly consisted of 0.125-0.75mm, among which the terminal velocity of raindrops with a size of 0.125mm, 0.25mm, 0.375mm, 0.5mm and 0.75mm were primarily 1-3.4m/s, 1-4.2m/s, 0.8-3.4m/s, 0.8-3.4m/s, 1-2.6m/s, respectively.

  18. Geology of the Knife River area, North Dakota

    USGS Publications Warehouse

    Benson, William Edward

    1953-01-01

    The Knife River area, consisting of six 15-minute quadrangles, includes the lower half of the Knife River valley in west-central North Dakota. The area, in the center of the Williston Basin, is underlain by the Tongue River member of the Fort Union formation (Paleocene) and the Golden Valley formation (Eocene). The Tongue River includes beds equivalent to the Sentinel Butte shale; the Golden Valley formation, which receives its first detailed description in this report, consists of two members, a lower member of gray to white sandy kaolin clay and an upper member of cross-bedded micaceous sandstone. Pro-Tongue River rocks that crop out in southwestern North Dakota include the Ludlow member of the Fort Union formation, the Cannonball marine formation (Paleocene) and the Hell Creek, Fox Hills, and Pierre formations, all upper Cretaceous. Post-Golden Valley rocks include the White River formation (Oligocene) and gravels on an old planation surface that may be Miocene or Pliocent. Surficial deposits include glacial and fluvial deposits of Pleistocene age and alluvium, dune sand, residual silica, and landslide blocks of Recent age. Three ages of glacial deposits can be differentiated, largely on the basis of three fills, separated by unconformities, in the Knife River valley. All three are of Wisconsin age and probably represent the Iowan, Tazewell, and Mankato substages. Deposits of the Cary substage have not been identified either in the Knife River area or elsewhere in southern North Dakota. Iowan glacial deposits form the outermost drift border in North Dakota. Southwest of this border are a few scattered granite boulders that are residual from the erosion of either the White River formation or a pre-Wisconsin till. The Tazewell drift border cannot be followed in southern North Dakota. The Mankato drift border can be traced in a general way from the South Dakota State line northwest across the Missouri River and through the middle of the Knife River area. The major

  19. An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2: The added value from climate forecast models

    DOE PAGES

    Yuan, Xing

    2016-06-22

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease overmore » leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982–2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08–0.2. To compare with

  20. An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2: The added value from climate forecast models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xing

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease overmore » leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982–2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08–0.2. To compare with

  1. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    NASA Astrophysics Data System (ADS)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are

  2. Effect of ammate on unwanted growth in oak--yellow-poplar stands in New Jersey

    Treesearch

    S. Little; H. A. Somes

    1954-01-01

    Stands of mixed oaks and yellow-poplar form the most valuable forest crop on many sites in central and northern New Jersey and in the Delaware Valley of southern New Jersey. However, these stands often contain shrubs and low-value hardwood trees that prevent satisfactory restocking of cutover areas.

  3. Effects of a mine tailings spill on feeding and metal concentrations in yellow perch (Perca flavescens)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draves, J.F.; Fox, M.G.

    1998-08-01

    In this study, the authors examined the effects of a gold mine tailings spill in the Montreal River (northern Ontario, Canada) on juvenile yellow perch (Perca flavescens), a benthic-feeding fish, and identified the major contributors to their uptake of tailings metals (Pb, Zn, Cd, and Cu) in dietary items and river water. Juvenile perch sampled from a 6-km reach of the river where most of the tailings were deposited had significantly less food in their stomachs than individuals sampled from a reference reach of the river. Concentrations of Pb in invertebrate prey taxa from the contaminated reach were 9 tomore » 20 times higher than in those sampled from the reference reach. These differences were consistent with a higher concentration of Pb in perch from the contaminated reach. In contrast, Zn concentrations were high in river water and perch from both the reference and contaminated reaches, and little difference was found in Zn concentration between invertebrate prey types sampled from the two reaches. No significant differences were found in Cu or Cd concentrations in yellow perch sampled from the two reaches. Higher levels of Pb in the major prey types from the contaminated reach indicate that dietary uptake may be the major vector for Pb accumulation in yellow perch from the Montreal River.« less

  4. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  5. Synergistic and singular effects of river discharge and lunar illumination on dam passage of upstream migrant yellow-phase American eels

    USGS Publications Warehouse

    Welsh, Stuart A.; Aldinger, Joni L.; Braham, Melissa A.; Zimmerman, Jennifer L.

    2016-01-01

    Monitoring of dam passage can be useful for management and conservation assessments of American eel, particularly if passage counts can be examined over multiple years. During a 7-year study (2007–2013) of upstream migration of American eels within the lower Shenandoah River (Potomac River drainage), we counted and measured American eels at the Millville Dam eel pass, where annual study periods were determined by the timing of the eel pass installation during spring or summer and removal during fall. Daily American eel counts were analysed with negative binomial regression models, with and without a year (YR) effect, and with the following time-varying environmental covariates: river discharge of the Shenandoah River at Millville (RDM) and of the Potomac River at Point of Rocks, lunar illumination (LI), water temperature, and cloud cover. A total of 17 161 yellow-phase American eels used the pass during the seven annual periods, and length measurements were obtained from 9213 individuals (mean = 294 mm TL, s.e. = 0.49, range 183–594 mm). Data on passage counts of American eels supported an additive-effects model (YR + LI + RDM) where parameter estimates were positive for river discharge (β = 7.3, s.e. = 0.01) and negative for LI (β = −1.9, s.e. = 0.34). Interestingly, RDM and LI acted synergistically and singularly as correlates of upstream migration of American eels, but the highest daily counts and multiple-day passage events were associated with increased RDM. Annual installation of the eel pass during late spring or summer prevented an early spring assessment, a period with higher RDM relative to those values obtained during sampling periods. Because increases in river discharge are climatically controlled events, upstream migration events of American eels within the Potomac River drainage are likely linked to the influence of climate variability on flow regime.

  6. Examining the evolution of an ancient irrigation system: the Middle Gila River Canals

    NASA Astrophysics Data System (ADS)

    Zhu, Tianduowa; Ertsen, Maurits

    2014-05-01

    Studying ancient irrigation systems reinforces to understand the co-evolution process between the society and water systems. In the prehistoric Southwest of America, the irrigation has been a crucial feature of human adaptation to the dry environment. The influences of social arrangements on irrigation managements, and implications of the irrigation organization in social developments are main issues that researchers have been exploring for a long time. The analysis of ceramics pattern and distribution has assisted to the reconstruction of prehistoric social networks. The existing study shows that, a few pottery fragments specially produced by the materials of the middle Gila River valley, were found in the Salt River valley; however, very few specialized ceramics of the Salt River valley occurred in the middle Gila River valley. It might indicate that there were trades or exchanges of potteries or raw materials from the middle Gila River valley to the Salt River valley. The most popular hypothesis of trading for the potteries is crop production. Based on this hypothesis, the ceramics trade was highly tied to the irrigation system change. Therefore, examining the changing relationship among the ceramics distribution along the middle Gila River, canals flow capacity, and available streamflows, can provide an insight into the evolutionary path among the social economy, irrigation and water environment. In this study, we reconstruct the flow capacity of canals along the middle Gila River valley. In combination with available streamflow from the middle Gila River, we can simulate how much water could be delivered to the main canals and lateral canals. Based on the variation and chronology of potteries distribution, we may identify that, the drama of the middle Gila River receiving insufficient flows for crop irrigation caused the development of ceramics exchange; or the rising of potteries exchange triggers the decline of irrigation in the study area.

  7. Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu

    2018-02-01

    The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.

  8. Landslide activity as a threat to infrastructure in river valleys - An example from outer Western Carpathians (Poland)

    NASA Astrophysics Data System (ADS)

    Łuszczyńska, Katarzyna; Wistuba, Małgorzata; Malik, Ireneusz

    2017-11-01

    Intensive development of the area of Polish Carpathians increases the scale of landslide risk. Thus detecting landslide hazards and risks became important issue for spatial planning in the area. We applied dendrochronological methods and GIS analysis for better understanding of landslide activity and related hazards in the test area (3,75 km2): Salomonka valley and nearby slopes in the Beskid Żywiecki Mts., Outer Western Carpathians, southern Poland. We applied eccentricity index of radial growth of trees to date past landslide events. Dendrochronological results allowed us to determine the mean frequency of landsliding at each sampling point which were next interpolated into a map of landslide hazard. In total we took samples at 46 points. In each point we sampled 3 coniferous trees. Landslide hazard map shows a medium (23 sampling points) and low (20 sampling points) level of landslide activity for most of the area. The highest level of activity was recorded for the largest landslide. Results of the dendrochronological study suggest that all landslides reaching downslope to Salomonka valley floor are active. LiDAR-based analysis of relief shows that there is an active coupling between those landslides and river channel. Thus channel damming and formation of an episodic lake are probable. The hazard of flooding valley floor upstream of active landslides should be included in the local spatial planning system and crisis management system.

  9. Geohydrology of the Souris River Valley in the vicinity of Minot, North Dakota

    USGS Publications Warehouse

    Pettyjohn, Wayne A.

    1967-01-01

    The Minot area is in the north-central part of North Dakota and includes part of the Souris River valley. The region is covered by glacial drift of late Wisconsin age except in small areas where the Fort Union Formation of Tertiary age crops out. Thickness of the drift is controlled by the topography of the bedrock. In places the drift is more than 450 feet thick, but it averages about 100 feet thick.Water from the Fort Union Formation is soft and is of sodium bicarbonate type that is undesirable for many uses. Wells in the formation produce only a few gallons per minute.Six glacial aquifers were studied in the report area, but detailed work was limited to the Minot aquifer. The Sundre buried-channel and the lower Souris aquifers contain large quantities of bard water of good chemical quality, but little is known of their hydraulic characteristics owing to lack of development. The North Hill and South Hill aquifers generally provide small quantities of hard water that may be high in iron and sodium. The northwest buried-channel aquifer has a high content of iron and chloride. Locally as much as 1,000 gallons per minute may be pumped from it.The Minot aquifer is a thick deposit of sand and gravel confined to the Souris River valley. The water level has declined more than 70 feet since the first municipal well began pumping in 1916. In .some places the water level in the aquifer declined more than 20 feet during 1961-1963. The rapid decline in water level indicates that a serious water shortage may arise in the near future unless counter measures are taken to prevent it.The Minot aquifer is under both artesian and water-table conditions. In places the transmissibility exceeds 250,000 gallons per day per foot. In 1963, 13 municipal wells pump'ed an average of nearly 4 million gallons per day from the aquifer. Some wells produce as much as 1,000 gallons per minute. The Minot aquifer receives most of its recharge from the buried glaciofiuvial deposits and from the

  10. Progress report on the geology and ground-water hydrology of the lower Platte River Valley, Nebraska, with a section on the chemical quality of the ground water

    USGS Publications Warehouse

    Waite, Herbert A.; Swenson, Herbert A.

    1949-01-01

    The occurrence of abundant ground-water supplies in the lower Platte River Valley has made possible the present agricultural and industrial economy of the area. Likewise, the future development of the area is dependent on the wise use of this important resource. The current investigation, on which this report is based, is a necessary step in the planning for the greatest ultimate utilization of the water resources in the lower Platte River Valley.The area covered by this study is the floor of the lower Platte River Valley between North Platte and Fremont and embraces about 2,500 square miles. The entire valley floor is underlain by unconsolidated Pleistocene sediments which consist of clay, silt, sand and gravel and range in thickness from less than 20 feet to nearly 200 feet. Westward from Cozad these sediments were deposited in a valley entrenched in bedrock, but east of Cozad they are continuous with similar deposits which underlie the adjacent uplands. Bedrock formations of Tertiary age are in contact with the basal Pleistocene sediments from the west end of the area to about Central City. From Central City eastward, formations of Cretaceous age immediately underlie the Pleistocene deposits.The Pleistocene sediments and underlying pervious formations are water saturated below depths which range from less than 1 foot to about 90 feet below the surface. In general, the configuration of the water table is similar to the topography of the land surface, but the relief on the water table is considerably less by comparison. Movement of ground water is either toward the river or parallel to it. Based on present information, movement of ground water out of the valley is not indicated but additional water-level control is needed south of the valley between Grand Island and Columbus to determine the possibility of ground-water loss in this stretch of the valley.Periodic observations of water-table fluctuations have constituted an important phase of ground-water studies in

  11. Physical characteristics of stream subbasins in the Hawk Creek-Yellow Medicine River basin, southwestern Minnesota and eastern South Dakota

    USGS Publications Warehouse

    Sanocki, Christopher A.

    1996-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Hawk Creek-Yellow Medicine River Basin, located in southwestern Minnesota and eastern South Dakota are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, outlets of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  12. Prevalence of protozoa, viruses, coliphages and indicator bacteria in groundwater and river water in the Kathmandu Valley, Nepal.

    PubMed

    Haramoto, Eiji; Yamada, Kaoru; Nishida, Kei

    2011-12-01

    Limited information is available on the prevalence of waterborne pathogens in aquatic environments in developing countries. In this study, water samples were collected from nine shallow wells and a river in the Kathmandu Valley, Nepal, during the rainy season in 2009 and were subjected to detection of waterborne protozoa, viruses and coliphages using a recently developed method for simultaneous concentration of protozoa and viruses in water. Escherichia coli and total coliforms were also tested as indicator bacteria. At least one type of the five pathogens tested (Cryptosporidium, Giardia, human adenoviruses, and noroviruses of genogroups I and II) was detected in five groundwater samples (56%) (1000 ml each) from shallow wells. Compared with groundwater samples, the pathogens were more abundant in the river water sample (100ml); the concentrations of Cryptosporidium and Giardia were 140 oocysts/l and 8500 cysts/l, respectively, and the mean threshold cycle (Ct) values in real-time RT-PCR were 34.3, 36.8 and 34.0 for human adenoviruses and noroviruses of genogroups I and II, respectively. Genotyping of F-RNA coliphages by real-time RT-PCR was successfully used to differentiate human and animal faecal contamination in the samples. Moreover, for the groundwater samples, protozoa and viruses were detected only in E. coli-positive samples, suggesting that E. coli may be an appropriate indicator of pathogen contamination of valley groundwater. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  13. STS-57 Earth observation of the Eastern Mediterranean, Nile River, Asia Minor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation of the Eastern Mediterranean. From a high vantage point over the Nile River, this north-looking view shows the eastern Mediterranean and the entire landmass of Asia Minor, with the Black Sea dimly visible at the horizon. Many of the Greek islands can be seen in the Aegean Sea (top left), off the coast of Asia Minor. Cyprus is visible under atmospheric dust in the northeastern corner of the Mediterranean. The dust cloud covers the east end of the Mediterranean, its western edge demarcated by a line that cuts the center of the Nile Delta. This dust cloud originated far to the west, in Algeria, and moved northeast. A gyre of clouds in the southeast corner of the Mediterranean indicates a complementary counterclockwise (cyclonic) circulation of air. The Euphrates River appears as a thin green line (upper right) in the yellow Syrian desert just south of the mountains of Turkey. The Dead Sea (lower right) lies in a rift valley which extends north into Turkey and sout

  14. Evolution of collapse valleys in karst - examples from the Carpatho-Balkanides of Serbia

    NASA Astrophysics Data System (ADS)

    Petrović, Aleksandar S.; Ćalić, Jelena; Spalević, Aleksandra; Pantić, Marko

    2016-04-01

    Development of valleys in karst is an issue which has not been sufficiently studied in karst surface morphology. THESE valleys are long linear forms whose orthogonal projections resemble normal valleys, but most of their characteristics are strongly influenced by karst process. In largest number of relevant references, this subject is either only briefly mentioned or completely lacking. This paper presents the examples of a particular type of valley in karst formed by cave ceiling collapse close to the topographical surface. Karst of the Carpatho-Balkanides in eastern Serbia is characterized by uneven spatial distribution in several large massifs, but also in a large number of relatively small outcrops (patches and belts), which enable the development of contact karst and fluviokarst. Many morphological elements are of fluvial origin, subsequently modified by karst process. Collapse valleys occur mostly at the downstream contacts (where a seasonal watercourse leaves limestones) or in karst/limestone belts. In the first phase, which is visible on the example of the Radovanska Reka, the river course sinks to the swallets in the riverbed and forms a blind valley. After sinking, the water flows through the tunnel cave, while largest part of the valley remains above the cave. The bottom of the dry valley is dissected by deep dolines, reaching almost to the cave roof. In this part of the study, the area was scanned by a multistation Leica Nova MS 50 (resolution 20 cm @ 10 m). In the second phase, the doline bottoms reach the cave ceilings which develop holes at certain points, as it is case at the Zamna River valley. These hollows tend to enlarge with time, and the surface of the cave ceiling is reduced. The third, final phase is characterised by collapse of larger segments of cave ceilings. Only the natural bridges remain, as the remnants of former caves (e.g. in the Vratna River valley, Ravna Reka valley). These parts of valleys in karst are usually narrow, steep

  15. CNA Maritime Asia Project. Workshop One: The Yellow and East China Seas

    DTIC Science & Technology

    2012-05-01

    TEU) were all in the world’s top 25 ports.2 Shanghai, positioned at the crossroads of the Yellow Sea, East China Sea, and Yangtze River, is the...Sea, and Yangtze River, is the largest port in the world, shipping over 29 million TEU in 2011.4 Nearly 57% of China’s total trade volume emanates

  16. Saline Valley

    NASA Image and Video Library

    2001-10-22

    These images of the Saline Valley area, California, were acquired March 30, 2000 and cover a full ASTER scene (60 by 60 km). Each image displays data from a different spectral region, and illustrates the complementary nature of surface compositional information available as a function of wavelength. This image displays visible and near infrared bands 3, 2, and 1 in red, green, and blue (RGB). Vegetation appears red, snow and dry salt lakes are white, and exposed rocks are brown, gray, yellow and blue. Rock colors mainly reflect the presence of iron minerals, and variations in albedo. Figure 1 displays short wavelength infrared bands 4, 6, and 8 as RGB. In this wavelength region, clay, carbonate, and sulfate minerals have diagnostic absorption features, resulting in distinct colors on the image. For example, limestones are yellow-green, and purple areas are kaolinite-rich. Figure 2 displays thermal infrared bands 13, 12 and 10 as RGB. In this wavelength region, variations in quartz content appear as more or less red; carbonate rocks are green, and mafic volcanic rocks are purple. The image is located at 36.8 degrees north latitude and 117.7 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11164

  17. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  18. Integration of environmental and spectral data for sunflower stress determination. [Red River Valley, Minnesota

    NASA Technical Reports Server (NTRS)

    Lillesand, T.; Seeley, M.

    1983-01-01

    Stress in sunflowers was assessed in western and northwestern Minnesota. Weekly ground observations (acquired in 1980 and 1981) were analyzed in concert with large scale aerial photography and concurrent LANDSAT data. Using multidate supervised and unsupervised classification procedures, it was found that all crops grown in association with sunflowers in the study area are spectrally separable from one another. Under conditions of extreme drought, severely stressed plants were differentiable from those not severely stressed, but between-crop separation was not possible. Initial regression analyses to estimate sunflower seed yield showed a sensitivity to environmental stress during the flowering and seed development stages. One of the most important biological factors related to sunflower production in the Red River Valley area was found to be the extent and severity of insect infestations.

  19. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    NASA Astrophysics Data System (ADS)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  20. Evaluation of Selected Model Constraints and Variables on Simulated Sustainable Yield from the Mississippi River Valley Alluvial Aquifer System in Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2008-01-01

    An existing conjunctive use optimization model of the Mississippi River Valley alluvial aquifer was used to evaluate the effect of selected constraints and model variables on ground-water sustainable yield. Modifications to the optimization model were made to evaluate the effects of varying (1) the upper limit of ground-water withdrawal rates, (2) the streamflow constraint associated with the White River, and (3) the specified stage of the White River. Upper limits of ground-water withdrawal rates were reduced to 75, 50, and 25 percent of the 1997 ground-water withdrawal rates. As the upper limit is reduced, the spatial distribution of sustainable pumping increases, although the total sustainable pumping from the entire model area decreases. In addition, the number of binding constraint points decreases. In a separate analysis, the streamflow constraint associated with the White River was optimized, resulting in an estimate of the maximum sustainable streamflow at DeValls Bluff, Arkansas, the site of potential surface-water withdrawals from the White River for the Grand Prairie Area Demonstration Project. The maximum sustainable streamflow, however, is less than the amount of streamflow allocated in the spring during the paddlefish spawning period. Finally, decreasing the specified stage of the White River was done to evaluate a hypothetical river stage that might result if the White River were to breach the Melinda Head Cut Structure, one of several manmade diversions that prevents the White River from permanently joining the Arkansas River. A reduction in the stage of the White River causes reductions in the sustainable yield of ground water.

  1. Runoff simulation in the Ferghana Valley (Central Asia) using conceptual hydrological HBV-light model

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Forkutsa, Irina; Frede, Hans-Georg

    2013-04-01

    Glaciers and permafrost on the ranges of the Tien Shan mountain system are primary sources of water in the Ferghana Valley. The water artery of the valley is the Syr Darya River that is formed by confluence of the Naryn and Kara Darya rivers, which originate from the mountain glaciers of the Ak-Shyrak and the Ferghana ranges accordingly. The Ferghana Valley is densely populated and main activity of population is agriculture that heavily depends on irrigation especially in such arid region. The runoff reduction is projected in future due to global temperature rise and glacier shrinkage as a consequence. Therefore, it is essential to study climate change impact on water resources in the area both for ecological and economic aspects. The evaluation of comparative contribution of small upper catchments (n=24) with precipitation predominance in discharge and the large Naryn and Karadarya River basins, which are fed by glacial melt water, to the Fergana Valley water balance under current and future climatic conditions is general aim of the study. Appropriate understanding of the hydrological cycle under current climatic conditions is significant for prognosis of water resource availability in the future. Thus, conceptual hydrological HBV-light model was used for analysing of the water balance of the small upper catchments that surround the Ferghana Valley. Three trial catchments (the Kugart River basin, 1010 km²; the Kurshab River basin, 2010 km2; the Akbura River basin, 2260 km²) with relatively good temporal quality data were chosen to setup the model. Due to limitation of daily temperature data the MODAWEC weather generator, which converts monthly temperature data into daily based on correlation with rainfall, was tested and applied for the HBV-light model.

  2. A simple optical model to estimate suspended particulate matter in Yellow River Estuary.

    PubMed

    Qiu, Zhongfeng

    2013-11-18

    Distribution of the suspended particulate matter (SPM) concentration is a key issue for analyzing the deposition and erosion variety of the estuary and evaluating the material fluxes from river to sea. Satellite remote sensing is a useful tool to investigate the spatial variation of SPM concentration in estuarial zones. However, algorithm developments and validations of the SPM concentrations in Yellow River Estuary (YRE) have been seldom performed before and therefore our knowledge on the quality of retrieval of SPM concentration is poor. In this study, we developed a new simple optical model to estimate SPM concentration in YRE by specifying the optimal wavelength ratios (600-710 nm)/ (530-590 nm) based on observations of 5 cruises during 2004 and 2011. The simple optical model was attentively calibrated and the optimal band ratios were selected for application to multiple sensors, 678/551 for the Moderate Resolution Imaging Spectroradiometer (MODIS), 705/560 for the Medium Resolution Imaging Spectrometer (MERIS) and 680/555 for the Geostationary Ocean Color Imager (GOCI). With the simple optical model, the relative percentage difference and the mean absolute error were 35.4% and 15.6 gm(-3) respectively for MODIS, 42.2% and 16.3 gm(-3) for MERIS, and 34.2% and 14.7 gm(-3) for GOCI, based on an independent validation data set. Our results showed a good precision of estimation for SPM concentration using the new simple optical model, contrasting with the poor estimations derived from existing empirical models. Providing an available atmospheric correction scheme for satellite imagery, our simple model could be used for quantitative monitoring of SPM concentrations in YRE.

  3. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  4. Mapping Ecosystem Services in the Jordan Valley, Jordan

    NASA Astrophysics Data System (ADS)

    Luz, Ana; Marques, Ana; Ribeiro, Inês; Alho, Maria; Catarina Afonso, Ana; Almeida, Erika; Branquinho, Cristina; Talozi, Samer; Pinho, Pedro

    2016-04-01

    In the last decade researchers started using ecosystem services as a new framework to understand the relationships between environment and society. Habitat quality and water quality are related with ecosystem services regulation and maintenance, or even provision. According to the Common International Classification of Ecosystem Services (CICES) both habitat quality and water quality are associated with lifecycle maintenance, habitat and gene pool protection, and water conditions, among others. As there is increased pressure on habitats and rivers especially for agricultural development, mapping and evaluating habitat and water quality has important implications for resource management and conservation, as well as for rural development. Here, we model and map habitat and water quality in the Jordan Valley, Jordan. In this study, we aim to identify and analyse ecosystem services both through 1) habitat quality and 2) water quality modelling using InVest, an integrated valuation of ecosystem services and tradeoffs. The data used in this study mainly includes the LULC, Jordan River watershed and main threats and pollutants in the study area, such as agriculture, industry, fish farms and urbanization. Results suggest a higher pressure on natural habitats in the Northern region of the Jordan Valley, where industry is dominant. Agriculture is present along the Jordan Valley and limits the few natural forested areas. Further, water pollution is mainly concentrated in disposal sites due to the low flow of the Jordan River. Our results can help to identify areas where natural resources and water resource management is most needed in the Jordan Valley. Acknowledgements: Transbasin FP7 project

  5. The potential impact of green agendas on historic river landscapes: Numerical modelling of multiple weir removal in the Derwent Valley Mills world heritage site, UK

    NASA Astrophysics Data System (ADS)

    Howard, A. J.; Coulthard, T. J.; Knight, D.

    2017-09-01

    The exploitation of river systems for power and navigation has commonly been achieved through the installation of a variety of in-channel obstacles of which weirs in Britain are amongst the most common. In the UK, the historic value of many of these features is recognised by planning designations and protection more commonly associated with historic buildings and other major monuments. Their construction, particularly in the north and west of Britain, has often been associated with industries such as textiles, chemicals, and mining, which have polluted waterways with heavy metals and other contaminants. The construction of weirs altered local channel gradients resulting in sedimentation upstream with the potential as well for elevated levels of contamination in sediments deposited there. For centuries these weirs have remained largely undisturbed, but as a result of the growth in hydropower and the drive to improve water quality under the European Union's Water Framework Directive, these structures are under increasing pressure to be modified or removed altogether. At present, weir modifications appear to be considered largely on an individual basis, with little focus on the wider impacts this might have on valley floor environments. Using a numerical modelling approach, this paper simulates the removal of major weirs along a 24-km stretch of the river Derwent, Derbyshire, UK, designated as a UNESCO World Heritage Site. The results suggest that although removal would not result in significant changes to the valley morphology, localised erosion would occur upstream of structures as the river readjusts its base level to new boundary conditions. Modelling indicates that sediment would also be evacuated away from the study area. In the context of the Derwent valley, this raises the potential for the remobilisation of contaminants (legacy sediments) within the wider floodplain system, which could have detrimental, long-term health and environmental implications for the

  6. Accounting for Consumptive Use of Lower Colorado River Water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.

    1994-01-01

    In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal

  7. Geohydrology of the Valley-Fill Aquifers between the Village of Greene, Chenango County and Chenango Valley State Park, Broome County, New York

    USGS Publications Warehouse

    Hetcher-Aguila, Kari K.; Miller, Todd S.

    2005-01-01

    The confined aquifer is widely used by people living and working in the Chenango River valley. The confined aquifer consists of ice-contact sand and gravel, typically overlies bedrock, and underlies a confining unit consisting of lacustrine fine sand, silt, and clay. The confining unit is typically more than 100 feet thick in the central parts of the valley between Greene Landing Field and along the northern edge of the Chenango Valley State Park. The thickness of the confined aquifer is more than 40 feet near the Greene Landing Field.

  8. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework

    NASA Astrophysics Data System (ADS)

    Wang, Taihua; Yang, Hanbo; Yang, Dawen; Qin, Yue; Wang, Yuhan

    2018-03-01

    The source region of the Yellow River (SRYR) is greatly important for water resources throughout the entire Yellow River Basin. Streamflow in the SRYR has experienced great changes over the past few decades, which is closely related to the frozen ground degradation; however, the extent of this influence is still unclear. In this study, the air freezing index (DDFa) is selected as an indicator for the degree of frozen ground degradation. A water-energy balance equation within the Budyko framework is employed to quantify the streamflow response to the direct impact of climate change, which manifests as changes in the precipitation and potential evapotranspiration, as well as the impact of frozen ground degradation, which can be regarded as part of the indirect impact of climate change. The results show that the direct impact of climate change and the impact of frozen ground degradation can explain 55% and 33%, respectively, of the streamflow decrease for the entire SRYR from Period 1 (1965-1989) to Period 2 (1990-2003). In the permafrost-dominated region upstream of the Jimai hydrological station, the impact of frozen ground degradation can explain 71% of the streamflow decrease. From Period 2 (1990-2003) to Period 3 (2004-2015), the observed streamflow did not increase as much as the precipitation; this could be attributed to the combined effects of increasing potential evapotranspiration and more importantly, frozen ground degradation. Frozen ground degradation could influence streamflow by increasing the groundwater storage when the active layer thickness increases in permafrost-dominated regions. These findings will help develop a better understanding of the impact of frozen ground degradation on water resources in the Tibetan Plateau.

  9. Effects of triclosan on hormones and reproductive axis in female Yellow River carp (Cyprinus carpio): Potential mechanisms underlying estrogen effect.

    PubMed

    Wang, Fan; Guo, Xiangmeng; Chen, Wanguang; Sun, Yaowen; Fan, Chaojie

    2017-12-01

    Triclosan (TCS), a member of the class of compounds called pharmaceutical and personal care products (PPCPs), is a broad antibacterial and antifungal agent found in a lot of consumer products. However, TCS hormone effect mechanism in teleost female fish is not clear. Female Yellow River carp (Cyprinus carpio) were exposed to 1/20, 1/10 and 1/5 LC 50 TCS (96h LC 50 of TCS to carp) under semi-static conditions for 42days. Vitellogenin (Vtg), 17β-estradiol (E 2 ), testosterone(T), estrogen receptor (Er), gonadotropin (GtH), and gonadotropin-releasing hormone (GnRH) levels were measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, we also examined the mRNA expressions of aromatase, GtHs-β, GnRH, and Er by quantitative real-time PCR (qRT-PCR). The results indicated that 1/5 LC 50 TCS induced Vtg in hepatopancreas of female carps by interference with the hypothalamic-pituitary-gonadal (HPG) axis at multiple potential loci through three mechanisms: (a) TCS exposure enhanced the mRNA expression of hypothalamus and gonadal aromatase which converts androgens into estrogens, subsequently increasing serum concentrations of E 2 to induce Vtg in hepatopancreas; (b) TCS treatment increased GnRH and GtH-β mRNA expression and secretion, causing the disturbance of reproductive endocrine and the increase of E 2 to induce Vtg in hepatopancreas; (c) TCS exposure enhanced synthesis and secretion of Er, then it bound to Er to active Vtg synthesis. These mechanisms showed that TCS may induce Vtg production in female Yellow River carp by Er-mediated and non-Er-mediated pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Reconnaissance of alluvial fans as potential sources of gravel aggregate, Santa Cruz River valley, Southeast Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Melick, Roger

    2002-01-01

    This investigation was conducted to provide information on the aggregate potential of alluvial fan sediments in the Santa Cruz River valley. Pebble lithology, roundness, and particle size were determined in the field, and structures and textures of alluvial fan sediments were photographed and described. Additional measurements of particle size on digital photographs were made on a computer screen. Digital elevation models were acquired and compiled for viewing the areal extent of selected fans. Alluvial fan gravel in the Santa Cruz River valley reflects the lithology of its source. Gravel derived from granitic and gneissic terrane of the Tortolita, Santa Catalina, and Rincon Mountains weathers to grus and is generally inferior for use as aggregate. Gravel derived from the Tucson, Sierrita, and Tumacacori Mountains is composed mostly of angular particles of volcanic rock, much of it felsic in composition. This angular volcanic gravel should be suitable for use in asphalt but may require treatment for alkali-silica reaction prior to use in concrete. Gravel derived from the Santa Rita Mountains is of mixed plutonic (mostly granitic rocks), volcanic (mostly felsic rocks), and sedimentary (sandstone and carbonate rock) composition. The sedimentary component tends to make gravel derived from the Santa Rita Mountains slightly more rounded than other fan gravel. The coarsest (pebble, cobble, and boulder) gravel is found near the heads (proximal part) of alluvial fans. At the foot (distal part) of alluvial fans, most gravel is pebble-sized and interbedded with sand and silt. Some of the coarsest gravel was observed near the head of the Madera Canyon, Montosa Canyon, and Esperanza Wash fans. The large Cienega Creek fan, located immediately south and southeast of Tucson, consists entirely of distal-fan pebble gravel, sand, and silt.

  11. A Proposed Habitat Management Plan for Yellow-Billed Cuckoos in California

    Treesearch

    Stephen A. Laymon; Mary D. Halterman

    1989-01-01

    The California Wildlife-Habitat Relationship (WHR) system was tested for birds breeding in the Valley-Foothill Riparian habitat along California's Sacramento and South Fork Kern rivers. The model performed poorly with 33 pct and 21 pct correct predictions respectively at the two locations. Changes to the model for 60 species on the Sacramento River and 66 species...

  12. Demographics and movements of least terns and piping plovers in the Central Platte River Valley, Nebraska

    USGS Publications Warehouse

    Roche, Erin A.; Sherfy, Mark H.; Ring, Megan M.; Shaffer, Terry L.; Anteau, Michael J.; Stucker, Jennifer H.

    2016-08-09

    The Central Platte River Valley provides breeding habitat for a variety of migratory birds, including federally endangered interior least terns (Sternula antillarum; least tern) and threatened piping plovers (Charadrius melodus). Since 2009, researchers have collected demographic data on both species that span their lifecycle (that is, from egg laying through survival of adults). Demographic data were used to estimate vital rates (for example, nest survival, chick survival, and so on) for both species and assess how these vital rates were related to type and age of nesting habitat. Nest survival of both species was unrelated to the age of the site a nest was initiated on. Piping plover chick survival to fledging age was not related to the age of the site it was hatched at, however, the probability of a least tern chick surviving to fledging was higher at older sites. In general there were fewer piping plover nests than least tern nests found at sites created through either the physical construction of a new site or new vegetation management regimes, during 2009–14.Mean daily least tern nest survival was 0.9742 (95-percent confidence interval [CI]: 0.9692–0.9783) and cumulative nest survival was 0.59 (95-percent CI: 0.53–0.65). Mean daily least tern chick survival was 0.9602 (95-percent CI: 0.9515–0.9673) and cumulative survival to fledging was 0.54 (95-percent CI = 0.48–0.61). Annual apparent survival rates were estimated at 0.42 (95-percent CI = 0.22–0.64) for adult least terns nesting in the Central Platte River Valley and an apparent survival rate of 0.14 (95-pecent CI = 0.04–0.41) for juvenile least terns. The number of least tern nests present at sites created during 2009–14 was associated with the age of the site; more least tern nests were associated with older sites. During 2009–14, there were four (less than 1 percent of all chicks marked) least tern chicks hatched from the Central Platte River Valley that were subsequently captured on

  13. The Politics of Place: Official, Intermediate and Community Discourses in Depopulated Rural Areas of Central Spain. The Case of the Riaza River Valley (Segovia, Spain)

    ERIC Educational Resources Information Center

    Paniagua, Angel

    2009-01-01

    This paper provides theoretical and methodological arguments to study the politics of space in small marginal and depopulated areas of Spain. The case for research is the Riaza river valley in the province of Segovia. Usually the analysis of rural space (and the geographical space in general) provides opposing presentations: vertical, between…

  14. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    PubMed

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and

  15. Runoff and sediment variation in the areas with high and coarse sediment yield of the middle Yellow River

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Yao, Wenyi; Xiao, Peiqing; Sun, Weiying

    2018-02-01

    Massive water and soil conservation works (WSCW) have been conducted in the areas with high and coarse sediment yield of the middle Yellow River since 1982. With the impending effects of climate change, it is necessary to reconsider the effects of WSCW on runoff and sediment variation at decadal and regional scales. Using long-term official and synthesized data, the WSCW impacts on reducing water and soil loss were studied in Sanchuanhe River watershed. Results showed that the sediment and runoff generated from this area showed a decreasing trend in the past 50 years. A great progress has been achieved in erosion control since the 1970s. After the 4 soil and water conservation harnessing stages during the period from 1970 to 2006, the sediment and runoff yield showed decreases with the extension of harnessing. The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. The contribution of rainfall variation to runoff reduction was as large as human activities. A great benefit have been obtained in water and soil loss control in this area.

  16. Betsiboka River Valley, Madagascar

    NASA Image and Video Library

    1983-06-24

    STS007-03-058 (18-24 June 1983) --- The Island of Madagascar in the Indian Ocean off the coast of Africa. The colorful area is the mouth of the Betsiboka River near the city of Majunga. The photograph was taken with a 70mm handheld camera aimed through the aft flight deck?s overhead windows on the Earth-orbiting Space Shuttle Challenger.

  17. Formation and evolution of valley-bottom and channel features, Lower Deschutes River, Oregon

    USGS Publications Warehouse

    Curran, Janet H.; O'Conner, Jim E.; O'Conner, Jim E.; Grant, Gordon E.

    2003-01-01

    Primary geologic and geomorphic processes that formed valley-bottom and channel features downstream from the Pelton-Round Butte dam complex are inferred from a canyon-long analysis of feature morphology, composition, location, and spatial distribution. Major controls on valley-bottom morphology are regional tectonics, large landslides, and outsized floods (floods with return periods greater than 1000 yrs), which include the late Holocene Outhouse Flood and several Quaternary landslide dam failures. Floods with a return period on the order of 100 yrs, including historical floods in 1996, 1964, and 1861, contribute to fan building and flood plain formation only within the resistant framework established by the major controls. Key processes in the formation of channel features, in particular the 153 islands and 23 large rapids, include long-term bedrock erosion, outsized floods, and century-scale floods. Historical analysis of channel conditions since 1911 indicates that the largest islands, which are cored by outsized-flood deposits, locally control channel location, although their margins are substantially modified during annual- to century-scale floods. Islands cored by bedrock have changed little. Islands formed by annual- to century-scale floods are more susceptible to dynamic interactions between tributary sediment inputs, mainstem flow hydraulics, and perhaps riparian vegetation. Temporal patterns of island change in response to the sequence of 20th century flooding indicate that many islands accreted sediment during annual- to decadal-scale floods, but eroded during larger century-scale floods. There is, however, no clear trend of long-term changes in patterns of island growth, movement, or erosion either spatially or temporally within the lower Deschutes River.

  18. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    USGS Publications Warehouse

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  19. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2016-04-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing

  20. Morphogenetic evolution of the Têt river valley (eastern Pyrenees) using 10Be/21Ne cosmogenic burial dating

    NASA Astrophysics Data System (ADS)

    Sartégou, Amandine; Blard, Pierre-Henri; Braucher, Régis; Bourlès, Didier L.; Calvet, Marc; Zimmermann, Laurent; Tibari, Bouchaïb; Hez, Gabriel; Gunnell, Yanni; Aumaitre, Georges; Keddadouche, Karim

    2016-04-01

    The rates and chronologies of valley incision are closely modulated by the tectonic uplift of active mountain ranges and were controlled by repeated climate changes during the Quaternary. The continental collision between the Iberian and Eurasian plates induced a double vergence orogen, the Pyrenees, which has been considered as a mature mountain range in spite of significant seismicity (e.g. Chevrot et al., 2011) and evidence of neotectonics (e.g. Goula et al., 1999). Nevertheless, recent studies indicate that the range may have never reached a steady state (Ford et al., in press). One option for resolving this controversy is to quantify the incision rates since the Miocene by reconstructing the vertical movement of geometric markers such as fluvial terraces. However, the few available ages from the Pyrenean terrace systems do not exceed the middle Pleistocene. Thus, to enlarge the time span of this dataset, we studied alluvium-filled horizontal epiphreatic passages in limestone karstic networks. Such landforms are used as substitutes of fluvial terraces because they represent former valley floors (e.g. Palmer, 2007; Audra et al., 2013). They record the transient position of former local base levels during the process of valley deepening. The Têt river valley (southern Pyrenees) was studied near the Villefranche-de-Conflent limestone gorge where 8 cave levels have been recognized over a vertical height of 600 meters. Given that 26Al/10Be cosmogenic burial dating in this setting was limited to the last ~5 Ma (Calvet et al., 2015), here we used the cosmogenic 10Be/21Ne method in order to restore a more complete chronology of valley incision (e.g. Balco & Shuster, 2009; McPhilipps et al., 2016). Burial age results for alluvial deposits from 12 caves document incision rates since the Langhian (~14 Ma). Preliminary results indicate a history of valley deepening in successive stages. The data show a regular incision rate of 70-80 mm/a from the Langhian to the Messinian

  1. Effect of water level changes in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites

    NASA Astrophysics Data System (ADS)

    Lv, Haibo; Zhang, Hong

    2018-04-01

    The purpose of this study was to investigate the effect of water level changes (WLC) in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites. The rate of CO2 emissions (RCE) from soil was measured in some Phragmites wetlands selected along the Yumenkou-Tongguan section in this river's middle reaches. An artificial recharge experiment was conducted and the data about this section's water levels for the past 15 years was analyzed. This study found that the water level of this river section changed frequently in the last 11 summers. The effect of WLC depended on air temperature. At low temperatures of between 18.0 and 28.0 °C, WLC contributed to a RCE change from 10.19 mmol.m-2.h-1 to 13.43 mmol.m-2.h-1. When the temperature fell within the normal range of 29.0-35.0 °C, the corresponding changes were from 4.07 mmol.m-2.h-1 to 7.35 mmol.m-2.h-1. When the temperature was higher than 35.0 °C, the corresponding changes increased slightly from 6.47 mmol.m-2.h-1 to 12.41 mmol.m-2.h-1. These suggest that WLC had a considerable effect on CO2 emissions at high and low temperatures. As the water level rose, the RCE increased and then decreased in both types of wetlands. At low temperatures, the most favorable water levels for CO2 emissions were -10 cm and 0 cm. At normal temperatures, the RCE from the two types of wetlands decreased with rising water level. At high temperatures, the most favorable water level was -60 cm for Phragmites wetlands. These results demonstrate that frequent WLC can slow CO2 release from Phragmites wetlands along the middle reaches of the Yellow River. Therefore, research on the effect of WLC on CO2 emissions has practical significance.

  2. ENDOMETRIOSIS IN A COHORT OF WOMEN LIVING IN THE KANAWHA RIVER VALLEY IN WEST VIRGINIA: BLOOD LEVELS OF NON-DIOXIN-LIKE PCBs AND RELATIONSHIP WITH BMI AND AGE

    EPA Science Inventory

    Industrial activities, specifically from petroleum and chemical manufacturing facilities, in the Kanawha River Valley (KRV) of West Virginia have resulted in releases of dioxin and dioxin-like chemicals (DLCs). I Most of the dioxin found in this region has resulted from the produ...

  3. South America South of the Amazon River--A Climatological Study

    DTIC Science & Technology

    1992-08-01

    narrow river valleys. Valley floors are usually at 1,000 to 2,000 feet (305-610 meters, MSL and 1-3 NM wide. This figure shows the Rimac River east of...coast. Major rivers from is Ojos del Salado (270 06’ S, 680 30’ W). north to south include the Chicama, the Rimac , Mountain passes average 10,500 feet... Rivers meet at 10050’ S,. south to 10* S, then turns southeast to 17’ S, 73055’ W; it flows north, parallel to the eastern 63030’ W. From this point it

  4. Seismic anisotropy of the Archean crust in the Minnesota River Valley, Superior Province

    NASA Astrophysics Data System (ADS)

    Ferré, Eric C.; Gébelin, Aude; Conder, James A.; Christensen, Nik; Wood, Justin D.; Teyssier, Christian

    2014-03-01

    The Minnesota River Valley (MRV) subprovince is a well-exposed example of late Archean lithosphere. Its high-grade gneisses display a subhorizontal layering, most likely extending down to the crust-mantle boundary. The strong linear fabric of the gneisses results from high-temperature plastic flow during collage-related contraction. Seismic anisotropies measured up to 1 GPa in the laboratory, and seismic anisotropies calculated through forward-modeling indicate ΔVP ~5-6% and ΔVS ~3%. The MRV crust exhibits a strong macroscopic layering and foliation, and relatively strong seismic anisotropies at the hand specimen scale. Yet the horizontal attitude of these structures precludes any substantial contribution of the MRV crust to shear wave splitting for vertically propagating shear waves such as SKS. The origin of the regionally low seismic anisotropy must lie in the upper mantle. A horizontally layered mantle underneath the United States interior could provide an explanation for the observed low SWS.

  5. Preliminary report on deposit models for sand and gravel in the Cache la Poudre River valley

    USGS Publications Warehouse

    Langer, W.H.; Lindsey, D.A.

    1999-01-01

    The stratigraphy, sedimentary features, and physical characteristics of gravel deposits in the Cache la Poudre River valley were studied to establish geologic models for these deposits. Because most of the gravel mined in the valley is beneath the low terraces and floodplain, the quality of these deposits for aggregate was studied in detail at eight sites in a 25.5-mile reach between Fort Collins and Greeley, Colorado. Aggregate quality was determined by field and laboratory measurements on samples collected under a consistent sampling plan. The Broadway terrace is underlain by Pleistocene alluvium and, at some places, by fine-grained wind-blown deposits. The Piney Creek terrace, low terraces, and floodplain are primarily underlain by Holocene alluvium. Pleistocene alluvium may underlie these terraces at isolated locations along the river. Gravels beneath the Piney Creek terrace, low terraces, and floodplain are divisible into two units that are poorly distinguishable at the upstream end of the study area, but are readily distinguishable about 7 miles downstream. Where distinguished, the two gravel units are separated by a sharp, locally erosional, contact. The upper gravel is probably of Holocene age, but the lower gravel is considered to be Holocene and Pleistocene. The primary variation in particle size of the gravels beneath the floodplain and low terraces of the Cache la Poudre River valley is the downstream decrease in the proportion of particles measuring 3/4 inch and larger. Above Fort Collins, about 60 pct of the gravel collects on the 3/4 inch sieve, whereas about 50 pct of gravel collects on the same sieve size at Greeley. For 1.5-inch sieves, the corresponding values are about 50 pct for Fort Collins and only about 30 pct for Greeley. Local differences in particle size and sorting between the upper and lower gravel units were observed in the field, but only the coarsest particle sizes appear to have been concentrated in the lower unit. Field

  6. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  7. Fault tectonics and earthquake hazards in the Peninsular Ranges, Southern California. [including San Diego River, Otay Mts., Japatul Valley, Barrett Lake, Horsethief Canyon, Pine Valley Creek, Pine Creek, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.

  8. Coachella Valley, CA

    NASA Image and Video Library

    2001-10-22

    These band composites, acquired on June 4, 2000, cover a 11 by 13.5 km sub-scene in the Coachella Valley, CA. The area is shown by the yellow box on the full scene in the LOWER RIGHT corner, northwest of the Salton Sea. This is a major agricultural region of California, growing fruit and produce throughout the year. Different combinations of ASTER bands help identify the different crop types. UPPER LEFT: bands 3, 2, 1 as red, green, and blue (RGB); UPPER RIGHT: bands 4, 2, 1 as RGB; LOWER LEFT: bands 4, 3, 2 as RGB. The image is centered at 33.6 degrees north latitude, 116.1 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11161

  9. NEUROSENSORY EFFECTS OF CHRONIC HUMAN EXPOSURE TO ARSENIC ASSOCIATED WITH BODY BURDEN AND ENVIRONMENTAL MEASURES

    EPA Science Inventory

    Exposure to arsenic in drinking water is known to produce a variety of health problems including peripheral neuropathy. Auditory, visual and somatosensory impairments have been reported in Mongolian farmers living in the Yellow River Valley where drinking water is contami...

  10. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China.

    PubMed

    Qin, Yue; Yang, Dawen; Gao, Bing; Wang, Taihua; Chen, Jinsong; Chen, Yun; Wang, Yuhan; Zheng, Guanheng

    2017-12-15

    The Yellow River source region is located in the transition region between permafrost and seasonally frozen ground on the northeastern Qinghai-Tibet Plateau. The region has experienced severe climate change, especially air temperature increases, in past decades. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to assess the impacts of climate change on the frozen ground and eco-hydrological processes in the region. Based on a long-term simulation from 1981 to 2015, we found that the areal mean maximum thickness of seasonally frozen ground ranged from 1.1-1.8m and decreased by 1.2cm per year. Additionally, the ratio of the permafrost area to the total area decreased by 1.1% per year. These decreasing trends are faster than the average in China because the study area is on the sensitive margin of the Qinghai-Tibet Plateau. The annual runoff exhibited variations similar to those of the annual precipitation (R 2 =0.85), although the annual evapotranspiration (ET) exhibited an increasing trend (14.3mm/10a) similar to that of the annual mean air temperature (0.66°C/10a). The runoff coefficient (annual runoff divided by annual precipitation) displayed a decreasing trend because of the increasing ET, and the vegetation responses to climate warming and permafrost degradation were manifested as increases in the leaf area index (LAI) and ET at the start of the growing season. Furthermore, the results showed that changes to the frozen ground depth affected vegetation growth. Notably, a rapid decrease in the frozen ground depth (< -3.0cm/a) decreased the topsoil moisture and then decreased the LAI. This study showed that the eco-hydrological processes in the headwater area of the Yellow River have changed because of permafrost degradation, and these changes could further influence the water resources availability in the middle and lower reaches of the basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The use of historical maps for reconstructing landforms before river damming. The case of the Swiss Rhone River

    NASA Astrophysics Data System (ADS)

    Reynard, E.; Laigre, L.; Baud, D.

    2012-04-01

    The Swiss Rhone River was systematically embanked during the period 1864-1893. The Swiss Rhone River valley is a glacial valley filled by glaciolacustrine, fluvioglacial and fluvial sediments. Torrential tributaries contribute to a large extent to the sedimentation in the valley and have built large alluvial fans in the main valley. The period before the river damming corresponds to the Little Ice Age, and it is supposed that the torrential behaviour of the river and its tributaries was very active during that period. In parallel to a large hydraulic project (Third Rhone River Correction), aiming at enlarging the river for security and environmental reasons, this project aims at reconstructing the palaeogeomorphology of the river floodplain before and also during the 30-year long embankment project developed during the last decades of the 19th century. The objective is to better know the geomorphological behaviour of the river, and also to localize palaolandforms (meanders, braided patterns, sandstone dunes, wetlands, etc.), present in the floodplain in the first part of the 19th century and that have now totally disappeared. The project is carried out in close collaboration with the Cantonal Archives of Valais and with a group of historians working on the relations between the river and the communities. It should contribute to a better knowledge of the Swiss Rhone River history (Reynard et al., 2009). Both published official maps (Dufour maps, Siegfried maps) and unpublished maps and plans are systematically collected, digitized, and organised in a database managed by a Geographical Information System. Other data are collected (place names, geomorphological, hydrological and hydraulic data, information about land-use and vegetation, paintings and photographs, etc.) and localised. A high-resolution digital terrain model and areal photographs are also used and allow us to map palaeolandforms (meanders, filled oxbow lakes, former channels, etc.). In a second step

  12. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    USGS Publications Warehouse

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.

    2018-01-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  13. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy E.; Fairley, Helen C.

    2018-06-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  14. Building sustainable communities using sense of place indicators in three Hudson River Valley, NY, tourism destinations: An application of the limits of acceptable change process

    Treesearch

    Laura E. Sullivan; Rudy M. Schuster; Diane M. Kuehn; Cheryl S. Doble; Duarte Morais

    2010-01-01

    This study explores whether measures of residents' sense of place can act as indicators in the Limits of Acceptable Change (LAC) process to facilitate tourism planning and management. Data on community attributes valued by residents and the associated values and meanings were collected through focus groups with 27 residents in three Hudson River Valley, New York,...

  15. Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records

    NASA Astrophysics Data System (ADS)

    Kale, Vishwas S.; Sengupta, Somasis; Achyuthan, Hema; Jaiswal, Manoj K.

    2014-12-01

    The Indian Peninsula is generally considered as a tectonically stable region, where ancient rocks, rivers and land surfaces predominate. In some parts of this ancient landscape, however, the role of tectonic landsculpting is strongly indicated by the presence of youthful topography and historical seismic activity. The present study is primarily focused on the middle domain of the Kaveri River, which displays such youthful features. The tectonic controls on this cratonic river were evaluated on the basis of the investigations of the longitudinal profiles, morphotectonic indices of active tectonics, and fluvial records. The presence of steep channel gradients, prominent knickpoints, hanging valleys, narrow bedrock gorges, and channel-in-channel morphology imply rapid erosion rates in the middle domain of the basin in response to active deformation, particularly in the reach defined by two major active faults - the Kollegal-Sivasamudram Fault and the Mekedatu Fault. Further, considering the remarkably low modern and long-term denudation rates and OSL ages of the alluvial deposits (30-40 ka), the tectonically-driven rejuvenation does not appear to be geologically recent as postulated by earlier workers.

  16. COHORT OF WOMEN LIVING IN OR NEAR A HIGHLY INDUSTRIALIZED AREA OF KANAWHA RIVER VALLEY IN WEST VIRGINIA: ENDOMETRIOSIS AND BLOOD LEVELS OF DIOXIN AND DIOXIN-LIKE CHEMICALS

    EPA Science Inventory

    Introduction Historical releases of dioxin and dioxin-like chemicals with subsequent impacts to environmental media in the Kanawha River Valley (KRV) of West Virginia have been well documented.' The bulk of dioxin found in this area appears to be derived from the production of 2,...

  17. Hydrogeomorphic and hydraulic habitats of the Niobrara River, Nebraska-with special emphasis on the Niobrara National Scenic River

    USGS Publications Warehouse

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathan J.

    2010-01-01

    The Niobrara River is an ecologically and economically important resource in Nebraska. The Nebraska Department of Natural Resources' recent designation of the hydraulically connected surface- and groundwater resources of the Niobrara River Basin as ?fully appropriated? has emphasized the importance of understanding linkages between the physical and ecological dynamics of the Niobrara River so it can be sustainably managed. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey investigated the hydrogeomorphic and hydraulic attributes of the Niobrara River in northern Nebraska. This report presents the results of an analysis of hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River and its valley for the approximately 330-mile reach from Dunlap Diversion Dam to its confluence with the Missouri River. Two spatial scales were used to examine and quantify the hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River: a basin scale and a reach scale. At the basin scale, digital spatial data and hydrologic data were analyzed to (1) test for differences between 36 previously determined longitudinal hydrogeomorphic segments; (2) quantitatively describe the hydrogeomorphic characteristics of the river and its valley; and (3) evaluate differences in hydraulic microhabitat over a range of flow regimes among three fluvial geomorphic provinces. The statistical analysis of hydrogeomorphic segments resulted in reclassification rates of 3 to 28 percent of the segments for the four descriptive geomorphic elements. The reassignment of classes by discriminant analysis resulted in a reduction from 36 to 25 total hydrogeomorphic segments because several adjoining segments shared the same ultimate class assignments. Virtually all of the segment mergers were in the Canyons and Restricted Bottoms (CRB) fluvial geomorphic province. The most frequent classes among hydrogeomorphic segments, and the dominant classes per unit

  18. Spatial Patterns of Airborne Pesticides in the Alpine Habitat of a Declining Calfornia Amphibian, The Mountain Yellow-Legged Frog

    EPA Science Inventory

    The mountain yellow-legged frog complex (Rana muscosa complex) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distributions and conce...

  19. Spatial Patterns of Airborne Pesticides in the Alpine Habitat of a Declining California Amphibian, The Mountain Yellow-Legged Frog

    EPA Science Inventory

    The mountain yellow-legged frog complex (Rana muscosa complex) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distributions and conce...

  20. Geology and ground water of the Tualatin Valley, Oregon

    USGS Publications Warehouse

    Hart, D.H.; Newcomb, R.C.

    1965-01-01

    The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland. Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains. Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial aquifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development. The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers. The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor

  1. [Mapping environmental vulnerability from ETM + data in the Yellow River Mouth Area].

    PubMed

    Wang, Rui-Yan; Yu, Zhen-Wen; Xia, Yan-Ling; Wang, Xiang-Feng; Zhao, Geng-Xing; Jiang, Shu-Qian

    2013-10-01

    The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.

  2. Changes in daily and monthly rainfall in the Middle Yellow River, China

    NASA Astrophysics Data System (ADS)

    He, Yi; Tian, Peng; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Wang, Fei; Li, Pengfei

    2017-07-01

    Highly concentrated precipitation, where a large percentage of annual precipitation occurs over a few days, may include a high risk of flooding and severe soil erosion. Thus, areas with severe erosion such as the Loess Plateau in China are particularly vulnerable to highly concentrated precipitation events due to climate change. In this study, we investigated spatial and temporal patterns in the concentration of rainfall in the Middle Yellow River (MYR) from the last 56 years (1958-2013). We used daily and monthly precipitation data from 26 meteorological stations in the study area to calculate the precipitation concentration index (PCI) and the concentration index (CI). The southern and northern parts of the MYR were characterized by a lower CI with a decreasing trend, while the middle parts had a higher CI with an increasing trend. High PCI values occurred in the southern MYR, while lower PCIs with a more homogenous rainfall distribution were found mainly in the northern parts of the MYR. The annual PCI and CI exhibited positive trends at most stations, although only a minority of stations had significant trends ( P < 0.05). At seasonal scales, CI exhibited significantly increasing trends in winter at most stations, while a few stations had significant trends in the other three seasons. These findings provide important reference information to facilitate ecological restoration and farming operations in the study region.

  3. Resolving Large Pre-glacial Valleys Buried by Glacial Sediment Using Electric Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.

    2004-05-01

    Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI

  4. Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California

    USGS Publications Warehouse

    Rosenberg, Lewis I.; Clark, Joseph C.

    2009-01-01

    The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports

  5. Detection of Lyme Disease Bacterium, Borrelia burgdorferi sensu lato, in Blacklegged Ticks Collected in the Grand River Valley, Ontario, Canada.

    PubMed

    Scott, John D; Foley, Janet E; Anderson, John F; Clark, Kerry L; Durden, Lance A

    2017-01-01

    We document the presence of blacklegged ticks, Ixodes scapularis , in the Grand River valley, Centre Wellington, Ontario. Overall, 15 (36%) of 42 I. scapularis adults collected from 41 mammalian hosts (dogs, cats, humans) were positive for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.). Using real-time PCR testing and DNA sequencing of the flagellin ( fla ) gene, we determined that Borrelia amplicons extracted from I. scapularis adults belonged to B. burgdorferi sensu stricto (s.s.), which is pathogenic to humans and certain domestic animals. Based on the distribution of I. scapularis adults within the river basin, it appears likely that migratory birds provide an annual influx of I. scapularis immatures during northward spring migration. Health-care providers need to be aware that local residents can present with Lyme disease symptoms anytime during the year.

  6. Detection of Lyme Disease Bacterium, Borrelia burgdorferi sensu lato, in Blacklegged Ticks Collected in the Grand River Valley, Ontario, Canada

    PubMed Central

    Scott, John D.; Foley, Janet E.; Anderson, John F.; Clark, Kerry L.; Durden, Lance A.

    2017-01-01

    We document the presence of blacklegged ticks, Ixodes scapularis, in the Grand River valley, Centre Wellington, Ontario. Overall, 15 (36%) of 42 I. scapularis adults collected from 41 mammalian hosts (dogs, cats, humans) were positive for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.). Using real-time PCR testing and DNA sequencing of the flagellin (fla) gene, we determined that Borrelia amplicons extracted from I. scapularis adults belonged to B. burgdorferi sensu stricto (s.s.), which is pathogenic to humans and certain domestic animals. Based on the distribution of I. scapularis adults within the river basin, it appears likely that migratory birds provide an annual influx of I. scapularis immatures during northward spring migration. Health-care providers need to be aware that local residents can present with Lyme disease symptoms anytime during the year. PMID:28260991

  7. Geometry of the Paleo-Nueces River Incised-Valley, Corpus Christi Bay, Texas as it Relates to Quaternary Sea Level History

    NASA Astrophysics Data System (ADS)

    Lugrin, L.; Gulick, S. S.; Goff, J. A.

    2012-12-01

    CHIRP subbottom seismic data were collected on the 2009 and 2011 Marine Geophysics Field courses at the University of Texas at Austin within the Corpus Christi Bay along the central Texas coast in order to study the geometry of the ancestral Nueces River incised valley and its evolution over Quaternary sea level history. Since the late Pleistocene, the Nueces River valley experienced a gradual infill due to sea level rise, interrupted by two major flooding events that represent periods of rapid sediment influx. These flooding events are recognizable based on abrupt changes in seismic facies. Discontinuous, chaotic fluvial lag deposits present underneath a fairly continuous, stratified, sub-horizontal estuarine coastal plain facies mark what is interpreted to be the Pleistocene/Holocene unconformity. Above the P/H boundary, oyster reefs thrive within the estuary until capped by a strong reflector, marking the second flooding surface that allowed enough incoming sediment to discontinue oyster reef growth. The estuarine deposits within the paleo-Nueces river valley exhibit a landward migration as the Holocene transgression proceeded. As infill continued, the bay-head delta prograded seaward and the flood-tidal delta extended progressively further up the estuary until the central estuarine basin was capped. The earlier flooding events provide strong reflectors that can be linked to the draining of Lake Agassiz around 8.2 k.a.. This event flooded the Gulf of Mexico with freshwater, and interrupted the estuarine infilling of the Nueces paleo-channel. Cores from previous studies have found at least two species of oyster reefs in Corpus Christi Bay: euryhaline species Crassostrea virginica, and Ostrea equestris, a species known to thrive in higher salinity waters. The presence of both species at the flooding boundary suggests the sudden pulse of freshwater mixed with higher salinity oceanic water. The second flooding surface is interpreted to be associated with an increase

  8. Flood Simulation based on ArcGIS in the Ungauged Area from Fugu to Wubao of the middle Yellow River

    NASA Astrophysics Data System (ADS)

    Jin, Shuangyan; Yan, Yiqi; Jiang, Xinhui

    2017-12-01

    The Qingliangsigou and Jialuhe in the middle Yellow River are selected as the typical tributaries, history flood data in 1980-2013 and Horton infiltration capacity curve are used to calculate the stable infiltration rate and establish the model of runoff yield and concentration, the parameters are calibrated and applied in the ungauged area from Fugu to Wubao. The study area is divided into 20 units based on ArcGIS, Muskingum method parameters in each unit are calibrated, and typical floods of ungauged area from Fugu to Wubao are simulated. The results show that the simulation effects are good: the average error of peak time is about -0.4h, the error of peak discharge is in the forecasting allowable range, and the deterministic coefficient is 0.66.

  9. Hydrologic Evaluation of the Jungo Area, Southern Desert Valley, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.

    2010-01-01

    RecologyTM, the primary San Francisco waste-disposal entity, is proposing to develop a Class 1 landfill near Jungo, Nevada. The proposal calls for the landfill to receive by rail about 20,000 tons of waste per week for up to 50 years. On September 22, 2009, the Interior Appropriation (S.A. 2494) was amended to require the U.S. Geological Survey to evaluate the proposed Jungo landfill site for: (1) potential water-quality impacts on nearby surface-water resources, including Rye Patch Reservoir and the Humboldt River; (2) potential impacts on municipal water resources of Winnemucca, Nevada; (3) locations and altitudes of aquifers; (4) how long it will take waste seepage from the site to contaminate local aquifers; and (5) the direction and distance that contaminated groundwater would travel at 95 and 190 years. This evaluation was based on review of existing data and information. Desert Valley is tributary to the Black Rock Desert via the Quinn River in northern Desert Valley. The Humboldt River and Rye Patch Reservoir would not be affected by surface releases from the proposed Jungo landfill site because they are in the Humboldt basin. Winnemucca, on the Humboldt River, is 30 miles east of the Jungo landfill site and in the Humboldt basin. Groundwater-flow directions indicate that subsurface flow near the proposed Jungo landfill site is toward the south-southwest. Therefore, municipal water resources of Winnemucca would not be affected by surface or subsurface releases from the proposed Jungo landfill site. Basin-fill aquifers underlie the 680-square-mile valley floor in Desert Valley. Altitudes around the proposed Jungo landfill site range from 4,162 to 4,175 feet. Depth to groundwater is fairly shallow in southern Desert Valley and is about 60 feet below land surface at the proposed Jungo landfill site. A groundwater divide exists about 7 miles north of the proposed Jungo landfill site. Groundwater north of the divide flows north towards the Quinn River. South of

  10. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  11. SHRIMP study of zircons from Early Archean rocks in the Minnesota River Valley: Implications for the tectonic history of the Superior Province

    USGS Publications Warehouse

    Bickford, M.E.; Wooden, J.L.; Bauer, R.L.

    2006-01-01

    Interest in Paleoarchean to early Mesoarchean crust in North America has been sparked by the recent identification of ca. 3800-3500 Ma rocks on the northern margin of the Superior craton in the Assean Lake region of northern Manitoba and the Porpoise Cove terrane in northern Quebec. It has long been known that similarly ancient gneisses are exposed on the southern margin of the Superior craton in the Minnesota River Valley and in northern Michigan, but the ages of these rocks have been poorly constrained, because methods applied in the 1960s through late 1970s were inadequate to unravel the complexities of their thermotectonic history. Rocks exposed in the Minnesota River Valley include a complex of migmatitic granitic gneisses, schistose to gneissic amphibolite, metagabbro, and paragneisses. The best-known units are the Morton Gneiss and the Montevideo Gneiss. The complex of ancient gneisses is intruded by a major younger, weakly deformed granite body, the Sacred Heart granite. Regional geophysical anomalies that extend across the Minnesota River Valley have been interpreted as defining boundaries between distinct blocks containing the various gneissic units. New sensitive high-resolution ion microprobe (SHRIMP) U-Pb data from complex zircons yielded the following ages: Montevideo Gneiss near Montevideo, 3485 ?? 10 Ma, granodiorite intrusion, 3385 ?? 8 Ma; Montevideo Gneiss at Granite Falls, 3497 ?? 9 Ma, metamorphic event, 3300-3350 Ma, mafic intrusion, 3141 ?? 2 Ma, metamorphic overprint (rims), 2606 ?? 4 Ma; Morton Gneiss: 3524 ?? 9 Ma, granodiorite intrusion, 3370 ?? 8 Ma, metamorphic overprints (growth of rims), 3140 ?? 2 Ma and 2595 ?? 4 Ma; biotite-garnet paragneiss, 2619 ?? 20 Ma; and Sacred Heart granite, 2604 ?? 4 Ma. Zircons from a cordierite-bearing feldspar-biotite schist overlying the Morton Gneiss yielded well-defined age peaks at 3520, 3480, 3380, and 3140 Ma, showing detrital input from most of the older rock units; 2600 Ma rims on these zircons

  12. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the

  13. Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data, Coeur D'Alene River Valley, Idaho

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Harsanyi, Joseph C.

    1995-01-01

    The success of imaging spectrometry in mineralogic mapping of natural terrains indicates that the technology can also be used to assess the environmental impact of human activities in certain instances. Specifically, this paper describes an investigation into the use of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mapping the spread of, and assessing changes in, the mineralogic character of tailings from a major silver and base metal mining district. The area under investigation is the Coeur d'Alene River Valley in northern Idaho. Mining has been going on in and around the towns of Kellogg and Wallace, Idaho since the 1880's. In the Kellogg-Smelterville Flats area, west of Kellogg, mine tailings were piled alongside the South Fork of the Coeur d'Alene River. Until the construction of tailings ponds in 1968 much of these waste materials were washed directly into the South Fork. The Kellogg-Smelterville area was declared an Environmental Protection Agency (EPA) Superfund site in 1983 and remediation efforts are currently underway. Recent studies have demonstrated that sediments in the Coeur d'Alene River and in the northern part of Lake Coeur d'Alene, into which the river flows, are highly enriched in Ag, Cu, Pb, Zn, Cd, Hg, As, and Sb. These trace metals have become aggregated in iron oxide and oxyhydroxide minerals and/or mineraloids. Reflectance spectra of iron-rich tailing materials are shown. Also shown are spectra of hematite and goethite. The broad bandwidth and long band center (near 1 micron) of the Fe(3+) crystal-field band of the iron-rich sediment samples combined with the lack of features on the Fe(3+) -O(2-) charge transfer absorption edge indicates that the ferric oxide and/or oxyhydroxide in these sediments is poorly crystalline to amorphous in character. Similar features are seen in poorly crystalline basaltic weathering products (e.g., palagonites). The problem of mapping and analyzing the downriver occurrences of iron

  14. Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River

    NASA Astrophysics Data System (ADS)

    Chi, Kaige; Gang, Zhao; Pang, Bo; Huang, Ziqian

    2018-06-01

    Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR) (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station) from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann-Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1) the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2) The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3) According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.

  15. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico

    PubMed Central

    Piperno, Dolores R.; Ranere, Anthony J.; Holst, Irene; Iriarte, Jose; Dickau, Ruth

    2009-01-01

    Questions that still surround the origin and early dispersals of maize (Zea mays L.) result in large part from the absence of information on its early history from the Balsas River Valley of tropical southwestern Mexico, where its wild ancestor is native. We report starch grain and phytolith data from the Xihuatoxtla shelter, located in the Central Balsas Valley, that indicate that maize was present by 8,700 calendrical years ago (cal. B.P.). Phytolith data also indicate an early preceramic presence of a domesticated species of squash, possibly Cucurbita argyrosperma. The starch and phytolith data also allow an evaluation of current hypotheses about how early maize was used, and provide evidence as to the tempo and timing of human selection pressure on 2 major domestication genes in Zea and Cucurbita. Our data confirm an early Holocene chronology for maize domestication that has been previously indicated by archaeological and paleoecological phytolith, starch grain, and pollen data from south of Mexico, and reshift the focus back to an origin in the seasonal tropical forest rather than in the semiarid highlands. PMID:19307570

  16. The effect of river dynamics induced by the Messinian Salinity Crisis on karst landscape and caves: Example of the Lower Ardèche river (mid Rhône valley)

    NASA Astrophysics Data System (ADS)

    Mocochain, Ludovic; Audra, Philippe; Clauzon, Georges; Bellier, Olivier; Bigot, Jean-Yves; Parize, Olivier; Monteil, Philippe

    2009-05-01

    The karstic canyon of Lower Ardèche is located in the Middle Rhône valley, which is directly tributary to the Mediterranean Sea. The Rhône River is emblematic of the Messinian Salinity Crisis (MSC) impact on landscape morphology. Along the edge of the Saint-Remèze Plateau, the Rhône valley displays four benchmark levels generated by the MSC: the Pre-evaporitic abandonment surface (1), the Messinian erosional surface (2), the Marine/non-marine surface of the Pliocene ria (3) and the Pliocene abandonment surface (4). The study of these benchmark levels allows us to reconstruct the evolution of the regional base level over the last 6 Ma. We obtain a curve for base-level evolution that provides a geodynamic reference, which is used to investigate the morphogenesis of the Saint-Remèze karstic plateau. The Ardèche River downcuts the Saint-Remèze Plateau in a deep canyon, from Vallon-Pont-d'Arc to the West, to its confluence with the Rhône to the East. Several abandoned valleys are present along the western edge of the Saint-Remèze Plateau at the inlet of the Ardèche canyon. In these abandoned valleys, the fluvial deposits are related to several periods, from the Pliocene onwards. They provide important insights into the fluvial dynamics: a 160 m-thick aggradation sequence infilled the Ardèche canyon during the Pliocene. This aggrading river caused the first lateral shifting, as an aggradation epigenesis. This first infilling shows that the Ardèche canyon already existed before the Pliocene. Secondly, it has been demonstrated that the Ardèche Canyon is downcut into the Pre-evaporitic surface of the Saint-Remèze Plateau, dated to 5.45 Ma [Martini, J., 2005. Etude des paléokarsts des environs de Saint-Remèze (Ardèche, France): mise en évidence d'une rivière souterraine fossilisée durant la crise de salinité messinienne. Karstologia 45-46, 1-18]. Consequently, the canyon downcutting is entirely due to the MSC, and occurred during a time span of only 100

  17. Movement and Harvest of Fish in Lake Saint Clair, Saint Clair River, and Detroit River

    DTIC Science & Technology

    1985-01-01

    a creel survey of the angling fishery , a trap net survey, and a tagging study of the adult fish community . The study area encompassed all of...River does not support a winter walleye fishery (C. Baker, ODNR, personal communication ). Yellow perch,-Yellow perch, like walleyes, are considered best...two basic forms: affecting the adult fish community directly, or interfering with the winter angling fishery . The fish community might be affected

  18. Space Radar Image of Colorado River

    NASA Image and Video Library

    1999-04-15

    This space radar image illustrates the recent rapid urban development occurring along the lower Colorado River at the Nevada/Arizona state line. Lake Mojave is the dark feature that occupies the river valley in the upper half of the image.

  19. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration features images of southern California and southwestern Nevada acquired on January 3, 2001 (Terra orbit 5569), and includes data from three of MISR's nine cameras. The San Joaquin Valley, which comprises the southern extent of California's Central Valley, covers much of the viewed area. Also visible are several of the Channel Islands near the bottom, and Mono and Walker Lakes, which stand out as darker patches near the top center, especially in the vertical and backward oblique images. Near the lower right of each image is the Los Angeles Basin, with the distinctive chevron shape of the Mojave Desert to its north.

    The Central Valley is a well-irrigated and richly productive agricultural area situated between the Coast Range and the snow-capped Sierra Nevadas. During the winter, the region is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected sunlight, dramatic differences in the MISR images are apparent as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, the pervasive haze that fills most of the valley is only slightly visible in the vertical view. At the oblique angles, the haze is highly distinguishable against the land surface background, particularly in the forward-viewing direction. Just above image center, the forward view also reveals bluish-tinged plumes near Lava Butte in Sequoia National Forest, where the National Interagency Coordination Center reported an active forest fire.

    The changing surface visibility in the multi-angle data allows us to derive the amount of atmospheric haze. In the lower right quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a variation in hue through shades of green, yellow, and red indicates progressively larger amounts of airborne particulates. Due to the

  20. 77 FR 41048 - Safety Zone; Hudson Valley Triathlon, Ulster Landing, Hudson River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... Hudson Valley Triathlon swim event. This temporary safety zone is necessary to protect swimmers.... Regulatory History and Information The Hudson Valley Triathlon swim is an annual recurring event that has a... Valley Triathlon swim event will occur on July 15, 2012. On May 22, 2012, the sponsor of the event...

  1. Spatial and seasonal variability of base flow in the Verde Valley, central Arizona, 2007 and 2011

    USGS Publications Warehouse

    Garner, Bradley D.; Bills, Donald J.

    2012-01-01

    Synoptic base-flow surveys were conducted on streams in the Verde Valley, central Arizona, in June 2007 and February 2011 by the U.S. Geological Survey (USGS), in cooperation with the Verde River Basin Partnership, the Town of Clarkdale, and Yavapai County. These surveys, also known as seepage runs, measured streamflow under base-flow conditions at many locations over a short period of time. Surveys were conducted on a segment of the Verde River that flows through the Verde Valley, between USGS streamflow-gaging stations 09504000 and 09506000, a distance of 51 river miles. Data from the surveys were used to investigate the dominant controls on Verde River base flow, spatial variability in gaining and losing reaches, and the effects that human alterations have on base flow in the surface-water system. The most prominent human alterations in the Verde Valley are dozens of surface-water diversions from streams, including gravity-fed ditch diversions along the Verde River.Base flow that entered the Verde River from the tributary streams of Oak Creek, Beaver Creek, and West Clear Creek was found to be a major source of base flow in the Verde River. Groundwater discharge directly into the Verde River near these three confluences also was an important contributor of base flow to the Verde River, particularly near the confluence with Beaver Creek. An examination of individual reaches of the Verde River in the Verde Valley found three reaches (largely unaffected by ditch diversions) exhibiting a similar pattern: a small net groundwater discharge in February 2011 (12 cubic feet per second or less) and a small net streamflow loss in June 2007 (11 cubic feet per second or less). Two reaches heavily affected by ditch diversions were difficult to interpret because of the large number of confounding human factors. Possible lower and upper bounds of net groundwater flux were calculated for all reaches, including those heavily affected by ditches.

  2. Inter-epidemic Transmission of Rift Valley Fever in Livestock in the Kilombero River Valley, Tanzania: A Cross-Sectional Survey

    PubMed Central

    Sumaye, Robert D.; Geubbels, Eveline; Mbeyela, Edgar; Berkvens, Dirk

    2013-01-01

    Background In recent years, evidence of Rift Valley fever (RVF) transmission during inter-epidemic periods in parts of Africa has increasingly been reported. The inter-epidemic transmissions generally pass undetected where there is no surveillance in the livestock or human populations. We studied the presence of and the determinants for inter-epidemic RVF transmission in an area experiencing annual flooding in southern Tanzania. Methodology A cross-sectional sero-survey was conducted in randomly selected cattle, sheep and goats in the Kilombero river valley from May to August 2011, approximately four years after the 2006/07 RVF outbreak in Tanzania. The exposure status to RVF virus (RVFV) was determined using two commercial ELISA kits, detecting IgM and IgG antibodies in serum. Information about determinants was obtained through structured interviews with herd owners. Findings An overall seroprevalence of 11.3% (n = 1680) was recorded; 5.5% in animals born after the 2006/07 RVF outbreak and 22.7% in animals present during the outbreak. There was a linear increase in prevalence in the post-epidemic annual cohorts. Nine inhibition-ELISA positive samples were also positive for RVFV IgM antibodies indicating a recent infection. The spatial distribution of seroprevalence exhibited a few hotspots. The sex difference in seroprevalence in animals born after the previous epidemic was not significant (6.1% vs. 4.6% for females and males respectively, p = 0.158) whereas it was significant in animals present during the outbreak (26.0% vs. 7.8% for females and males respectively, p<0.001). Animals living >15 km from the flood plain were more likely to have antibodies than those living <5 km (OR 1.92; 95% CI 1.04–3.56). Species, breed, herd composition, grazing practices and altitude were not associated with seropositivity. Conclusion These findings indicate post-epidemic transmission of RVFV in the study area. The linear increase in seroprevalence in the post

  3. M’zab Valley, Algeria

    NASA Image and Video Library

    2017-12-08

    NASA image acquired Feb. 9, 2011 Less than 5 percent of Algeria’s land surface is suitable for growing crops, and most precipitation falls on the Atlas Mountains along the coast. Inland, dust-laden winds blow over rocky plains and sand seas. However, in north central Algeria—off the tip of Grand Erg Occidental and about 450 kilometers (280 miles) south of Algiers—lies a serpentine stretch of vegetation. It is the M’zab Valley, filled with palm groves and dotted with centuries-old settlements. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite captured this image of M’zab Valley on February 9, 2011. ASTER combines infrared, red, and green wavelengths of light. Bare rock ranges in color from beige to peach. Buildings and paved surfaces appear gray. Vegetation is red, and brighter shades of red indicate more robust vegetation. This oasis results from water that is otherwise in short supply in the Sahara Desert, thanks to the valley’s approximately 3,000 wells. Chemical analysis of Algerian aquifers, as well studies of topography in Algeria and Tunisia, suggest this region experienced a cooler climate in the late Pleistocene, and potentially heavy monsoon rains earlier in the Holocene. The M’zab region shows evidence of meandering rivers and pinnate drainage patterns. The vegetation lining M’zab Valley highlights this old river valley’s contours. Cool summer temperatures and monsoon rains had long since retreated from the region by eleventh century, but this valley nevertheless supported the establishment of multiple fortified settlements, or ksours. Between 1012 A.D. and 1350 A.D., locals established the ksours of El-Atteuf, Bounoura, Melika, Ghardaïa, and Beni-Isguen. Collectively these cities are now a United Nations Educational, Scientific, and Cultural Organization (UNESCO) World Heritage site. NASA Earth Observatory image by Robert Simmon and Jesse Allen, using data from the GSFC

  4. Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin

    USGS Publications Warehouse

    Garver, K.A.; Troyer, R.M.; Kurath, G.

    2003-01-01

    Infectious hematopoietic necrosis virus (IHNV), an aquatic rhabdovirus, causes a highly lethal disease of salmonid fish in North America. To evaluate the genetic diversity of IHNV from throughout the Columbia River basin, excluding the Hagerman Valley, Idaho, the sequences of a 303 nt region of the glycoprotein gene (mid-G) of 120 virus isolates were determined. Sequence comparisons revealed 30 different sequence types, with a maximum nucleotide diversity of 7.3% (22 mismatches) and an intrapopulational nucleotide diversity of 0.018. This indicates that the genetic diversity of IHNV within the Columbia River basin is 3-fold higher than in Alaska, but 2-fold lower than in the Hagerman Valley, Idaho. Phylogenetic analyses separated the Columbia River basin IHNV isolates into 2 major clades, designated U and M. The 2 clades geographically overlapped within the lower Columbia River basin and in the lower Snake River and tributaries, while the upper Columbia River basin had only U clade and the upper Snake River basin had only M clade virus types. These results suggest that there are co-circulating lineages of IHNV present within specific areas of the Columbia River basin. The epidemiological significance of these findings provided insight into viral traffic patterns exhibited by IHNV in the Columbia River basin, with specific relevance to how the Columbia River basin IHNV types were related to those in the Hagerman Valley. These analyses indicate that there have likely been 2 historical events in which Hagerman Valley IHNV types were introduced and became established in the lower Columbia River basin. However, the data also clearly indicates that the Hagerman Valley is not a continuous source of waterborne virus infecting salmonid stocks downstream.

  5. Spatio-temporal changes in river bank mass failures in the Lockyer Valley, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky; Grove, James; Khanal, Giri

    2013-06-01

    Wet-flow river bank failure processes are poorly understood relative to the more commonly studied processes of fluvial entrainment and gravity-induced mass failures. Using high resolution topographic data (LiDAR) and near coincident aerial photography, this study documents the downstream distribution of river bank mass failures which occurred as a result of a catastrophic flood in the Lockyer Valley in January 2011. In addition, this distribution is compared with wet flow mass failure features from previous large floods. The downstream analysis of these two temporal data sets indicated that they occur across a range of river lengths, catchment areas, bank heights and angles and do not appear to be scale-dependent or spatially restricted to certain downstream zones. The downstream trends of each bank failure distribution show limited spatial overlap with only 17% of wet flows common to both distributions. The modification of these features during the catastrophic flood of January 2011 also indicated that such features tend to form at some 'optimum' shape and show limited evidence of subsequent enlargement even when flow and energy conditions within the banks and channel were high. Elevation changes indicate that such features show evidence for infilling during subsequent floods. The preservation of these features in the landscape for a period of at least 150 years suggests that the seepage processes dominant in their initial formation appear to have limited role in their continuing enlargement over time. No evidence of gully extension or headwall retreat is evident. It is estimated that at least 12 inundation events would be required to fill these failures based on the average net elevation change recorded for the 2011 event. Existing conceptual models of downstream bank erosion process zones may need to consider a wider array of mass failure processes to accommodate for wet flow failures.

  6. Yellow Fever

    MedlinePlus

    ... Testing Vaccine Information Testing for Vaccine Adverse Events Yellow fever Vaccine Continuing Education Course Yellow Fever Home Prevention Vaccine Vaccine Recommendations Reactions to Yellow Fever Vacine Yellow Fever Vaccine, Pregnancy, & ... Transmission Symptoms, Diagnosis, & Treatment Maps Africa ...

  7. Ground-water hydrology of the San Pitch River drainage basin, Sanpete County, Utah

    USGS Publications Warehouse

    Robinson, Gerald B.

    1971-01-01

    The San Pitch River drainage basin in central Utah comprises an area of about 850 square miles; however, the investigation was concerned primarily with the Sanpete and Arapien Valleys, which comprise about 250 square miles and contain the principal ground-water reservoirs in the basin. Sanpete Valley is about 40 miles long and has a maximum width of 13 miles, and Arapien Valley is about 8 miles long and 1 mile wide. The valleys are bordered by mountains and plateaus that range in altitude from 5,200 to 11,000 feet above mean sea level.The average annual precipitation on the valleys is about 12 inches, but precipitation on the surrounding mountains reaches a maximum of about 40 inches per year. Most of the precipitation on the mountains falls as snow, and runoff from snowmelt during the spring and summer is conveyed to the valleys by numerous tributaries of the San Pitch River. Seepage from the tributary channels and underflow beneath the channels are the major sources of recharge to the ground-water reservoir in the valleys.Unconsolidated valley fill constitutes the main ground-water reservoir in Sanpete and Arapien Valleys. The fill, which consists mostly of coalescing alluvial fans and flood deposits of the San Pitch River, ranges in particle size from clay to boulders. Where they are well sorted, these deposits yield large quantities of water to wells.Numerous springs discharge from consolidated rocks in the mountains adjacent to the valleys and along the west margin of Sanpete Valley, which is marked by the Sevier fault. The Green River Formation of Tertiary age and several other consolidated formations yield small to large quantities of water to wells in many parts of Sanpete Valley. Most water in the bedrock underlying the valley is under artesian pressure, and some of this water discharges upward into the overlying valley fill.The water in the valley fill in Sanpete Valley moves toward the center of the valley and thence downstream. The depth to water along

  8. Landscape trajectories during the Lateglacial and the Holocene in the Loir River Valley (France) : the contribution of Geoarchaeology

    NASA Astrophysics Data System (ADS)

    Piana, Juliene

    2015-04-01

    A multidisciplinary research has been initiated in the Loir River valley where investigations revealed high-potential fluvial records and landforms for environmental and socio-environmental reconstructions. Investigations provide the opportunity to reconstruct landscape trajectories between climate, environmental and societal changes during the last 16000 years, using geoarchaeological and archaeogeographical approaches: sedimentology, soil micromorphology, geochemistry, archaeology, geomatics, geochronology (AGES Program: Ancient Geomorphological EvolutionS of Loire Basin hydrosystem). In the sector of Vaas (Sarthe, France) the research on the Lateglacial and the Holocene sedimentary sequences from the alluvial plain leads to a general overview of the valley evolution from the end of the Weichselian Upper Pleniglacial to the Present. Joined to archaeological (Protohistoric and Antic sites) and historical data (engineering archives, 18th century cadastral registers) this research highlights the importance of anthropogenic and geomorphological heritages in the current fluvial landscape (microtopography, wetlands, archaeological remains, land use). This knowledge constitutes a basis for skills transfer to planners and managers, in sustainable management of hydrological resources (reducing the vulnerability to flooding and low flows), preservation of biodiversity (wetlands protection) and valorization of landscapes (cultural tourism development).

  9. Madison River, Montana Report on Flood Emergency Madison River Slide. Volume 1. Main Report

    DTIC Science & Technology

    1960-09-01

    SUbject The Earthquake Madison River Valley Hebgen Dam and Lake Madison R1 ver Slide MADISOX RIVlm1 IIOIT.ANA :REPORT 01’ FLOOD l!MBRGDCY...the Gallatin River on the east and the Jefferson River on the west to form the Missouri Rivero See the general map Plate lo Hebgen Dam ~ a water...storage project of the Mont&Da Power Company:; is located at the entrance to Madison Canyon in the Madison Mountain RSDge o From the dam , the river flows

  10. Evapotranspiration from forage grass replacing native vegetation in the Gila River valley of Arizona

    USGS Publications Warehouse

    Leppanen, O.E.

    1981-01-01

    Estimates of evapotranspiration from an area of forage grass, which had been planted to replace native vegetation of little economic value, were made daily for a 363-day period in 1969 and 1970. The measurement site was located in the Gila River valley in east-central Arizona. The forage, panigrass (Panicum antidotale Retz.), grew from seed during the early summer of 1969 and after winterkill, regrew in 1970. Daily evapotranspiration estimates, which were based on energy budget measurements, ranged from a maximum of 9.2 millimeters to small amounts of condensation. Two daily values of substantial condensation (0.9 and 0.4 millimeter) were of dubious quality, but were retained in the record. The annual evapotranspiration was 989 millimeters, of which about 332 millimeters came from precipitation at the site. The water table fluctuated between 210 and 280 centimeters below land surface. However, the measurement site was near a wash, so that undocumented, shallower subterranean flows may have occurred. (USGS)

  11. A Gridded Daily Min/Max Temperature Dataset With 0.1° Resolution for the Yangtze River Valley and its Error Estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Qiufen; Hu, Jianglin

    2013-05-01

    The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and

  12. Delineating riparian zones for entire river networks using geomorphological criteria

    NASA Astrophysics Data System (ADS)

    Fernández, D.; Barquín, J.; Álvarez-Cabria, M.; Peñas, F. J.

    2012-03-01

    Riparian zone delineation is a central issue for riparian and river ecosystem management, however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is, however, not usually available for entire river corridors, and is only available for populated areas at risk of flooding. One of the requirements for catchment planning is to establish the most appropriate location of zones to conserve or restore riparian buffer strips for whole river networks. This issue could be solved by using geomorphological criteria extracted from Digital Elevation Models. In this work we have explored the adjustment of surfaces developed under two different geomorphological criteria with respect to the flooded area covered by the 50-yr flood, in an attempt to rapidly delineate hydrologically-meaningful riparian zones for entire river networks. The first geomorphological criterion is based on the surface that intersects valley walls at a given number of bankfull depths above the channel (BFDAC), while the second is based on the surface defined by a~threshold value indicating the relative cost of moving from the stream up to the valley, accounting for slope and elevation change (path distance). As the relationship between local geomorphology and 50-yr flood has been suggested to be river-type dependant, we have performed our analyses distinguishing between three river types corresponding with three valley morphologies: open, shallow vee and deep vee valleys (in increasing degree of valley constrainment). Adjustment between the surfaces derived from geomorphological and hydrological criteria has been evaluated using two different methods: one based on exceeding areas (minimum exceeding score) and the other on the similarity among total area values. Both methods have pointed out the same surfaces when looking for those that best match with

  13. RELATIONSHIPS BETWEEN ENVIRONMENTAL VARIABLES AND BENTHIC DIATOM ASSEMBLAGES IN CALIFORNIA CENTRAL VALLEY STREAMS (USA)

    EPA Science Inventory

    Streams and rivers in the California Central Valley Ecoregion have been substantially modified by human activities. This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers of this region. Benthic...

  14. Quaternary geology and geomorphology of the lower Deschutes River Canyon, Oregon.

    Treesearch

    Jim E. O' Connor; Janet H. Curran; Robin A. Beebee; Gordon E. Grant; Andrei Sarna-Wojcicki

    2003-01-01

    The morphology of the Deschutes River canyon downstream of the Pelton-Round Butte dam complex is the product of the regional geologic history, the composition of the geologic units that compose the valley walls, and Quaternary processes and events. Geologic units within the valley walls and regional deformation patterns control overall valley morphology. Valley bottom...

  15. TEMPORAL AND SPATIAL PATTERNS OF AIRBORNE PESTICIDES IN THE ALPINE ENVIRONMENT OF A DECLINING CALIFORNIA AMPHIBIAN, THE MOUNTAIN YELLOW-LEGGED FROG

    EPA Science Inventory

    The mountain yellow-legged frog (Rana muscosa) has disappeared from most of its historic localities in the Sierra Nevada of California, and airborne pesticides from the Central Valley have been implicated as a causal agent. To determine the distribution and temporal variation of...

  16. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    USGS Publications Warehouse

    Muhs, Daniel; Budahn, James R.; Skipp, Gary L.; McGeehin, John

    2016-01-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc–Th–La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  17. Relationships between recent channel adjustments, present morphological state and river corridor vegetation in the Fortore River (southern Italy)

    NASA Astrophysics Data System (ADS)

    Rosskopf, Carmen Maria; Scorpio, Vittoria; Calabrese, Valentina; Frate, Ludovico; Loy, Anna; Stanisci, Angela

    2017-04-01

    The Fortore River, as many other rivers in Italy, has experienced huge channel adjustments during the last 60 years that were mainly caused by anthropic interventions, especially in-channel mining and the closure of the Occhito dam in 1966. Such changes deeply modified extension and morphological characteristics of the river corridor and, consequently, also its ecological features. The present study aims to better understand the relationships between channel adjustments and river corridor vegetation changes and those between morphological features and environmental quality of the present-day river corridor. The study has been carried out by means of a multi-temporal GIS analysis of topographic maps and aerial photographs integrated with topographic, geomorphological and ecological field surveys. Results highlight that channel adjustments occurred through two distinct phases. Most of the channel changes occurred from the 1950s until the end of the 1990s (phase 1) and led to an overall channel narrowing (from 81 to 96%) and channel bed lowering (1-4 m). These changes were accompanied by pattern shifts from multithread to single-thread configurations. The reaches located downstream of the Occhito dam were affected by more intense modifications, especially channel narrowing, with respect to upstream reaches. From 2000 to 2016 (phase 2), a trend inversion occurred. Downstream reaches remained essentially stable, while upstream reaches were affected even by some channel widening and bed aggradation and slight increase of the extension of floodplain areas giving more space to the potential development of the riparian vegetation. The evolution and the present geomorphological conditions of the river corridor are also reflected by the state of the riparian vegetation. Upstream reaches are characterized by a higher richness in riparian vegetation types and vegetation cover with respect to downstream reaches. Best conditions occur especially in the upper Fortore valley. In

  18. Conservation Effects Assessment Project-Wetlands assessment in California's Central Valley and Upper Klamath River Basin

    USGS Publications Warehouse

    Duffy, Walter G.; Kahara, Sharon N.; Records, Rosemary M.

    2011-01-01

    Executive Summary-Ecosystem Services Derived from Wetlands Reserve Program Conservation Practices in California's Central Valley and Oregon's Upper Klamath River Basin. The Wetlands Reserve Program (WRP) is one of several programs implemented by the U.S. Department of Agriculture (USDA). Since the WRP's inception in 1990, it has resulted in the restoration of approximately 29,000 hectares in California's Central Valley (CCV) and roughly 12,300 hectares in Oregon's Upper Klamath River Basin (UKRB). Both the CCV and UKRB are agricultural dominated landscapes that have experienced extensive wetland losses and hydrological alteration. Restored habitats in the CCV and UKRB are thought to provide a variety of ecosystem services, but little is known about the actual benefits afforded. The U.S. Geological Survey (USGS) California Cooperative Fish and Wildlife Unit in collaboration with the USDA Natural Resources Conservation Service surveyed 70 WRP sites and 12 National Wildlife Refuge sites in the CCV, and 11 sites in the UKRB to estimate ecosystem services provided. In the CCV, sites were selected along three primary gradients; (1) restoration age, (2) management intensity, and (3) latitude (climate). Sites in the UKRB were assessed along restoration age and management intensity gradients where possible. The management intensity gradient included information about the type and frequency of conservation practices applied at each site, which was then ranked into three categories that differentiated sites primarily along a hydrological gradient. Information collected was used to estimate the following ecosystem services: Soil and vegetation nutrient content, soil loss reduction, floodwater storage as well as avian, amphibian, fish, and pollinator use and habitat availability. Prior to this study, very little was known about WRP habitat morphology in the CCV and UKRB. Therefore in this study, we described these habitats and related them to ecosystem services provided. Our

  19. Kankakee River Basin: Evaluation of Sediment Management Strategies

    DTIC Science & Technology

    2013-09-01

    extends from South Bend, Indiana, to its confluence with the Illinois River near Wilmington, Illinois. The river has a 5,165- square-mile drainage area and...confluence with the Illinois River near Wilmington, IL (Figure 1.1). It has a 5,165-square-mile drainage area and a river length of approximately 150 miles...Yellow River drainage area is overlain by sand-sized sediment. The Rock Island, St. Louis, Chicago, and Detroit Districts collaborated to produce the

  20. The Wind River Arboretum 1912-1956.

    Treesearch

    Roy R. Silen; Leonard R. Woike

    1959-01-01

    Wind River Arboretum, located in the Wind River valley near Carson, Wash., was established in 1912 with the planting of a few species of introduced trees on stump land adjacent to the Wind River Nursery. It is the oldest arboretum in the Northwest and ranks among the earliest forestry projects of an experimental nature still in existence in the region. The initial...