Sample records for yellow spot virus

  1. Ceres' Yellow Spots - Observations with Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Schäfer, Michael; Schäfer, Tanja; Cloutis, Edward A.; Izawa, Matthew R. M.; Platz, Thomas; Castillo-Rogez, Julie C.; Hoffmann, Martin; Thangjam, Guneshwar S.; Kneissl, Thomas; Nathues, Andreas; Mengel, Kurt; Williams, David A.; Kallisch, Jan; Ripken, Joachim; Russell, Christopher T.

    2016-04-01

    The Framing Camera (FC) onboard the Dawn spacecraft acquired several spectral data sets of (1) Ceres with increasing spatial resolution (up to 135 m/pixel with nearly global coverage). The FC is equipped with seven color filters (0.4-1.0 μm) plus one panchromatic ('clear') filter [1]. We produced spectral mosaics using photometrically corrected FC color filter images as described in [2]. Even early FC color mosaics obtained during Dawn's approach unexpectedly exhibited quite a diversity of surface materials on Ceres. Besides the ordinary cerean surface material, potentially composed of ammoniated phyllosilicates [3] or some other alteration product of carbonaceous chondrites [4], a large number of bright spots were found on Ceres [5]. These spots are substantially brighter than the average surface (exceeding its triple standard deviation), with the spots within Occator crater being the brightest and most prominent examples (reflectance more than 10 times the average of Ceres). We observed bright spots which are different by their obvious yellow color. This yellow color appears both in a 'true color' RGB display (R=0.65, G=0.55, B=0.44 μm) as well as in a false color display (R=0.97, G=0.75, B=0.44 μm) using a linear 2% stretch. Their spectra show a steep red slope between 0.44 and 0.55 μm (UV drop-off). On the contrary to these yellow spots, the vast majority of bright spots appears white in the aforementioned color displays and exhibit blue sloped spectra, except for a shallow UV drop-off. Thus, yellow spots are easily distinguishable from white spots and the remaining cerean surface by their high values in the ratio 0.55/0.44 μm. We found 8 occurrences of yellow spots on Ceres. Most of them (>70 individual spots) occur both inside and outside crater Dantu, where white spots are also found in the immediate vicinity. Besides Dantu, further occurrences with only a few yellow spots were found at craters Ikapati and Gaue. Less definite occurrences are found at 97

  2. Seasonal dynamics of thrips (Thrips tabaci) (Thysanoptera: Thripidae) transmitters of iris yellow spot virus: a serious viral pathogen of onion bulb and seed crops.

    PubMed

    Bag, Sudeep; Rondon, Silvia I; Druffel, Keri L; Riley, David G; Pappu, Hanu R

    2014-02-01

    Thrips-transmitted Iris yellow spot virus (IYSV) is an important economic constraint to the production of bulb and seed onion crops in the United States and many other parts of the world. Because the virus is exclusively spread by thrips, the ability to rapidly detect the virus in thrips vectors would facilitate studies on the role of thrips in virus epidemiology, and thus formulation of better vector management strategies. Using a polyclonal antiserum produced against the recombinant, Escherichia coli-expressed nonstructural protein coded by the small (S) RNA of IYSV, an enzyme linked immunosorbent assay was developed for detecting IYSV in individual as well as groups of adult thrips. The approach enabled estimating the proportion of potential thrips transmitters in a large number of field-collected thrips collected from field-grown onion plants. Availability of a practical and inexpensive test to identify viruliferous thrips would be useful in epidemiological studies to better understand the role of thrips vectors in outbreaks of this economically important virus of onion.

  3. The complete nucleotide sequence of the Barley yellow dwarf virus-RMV genome reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    USDA-ARS?s Scientific Manuscript database

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All ...

  4. Development of a PCR Diagnostic System for Iris yellow spot tospovirus in Quarantine

    PubMed Central

    Shin, Yong-Gil; Rho, Jae-Young

    2014-01-01

    Iris yellow spot virus (IYSV) is a plant pathogenic virus which has been reported to continuously occur in onion bulbs, allium field crops, seed crops, lisianthus, and irises. In South Korea, IYSV is a “controlled” virus that has not been reported, and inspection is performed when crops of the genus Iris are imported into South Korea. In this study, reverse-transcription polymerase chain reaction (RT-PCR) and nested PCR inspection methods, which can detect IYSV, from imported crops of the genus Iris at quarantine sites, were developed. In addition, a modified positive plasmid, which can be used as a positive control during inspection, was developed. This modified plasmid can facilitate a more accurate inspection by enabling the examination of a laboratory contamination in an inspection system. The inspection methods that were developed in this study are expected to contribute, through the prompt and accurate inspection of IYSV at quarantine sites to the plant quarantine in South Korea. PMID:25506310

  5. Analyses of pea necrotic yellow dwarf virus-encoded proteins.

    PubMed

    Krenz, Björn; Schießl, Ingrid; Greiner, Eva; Krapp, Susanna

    2017-06-01

    Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.

  6. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes

    USDA-ARS?s Scientific Manuscript database

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  7. Barley yellow dwarf virus: Luteoviridae or Tombusviridae?

    PubMed

    Miller, W Allen; Liu, Sijun; Beckett, Randy

    2002-07-01

    Summary Barley yellow dwarf virus (BYDV), the most economically important virus of small grains, features highly specialised relationships with its aphid vectors, a plethora of novel translation mechanisms mediated by long-distance RNA interactions, and an ambiguous taxonomic status. The structural and movement proteins of BYDV that confer aphid transmission and phloem-limitation properties resemble those of the Luteoviridae, the family in which BYDV is classified. In contrast, many genes and cis-acting signals involved in replication and gene expression most closely resemble those of the Tombusviridae. BYDV is in genus Luteovirus, family Luteoviridae. BYDV includes at least two serotypes or viruses: BYDV-PAV and BYDV-MAV. The former BYDV-RPV is now Cereal yellow dwarf virus-RPV (CYDV-RPV). CYDV is in genus Polerovirus, family Luteoviridae. Genus Luteovirus shares many features with family Tombusviridae. Physical properties: approximately 25 nm icosahedral (T = 3) virions. One major (22 kDa) and one minor (50-55 kDa) coat protein. 5.6-5.8 kb positive sense RNA genome with no 5'-cap and no poly(A) tail. Most grasses. Most important in oats, barley and wheat. Also infects maize and rice. Yellowing and dwarfing in barley, stunting in wheat; reddening, yellowing and blasting in oats. Some isolates cause leaf notching and curling. Key attractions: Model for the study of circulative transmission of aphid-transmitted viruses. Plethora of unusual translation mechanisms. Evidence of recombination in recent evolutionary history creates taxonomic ambiguity. Economically important virus of wheat, barley and oats, worldwide. Useful websites/meetings: International symposium: 'Barley Yellow Dwarf Disease: Recent Advances and Future Strategies', CIMMYT, El Batan, Mexico, 1-5 September 2002, http://www.cimmyt.cgiar.org/Research/wheat/Conf_BYD_02/invitation.htm http://www.cimmyt.org/Research/wheat/BYDVNEWS/htm/BYDVNEWS.htm Aphid transmission animation: http://www.ppws.vt.edu/~sforza/tmv/bydv_aph.html.

  8. Gnomonia canker, shoot blight, and leaf spot of yellow birch.

    Treesearch

    Kenneth J. Jr. Kessler

    1978-01-01

    Describes a canker, shoot blight, and leaf spot disease of yellow birch seedlings in the northern Great Lakes region and tells how and when trees become infected by the fungal causal agent, Gnomonia setacea.

  9. Occurrance in Korea of three major soybean viruses, Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYCMV), and Soybean yellow common mosaic virus (SYCMV) revealed by a nationwide survey of soybean fields

    USDA-ARS?s Scientific Manuscript database

    Soybean yellow mottle mosaic virus (SYMMV) and soybean yellow common mosaic virus (SYCMV) were recently isolated in Korea, and it hasn’t been reported how these two viruses were dispersed in Korea. In 2012, we performed a nationwide survey of subsistence soybean farms in Korea. Leaves that appeared ...

  10. THE SUSCEPTIBILITY OF MARMOSETS TO YELLOW FEVER VIRUS

    PubMed Central

    Davis, Nelson C.

    1930-01-01

    1. It has been possible to introduce yellow fever virus into the small Brazilian monkeys, Callithrix albicollis and Leontocebus ursulus, by the bites of infected mosquitoes and to carry the virus through a series of four passages in each species and back to rhesus monkeys by the bites of Stegomyia mosquitoes fed on the last marmoset of each series. 2. Five specimens of L. ursulus were used. Four developed fever, and all died during the experiments. At least two showed liver necroses comparable to those found in human beings and rhesus monkeys that died of yellow fever. 3. Twenty specimens of C. albicollis were used. Very few showed a temperature reaction following the introduction of virus. Of those that died, none had lesions typical of yellow fever as seen in certain other species of monkeys and in humans. 4. The convalescent serum from each of five C. albicollis protected a rhesus monkey against yellow fever virus, but the serum from a normal marmoset of the same species was found to be non-protective. PMID:19869773

  11. Cucumber vein yellowing virus

    USDA-ARS?s Scientific Manuscript database

    Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Cucumber vein yellowing virus (CVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of CVYV and the disease it causes....

  12. Squash vein yellowing virus

    USDA-ARS?s Scientific Manuscript database

    Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Squash vein yellowing virus (SqVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of SqVYV and the disease it causes....

  13. Japanese encephalitis virus/yellow fever virus chimera is safe and confers full protection against yellow fever virus in intracerebrally challenged mice.

    PubMed

    Yang, Huiqiang; Yang, Huan; Li, Zhushi; Liu, Lina; Wang, Wei; He, Ting; Fan, Fengming; Sun, Yan; Liu, Jie; Li, Yuhua; Zeng, Xianwu

    2018-04-25

    Yellow fever (YF) is an acute viral haemorrhagic disease caused by the yellow fever virus (YFV), which remains a potential threat to public health. The live-attenuated YF vaccine (17D strain) is a safe and highly effective measure against YF. However, increasing adverse events have been associated with YF vaccinations in recent years; thus, safer, alternative vaccines are needed. In this study, using the Japanese encephalitis live vaccine strain SA14-14-2 as a backbone, a novel chimeric virus was constructed by replacing the pre-membrane (prM) and envelope (E) genes with their YFV 17D counterparts.The chimeric virus exhibited a reduced growth rate and a much smaller plaque morphology than did either parental virus. Furthermore, the chimera was much less neurovirulent than was YF17D and protected mice that were challenged with a lethal dose of the YF virus. These results suggest that this chimera has potential as a novel attenuated YF vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  15. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  16. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  17. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  18. Genomic and Phylogenetic Characterization of Brazilian Yellow Fever Virus Strains

    PubMed Central

    Palacios, Gustavo; Cardoso, Jedson F.; Martins, Livia C.; Sousa, Edivaldo C.; de Lima, Clayton P. S.; Medeiros, Daniele B. A.; Savji, Nazir; Desai, Aaloki; Rodrigues, Sueli G.; Carvalho, Valeria L.; Lipkin, W. Ian

    2012-01-01

    Globally, yellow fever virus infects nearly 200,000 people, leading to 30,000 deaths annually. Although the virus is endemic to Latin America, only a single genome from this region has been sequenced. Here, we report 12 Brazilian yellow fever virus complete genomes, their genetic traits, phylogenetic characterization, and phylogeographic dynamics. Variable 3′ noncoding region (3′NCR) patterns and specific mutations throughout the open reading frame altered predicted secondary structures. Our findings suggest that whereas the introduction of yellow fever virus in Brazil led to genotype I-predominant dispersal throughout South and Central Americas, genotype II remained confined to Bolivia, Peru, and the western Brazilian Amazon. PMID:23015713

  19. Cucurbit chlorotic yellows virus

    USDA-ARS?s Scientific Manuscript database

    Cucurbit chlorotic yellows virus (CCYV) emerged as a threat to cucurbit production in Japan during the early 2000s and has since spread to China and Taiwan, as well as to the Middle East, and parts of Africa. CCYV (genus Crinivirus, family Closteroviridae) causes chlorotic mottle symptoms, intervein...

  20. The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    PubMed Central

    Krueger, Elizabeth N.; Beckett, Randy J.; Gray, Stewart M.; Miller, W. Allen

    2013-01-01

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All of these viruses are obligately aphid transmitted and phloem-limited. The first described YDVs (initially all called BYDV) were classified by their most efficient vector. One of these viruses, BYDV-RMV, is transmitted most efficiently by the corn leaf aphid, Rhopalosiphum maidis. Here we report the complete 5612 nucleotide sequence of the genomic RNA of a Montana isolate of BYDV-RMV (isolate RMV MTFE87, Genbank accession no. KC921392). The sequence revealed that BYDV-RMV is a polerovirus, but it is quite distantly related to the CYDVs or WYDV, which are very closely related to each other. Nor is BYDV-RMV closely related to any other particular polerovirus. Depending on the gene that is compared, different poleroviruses (none of them a YDV) share the most sequence similarity to BYDV-RMV. Because of its distant relationship to other YDVs, and because it commonly infects maize via its vector, R. maidis, we propose that BYDV-RMV be renamed Maize yellow dwarf virus-RMV (MYDV-RMV). PMID:23888156

  1. The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses.

    PubMed

    Krueger, Elizabeth N; Beckett, Randy J; Gray, Stewart M; Miller, W Allen

    2013-01-01

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All of these viruses are obligately aphid transmitted and phloem-limited. The first described YDVs (initially all called BYDV) were classified by their most efficient vector. One of these viruses, BYDV-RMV, is transmitted most efficiently by the corn leaf aphid, Rhopalosiphum maidis. Here we report the complete 5612 nucleotide sequence of the genomic RNA of a Montana isolate of BYDV-RMV (isolate RMV MTFE87, Genbank accession no. KC921392). The sequence revealed that BYDV-RMV is a polerovirus, but it is quite distantly related to the CYDVs or WYDV, which are very closely related to each other. Nor is BYDV-RMV closely related to any other particular polerovirus. Depending on the gene that is compared, different poleroviruses (none of them a YDV) share the most sequence similarity to BYDV-RMV. Because of its distant relationship to other YDVs, and because it commonly infects maize via its vector, R. maidis, we propose that BYDV-RMV be renamed Maize yellow dwarf virus-RMV (MYDV-RMV).

  2. Construction of yellow fever-influenza A chimeric virus particles.

    PubMed

    Oliveira, B C E P D; Liberto, M I M; Barth, O M; Cabral, M C

    2002-12-01

    In order to obtain a better understanding of the functional mechanisms involved in the fusogenesis of enveloped viruses, the influenza A (X31) and the yellow fever (17DD) virus particles were used to construct a chimeric structure based on their distinct pH requirements for fusion, and the distinct malleability of their nucleocapsids. The malleable nucleocapsid of the influenza A virus particle is characterized by a pleomorphic configuration when observed by electron microscopy. A heat inactivated preparation of X31 virus was used as a lectin to interact with the sialic acid domains present in the 17DD virus envelope. The E spikes of 17DD virus were induced to promote fusion of both envelopes, creating a double genome enveloped structure, the chimeric yellow fever-influenza A virus particle. These chimeric viral particles, originally denominated 'partículas virais quiméricas' (PVQ), were characterized by their infectious capacity for different biological systems. Cell inoculation with PVQ resulted in viral products that showed similar characteristics to those obtained after 17DD virus infections. Our findings open new opportunities towards the understanding of both virus particles and aspects of cellular physiologic quality control. The yellow fever-influenza A chimeric particles, by means of their hybrid composition, should be a valuable tool in the study of cell biology and the function of viral components. Copyright 2002 Elsevier Science B.V.

  3. Development of a GFP expression vector for Cucurbit chlorotic yellows virus.

    PubMed

    Wei, Ying; Han, Xiaoyu; Wang, Zhenyue; Gu, Qinsheng; Li, Honglian; Chen, Linlin; Sun, Bingjian; Shi, Yan

    2018-05-24

    Cucurbit chlorotic yellows virus (CCYV), a bipartite crinivirus, causes chlorotic leaf spots and yellowing symptoms on cucurbit leaves. We previously developed an infectious clone of CCYV. Limited work has been conducted on the construction of a crinivirus green fluorescence protein (GFP) expression vector to date. We constructed a CCYV GFP expression vector using the "add a gene" strategy based on CCYV RNA2 cDNA constrcut. Three resultant clones, pCCYVGFP SGC , pCCYVGFP CGC , and pCCYVGFP CGS, were constructed with different promoters used to initiate GFP and CP expression. At 25 dpi GFP fluorescence was detectable not only in leaf veins but also in the surrounding cells. pCCYVGFP CGC -infected cucumber leaves exhibited cell spread at 25 dpi, whereas pCCYVGFP SGC and pCCYVGFP CGS were mainly found in single cells. Further observation of pCCYVGFP CGC GFP expression at 30 dpi, 40 dpi, and 50 dpi showed phloem-limited localization in the systemic leaves. We developed of a CCYV GFP expression vector that will be useful for further study of CCYV movement in cucurbits.

  4. THE TRANSMISSION OF NEUROTROPIC YELLOW FEVER VIRUS BY STEGOMYIA MOSQUITOES

    PubMed Central

    Davis, Nelson C.; Lloyd, Wray; Frobisher, Martin

    1932-01-01

    1. By the bites of stegomyia mosquitoes carrying neurotropic yellow fever virus, encephalitis has been produced both in white mice and in rhesus monkeys. 2. The fixed neurotropic strain of virus cannot be maintained in the mosquito host as well as can the viscerotropic strains. This is doubtless attributable in part to a smaller amount of virus ingested, because of paucity in the blood stream of the mammalian host. 3. These experiments furnish additional evidence that the long established neurotropic yellow fever virus has changed fundamentally from the parent French strain. PMID:19870108

  5. Development of a sensitive Luminex xMAP-based microsphere immunoassay for specific detection of Iris yellow spot virus.

    PubMed

    Yu, Cui; Yang, Cuiyun; Song, Shaoyi; Yu, Zixiang; Zhou, Xueping; Wu, Jianxiang

    2018-04-04

    Iris yellow spot virus (IYSV) is an Orthotospovirus that infects most Allium species. Very few approaches for specific detection of IYSV from infected plants are available to date. We report the development of a high-sensitive Luminex xMAP-based microsphere immunoassay (MIA) for specific detection of IYSV. The nucleocapsid (N) gene of IYSV was cloned and expressed in Escherichia coli to produce the His-tagged recombinant N protein. A panel of monoclonal antibodies (MAbs) against IYSV was generated by immunizing the mice with recombinant N protein. Five specific MAbs (16D9, 11C6, 7F4, 12C10, and 14H12) were identified and used for developing the Luminex xMAP-based MIA systems along with a polyclonal antibody against IYSV. Comparative analyses of their sensitivity and specificity in detecting IYSV from infected tobacco leaves identified 7F4 as the best-performed MAb in MIA. We then optimized the working conditions of Luminex xMAP-based MIA in specific detection of IYSV from infected tobacco leaves by using appropriate blocking buffer and proper concentration of biotin-labeled antibodies as well as the suitable ratio between the antibodies and the streptavidin R-phycoerythrin (SA-RPE). Under the optimized conditions the Luminex xMAP-based MIA was able to specifically detect IYSV with much higher sensitivity than conventional enzyme-linked immunosorbent assay (ELISA). Importantly, the Luminex xMAP-based MIA is time-saving and the whole procedure could be completed within 2.5 h. We generated five specific MAbs against IYSV and developed the Luminex xMAP-based MIA method for specific detection of IYSV in plants. This assay provides a sensitive, high-specific, easy to perform and likely cost-effective approach for IYSV detection from infected plants, implicating potential broad usefulness of MIA in plant virus diagnosis.

  6. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus.

  7. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    PubMed

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  8. Association of an alphasatellite with tomato yellow leaf curl virus and ageratum yellow vein virus in Japan is suggestive of a recent introduction.

    PubMed

    Shahid, Muhammad Shafiq; Ikegami, Masato; Waheed, Abdul; Briddon, Rob W; Natsuaki, Keiko T

    2014-01-14

    Samples were collected in 2011 from tomato plants exhibiting typical tomato leaf curl disease symptoms in the vicinity of Komae, Japan. PCR mediated amplification, cloning and sequencing of all begomovirus components from two plants from different fields showed the plants to be infected by Tomato yellow leaf curl virus (TYLCV) and Ageratum yellow vein virus (AYVV). Both viruses have previously been shown to be present in Japan, although this is the first identification of AYVV on mainland Japan; the virus previously having been shown to be present on the Okinawa Islands. The plant harboring AYVV was also shown to contain the betasatellite Tomato leaf curl Java betasatellite (ToLCJaB), a satellite not previously shown to be present in Japan. No betasatellite was associated with the TYLCV infected tomato plants analyzed here, consistent with earlier findings for this virus in Japan. Surprisingly both plants were also found to harbor an alphasatellite; no alphasatellites having previously been reported from Japan. The alphasatellite associated with both viruses was shown to be Sida yellow vein China alphasatellite which has previously only been identified in the Yunnan Province of China and Nepal. The results suggest that further begomoviruses, and their associated satellites, are being introduced to Japan. The significance of these findings is discussed.

  9. Transmission of yellow fever vaccine virus through breast-feeding - Brazil, 2009.

    PubMed

    2010-02-12

    In April, 2009, the state health department of Rio Grande do Sul, Brazil, was notified by the Cachoeira do Sul municipal health department of a case of meningoencephalitis requiring hospitalization in an infant whose mother recently had received yellow fever vaccine during a postpartum visit. The Field Epidemiology Training Program of the Secretariat of Surveillance in Health of the Brazilian Ministry of Health assisted state and municipal health departments with an investigation. This report summarizes the results of that investigation, which determined that the infant acquired yellow fever vaccine virus through breast-feeding. The mother reported 2 days of headache, malaise, and low fever occurring 5 days after receipt of yellow fever vaccine. The infant, who was exclusively breast-fed, was hospitalized at age 23 days with seizures requiring continuous infusion of intravenous anticonvulsants. The infant received antimicrobial and antiviral treatment for meningoencephalitis. The presence of 17DD yellow fever virus was detected by reverse transcription--polymerase chain reaction (RT-PCR) in the infant's cerebrospinal fluid (CSF); yellow fever--specific immunoglobulin M (IgM) antibodies also were present in serum and CSF. The infant recovered completely, was discharged after 24 days of hospitalization, and has had normal neurodevelopment and growth through age 6 months. The findings in this report provide documentation that yellow fever vaccine virus can be transmitted via breast-feeding. Administration of yellow fever vaccine to breast-feeding women should be avoided except in situations where exposure to yellow fever viruses cannot be avoided or postponed.

  10. NON-FATAL INFECTION OF MICE FOLLOWING INTRACEREBRAL INOCULATION OF YELLOW FEVER VIRUS

    PubMed Central

    Fox, John P.

    1943-01-01

    Observations have been reported which indicate that mice inoculated intracerebrally with active yellow fever virus may develop an infection which is not only non-fatal but may also be completely inapparent. The most extensive observations were made on mice which showed signs of infection but were still alive 22 days after inoculation with virus of one or another of several 17D substrains. In such cases, the infection usually progressed no further and partial or complete recovery often ensued. Agents other than yellow fever virus were excluded as a significant cause of such nonfatal infections by the failure of repeated attempts to isolate other infective agents, by the demonstration of antibodies against yellow fever virus in the sera of the mice, and by the demonstration of a high degree of resistance on the part of such surviving mice to reinoculation with large doses of neurotropic yellow fever virus. Completely inapparent infections with 17D virus were also shown to occur. Studies of apparently normal survivors of 17D virus titrations revealed a small but significant number of animals resistant to intracerebral challenge with neurotropic yellow fever virus. Further, pooled sera from such mice were shown to contain specific protective antibodies. The occurrence of non-fatal infections with 17D virus was found related to virus dose and substrain. Small doses of virus provoked a significantly higher proportion of non-fatal infections than large doses; while different 17D substrains, tested over equivalent ranges of virus dose, varied greatly with respect to the proportion of infections which did not terminate with death. In the case of two substrains (17DD low and 17D3), non-fatal infections (as demonstrated by resistance to intracerebral challenge with neurotropic virus) were sufficiently frequent to cause an increase, when included in the computation of the infective titers, of 25 per cent above the figures based on deaths alone. The demonstration of non

  11. First record of Pantropical spotted dolphins Stenella attenuata in the Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Wu, Fuxing; Wang, Xianyan; Zhang, Qiuxia; Miao, Xing; Zhang, Ting; Zhu, Qian

    2015-07-01

    On October 1, 2009, sixteen dolphins were obtained from fishermen by incidental catching in the Yellow Sea, China. As the dolphins' skin color was ambiguous, morphological parameters were measured, and mitochondrial DNA cytochrome b (Cyt b) gene sequence was studied to identify the species. Morphological characteristics were consistent with Pantropical spotted dolphins, Stenella attenuata. Furthermore, a partial mitochondrial DNA cytochrome b (Cyt b) gene sequence as long as 328-bp was studied by extracting genomic DNA from the skins, and six haplotypes were detected in the sixteen dolphins. By comparing homologous sequences available in GenBank (www.ncbi.nlm.nih.gov), all the six haplotypes had maximal genetic similarity with Pantropical spotted dolphin. Eight species of cetacean (whales and dolphins) are now recognised in the Yellow Sea. To the best of our knowledge, this is the first record of Pantropical spotted dolphins from this region. Despite this species being listed as a Grade II National Key Protected Animal since 1988, little is known of its biology in Chinese waters. We recommend remedial research be undertaken to ensure appropriate management.

  12. VACCINATION AGAINST YELLOW FEVER WITH IMMUNE SERUM AND VIRUS FIXED FOR MICE

    PubMed Central

    Sawyer, W. A.; Kitchen, S. F.; Lloyd, Wray

    1932-01-01

    1. After preliminary experiments in monkeys, 15 persons were actively immunized by a single injection of a dried mixture of living yellow fever virus, fixed for mice, and human immune serum, with separate injections of enough additional serum to make up the amount required for protection. 2. One person was similarly immunized by injecting immune serum and dried virus separately. 3. By titration of the sera of vaccinated persons in mice, it was shown that the immunity rose in a few weeks to a height comparable to that reached after an attack of yellow fever, and remained there throughout an observation period of 6 months. 4. Yellow fever virus could not be recovered from the blood of vaccinated persons or monkeys, except when the latter had received less than the minimal effective amount of immune serum. 5. Neutralization of yellow fever virus by immune serum took place very slowly in vitro at room temperature in our experiments, and could not have been an appreciable factor in vaccination with the serum virus mixtures. 6. A mixture of fixed virus and immune serum retained its immunizing power for 8 months when dried in the frozen state and sealed in glass. 7. It appears that the immunizing reaction after yellow fever vaccination was a part of a true infectious process, as was also the observed leucopenia. PMID:19870044

  13. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    PubMed

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  14. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Watermelon Mosaic... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  15. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    PubMed Central

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  16. Cucumber leaf spot virus

    USDA-ARS?s Scientific Manuscript database

    Cucumber leaf spot virus (CLSV) was originally identified from cucumber (Cucumis sativus) in Germany, but has since been found in various parts of Europe, the UK, and the Middle East, including Jordan, Saudi Arabia, Bulgaria, Poland, and Spain. CLSV is known to cause symptoms ranging from chloroti...

  17. A high throughput soybean gene identification system developed using soybean yellow common mosaic virus (SYCMV)

    USDA-ARS?s Scientific Manuscript database

    Soybean yellow common mosaic virus (SYCMV) was recently reported from Korea, and a subsequent survey of soybean fields found that SYCMV, Soybean yellow mottle mosaic virus (SYMMV), and Soybean mosaic virus (SMV) infections were widespread. SYCMV has recently been developed into a Virus Inducing Gene...

  18. Emerging viruses in Florida and the Caribbean

    USDA-ARS?s Scientific Manuscript database

    Multiple thrips-, whitefly- and aphid-transmitted viruses have recently emerged or re-emerged in vegetable and ornamental crops in Florida and the Caribbean. Tomato spotted wilt virus (a thrips-transmitted tospovirus) and Tomato yellow leaf curl virus (a whitefly-transmitted begomovirus) have histor...

  19. Development of a reverse transcription polymerase chain reaction method for yellow fever virus detection.

    PubMed

    Méndez, María C; Domingo, Cristina; Tenorio, Antonio; Pardo, Lissethe C; Rey, Gloria J; Méndez, Jairo A

    2013-09-01

    Yellow fever is considered a re-emerging disease and is endemic in tropical regions of Africa and South America. At present, there are no standardized or commercialized kits available for yellow fever virus detection. Therefore, diagnosis must be made by time-consuming routine techniques, and sometimes, the virus or its proteins are not detected. Furthermore, co-circulation with other flaviviruses, including dengue virus, increases the difficulty of diagnosis. To develop a specific reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR-based assay to improve the detection and diagnosis of yellow fever virus using both serum and fresh tissue samples. RT-PCR primers were designed to amplify a short fragment of all yellow fever virus genotypes reported. A second set of primers was used in a nested PCR to increase sensitivity. Thirty-three clinical samples were tested with the standardized reaction. The expected amplicon was obtained in 25 out of 33 samples analyzed using this approach, and 2 more samples tested positive after a subsequent nested PCR approach. This improved technique not only ensures the specific detection of a wide range of yellow fever virus genotypes but also may increase the sensitivity of detection by introducing a second round of amplification, allowing a rapid differential diagnosis between dengue and yellow fever infection, which is required for effective surveillance and opportune epidemiologic measures.

  20. Yellow fever virus vaccine-associated deaths in young women.

    PubMed

    Seligman, Stephen J

    2011-10-01

    Yellow fever vaccine-associated viscerotropic disease is a rare sequela of live-attenuated virus vaccine. Elderly persons and persons who have had thymectomies have increased susceptibility. A review of published and other data suggested a higher than expected number of deaths from yellow fever vaccine-associated viscerotropic disease among women 19-34 years of age without known immunodeficiency.

  1. Susceptibility of Koi and Yellow Perch to infectious hematopoietic necrosis virus by experimental exposure.

    PubMed

    Palmer, Alexander D; Emmenegger, Eveline J

    2014-06-01

    Infectious hematopoietic necrosis virus (IHNV) is a novirhabdoviral pathogen that originated in western North America among anadromous Pacific salmonids. Severe disease epidemics in the late 1970s resulting from IHNV's invasion into farmed Rainbow Trout Oncorhynchus mykiss in North America, Asia, and Europe emphasized IHNV's ability to adapt to new hosts under varying rearing conditions. Yellow Perch Perca flavescens and Koi Carp Cyprinus carpio (hereafter, "Koi") are aquaculture-reared fish that are highly valued in sport fisheries and the ornamental fish trade, respectively, but it is unknown whether these fish species are vulnerable to IHNV infection. In this study, we exposed Yellow Perch, Koi, and steelhead (anadromous Rainbow Trout) to IHNV by intraperitoneal injection (10(6) PFU/fish) and by immersion (5.7×10(5) PFU/mL) for 7 h, and monitored fish for 28 d. The extended immersion exposure and high virus concentrations used in the challenges were to determine if the tested fish had any level of susceptibility. After experimental exposure, Yellow Perch and Koi experienced low mortality (<6%) compared with steelhead (>35%). Virus was found in dead fish of all species tested and in surviving Yellow Perch by plaque assay and quantitative reverse transcription polymerase chain reaction (qPCR), with a higher prevalence in Yellow Perch than Koi. Infectious virus was also detected in Yellow Perch out to 5 d after bath challenge. These findings indicate that Yellow Perch and Koi are highly resistant to IHNV disease under the conditions tested, but Yellow Perch are susceptible to infection and may serve as possible virus carriers.

  2. Susceptibility of Koi and Yellow Perch to infectious hematopoietic necrosis virus by experimental exposure

    USGS Publications Warehouse

    Palmer, Alexander D.; Emmenegger, Eveline J.

    2014-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a novirhabdoviral pathogen that originated in western North America among anadromous Pacific salmonids. Severe disease epidemics in the late 1970s resulting from IHNV's invasion into farmed Rainbow Trout Oncorhynchus mykiss in North America, Asia, and Europe emphasized IHNV's ability to adapt to new hosts under varying rearing conditions. Yellow Perch Perca flavescens and Koi Carp Cyprinus carpio (hereafter, “Koi”) are aquaculture-reared fish that are highly valued in sport fisheries and the ornamental fish trade, respectively, but it is unknown whether these fish species are vulnerable to IHNV infection. In this study, we exposed Yellow Perch, Koi, and steelhead (anadromous Rainbow Trout) to IHNV by intraperitoneal injection (106 PFU/fish) and by immersion (5.7×105 PFU/mL) for 7 h, and monitored fish for 28 d. The extended immersion exposure and high virus concentrations used in the challenges were to determine if the tested fish had any level of susceptibility. After experimental exposure, Yellow Perch and Koi experienced low mortality (35%). Virus was found in dead fish of all species tested and in surviving Yellow Perch by plaque assay and quantitative reverse transcription polymerase chain reaction (qPCR), with a higher prevalence in Yellow Perch than Koi. Infectious virus was also detected in Yellow Perch out to 5 d after bath challenge. These findings indicate that Yellow Perch and Koi are highly resistant to IHNV disease under the conditions tested, but Yellow Perch are susceptible to infection and may serve as possible virus carriers.

  3. Enzootic transmission of yellow fever virus, Venezuela.

    PubMed

    Auguste, Albert J; Lemey, Philippe; Bergren, Nicholas A; Giambalvo, Dileyvic; Moncada, Maria; Morón, Dulce; Hernandez, Rosa; Navarro, Juan-Carlos; Weaver, Scott C

    2015-01-01

    Phylogenetic analysis of yellow fever virus (YFV) strains isolated from Venezuela strongly supports YFV maintenance in situ in Venezuela, with evidence of regionally independent evolution within the country. However, there is considerable YFV movement from Brazil to Venezuela and between Trinidad and Venezuela.

  4. THE SURVIVAL OF YELLOW FEVER VIRUS IN CULTURES

    PubMed Central

    Lewis, Paul A.

    1930-01-01

    1. The virus of yellow fever has been found to survive in artificial culture media for at least 12 days at a temperature of 35°C. No visible growth has been present and no reproduction of the virus has been demonstrated. 2. Infections have been obtained in rhesus monkeys with two strains of virus in quantities as small as 0.00001 cc. of infectious blood, and with one strain in an amount probably as minute as 0.000001 cc. PMID:19869744

  5. Enzootic Transmission of Yellow Fever Virus, Venezuela

    PubMed Central

    Auguste, Albert J.; Lemey, Philippe; Bergren, Nicholas A.; Giambalvo, Dileyvic; Moncada, Maria; Morón, Dulce; Hernandez, Rosa; Navarro, Juan-Carlos

    2015-01-01

    Phylogenetic analysis of yellow fever virus (YFV) strains isolated from Venezuela strongly supports YFV maintenance in situ in Venezuela, with evidence of regionally independent evolution within the country. However, there is considerable YFV movement from Brazil to Venezuela and between Trinidad and Venezuela. PMID:25531105

  6. First report of Sugarcane yellow leaf virus infecting Columbus Grass (Sorghum almum) in Florida

    USDA-ARS?s Scientific Manuscript database

    Sugarcane yellow leaf virus (SCYLV) [genus Polerovirus, family Luteoviridae] is the causal agent of sugarcane yellow leaf disease. SCYLV is widespread in Florida where sugarcane was the only known natural host of this virus. During spring 2015, we collected (leaves or stalks) and tested several gras...

  7. First report of Beet western yellows virus infecting Epiphyllum spp

    USDA-ARS?s Scientific Manuscript database

    Beet western yellow virus (BWYV) was identified from an orchid cactus (Epiphyllum spp.) hybrid without obvious symptoms by high-throughput sequencing. The nearly complete genomic sequence of 5,458 nucleotides of the virus was determined. The isolate has the highest nucleotide sequence identity (93%)...

  8. Turnip Yellow Mosaic Virus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using proteins crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the unexpected hypothesis that the virus releases its RNA by essentially chemical-mechanical means. Most viruses have fairly flat coats, but in TYNV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early stuties of TYMV, but McPherson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central void on the inside, the hexameric units contain peptides linked to each other, forming a ring or, more accurately, rings to fill the void. Credit: Dr. Alexander McPherson, University of California, Irvine

  9. Detection of yellow fever virus genomes from four imported cases in China.

    PubMed

    Cui, Shujuan; Pan, Yang; Lyu, Yanning; Liang, Zhichao; Li, Jie; Sun, Yulan; Dou, Xiangfeng; Tian, Lili; Huo, Da; Chen, Lijuan; Li, Xinyu; Wang, Quanyi

    2017-07-01

    Yellow fever virus (YFV), as the first proven human-pathogenic virus, is still a major public health problem with a dramatic upsurge in recent years. This is a report on four imported cases of yellow fever virus into China identified by whole genome sequencing. Phylogenetic analysis was performed and the results showed that these four viruses were highly homologous with Angola 71 strains (AY968064). In addition, effective mutations of amino acids were not observed in the E protein domain of four viruses, thus confirming the effectiveness of the YFV-17D vaccine (X03700). Although there is low risk of local transmission in most part of China, the increasing public health risk of YF caused by international exchange should not be ignored. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Yellow Fever Virus Vaccine–associated Deaths in Young Women1

    PubMed Central

    2011-01-01

    Yellow fever vaccine–associated viscerotropic disease is a rare sequela of live-attenuated virus vaccine. Elderly persons and persons who have had thymectomies have increased susceptibility. A review of published and other data suggested a higher than expected number of deaths from yellow fever vaccine–associated viscerotropic disease among women 19–34 years of age without known immunodeficiency. PMID:22000363

  11. Yellow Fever Virus Exhibits Slower Evolutionary Dynamics than Dengue Virus ▿ †

    PubMed Central

    Sall, Amadou A.; Faye, Ousmane; Diallo, Mawlouth; Firth, Cadhla; Kitchen, Andrew; Holmes, Edward C.

    2010-01-01

    Although yellow fever has historically been one of the most important viral infections of humans, relatively little is known about the evolutionary processes that shape its genetic diversity. Similarly, there is limited information on the molecular epidemiology of yellow fever virus (YFV) in Africa even though it most likely first emerged on this continent. Through an analysis of complete E gene sequences, including a newly acquired viral collection from Central and West Africa (Senegal, Cameroon, Central African Republic, Côte d'Ivoire, Mali, and Mauritania), we show that YFV exhibits markedly lower rates of evolutionary change than dengue virus, despite numerous biological similarities between these two viruses. From this observation, along with a lack of clock-like evolutionary behavior in YFV, we suggest that vertical transmission, itself characterized by lower replication rates, may play an important role in the evolution of YFV in its enzootic setting. Despite a reduced rate of nucleotide substitution, phylogenetic patterns and estimates of times to common ancestry in YFV still accord well with the dual histories of colonialism and the slave trade, with areas of sylvatic transmission (such as Kedougou, Senegal) acting as enzootic/epidemic foci. PMID:19889759

  12. Detection and Identification of the First Viruses in Chia (Salvia hispanica)

    PubMed Central

    Celli, Marcos G.; Perotto, Maria C.; Martino, Julia A.; Flores, Ceferino R.; Conci, Vilma C.; Pardina, Patricia Rodriguez

    2014-01-01

    Chia (Salvia hispanica), an herbaceous plant native to Latin America, has become important in the last 20 years due to its beneficial effects on health. Here, we present the first record and identification of two viruses in chia plants. The comparison of the complete nucleotide sequences showed the presence of two viral species with the typical genome organization of bipartite New World begomovirus, identified as Sida mosaic Bolivia virus 2 and Tomato yellow spot virus, according to the ICTV taxonomic criteria for begomovirus classification. DNA-A from Sida mosaic Bolivia virus 2 exhibited 96.1% nucleotide identity with a Bolivian isolate of Sida micrantha, and Tomato yellow spot virus showed 95.3% nucleotide identity with an Argentine bean isolate. This is the first report of begomoviruses infecting chia as well as of the occurrence of Sida mosaic Bolivia virus 2 in Argentina. PMID:25243369

  13. Temporal dynamics of iris yellow spot virus and its vector, Thrips tabaci (Thysanoptera: Thripidae), in seeded and transplanted onion fields.

    PubMed

    Hsu, Cynthia L; Hoepting, Christine A; Fuchs, Marc; Shelton, Anthony M; Nault, Brian A

    2010-04-01

    Onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), can reduce onion bulb yield and transmit iris yellow spot virus (IYSV) (Bunyaviridae: Tospovirus), which can cause additional yield losses. In New York, onions are planted using seeds and imported transplants. IYSV is not seed transmitted, but infected transplants have been found in other U.S. states. Transplants are also larger than seeded onions early in the season, and thrips, some of which may be viruliferous, may preferentially colonize larger plants. Limited information is available on the temporal dynamics of IYSV and its vector in onion fields. In 2007 and 2008, T. tabaci and IYSV levels were monitored in six seeded and six transplanted fields. We found significantly more thrips in transplanted fields early in the season, but by the end of the season seeded fields had higher levels of IYSV. The percentage of sample sites with IYSV-infected plants remained low (<12%) until August, when infection levels increased dramatically in some fields. The densities of adult and larval thrips in August and September were better predictors of final IYSV levels than early season thrips densities. For 2007 and 2008, the time onions were harvested may have been more important in determining IYSV levels than whether the onions were seeded or transplanted. Viruliferous thrips emigrating from harvested onion fields into nonharvested ones may be increasing the primary spread of IYSV in late-harvested onions. Managing T. tabaci populations before harvest, and manipulating the spatial arrangement of fields based on harvest date could mitigate the spread of IYSV.

  14. Western flower thrips can transmit Tomato spotted wilt virus from virus-infected tomato fruits

    USDA-ARS?s Scientific Manuscript database

    Acquisition and transmission of Tomato spotted wilt virus from symptomatic tomato fruits by western flower thrips was demonstrated for the first time. This suggests that infected tomato fruits may be a source of virus and also provide an additional means of virus movement between geographic areas....

  15. Carrot yellow leaf virus is associated with carrot internal necrosis.

    PubMed

    Adams, Ian P; Skelton, Anna; Macarthur, Roy; Hodges, Tobias; Hinds, Howard; Flint, Laura; Nath, Palash Deb; Boonham, Neil; Fox, Adrian

    2014-01-01

    Internal necrosis of carrot has been observed in UK carrots for at least 10 years, and has been anecdotally linked to virus infection. In the 2009 growing season some growers had up to 10% of yield with these symptoms. Traditional diagnostic methods are targeted towards specific pathogens. By using a metagenomic approach with high throughput sequencing technology, other, as yet unidentified causes of root necrosis were investigated. Additionally a statistical analysis has shown which viruses are most closely associated with disease symptoms. Carrot samples were collected from a crop exhibiting root necrosis (102 Affected: 99 Unaffected) and tested for the presence of the established carrot viruses: Carrot red leaf virus (CtRLV), Carrot mottle virus (CMoV), Carrot red leaf associated viral RNA (CtRLVaRNA) and Parsnip yellow fleck virus (PYFV). The presence of these viruses was not associated with symptomatic carrot roots either as single viruses or in combinations. A sub-sample of carrots of mixed symptom status was subjected to MiSeq sequencing. The results from these tests suggested Carrot yellow leaf virus (CYLV) was associated with symptomatic roots. Additionally a novel Torradovirus, a novel Closterovirus and two novel Betaflexiviradae related plant viruses were detected. A specific diagnostic test was designed for CYLV. Of the 102 affected carrots, 98% were positive for CYLV compared to 22% of the unaffected carrots. From these data we conclude that although we have yet to practically demonstrate a causal link, CYLV appears to be strongly associated with the presence of necrosis of carrots.

  16. Carrot yellow leaf virus Is Associated with Carrot Internal Necrosis

    PubMed Central

    Adams, Ian P.; Skelton, Anna; Macarthur, Roy; Hodges, Tobias; Hinds, Howard; Flint, Laura; Nath, Palash Deb; Boonham, Neil; Fox, Adrian

    2014-01-01

    Internal necrosis of carrot has been observed in UK carrots for at least 10 years, and has been anecdotally linked to virus infection. In the 2009 growing season some growers had up to 10% of yield with these symptoms. Traditional diagnostic methods are targeted towards specific pathogens. By using a metagenomic approach with high throughput sequencing technology, other, as yet unidentified causes of root necrosis were investigated. Additionally a statistical analysis has shown which viruses are most closely associated with disease symptoms. Carrot samples were collected from a crop exhibiting root necrosis (102 Affected: 99 Unaffected) and tested for the presence of the established carrot viruses: Carrot red leaf virus (CtRLV), Carrot mottle virus (CMoV), Carrot red leaf associated viral RNA (CtRLVaRNA) and Parsnip yellow fleck virus (PYFV). The presence of these viruses was not associated with symptomatic carrot roots either as single viruses or in combinations. A sub-sample of carrots of mixed symptom status was subjected to MiSeq sequencing. The results from these tests suggested Carrot yellow leaf virus (CYLV) was associated with symptomatic roots. Additionally a novel Torradovirus, a novel Closterovirus and two novel Betaflexiviradae related plant viruses were detected. A specific diagnostic test was designed for CYLV. Of the 102 affected carrots, 98% were positive for CYLV compared to 22% of the unaffected carrots. From these data we conclude that although we have yet to practically demonstrate a causal link, CYLV appears to be strongly associated with the presence of necrosis of carrots. PMID:25365290

  17. Status of Sugarcane yellow leaf virus and its impact in different progenies

    USDA-ARS?s Scientific Manuscript database

    Yellow leaf disease caused by Sugarcane yellow leaf virus (SCYLV) a Polerovirus is an important disease for sugarcane industries worldwide. High yield losses up to 50% were reported in susceptible varieties. Most of the commercial cultivars in Florida are infected with SCYLV; therefore, there is a ...

  18. ELECTROPHORESIS EXPERIMENTS WITH THE VIRUS AND PROTECTIVE BODIES OF YELLOW FEVER

    PubMed Central

    Frobisher, Martin

    1931-01-01

    1. When suspended in slightly alkaline (pH 7.4 to 7.8) saline dilutions of clear, hemoglobin-free normal monkey serum, the virus of yellow fever from infected monkeys and from infected, but blood-free, mosquitoes, usually acts as if it were possessed of a positive electrical charge. 2. The virus tends to assume a negative charge in fluids having a slightly acid reaction. 3. The isoelectric point of the virus seems to be in the neighborhood of pH 7.0, possibly ranging from pH 7.3 to pH 6.9. 4. Exposure to fluid having a reaction of pH 5.0 for 3 hours appeared to inactivate the virus. 5. In experiments in which the suspending fluid was prepared with normal serum diluted with distilled water and containing a good quantity of partly hemolyzed erythrocytes, the virus tended to migrate to the anode. 6. The protective bodies in yellow fever immune serum appear to carry a negative charge in slightly alkaline saline dilutions of serum. PMID:19869954

  19. First report of the complete sequence of Sida golden yellow vein virus from Jamaica.

    PubMed

    Stewart, Cheryl S; Kon, Tatsuya; Gilbertson, Robert L; Roye, Marcia E

    2011-08-01

    Begomoviruses are phytopathogens that threaten food security [18]. Sida spp. are ubiquitous weed species found in Jamaica. Sida samples were collected island-wide, DNA was extracted via a modified Dellaporta method, and the viral genome was amplified using degenerate and sequence-specific primers [2, 11]. The amplicons were cloned and sequenced. Sequence analysis revealed that a DNA-A molecule isolated from a plant in Liguanea, St. Andrew, was 90.9% similar to Sida golden yellow vein virus-[United States of America:Homestead:A11], making it a strain of SiGYVV. It was named Sida golden yellow vein virus-[Jamaica:Liguanea 2:2008] (SiGYVV-[JM:Lig2:08]). The cognate DNA-B, previously unreported, was successfully cloned and was most similar to that of Malvastrum yellow mosaic Jamaica virus (MaYMJV). Phylogenetic analysis suggested that this virus was most closely related to begomoviruses that infect malvaceous hosts in Jamaica, Cuba and Florida in the United States.

  20. Activation of PmRelish from Penaeus monodon by yellow head virus.

    PubMed

    Visetnan, Suwattana; Supungul, Premruethai; Hirono, Ikuo; Tassanakajon, Anchalee; Rimphanitchayakit, Vichien

    2015-02-01

    Humoral innate immune response against pathogenic infection is partly responsible by the Imd pathway in which a transcription factor Relish relays the infection signals to the nuclei for the expression of antimicrobial proteins. A PmRelish gene which encoded a protein of 1195 amino acids was cloned. The PmRelish was constitutively expressed in all tissues tested and mostly up-regulated upon YHV infection. In hemocytes, the PmRelish expression was up-regulated upon Vibrio harveyi, yellow head virus (YHV) and white spot syndrome virus (WSSV) challenges. Using dsRNA silencing of PmRelish gene, it was shown that the expression of penaeidin5 but not anti-lipopolysaccharide factor ALFPm3, crustinPm1 and penaeidin3 was under the regulation of Imd pathway. Under PmRelish silencing, the shrimp were more susceptible to infection by YHV with the 50% survival rate reduced from about 72 h to 42 h. The PmRelish was detected in the cytoplasm of all the hemocytes from both uninfected and YHV-infected shrimp. The accumulation of activated PmRelish in the nuclei was not clearly observed but the activated PmRelish was detected in the YHV-infected hemocytes by Western blot analysis. Thus, the PmRelish and, hence, the Imd pathway respond to the YHV infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Enzootic Transmission of Yellow Fever Virus in Peru

    PubMed Central

    Bryant, Juliet; Wang, Heiman; Cabezas, Cesar; Ramirez, Gladys; Watts, Douglas; Russell, Kevin

    2003-01-01

    The prevailing paradigm of yellow fever virus (YFV) ecology in South America is that of wandering epizootics. The virus is believed to move from place to place in epizootic waves involving monkeys and mosquitoes, rather than persistently circulating within particular locales. After a large outbreak of YFV illness in Peru in 1995, we used phylogenetic analyses of virus isolates to reexamine the hypothesis of virus movement. We sequenced a 670-nucleotide fragment of the prM/E gene region of from 25 Peruvian YFV samples collected from 1977 to 1999, and delineated six clades representing the states (Departments) of Puno, Pasco, Junin, Ayacucho, San Martin/Huanuco, and Cusco. The concurrent appearance of at least four variants during the 1995 epidemic and the genetic stability of separate virus lineages over time, indicate that Peruvian YFV is locally maintained and circulates continuously in discrete foci of enzootic transmission. PMID:12967489

  2. Turnip Yellow Mosaic Virus Structure

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using protein crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the enexpected hypothesis that the virus release its RNA by essentially chemical-mechanical means. Most viruses have farly flat coats, but in TYMV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early studies of TYMV, but McPhereson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central viod on the inside, the hexameric units contain peptides liked to each other, forming a ring or, more accurately, rings to fill the voild. Credit: Dr. Alexander McPherson, University of California, Irvine.

  3. THE SECOND BLIND SPOT: SMALL RETINAL VESSEL VASCULOPATHY AFTER VACCINATION AGAINST NEISSERIA MENINGITIDIS AND YELLOW FEVER.

    PubMed

    Moysidis, Stavros N; Koulisis, Nicole; Patel, Vivek R; Kashani, Amir H; Rao, Narsing A; Humayun, Mark S; Rodger, Damien C

    2017-01-01

    To describe a case of small retinal vessel vasculopathy postvaccination. We report the case of a 41-year-old white man who presented with a "second blind spot," describing a nasal scotoma in the right eye that started 4 days after vaccinations against Neisseria meningitidis and the yellow fever virus, and after a 2-month period of high stress and decreased sleep. Clinical examination, Humphrey visual field testing, and multimodal imaging with fundus photographs, autofluorescence, fluorescein angiography, and spectral domain optical coherence tomography and angiography were performed. Clinical examination revealed a well-circumscribed, triangular area of retinal graying of about 1-disk diameter in size, located at the border of the temporal macula. This corresponded to a deep scotoma similar in size to the physiologic blind spot on Humphrey visual field 24-2 testing. There was mild hypoautofluoresence of this lesion on autofluorescence, hypofluorescence on fluorescein angiography, and focal attenuation of a small artery just distal to the bifurcation of an artery supplying the involved area. Spectral domain optical coherence tomography through the lesion conveyed hyperreflectivity most prominent in the inner and outer plexiform layers, with extension of the hyperreflectivity into the ganglion cell and inner nuclear layers. Spectral domain optical coherence tomography angiography demonstrated arteriolar and capillary dropout, more pronounced in the superficial retinal layer compared to the deeper retinal layer. At 1-month follow-up, his scotoma improved with monitoring, with reduction from -32 dB to -7 dB on Humphrey visual field testing. There was clinical resolution of the area of graying and decreased hyperreflectivity on spectral domain optical coherence tomography, with atrophy of the inner retina. Spectral domain optical coherence tomography angiography showed progression of arteriolar and capillary dropout, more so in the superficial than in the deep capillary

  4. Epidemiology of Cucurbit yellow stunting disorder virus in the US Southwest and development of virus resistant melon

    USDA-ARS?s Scientific Manuscript database

    Cucurbit yellow stunting disorder virus (CYSDV), emerged in the Southwest USA in 2006, where it is transmitted by the MEAM1 cryptic species of Bemisia tabaci. The virus results in late-season infection of spring melon crops with limited economic impact; however, all summer and fall cucurbits become ...

  5. Identification and characterization of Citrus yellow vein clearing virus, a putative new member of the genus Mandarivirus infecting Citrus spp.

    USDA-ARS?s Scientific Manuscript database

    Yellow vein clearing virus, an uncharacterized filamentous virus, was first observed in Pakistan in 1988 and later in India in 1997 in Etrog citron (Citrus medica). Based on electron microscopic evidence of filamentous particles, the virus, provisionally named Citrus yellow vein clearing virus (CYVC...

  6. Natural infection of Sorghum bicolor germplasm by Sugarcane yellow leaf virus in Florida

    USDA-ARS?s Scientific Manuscript database

    Sugarcane yellow leaf virus (SCYLV), the causal agent of sugarcane yellow leaf, is vectored by the aphid Melanaphis sacchari. Although sugarcane is the primary host of SCYLV, two new natural hosts were recently identified in Florida: the weed Columbus grass (Sorghum almum) and grain sorghum (Sorghum...

  7. [Laparoscopy findings of the yellow spot, a focal fatty liver infiltration].

    PubMed

    Koch, H; Henning, H; Friedrich, K; Lüders, C J

    1984-05-01

    From 1976 to 1982 in 279 patients amongst 3719 laparoscopies focal fatty liver infiltrates were found at the right and/or left liver edge next to the insertion point of the round ligament. These so-called "yellow spots" mainly could be recognized in case of normal liver tissue and in cases suffering from chronic hepatitis insofar as a cirrhotic transformation or a significant fibrosis had not taken place. The localization and the shape of these focal lesions indicate, that an abnormality in the portal blood supply of the corresponding area may play an etiologic role for the development of the fatty infiltration.

  8. Transgenic virus resistance in crop-wild Cucurbita pepo does not prevent vertical transmission of zucchini yellow mosaic virus

    Treesearch

    H. E. Simmons; Holly Prendeville; J. P. Dunham; M. J. Ferrari; J. D. Earnest; D. Pilson; G. P. Munkvold; E. C. Holmes; A. G. Stephenson

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic...

  9. Long-Distance Dispersal Potential for Onion Thrips (Thysanoptera: Thripidae) and Iris yellow spot virus (Bunyaviridae: Tospovirus) in an Onion Ecosystem.

    PubMed

    Smith, Erik A; Fuchs, M; Shields, E J; Nault, B A

    2015-08-01

    Onion thrips, Thrips tabaci Lindeman, is a worldwide pest of onion whose feeding damage and transmission of Iris yellow spot virus (IYSV) may reduce onion yields. Little is known about the seasonal dynamics of T. tabaci dispersal, the distance of dispersal, or the movement of thrips infected with IYSV during the onion-growing season. To address these questions, T. tabaci adults were collected using transparent sticky card traps in commercial onion fields three times during the onion-growing season (June, July, and late August) at varying heights above the canopy (0.5-6 m above soil surface) and with trap-equipped unmanned aircraft (UAVs) flying 50-60 m above onion fields during August sampling periods in 2012 and 2013. Randomly selected subsamples of captured T. tabaci were tested for IYSV using RT-PCR. Most T. tabaci adults were captured in late August and near the onion canopy (<2 m) throughout the season. However, 4% of T. tabaci adults captured on sticky cards were at altitudes ≥2 m, and T. tabaci were also captured on UAV-mounted traps. These data strongly suggest that long-distance dispersal occurs. More T. tabaci captured on sticky cards tested positive for IYSV in August (53.6%) than earlier in the season (2.3 to 21.5% in June and July, respectively), and 20 and 15% of T. tabaci captured on UAV-mounted traps tested positive for IYSV in 2012 and 2013, respectively. Our results indicate that T. tabaci adults, including viruliferous individuals, engage in long-distance dispersal late in the season and likely contribute to the spread of IYSV. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Beet yellow stunt

    USDA-ARS?s Scientific Manuscript database

    Beet yellow stunt virus (BYSV) is a potentially destructive yellows-type virus affecting plants in the family Asteraceae. The virus is a member of the genus Closterovirus, family Closteroviridae, and has been found in California and England. Initial symptoms consist of chlorosis of the older leaves,...

  11. [Yellow fever].

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio

    2007-06-01

    After the discovery of the New World, yellow fever proved to be an important risk factor of morbidity and mortality for Caribbean populations. In the following centuries epidemic risk, expanded by sea trade and travel, progressively reached the settlements in North America and Brazil as well as the Atlantic seaboard of tropical and equatorial Africa. In the eighteenth century and the first half of the nineteenth century epidemics of yellow fever were reported in some coastal towns in the Iberian peninsula, French coast, Great Britain and Italy, where, in 1804 at Leghorn, only one epidemic was documented. Prevention and control programs against yellow fever, developed at the beginning of the twentieth century in Cuba and in Panama, were a major breakthrough in understanding definitively its aetiology and pathogenesis. Subsequently, further advances in knowledge of yellow fever epidemiology were obtained when French scientists, working in West and Central Africa, showed that monkeys were major hosts of the yellow fever virus (the wild yellow fever virus), besides man. In addition, advances in research, contributing to the development of vaccines against the yellow fever virus in the first half of the nineteenth century, are reported in this paper.

  12. White spot syndrome virus inactivation study by using gamma irradiation

    NASA Astrophysics Data System (ADS)

    Heidareh, Marzieh; Sedeh, Farahnaz Motamedi; Soltani, Mehdi; Rajabifar, Saeed; Afsharnasab, Mohammad; Dashtiannasab, Aghil

    2014-09-01

    The present study was conducted to investigate the effect of gamma irradiation on white spot syndrome virus (WSSV). White spot syndrome virus is a pathogen of major economic importance in cultured penaeid shrimp industries. White spot disease can cause mortalities reaching 100% within 3-10 days of gross signs appearing. During the period of culture, immunostimulant agents and vaccines may provide potential methods to protect shrimps from opportunistic and pathogenic microrganisms. In this study, firstly, WSSV was isolated from infected shrimp and then multiplied in crayfish. WSSV was purified from the infected crayfish haemolymph by sucrose gradient and confirmed by transmission electron microscopy. In vivo virus titration was performed in shrimp, Penaeus semisulcatus. The LD50 of live virus stock was calculated 10 5.4/mL. Shrimp post-larvae (1-2 g) were treated with gamma-irradiated (different doses) WSSV (100 to 10-4 dilutions) for a period of 10 days. The dose/survival curve for irradiated and un-irradiated WSSV was drawn; the optimum dose range for inactivation of WSSV and unaltered antigenicity was obtained 14-15 kGy. This preliminary information suggests that shrimp appear to benefit from treatment with gammairradiated WSSV especially at 14-15 KGy.

  13. Pepo aphid-borne yellows virus: a new species in the genus Polerovirus.

    PubMed

    Ibaba, Jacques D; Laing, Mark D; Gubba, Augustine

    2017-02-01

    Pepo aphid-borne yellows virus (PABYV) has been proposed as a putative representative of a new species in the genus Polerovirus in the family Luteoviridae. The genomes of two South African (SA) isolates of cucurbit-infecting PABYV were described in this record. Total RNA, extracted from a pattypan (Cucurbita pepo L.) and a baby marrow (C. pepo L.) leaf samples, was subjected to next-generation sequencing (NGS) on the HiSeq Illumina platform. Sanger sequencing was subsequently used to authenticate the integrity of PABYV's genome generated from de novo assembly of the NGS data. PABYV genome of SA isolates consists of 5813 nucleotides and displays an organisation typical of poleroviruses. Genome sequence comparisons of the SA PABYV isolates to other poleroviruses support the classification of PABYV as a new species in the genus Polerovirus. Recombination analyses showed that PABYV and Cucurbit aphid-borne yellows virus (CABYV) shared the same ancestor for the genome part situated between breaking points. Phylogenetic analyses of the RNA-dependent RNA polymerase and the coat protein genes showed that SA PABYV isolates shared distant relationship with CABYV and Suakwa aphid-borne yellows virus. Based on our results, we propose that PABYV is a distinct species in the genus Polerovirus.

  14. Lineage-Specific Real-Time RT-PCR for Yellow Fever Virus Outbreak Surveillance, Brazil.

    PubMed

    Fischer, Carlo; Torres, Maria C; Patel, Pranav; Moreira-Soto, Andres; Gould, Ernest A; Charrel, Rémi N; de Lamballerie, Xavier; Nogueira, Rita Maria Ribeiro; Sequeira, Patricia C; Rodrigues, Cintia D S; Kümmerer, Beate M; Drosten, Christian; Landt, Olfert; Bispo de Filippis, Ana Maria; Drexler, Jan Felix

    2017-11-01

    The current yellow fever outbreak in Brazil prompted widespread yellow fever virus (YFV) vaccination campaigns, imposing a responsibility to distinguish between vaccine- and wild-type YFV-associated disease. We developed novel multiplex real-time reverse transcription PCRs that differentiate between vaccine and American wild-type YFV. We validated these highly specific and sensitive assays in an outbreak setting.

  15. El virus de la mancha clorótica del tomate: Tomato chlorotic spot virus (TCSV)

    USDA-ARS?s Scientific Manuscript database

    Tomato chlorotic spot virus has emerged as a major pathogen of vegetables in Puerto Rico, the Caribbean and Florida. This virus is transmitted by thrips making management difficult. Growers must be aware of the distribution, host range, insect vectors, symptoms, modes of transmission to successfully...

  16. Investigations into yellow fever virus and other arboviruses in the northern regions of Kenya.

    PubMed

    Henderson, B E; Metselaar, D; Kirya, G B; Timms, G L

    1970-01-01

    Previous studies having shown an appreciable level of yellow fever immunity to exist in northern Kenya, further epidemiological and serological surveys were carried out there in 1968 in an attempt to define more clearly the distribution of yellow fever and to locate possible vector and reservoir hosts of the disease; these surveys also provided information on a number of other arboviruses.Altogether 436 sera from 5 areas in northern Kenya were screened by haemagglutination-inhibition tests with 8 antigens, and 107 of these sera by neutralization tests for Group-B arboviruses. Small numbers of yellow-fever-immune adults were found in Ileret, Garissa, Loglogo and Mikona. At Marsabit high proportions of immune adults and children were found among the Burgi tribe. As the Burgi are permanent agricultural workers on Marsabit Mountain, an entomological investigation was made, over 15 000 mosquitos being collected. From these, 13 strains of Pongola virus, 1 strain of Semliki Forest virus and an unidentified virus were isolated, but no yellow fever strains. Aedes africanus and Aedes simpsoni were not found at Marsabit; small numbers of Aedes aegypti were collected biting man. The vector potential of other mosquitos collected (particularly Mansonia africana, which is present throughout the year) is discussed.

  17. Serological reactions in Rhesus monkeys inoculated with the 17D strain of yellow fever virus.

    PubMed

    GROOT, H

    1962-01-01

    Haemagglutination-inhibition tests, which depend on the appearance of haemagglutination-inhibiting antibodies in the serum in virus infections, are in common use in the study of arthropod-borne diseases. This paper contains the results of an investigation into the appearance and pattern of haemagglutination-inhibiting antibodies in the serum of rhesus monkeys inoculated intracerebrally with the 17D strain of yellow fever virus during the testing of seed lots of yellow fever vaccine. These antibodies appeared on the tenth day after inoculation, and were still demonstrable four years later. In all of the eight monkeys tested complement-fixing and neutralizing antibodies against yellow fever antigens also developed, and in six out of the eight heterologous antigens developed.

  18. Genetic Divergence and Dispersal of Yellow Fever Virus, Brazil

    PubMed Central

    Bryant, Juliet E.; Travassos da Rosa, Amelia P.A.; Tesh, Robert B.; Rodrigues, Sueli G.; Barrett, Alan D.T.

    2004-01-01

    An analysis of 79 yellow fever virus (YFV) isolates collected from 1935 to 2001 in Brazil showed a single genotype (South America I) circulating in the country, with the exception of a single strain from Rondônia, which represented South America genotype II. Brazilian YFV strains have diverged into two clades; an older clade appears to have become extinct and another has become the dominant lineage in recent years. Pairwise nucleotide diversity between strains ranged from 0% to 7.4%, while amino acid divergence ranged from 0% to 4.6%. Phylogenetic analysis indicated traffic of virus variants through large geographic areas and suggested that migration of infected people may be an important mechanism of virus dispersal. Isolation of vaccine virus from a patient with a fatal case suggests that vaccine-related illness may have been misdiagnosed in the past. PMID:15498159

  19. Biology and management of sugarcane yellow leaf virus: an historical overview.

    PubMed

    ElSayed, Abdelaleim Ismail; Komor, Ewald; Boulila, Moncef; Viswanathan, Rasappa; Odero, Dennis C

    2015-12-01

    Sugarcane yellow leaf virus (SCYLV) is one of the most widespread viruses causing disease in sugarcane worldwide. The virus has been responsible for drastic economic losses in most sugarcane-growing regions and remains a major concern for sugarcane breeders. Infection with SCYLV results in intense yellowing of the midrib, which extends to the leaf blade, followed by tissue necrosis from the leaf tip towards the leaf base. Such symptomatic leaves are usually characterized by increased respiration, reduced photosynthesis, a change in the ratio of hexose to sucrose, and an increase in starch content. SCYLV infection affects carbon assimilation and metabolism in sugarcane, resulting in stunted plants in severe cases. SCYLV is mainly propagated by planting cuttings from infected stalks. Phylogenetic analysis has confirmed the worldwide distribution of at least eight SCYLV genotypes (BRA, CHN1, CHN3, CUB, HAW, IND, PER, and REU). Evidence of recombination has been found in the SCYLV genome, which contains potential recombination signals in ORF1/2 and ORF5. This shows that recombination plays an important role in the evolution of SCYLV.

  20. Virus surveys of Capsicum spp. in the Republic of Benin reveal the prevalence of pepper vein yellows virus and the identification of a previously uncharacterised polerovirus species.

    PubMed

    Afouda, Leonard; Kone, Daouda; Zinsou, Valerien; Dossou, Laurence; Kenyon, Lawrence; Winter, Stephan; Knierim, Dennis

    2017-06-01

    Surveys were conducted in 2014 and 2015 in Southern and Northern Benin, respectively, to identify the viruses infecting peppers (Capsicum spp.). The samples were screened by ELISA for cucumber mosaic virus (CMV), pepper veinal mottle virus (PVMV), potato virus Y (PVY) and tomato yellow leaf curl virus (TYLCV). A generic reverse transcription PCR (RT-PCR) was used to test for the presence of poleroviruses. ELISA tests confirmed the prevalence of all viruses, while the RT-PCR detected pepper vein yellows virus (PeVYV) which is reported for the first time in Benin. A further, divergent polerovirus isolate was detected from a single pepper sample originating from southern Benin. Screening of samples collected from solanaceous plants during virus surveys in Mali (conducted in 2009) also detected this divergent polerovirus isolate in two samples from African eggplants. The complete genome sequence was obtained from the Mali isolate using transcriptome sequencing and by conventional Sanger sequencing of overlapping RT-PCR products. Based on the sequence characteristics of this isolate we propose a new polerovirus species, African eggplant yellowing virus (AeYV).

  1. Screening test for neutralizing antibodies against yellow fever virus, based on a flavivirus pseudotype.

    PubMed

    Mercier-Delarue, Séverine; Durier, Christine; Colin de Verdière, Nathalie; Poveda, Jean-Dominique; Meiffrédy, Vincent; Fernandez Garcia, Maria Dolores; Lastère, Stéphane; Césaire, Raymond; Manuggera, Jean-Claude; Molina, Jean-Michel; Amara, Ali; Simon, François

    2017-01-01

    Given the possibility of yellow fever virus reintroduction in epidemiologically receptive geographic areas, the risk of vaccine supply disruption is a serious issue. New strategies to reduce the doses of injected vaccines should be evaluated very carefully in terms of immunogenicity. The plaque reduction test for the determination of neutralizing antibodies (PRNT) is particularly time-consuming and requires the use of a confinement laboratory. We have developed a new test based on the use of a non-infectious pseudovirus (WN/YF17D). The presence of a reporter gene allows sensitive determination of neutralizing antibodies by flow cytometry. This WN/YF17D test was as sensitive as PRNT for the follow-up of yellow fever vaccinees. Both tests lacked specificity with sera from patients hospitalized for acute Dengue virus infection. Conversely, both assays were strictly negative in adults never exposed to flavivirus infection or vaccination, and in patients sampled some time after acute Dengue infection. This WN/YF17D test will be particularly useful for large epidemiological studies and for screening for neutralizing antibodies against yellow fever virus.

  2. Recessive resistance to Cucurbit yellow stunting disorder virus in melon

    USDA-ARS?s Scientific Manuscript database

    Cucurbit yellow stunting disorder virus (CYSDV) reduces melon (Cucumis melo L.) fruit quality and yield in many parts of the world. CYSDV and its vector, sweetpotato whitefly (MEAM1 cryptic species of Bemisia tabaci; SPWF) are a devastating combination in the Sonoran Desert areas of California and A...

  3. A Flow Cytometry-Based Assay for Quantifying Non-Plaque Forming Strains of Yellow Fever Virus

    PubMed Central

    Hammarlund, Erika; Amanna, Ian J.; Dubois, Melissa E.; Barron, Alex; Engelmann, Flora; Messaoudi, Ilhem; Slifka, Mark K.

    2012-01-01

    Primary clinical isolates of yellow fever virus can be difficult to quantitate by standard in vitro methods because they may not form discernable plaques or induce a measurable cytopathic effect (CPE) on cell monolayers. In our hands, the Dakar strain of yellow fever virus (YFV-Dakar) could not be measured by plaque assay (PA), focus-forming assay (FFA), or by measurement of CPE. For these reasons, we developed a YFV-specific monoclonal antibody (3A8.B6) and used it to optimize a highly sensitive flow cytometry-based tissue culture limiting dilution assay (TC-LDA) to measure levels of infectious virus. The TC-LDA was performed by incubating serial dilutions of virus in replicate wells of C6/36 cells and stained intracellularly for virus with MAb 3A8.B6. Using this approach, we could reproducibly quantitate YFV-Dakar in tissue culture supernatants as well as from the serum of viremic rhesus macaques experimentally infected with YFV-Dakar. Moreover, the TC-LDA approach was >10-fold more sensitive than standard plaque assay for quantitating typical plaque-forming strains of YFV including YFV-17D and YFV-FNV (French neurotropic vaccine). Together, these results indicate that the TC-LDA technique is effective for quantitating both plaque-forming and non-plaque-forming strains of yellow fever virus, and this methodology may be readily adapted for the study and quantitation of other non-plaque-forming viruses. PMID:23028428

  4. A flow cytometry-based assay for quantifying non-plaque forming strains of yellow fever virus.

    PubMed

    Hammarlund, Erika; Amanna, Ian J; Dubois, Melissa E; Barron, Alex; Engelmann, Flora; Messaoudi, Ilhem; Slifka, Mark K

    2012-01-01

    Primary clinical isolates of yellow fever virus can be difficult to quantitate by standard in vitro methods because they may not form discernable plaques or induce a measurable cytopathic effect (CPE) on cell monolayers. In our hands, the Dakar strain of yellow fever virus (YFV-Dakar) could not be measured by plaque assay (PA), focus-forming assay (FFA), or by measurement of CPE. For these reasons, we developed a YFV-specific monoclonal antibody (3A8.B6) and used it to optimize a highly sensitive flow cytometry-based tissue culture limiting dilution assay (TC-LDA) to measure levels of infectious virus. The TC-LDA was performed by incubating serial dilutions of virus in replicate wells of C6/36 cells and stained intracellularly for virus with MAb 3A8.B6. Using this approach, we could reproducibly quantitate YFV-Dakar in tissue culture supernatants as well as from the serum of viremic rhesus macaques experimentally infected with YFV-Dakar. Moreover, the TC-LDA approach was >10-fold more sensitive than standard plaque assay for quantitating typical plaque-forming strains of YFV including YFV-17D and YFV-FNV (French neurotropic vaccine). Together, these results indicate that the TC-LDA technique is effective for quantitating both plaque-forming and non-plaque-forming strains of yellow fever virus, and this methodology may be readily adapted for the study and quantitation of other non-plaque-forming viruses.

  5. First Complete Genome Sequence of Suakwa aphid-borne yellows virus from East Timor

    PubMed Central

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2016-01-01

    We present here the first complete genomic RNA sequence of the polerovirus Suakwa aphid-borne yellows virus (SABYV), from East Timor. The isolate sequenced came from a virus-infected pumpkin plant. The East Timorese genome had a nucleotide identity of 86.5% with the only other SABYV genome available, which is from Taiwan. PMID:27469955

  6. Ocular manifestations of emerging arboviruses: Dengue fever, Chikungunya, Zika virus, West Nile virus, and yellow fever.

    PubMed

    Merle, H; Donnio, A; Jean-Charles, A; Guyomarch, J; Hage, R; Najioullah, F; Césaire, R; Cabié, A

    2018-06-18

    Arboviruses are viral diseases transmitted by mosquitoes and tick bites. They are a major cause of morbidity and sometimes mortality. Their expansion is constant and due in part to climate change and globalization. Mostly found in tropical regions, arboviruses are sometimes the source of epidemics in Europe. Recently, the Chikungunya virus and the Zika virus were responsible for very large epidemics impacting populations that had never been in contact with those viruses. There are currently no effective antiviral treatments or vaccines. Ocular manifestations due to those infections are thus more frequent and increasingly better described. They are sometimes, as with Zika, complicated by a congenital ocular syndrome. The goal of this review is to describe the ophthalmological manifestations of Dengue fever, Chikungunya virus, Zika virus, West Nile virus, and yellow fever. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy.

    PubMed

    Beasley, David W C; McAuley, Alexander J; Bente, Dennis A

    2015-03-01

    Yellow fever virus (YFV) is the prototypical hemorrhagic fever virus, yet our understanding of its phenotypic diversity and any molecular basis for observed differences in disease severity and epidemiology is lacking, when compared to other arthropod-borne and haemorrhagic fever viruses. This is, in part, due to the availability of safe and effective vaccines resulting in basic YFV research taking a back seat to those viruses for which no effective vaccine occurs. However, regular outbreaks occur in endemic areas, and the spread of the virus to new, previously unaffected, areas is possible. Analysis of isolates from endemic areas reveals a strong geographic association for major genotypes, and recent epidemics have demonstrated the emergence of novel sequence variants. This review aims to outline the current understanding of YFV genetic and phenotypic diversity and its sources, as well as the available animal models for characterizing these differences in vivo. The consequences of genetic diversity for detection and diagnosis of yellow fever and development of new vaccines and therapeutics are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Complete nucleotide sequence of Clematis chlorotic mottle virus, a new member of the family Tombusviridae

    USDA-ARS?s Scientific Manuscript database

    Clematis chlorotic mottle virus (ClCMV) is a previously undescribed virus associated with yellow mottling and veining, chlorotic ring spots, line pattern mosaics, and flower distortion and discoloration on ornamental Clematis. The ClCMV genome is 3,880nt in length with 5 putative open reading frames...

  9. Molecular characterization of the full-length L and M RNAs of Tomato yellow ring virus, a member of the genus Tospovirus.

    PubMed

    Chen, Tsung-Chi; Li, Ju-Ting; Fan, Ya-Shu; Yeh, Yi-Chun; Yeh, Shyi-Dong; Kormelink, Richard

    2013-06-01

    Tomato yellow ring virus (TYRV), first isolated from tomato in Iran, was classified as a non-approved species of the genus Tospovirus based on the characterization of its genomic S RNA. In the current study, the complete sequences of the genomic L and M RNAs of TYRV were determined and analyzed. The L RNA has 8,877 nucleotides (nt) and codes in the viral complementary (vc) strand for the putative RNA-dependent RNA polymerase (RdRp) of 2,873 amino acids (aa) (331 kDa). The RdRp of TYRV shares the highest aa sequence identity (88.7 %) with that of Iris yellow spot virus (IYSV), and contains conserved motifs shared with those of the animal-infecting bunyaviruses. The M RNA contains 4,786 nt and codes in ambisense arrangement for the NSm protein of 308 aa (34.5 kDa) in viral sense, and the Gn/Gc glycoprotein precursor (GP) of 1,310 aa (128 kDa) in vc-sense. Phylogenetic analyses indicated that TYRV is closely clustered with IYSV and Polygonum ringspot virus (PolRSV). The NSm and GP of TYRV share the highest aa sequence identity with those of IYSV and PolRSV (89.9 and 80.2-86.5 %, respectively). Moreover, the GPs of TYRV, IYSV, and PolRSV share highly similar characteristics, among which an identical deduced N-terminal protease cleavage site that is distinct from all tospoviral GPs analyzed thus far. Taken together, the elucidation of the complete genome sequence and biological features of TYRV support a close ancestral relationship with IYSV and PolRSV.

  10. Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association.

    PubMed

    Debibakas, S; Rocher, S; Garsmeur, O; Toubi, L; Roques, D; D'Hont, A; Hoarau, J-Y; Daugrois, J H

    2014-08-01

    Using GWAS approaches, we detected independent resistant markers in sugarcane towards a vectored virus disease. Based on comparative genomics, several candidate genes potentially involved in virus/aphid/plant interactions were pinpointed. Yellow leaf of sugarcane is an emerging viral disease whose causal agent is a Polerovirus, the Sugarcane yellow leaf virus (SCYLV) transmitted by aphids. To identify quantitative trait loci controlling resistance to yellow leaf which are of direct relevance for breeding, we undertook a genome-wide association study (GWAS) on a sugarcane cultivar panel (n = 189) representative of current breeding germplasm. This panel was fingerprinted with 3,949 polymorphic markers (DArT and AFLP). The panel was phenotyped for SCYLV infection in leaves and stalks in two trials for two crop cycles, under natural disease pressure prevalent in Guadeloupe. Mixed linear models including co-factors representing population structure fixed effects and pairwise kinship random effects provided an efficient control of the risk of inflated type-I error at a genome-wide level. Six independent markers were significantly detected in association with SCYLV resistance phenotype. These markers explained individually between 9 and 14 % of the disease variation of the cultivar panel. Their frequency in the panel was relatively low (8-20 %). Among them, two markers were detected repeatedly across the GWAS exercises based on the different disease resistance parameters. These two markers could be blasted on Sorghum bicolor genome and candidate genes potentially involved in plant-aphid or plant-virus interactions were localized in the vicinity of sorghum homologs of sugarcane markers. Our results illustrate the potential of GWAS approaches to prospect among sugarcane germplasm for accessions likely bearing resistance alleles of significant effect useful in breeding programs.

  11. Genetic analysis of a novel Alaska barley yellow dwarf virus in the family Luteoviridae.

    PubMed

    Robertson, N L; French, R

    2007-02-01

    A new plant virus belonging to the family Luteoviridae and isolated from diseased oat (Avena sativa L.) plants was discovered in Alaska in 2003. Even though plants with red/orange leaves were indicative of barley yellow dwarf disease, they were not reactive to specific antibodies corresponding to barley yellow dwarf virus (BYDV)-MAV, -PAV, -SGV, and cereal yellow dwarf virus-RPV from enzyme-linked immunosorbent assays (ELISA). An alternative RT-PCR assay that incorporated Shu-F/Yan-R primers for detection of BYDV-MAV, -PAS, -PAV, and SGV was effective in producing approximately 830-nt fragments that contained genomic sequences to the 3'-terminus of the polymerase gene (ORF 2), the intergenic region ( approximately 113 nt), the coat protein gene (ORF 3), and the putative movement gene (ORF 4). The Alaskan isolates were most similar to BYDV-MAV with only about 77 and 80% amino acid identity in the CP and ORF 4, respectively. The Alaska isolates coat protein gene sequences differed in several regions that otherwise are conserved among BYDV-MAV isolates, and may be important in serological variations, accounting for the negative ELISA results. Based upon sequence and serological differences, we concluded that the Alaskan BYDV-MAV-like isolates formed a novel species tentatively in the genus Luteovirus, and propose the name BYDV-ORV (oat red-leaf virus).

  12. Genetic stability of a dengue vaccine based on chimeric yellow fever/dengue viruses.

    PubMed

    Mantel, N; Girerd, Y; Geny, C; Bernard, I; Pontvianne, J; Lang, J; Barban, V

    2011-09-02

    A tetravalent dengue vaccine based on four live, attenuated, chimeric viruses (CYD1-4), constructed by replacing the genes coding for premembrane (prM) and envelope (E) proteins of the yellow fever (YF)-17D vaccine strain with those of the four serotypes of dengue virus, is in clinical phase III evaluation. We assessed the vaccine's genetic stability by fully sequencing each vaccine virus throughout the development and manufacturing process. The four viruses displayed complete genetic stability, with no change from premaster seed lots to bulk lots. When pursuing the virus growth beyond bulk lots, a few genetic variations were observed. Usually both the initial nucleotide and the new one persisted, and mutations appeared after a relatively high number of virus duplication cycles (65-200, depending on position). Variations were concentrated in the prM-E and non-structural (NS)4B regions. PrM-E variations had no impact on lysis-plaque size or neurovirulence in mice. None of the variations located in the YF-17D-derived genes corresponded with reversion to the wild-type Yellow Fever sequence. Variations in NS4B likely reflect virus adaptation to Vero cells growth. A low to undetectable viremia has been reported previously [1-3] in vaccinated non-human and human primates. Combined with the data reported here about the genetic stability of the vaccine strains, the probability of in vivo emergence of mutant viruses appears very low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. First report of Squash vein yellowing virus in watermelon in Guatemala

    USDA-ARS?s Scientific Manuscript database

    In this study, we report the first detection of Squash vein yellowing virus (SqVYV)-induced watermelon vine decline in Central America. Symptoms including wilt and collapse of plants at harvest, and non-marketable fruits with internal rind necrosis were observed. This report provides an overview o...

  14. Papaya is not a host for Tomato Yellow Leaf Curl Virus

    USDA-ARS?s Scientific Manuscript database

    The economic value of tomato production is threatened by tomato yellow leaf-curl virus TYLCV and its vector, the silverleaf whitefly Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae). Use of papaya Carica papaya L. as a banker plant for a whitefly parasitoid shows promise as a whitefly m...

  15. Construction and characterization of a recombinant yellow fever virus stably expressing Gaussia luciferase.

    PubMed

    Kassar, Telissa C; Magalhães, Tereza; S, José V J; Carvalho, Amanda G O; Silva, Andréa N M R DA; Queiroz, Sabrina R A; Bertani, Giovani R; Gil, Laura H V G

    2017-01-01

    Yellow fever is an arthropod-borne viral disease that still poses high public health concerns, despite the availability of an effective vaccine. The development of recombinant viruses is of utmost importance for several types of studies, such as those aimed to dissect virus-host interactions and to search for novel antiviral strategies. Moreover, recombinant viruses expressing reporter genes may greatly facilitate these studies. Here, we report the construction of a recombinant yellow fever virus (YFV) expressing Gaussia luciferase (GLuc) (YFV-GLuc). We show, through RT-PCR, sequencing and measurement of GLuc activity, that stability of the heterologous gene was maintained after six passages. Furthermore, a direct association between GLuc expression and viral replication was observed (r2=0.9967), indicating that measurement of GLuc activity may be used to assess viral replication in different applications. In addition, we evaluated the use of the recombinant virus in an antiviral assay with recombinant human alfa-2b interferon. A 60% inhibition of GLuc expression was observed in cells infected with YFV-GLuc and incubated with IFN alfa-2b. Previously tested on YFV inhibition by plaque assays indicated a similar fold-decrease in viral replication. These results are valuable as they show the stability of YFV-GLuc and one of several possible applications of this construct.

  16. Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis.

    PubMed

    Miguel, Sissi; Biteau, Flore; Mignard, Benoit; Marais, Armelle; Candresse, Thierry; Theil, Sébastien; Bourgaud, Frédéric; Hehn, Alain

    2016-08-01

    Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5.

  17. Genetic dissection of novel QTLs for resistance to leaf spots and Tomato spotted wilt virus in peanut (Arachis hypogaea L.)

    USDA-ARS?s Scientific Manuscript database

    Peanut is an import crop, economically and nutritiously, but high production cost is a serious challenge to peanut farmers as exemplified by chemical spray to control foliar diseases such as leaf spots and thrips, the vectors of tomato spotted wilt virus (TSWV). The objective of this research was to...

  18. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Barley yellow dwarf (BYD) is one of the most destructive diseases of cereal crops worldwide. Barley yellow dwarf viruses (BYDVs) are responsible for BYD and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-t...

  19. Surface expression of an immunodominant malaria protein B cell epitope by yellow fever virus.

    PubMed

    Bonaldo, Myrna C; Garratt, Richard C; Caufour, Philippe S; Freire, Marcos S; Rodrigues, Mauricio M; Nussenzweig, Ruth S; Galler, Ricardo

    2002-01-25

    The yellow fever 17D virus (YF17D) has several characteristics that are desirable for the development of new, live attenuated vaccines. We approached its development as a vector for heterologous antigens by studying the expression of a humoral epitope at the surface of the E protein based on the results of modelling its three-dimensional structure. This model indicated that the most promising insertion site is between beta-strands f and g, a site that is exposed at the external surface of the virus. The large deletion of six residues from the fg loop of the E protein from yellow fever virus, compared to tick-born encephalitis virus, leaves space at the dimer interface for a large insertion without creating steric hindrance. We have tested this hypothesis by inserting a model humoral epitope from the circumsporozoite protein of Plasmodium falciparum consisting of triple NANP repeats. Recombinant virus (17D/8) expressing this insertion flanked by two glycine residues at each end, is specifically neutralized by a monoclonal antibody to the model epitope. Furthermore, mouse antibodies raised to the recombinant virus recognize the parasite protein in an ELISA assay. Serial passage analysis confirmed the genetic stability of the insertion made in the viral genome and the resulting 17D/8 virus is significantly more attenuated in mouse neurovirulence tests than the 17DD vaccine. The fg loop belongs to the dimerization domain of the E protein and lies at the interface between monomers. This domain undergoes a low pH transition, which is related to the fusion of the viral envelope to the endosome membrane. It is conceivable that a slower rate of fusion, resulting from the insertion close to the dimer interface, may delay the onset of virus production and thereby lead to a milder infection of the host. This would account for the more attenuated phenotype of the recombinant virus in the mouse model and lower extent of replication in cultured cells. The vectorial capacity of

  20. Tomato chocolate spot virus, a member of a new torradovirus species that causes a necrosis-associated disease of tomato in Guatemala.

    PubMed

    Batuman, O; Kuo, Y-W; Palmieri, M; Rojas, M R; Gilbertson, R L

    2010-06-01

    Tomatoes in Guatemala have been affected by a new disease, locally known as "mancha de chocolate" (chocolate spot). The disease is characterized by distinct necrotic spots on leaves, stems and petioles that eventually expand and cause a dieback of apical tissues. Samples from symptomatic plants tested negative for infection by tomato spotted wilt virus, tobacco streak virus, tobacco etch virus and other known tomato-infecting viruses. A virus-like agent was sap-transmitted from diseased tissue to Nicotiana benthamiana and, when graft-transmitted to tomato, this agent induced chocolate spot symptoms. This virus-like agent also was sap-transmitted to Datura stramonium and Nicotiana glutinosa, but not to a range of non-solanaceous indicator plants. Icosahedral virions approximately 28-30 nm in diameter were purified from symptomatic N. benthamiana plants. When rub-inoculated onto leaves of N. benthamiana plants, these virions induced symptoms indistinguishable from those in N. benthamiana plants infected with the sap-transmissible virus associated with chocolate spot disease. Tomatoes inoculated with sap or grafted with shoots from N. benthamiana plants infected with purified virions developed typical chocolate spot symptoms, consistent with this virus being the causal agent of the disease. Analysis of nucleic acids associated with purified virions of the chocolate-spot-associated virus, revealed a genome composed of two single-stranded RNAs of approximately 7.5 and approximately 5.1 kb. Sequence analysis of these RNAs revealed a genome organization similar to recently described torradoviruses, a new group of picorna-like viruses causing necrosis-associated diseases of tomatoes in Europe [tomato torrado virus (ToTV)] and Mexico [tomato apex necrosis virus (ToANV) and tomato marchitez virus (ToMarV)]. Thus, the approximately 7.5 kb and approximately 5.1 kb RNAs of the chocolate-spot-associated virus corresponded to the torradovirus RNA1 and RNA2, respectively; however

  1. Post entry interception of the yellow-spotted longhorned beetle,Psacothea hilaris (Coleoptera: Cerambycidae) in Italy Genbank Accession Number GU244486

    USDA-ARS?s Scientific Manuscript database

    Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae) known as the yellow-spotted longhorned beetle is native from eastern Asia (China, Japan including Ryukyu, Shikoku and Honshu archipelago and Taïwan) where it attacks plants belonging to Moraceae family, in particular to Morus and Ficus genera. In...

  2. Draft Genome Sequence of White Spot Syndrome Virus Isolated from Cultured Litopenaeus vannamei in Mexico

    PubMed Central

    Rodriguez-Anaya, Libia Zulema; Gonzalez-Galaviz, Jose Reyes; Casillas-Hernandez, Ramón; Lares-Villa, Fernando; Estrada, Karel

    2016-01-01

    The first genome sequence of a Mexican white spot syndrome virus is presented here. White spot syndrome is a shrimp pandemic virus that has devastated production in Mexico for more than 10 years. The availability of this genome will greatly aid epidemiological studies worldwide, contributing to the molecular diagnostic and disease prevention in shrimp farming. PMID:26966222

  3. First Complete Genome Sequence of Pepper vein yellows virus from Australia

    PubMed Central

    Maina, Solomon; Edwards, Owain R.

    2016-01-01

    We present here the first complete genomic RNA sequence of the polerovirus Pepper vein yellows virus (PeVYV) obtained from a pepper plant in Australia. We compare it with complete PeVYV genomes from Japan and China. The Australian genome was more closely related to the Japanese than the Chinese genome. PMID:27231375

  4. The phylogeny of yellow fever virus 17D vaccines.

    PubMed

    Stock, Nina K; Boschetti, Nicola; Herzog, Christian; Appelhans, Marc S; Niedrig, Matthias

    2012-02-01

    In recent years the safety of the yellow fever live vaccine 17D came under scrutiny. The focus was on serious adverse events after vaccinations that resemble a wild type infection with yellow fever and whose reasons are still not known. Also the exact mechanism of attenuation of the vaccine remains unknown to this day. In this context, the standards of safety and surveillance in vaccine production and administration have been discussed. Therein embodied was the demand for improved documentation of the derivation of the seed virus used for yellow fever vaccine production. So far, there was just a historical genealogy available that is based on source area and passage level. However, there is a need for a documentation based on molecular information to get better insights into the mechanisms of pathology. In this work we sequenced the whole genome of different passages of the YFV-17D strain used by Crucell Switzerland AG for vaccine production. Using all other publically available 17D full genome sequences we compared the sequence variance of all vaccine strains and oppose a phylogenetic tree based on full genome sequences to the historical genealogy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Beet yellow stunt virus in cells of Sonchus oleraceus L. and its relation to host mitochondria.

    PubMed

    Esau, K

    1979-10-15

    In Sonchus oleraceus L. (Asteraceae) infected with the beet yellow stunt virus (BYSV) the virions are found in phloem cells, including the sieve elements. In parenchymatous phloem cells, the virus is present mainly in the cytoplasm. In some parenchymatous cells, containing massive accumulations of virus, the flexuous rodlike virus particles are found partly inserted into mitochondrial cristae. The mitochondrial envelope is absent where virus is present in the cristae. A similar relation between virus and host mitochondria apparently has not been recorded for any other plant virus.

  6. Crotoxin and phospholipases A₂ from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses.

    PubMed

    Muller, Vanessa Danielle Menjon; Russo, Raquel Rinaldi; Cintra, Adelia Cristina Oliveira; Sartim, Marco Aurélio; Alves-Paiva, Raquel De Melo; Figueiredo, Luiz Tadeu Moraes; Sampaio, Suely Vilela; Aquino, Victor Hugo

    2012-03-15

    Dengue is the most important arbovirus in the world with an estimated of 50 million dengue infections occurring annually and approximately 2.5 billion people living in dengue endemic countries. Yellow fever is a viral hemorrhagic fever with high mortality that is transmitted by mosquitoes. Effective vaccines against yellow fever have been available for almost 70 years and are responsible for a significant reduction of occurrences of the disease worldwide; however, approximately 200,000 cases of yellow fever still occur annually, principally in Africa. Therefore, it is a public health priority to develop antiviral agents for treatment of these virus infections. Crotalus durissus terrificus snake, a South American rattlesnake, presents venom with several biologically actives molecules. In this study, we evaluated the antiviral activity of crude venom and isolated toxins from Crotalus durissus terrificus and found that phospholipases A₂ showed a high inhibition of Yellow fever and dengue viruses in VERO E6 cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Recessive resistance to Cucurbit yellow stunting disorder virus in melon TGR 1551

    USDA-ARS?s Scientific Manuscript database

    Cucurbit yellow stunting disorder virus (CYSDV) reduces melon (Cucumis melo L.) fruit quality and yield in many parts of the world. Host plant resistance of melon to CYSDV is a high priority for sustainable melon production in affected production areas. High-level resistance to CYSDV exhibited by TG...

  8. 40 CFR 180.1279 - Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance. 180.1279 Section 180.1279 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1279 Zucchini yellow mosaic virus—weak...

  9. 40 CFR 180.1279 - Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance. 180.1279 Section 180.1279 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1279 Zucchini yellow mosaic virus—weak...

  10. 40 CFR 180.1279 - Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance. 180.1279 Section 180.1279 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1279 Zucchini yellow mosaic virus—weak...

  11. 40 CFR 180.1279 - Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance. 180.1279 Section 180.1279 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1279 Zucchini yellow mosaic virus—weak...

  12. 40 CFR 180.1279 - Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Zucchini yellow mosaic virus-weak strain; exemption from the requirement of a tolerance. 180.1279 Section 180.1279 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1279 Zucchini yellow mosaic virus—weak...

  13. THE TRANSMISSION OF YELLOW FEVER

    PubMed Central

    Davis, Nelson C.

    1930-01-01

    1. Saimiri sciureus has been infected with yellow fever virus, both by the inoculation of infectious blood and by the bites of infective mosquitoes. Some of the monkeys have died, showing lesions, including hepatic necrosis, suggesting yellow fever as seen in human beings and in rhesus monkeys. Virus has been transferred back to M. rhesus from infected Saimiri both by blood inoculation and by mosquito bites. The virus undoubtedly has been maintained through four direct passages in Saimiri. Reinoculations of infectious material into recovered monkeys have not given rise to invasion of the blood stream by virus. Sera from recovered animals have protected M. rhesus against the inoculation of virus. 2. It has been possible to pass the virus to and from Ateleus ater by the injection of blood or liver and by the bites of mosquitoes. The livers from two infected animals have shown no necrosis. The serum from one recovered monkey proved to be protective for M. rhesus. 3. Only three out of twelve Lagothrix lagotricha have reacted to yellow fever virus by a rise in temperature. Probably none have died as a result of the infection. In only one instance has the virus been transferred back to M. rhesus. The sera of recovered animals have had a protective action against yellow fever virus. PMID:19869721

  14. Application of a Label-Free Immunosensor for White Spot Syndrome Virus (WSSV) in Shrimp Cultivation Water.

    PubMed

    Waiyapoka, Thanyaporn; Deachamag, Panchalika; Chotigeat, Wilaiwan; Bunsanong, Nittaya; Kanatharana, Proespichaya; Thavarungkul, Panote; Loyprasert-Thananimit, Suchera

    2015-10-01

    White spot syndrome virus (WSSV) is a major pathogen affecting the shrimp industry worldwide. In a preliminary study, WSSV binding protein (WBP) was specifically bound to the VP26 protein of WSSV. Therefore, we have developed the label-free affinity immunosensor using the WBP together with anti-GST-VP26 for quantitative detection of WSSV in shrimp pond water. When the biological molecules were immobilized on a gold electrode to form a self-assembled monolayer, it was then used to detect WSSV using a flow injection system with optimized conditions. Binding between the different copies of WSSV and the immobilized biological molecules was detected by an impedance change (ΔZ″) in real time. The sensitivity of the developed immunosensor was in the linear range of 1.6 × 10(1)-1.6 × 10(6) copies/μl. The system was highly sensitive for the analysis of WSSV as shown by the lack of impedance change when using yellow head virus (YHV). The developed immunosensor could be reused up to 37 times (relative standard deviation (RSD), 3.24 %) with a good reproducibility of residual activity (80-110 %). The immunosensor was simple to operate, reliable, reproducible, and could be applied for the detection and quantification of WSSV in water during shrimp cultivation.

  15. A real-time reverse transcription loop-mediated isothermal amplification assay for the rapid detection of yellow fever virus.

    PubMed

    Kwallah, Allan ole; Inoue, Shingo; Muigai, Anne W T; Kubo, Toru; Sang, Rosemary; Morita, Kouichi; Mwau, Matilu

    2013-10-01

    Yellow fever, a mosquito-borne disease, is an important viral hemorrhagic fever in Africa and South America where it is endemic. Detection of yellow fever virus (YFV) in Africa remains a challenge due to a lack of highly specific tests. The aim of this study was to develop and optimize a rapid detection reverse transcription loop-mediated isothermal amplification (RT-LAMP) for YFV. The RT-LAMP was done isothermally at 62 °C using a real-time turbidimeter that allowed detection within 1h. Specificity of the RT-LAMP was determined using RNA from flaviviruses and other related viruses where only YFV RNA was detected: West Nile virus, dengue viruses, Japanese encephalitis virus, Rift Valley fever virus, and chikungunya virus. In addition, equal sensitivity was also observed when the RT-LAMP and the real-time RT-PCR were compared using YFV-spiked human serum samples with a detection limit of 0.29 PFU/ml. Two Kenyan YFV wild strains showed an equal detection limit as the vaccine strain 17D in this study. The RT-LAMP reduced the time of reaction from 3h to 1h and increased sensitivity tenfold compared to RT-PCR. Therefore, this test offers a simple, rapid and reliable diagnostic tool for yellow fever when there are outbreaks of acute hemorrhagic fever in Kenya and other African countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Tomato chlorotic spot virus Identified in Marsdenia floribunda in Florida

    USDA-ARS?s Scientific Manuscript database

    Ornamental crops including hoya, annual vinca and portulaca have recently been identified with Tomato chlorotic spot virus (TCSV) infections in Florida. Observations of Marsdenia floribunda, commonly known as Madagascar jasmine, in September 2016 revealed TCSV-like symptoms. Testing of these sympt...

  17. Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine

    PubMed Central

    Norrby, Erling

    2007-01-01

    In 1951, Max Theiler of the Rockefeller Foundation received the Nobel Prize in Physiology or Medicine for his discovery of an effective vaccine against yellow fever—a discovery first reported in the JEM 70 years ago. This was the first, and so far the only, Nobel Prize given for the development of a virus vaccine. Recently released Nobel archives now reveal how the advances in the yellow fever vaccine field were evaluated more than 50 years ago, and how this led to a prize for Max Theiler. PMID:18039952

  18. Identifying geographic hot spots of reassortment in a multipartite plant virus

    PubMed Central

    Savory, Fiona R; Varma, Varun; Ramakrishnan, Uma

    2014-01-01

    Reassortment between different species or strains plays a key role in the evolution of multipartite plant viruses and can have important epidemiological implications. Identifying geographic locations where reassortant lineages are most likely to emerge could be a valuable strategy for informing disease management and surveillance efforts. We developed a predictive framework to identify potential geographic hot spots of reassortment based upon spatially explicit analyses of genome constellation diversity. To demonstrate the utility of this approach, we examined spatial variation in the potential for reassortment among Cardamom bushy dwarf virus (CBDV; Nanoviridae, Babuvirus) isolates in Northeast India. Using sequence data corresponding to six discrete genome components for 163 CBDV isolates, a quantitative measure of genome constellation diversity was obtained for locations across the sampling region. Two key areas were identified where viruses with highly distinct genome constellations cocirculate, and these locations were designated as possible geographic hot spots of reassortment, where novel reassortant lineages could emerge. Our study demonstrates that the potential for reassortment can be spatially dependent in multipartite plant viruses and highlights the use of evolutionary analyses to identify locations which could be actively managed to facilitate the prevention of outbreaks involving novel reassortant strains. PMID:24944570

  19. Western flower thrips can transmit Tomato spotted wilt virus from infected tomato fruits

    USDA-ARS?s Scientific Manuscript database

    Tomato spotted wilt virus (TSWV) has long been known to spread via plant propagation materials including transplants. Global dissemination of TSWV has also been linked to transport of thrips-infested and virus-infected horticultural and floricultural products through trade and commerce. However, th...

  20. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories.

    PubMed

    Domingo, Cristina; Patel, Pranav; Yillah, Jasmin; Weidmann, Manfred; Méndez, Jairo A; Nakouné, Emmanuel Rivalyn; Niedrig, Matthias

    2012-12-01

    Reported methods for the detection of the yellow fever viral genome are beset by limitations in sensitivity, specificity, strain detection spectra, and suitability to laboratories with simple infrastructure in areas of endemicity. We describe the development of two different approaches affording sensitive and specific detection of the yellow fever genome: a real-time reverse transcription-quantitative PCR (RT-qPCR) and an isothermal protocol employing the same primer-probe set but based on helicase-dependent amplification technology (RT-tHDA). Both assays were evaluated using yellow fever cell culture supernatants as well as spiked and clinical samples. We demonstrate reliable detection by both assays of different strains of yellow fever virus with improved sensitivity and specificity. The RT-qPCR assay is a powerful tool for reference or diagnostic laboratories with real-time PCR capability, while the isothermal RT-tHDA assay represents a useful alternative to earlier amplification techniques for the molecular diagnosis of yellow fever by field or point-of-care laboratories.

  1. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008.

    PubMed

    Cardoso, Jader da C; de Almeida, Marco A B; dos Santos, Edmilson; da Fonseca, Daltro F; Sallum, Maria A M; Noll, Carlos A; Monteiro, Hamilton A de O; Cruz, Ana C R; Carvalho, Valeria L; Pinto, Eliana V; Castro, Francisco C; Nunes Neto, Joaquim P; Segura, Maria N O; Vasconcelos, Pedro F C

    2010-12-01

    Yellow fever virus (YFV) was isolated from Haemagogus leucocelaenus mosquitoes during an epizootic in 2001 in the Rio Grande do Sul State in southern Brazil. In October 2008, a yellow fever outbreak was reported there, with nonhuman primate deaths and human cases. This latter outbreak led to intensification of surveillance measures for early detection of YFV and support for vaccination programs. We report entomologic surveillance in 2 municipalities that recorded nonhuman primate deaths. Mosquitoes were collected at ground level, identified, and processed for virus isolation and molecular analyses. Eight YFV strains were isolated (7 from pools of Hg. leucocelaenus mosquitoes and another from Aedes serratus mosquitoes); 6 were sequenced, and they grouped in the YFV South American genotype I. The results confirmed the role of Hg. leucocelaenus mosquitoes as the main YFV vector in southern Brazil and suggest that Ae. serratus mosquitoes may have a potential role as a secondary vector.

  2. Recessive Resistance Derived from Tomato cv. Tyking-Limits Drastically the Spread of Tomato Yellow Leaf Curl Virus

    PubMed Central

    Pereira-Carvalho, Rita C.; Díaz-Pendón, Juan A.; Fonseca, Maria Esther N.; Boiteux, Leonardo S.; Fernández-Muñoz, Rafael; Moriones, Enrique; Resende, Renato O.

    2015-01-01

    The tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato (Solanum lycopersicum L.) crops throughout tropical and subtropical regions of the world. TYLCD is associated with a complex of single-stranded circular DNA plant viruses of the genus Begomovirus (family Geminiviridae) transmitted by the whitefy Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). The tomato inbred line TX 468-RG is a source of monogenic recessive resistance to begomoviruses derived from the hybrid cv. Tyking F1. A detailed analysis of this germplasm source against tomato yellow leaf curl virus-Israel (TYLCV-IL), a widespread TYLCD-associated virus, showed a significant restriction to systemic virus accumulation even under continuous virus supply. The resistance was effective in limiting the onset of TYLCV-IL in tomato, as significantly lower primary spread of the virus occurred in resistant plants. Also, even if a limited number of resistant plants could result infected, they were less efficient virus sources for secondary spread owing to the impaired TYLCV-IL accumulation. Therefore, the incorporation of this resistance into breeding programs might help TYLCD management by drastically limiting TYLCV-IL spread. PMID:26008699

  3. Molecular evidence that zucchini yellow fleck virus is a distinct and variable potyvirus related to papaya ringspot virus and Moroccan watermelon mosaic virus.

    PubMed

    Desbiez, C; Justafre, I; Lecoq, H

    2007-02-01

    Zucchini yellow fleck virus (ZYFV, genus Potyvirus) infects cultivated or wild cucurbits in the Mediterranean basin and occasionally causes severe damage in crops. Biological and serological data tend to indicate that ZYFV is related to other cucurbit-infecting potyviruses, mainly papaya ringspot virus (PRSV) and Moroccan watermelon mosaic virus (MWMV). In order to establish unambiguously the taxonomic status of ZYFV, the sequence of the 3' part of the genome - encompassing the CP coding region - of two ZYFV strains originating from Italy and France was obtained and compared with other potyviruses. The results obtained indicate that ZYFV belongs to a distinct potyvirus species, related to but different from PRSV and MWMV.

  4. Barley yellow dwarf virus infection and elevated CO2 alter the antioxidants ascorbate and glutathione in wheat.

    PubMed

    Vandegeer, Rebecca K; Powell, Kevin S; Tausz, Michael

    2016-07-20

    Plant antioxidants ascorbate and glutathione play an important role in regulating potentially harmful reactive oxygen species produced in response to virus infection. Barley yellow dwarf virus is a widespread viral pathogen that systemically infects cereal crops including wheat, barley and oats. In addition, rising atmospheric CO 2 will alter plant growth and metabolism, including many potential but not well understood effects on plant-virus interactions. In order to better understand the wheat-BYDV interaction and any potential changes under elevated CO 2 , the total concentration and oxidised fraction of ascorbate and glutathione was measured in leaves of a susceptible wheat cultivar (Triticum aestivum L. 'Yitpi') infected with Barley yellow dwarf virus-PAV (Padi Avenae virus) and grown under elevated CO 2 in controlled environment chambers. Virus infection decreased total leaf ascorbate and glutathione concentrations and increased the fraction of oxidised ascorbate (dehydroascorbate). Elevated CO 2 decreased the fraction of oxidised ascorbate. In this work, we demonstrate that systemic infection by a phloem-restricted virus weakens the antioxidant pools of ascorbate and glutathione. In addition, elevated CO 2 may decrease oxidative stress, for example, from virus infection, but there was no direct evidence for an interactive effect between treatments. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Yellow Fever Virus in Haemagogus leucocelaenus and Aedes serratus Mosquitoes, Southern Brazil, 2008

    PubMed Central

    Cardoso, Jáder da C.; de Almeida, Marco A.B.; dos Santos, Edmilson; da Fonseca, Daltro F.; Sallum, Maria A.M.; Noll, Carlos A.; Monteiro, Hamilton A. de O.; Cruz, Ana C.R.; Carvalho, Valéria L.; Pinto, Eliana V.; Castro, Francisco C.; Neto, Joaquim P. Nunes; Segura, Maria N.O.

    2010-01-01

    Yellow fever virus (YFV) was isolated from Haemagogus leucocelaenus mosquitoes during an epizootic in 2001 in the Rio Grande do Sul State in southern Brazil. In October 2008, a yellow fever outbreak was reported there, with nonhuman primate deaths and human cases. This latter outbreak led to intensification of surveillance measures for early detection of YFV and support for vaccination programs. We report entomologic surveillance in 2 municipalities that recorded nonhuman primate deaths. Mosquitoes were collected at ground level, identified, and processed for virus isolation and molecular analyses. Eight YFV strains were isolated (7 from pools of Hg. leucocelaenus mosquitoes and another from Aedes serratus mosquitoes); 6 were sequenced, and they grouped in the YFV South American genotype I. The results confirmed the role of Hg. leucocelaenus mosquitoes as the main YFV vector in southern Brazil and suggest that Ae. serratus mosquitoes may have a potential role as a secondary vector. PMID:21122222

  6. Stability of Yellow Fever Virus under Recombinatory Pressure as Compared with Chikungunya Virus

    PubMed Central

    McGee, Charles E.; Tsetsarkin, Konstantin A.; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L.; Higgs, Stephen

    2011-01-01

    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely. PMID:21826243

  7. Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus.

    PubMed

    McGee, Charles E; Tsetsarkin, Konstantin A; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L; Higgs, Stephen

    2011-01-01

    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.

  8. Variation within Lactuca for resistance to Impatiens necrotic spot virus

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) production in coastal California, one of the major lettuce-producing areas of the US, is affected by outbreaks of Impatiens necrotic spot virus (INSV) from the genus Tospovirus. Transmission of INSV among lettuce crops in this growing region has been attributed mostly to ...

  9. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein

    PubMed Central

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M.; Du, Yanming; Guo, Ju-Tao

    2016-01-01

    ABSTRACT Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past 2 decades, which highlights the pressing need for antiviral therapeutics. In a high-throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV-infected cultures with 2 μM BDAA reduced the virion production by greater than 2 logs, the compound was not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug-resistant viruses revealed that replacement of the proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine, or alanine conferred YFV with resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, replacement of P219 with glycine conferred BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 amino acid is localized at the endoplasmic reticulum lumen side of the fifth putative transmembrane domain of NS4B, and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed an important role and the structural basis for the NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs, and attenuated virus infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. IMPORTANCE Yellow fever is an acute viral hemorrhagic disease which threatens approximately 1 billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than 7 decades, the low vaccination

  10. Zika virus infection, associated microcephaly, and low yellow fever vaccination coverage in Brazil: is there any causal link?

    PubMed

    De Góes Cavalcanti, Luciano Pamplona; Tauil, Pedro Luiz; Alencar, Carlos Henrique; Oliveira, Wanderson; Teixeira, Mauro Martins; Heukelbach, Jorg

    2016-06-30

    Since the end of 2014, Zika virus (ZIKV) infection has been rapidly spreading in Brazil. To analyze the possible association of yellow fever vaccine with a protective effect against ZIKV-related microcephaly, the following spatial analyses were performed, using Brazilian municipalities as units: i) yellow fever vaccination coverage in Brazilian municipalities in individuals aged 15-49; ii) reported cases of microcephaly by municipality; and iii) confirmed cases of microcephaly related to ZIKV, by municipality. SaTScan software was used to identify clusters of municipalities for high risk of microcephaly. There were seven significant high risk clusters of confirmed microcephaly cases, with four of them located in the Northeast where yellow fever vaccination rates were the lowest. The clusters harbored only 2.9% of the total population of Brazil, but 15.2% of confirmed cases of microcephaly. We hypothesize that pregnant women in regions with high yellow fever vaccination coverage may pose their offspring to lower risk for development of microcephaly. There is an urgent need for systematic studies to confirm the possible link between low yellow fever vaccination coverage, Zika virus infection and microcephaly.

  11. Complete genome sequence of maize yellow striate virus, a new cytorhabdovirus infecting maize and wheat crops in Argentina.

    PubMed

    Maurino, Fernanda; Dumón, Analía D; Llauger, Gabriela; Alemandri, Vanina; de Haro, Luis A; Mattio, M Fernanda; Del Vas, Mariana; Laguna, Irma Graciela; Giménez Pecci, María de la Paz

    2018-01-01

    A rhabdovirus infecting maize and wheat crops in Argentina was molecularly characterized. Through next-generation sequencing (NGS) of symptomatic leaf samples, the complete genome was obtained of two isolates of maize yellow striate virus (MYSV), a putative new rhabdovirus, differing by only 0.4% at the nucleotide level. The MYSV genome consists of 12,654 nucleotides for maize and wheat virus isolates, and shares 71% nucleotide sequence identity with the complete genome of barley yellow striate mosaic virus (BYSMV, NC028244). Ten open reading frames (ORFs) were predicted in the MYSV genome from the antigenomic strand and were compared with their BYSMV counterparts. The highest amino acid sequence identity of the MYSV and BYSMV proteins was 80% between the L proteins, and the lowest was 37% between the proteins 4. Phylogenetic analysis suggested that the MYSV isolates are new members of the genus Cytorhabdovirus, family Rhabdoviridae. Yellow striate, affecting maize and wheat crops in Argentina, is an emergent disease that presents a potential economic risk for these widely distributed crops.

  12. Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp

    PubMed Central

    Ren, Qian; Huang, Xin; Cui, Yalei; Sun, Jiejie; Wang, Wen

    2017-01-01

    ABSTRACT In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp (Marsupenaeus japonicus). Dorsal, the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction. IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions. PMID:28179524

  13. Begomoviruses infecting weeds in Cuba: increased host range and a novel virus infecting Sida rhombifolia.

    PubMed

    Fiallo-Olivé, Elvira; Navas-Castillo, Jesús; Moriones, Enrique; Martínez-Zubiaur, Yamila

    2012-01-01

    As a result of surveys conducted during the last few years to search for wild reservoirs of begomoviruses in Cuba, we detected a novel bipartite begomovirus, sida yellow mottle virus (SiYMoV), infecting Sida rhombifolia plants. The complete genome sequence was obtained, showing that DNA-A was 2622 nucleotides (nt) in length and that it was most closely related (87.6% nucleotide identity) to DNA-A of an isolate of sida golden mosaic virus (SiGMV) that infects snap beans (Phaseolus vulgaris) in Florida. The DNA-B sequence was 2600 nt in length and shared the highest nucleotide identity (75.1%) with corchorus yellow spot virus (CoYSV). Phylogenetic relationship analysis showed that both DNA components of SiYMoV were grouped in the Abutilon clade, along with begomoviruses from Florida and the Caribbean islands. We also present here the complete nucleotide sequence of a novel strain of sida yellow vein virus found infecting Malvastrum coromandelianum and an isolate of euphorbia mosaic virus that was found for the first time infecting Euphorbia heterophylla in Cuba.

  14. Phylogenetic relationships and the occurrence of interspecific recombination between beet chlorosis virus (BChV) and Beet mild yellowing virus (BMYV).

    PubMed

    Kozlowska-Makulska, Anna; Hasiow-Jaroszewska, Beata; Szyndel, Marek S; Herrbach, Etienne; Bouzoubaa, Salah; Lemaire, Olivier; Beuve, Monique

    2015-02-01

    Samples containing two viruses belonging to the genus Polerovirus, beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV), were collected from French and Polish sugar beet fields. The molecular properties of 24 isolates of BChV and BMYV were investigated, and their genetic diversity was examined in the coat protein (CP)- and P0-encoding genes. For the first time, we have demonstrated that beet polerovirus populations include recombinants between BChV and BMYV containing breakpoints within the CP gene. Moreover, a partial correlation between geographic origin and phylogenetic clustering was observed for BMYV isolates.

  15. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    PubMed

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. ViroSpot microneutralization assay for antigenic characterization of human influenza viruses.

    PubMed

    van Baalen, Carel A; Jeeninga, Rienk E; Penders, Germaine H W M; van Gent, Brenda; van Beek, Ruud; Koopmans, Marion P G; Rimmelzwaan, Guus F

    2017-01-03

    The hemagglutination inhibition (HI) assay has been used for the antigenic characterization of influenza viruses for decades. However, the majority of recent seasonal influenza A viruses of the H3N2 subtype has lost the capacity to agglutinate erythrocytes of various species. The hemagglutination (HA) activity of other A(H3N2) strains is generally sensitive to the action of the neuraminidase inhibitor oseltamivir, which indicates that the neuraminidase and not the hemagglutinin is responsible for the HA activity. These findings complicate the antigenic characterization and selection of A(H3N2) vaccine strains, calling for alternative antigenic characterization assays. Here we describe the development and use of the ViroSpot microneutralization (MN) assay as a reliable and robust alternative for the HI assay. Serum neutralization of influenza A(H3N2) reference virus strains and epidemic isolates was determined by automated readout of immunostained cell monolayers, in a format designed to minimize the influence of infectious virus doses on serum neutralization titers. Neutralization of infection was largely independent from rates of viral replication and cell-to-cell transmission, facilitating the comparison of different virus isolates. Other advantages of the ViroSpot MN assay include its relative insensitivity to variation in test dose of infectious virus, automated capture and analyses of residual infection patterns, and compatibility with standardized large scale analyses. Using this assay, a number of epidemic influenza A(H3N2) strains that failed to agglutinate erythrocytes, were readily characterized antigenically. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. [Yellow fever virus, dengue 2 and other arboviruses isolated from mosquitos, in Burkina Faso, from 1983 to 1986. Entomological and epidemiological considerations].

    PubMed

    Robert, V; Lhuillier, M; Meunier, D; Sarthou, J L; Monteny, N; Digoutte, J P; Cornet, M; Germain, M; Cordellier, R

    1993-01-01

    An arbovirus surveillance was carried out in Burkina Faso from 1983 to 1986. It was based on crepuscular catches of mosquitoes on human bait in some wooded areas and in one town. The total collection was 228 catches with an average of 8 men per catch. The total number of mosquitoes caught was 44,956 among which 32,010 potential vector of yellow fever; all these mosquitoes were analysed for arbovirology. In the south-western part of the country (region of Bobo-Dioulasso), surveillance was conducted each year from August to November, whilst the circulation of Aedes-borne arboviruses is well known to be favoured. In 1983, 1984 and 1986, seven strains of yellow fever virus were isolated in circumstances remarkably similar. They came from selvatic areas and never from the town. They concerned only Aedes (Stegomyia) luteocephalus which is the very predominant potential vector of yellow fever in the region. They were obtained in low figure, between 1 and 4 per year. They occurred from 27th of October to 21th of November. These observations confirm that the southern portion of the Sudan savanna zone of West Africa is the setting of a customary circulation of yellow fever virus and therefore belongs to the endemic emergence zone. In 1986, two strains of dengue 2 virus were isolated. One concerned Ae. luteocephalus from the selvatic area, the other Ae. (St.) aegypti from the heart of town. These data suggest two distinct cycles for dengue 2 virus, one urban and one selvatic, which could coexist simultaneously in the same region. In the south-eastern part of the country (region of Fada-N'Gourma) a yellow fever epidemic occurred between September and December 1983; its study has enable to precise their entomological aspects. The entomological inoculation rate of yellow fever virus has been evaluated to 22 infected bites per man during the month of october, for a man living close to forest gallery. 25 strains of yellow fever virus strains was isolated from Ae. (Diceromyia

  18. Infection of the whitefly Bemisia tabaci with Rickettsia spp. alters its interactions with Tomato yellow leaf curl virus

    USDA-ARS?s Scientific Manuscript database

    Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. Here we report that infection with Rickettsia spp., a facultative endosymbiont of whiteflies...

  19. Characterization of Canna yellow mottle virus in a New Host, Alpinia purpurata, in Hawaii.

    PubMed

    Zhang, Jingxin; Dey, Kishore K; Lin, Birun; Borth, Wayne B; Melzer, Michael J; Sether, Diane; Wang, Yanan; Wang, I-Chin; Shen, Huifang; Pu, Xiaoming; Sun, Dayuan; Hu, John S

    2017-06-01

    Canna yellow mottle virus (CaYMV) is an important badnavirus infecting Canna spp. worldwide. This is the first report of CaYMV in flowering ginger (Alpinia purpurata) in Hawaii, where it is associated with yellow mottling and necrosis of leaves, vein streaking, and stunted plants. We have sequenced CaYMV in A. purpurata (CaYMV-Ap) using a combination of next-generation sequencing and traditional Sanger sequencing techniques. The complete genome of CaYMV-Ap was 7,120 bp with an organization typical of other Badnavirus species. Our results indicated that CaYMV-Ap was present in the episomal form in infected flowering ginger. We determined that this virus disease is prevalent in Hawaii and could potentially have significant economic impact on the marketing of A. purpurata as cut flowers. There is a potential concern that the host range of CaYMV-Ap may expand to include other important tropical plants.

  20. Evaluating Weeds as Hosts of Tomato yellow leaf curl virus.

    PubMed

    Smith, Hugh A; Seijo, Teresa E; Vallad, Gary E; Peres, Natalia A; Druffel, Keri L

    2015-08-01

    Bemisia tabaci (Gennadius) biotype B transmits Tomato yellow leaf curl virus (TYLCV), which affects tomato production globally. Prompt destruction of virus reservoirs is a key component of virus management. Identification of weed hosts of TYLCV will be useful for reducing such reservoirs. The status of weeds as alternate hosts of TYLCV in Florida remains unclear. In greenhouse studies, B. tabaci adults from a colony reared on TYLCV-infected tomato were established in cages containing one of four weeds common to horticultural fields in central and south Florida. Cages containing tomato and cotton were also infested with viruliferous whiteflies as a positive control and negative control, respectively. Whitefly adults and plant tissue were tested periodically over 10 wk for the presence of TYLCV using PCR. After 10 wk, virus-susceptible tomato plants were placed in each cage to determine if whiteflies descended from the original adults were still infective. Results indicate that Bidens alba, Emilia fosbergii, and Raphanus raphanistrum are not hosts of TYLCV, and that Amaranthus retroflexus is a host. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Successful propagation of shrimp yellow head virus in immortal mosquito cells.

    PubMed

    Gangnonngiw, Warachin; Kanthong, Nipaporn; Flegel, Timothy W

    2010-05-18

    Research on crustacean viruses is hampered by the lack of continuous cell lines susceptible to them. To overcome this problem, we previously challenged immortal mosquito and lepidopteran cell lines with shrimp yellow head virus (YHV), followed by serial, split-passage of whole cells, and showed that this produced cells that persistently expressed YHV antigens. To determine whether such insect cultures positive for YHV antigens could be used to infect shrimp Penaeus monodon with YHV, culture supernatants and whole-cell homogenates were used to challenge shrimp by injection. Shrimp injected with culture supernatants could not be infected. However, shrimp injection-challenged with whole-cell homogenates from Passage 5 (early-passage) of such cultures died with histological and clinical signs typical for yellow head disease (YHD), while homogenates of mock-passaged, YHV-challenged cells did not. By contrast, shrimp challenged with cell homogenates of late-passage cultures became infected with YHV, but survived, suggesting that YHV attenuation had occurred during its long-term serial passage in insect cells. Thus, YHV could be propagated successfully in C6/36 mosquito cells and used at low passage numbers as a source of inoculum to initiate lethal infections in shrimp. This partially solves the problem of lack of continuous shrimp cell lines for cultivation of YHV.

  2. Simultaneous detection of wheat dwarf virus, northern cereal mosaic virus, barley yellow striate mosaic virus and rice black-streaked dwarf virus in wheat by multiplex RT-PCR.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Massart, Sebastien; Wang, Xifeng

    2017-11-01

    Wheat dwarf virus (WDV), barley yellow striate mosaic virus (BYSMV), rice black-streaked dwarf virus (RBSDV) and northern cereal mosaic virus (NCMV) are four viruses infecting wheat and causing similar symptoms. In this paper, a multiplex reverse transcription polymerase chain reaction (m-RT-PCR) method has been developed for the simultaneous detection and discrimination of these viruses. The protocol uses specific primer set for each virus and produces four distinct fragments (273, 565, 783 and 1296bp), detecting the presence of RBSDV, BYSMV, WDV and NCMV, respectively. Annealing temperature, concentrations of dNTP, Taq polymerase and Mg 2+ were optimized for the m-RT-PCR. The detection limit of the assay was up to 10 -2 dilution. The amplification specificity of these primers was tested against a range of field samples from different regions of China, where RBSDV, BYSMV, WDV have been detected. This study fulfills the need for a rapid and specific wheat virus detection that also has the potential for investigating the epidemiology of these new viral diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Tomato yellow leaf curl virus C4 protein is a determinant of disease phenotype in tomato

    USDA-ARS?s Scientific Manuscript database

    Tomato yellow leaf curl virus (TYLCV) is a monopartite begomovirus. Its genome contains six open reading frames, with V1 and V2 in sense, and C1 to C4 in complementary orientation. The functions of V1 and V2 are for coat protein and pre-coat, respectively. C1 is for virus replication, C2 for trans-a...

  4. Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp.

    PubMed

    Ren, Qian; Huang, Xin; Cui, Yalei; Sun, Jiejie; Wang, Wen; Zhang, Xiaobo

    2017-04-15

    In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp ( Marsupenaeus japonicus ). Dorsal , the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction. IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions. Copyright © 2017 American Society for Microbiology.

  5. POSSIBILITY OF HEREDITARY TRANSMISSION OF YELLOW FEVER VIRUS BY AEDES AEGYPTI (LINN.)

    PubMed Central

    Philip, Cornelius B.

    1929-01-01

    Attempts to obtain passage of yellow fever virus from one generation to the next in A. aegypti were unsuccessful. Subcutaneous injections at varying intervals of a saline emulsion of 200 eggs laid by an infective lot of mosquitoes produced no reaction in six normal M. rhesus monkeys. Negative results were also obtained in five biting and two injection experiments with progeny of the same infective lot of mosquitoes in which seven normal monkeys were used. The eggs consisted of batches laid after the first, second and fourth blood-meals of the original lot; the latter feeding occurred 41 days after the initial infecting meal. The imaginal offspring represented rearings following the first, second and fifth blood-meals of the parent lot. The last feeding occurred 54 days after the first. It is concluded that under the conditions of the experiments here reported hereditary transmission of yellow fever by A. aegypti is improbable. Variations in age and in number of blood-meals of parent and offspring mosquitoes had no effect in achieving passage of the virus from one stage of the insect to another. PMID:19869656

  6. Vector competence of Australian mosquitoes for yellow fever virus.

    PubMed

    van den Hurk, Andrew F; McElroy, Kate; Pyke, Alyssa T; McGee, Charles E; Hall-Mendelin, Sonja; Day, Andrew; Ryan, Peter A; Ritchie, Scott A; Vanlandingham, Dana L; Higgs, Stephen

    2011-09-01

    The vector competence of Australian mosquitoes for yellow fever virus (YFV) was evaluated. Infection and transmission rates in Cairns and Townsville populations of Aedes aegypti and a Brisbane strain of Ae. notoscriptus were not significantly different from a well-characterized YFV-susceptible strain of Ae. aegypti. After exposure to 10⁷·² tissue culture infectious dose (TCID₅₀)/mL of an African strain of YFV, > 70% of Ae. aegypti and Ae. notoscriptus became infected, and > 50% transmitted the virus. When exposed to 10⁶·⁷) TCID₅₀/mL of a South American strain of YFV, the highest infection (64%) and transmission (56%) rates were observed in Ae. notoscriptus. The infection and transmission rates in the Cairns Ae. aegypti were both 24%, and they were 36% and 28%, respectively, for the Townsville population. Because competent vectors are present, the limited number of travelers from endemic areas and strict vaccination requirements will influence whether YFV transmission occurs in Australia.

  7. First report of Tomato chlorotic spot virus in tomato, pepper and jimsonweed in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    This is the first report of Tomato chlorotic spot virus (TCSV) in Puerto Rico. TCSV was detected in tomato, pepper and jimsonweed. This report provides an overview of this virus for growers, extension workers, crop consultants and research and regulatory scientists....

  8. Status of tobacco viruses in Serbia and molecular characterization of tomato spotted wilt virus isolates.

    PubMed

    Stanković, I; Bulajić, A; Vučurović, A; Ristić, D; Milojević, K; Berenji, J; Krstić, B

    2011-01-01

    In a four-year survey to determine the presence and distribution of viruses in tobacco crops at 17 localities of the Vojvodina Province and Central Serbia, 380 samples were collected and analyzed by DAS-ELISA. Out of the seven viruses tested, tomato spotted wilt virus (TSWV), potato virus Y (PVY), tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), and alfalfa mosaic virus (AMV) were detected in 37.9, 33.4, 28.7, 23.9, and 15.5% of the total tested samples, respectively. TSWV was the most frequently found virus at the localities of Central Serbia, while PVY and CMV were the most frequent viruses in the Vojvodina Province. Single infections were prevalent in years 2005-2007 and the most frequent were those of PVY. A triple combination of those viruses was most frequent mixed infection type in 2008. The presence of all five detected viruses was confirmed in selected ELISA-positive samples by RT-PCR and sequencing. The comparisons of obtained virus isolate sequences with those available in NCBI, confirmed the authenticity of serologically detected viruses. Phylogenetic analysis based on partial nucleocapsid gene sequences revealed a joint clustering of Serbian, Bulgarian and Montenegrin TSWV isolates into one geographic subpopulation, which was distinct from the other subpopulation of TSWV isolates from the rest of the European countries. The high incidence of viruses in Serbian tobacco crops highlights the importance of enhancing farmers knowledge towards better implementation of control strategies for preventing serious losses.

  9. Yellow Fever Outbreak, Southern Sudan, 2003

    PubMed Central

    Onyango, Clayton O.; Grobbelaar, Antoinette A.; Gibson, Georgina V.F.; Sang, Rosemary C.; Sow, Abdourahmane; Swanepoel, Robert

    2004-01-01

    In May 2003, an outbreak of fatal hemorrhagic fever, caused by yellow fever virus, occurred in southern Sudan. Phylogenetic analysis showed that the virus belonged to the East African genotype, which supports the contention that yellow fever is endemic in East Africa with the potential to cause large outbreaks in humans. PMID:15498174

  10. Turnip yellow mosaic virus as a chemoaddressable bionanoparticle.

    PubMed

    Barnhill, Hannah N; Reuther, Rachel; Ferguson, P Lee; Dreher, Theo; Wang, Qian

    2007-01-01

    Viruses and virus-like particles (VLPs) have been demonstrated to be robust scaffolds for the construction of nanomaterials. In order to develop new nanoprobes for time-resolved fluoroimmuno assays as well as to investigate the two-dimensional self-assembly of viruses and VLPs, the icosahedral turnip yellow mosaic virus (TYMV) was investigated as a potential building block in our study. TYMV is an icosahedral plant virus with an average diameter of 28 nm that can be isolated inexpensively in gram quantities from turnips or Chinese cabbage. There are 180 coat protein subunits per TYMV capsid. The conventional N-hydroxysuccinimide-mediated amidation reaction was employed for the chemical modification of the viral capsid. Tryptic digestion with sequential MALDI-TOF MS analysis identified that the amino groups of K32 of the flexible N-terminus made the major contribution for the reactivity of TYMV toward N-hydroxysuccinimide ester (NHS) reagents. The reactivity was also monitored with UV-vis absorbance and fluorescence, which revealed that approximately 60 lysines per particle could be addressed. We hypothesized that the flexible A chain contains the reactive lysine because the crystal structure of TYMV has shown that chain A is much more flexible compared to B and C, especially at the N-terminal region where the Lys-32 located. In addition, about 90 to 120 carboxyl groups, located in the most exposed sequence, could be modified with amines catalyzed with 1-(3-dimethylaminopropyl-3-ethylcarbodiimide) hydrochloride (EDC) and sulfo-NHS. TYMV was stable to a wide range of reaction conditions and maintained its integrity after the chemical conjugations. Therefore, it can potentially be employed as a reactive scaffold for the display of a variety of materials for applications in many areas of nanoscience.

  11. Loci on chromosomes 1A and 2A affect resistance to tan (yellow) spot in wheat populations not segregating for tsn1.

    PubMed

    Shankar, Manisha; Jorgensen, Dorthe; Taylor, Julian; Chalmers, Ken J; Fox, Rebecca; Hollaway, Grant J; Neate, Stephen M; McLean, Mark S; Vassos, Elysia; Golzar, Hossein; Loughman, Robert; Mather, Diane E

    2017-12-01

    QTL for tan spot resistance were mapped on wheat chromosomes 1A and 2A. Lines were developed with resistance alleles at these loci and at the tsn1 locus on chromosome 5B. These lines expressed significantly higher resistance than the parent with tsn1 only. Tan spot (syn. yellow spot and yellow leaf spot) caused by Pyrenophora tritici-repentis is an important foliar disease of wheat in Australia. Few resistance genes have been mapped in Australian germplasm and only one, known as tsn1 located on chromosome 5B, is known in Australian breeding programs. This gene confers insensitivity to the fungal effector ToxA. The main aim of this study was to map novel resistance loci in two populations: Calingiri/Wyalkatchem, which is fixed for the ToxA-insensitivity allele tsn1, and IGW2574/Annuello, which is fixed for the ToxA-sensitivity allele Tsn1. A second aim was to combine new loci with tsn1 to develop lines with improved resistance. Tan spot severity was evaluated at various growth stages and in multiple environments. Symptom severity traits exhibited quantitative variation. The most significant quantitative trait loci (QTL) were detected on chromosomes 2A and 1A. The QTL on 2A explained up to 29.2% of the genotypic variation in the Calingiri/Wyalkatchem population with the resistance allele contributed by Wyalkatchem. The QTL on 1A explained up to 28.1% of the genotypic variation in the IGW2574/Annuello population with the resistance allele contributed by Annuello. The resistance alleles at both QTL were successfully combined with tsn1 to develop lines that express significantly better resistance at both seedling and adult plant stages than Calingiri which has tsn1 only.

  12. Nucleotide sequence and phylogenetic analysis of Cucurbit yellow stunting disorder virus RNA 2.

    PubMed

    Livieratos, Ioannis C; Coutts, Robert H A

    2002-06-01

    The complete nucleotide sequence of Cucurbit yellow stunting disorder virus (CYSDV) RNA 2, a whitefly (Bemisia tabaci)-transmitted closterovirus with a bi-partite genome, is reported. CYSDV RNA 2 is 7,281 nucleotides long and contains the closterovirus hallmark gene array with a similar arrangement to the prototype member of the genus Crinivirus, Lettuce infectious yellows virus (LIYV). CYSDV RNA 2 contains open reading frames (ORFs) potentially encoding in a 5' to 3' direction for proteins of 5 kDa (ORF 1; hydrophobic protein), 62 kDa (ORF 2; heat shock protein 70 homolog, HSP70h), 59 kDa (ORF 3; protein of unknown function), 9 kDa (ORF 4; protein of unknown function), 28.5 kDa (ORF 5; coat protein, CP), 53 kDa (ORF 6; coat protein minor, CPm), and 26.5 kDa (ORF 7; protein of unknown function). Pairwise comparisons of CYSDV RNA 2-encoded proteins (HSP70h, p59 and CPm) among the closteroviruses showed that CYSDV is closely related to LIYV. Phylogenetic analysis based on the amino acid sequence of the HSP70h, indicated that CYSDV clusters with other members of the genus Crinivirus, and it is related to Little cherry virus-1 (LChV-1), but is distinct from the aphid- or mealybug-transmitted closteroviruses.

  13. Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group.

    PubMed

    Borah, Basanta K; Sharma, Shweta; Kant, Ravi; Johnson, A M Anthony; Saigopal, Divi Venkata Ramana; Dasgupta, Indranil

    2013-10-01

    Plant viruses, possessing a bacilliform shape and containing double-stranded DNA, are emerging as important pathogens in a number of agricultural and horticultural crops in the tropics. They have been reported from a large number of countries in African and Asian continents, as well as from islands from the Pacific region. The viruses, belonging to two genera, Badnavirus and Tungrovirus, within the family Caulimoviridae, have genomes displaying a common plan, yet are highly variable, sometimes even between isolates of the same virus. In this article, we summarize the current knowledge with a view to revealing the common features embedded within the genetic diversity of this group of viruses. Virus; order Unassigned; family Caulimoviridae; genera Badnavirus and Tungrovirus; species Banana streak viruses, Bougainvillea spectabilis chlorotic vein banding virus, Cacao swollen shoot virus, Citrus yellow mosaic badnavirus, Dioscorea bacilliform viruses, Rice tungro bacilliform virus, Sugarcane bacilliform viruses and Taro bacilliform virus. Bacilliform in shape; length, 60-900 nm; width, 35-50 nm; circular double-stranded DNA of approximately 7.5 kbp with one or more single-stranded discontinuities. Each virus generally limited to its own host, including banana, bougainvillea, black pepper, cacao, citrus species, Dioscorea alata, rice, sugarcane and taro. Foliar streaking in banana and sugarcane, swelling of shoots in cacao, yellow mosaic in leaves and stems in citrus, brown spot in the tubers in yam and yellow-orange discoloration and stunting in rice. http://www.dpvweb.net. 2013 BSPP and JOHN WILEY & SONS LTD

  14. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    PubMed

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  15. Phylogeny of Yellow Fever Virus, Uganda, 2016.

    PubMed

    Hughes, Holly R; Kayiwa, John; Mossel, Eric C; Lutwama, Julius; Staples, J Erin; Lambert, Amy J

    2018-08-17

    In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.

  16. First report of the natural occurrence of tomato chlorotic spot virus in peanuts in Haiti

    USDA-ARS?s Scientific Manuscript database

    Tomato chlorotic spot virus (TCSV) was identified in peanut in Haiti. This is the first report of TCSV naturally infecting peanut. Genetic diversity of TCSV was characterized. This report provides an overview of this emerging virus for growers, extension workers, crop consultants and research and...

  17. Simultaneous Detection of Mixed Infection of Onion yellow dwarf virus and an Allexivirus in RT-PCR for Ensuring Virus Free Onion Bulbs.

    PubMed

    Kumar, Sandeep; Baranwal, V K; Joshi, Subodh; Arya, Meenakshi; Majumder, S

    2010-06-01

    Reduced seed production in onion is associated with Onion yellow dwarf virus (OYDV), a filamentous Potyvirus. Onion is also infected with other filamentous virus particles suspected to be Allexivirus. RT-PCR was used to detect mixed infection of both the viruses in leaves and bulbs. A duplex RT-PCR was developed, which simultaneously detected the presence of these two viruses in winter (Rabi) onion bulb. In summer (Kharif) onion bulbs only Allexivirus was detected. The absence of OYDV in summer crop is discussed. The sequencing of RT-PCR amplified products confirmed the identity of OYDV and Allexivirus, the latter showing closer identity to Garlic virus C (GVC)/Garlic mite-borne mosaic virus. This makes the first detection of an Allexivirus in onion crop in India. The duplex RT-PCR to detect these viruses (OYDV and Allexivirus) would be an improvement for indexing of viruses in onion bulbs for seed production.

  18. Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells

    PubMed Central

    Qiao, Wenjie; Medina, Vicente; Falk, Bryce W.

    2017-01-01

    Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as ‘viral factories’ or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses. PMID:29021801

  19. The genome sequence of pepper vein yellows virus (family Luteoviridae, genus Polerovirus).

    PubMed

    Murakami, Ritsuko; Nakashima, Nobuhiko; Hinomoto, Norihide; Kawano, Shinji; Toyosato, Tetsuya

    2011-05-01

    The complete genome of pepper vein yellows virus (PeVYV) was sequenced using random amplification of RNA samples isolated from vector insects (Aphis gossypii) that had been given access to PeVYV-infected plants. The PeVYV genome consisted of 6244 nucleotides and had a genomic organization characteristic of members of the genus Polerovirus. PeVYV had highest amino acid sequence identities in ORF0 to ORF3 (75.9 - 91.9%) with tobacco vein distorting polerovirus, with which it was only 25.1% identical in ORF5. These sequence comparisons and previously studied biological properties indicate that PeVYV is a distinctly different virus and belongs to a new species of the genus Polerovirus.

  20. Characterization of two biologically distinct variants of Tomato spotted wilt virus

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses result on a wide range of crops due to infection with Tomato spotted wilt virus (TSWV). In this study, two TSWV isolates, one from basil and a second from tomato, were established in a common plant host. Viral proteins were monitored over time, plant host ranges were comp...

  1. Predicting the presence of whiteflies and tomato yellow leaf curl virus in Florida tomato fields

    USDA-ARS?s Scientific Manuscript database

    Florida is one of the leading states for production of fresh market tomatoes. Production is severely affected by Tomato yellow leaf curl virus (TYLCV). The objective of this study was to identify landscape and climatic factors that drive whitefly populations and TYLCV incidence in commercial tomato ...

  2. Unravel the genetic basis of Sugarcane Yellow Leaf Virus (SCYLV) resistance in Saccharum spp. hybrid

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum Spp.) produces 80% of the world’s table sugar along with several other byproducts. The production of sugarcane is vulnerable due to infestation of sugarcane yellow leaf virus (SCYLV) worldwide. A genetic mapping study was conducted using an F1 segregating population derived from...

  3. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    PubMed

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past two decades, which highlights the pressing need for antiviral therapeutics. In a high throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound, which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV infected cultures with 2 μM of BDAA reduced the virion production by greater than 2 logs, the compound is not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug resistant viruses revealed that substitution of proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine or alanine confers YFV resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, substitution of P219 with glycine confers BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 localizes at the endoplasmic reticulum lumen side of the fifth putative trans-membrane domain of NS4B and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed important role and structural basis for NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs and attenuated viral infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. Yellow fever is an acute viral hemorrhagic disease which threatens approximately one billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than seven decades, the low vaccination rate fails to prevent outbreaks in at

  4. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    PubMed

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  5. Current status of Tomato chlorotic spot virus in Florida and the Caribbean

    USDA-ARS?s Scientific Manuscript database

    Damaging outbreaks of Tomato chlorotic spot virus (TCSV), an emerging thrips-vectored tospovirus, and several invasive species of thrips are significantly impacting vegetable and other crops in Florida and the Caribbean. Host and geographic ranges of TCSV are continuing to expand in this region. Dev...

  6. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    PubMed

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  7. Isolation of yellow fever virus from mosquitoes in Misiones province, Argentina.

    PubMed

    Goenaga, Silvina; Fabbri, Cintia; Dueñas, Juan Climaco Rondan; Gardenal, Cristina Noemí; Rossi, Gustavo Carlos; Calderon, Gladys; Morales, Maria Alejandra; Garcia, Jorge Braulio; Enria, Delia Alcira; Levis, Silvana

    2012-11-01

    Yellow fever (YF) is a viral hemorrhagic fever endemic to tropical regions of South America and Africa. From 2007 to 2009 an important epidemic/epizootic of YF was detected in different populations of howler monkeys (Alouatta species) in Misiones, a northeastern Argentinian province. Yellow fever virus (YFV) infection was researched and documented by laboratory tests in humans and in dead Alouatta carayá. The objective of that research was to investigate the circulation of YFV in mosquitoes, which could be implicated in the sylvatic transmission of YF in Argentina. The above-mentioned mosquitoes were captured in the same geographical region where the epizootic took place. A YFV strain was isolated in cell culture from pools of Sabethes albiprivus. This study is not only the first isolation of YFV from mosquitoes in Argentina, but it is also the first YFV isolation reported in the species Sabethes albiprivus, suggesting that this species might be playing a key role in sylvatic YF in Argentina.

  8. Mapping of yellow mosaic virus (YMV) resistance in soybean (Glycine max L. Merr.) through association mapping approach.

    PubMed

    Kumar, Bhupender; Talukdar, Akshay; Verma, Khushbu; Bala, Indu; Harish, G D; Gowda, Sarmrat; Lal, S K; Sapra, R L; Singh, K P

    2015-02-01

    Yellow Mosaic Virus (YMV) is a serious disease of soybean. Resistance to YMV was mapped in 180 soybean genotypes through association mapping approach using 121 simple sequence repeats (SSR) and four resistance gene analogue (RGA)-based markers. The association mapping population (AMP) (96 genotypes) and confirmation population (CP) (84 genotypes) was tested for resistance to YMV at hot-spot consecutively for 3 years (2007-2009). The genotypes exhibited significant variability for YMV resistance (P < 0.01). Molecular genotyping and population structure analysis with 'admixture' co-ancestry model detected seven optimal sub-populations in the AMP. Linkage disequilibrium (LD) between the markers extended up to 35 and 10 cM with r2 > 0.15, and >0.25, respectively. The 4 RGA-based markers showed no association with YMV resistance. Two SSR markers, Satt301 and GMHSP179 on chromosome 17 were found to be in significant LD with YMV resistance. Contingency Chi-square test confirmed the association (P < 0.01) and the utility of the markers was validated in the CP. It would pave the way for marker assisted selection for YMV resistance in soybean. This is the first report of its kind in soybean.

  9. Improved genetic stability of recombinant yellow fever 17D virus expressing a lentiviral Gag gene fragment.

    PubMed

    de Santana, Marlon G Veloso; Neves, Patrícia C C; dos Santos, Juliana Ribeiro; Lima, Noemia S; dos Santos, Alexandre A C; Watkins, David I; Galler, Ricardo; Bonaldo, Myrna C

    2014-03-01

    We have previously designed a method to construct viable recombinant Yellow Fever (YF) 17D viruses expressing heterologous polypeptides including part of the Simian Immunodeficiency Virus (SIV) Gag protein. However, the expressed region, encompassing amino acid residues from 45 to 269, was genetically unstable. In this study, we improved the genetic stability of this recombinant YF 17D virus by introducing mutations in the IRES element localized at the 5' end of the SIV gag gene. The new stable recombinant virus elicited adaptive immune responses similar to those induced by the original recombinant virus. It is, therefore, possible to increase recombinant stability by removing functional motifs from the insert that may have deleterious effects on recombinant YF viral fitness. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus.

    PubMed

    Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun

    2016-11-01

    A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.

  11. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shustov, Alexandr V.; Frolov, Ilya, E-mail: ivfrolov@UAB.ed

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable ofmore » producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.« less

  12. Yellow fever: the recurring plague.

    PubMed

    Tomori, Oyewale

    2004-01-01

    Despite the availability of a safe and efficacious vaccine, yellow fever (YF) remains a disease of significant public health importance, with an estimated 200,000 cases and 30,000 deaths annually. The disease is endemic in tropical regions of Africa and South America; nearly 90% of YF cases and deaths occur in Africa. It is a significant hazard to unvaccinated travelers to these endemic areas. Virus transmission occurs between humans, mosquitoes, and monkeys. The mosquito, the true reservoir of YF, is infected throughout its life, and can transmit the virus transovarially through infected eggs. Man and monkeys, on the other hand, play the role of temporary amplifiers of the virus available for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean, the Middle East, Asia, Australia, and Oceania. It is an acute infectious disease characterized by sudden onset with a two-phase development, separated by a short period of remission. The clinical spectrum of yellow fever varies from very mild, nonspecific, febrile illness to a fulminating, sometimes fatal disease with pathognomic features. In severe cases, jaundice, bleeding diathesis, with hepatorenal involvement are common. The case fatality rate of severe yellow fever is 50% or higher. The pathogenesis and pathophysiology of the disease are poorly understood and have not been the subject of modern clinical research. There is no specific treatment for YF, making the management of YF patients extremely problematic. YF is a zoonotic disease that cannot be eradicated, therefore instituting preventive vaccination through routine childhood vaccination in endemic countries, can significantly reduce the burden of the disease. The distinctive properties of lifelong immunity after a single dose of yellow fever vaccination are the

  13. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W.

    PubMed

    Yu, Tsong-Ann; Chiang, Chu-Hui; Wu, Hui-Wen; Li, Chin-Mei; Yang, Ching-Fu; Chen, Jun-Han; Chen, Yu-Wen; Yeh, Shyi-Dong

    2011-03-01

    Zucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus type W (PRSV W) are major limiting factors for production of watermelon worldwide. For the effective control of these two viruses by transgenic resistance, an untranslatable chimeric construct containing truncated ZYMV coat protein (CP) and PRSV W CP genes was transferred to commercial watermelon cultivars by Agrobacterium-mediated transformation. Using our protocol, a total of 27 putative transgenic lines were obtained from three cultivars of 'Feeling' (23 lines), 'China baby' (3 lines), and 'Quality' (1 line). PCR and Southern blot analyses confirmed that the chimeric construct was incorporated into the genomic DNA of the transformants. Greenhouse evaluation of the selected ten transgenic lines of 'Feeling' cultivar revealed that two immune lines conferred complete resistance to ZYMV and PRSV W, from which virus accumulation were not detected by Western blotting 4 weeks after inoculation. The transgenic transcript was not detected, but small interfering RNA (siRNA) was readily detected from the two immune lines and T(1) progeny of line ZW 10 before inoculation, indicating that RNA-mediated post-transcriptional gene silencing (PTGS) is the underlying mechanism for the double-virus resistance. The segregation ratio of T(1) progeny of the immune line ZW10 indicated that the single inserted transgene is nuclearly inherited and associated with the phenotype of double-virus resistance as a dominant trait. The transgenic lines derived from the commercial watermelon cultivars have great potential for control of the two important viruses and can be implemented directly without further breeding.

  14. THE USE OF MICE IN TESTS OF IMMUNITY AGAINST YELLOW FEVER

    PubMed Central

    Sawyer, W. A.; Lloyd, Wray

    1931-01-01

    1. A method of testing sera for protective power against yellow fever is described and designated as the intraperitoneal protection test in mice. 2. The test consists essentially of the inoculation of mice intra-peritoneally with yellow fever virus, fixed for mice, together with the serum to be tested, and the simultaneous injection of starch solution into the brain to localize the virus. If the serum lacks protective power the mice die of yellow fever encephalitis. 3. The test is highly sensitive. Consequently it is useful in epidemiological studies to determine whether individuals have ever had yellow fever and in tests to find whether vaccinated persons or animals have in reality been immunized. 4. When mice were given large intraperitoneal injections of yellow fever virus fixed for mice, the virus could be recovered from the blood for 4 days although encephalitis did not occur. If the brain was mildly injured at the time of the intraperitoneal injection, the symptoms of yellow fever encephalitis appeared 6 days later, but the virus was then absent from the blood. 5. Strains of white mice vary greatly in their susceptibility to yellow fever. PMID:19869938

  15. Tomato Spotted Wilt Virus Particle Morphogenesis in Plant Cells

    PubMed Central

    Kikkert, Marjolein; Van Lent, Jan; Storms, Marc; Bodegom, Pentcho; Kormelink, Richard; Goldbach, Rob

    1999-01-01

    A model for the maturation of tomato spotted wilt virus (TSWV) particles is proposed, mainly based on results with a protoplast infection system, in which the chronology of different maturation events could be determined. By using specific monoclonal and polyclonal antisera in immunofluorescence and electron microscopy, the site of TSWV particle morphogenesis was determined to be the Golgi system. The viral glycoproteins G1 and G2 accumulate in the Golgi prior to a process of wrapping, by which the viral nucleocapsids obtain a double membrane. In a later stage of the maturation, these doubly enveloped particles fuse to each other and to the endoplasmic reticulum to form singly enveloped particles clustered in membranes. Similarities and differences between the maturation of animal-infecting (bunya)viruses and plant-infecting tospoviruses are discussed. PMID:9971812

  16. Functional requirements of the yellow fever virus capsid protein.

    PubMed

    Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J

    2007-06-01

    Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.

  17. High Prevalence and Diversity of Hepatitis Viruses in Suspected Cases of Yellow Fever in the Democratic Republic of Congo

    PubMed Central

    Le Gal, Frédéric; Ngwaka-Matsung, Nadine; Ahuka-Mundeke, Steve; Onanga, Richard; Pukuta-Simbu, Elisabeth; Gerber, Athenaïs; Abbate, Jessica L.; Mwamba, Dieudonné; Berthet, Nicolas; Leroy, Eric Maurice; Muyembe-Tamfum, Jean-Jacques

    2017-01-01

    ABSTRACT The majority of patients with acute febrile jaundice (>95%) identified through a yellow fever surveillance program in the Democratic Republic of Congo (DRC) test negative for antibodies against yellow fever virus. However, no etiological investigation has ever been carried out on these patients. Here, we tested for hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV) viruses, all of which can cause acute febrile jaundice, in patients included in the yellow fever surveillance program in the DRC. On a total of 498 serum samples collected from suspected cases of yellow fever from January 2003 to January 2012, enzyme-linked immunosorbent assay (ELISA) techniques were used to screen for antibodies against HAV (IgM) and HEV (IgM) and for antigens and antibodies against HBV (HBsAg and anti-hepatitis B core protein [HBc] IgM, respectively), HCV, and HDV. Viral loads and genotypes were determined for HBV and HVD. Viral hepatitis serological markers were diagnosed in 218 (43.7%) patients. The seroprevalences were 16.7% for HAV, 24.6% for HBV, 2.3% for HCV, and 10.4% for HEV, and 26.1% of HBV-positive patients were also infected with HDV. Median viral loads were 4.19 × 105 IU/ml for HBV (range, 769 to 9.82 × 109 IU/ml) and 1.4 × 106 IU/ml for HDV (range, 3.1 × 102 to 2.9 × 108 IU/ml). Genotypes A, E, and D of HBV and genotype 1 of HDV were detected. These high hepatitis prevalence rates highlight the necessity to include screening for hepatitis viruses in the yellow fever surveillance program in the DRC. PMID:28202798

  18. High Prevalence and Diversity of Hepatitis Viruses in Suspected Cases of Yellow Fever in the Democratic Republic of Congo.

    PubMed

    Makiala-Mandanda, Sheila; Le Gal, Frédéric; Ngwaka-Matsung, Nadine; Ahuka-Mundeke, Steve; Onanga, Richard; Bivigou-Mboumba, Berthold; Pukuta-Simbu, Elisabeth; Gerber, Athenaïs; Abbate, Jessica L; Mwamba, Dieudonné; Berthet, Nicolas; Leroy, Eric Maurice; Muyembe-Tamfum, Jean-Jacques; Becquart, Pierre

    2017-05-01

    The majority of patients with acute febrile jaundice (>95%) identified through a yellow fever surveillance program in the Democratic Republic of Congo (DRC) test negative for antibodies against yellow fever virus. However, no etiological investigation has ever been carried out on these patients. Here, we tested for hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV) viruses, all of which can cause acute febrile jaundice, in patients included in the yellow fever surveillance program in the DRC. On a total of 498 serum samples collected from suspected cases of yellow fever from January 2003 to January 2012, enzyme-linked immunosorbent assay (ELISA) techniques were used to screen for antibodies against HAV (IgM) and HEV (IgM) and for antigens and antibodies against HBV (HBsAg and anti-hepatitis B core protein [HBc] IgM, respectively), HCV, and HDV. Viral loads and genotypes were determined for HBV and HVD. Viral hepatitis serological markers were diagnosed in 218 (43.7%) patients. The seroprevalences were 16.7% for HAV, 24.6% for HBV, 2.3% for HCV, and 10.4% for HEV, and 26.1% of HBV-positive patients were also infected with HDV. Median viral loads were 4.19 × 10 5 IU/ml for HBV (range, 769 to 9.82 × 10 9 IU/ml) and 1.4 × 10 6 IU/ml for HDV (range, 3.1 × 10 2 to 2.9 × 10 8 IU/ml). Genotypes A, E, and D of HBV and genotype 1 of HDV were detected. These high hepatitis prevalence rates highlight the necessity to include screening for hepatitis viruses in the yellow fever surveillance program in the DRC. Copyright © 2017 Makiala-Mandanda et al.

  19. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus.

    PubMed

    Saudi, Milind; Zmurko, Joanna; Kaptein, Suzanne; Rozenski, Jef; Gadakh, Bharat; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Van Aerschot, Arthur

    2016-10-04

    High-throughput screening of a subset of the CD3 chemical library (Centre for Drug Design and Discovery; KU Leuven) provided us with a lead compound 1, displaying low micromolar potency against dengue virus and yellow fever virus. Within a project aimed at discovering new inhibitors of flaviviruses, substitution of its central imidazole ring led to synthesis of variably substituted pyrazine dicarboxylamides and phthalic diamides, which were evaluated in cell-based assays for cytotoxicity and antiviral activity against the dengue virus (DENV) and yellow fever virus (YFV). Fourteen compounds inhibited DENV replication (EC50 ranging between 0.5 and 3.4 μM), with compounds 6b and 6d being the most potent inhibitors (EC50 0.5 μM) with selectivity indices (SI) > 235. Compound 7a likewise exhibited anti-DENV activity with an EC50 of 0.5 μM and an SI of >235. In addition, good antiviral activity of seven compounds in the series was also noted against the YFV with EC50 values ranging between 0.4 and 3.3 μM, with compound 6n being the most potent for this series with an EC50 0.4 μM and a selectivity index of >34. Finally, reversal of one of the central amide bonds as in series 13 proved deleterious to the inhibitory activity. Copyright © 2016 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  20. Io's Sodium Cloud On-Chip Format (Clear and Green-Yellow Filters Superimposed)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's moon Io and its surrounding sky is shown in false color. The solid state imaging (CCD) system on NASA's Galileo spacecraft originally took two images of this scene, one through a clear filter and one through a green-yellow filter. [Versions of these images have been released over the past 3 days.] This picture was created by: (i) adding green color to the image taken through the green-yellow filter, and red color to the image taken through the clear filter; (ii) superimposing the two resulting images. Thus features in this picture which are purely green (or purely red) originally appeared only in the green-yellow (or clear) filter image of this scene. Features which are yellowish appeared in both filters. North is at the top, and east is to the right.

    This image reveals several new things about this scene. For example:

    (1) The reddish emission south of Io came dominantly through the clear filter. It therefore probably represents scattered light from Io's lit crescent and Prometheus' plume, rather than emission from Io's Sodium Cloud (which came through both filters).

    (2) The roundish red spot in Io's southern hemisphere contains a small yellow spot. This means that some thermal emission from the volcano Pele was detected by the green-yellow filter (as well as by the clear filter).

    (3) The sky contains several concentrated yellowish spots which were thus seen at the same location on the sky through both filters (one such spot appears in the picture's northeast corner). These spots are almost certainly stars. By contrast, the eastern half of this image contains a number of green spots whose emission was thus detected by the green-yellow filter only. Since any star visible through the green-yellow filter would also be visible through the clear filter, these green spots are probably artifacts (e.g., cosmic ray hits on the CCD sensor).

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space

  1. The role of corchorus in spreading of tomato yellow leaf curl virus on tomato in Jeddah, Saudi Arabia.

    PubMed

    Sohrab, Sayed Sartaj

    2016-03-01

    Corchorus (Corchorus capsularis L. and Corchorus olitorius L.) is one of the most important fiber crops grown in tropical and subtropical regions throughout the world. Field survey was conducted and naturally infected leaf samples were collected from corchorus and tomato plants in Jeddah, Saudi Arabia. The causal virus was transmitted by whiteflies to tomato plants and begomovirus infection was confirmed by Polymerase chain reaction. The complete viral genome and associated betasatellites were amplified, cloned and sequenced from both corchorus and tomato samples. The genetic variability and phylogenetic relationships were determined for both isolates (corchorus and tomato). The complete genome sequences showed highest (99.5 % nt) similarity with tomato yellow leaf curl virus (TYLCV) and formed closest cluster with TYLCV-Tomato reported from Jizan and Al-Qasim, Saudi Arabia and betasatellites sequences showed highest similarity (99.8 % nt) with Tomato yellow leaf curl betasatellites-Jeddah followed by Tomato yellow leaf curl Oman betasatellites and formed closed cluster with TYLCV-Tomato. On the basis of results obtained from whiteflies transmission, sequence similarity and phylogenetic relationships; it is concluded that the identified virus could be a variant of TYLCV circulating in the Kingdom. The significance of this study demonstrated that the corchorus is serving as reservoir and alternative host and playing an important role in spreading the begomovirus associated disease in the Kingdom of Saudi Arabia.

  2. Concerning seed spots

    Treesearch

    J. A. Larsen; R. J. Smith

    1913-01-01

    In connection with the sowing of Yellow pine, White pine and Western larch on The Blackfeet National Forest during the sea sons of 1911 and 1912, seventeen and one-half acres were sowed directly in seed spots.

  3. New poleroviruses associated with yellowing symptoms in different vegetable crops in Greece.

    PubMed

    Lotos, L; Maliogka, V I; Katis, N I

    2016-02-01

    Four poleroviral isolates from Greece, two from lettuce, one from spinach and one from watermelon showing yellowing symptoms, were molecularly characterized by analyzing the sequence of a large part of the genome spanning from the 3'-terminal part of the RdRp to the end of the CP gene. The sequences were analyzed for their similarity and phylogenetic relationships to other members of the genus Polerovirus as well as for evidence of recombination events. The results revealed the existence of two putatively new viruses: one from lettuce and one from spinach, provisionally named "lettuce yellows virus" and "spinach yellows virus", respectively. Also, a new recombinant virus infecting lettuce, herein named "lettuce mild yellows virus", and a watermelon isolate of pepo aphid-borne yellows virus (PABYV) were identified. Our study highlights the existence of high genetic diversity within the genus Polerovirus, which could be associated with the emergence of new viral diseases in various crops worldwide.

  4. Complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi (Rajiformes: Rajidae).

    PubMed

    Li, Weidong; Chen, Xiao; Liu, Wenai; Sun, Renjie; Zhou, Haolang

    2016-07-01

    The complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi was determined in this study. It is 16,974 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one putative control region. The overall base composition is 30.5% A, 27.8% C, 14.0% G, and 27.8% T. There are 28 bp short intergenic spaces located in 12 gene junctions and 31 bp overlaps located in nine gene junctions in the whole mitogenome. Two start codons (ATG and GTG) and two stop codons (TAG and TAA/T) were used in the protein-coding genes. The lengths of 22 tRNA genes range from 68 (tRNA-Ser2) to 75 (tRNA-Leu1) bp. The origin of L-strand replication (OL) sequence (37 bp) was identified between the tRNA-Asn and tRNA-Cys genes. The control region is 1311 bp in length with high A + T and poor G content.

  5. A new cryptic virus belonging to the family Partitiviridae was found in watermelon co-infected with Melon necrotic spot virus.

    PubMed

    Sela, Noa; Lachman, Oded; Reingold, Victoria; Dombrovsky, Aviv

    2013-10-01

    A novel virus was detected in watermelon plants (Citrullus lanatus Thunb.) infected with Melon necrotic spot virus (MNSV) using SOLiD next-generation sequence analysis. In addition to the expected MSNV genome, two double-stranded RNA (dsRNA) segments of 1,312 and 1,118 bp were also identified and sequenced from the purified virus preparations. These two dsRNA segments encode two putative partitivirus-related proteins, an RNA-dependent RNA polymerase (RdRP) and a capsid protein, which were sequenced. Genomic-sequence analysis and analysis of phylogenetic relationships indicate that these two dsRNAs together make up the genome of a novel Partitivirus. This virus was found to be closely related to the Pepper cryptic virus 1 and Raphanus sativus cryptic virus. It is suggested that this novel virus putatively named Citrullus lanatus cryptic virus be considered as a new member of the family Partitiviridae.

  6. Resistance to Cucurbit aphid-borne yellows virus in Melon Accession TGR-1551.

    PubMed

    Kassem, Mona A; Gosalvez, Blanca; Garzo, Elisa; Fereres, Alberto; Gómez-Guillamón, Maria Luisa; Aranda, Miguel A

    2015-10-01

    The genetic control of resistance to Cucurbit aphid-borne yellows virus (CABYV; genus Polerovirus, family Luteoviridae) in the TGR-1551 melon accession was studied through agroinoculation of a genetic family obtained from the cross between this accession and the susceptible Spanish cultivar 'Bola de Oro'. Segregation analyses were consistent with the hypothesis that one dominant gene and at least two more modifier genes confer resistance; one of these additional genes is likely present in the susceptible parent 'Bola de Oro'. Local and systemic accumulation of the virus was analyzed in a time course experiment, showing that TGR-1551 resistance was expressed systemically as a significant reduction of virus accumulation compared with susceptible controls, but not locally in agroinoculated cotyledons. In aphid transmission experiments, CABYV inoculation by aphids was significantly reduced in TGR-1551 plants, although the virus was acquired at a similar rate from TGR-1551 as from susceptible plants. Results of feeding behavior studies using the DC electrical penetration graph technique suggested that viruliferous aphids can salivate and feed from the phloem of TGR-1551 plants and that the observed reduction in virus transmission efficiency is not related to reduced salivation by Aphis gossypii in phloem sieve elements. Since the virus is able to accumulate to normal levels in agroinoculated tissues, our results suggest that resistance of TGR-1551 plants to CABYV is related to impairment of virus movement or translocation after it reaches the phloem sieve elements.

  7. Detection of white spot syndrome virus (WSSV) of Penaeus chinensis by in situ hybridization

    NASA Astrophysics Data System (ADS)

    Zhan, Wen-Bin; Wang, Yuan-Hong; Zhang, Zhi-Dong; Hideo, Fukuda

    2000-09-01

    White Spot Syndrome Virus (WSSV) was purified from hemolymph of infected shrimp. After nucleic acid extraction from the purified virus particles, EcoR I-digested fragments of the WSSV genome were cloned; three of these fragments were used as non-radioactive probes labeled with DIG-11-dUTP. The probes hybridized in situ, with sections located in the nuclei of all WSSV-infected tissues. The virus was detected in the gill, stomach, epidermis, and connective tissue and so on, but not detected in healthy shrimp tissues and epithelial cells of hepatopancreatic tubules of diseased shrimp.

  8. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    PubMed

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  9. Arabidopsis-derived shrimp viral-binding protein, PmRab7 can protect white spot syndrome virus infection in shrimp.

    PubMed

    Thagun, Chonprakun; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Narangajavana, Jarunya; Sojikul, Punchapat

    2012-09-15

    White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Variation in Tomato Spotted Wilt Virus Titer in Frankliniella Occidentalis and Its Association with Frequency of Transmission

    USDA-ARS?s Scientific Manuscript database

    Tomato spotted wilt virus (TSWV) is transmitted in a persistent propagative manner by Frankliniella occidentalis, the Western flower thrips. While it is well established that vector competence depends on TSWV acquisition by young larvae and virus replication within the insect, the biological factor...

  11. Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus.

    PubMed

    Pacca, Carolina Colombelli; Marques, Rafael Elias; Espindola, José Wanderlan P; Filho, Gevânio B O Oliveira; Leite, Ana Cristina Lima; Teixeira, Mauro Martins; Nogueira, Mauricio L

    2017-03-01

    Arboviruses, arthropod-borneviruses, are frequency associated to human outbreak and represent a serious health problem. The genus Flavivirus, such as Yellow Fever Virus (YFV) and Saint Louis Encephalitis Virus (SLEV), are important pathogens with high morbidity and mortality worldwide. In Brazil, YFV is maintained in sylvatic cycle, but many cases are notified annually, despite the efficiency of vaccine. SLEV causes an acute encephalitis and is widely distributed in the Americas. There is no specific antiviral drugs for these viruses, only supporting treatment that can alleviate symptoms and prevent complications. Here, we evaluated the potential anti-YFV and SLEV activity of a series of thiosemicarbazones and phthalyl-thiazoles. Plaque reduction assay, flow cytometry, immunofluorescence and cellular viability were used to test the compounds in vitro. Treated cells showed efficient inhibition of the viral replication at concentrations that presented minimal toxicity to cells. The assays showed that phthalyl-thiazole and phenoxymethyl-thiosemicarbazone reduced 60% of YFV replication and 75% of SLEV replication. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis.

    PubMed

    Wang, Y T; Liu, W; Seah, J N; Lam, C S; Xiang, J H; Korzh, V; Kwang, J

    2002-12-10

    White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes--GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection.

  13. Influence of Beet necrotic yellow vein virus and freezing temperatures on sugar beet roots in storage

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is a yield limiting sugar beet disease that was observed to influence root resistance to freezing in storage. Thus, studies were conducted to gain a better understanding of the influence BNYVV and freezing on sugar beet roots to improve p...

  14. Influence of beet necrotic yellow vein virus and freezing temperatures on sugar beet roots in storage

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is a yield limiting sugar beet disease that was also observed to influence the roots ability to resist freezing in storage. Roots from 5 commercial sugar beet cultivars (1 susceptible and 4 resistant to BNYVV) were produced in fields unde...

  15. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to tomato spotted wilt virus infection.

    PubMed

    Badillo-Vargas, I E; Rotenberg, D; Schneweis, D J; Hiromasa, Y; Tomich, J M; Whitfield, A E

    2012-08-01

    Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a persistent propagative manner. Despite the extensive replication of TSWV in midgut and salivary glands, there is little to no pathogenic effect on F. occidentalis. We hypothesize that the first-instar larva (L1) of F. occidentalis mounts a response to TSWV that protects it from pathogenic effects caused by virus infection and replication in various insect tissues. A partial thrips transcriptome was generated using 454-Titanium sequencing of cDNA generated from F. occidentalis exposed to TSWV. Using these sequences, the L1 thrips proteome that resolved on a two-dimensional gel was characterized. Forty-seven percent of the resolved protein spots were identified using the thrips transcriptome. Real-time quantitative reverse transcriptase PCR (RT-PCR) analysis of virus titer in L1 thrips revealed a significant increase in the normalized abundance of TSWV nucleocapsid RNA from 2 to 21 h after a 3-h acquisition access period on virus-infected plant tissue, indicative of infection and accumulation of virus. We compared the proteomes of infected and noninfected L1s to identify proteins that display differential abundances in response to virus. Using four biological replicates, 26 spots containing 37 proteins were significantly altered in response to TSWV. Gene ontology assignments for 32 of these proteins revealed biological roles associated with the infection cycle of other plant- and animal-infecting viruses and antiviral defense responses. Our findings support the hypothesis that L1 thrips display a complex reaction to TSWV infection and provide new insights toward unraveling the molecular basis of this interaction.

  16. Proteomic Analysis of Frankliniella occidentalis and Differentially Expressed Proteins in Response to Tomato Spotted Wilt Virus Infection

    PubMed Central

    Badillo-Vargas, I. E.; Rotenberg, D.; Schneweis, D. J.; Hiromasa, Y.; Tomich, J. M.

    2012-01-01

    Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a persistent propagative manner. Despite the extensive replication of TSWV in midgut and salivary glands, there is little to no pathogenic effect on F. occidentalis. We hypothesize that the first-instar larva (L1) of F. occidentalis mounts a response to TSWV that protects it from pathogenic effects caused by virus infection and replication in various insect tissues. A partial thrips transcriptome was generated using 454-Titanium sequencing of cDNA generated from F. occidentalis exposed to TSWV. Using these sequences, the L1 thrips proteome that resolved on a two-dimensional gel was characterized. Forty-seven percent of the resolved protein spots were identified using the thrips transcriptome. Real-time quantitative reverse transcriptase PCR (RT-PCR) analysis of virus titer in L1 thrips revealed a significant increase in the normalized abundance of TSWV nucleocapsid RNA from 2 to 21 h after a 3-h acquisition access period on virus-infected plant tissue, indicative of infection and accumulation of virus. We compared the proteomes of infected and noninfected L1s to identify proteins that display differential abundances in response to virus. Using four biological replicates, 26 spots containing 37 proteins were significantly altered in response to TSWV. Gene ontology assignments for 32 of these proteins revealed biological roles associated with the infection cycle of other plant- and animal-infecting viruses and antiviral defense responses. Our findings support the hypothesis that L1 thrips display a complex reaction to TSWV infection and provide new insights toward unraveling the molecular basis of this interaction. PMID:22696645

  17. Clustering and cellular distribution characteristics of virus particles of Tomato spotted wilt virus and Tomato zonate spot virus in different plant hosts.

    PubMed

    Zhang, Zhongkai; Zheng, Kuanyu; Dong, Jiahong; Fang, Qi; Hong, Jian; Wang, Xifeng

    2016-01-19

    Tomato spotted wilt virus (TSWV) and Tomato zonate spot virus (TZSV) are the two dominant species of thrip-transmitted tospoviruses, cause significant losses in crop yield in Yunnan and its neighboring provinces in China. TSWV and TZSV belong to different serogroup of tospoviruses but induce similar symptoms in the same host plant species, which makes diagnostic difficult. We used different electron microscopy preparing methods to investigate clustering and cellular distribution of TSWV and TZSV in the host plant species. Negative staining of samples infected with TSWV and TZSV revealed that particles usually clustered in the vesicles, including single particle (SP), double particles clustering (DPC), triple particles clustering (TPC). In the immunogold labeling negative staining against proteins of TZSV, the antibodies against Gn protein were stained more strongly than the N protein. Ultrathin section and high pressure freeze (HPF)-electron microscopy preparations revealed that TSWV particles were distributed in the cisternae of endoplasmic reticulum (ER), filamentous inclusions (FI) and Golgi bodies in the mesophyll cells. The TSWV particles clustered as multiple particles clustering (MPC) and distributed in globular viroplasm or cisternae of ER in the top leaf cell. TZSV particles were distributed more abundantly in the swollen membrane of ER in the mesophyll cell than those in the phloem parenchyma cells and were not observed in the top leaf cell. However, TZSV virions were mainly present as single particle in the cytoplasm, with few clustering as MPC. In this study, we identified TSWV and TZSV particles had the distinct cellular distribution patterns in the cytoplasm from different tissues and host plants. This is the first report of specific clustering characteristics of tospoviruses particles as well as the cellular distribution of TSWV particles in the FI and globular viroplasm where as TZSV particles inside the membrane of ER. These results indicated that

  18. Melon Resistance to Cucurbit yellow stunting disorder virus Is Characterized by Reduced Virus Accumulation.

    PubMed

    Marco, Cristina F; Aguilar, Juan M; Abad, Jesús; Gómez-Guillamón, María Luisa; Aranda, Miguel A

    2003-07-01

    ABSTRACT The pattern of accumulation of Cucurbit yellow stunting disorder virus (CYSDV; genus Crinivirus, family Closteroviridae) RNA has been analyzed in several cucurbit accessions. In susceptible accessions of melon (Cucumis melo), cucumber (Cucumis sativus), marrow (Cucurbita maxima), and squash (Cucurbita pepo), CYSDV RNA accumulation peaked during the first to second week postinoculation in the first to third leaf above the inoculated one; younger leaves showed very low or undetectable levels of CYSDV. Three melon accessions previously shown to remain asymptomatic after CYSDV inoculation under natural conditions were also assayed for their susceptibility to CYSDV. Hybridization and reverse transcription-polymerase chain reaction (RT-PCR) analysis of noninoculated leaves showed that only one of these, C-105, remained virus-free for up to 6 weeks after whitefly inoculation. In this accession, very low CYSDV levels were detected by RT-PCR in whitefly-inoculated leaves, and therefore, multiplication or spread of CYSDV in C-105 plants appeared to remain restricted to the inoculated leaves. When C-105 plants were graft inoculated, CYSDV RNA could be detected in phloem tissues, but the systemic colonization of C-105 by CYSDV upon graft inoculation seemed to be seriously impeded. Additionally, in situ hybridization experiments showed that, after C-105 graft inoculation, only a portion of the vascular bundles in petioles and stems were colonized by CYSDV and virus could not be found in leaf veins. RT-PCR experiments using primers to specifically detect negative-sense CYSDV RNA were carried out and showed that CYSDV replication took place in graft-inoculated C-105 scions. Therefore, the resistance mechanism may involve a restriction of the virus movement in the vascular system of the plants and/or prevention of high levels of virus accumulation.

  19. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation.

    PubMed

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-12-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Dispersed gold nanoparticles potentially ruin gold barley yellow dwarf virus and eliminate virus infectivity hazards

    NASA Astrophysics Data System (ADS)

    Alkubaisi, Noorah A.; Aref, Nagwa M. A.

    2017-02-01

    Gold nanoparticles (AuNPs) application melted barley yellow dwarf virus-PAV (BYDV-PAV) spherical nanoparticle capsids. Synergistic therapeutic effects for plant virus resistance were induced by interaction with binding units of prepared AuNPs in a water solution which was characterized and evaluated by zeta sizer, zeta potential and transmission electron microscopy (TEM). The yield of purified nanoparticles of BYDV-PAV was obtained from Hordeum vulgare (Barley) cultivars, local and Giza 121/Justo. It was 0.62 mg/ml from 27.30 g of infected leaves at an A260/A280 ratio. Virus nanoparticle has a spherical shape 30 nm in size by TEM. BYDV-PAV combined with AuNPs to challenge virus function in vivo and in vitro. Dual AuNPs existence in vivo and in vitro affected compacted configuration of viral capsid protein in the interior surface of capsomers, the outer surface, or between the interface of coat protein subunits for 24 and 48 h incubation period in vitro at room temperature. The sizes of AuNPs that had a potentially dramatic deteriorated effect are 3.151 and 31.67 nm with a different intensity of 75.3% for the former and 24.7% for the latter, which enhances optical sensing applications to eliminate virus infectivity. Damages of capsid protein due to AuNPs on the surface of virus subunits caused variable performance in four different types of TEM named puffed, deteriorated and decorated, ruined and vanished. Viral yield showed remarkably high-intensity degree of particle symmetry and uniformity in the local cultivar greater than in Giza 121/Justo cultivar. A high yield of ruined VLPs in the local cultivar than Justo cultivar was noticed. AuNPs indicated complete lysed VLPs and some deteriorated VLPs at 48 h.

  1. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

    PubMed

    Wu, Kailang; Chen, Lang; Peng, Guiqing; Zhou, Wenbo; Pennell, Christopher A; Mansky, Louis M; Geraghty, Robert J; Li, Fang

    2011-06-01

    How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.

  2. RNA interference inhibits yellow fever virus replication in vitro and in vivo.

    PubMed

    Pacca, Carolina C; Severino, Adriana A; Mondini, Adriano; Rahal, Paula; D'avila, Solange G P; Cordeiro, José Antonio; Nogueira, Mara Correa Lelles; Bronzoni, Roberta V M; Nogueira, Maurício L

    2009-04-01

    RNA interference (RNAi) is a process that is induced by double stranded RNA and involves the degradation of specific sequences of mRNA in the cytoplasm of the eukaryotic cells. It has been used as an antiviral tool against many viruses, including flaviviruses. The genus Flavivirus contains the most important arboviruses in the world, i.e., dengue (DENV) and yellow fever (YFV). In our study, we investigated the in vitro and in vivo effect of RNAi against YFV. Using stable cell lines that expressed RNAi against YFV, the cell lines were able to inhibit as much as 97% of the viral replication. Two constructions (one against NS1 and the other against E region of YFV genome) were able to protect the adult Balb/c mice against YFV challenge. The histopathologic analysis demonstrated an important protection of the central nervous system by RNAi after 10 days of viral challenge. Our data suggests that RNAi is a potential viable therapeutic weapon against yellow fever.

  3. Seroprevalence of yellow fever virus in selected health facilities in Western Kenya from 2010 to 2012.

    PubMed

    Kwallah, Allan ole; Inoue, Shingo; Thairu-Muigai, Anne Wangari; Kuttoh, Nancy; Morita, Kouichi; Mwau, Matilu

    2015-01-01

    Yellow fever (YF), which is caused by a mosquito-borne virus, is an important viral hemorrhagic fever endemic in equatorial Africa and South America. Yellow fever virus (YFV) is the prototype of the family Flaviviridae and genus Flavivirus. The aim of this study was to determine the seroprevalence of YFV in selected health facilities in Western Kenya during the period 2010-2012. A total of 469 serum samples from febrile patients were tested for YFV antibodies using in-house IgM-capture ELISA, in-house indirect IgG ELISA, and 50% focus reduction neutralization test (FRNT50). The present study did not identify any IgM ELISA-positive cases, indicating absence of recent YFV infection in the area. Twenty-eight samples (6%) tested positive for YFV IgG, because of either YFV vaccination or past exposure to various flaviviruses including YFV. Five cases were confirmed by FRNT50; of these, 4 were either vaccination or natural infection during the YF outbreak in 1992-1993 or another period and 1 case was confirmed as a West Nile virus infection. Domestication and routine performance of arboviral differential diagnosis will help to address the phenomenon of pyrexia of unknown origin, contribute to arboviral research in developing countries, and enhance regular surveillance.

  4. Different haplotypes encode the same protein for independent sources of zucchini yellow mosaic virus resistance in cucumber

    USDA-ARS?s Scientific Manuscript database

    Cucumber (Cucumis sativus) production is negatively affected by zucchini yellow mosaic virus (ZYMV). Three sources of ZYMV resistance have been commercially deployed and all three resistances are conditioned by a single recessive gene. A vacuolar protein sorting-associated protein 4-like (VPS4-like)...

  5. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses.

    PubMed

    Tabachnick, Walter J

    2016-09-29

    The impact of anticipated changes in global climate on the arboviruses and the diseases they cause poses a significant challenge for public health. The past evolution of the dengue and yellow fever viruses provides clues about the influence of changes in climate on their future evolution. The evolution of both viruses has been influenced by virus interactions involving the mosquito species and the primate hosts involved in virus transmission, and by their domestic and sylvatic cycles. Information is needed on how viral genes in general influence phenotypic variance for important viral functions. Changes in global climate will alter the interactions of mosquito species with their primate hosts and with the viruses in domestic cycles, and greater attention should be paid to the sylvatic cycles. There is great danger for the evolution of novel viruses, such as new serotypes, that could compromise vaccination programs and jeopardize public health. It is essential to understand (a) both sylvatic and domestic cycles and (b) the role of virus genetic and environmental variances in shaping virus phenotypic variance to more fully assess the impact of global climate change.

  6. Two Crinivirus-specific proteins of Lettuce infectious yellows virus (LIYV), P26 and P9, are self-interacting.

    PubMed

    Stewart, Lucy R; Hwang, Min Sook; Falk, Bryce W

    2009-11-01

    Interactions of Lettuce infectious yellows virus (LIYV)-encoded proteins were tested by yeast-two-hybrid (Y2H) assays. LIYV-encoded P34, Hsp70h, P59, CP, CPm, and P26 were tested in all possible pairwise combinations. Interaction was detected only for the P26-P26 combination. P26 self-interaction domains were mapped using a series of N- and C-terminal truncations. Orthologous P26 proteins from the criniviruses Beet pseudoyellows virus (BPYV), Cucurbit yellow stunting disorder virus (CYSDV), and Lettuce chlorosis virus (LCV) were also tested, and each exhibited strong self-interaction but no interaction with orthologous proteins. Two small putative proteins encoded by LIYV RNA2, P5 and P9, were also tested for interactions with the six aforementioned LIYV proteins and each other. No interactions were detected for P5, but P9-P9 self-interaction was detected. P26- and P9-encoding genes are present in all described members of the genus Crinivirus, but are not present in other members of the family Closteroviridae. LIYV P26 has previously been demonstrated to induce a unique LIYV cytopathology, plasmalemma deposits (PLDs), but no role is yet known for P9.

  7. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro.

    PubMed

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-03-06

    An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. The cytotoxicity (CC(50)) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4 degrees C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37 degrees C before the adsorption of untreated-virus. The CC(50) values were less than 100 microg/mL and the MIC values were 3.7 and 11.1 microg/mL. The CC(50)/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 microg/mL produced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at 100 microg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.

  8. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro

    PubMed Central

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-01-01

    Background An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. Aim In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. Methods The cytotoxicity (CC50) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus. Results The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 μg/mLproduced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. Conclusion The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation. PMID:19267922

  9. Insights Into the Etiology of Polerovirus-Induced Pepper Yellows Disease.

    PubMed

    Lotos, Leonidas; Olmos, Antonio; Orfanidou, Chrysoula; Efthimiou, Konstantinos; Avgelis, Apostolos; Katis, Nikolaos I; Maliogka, Varvara I

    2017-12-01

    The study of an emerging yellows disease of pepper crops (pepper yellows disease [PYD]) in Greece led to the identification of a polerovirus closely related to Pepper vein yellows virus (PeVYV). Recovery of its full genome sequence by next-generation sequencing of small interfering RNAs allowed its characterization as a new poleroviruses, which was provisionally named Pepper yellows virus (PeYV). Transmission experiments revealed its association with the disease. Sequence similarity and phylogenetic analysis highlighted the common ancestry of the three poleroviruses (PeVYV, PeYV, and Pepper yellow leaf curl virus [PYLCV]) currently reported to be associated with PYD, even though significant genetic differences were identified among them, especially in the C-terminal region of P5 and the 3' noncoding region. Most of the differences observed can be attributed to a modular type of evolution, which produces mosaic-like variants giving rise to these different poleroviruses Overall, similar to other polerovirus-related diseases, PYD is caused by at least three species (PeVYV, PeYV, and PYLCV) belonging to this group of closely related pepper-infecting viruses.

  10. Molecular characterization of a divergent strain of calla lily chlorotic spot virus infecting celtuce (Lactuca sativa var. augustana) in China.

    PubMed

    Wu, Xiaodong; Wu, Xiaoyun; Li, Wenbin; Cheng, Xiaofei

    2018-05-01

    Through sequencing and assembly of small RNAs, an orthotospovirus was identified from a celtuce plant (Lactuca sativa var. augustana) showing vein clearing and chlorotic spots in the Zhejiang province of China. The S, M, and L RNAs of this orthotospovirus were determined to be 3146, 4734, and 8934 nt, respectively, and shared 30.4-72.5%, 43.4-80.8%, and 29.84-82.9% nucleotide sequence identities with that of known orthotospoviruses. The full length nucleoprotein (N) of this orthotospovirus shared highest amino acid sequence identity (90.25%) with that of calla lily chlorotic spot virus isolated from calla lily (CCSV-calla) [China: Taiwan: 2001] and tobacco (CCSV-LJ1) [China: Lijiang: 2014]. Phylogenetic analyses showed that this orthotospovirus is phylogenetically associated with CCSV isolates and clustered with CCSV, tomato zonate spot virus (TZSV), and tomato necrotic spot-associated virus (TNSaV) in a separate sub-branch. These results suggest that this orthotospovirus is a divergent isolate of CCSV and was thus named CCSV-Cel [China: Zhejiang: 2017].

  11. Midzonal lesions in yellow fever: a specific pattern of liver injury caused by direct virus action and in situ inflammatory response.

    PubMed

    Quaresma, Juarez A S; Duarte, Maria I S; Vasconcelos, Pedro F C

    2006-01-01

    Yellow fever is an acute infectious, non-contagious disease characterized by intense vasculopathy and lesions in different organs. In the liver, one of the main targets of the virus, the infection induces a characteristic midzonal injury characterized by hepatocyte necrosis, apoptosis and steatosis. This characteristics pattern of liver injury in yellow fever is also observed in conditions of low-flow hypoxia and other infections such as dengue and Rift Valley fever. There are no reports in the literature explaining the genesis of this peculiar histopathological pattern in yellow fever. Some hypotheses have been proposed to explain the mechanism of this midzonal distribution pattern observed in the liver such as low-flow hypoxia and tropism of the virus toward hepatocytes in this area. These hypotheses are discussed in view of more recent findings regarding the pathogenesis of yellow fever and regarding hepatic physiopathology, and a new hypothesis is proposed: the midzonal necrosis is consequence of action of combined factors mainly the direct cytopathic effect of YFV associated with a potent immune response in which CD4+ and CD8+ lymphocytes and the cytokines, especially TGF-beta, but also TNF-alpha and IFN-gamma play an important role.

  12. STUDIES ON SOUTH AMERICAN YELLOW FEVER

    PubMed Central

    Davis, Nelson C.; Shannon, Raymond C.

    1929-01-01

    Yellow fever virus from M. rhesus has been inoculated into a South American monkey (Cebus macrocephalus) by blood injection and by bites of infected mosquitoes. The Cebus does not develop the clinical or pathological signs of yellow fever. Nevertheless, the virus persists in the Cebus for a time as shown by the typical symptoms and lesions which develop when the susceptible M. rhesus is inoculated from a Cebus by direct transfer of blood or by mosquito (A. aegypti) transmission. PMID:19869607

  13. Isolation and characterization of a Brazilian strain of yellow fever virus from an epizootic outbreak in 2009.

    PubMed

    Jorge, Taissa Ricciardi; Mosimann, Ana Luiza Pamplona; Noronha, Lucia de; Maron, Angela; Duarte Dos Santos, Claudia Nunes

    2017-02-01

    During a series of epizootics caused by Yellow fever virus in Brazil between 2007 and 2009, a monkey was found dead (May 2009) in a sylvatic area in the State of Paraná. Brain samples from this animal were used for immunohistochemical analysis and isolation of a wild-type strain of YFV. This viral strain was characterized, and sequence analyzes demonstrated that it is closely related with YFV strains of the recently identified subclade 1E of the South American genotype I. Further characterization included indirect-immunofluorescence of different infected cell lines and analysis of the kinetics of virus replication and infectivity inhibition by type I IFN. The generated data contributes to the knowledge of YFV evolution and phylogeny. Additionally, the reagents generated and characterized during this study, such as a panel of monoclonal antibodies, are useful tools for further studies on YFV. Lastly, this case stresses the importance of yellow fever surveillance through sentinel monkeys. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analysis of sequences from field samples reveals the presence of the recently described pepper vein yellows virus (genus Polerovirus) in six additional countries.

    PubMed

    Knierim, Dennis; Tsai, Wen-Shi; Kenyon, Lawrence

    2013-06-01

    Polerovirus infection was detected by reverse transcription polymerase chain reaction (RT-PCR) in 29 pepper plants (Capsicum spp.) and one black nightshade plant (Solanum nigrum) sample collected from fields in India, Indonesia, Mali, Philippines, Thailand and Taiwan. At least two representative samples for each country were selected to generate a general polerovirus RT-PCR product of 1.4 kb length for sequencing. Sequence analysis of the partial genome sequences revealed the presence of pepper vein yellows virus (PeVYV) in all 13 samples. A 1990 Australian herbarium sample of pepper described by serological means as infected with capsicum yellows virus (CYV) was identified by sequence analysis of a partial CP sequence as probably infected with a potato leaf roll virus (PLRV) isolate.

  15. A predictive model for spotted wilt epidemics in peanut based on local weather conditions and the tomato spotted wilt virus risk index.

    PubMed

    Olatinwo, R O; Paz, J O; Brown, S L; Kemerait, R C; Culbreath, A K; Beasley, J P; Hoogenboom, G

    2008-10-01

    Tomato spotted wilt virus (TSWV), a member of the genus Tospovirus (family Bunyaviridae), is an important plant virus that causes severe damage to peanut (Arachis hypogaea) in the southeastern United States. Disease severity has been extremely variable in individual fields in Georgia, due to several factors including variability in weather patterns. A TSWV risk index has been developed by the University of Georgia to aid peanut growers with the assessment and avoidance of high risk situations. This study was conducted to examine the relationship between weather parameters and spotted wilt severity in peanut, and to develop a predictive model that integrates localized weather information into the risk index. On-farm survey data collected during 1999, 2002, 2004, and 2005 growing seasons, and derived weather variables during the same years were analyzed using nonlinear and multiple regression analyses. Meteorological data were obtained from the Georgia Automated Environmental Monitoring Network. The best model explained 61% of the variation in spotted wilt severity (square root transformed) as a function of the interactions between the TSWV risk index, the average daily temperature in April (TavA), the average daily minimum temperature between March and April (TminMA), the accumulated rainfall in March (RainfallM), the accumulated rainfall in April (RainfallA), the number of rain days in April (RainDayA), evapotranspiration in April (EVTA), and the number of days from 1 January to the planting date (JulianDay). Integrating this weather-based model with the TSWV risk index may help peanut growers more effectively manage tomato spotted wilt disease.

  16. Development of infectious cDNA clones of citrus yellow vein clearing virus using a novel and rapid strategy.

    PubMed

    Cui, Tian Tian; Bin, Yu; Yan, Jian Hong; Mei, Peng Ying; Li, Zhong An; Zhou, Chang Yong; Song, Zhen

    2018-05-04

    Yellow vein clearing disease (YVCD) causes significant economic losses in lemon and other species of citrus. Usually, citrus yellow vein clearing virus (CYVCV) is considered to be the causal agent of YVCD. However, mixed infection of CYVCV and Indian citrus ringspot virus (ICRSV) or other pathogens is often detected in citrus plants with YVCD. In this study, we re-examined the causal agent of YVCD to fulfill Koch's postulates. First, the full-length genome of CYVCV isolate AY (CYVCV-AY) was amplified by long-distance RT-PCR from a Eureka lemon [Citrus limon (L) Brum. f.] tree with typical YVCD symptoms. The genomic cDNAs were then cloned into a ternary Yeast-Escherichia coli-Agrobacterium tumefaciens shuttle vector, pCY, using transformation-associated recombination (TAR) strategy, and 15 full-length cDNA clones of CYVCV-AY were obtained. Subsequently, four of these clones were selected randomly and inoculated on Jincheng [C. sinensis (L) Osbeck] seedlings through Agrobacterium-mediated vacuum-infiltration, and it was found that 80 to 100% of inoculated plants were infected with CYVCV by RT-PCR at 20 to 40 days post inoculation (dpi) and by direct tissue blot immunoassay at 60 dpi. The progeny of CYVCV-AY from cDNA clones caused typical symptoms of YVCD such as yellow vein clearing, leaf distortion, and chlorosis, which were the same as that elicited by wild-type virus. Finally, the regeneration of CYVCV-AY genome was confirmed by long-distance RT-PCR in lemon trees inoculated with the infectious cDNA clone. These results proved that CYVCV was the primary causal agent of YVCD. This is the first report on the development of infectious cDNA clones of CYVCV, which lays the foundation for further studies on viral gene functions and virus-host interactions.

  17. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficientmore » in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.« less

  18. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults.

    PubMed

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; Medeiros, Carlos Roberto de; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-04-03

    The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged  60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. previously vaccinated healthy persons aged  18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. 46 persons aged  60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear.

  19. Host-mediated effects of semipersistently transmitted Squash vein yellowing virus on sweetpotato whitefly (Hemiptera: Aleyrodidae) behavior and fitness

    USDA-ARS?s Scientific Manuscript database

    Alighting, settling and oviposition behavioral assays were conducted on Squash vein yellowing virus- (SqVYV-) infected and mock-inoculated squash and watermelon plants. Developmental time of immature stages, adult longevity, and fecundity were measured on SqVYV-infected and mock-inoculated squash p...

  20. Distribution of Tomato spotted wilt virus in dahlia plants.

    PubMed

    Asano, S; Hirayama, Y; Matsushita, Y

    2017-04-01

    Tomato spotted wilt virus (TSWV) causes significant losses in the production of the ornamental plant Dahlia variabilis in Japan. The purpose of this study was to examine the distribution of TSWV in dahlia plants and identify plant parts that can be used in the selection of TSWV-free plants. The distribution of TSWV was investigated using reverse transcriptional polymerase chain reaction (RT-PCR) and tissue blot immunoassay. The detection rate of TSWV in latent infected compound leaves was the highest in the petiole, and it decreased from the veins and rachis to the lamina. The tissue blot immunoassays of the leaflets showed an uneven distribution of TSWV, especially along the edge of the leaf blade. In stems, the detection rate of TSWV was high partway up the stem compared to that in the upper and the lower parts of the stem during the vegetative growth stage. A highly uneven distribution was observed in the bulb. Our results indicated that middle parts of the stem as well as the petioles, rachis, and veins of compound leaves are suitable for detection of TSWV in dahlias. This study is the first to report uneven distribution of TSWV in dahlia plants. In this study, the distribution of Tomato spotted wilt virus (TSWV) in various parts of dahlia plants was investigated for the first time. The distribution of TSWV was uneven in compound leaves, leaflets, stems, and bulbs. The middle parts of the stem or the petiole and leaf veins should be sampled to detect TSWV when selecting healthy plants. © 2017 The Society for Applied Microbiology.

  1. Molecular phylogeny of edge hill virus supports its position in the yellow Fever virus group and identifies a new genetic variant.

    PubMed

    Macdonald, Joanne; Poidinger, Michael; Mackenzie, John S; Russell, Richard C; Doggett, Stephen; Broom, Annette K; Phillips, Debra; Potamski, Joseph; Gard, Geoff; Whelan, Peter; Weir, Richard; Young, Paul R; Gendle, Debra; Maher, Sheryl; Barnard, Ross T; Hall, Roy A

    2010-06-15

    Edge Hill virus (EHV) is a mosquito-borne flavivirus isolated throughout Australia during mosquito surveillance programs. While not posing an immediate threat to the human population, EHV is a taxonomically interesting flavivirus since it remains the only member of the yellow fever virus (YFV) sub-group to be detected within Australia. Here we present both an antigenic and genetic investigation of collected isolates, and confirm taxonomic classification of the virus within the YFV-group. Isolates were not clustered based on geographical origin or time of isolation, suggesting that minimal genetic evolution of EHV has occurred over geographic distance or time within the EHV cluster. However, two isolates showed significant differences in antigenic reactivity patterns, and had a much larger divergence from the EHV prototype (19% nucleotide and 6% amino acid divergence), indicating a distinct subtype or variant within the EHV subgroup.

  2. Prevalence and distribution of White Spot Syndrome Virus in cultured shrimp.

    PubMed

    Hossain, A; Nandi, S P; Siddique, M A; Sanyal, S K; Sultana, M; Hossain, M A

    2015-02-01

    White Spot Syndrome Virus (WSSV) is a dsDNA virus causing White Spot Syndrome Disease (WSSD) in shrimp with almost 100% morality rate within 3-10 days. In Bangladesh, WSSD is one of the major impediments of shrimp farming. This study first investigated the prevalence and distribution of WSSV in cultured shrimps of the coastal regions in Bangladesh. A total of 60 shrimp samples, collected from the 25 shrimp farms of different coastal regions (Satkhira, Khulna, Bagerhat and Cox's Bazar), were analysed during 2013-2014 by conventional PCR using VP28 and VP664 gene-specific primers; 39 of 60 samples were found WSSV positive. SYBR green real-time PCR using 71-bp amplicon for VP664 gene correlated well with conventional PCR data. The prevalence rates of WSSV among the collected 60 samples were Satkhira 79%, Khulna 50%, Bagerhat 38% and Cox's Bazar 25%. Sequencing of WSSV-positive PCR amplicons of VP28 showed 99% similarity with WSSV NCBI Ref/Seq Sequences. Molecular analysis of the VP28 gene sequences of WSSV revealed that Bangladeshi strains phylogenetically affiliated to the strains belong to India. This work concluded that WSSV infections are widely distributed in the coastal regions cultured shrimp in Bangladesh. © 2014 The Society for Applied Microbiology.

  3. The yellow fever 17D virus as a platform for new live attenuated vaccines.

    PubMed

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.

  4. Diversification of Rice Yellow Mottle Virus and Related Viruses Spans the History of Agriculture from the Neolithic to the Present

    PubMed Central

    Fargette, Denis; Pinel-Galzi, Agnès; Sérémé, Drissa; Lacombe, Séverine; Hébrard, Eugénie; Traoré, Oumar; Konaté, Gnissa

    2008-01-01

    The mechanisms of evolution of plant viruses are being unraveled, yet the timescale of their evolution remains an enigma. To address this critical issue, the divergence time of plant viruses at the intra- and inter-specific levels was assessed. The time of the most recent common ancestor (TMRCA) of Rice yellow mottle virus (RYMV; genus Sobemovirus) was calculated by a Bayesian coalescent analysis of the coat protein sequences of 253 isolates collected between 1966 and 2006 from all over Africa. It is inferred that RYMV diversified approximately 200 years ago in Africa, i.e., centuries after rice was domesticated or introduced, and decades before epidemics were reported. The divergence time of sobemoviruses and viruses of related genera was subsequently assessed using the age of RYMV under a relaxed molecular clock for calibration. The divergence time between sobemoviruses and related viruses was estimated to be approximately 9,000 years, that between sobemoviruses and poleroviruses approximately 5,000 years, and that among sobemoviruses approximately 3,000 years. The TMRCA of closely related pairs of sobemoviruses, poleroviruses, and luteoviruses was approximately 500 years, which is a measure of the time associated with plant virus speciation. It is concluded that the diversification of RYMV and related viruses has spanned the history of agriculture, from the Neolithic age to the present. PMID:18704169

  5. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques.

    PubMed

    Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo

    2010-04-01

    Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.

  6. Development and characterization of polyclonal peptide antibodies for the detection of Yellow fever virus proteins.

    PubMed

    Stock, N K; Escadafal, C; Achazi, K; Cissé, M; Niedrig, M

    2015-09-15

    There is still a considerable need for development of new tools and methods detecting specific viral proteins for the diagnosis and pathogenesis study of the Yellow fever virus (YFV). This study aimed to develop and characterize polyclonal peptide antisera for detection of YFV-C and -NS1 proteins. The antisera were used further to investigate NS1 protein expression during YFV infection in mammalian cells. YFV target proteins were detected by all antisera in western blot and immunofluorescence assays. No cross-reactivity was observed with Dengue virus, West Nile virus, Tick-borne encephalitis virus and Japanese encephalitis virus. Nuclear localization of the YFV-C protein was demonstrated for the first time. Experiments investigating NS1 expression suggested a potential use of the YFV-NS1 antisera for development of diagnostic approaches targeting the secreted form of the NS1 protein. The antisera described in this study offer new possibilities for use in YFV research and for the development of novel diagnostic tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Emergence and epidemiology of Cucurbit yellow stunting disorder virus in the American desert southwest, and development of host plant resistance in melon

    USDA-ARS?s Scientific Manuscript database

    Cucurbit yellow stunting disorder virus (CYSDV), emerged in the Sonoran Desert region of the southwestern USA in 2006 and has become established. The virus is transmitted by the MEAM1 cryptic species of Bemisia tabaci, which has been present in the region since the early 1990s. CYSDV results in lat...

  8. Fatal Yellow Fever in Travelers to Brazil, 2018.

    PubMed

    Hamer, Davidson H; Angelo, Kristina; Caumes, Eric; van Genderen, Perry J J; Florescu, Simin A; Popescu, Corneliu P; Perret, Cecilia; McBride, Angela; Checkley, Anna; Ryan, Jenny; Cetron, Martin; Schlagenhauf, Patricia

    2018-03-23

    Yellow fever virus is a mosquito-borne flavivirus that causes yellow fever, an acute infectious disease that occurs in South America and sub-Saharan Africa. Most patients with yellow fever are asymptomatic, but among the 15% who develop severe illness, the case fatality rate is 20%-60%. Effective live-attenuated virus vaccines are available that protect against yellow fever (1). An outbreak of yellow fever began in Brazil in December 2016; since July 2017, cases in both humans and nonhuman primates have been reported from the states of São Paulo, Minas Gerais, and Rio de Janeiro, including cases occurring near large urban centers in these states (2). On January 16, 2018, the World Health Organization updated yellow fever vaccination recommendations for Brazil to include all persons traveling to or living in Espírito Santo, São Paulo, and Rio de Janeiro states, and certain cities in Bahia state, in addition to areas where vaccination had been recommended before the recent outbreak (3). Since January 2018, 10 travel-related cases of yellow fever, including four deaths, have been reported in international travelers returning from Brazil. None of the 10 travelers had received yellow fever vaccination.

  9. Yellow fever: an update.

    PubMed

    Monath, T P

    2001-08-01

    Yellow fever, the original viral haemorrhagic fever, was one of the most feared lethal diseases before the development of an effective vaccine. Today the disease still affects as many as 200,000 persons annually in tropical regions of Africa and South America, and poses a significant hazard to unvaccinated travellers to these areas. Yellow fever is transmitted in a cycle involving monkeys and mosquitoes, but human beings can also serve as the viraemic host for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean and Asia. Here I review the clinical features of the disease, its pathogenesis and pathophysiology. The disease mechanisms are poorly understood and have not been the subject of modern clinical research. Since there is no specific treatment, and management of patients with the disease is extremely problematic, the emphasis is on preventative vaccination. As a zoonosis, yellow fever cannot be eradicated, but reduction of the human disease burden is achievable through routine childhood vaccination in endemic countries, with a low cost for the benefits obtained. The biological characteristics, safety, and efficacy of live attenuated, yellow fever 17D vaccine are reviewed. New applications of yellow fever 17D virus as a vector for foreign genes hold considerable promise as a means of developing new vaccines against other viruses, and possibly against cancers.

  10. Regular exposure to rabies virus and lack of symptomatic disease in Serengeti spotted hyenas

    PubMed Central

    East, Marion L.; Hofer, Heribert; Cox, James H.; Wulle, Ulrich; Wiik, Harald; Pitra, Christian

    2001-01-01

    We report a previously unrecognized complexity to the ecology of rabies in wildlife. Rabies-specific virus-neutralizing antibodies in spotted hyenas, the most numerous large carnivore in the Serengeti ecosystem (Tanzania, East Africa), revealed a high frequency of exposure of 37.0% to rabies virus, and reverse transcriptase (RT) PCR demonstrated rabies RNA in 13.0% of hyenas. Despite this high frequency, exposure neither caused symptomatic rabies nor decreased survival among members of hyena social groups monitored for 9 to13 years. Repeated, intermittent presence of virus in saliva of 45.5% of seropositive hyenas indicated a “carrier” state. Rabies isolates from Serengeti hyenas differed significantly (8.5% sequence divergence) from those isolated from other Serengeti carnivores, suggesting that at least two separate strains circulate within the Serengeti carnivore community. This finding is consistent with the fact that exposure in hyenas increased with age and social status, following a pattern predicted by intraspecific age and social-status-dependent oral and bite contact rates. High seroprevalence of rabies, low basic reproductive rate of the virus (R0) of 1.9, a carrier state, and the absence of symptomatic rabies in a carnivore in an ecosystem with multihost and multistrain maintenance has not been previously demonstrated for rabies. Because of the substantial differences between the hyena viral isolates and those from canids and viverrids in the Serengeti, it is unlikely that spotted hyenas were the source of rabies virus that killed several African wild dog packs in the Serengeti ecosystem in the 1990s. PMID:11742089

  11. Leek yellow stripe virus isolates from Brazil form a distant clade based on the P1 gene

    USDA-ARS?s Scientific Manuscript database

    The complete genomic sequence of a garlic isolate of Leek yellow stripe virus from Brazil (LYSV-MG) has been determined, and phylogenetic comparisons made to LYSV isolates from other parts of the world. In addition, the nucleotide sequence of the 5'UTR and part of the P1 gene of multiple LYSV isolat...

  12. Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain.

    PubMed

    Mochizuki, Tomofumi; Hirai, Katsuyuki; Kanda, Ayami; Ohnishi, Jun; Ohki, Takehiro; Tsuda, Shinya

    2009-08-01

    The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the second putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.

  13. Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochizuki, Tomofumi; Hirai, Katsuyuki; Kanda, Ayami

    2009-08-01

    The virulence factor of Melon necrotic spot virus (MNSV), a virus that induces systemic necrotic spot disease on melon plants, was investigated. When the replication protein p29 was expressed in N. benthamiana using a Cucumber mosaic virus vector, necrotic spots appeared on the leaf tissue. Transmission electron microscopy revealed abnormal mitochondrial aggregation in these tissues. Fractionation of tissues expressing p29 and confocal imaging using GFP-tagged p29 revealed that p29 associated with the mitochondrial membrane as an integral membrane protein. Expression analysis of p29 deletion fragments and prediction of hydrophobic transmembrane domains (TMDs) in p29 showed that deletion of the secondmore » putative TMD from p29 led to deficiencies in both the mitochondrial localization and virulence of p29. Taken together, these results indicated that MNSV p29 interacts with the mitochondrial membrane and that p29 may be a virulence factor causing the observed necrosis.« less

  14. Biological and phylogenetic characteristics of yellow fever virus lineages from West Africa.

    PubMed

    Stock, Nina K; Laraway, Hewád; Faye, Ousmane; Diallo, Mawlouth; Niedrig, Matthias; Sall, Amadou A

    2013-03-01

    The yellow fever virus (YFV), the first proven human-pathogenic virus, although isolated in 1927, is still a major public health problem, especially in West Africa where it causes outbreaks every year. Nevertheless, little is known about its genetic diversity and evolutionary dynamics, mainly due to a limited number of genomic sequences from wild virus isolates. In this study, we analyzed the phylogenetic relationships of 24 full-length genomes from YFV strains isolated between 1973 and 2005 in a sylvatic context of West Africa, including 14 isolates that had previously not been sequenced. By this, we confirmed genetic variability within one genotype by the identification of various YF lineages circulating in West Africa. Further analyses of the biological properties of these lineages revealed differential growth behavior in human liver and insect cells, correlating with the source of isolation and suggesting host adaptation. For one lineage, repeatedly isolated in a context of vertical transmission, specific characteristics in the growth behavior and unique mutations of the viral genome were observed and deserve further investigation to gain insight into mechanisms involved in YFV emergence and maintenance in nature.

  15. Biological and Phylogenetic Characteristics of Yellow Fever Virus Lineages from West Africa

    PubMed Central

    Laraway, Hewád; Faye, Ousmane; Diallo, Mawlouth; Niedrig, Matthias

    2013-01-01

    The yellow fever virus (YFV), the first proven human-pathogenic virus, although isolated in 1927, is still a major public health problem, especially in West Africa where it causes outbreaks every year. Nevertheless, little is known about its genetic diversity and evolutionary dynamics, mainly due to a limited number of genomic sequences from wild virus isolates. In this study, we analyzed the phylogenetic relationships of 24 full-length genomes from YFV strains isolated between 1973 and 2005 in a sylvatic context of West Africa, including 14 isolates that had previously not been sequenced. By this, we confirmed genetic variability within one genotype by the identification of various YF lineages circulating in West Africa. Further analyses of the biological properties of these lineages revealed differential growth behavior in human liver and insect cells, correlating with the source of isolation and suggesting host adaptation. For one lineage, repeatedly isolated in a context of vertical transmission, specific characteristics in the growth behavior and unique mutations of the viral genome were observed and deserve further investigation to gain insight into mechanisms involved in YFV emergence and maintenance in nature. PMID:23269797

  16. Coinfection with Hepatozoon sp. and Canine Distemper Virus in a Yellow-throated Marten ( Martes flavigula koreana) in Korea.

    PubMed

    Park, Surim; Choi, Ul Soo; Kim, Eun Ju; Lee, Jong Hyun; Lee, Hae Beom; Cho, Ho Seong; Kim, Wonil; Lim, Chae Woong; Kim, Bumseok

    2016-04-28

    We describe coinfection with Hepatozoon sp. and canine distemper virus (CDV) in a yellow-throated marten ( Martes flavigula koreana). We found Hepatozoon cysts in muscular tissue and viral inclusion bodies in the brain. Hepatozoon sp., and CDV was confirmed in blood and brain, respectively, by PCR.

  17. Development and evaluation of ELISA and qRT-PCR for identification of Squash vein yellowing virus in cucurbits

    USDA-ARS?s Scientific Manuscript database

    Enzyme linked-immunosorbent assay (ELISA) and quantitative reverse transcription-PCR (qRT-PCR) assays were developed for identification of Squash vein yellowing virus (SqVYV), the cause of viral watermelon vine decline. Both assays were capable of detecting SqVYV in a wide range of cucurbit hosts. ...

  18. Internally Controlled, Multiplex Real-Time Reverse Transcription PCR for Dengue Virus and Yellow Fever Virus Detection.

    PubMed

    Rojas, Alejandra; Diagne, Cheikh T; Stittleburg, Victoria D; Mohamed-Hadley, Alisha; de Guillén, Yvalena Arévalo; Balmaseda, Angel; Faye, Oumar; Faye, Ousmane; Sall, Amadou A; Harris, Eva; Pinsky, Benjamin A; Waggoner, Jesse J

    2018-04-02

    The differential diagnosis of dengue virus (DENV) and yellow fever virus (YFV) infections in endemic areas is complicated by nonspecific early clinical manifestations. In this study, we describe an internally controlled, multiplex real-time reverse transcription PCR (rRT-PCR) for the detection of DENV and YFV. The DENV-YFV assay demonstrated specific detection and had a dynamic range of 2.0-8.0 log 10 copies/μL of eluate for each DENV serotype and YFV. Clinical performance was similar to a published pan-DENV assay: 48/48 acute-phase samples from dengue cases were detected in both assays. For YFV detection, mock samples were prepared with nine geographically diverse YFV isolates over a range of concentrations. The DENV-YFV assay detected 62/65 replicates, whereas 54/65 were detected using a reference YFV rRT-PCR. Given the reemergence of DENV and YFV in areas around the world, the DENV-YFV assay should be a useful tool to narrow the differential diagnosis and provide early case detection.

  19. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT{sub Cter}) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase ofmore » wild-type TuYV accumulation, but not that of TuYV-∆RT{sub Cter}. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT{sub Cter} in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.« less

  20. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos.

    PubMed

    Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C E P; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo

    2015-01-01

    The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.

  1. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos

    PubMed Central

    Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C. E. P.; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo

    2015-01-01

    The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system. PMID:26371874

  2. The yellow fever 17D virus as a platform for new live attenuated vaccines

    PubMed Central

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms. PMID:24553128

  3. Screening of Potential Inhibitor against Coat Protein of Apple Chlorotic Leaf Spot Virus.

    PubMed

    Purohit, Rituraj; Kumar, Sachin; Hallan, Vipin

    2018-06-01

    In this study, we analyzed Coat protein (CP) of Apple chlorotic leaf spot virus (ACLSV), an important latent virus on Apple. Incidence of the virus is upto 60% in various apple cultivars, affecting yield losses of the order of 10-40% (depending upon the cultivar). CP plays an important role as the sole building block of the viral capsid. Homology approach was used to model 193 amino acid sequence of the coat protein. We used various servers such as ConSurf, TargetS, OSML, COACH, COFACTOR for the prediction of active site residues in coat protein. Virtual screening strategy was employed to search potential inhibitors for CP. Top twenty screened molecules considered for drugability, and toxicity analysis and one potential molecule was further analyzed by docking analysis. Here, we reported a potent molecule which could inhibit the formation of viron assembly by targeting the CP protein of virus.

  4. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice.

    PubMed

    Ryman, K D; Xie, H; Ledger, T N; Campbell, G A; Barrett, A D

    1997-04-14

    The live-attenuated yellow fever (YF) vaccine virus, strain 17D-204, has long been known to consist of a heterologous population of virions. Gould et al. (J. Gen. Virol. 70, 1889-1894 (1989)) previously demonstrated that variant viruses exhibiting a YF wild-type-specific envelope (E) protein epitope are present at low frequency in the vaccine pool and were able to isolate representative virus variants with and without this epitope, designated 17D(+wt) and 17D(-wt), respectively. These variants were employed here in an investigation of YF virus pathogenesis in the mouse model. Both the 17D-204 parent and the 17D(+wt) variant viruses were lethal for adult outbred mice by the intracerebral route of inoculation. However, the 17D(-wt) variant was significantly attenuated (18% mortality rate) and replicated to much lower titer in the brains of infected mice. A single amino acid substitution in the envelope (E) protein at E-240 (Ala-->Val) was identified as responsible for the restricted replication of the 17D(-wt) variant in vivo. The 17D(+wt) variant has an additional second-site mutation, believed to encode a reversion to the neurovirulence phenotype of the 17D-204 parent virus. The amino acid substitution in the E protein at E-173 (Thr-->Ile) of the 17D(+wt) variant which results in the appearance of the wild-type-specific epitope or nucleotide changes in the 5' and 3' noncoding regions of the virus are proposed as a candidates.

  5. International travel between global urban centres vulnerable to yellow fever transmission.

    PubMed

    Brent, Shannon E; Watts, Alexander; Cetron, Martin; German, Matthew; Kraemer, Moritz Ug; Bogoch, Isaac I; Brady, Oliver J; Hay, Simon I; Creatore, Maria I; Khan, Kamran

    2018-05-01

    To examine the potential for international travel to spread yellow fever virus to cities around the world. We obtained data on the international flight itineraries of travellers who departed yellow fever-endemic areas of the world in 2016 for cities either where yellow fever was endemic or which were suitable for viral transmission. Using a global ecological model of dengue virus transmission, we predicted the suitability of cities in non-endemic areas for yellow fever transmission. We obtained information on national entry requirements for yellow fever vaccination at travellers' destination cities. In 2016, 45.2 million international air travellers departed from yellow fever-endemic areas of the world. Of 11.7 million travellers with destinations in 472 cities where yellow fever was not endemic but which were suitable for virus transmission, 7.7 million (65.7%) were not required to provide proof of vaccination upon arrival. Brazil, China, India, Mexico, Peru and the United States of America had the highest volumes of travellers arriving from yellow fever-endemic areas and the largest populations living in cities suitable for yellow fever transmission. Each year millions of travellers depart from yellow fever-endemic areas of the world for cities in non-endemic areas that appear suitable for viral transmission without having to provide proof of vaccination. Rapid global changes in human mobility and urbanization make it vital for countries to re-examine their vaccination policies and practices to prevent urban yellow fever epidemics.

  6. Influence of insecticides and reflective mulch on watermelon vine decline caused by squash vein yellowing virus (SqVYV)

    USDA-ARS?s Scientific Manuscript database

    Watermelon vine decline (WVD) caused by the whitefly-transmitted Squash vein yellowing virus (SqVYV) has been a major limiting factor in watermelon production in southwest and west-central Florida for the past several years. Symptoms of WVD typically manifest as sudden decline of vines a few weeks ...

  7. Development of an immunochromatographic strip test for rapid detection of citrus yellow vein clearing virus.

    PubMed

    Bin, Yu; Li, Zhongan; Wu, Jianxiang; Wang, Xuefeng; Zhou, Yan; Li, Taisheng; Yang, Fangyun; Zhou, Changyong; Song, Zhen

    2018-02-01

    A rapid immunochromatographic strip (ICS) test for detection of citrus yellow vein clearing virus (CYVCV) was developed. The test is based on an antibody sandwich format and uses the monoclonal antibody (MAb) 1E1, which is specific for CYVCV. MAb 1E1 labeled with 30-nm colloidal gold particles was coated on a gold conjugate pad. A secondary goat anti-mouse IgG was coated on the surface of a nitrocellulose filter membrane (NC) as the control (C) line, while 1E1 was coated on the surface of the NC as the test (T) line. The ICS test was evaluated for specificity and sensitivity and then applied for virus detection in field samples. There was no cross-reaction with citrus tristeza virus (CTV), satsuma dwarf virus (SDV), citrus tatter leaf virus (CTLV), citrus exocortis viroid (CEVd), citrus mosaic virus (CiMV), citrus psorosis virus (CPV), citrus ringspot virus (RSV) or 'Candidatus Liberibacter asiaticus' (CLas). The ICS test was still able to detect CYVCV in tissue extracts at a dilution of 1: 320 (w/v), which is as efficient as the dot-ELISA assay. In general, the ICS assay is less expensive, faster and simpler to conduct than conventional CYVCV detection methods, so it may be useful for large-scale detection or monitoring of CYVCV.

  8. Adaptive Diversification Between Yellow Fever Virus West African and South American Lineages: A Genome-Wide Study.

    PubMed

    Li, Yan; Yang, Zexiao

    2017-03-01

    AbstractYellow fever virus (YFV) has emerged as the causative agent of a vector-borne disease with devastating mortality in the tropics of Africa and the Americas. YFV phylogenies indicate that the isolates collected from West Africa, East and Central Africa, and South America cluster into different lineages and the virus spread into the Americas from Africa. To determine the nature of genetic variation accompanying the intercontinental epidemic, we performed a genome-wide evolutionary study on the West African and South American lineages of YFV. Our results reveal that adaptive genetic diversification has occurred on viral nonstructural protein 5 (NS5), which is crucially required for viral genome replication, in the early epidemic phase of these currently circulating lineages. Furthermore, major amino acid changes relevant to the adaptive diversification generally cluster in different structural regions of NS5 in a lineage-specific manner. These results suggest that YFV has experienced adaptive diversification in the epidemic spread between the continents and shed insights into the genetic determinants of such diversification, which might be beneficial for understanding the emergence and re-emergence of yellow fever as an important global public health issue.

  9. Genome characterization of Sugarcane Yellow Leaf Virus with special reference to RNAi based molecular breeding.

    PubMed

    Khalil, Farghama; Yueyu, Xu; Naiyan, Xiao; Di, Liu; Tayyab, Muhammad; Hengbo, Wang; Islam, Waqar; Rauf, Saeed; Pinghua, Chen

    2018-05-04

    Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Tomato chlorotic spot virus, an emerging tospovirus threatening vegetable production in the United States

    USDA-ARS?s Scientific Manuscript database

    Tomato chlorotic spot virus (TCSV) is a tospovirus first detected in tomato and bell pepper in south Florida in 2012. Subsequently, TCSV was confirmed in tomato in Ohio and New York. Since 2014, TCSV has caused significant losses to tomato and bell pepper growers in south Florida. Under field condi...

  11. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations.

    PubMed

    Tabachnick, W J; Wallis, G P; Aitken, T H; Miller, B R; Amato, G D; Lorenz, L; Powell, J R; Beaty, B J

    1985-11-01

    Twenty-eight populations representing a worldwide distribution of Aedes aegypti were tested for their ability to become orally infected with yellow fever virus (YFV). Populations had been analyzed for genetic variations at 11 isozyme loci and assigned to one of 8 genetic geographic groups of Ae. aegypti. Infection rates suggest that populations showing isozyme genetic relatedness also demonstrate similarity to oral infection rates with YFV. The findings support the hypothesis that genetic variation exists for oral susceptibility to YFV in Ae. aegypti.

  12. Two Complete Genome Sequences of Phasey Bean Mild Yellows Virus, a Novel Member of the Luteoviridae from Australia

    PubMed Central

    Kehoe, Monica; Coutts, Brenda; van Leur, Joop; Filardo, Fiona; Thomas, John

    2016-01-01

    We present here the complete genome sequences of a novel polerovirus from Trifolium subterraneum (subterranean clover) and Cicer arietinum (chickpea) and compare these to a partial viral genome sequence obtained from Macroptilium lathyroides (phasey bean). We propose the name phasey bean mild yellows virus for this novel polerovirus. PMID:26847905

  13. A fatal yellow fever virus infection in China: description and lessons

    PubMed Central

    Chen, Zhihai; Liu, Lin; Lv, Yanning; Zhang, Wei; Li, Jiandong; Zhang, Yi; Di, Tian; Zhang, Shuo; Liu, Jingyuan; Li, Jie; Qu, Jing; Hua, Wenhao; Li, Chuan; Wang, Peng; Zhang, Quanfu; Xu, Yanli; Jiang, Rongmeng; Wang, Qin; Chen, Lijuan; Wang, Shiwen; Pang, Xinghuo; Liang, Mifang; Ma, Xuejun; Li, Xingwang; Wang, Quanyi; Zhang, Fujie; Li, Dexin

    2016-01-01

    Yellow fever (YF) is a viral disease endemic to the tropical regions of Africa and South America. An outbreak of YF has been occurring in Angola, since the beginning of 2016. In March 2016, a 32-year-old Chinese man who returned from Angola was hospitalized and diagnosed with the first case of imported YF in China. Clinical observations, blood viral RNA detection, serological testing and treatments for the patient were performed daily. The virus was isolated in Vero cells, and the complete viral genome was sequenced and analyzed using the next-generation genomic sequencing platform. The patient presented with hemorrhagic fever, jaundice and oliguria at day 3 after onset, which rapidly progressed to multisystem organ failure with extremely elevated liver, pancreatic and myocardial enzymes. The patient died despite the intensive supportive treatments that were performed. A liver biopsy showed severe and multilobular necrosis. Viral RNA was detectable throughout the clinical course of the disease. Whole-genomic sequence analysis revealed that the virus belongs to the Angola71 genotype. Although the virus has been circulating in Angola for 45 years, only 14 amino-acid substitutions and no amino-acid changes were observed in the membrane and envelope proteins compared with the virus collected in 1971. The presence of this imported YF case in China indicated that with the increase in business travel among countries, YF outbreaks in Africa can lead to the international spread of the disease. The production and use of YF vaccines is, therefore, an urgent issue. PMID:27406389

  14. A fatal yellow fever virus infection in China: description and lessons.

    PubMed

    Chen, Zhihai; Liu, Lin; Lv, Yanning; Zhang, Wei; Li, Jiandong; Zhang, Yi; Di, Tian; Zhang, Shuo; Liu, Jingyuan; Li, Jie; Qu, Jing; Hua, Wenhao; Li, Chuan; Wang, Peng; Zhang, Quanfu; Xu, Yanli; Jiang, Rongmeng; Wang, Qin; Chen, Lijuan; Wang, Shiwen; Pang, Xinghuo; Liang, Mifang; Ma, Xuejun; Li, Xingwang; Wang, Quanyi; Zhang, Fujie; Li, Dexin

    2016-07-13

    Yellow fever (YF) is a viral disease endemic to the tropical regions of Africa and South America. An outbreak of YF has been occurring in Angola, since the beginning of 2016. In March 2016, a 32-year-old Chinese man who returned from Angola was hospitalized and diagnosed with the first case of imported YF in China. Clinical observations, blood viral RNA detection, serological testing and treatments for the patient were performed daily. The virus was isolated in Vero cells, and the complete viral genome was sequenced and analyzed using the next-generation genomic sequencing platform. The patient presented with hemorrhagic fever, jaundice and oliguria at day 3 after onset, which rapidly progressed to multisystem organ failure with extremely elevated liver, pancreatic and myocardial enzymes. The patient died despite the intensive supportive treatments that were performed. A liver biopsy showed severe and multilobular necrosis. Viral RNA was detectable throughout the clinical course of the disease. Whole-genomic sequence analysis revealed that the virus belongs to the Angola71 genotype. Although the virus has been circulating in Angola for 45 years, only 14 amino-acid substitutions and no amino-acid changes were observed in the membrane and envelope proteins compared with the virus collected in 1971. The presence of this imported YF case in China indicated that with the increase in business travel among countries, YF outbreaks in Africa can lead to the international spread of the disease. The production and use of YF vaccines is, therefore, an urgent issue.

  15. Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments

    PubMed Central

    Verbruggen, Bas; Bickley, Lisa K.; van Aerle, Ronny; Bateman, Kelly S.; Stentiford, Grant D.; Santos, Eduarda M.; Tyler, Charles R.

    2016-01-01

    Since its emergence in the 1990s, White Spot Disease (WSD) has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV), a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host–pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host–pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment. PMID:26797629

  16. Genetic structure and evolution of natural populations of viruses causing the tomato yellow leaf curl disease in Spain.

    PubMed

    Font, María Isabel; Rubio, Luis; Martínez-Culebras, Pedro Vicente; Jordá, Concepción

    2007-09-01

    The population structure and genetic variation of two begomoviruses: tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl virus (TYLCV) in tomato crops of Spain were studied from 1997 until 2001. Restriction digestion of a genomic region comprised of the CP coat protein gene (CPR) of 358 TYLC virus isolates enabled us to classify them into 14 haplotypes. Nucleotide sequences of two genomic regions: CPR, and the surrounding intergenic region (SIR) were determined for at least two isolates per haplotype. SIR was more variable than CPR and showed multiple recombination events whereas no recombination was detected within CPR. In all geographic regions except Murcia, the population was, or evolved to be composed of one predominant haplotype with a low genetic diversity (<0.0180). In Murcia, two successive changes of the predominant haplotype were observed in the best studied population. Phylogenetic analysis showed that the TYLCSV sequences determined clustered with sequences obtained from the GenBank of other TYLCSV Spanish isolates which were clearly separated from TYLCSV Italian isolates. Most of our TYLCV sequences were similar to those of isolates from Japan and Portugal, and the sequences obtained from TYLCV isolates from the Canary island of Lanzarote were similar to those of Caribbean TYLCV isolates.

  17. Virus movement within grafted watermelon plants

    USDA-ARS?s Scientific Manuscript database

    Watermelon production in Florida is impacted by several viruses including whitefly-transmitted Squash vein yellowing virus (SqVYV), Cucurbit yellow stunting disorder virus and Cucurbit leaf crumple virus, and aphid-transmitted Papaya ringspot virus type W (PRSV-W). While germplasm resistant to some...

  18. Complete Genome Sequence of Zucchini Yellow Mosaic Virus Strain Kurdistan, Iran.

    PubMed

    Maghamnia, Hamid Reza; Hajizadeh, Mohammad; Azizi, Abdolbaset

    2018-03-01

    The complete genome sequence of Zucchini yellow mosaic virus strain Kurdistan (ZYMV-Kurdistan) infecting squash from Iran was determined from 13 overlapping fragments. Excluding the poly (A) tail, ZYMV-Kurdistan genome consisted of 9593 nucleotides (nt), with 138 and 211 nt at the 5' and 3' non-translated regions, respectively. It contained two open-reading frames (ORFs), the large ORF encoding a polyprotein of 3080 amino acids (aa) and the small overlapping ORF encoding a P3N-PIPO protein of 74 aa. This isolate had six unique aa differences compared to other ZYMV isolates and shared 79.6-98.8% identities with other ZYMV genome sequences at the nt level and 90.1-99% identities at the aa level. A phylogenetic tree of ZYMV complete genomic sequences showed that Iranian and Central European isolates are closely related and form a phylogenetically homogenous group. All values in the ratio of substitution rates at non-synonymous and synonymous sites ( d N / d S ) were below 1, suggestive of strong negative selection forces during ZYMV protein history. This is the first report of complete genome sequence information of the most prevalent virus in the west of Iran. This study helps our understanding of the genetic diversity of ZYMV isolates infecting cucurbit plants in Iran, virus evolution and epidemiology and can assist in designing better diagnostic tools.

  19. Characterization of apple stem grooving virus and apple chlorotic leaf spot virus identified in a crab apple tree.

    PubMed

    Li, Yongqiang; Deng, Congliang; Bian, Yong; Zhao, Xiaoli; Zhou, Qi

    2017-04-01

    Apple stem grooving virus (ASGV), apple chlorotic leaf spot virus (ACLSV), and prunus necrotic ringspot virus (PNRSV) were identified in a crab apple tree by small RNA deep sequencing. The complete genome sequence of ACLSV isolate BJ (ACLSV-BJ) was 7554 nucleotides and shared 67.0%-83.0% nucleotide sequence identity with other ACLSV isolates. A phylogenetic tree based on the complete genome sequence of all available ACLSV isolates showed that ACLSV-BJ clustered with the isolates SY01 from hawthorn, MO5 from apple, and JB, KMS and YH from pear. The complete nucleotide sequence of ASGV-BJ was 6509 nucleotides (nt) long and shared 78.2%-80.7% nucleotide sequence identity with other isolates. ASGV-BJ and the isolate ASGV_kfp clustered together in the phylogenetic tree as an independent clade. Recombination analysis showed that isolate ASGV-BJ was a naturally occurring recombinant.

  20. Inhibitory effect of Distamycin-A and a pyrazino-pyrazine derivative on tomato spotted wilt virus.

    PubMed

    De Fazio, G; Kudamatsu, M

    1983-08-01

    Distamycin-A hydrochloride, a synthetic antibiotic, and 2,3-dihydroxy-6-bromo-pyrazino (2,3-beta) pyrazine derivative, were used against tomato spotted wilt virus (TSWV) in tobacco plants. The drugs were applied to the leaves at concentrations of 200 and 400 mg/l. The results showed that both drugs delayed virus spread within the plant, retarding the appearance of systemic symptoms. A virus recovery test, carried out on primary leaves of Phaseolus vulgaris cv. Manteiga, showed that TSWV replication was markedly inhibited by the pyrazino-pyrazine derivative at concentrations of 200 and 400 mg/l and, to a lower extent, by Dystamycin-A at 400 mg/l.

  1. IMOJEV(®): a Yellow fever virus-based novel Japanese encephalitis vaccine.

    PubMed

    Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2010-12-01

    Japanese encephalitis (JE) is a disease of the CNS caused by Japanese encephalitis virus (JEV). The disease appears in the form of frequent outbreaks in most south- and southeast Asian countries and the virus has become endemic in several areas. There is no licensed therapy available and disease control by vaccination is considered to be most effective. Mouse brain-derived inactivated JE vaccines, although immunogenic, have several limitations in terms of safety, availability and requirement for multiple doses. Owing to these drawbacks, the WHO called for the development of novel, safe and more efficacious JE vaccines. Several candidate vaccines have been developed and at least three of them that demonstrated strong immunogenicity after one or two doses of the vaccine in animal models were subsequently tested in various clinical trials. One of these vaccines, IMOJEV(®) (JE-CV and previously known as ChimeriVax™-JE), is a novel recombinant chimeric virus vaccine, developed using the Yellow fever virus (YFV) vaccine vector YFV17D, by replacing the cDNA encoding the envelope proteins of YFV with that of an attenuated JEV strain SA14-14-2. IMOJEV was found to be safe, highly immunogenic and capable of inducing long-lasting immunity in both preclinical and clinical trials. Moreover, a single dose of IMOJEV was sufficient to induce protective immunity, which was similar to that induced in adults by three doses of JE-VAX(®), a mouse brain-derived inactivated JE vaccine. Recently, Phase III trials evaluating the immunogenicity and safety of the chimeric virus vaccine have been successfully completed in some JE-endemic countries and the vaccine manufacturers have filed an application for vaccine registration. IMOJEV may thus be licensed for use in humans as an improved alternative to the currently licensed JE vaccines.

  2. International travel between global urban centres vulnerable to yellow fever transmission

    PubMed Central

    Brent, Shannon E; Watts, Alexander; Cetron, Martin; German, Matthew; Kraemer, Moritz UG; Bogoch, Isaac I; Brady, Oliver J; Hay, Simon I; Creatore, Maria I

    2018-01-01

    Abstract Objective To examine the potential for international travel to spread yellow fever virus to cities around the world. Methods We obtained data on the international flight itineraries of travellers who departed yellow fever-endemic areas of the world in 2016 for cities either where yellow fever was endemic or which were suitable for viral transmission. Using a global ecological model of dengue virus transmission, we predicted the suitability of cities in non-endemic areas for yellow fever transmission. We obtained information on national entry requirements for yellow fever vaccination at travellers’ destination cities. Findings In 2016, 45.2 million international air travellers departed from yellow fever-endemic areas of the world. Of 11.7 million travellers with destinations in 472 cities where yellow fever was not endemic but which were suitable for virus transmission, 7.7 million (65.7%) were not required to provide proof of vaccination upon arrival. Brazil, China, India, Mexico, Peru and the United States of America had the highest volumes of travellers arriving from yellow fever-endemic areas and the largest populations living in cities suitable for yellow fever transmission. Conclusion Each year millions of travellers depart from yellow fever-endemic areas of the world for cities in non-endemic areas that appear suitable for viral transmission without having to provide proof of vaccination. Rapid global changes in human mobility and urbanization make it vital for countries to re-examine their vaccination policies and practices to prevent urban yellow fever epidemics. PMID:29875519

  3. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015-16: a modelling study.

    PubMed

    Kraemer, Moritz U G; Faria, Nuno R; Reiner, Robert C; Golding, Nick; Nikolay, Birgit; Stasse, Stephanie; Johansson, Michael A; Salje, Henrik; Faye, Ousmane; Wint, G R William; Niedrig, Matthias; Shearer, Freya M; Hill, Sarah C; Thompson, Robin N; Bisanzio, Donal; Taveira, Nuno; Nax, Heinrich H; Pradelski, Bary S R; Nsoesie, Elaine O; Murphy, Nicholas R; Bogoch, Isaac I; Khan, Kamran; Brownstein, John S; Tatem, Andrew J; de Oliveira, Tulio; Smith, David L; Sall, Amadou A; Pybus, Oliver G; Hay, Simon I; Cauchemez, Simon

    2017-03-01

    Since late 2015, an epidemic of yellow fever has caused more than 7334 suspected cases in Angola and the Democratic Republic of the Congo, including 393 deaths. We sought to understand the spatial spread of this outbreak to optimise the use of the limited available vaccine stock. We jointly analysed datasets describing the epidemic of yellow fever, vector suitability, human demography, and mobility in central Africa to understand and predict the spread of yellow fever virus. We used a standard logistic model to infer the district-specific yellow fever virus infection risk during the course of the epidemic in the region. The early spread of yellow fever virus was characterised by fast exponential growth (doubling time of 5-7 days) and fast spatial expansion (49 districts reported cases after only 3 months) from Luanda, the capital of Angola. Early invasion was positively correlated with high population density (Pearson's r 0·52, 95% CI 0·34-0·66). The further away locations were from Luanda, the later the date of invasion (Pearson's r 0·60, 95% CI 0·52-0·66). In a Cox model, we noted that districts with higher population densities also had higher risks of sustained transmission (the hazard ratio for cases ceasing was 0·74, 95% CI 0·13-0·92 per log-unit increase in the population size of a district). A model that captured human mobility and vector suitability successfully discriminated districts with high risk of invasion from others with a lower risk (area under the curve 0·94, 95% CI 0·92-0·97). If at the start of the epidemic, sufficient vaccines had been available to target 50 out of 313 districts in the area, our model would have correctly identified 27 (84%) of the 32 districts that were eventually affected. Our findings show the contributions of ecological and demographic factors to the ongoing spread of the yellow fever outbreak and provide estimates of the areas that could be prioritised for vaccination, although other constraints such as vaccine

  4. Yellow Fever Virus, but Not Zika Virus or Dengue Virus, Inhibits T-Cell Receptor-Mediated T-Cell Function by an RNA-Based Mechanism.

    PubMed

    McLinden, James H; Bhattarai, Nirjal; Stapleton, Jack T; Chang, Qing; Kaufman, Thomas M; Cassel, Suzanne L; Sutterwala, Fayyaz S; Haim, Hillel; Houtman, Jon C; Xiang, Jinhua

    2017-11-27

    The Flavivirus genus within the Flaviviridae family is comprised of many important human pathogens including yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T-cell receptor (TCR) signaling by novel RNA and protein-based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of a Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. Protein A from orange-spotted nervous necrosis virus triggers type I interferon production in fish cell.

    PubMed

    Huang, Runqing; Zhou, Qiong; Shi, Yan; Zhang, Jing; He, Jianguo; Xie, Junfeng

    2018-05-04

    Family Nodaviridae consists of two genera: Alphanodavirus and Betanodavirus, and the latter is classified into four genotypes, including red-spotted grouper nervous necrosis virus, tiger puffer nervous necrosis virus, striped jack nervous necrosis virus, and barfin flounder nervous necrosis virus. Type I interferons (IFNs) play a central role in the innate immune system and antiviral responses, and the interactions between IFN and NNV have been investigated in this study. We have found that the RNA-dependent RNA polymerase (RdRp) from orange-spotted nervous necrosis virus (OGNNV), named protein A, was capable of activating IFN promoter in fathead minnow (FHM) cells. Transient expression of protein A was found to induce IFN expression and secretion, endowing FHM cells with anti-tiger frog virus ability. Protein A from SJNNV can also induce IFN expression in FHM cells but that from Flock House virus (FHV), a well-studied representative species of genus Alphanodavirus, cannot. RdRp activity and mitochondrial localization were shown to be required for protein A to induce IFN expression by means of activating IRF3 but not NFκB. Furthermore, DsRNA synthesized in vitro transcription and poly I:C activated IFN promoter activity when transfected into FHM cells, and dsRNA were also detected in NNV-infected cells. We postulated that dsRNA, a PAMP, was produced by protein A, leading to activation of innate immune response. These results suggest that protein As from NNV are the agonists of innate immune response. This is the first work to demonstrate the interaction between NNV protein A and innate immune system, and may help to understand pathogenesis of NNV. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Development of apple latent spherical virus-based vaccines against three tospoviruses.

    PubMed

    Taki, Ayano; Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-09-01

    Apple latent spherical virus (ALSV) is characterized by its relatively broad host range, latency in most host plants, and ability to induce gene silencing in host plants. Herein, we focus on the above characteristic of ALSV and describe our development of ALSV vector vaccines against three tospoviruses, namely, Impatiens necrotic spot virus (INSV), Iris yellow spot virus (IYSV), and Tomato spotted wilt virus (TSWV). DNA fragments of 201 nt of three tospovirus S-RNAs (silencing suppressor (NSS) and nucleocapsid protein (N) coding regions for each tospovirus) were inserted into an ALSV-RNA2 vector to obtain six types of ALSV vector vaccines. Nicotiana benthamiana plants at the five-leaf stage were inoculated with each ALSV vector vaccine and challenged with the corresponding tospovirus species. Tospovirus-induced symptoms and tospovirus replication after challenge were significantly suppressed in plants preinoculated with all ALSV vector vaccines having the N region fragment, indicating that strong resistance was acquired after infection with ALSV vector vaccines. On the other hand, cross protection was not significant in plants preinoculated with ALSV vectors having the NSs region fragment. Similarly, inoculation with an ALSV-RNA1 vector having the N region fragment in the 3'-noncoding region, but not the NSs region fragment, induced cross protection, indicating that cross protection is via RNA silencing, not via the function of the protein derived from the N region fragment. Our approach, wherein ALSV vectors and selected target inserts are used, enables rapid establishment of ALSV vector vaccines against many pathogenic RNA viruses with known sequences. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    PubMed

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-03-01

    Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.

  8. Rapid Molecular Assays for the Detection of Yellow Fever Virus in Low-Resource Settings

    PubMed Central

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-01-01

    Background Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. Methodology The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. Conclusion/Significance The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in

  9. Transfusion-related transmission of yellow fever vaccine virus--California, 2009.

    PubMed

    2010-01-22

    In the United States, yellow fever (YF) vaccination is recommended for travelers and active duty military members visiting endemic areas of sub-Saharan Africa and Central/South America. The American Red Cross recommends that recipients of YF vaccine defer blood product donation for 2 weeks because of the theoretical risk for transmission from a viremic donor. On April 10, 2009, a hospital blood bank supervisor learned that, on March 27, blood products had been collected from 89 U.S. active duty trainees who had received YF vaccine 4 days before donation. This report summarizes the subsequent investigation by the hospital and CDC to identify lapses in donor deferral and to determine whether transfusion-related transmission of YF vaccine virus occurred. The investigation found that a recent change in the timing of trainee vaccination had occurred and that vaccinees had not reported recent YF vaccination status at time of donation. Despite a prompt recall, six units of blood products were transfused into five patients. No clinical evidence or laboratory abnormalities consistent with a serious adverse reaction were identified in four recipients within the first month after transfusion; the fifth patient, who had prostate cancer and end-stage, transfusion-dependent, B-cell lymphoma, died while in hospice care. Three of the four surviving patients had evidence of serologic response to YF vaccine virus. This report provides evidence that transfusion-related transmission of YF vaccine virus can occur and underscores the need for careful screening and deferral of recently vaccinated blood donors.

  10. Characterization of an RNA silencing suppressor encoded by maize yellow dwarf virus-RMV2.

    PubMed

    Wang, Fang; Zhao, Xia; Dong, Qing; Zhou, Benguo; Gao, Zhengliang

    2018-05-11

    Maize yellow dwarf virus-RMV2 (MYDV-RMV2) causes dwarfing and yellowing symptoms on leaves in field-grown maize plants in Anhui province in China. Herein, we evaluated the RNA silencing suppressor (RSS) activity of the P0 protein from MYDV-RMV2 by co-infiltration assays using wild-type and GFP-transgenic Nicotiana benthamiana (line 16C). The P0 of MYDV-RMV2 exhibited RSS activity and inhibited RNA silencing both locally and systemically. MYDV-RMV2 P0 acts as an F-box-like motif, and mutations to Ala at positions 67, 68, and 81 in the F-box-like motif (67LPxx81P) abolished the RSS activity of P0. However, MYDV-RMV2 P0 failed to interact with AGO1 from Arabidopsis thaliana. Expressing P0 induced developmental defects. P0 was targeted to both the nuclei and cytoplasm of plant cells. These findings expand our knowledge of the role of polerovirus P0 proteins in RNA silencing.

  11. Mapping quantitative trait loci of resistance to Tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogae L.) from SunOleic 97R and NC94022

    USDA-ARS?s Scientific Manuscript database

    Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots. The most sustainable and economical solution for managing peanut diseases is development of resistance cultivars. The new breeding line NC94022, high resistance to TSWV and moderate resistance to le...

  12. Unveiling the complete genome sequence of clerodendrum chlorotic spot virus, a putative dichorhavirus infecting ornamental plants.

    PubMed

    Ramos-González, Pedro Luis; Chabi-Jesus, Camila; Banguela-Castillo, Alexander; Tassi, Aline Daniele; Rodrigues, Mariane da Costa; Kitajima, Elliot Watanabe; Harakava, Ricardo; Freitas-Astúa, Juliana

    2018-06-04

    The genus Dichorhavirus includes plant-infecting rhabdoviruses with bisegmented genomes that are horizontally transmitted by false spider mites of the genus Brevipalpus. The complete genome sequences of three isolates of the putative dichorhavirus clerodendrum chlorotic spot virus were determined using next-generation sequencing (Illumina) and traditional RT-PCR. Their genome organization, sequence similarity and phylogenetic relationship to other viruses, and transmissibility by Brevipalpus yothersi mites support the assignment of these viruses to a new species of dichorhavirus, as suggested previously. New data are discussed stressing the reliability of the current rules for species demarcation and taxonomic status criteria within the genus Dichorhavirus.

  13. Genomic and Proteomic Analysis of Schizaphis graminum Reveals Cyclophilin Proteins Are Involved in the Transmission of Cereal Yellow Dwarf Virus

    PubMed Central

    Tamborindeguy, Cecilia; Bereman, Michael S.; DeBlasio, Stacy; Igwe, David; Smith, Dawn M.; White, Frank; MacCoss, Michael J.; Gray, Stewart M.; Cilia, Michelle

    2013-01-01

    Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV). The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S . graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate virus transport

  14. Two Complete Genome Sequences of Phasey Bean Mild Yellows Virus, a Novel Member of the Luteoviridae from Australia.

    PubMed

    Sharman, Murray; Kehoe, Monica; Coutts, Brenda; van Leur, Joop; Filardo, Fiona; Thomas, John

    2016-02-04

    We present here the complete genome sequences of a novel polerovirus from Trifolium subterraneum (subterranean clover) and Cicer arietinum (chickpea) and compare these to a partial viral genome sequence obtained from Macroptilium lathyroides (phasey bean). We propose the name phasey bean mild yellows virus for this novel polerovirus. Copyright © 2016 Sharman et al.

  15. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for detection of beet necrotic yellow vein virus.

    PubMed

    Almasi, Mohammad Amin; Almasi, Galavizh

    2017-02-01

    Sugar beet can be infected by many different viruses that can reduce yield; beet necrotic yellow vein virus (BNYVV) is one of the most economically important viruses of this crop plant. This report describes a new reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for identification of BNYVV. In addition, a novel immunocapture (IC) RT-LAMP assay for rapid and easy detection (without RNA extraction) of BNYVV was developed here and compared with DAS-ELISA and RT-LAMP assays. Our results show that the IC-RT-LAMP assay is a highly reliable alternative assay for identification of BNYVV.

  16. Dynamic Viral Dissemination in Mice Infected with Yellow Fever Virus Strain 17D

    PubMed Central

    Erickson, Andrea K.

    2013-01-01

    Arboviruses such as yellow fever virus (YFV) are transmitted between arthropod vectors and vertebrate hosts. While barriers limiting arbovirus population diversity have been observed in mosquitoes, whether barriers exist in vertebrate hosts is unclear. To investigate whether arboviruses encounter bottlenecks during dissemination in the vertebrate host, we infected immunocompetent mice and immune-deficient mice lacking alpha/beta interferon (IFN-α/β) receptors (IFNAR−/− mice) with a pool of genetically marked viruses to evaluate dissemination and host barriers. We used the live attenuated vaccine strain YFV-17D, which contains many mutations compared with virulent YFV. We found that intramuscularly injected immunocompetent mice did not develop disease and that viral dissemination was restricted. Conversely, 32% of intramuscularly injected IFNAR−/− mice developed disease. By following the genetically marked viruses over time, we found broad dissemination in IFNAR−/− mice followed by clearance. The patterns of viral dissemination were similar in mice that developed disease and mice that did not develop disease. Unlike our previous results with poliovirus, these results suggest that YFV-17D encounters no major barriers during dissemination within a vertebrate host in the absence of the type I IFN response. PMID:24027319

  17. Attenuation of Recombinant Yellow Fever 17D Viruses Expressing Foreign Protein Epitopes at the Surface

    PubMed Central

    Bonaldo, Myrna C.; Garratt, Richard C.; Marchevsky, Renato S.; Coutinho, Evandro S. F.; Jabor, Alfredo V.; Almeida, Luís F. C.; Yamamura, Anna M. Y.; Duarte, Adriana S.; Oliveira, Prisciliana J.; Lizeu, Jackeline O. P.; Camacho, Luiz A. B.; Freire, Marcos S.; Galler, Ricardo

    2005-01-01

    The yellow fever (YF) 17D vaccine is a live attenuated virus. Three-dimensional (3D) homology modeling of the E protein structure from YF 17D virus and its comparison with that from tick-borne encephalitis virus revealed that it is possible to accommodate inserts of different sizes and amino acid compositions in the flavivirus E protein fg loop. This is consistent with the 3D structures of both the dimeric and trimeric forms in which the fg loop lies exposed to solvents. We demonstrate here that YF 17D viruses bearing foreign humoral (17D/8) and T-cell (17D/13) epitopes, which vary in sequence and length, displayed growth restriction. It is hypothesized that interference with the dimer-trimer transition and with the formation of a ring of such trimers in order to allow fusion compromises the capability of the E protein to induce fusion of viral and endosomal membranes, and a slower rate of fusion may delay the extent of virus production. This would account for the lower levels of replication in cultured cells and of viremia in monkeys, as well as for the more attenuated phenotype of the recombinant viruses in monkeys. Testing of both recombinant viruses (17D/8 and 17D/13) for monkey neurovirulence also suggests that insertion at the 17D E protein fg loop does not compromise the attenuated phenotype of YF 17D virus, further confirming the potential use of this site for the development of new live attenuated 17D virus-based vaccines. PMID:15956601

  18. A novel emaravirus is associated with redbud yellow ringspot disease

    USDA-ARS?s Scientific Manuscript database

    Yellow ringspot is the only virus-like disease reported in redbud (Cercis spp.) with symptoms including vein clearing, chlorotic ringspots and oak-leaf pattern. A putative new emaravirus was present in 48 of 48l trees displaying typical yellow ringspot symptoms and the name redbud yellow ringspot as...

  19. Spatio-temporal distribution and environmental drivers of Barley yellow dwarf virus and vector abundance in Kansas.

    PubMed

    Enders, Laramy; Hefley, Trevor; Girvin, John; Whitworth, Robert; Smith, Charles

    2018-05-11

    Several aphid species transmit barley yellow dwarf, a globally destructive disease caused by viruses that infect cereal grain crops. Data from >400 samples collected across Kansas wheat fields in 2014 and 2015 were used to develop spatio-temporal models predicting the extent to which landcover, temperature and precipitation affect spring aphid vector abundance and presence of individuals carrying Barley yellow dwarf virus (BYDV). The distribution of Rhopalosiphum padi abundance was not correlated with climate or landcover, but Sitobion avenae abundance was positively correlated to fall temperature and negatively correlated to spring temperature and precipitation. The abundance of Schizaphis graminum was negatively correlated with fall precipitation and winter temperature. The incidence of viruliferous (+BYDV) R. padi was positively correlated with fall precipitation but negatively correlated with winter precipitation. In contrast, the probability of +BYDV S. avenae was unaffected by precipitation but was positively correlated with average fall temperatures and distance to nearest forest or shrubland. R. padi and S. avenae were more prevalent at Eastern sample sites where ground cover is more grassland than cropland, suggesting that grassland may provide over-summering sites for vectors and pose a risk as potential BYDV reservoirs. Nevertheless, land cover patterns were not strongly associated with differences in abundance or probability that viruliferous aphids were present.

  20. Phylogenetic analysis and molecular methods for the detection of lymphocystis disease virus from yellow perch, Perca flavescens (Mitchell).

    PubMed

    Palmer, L J; Hogan, N S; van den Heuvel, M R

    2012-09-01

    Lymphocystis disease is a prevalent, non-fatal disease that affects many teleost fish and is caused by the DNA virus lymphocystis disease virus (LCDV). Lymphocystis-like lesions have been observed in yellow perch, Perca flavescens (Mitchell), in lakes in northern Alberta, Canada. In an effort to confirm the identity of the virus causing these lesions, DNA was extracted from these lesions and PCR with genotype generic LCDV primers specific to the major capsid protein (MCP) gene was performed. A 1357-base pair nucleotide sequence corresponding to a peptide length of 452 amino acids of the MCP gene was sequenced, confirming the lesions as being lymphocystis disease lesions. Phylogenetic analysis of the generated amino acid sequence revealed the perch LCDV isolate to be a distinct and novel genotype. From the obtained sequence, a real-time PCR identification method was developed using fluorgenic LUX primers. The identification method was used to detect the presence/absence of LCDV in yellow perch from two lakes, one where lymphocystis disease was observed to occur and the other where the disease had not been observed. All samples of fin, spleen and liver tested negative for LCDV in the lake where lymphocystis disease had not been observed. The second lake had a 2.6% incidence of LCD, and virus was detected in tissue samples from all individuals tested regardless of whether they were expressing the disease or not. However, estimated viral copy number in spleen and liver of symptomatic perch was four orders of magnitude higher than that in asymptomatic perch. © 2012 Blackwell Publishing Ltd.

  1. Characterization of Apricot pseudo-chlorotic leaf spot virus, A Novel Trichovirus Isolated from Stone Fruit Trees.

    PubMed

    Liberti, D; Marais, A; Svanella-Dumas, L; Dulucq, M J; Alioto, D; Ragozzino, A; Rodoni, B; Candresse, T

    2005-04-01

    ABSTRACT A trichovirus closely related to Apple chlorotic leaf spot virus (ACLSV) was detected in symptomatic apricot and Japanese plum from Italy. The Sus2 isolate of this agent cross-reacted with anti-ACLSV polyclonal reagents but was not detected by broad-specificity anti- ACLSV monoclonal antibodies. It had particles with typical trichovirus morphology but, contrary to ACLSV, was unable to infect Chenopodium quinoa and C. amaranticolor. The sequence of its genome (7,494 nucleotides [nt], missing only approximately 30 to 40 nt of the 5' terminal sequence) and the partial sequence of another isolate were determined. The new virus has a genomic organization similar to that of ACLSV, with three open reading frames coding for a replication-associated protein (RNA-dependent RNA polymerase), a movement protein, and a capsid protein, respectively. However, it had only approximately 65 to 67% nucleotide identity with sequenced isolates of ACLSV. The differences in serology, host range, genome sequence, and phylogenetic reconstructions for all viral proteins support the idea that this agent should be considered a new virus, for which the name Apricot pseudo-chlorotic leaf spot virus (APCLSV) is proposed. APCLSV shows substantial sequence variability and has been recovered from various Prunus sources coming from seven countries, an indication that it is likely to have a wide geographical distribution.

  2. Production of pseudoinfectious yellow fever virus with a two-component genome.

    PubMed

    Shustov, Alexandr V; Mason, Peter W; Frolov, Ilya

    2007-11-01

    Application of genetically modified, deficient-in-replication flaviviruses that are incapable of developing productive, spreading infection is a promising means of designing safe and effective vaccines. Here we describe a two-component genome yellow fever virus (YFV) replication system in which each of the genomes encodes complete sets of nonstructural proteins that form the replication complex but expresses either only capsid or prM/E instead of the entire structural polyprotein. Upon delivery to the same cell, these genomes produce together all of the viral structural proteins, and cells release a combination of virions with both types of genomes packaged into separate particles. In tissue culture, this modified YFV can be further passaged at an escalating scale by using a high multiplicity of infection (MOI). However, at a low MOI, only one of the genomes is delivered into the cells, and infection cannot spread. The replicating prM/E-encoding genome produces extracellular E protein in the form of secreted subviral particles that are known to be an effective immunogen. The presented strategy of developing viruses defective in replication might be applied to other flaviviruses, and these two-component genome viruses can be useful for diagnostic or vaccine applications, including the delivery and expression of heterologous genes. In addition, the achieved separation of the capsid-coding sequence and the cyclization signal in the YFV genome provides a new means for studying the mechanism of the flavivirus packaging process.

  3. Occurrence of Squash yellow mild mottle virus and Pepper golden mosaic virus in Potential New Hosts in Costa Rica

    PubMed Central

    Castro, Ruth M.; Moreira, Lisela; Rojas, María R.; Gilbertson, Robert L.; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar

    2013-01-01

    Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere. PMID:25288955

  4. Occurrence of Squash yellow mild mottle virus and Pepper golden mosaic virus in Potential New Hosts in Costa Rica.

    PubMed

    Castro, Ruth M; Moreira, Lisela; Rojas, María R; Gilbertson, Robert L; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar

    2013-09-01

    Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere.

  5. An isothermal based recombinase polymerase amplification assay for rapid, sensitive and robust indexing of citrus yellow mosaic virus.

    PubMed

    Kumar, P V; Sharma, S K; Rishi, N; Ghosh, D K; Baranwal, V K

    Management of viral diseases relies on definite and sensitive detection methods. Citrus yellow mosaic virus (CYMV), a double stranded DNA virus of the genus Badnavirus, causes yellow mosaic disease in citrus plants. CYMV is transmitted through budwood and requires a robust and simplified indexing protocol for budwood certification programme. The present study reports development and standardization of an isothermal based recombinase polymerase amplification (RPA) assay for a sensitive, rapid, easy, and cost-effective method for detection and diagnosis of CYMV. Two different oligonucleotide primer sets were designed from ORF III (coding for polyprotein) and ORF II (coding for virion associated protein) regions of CYMV to perform amplification assays. Comparative evaluation of RPA, PCR and immuno-capture recombinase polymerase amplification (IC-RPA) based assays were done using purified DNA and plant crude sap. CYMV infection was efficiently detected from the crude sap in RPA and IC-RPA assays. The primer set used in RPA was specific and did not show any cross-amplification with banana streak MY virus (BSMYV), another Badnavirus species. The results from the present study indicated that RPA assay can be used easily in routine indexing of citrus planting material. To the best of our knowledge, this is the first report on development of a rapid and simplified isothermal detection assay for CYMV and can be utilized as an effective technique in quarantine and budwood certification process.

  6. Identification of three genotypes of sugarcane yellow leaf virus causing yellow leaf disease from India and their molecular characterization.

    PubMed

    Viswanathan, R; Balamuralikrishnan, M; Karuppaiah, R

    2008-12-01

    Sugarcane yellow leaf virus (SCYLV) that causes yellow leaf disease (YLD) in sugarcane (recently reported in India) belongs to Polerovirus. Detailed studies were conducted to characterize the virus based on partial open reading frames (ORFs) 1 and 2 and complete ORFs 3 and 4 sequences in their genome. Reverse-transcriptase polymerase chain reaction (RT-PCR) was performed on 48 sugarcane leaf samples to detect the virus using a specific set of primers. Of the 48 samples, 36 samples (field samples with and without foliar symptoms) including 10 meristem culture derived plants were found to be positive to SCYLV infection. Additionally, an aphid colony collected from symptomatic sugarcane in the field was also found to be SCYLV positive. The amplicons from 22 samples were cloned, sequenced and acronymed as SCYLV-CB isolates. The nucleotide (nt) and amino acid (aa) sequence comparison showed a significant variation between SCYLV-CB and the database sequences at nt (3.7-5.1%) and aa (3.2-5.3%) sequence level in the CP coding region. However, the database sequences comprising isolates of three reported genotypes, viz., BRA, PER and REU, were observed with least nt and aa sequence dissimilarities (0.0-1.6%). The phylogenetic analyses of the overlapping ORFs (ORF 3 and ORF 4) of SCYLV encoding CP and MP determined in this study and additional sequences of 26 other isolates including an Indian isolate (SCYLV-IND) available from GenBank were distributed in four phylogenetic clusters. The SCYLV-CB isolates from this study lineated in two clusters (C1 and C2) and all the other isolates from the worldwide locations into another two clusters (C3 and C4). The sequence variation of the isolates in this study with the database isolates, even in the least variable region of the SCYLV genome, showed that the population existing in India is significantly different from rest of the world. Further, comparison of partial sequences encoding for ORFs 1 and 2 revealed that YLD in sugarcane in

  7. The Complete Genomic Sequence of Pepper Yellow Leaf Curl Virus (PYLCV) and Its Implications for Our Understanding of Evolution Dynamics in the Genus Polerovirus

    PubMed Central

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range. PMID:23936244

  8. The complete genomic sequence of pepper yellow leaf curl virus (PYLCV) and its implications for our understanding of evolution dynamics in the genus polerovirus.

    PubMed

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.

  9. Travelers' Health: Yellow Fever

    MedlinePlus

    ... and local rate of virus transmission at the time of travel. Although reported cases of human disease are the ... be receiving yellow fever vaccine for the first time. If travel is unavoidable, the decision to vaccinate travelers aged ≥ ...

  10. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation.

    PubMed

    Zhang, Xiao-Yan; Dong, Shu-Wei; Xiang, Hai-Ying; Chen, Xiang-Ru; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2015-02-02

    Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Increasing Vero viable cell densities for yellow fever virus production in stirred-tank bioreactors using serum-free medium.

    PubMed

    Mattos, Diogo A; Silva, Marlon V; Gaspar, Luciane P; Castilho, Leda R

    2015-08-20

    In this work, changes in Vero cell cultivation methods have been employed in order to improve cell growth conditions to obtain higher viable cell densities and to increase viral titers. The propagation of the 17DD yellow fever virus (YFV) in Vero cells grown on Cytodex I microcarriers was evaluated in 3-L bioreactor vessels. Prior to the current changes, Vero cells were repeatedly displaying insufficient microcarrier colonization. A modified cultivation process with four changes has resulted in higher cell densities and higher virus titers than previously observed for 17DD YFV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA.

    PubMed

    Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M

    2016-11-29

    Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.

  13. The 50-kDa protein of Apple chlorotic leaf spot virus interferes with intracellular and intercellular targeting and tubule-inducing activity of the 39-kDa protein of Grapevine berry inner necrosis virus.

    PubMed

    Isogai, M; Saitou, Y; Takahashi, N; Itabashi, T; Terada, M; Satoh, H; Yoshikawa, N

    2003-03-01

    To understand why transgenic Nicotiana occidentalis plants expressing a functional movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV) show specific resistance to Grapevine berry inner necrosis virus (GINV), the MPs of ACLSV (50KP) and GINV (39KP) were fused to green, yellow, or cyan fluorescent proteins (GFP, YFP, or CFP). These fusion proteins were transiently expressed in leaf cells of both transgenic (50KP) and nontransgenic (NT) plants, and the intracellular and intercellular trafficking and tubule-inducing activity of these proteins were compared. The results indicate that in epidermal cells and protoplasts from 50KP plant leaves, the trafficking and tubule-inducing activities of GINV-39KP were specifically blocked while those of ACLSV-50KP and Apple stem grooving virus MP (36KP) were not affected. Additionally, when 39KP-YFP and 50KP-CFP were coexpressed in the leaf epidermis of NT plants, the fluorescence of both proteins was confined to single cells, indicating that 50KP-CFP interferes with the cell-to-cell trafficking of 39KP-YFP and vice versa. Mutational analyses of 50KP showed that the deletion mutants that retained the activities described above still blocked cell-to-cell trafficking of 39KP, but the dysfunctional 50KP mutants could no longer impede cell-to-cell movement of 39KP. Transgenic plants expressing the functional 50KP deletion mutants showed specific resistance against GINV. In contrast, transgenic plants expressing the dysfunctional 50KP mutants did not show any resistance to the virus. From these results, we conclude that the specific resistance of 50KP plants to GINV is due to the ability of the 50KP to block intracellular and intercellular trafficking of GINV 39KP.

  14. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera

    PubMed Central

    2011-01-01

    Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine. PMID:21619598

  15. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera.

    PubMed

    Barros, Maria C E S; Galasso, Tatiane G C M; Chaib, Antônio J M; Degallier, Nicolas; Nagata, Tatsuya; Ribeiro, Bergmann M

    2011-05-27

    Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.

  16. Gamma-interferon exerts a critical early restriction on replication and dissemination of yellow fever virus vaccine strain 17D-204.

    PubMed

    Lam, L K Metthew; Watson, Alan M; Ryman, Kate D; Klimstra, William B

    2018-01-01

    Live attenuated viruses are historically among the most effective viral vaccines. Development of a safe vaccine requires the virus to be less virulent, a phenotype that is historically arrived by empirical evaluation often leaving the mechanisms of attenuation unknown. The yellow fever virus 17D live attenuated vaccine strain has been developed as a delivery vector for heterologous antigens; however, the mechanisms of attenuation remain elusive. The successful and safe progress of 17D as a vaccine vector and the development of live attenuated vaccines (LAVs) to related flaviviruses requires an understanding of the molecular mechanisms leading to attenuation. Using subcutaneous infection of interferon-deficient mouse models of wild type yellow fever virus (WT YFV) pathogenesis and 17D-mediated immunity, we found that, in the absence of type I IFN (IFN-α/β), type II interferon (IFN-γ) restricted 17D replication, but not that of WT YFV, by 1-2 days post-infection. In this context, IFN-γ responses protected 17D-infected animals from mortality, largely restricted the virus to lymphoid organs, and eliminated viscerotropic disease signs such as steatosis in the liver and inflammatory cell infiltration into the spleen. However, WT YFV caused a disseminated infection, gross liver pathology, and rapid death of the animals. In vitro, IFN-γ treatment of myeloid cells suppressed the replication of 17D significantly more than that of WT YFV, suggesting a direct differential effect on 17D virus replication. Together these data indicate that an important mechanism of 17D attenuation in vivo is increased sensitivity to IFN-γ stimulated responses elicited early after infection.

  17. A DNA vaccine against yellow fever virus: development and evaluation.

    PubMed

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  18. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    PubMed Central

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  19. Activity of T-1106 in a hamster model of yellow Fever virus infection.

    PubMed

    Julander, Justin G; Furuta, Yousuke; Shafer, Kristiina; Sidwell, Robert W

    2007-06-01

    Yellow fever virus (YFV) causes 30,000 deaths worldwide, despite the availability of a vaccine. There are no approved antiviral therapies for the treatment of YFV disease in humans, and, therefore, these studies were designed to investigate the anti-YFV properties of T-1106, a substituted pyrazine, in a hamster model of YFV disease. Intraperitoneal (i.p.) treatment with 100 mg/kg of body weight/day of T-1106 starting 4 h prior to virus inoculation and continuing twice daily through 7 days post-virus inoculation (dpi) resulted in significantly improved survival, alanine aminotransferase levels in the serum, weight gain, and mean day to death. Virus titer in the liver at 4 dpi was significantly reduced in treated animals, as determined by both quantitative real-time PCR and infectious cell culture assay. No toxicity (weight loss or mortality) was observed at a dose of 100 mg/kg/day in sham-infected control animals. The observed minimal effective dose of T-1106 was 32 mg/kg/day administered either by oral or i.p. treatment. Therapeutic treatment was effective in significantly improving survival when T-1106 was administered beginning as late as 4 days after virus challenge with twice-daily treatment for 8 days at a dose of 100 mg/kg/day. With favorable safety, bioavailability, and postviral challenge treatment efficacy, T-1106 was effective in the treatment of disease in hamsters infected with YFV and should be further studied for potential use as a therapy for human YFV disease.

  20. Tomato ring spot virus

    USDA-ARS?s Scientific Manuscript database

    Tomato ringspot disease, caused by Tomato ringspot virus (TmRSV), is associated with the presence of dagger nematodes, the major vectors of Tomato ringspot virus (TmRSV). This virus is endemic and widely distributed in North America, as well as many parts of the world. Infected plants develop yello...

  1. A simple, rapid and inexpensive method for localization of Tomato yellow leaf curl virus and Potato leafroll virus in plant and insect vectors.

    PubMed

    Ghanim, Murad; Brumin, Marina; Popovski, Smadar

    2009-08-01

    A simple, rapid, inexpensive method for the localization of virus transcripts in plant and insect vector tissues is reported here. The method based on fluorescent in situ hybridization using short DNA oligonucleotides complementary to an RNA segment representing a virus transcript in the infected plant or insect vector. The DNA probe harbors a fluorescent molecule at its 5' or 3' ends. The protocol: simple fixation, hybridization, minimal washing and confocal microscopy, provides a highly specific signal. The reliability of the protocol was tested by localizing two phloem-limited plant virus transcripts in infected plants and insect tissues: Tomato yellow leaf curl virus (TYLCV) (Begomovirus: Geminiviridae), exclusively transmitted by the whitefly Bemisia tabaci (Gennadius) in a circulative non-propagative manner, and Potato leafroll virus (Polerovirus: Luteoviridae), similarly transmitted by the aphid Myzus persicae (Sulzer). Transcripts for both viruses were localized specifically to the phloem sieve elements of infected plants, while negative controls showed no signal. TYLCV transcripts were also localized to the digestive tract of B. tabaci, confirming TYLCV route of transmission. Compared to previous methods for localizing virus transcripts in plant and insect tissues that include complex steps for in-vitro probe preparation or antibody raising, tissue fixation, block preparation, sectioning and hybridization, the method described below provides very reliable, convincing, background-free results with much less time, effort and cost.

  2. An update on mechanism of entry of white spot syndrome virus into shrimps.

    PubMed

    Verma, Arunima Kumar; Gupta, Shipra; Singh, Shivesh Pratap; Nagpure, Naresh Sahebrao

    2017-08-01

    Host-parasite relationships can be best understood at the level of protein-protein interaction between host and pathogen. Such interactions are instrumental in understanding the important stages of life cycle of pathogen such as adsorption of the pathogen on host surface followed by effective entry of pathogen into the host body, movement of the pathogen across the host cytoplasm to reach the host nucleus and replication of the pathogen within the host. White Spot Disease (WSD) is a havoc for shrimps and till date no effective treatment is available against the disease. Moreover information regarding the mechanism of entry of White Spot Syndrome Virus (WSSV) into shrimps, as well as knowledge about the protein interactions occurring between WSSV and shrimp during viral entry are still at very meagre stage. A cumulative and critically assessed information on various viral-shrimp interactions occurring during viral entry can help to understand the exact pathway of entry of WSSV into the shrimp which in turn can be used to device drugs that can stop the entry of virus into the host. In this context, we highlight various WSSV and shrimp proteins that play role in the entry mechanism along with the description of the interaction between host and pathogen proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Partial characterization of the lettuce infectious yellows virus genomic RNAs, identification of the coat protein gene and comparison of its amino acid sequence with those of other filamentous RNA plant viruses.

    PubMed

    Klaassen, V A; Boeshore, M; Dolja, V V; Falk, B W

    1994-07-01

    Purified virions of lettuce infectious yellows virus (LIYV), a tentative member of the closterovirus group, contained two RNAs of approximately 8500 and 7300 nucleotides (RNAs 1 and 2 respectively) and a single coat protein species with M(r) of approximately 28,000. LIYV-infected plants contained multiple dsRNAs. The two largest were the correct size for the replicative forms of LIYV virion RNAs 1 and 2. To assess the relationships between LIYV RNAs 1 and 2, cDNAs corresponding to the virion RNAs were cloned. Northern blot hybridization analysis showed no detectable sequence homology between these RNAs. A partial amino acid sequence obtained from purified LIYV coat protein was found to align in the most upstream of four complete open reading frames (ORFs) identified in a LIYV RNA 2 cDNA clone. The identity of this ORF was confirmed as the LIYV coat protein gene by immunological analysis of the gene product expressed in vitro and in Escherichia coli. Computer analysis of the LIYV coat protein amino acid sequence indicated that it belongs to a large family of proteins forming filamentous capsids of RNA plant viruses. The LIYV coat protein appears to be most closely related to the coat proteins of two closteroviruses, beet yellows virus and citrus tristeza virus.

  4. Characterization of sida golden mottle virus isolated from Sida santaremensis Monteiro in Florida.

    PubMed

    Al-Aqeel, H A; Iqbal, Zafar; Polston, J E

    2018-06-21

    The genome of sida golden mottle virus (SiGMoV) (GU997691 and GU997692) isolated from Sida santaremensis Monteiro in Manatee County, Florida, was sequenced and characterized. SiGMoV was determined to be a bipartite virus belonging to the genus Begomovirus with a genome organization typical of the New World viruses in the genus. SiGMoV DNA-A had the highest identity scores (89%) and showed the closest evolutionary relationships to sida golden mosaic Buckup virus (SiGMBuV) (JX162591 and HQ008338). However, SiGMoV DNA-B had the highest identity scores (93%) and showed the closest evolutionary relationship to corchorus yellow spot virus (DQ875869), SiGMBuV (JX162592) and sida golden mosaic Florida virus (SiGMFlV) (HE806443). There was extensive recombination in the SiGMoV DNA-A and much less in DNA-B. Full-length clones of SiGMoV were infectious and were able to infect and cause symptoms in several plant species.

  5. Prevalence of white spot syndrome virus (WSSV) in wild shrimp Penaeus monodon in the Philippines.

    PubMed

    de la Peña, Leobert D; Lavilla-Pitogo, Celia R; Villar, Corina Belle R; Paner, Milagros G; Sombito, Christopher D; Capulos, Geimbo C

    2007-10-15

    Prevalence of white spot syndrome virus (WSSV) was determined using polymerase chain reaction (PCR) methodology on DNA extracted from the gills of wild black tiger shrimp Penaeus monodon collected from 7 sampling sites in the Philippines. These 7 sampling sites are the primary sources of spawners and broodstock for hatchery use. During the dry season, WSSV was detected in shrimp from all sites except Bohol, but during the wet season it was not detected in any site except Palawan. None of the WSSV-PCR positive shrimp showed signs of white spots in the cuticle. Prevalence of WSSV showed seasonal variations, i.e. prevalence in dry season (April to May) was higher than in the wet season (August to October). These results suggest that WSSV has already become established in the local marine environment and in wild populations of P. monodon. Thus, broodstock collected during the dry season could serve as the main source of WSSV contamination in shrimp farms due to vertical transmission of the virus in hatcheries.

  6. Efficacy of 2'-C-methylcytidine against yellow fever virus in cell culture and in a hamster model.

    PubMed

    Julander, Justin G; Jha, Ashok K; Choi, Jung-Ae; Jung, Kie-Hoon; Smee, Donald F; Morrey, John D; Chu, Chung K

    2010-06-01

    Yellow fever virus (YFV) continues to cause outbreaks of disease in endemic areas where vaccine is underutilized. Due to the effectiveness of the vaccine, antiviral development solely for the treatment of YFV is not feasible, but antivirals that are effective in the treatment of related viral diseases may be characterized for potential use against YFV as a secondary indication disease. 2'-C-methylcytidine (2'-C-MeC), a compound active against hepatitis C virus, was found to have activity against the 17D vaccine strain of YFV in cell culture (EC(90)=0.32 microg/ml, SI=141). This compound was effective when added as late as 16 h after virus challenge of Vero cells. When administered to YFV-infected hamsters 4 h prior to virus challenge at a dose as low as 80 mg/kg/d, 2'-C-MeC was effective in significantly improving survival and other disease parameters (weight change, serum ALT, and liver virus titers). Disease was improved when compound was administered beginning as late as 3 d post-virus infection. Broadly active antiviral compounds, such as 2'-C-MeC, represent potential for the development of compounds active against related viruses for the treatment of YFV. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Broad neutralization of wild-type dengue virus isolates following immunization in monkeys with a tetravalent dengue vaccine based on chimeric yellow fever 17D/dengue viruses.

    PubMed

    Barban, Veronique; Munoz-Jordan, Jorge L; Santiago, Gilberto A; Mantel, Nathalie; Girerd, Yves; Gulia, Sandrine; Claude, Jean-Baptiste; Lang, Jean

    2012-08-01

    The objective of the study was to evaluate if the antibodies elicited after immunization with a tetravalent dengue vaccine, based on chimeric yellow fever 17D/dengue viruses, can neutralize a large range of dengue viruses (DENV). A panel of 82 DENVs was developed from viruses collected primarily during the last decade in 30 countries and included the four serotypes and the majority of existing genotypes. Viruses were isolated and minimally amplified before evaluation against a tetravalent polyclonal serum generated during vaccine preclinical evaluation in monkey, a model in which protection efficacy of this vaccine has been previously demonstrated (Guirakhoo et al., 2004). Neutralization was observed across all the DENV serotypes, genotypes, geographical origins and isolation years. These data indicate that antibodies elicited after immunization with this dengue vaccine candidate should widely protect against infection with contemporary DENV lineages circulating in endemic countries. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Diagnosis of a new variant of soybean yellow mottle mosaic virus with extended host-range in India.

    PubMed

    Sandra, Nagamani; Kumar, Alok; Sharma, Prachi; Kapoor, Reetika; Jain, Rakesh Kumar; Mandal, Bikash

    2015-12-01

    Soybean yellow mottle mosaic virus (SYMMV, genus Carmovirus) was previously known to occur in South Korea and USA causing bright yellow mosaic in soybean. In this study, SYMMV (Car-Mb14 isolate) was isolated from mungbean (Vigna radiata) exhibiting mild mottling and puckering symptoms in the experimental field at Indian Agricultural Research Institute, New Delhi during 2012. The virus isolate, Car-Mb14 induced veinal mottling, mild mottling, chlorotic blotching, local and systemic necrosis in soybean, mungbean, blackgram, French bean and guar bean, respectively. The symptomatology of the present isolate of SYMMV was different from the previously reported South Korean isolate, as the later did not induce symptoms in any of the above legumes other than soybean. The present isolate was phylogenetically distinct and shared 90-93 % sequence identity in coat protein (CP) of 52 SYMMV isolates reported from Korea and USA. In order to know the serological relationships, the CP gene of the present isolate was over expressed as a 39 kDa protein in E. coli and an antiserum of 1:16,000 titer against the recombinant CP was produced. Serological cross reactivity analysis revealed that SYMMV was serologically related to blackgram mottle virus but not to cowpea mottle virus, the other legume infecting carmoviruses. The antiserum was used to detect prevalence of SYMMV in legume crops by ELISA. Out of 145 field samples of legumes (mungbean, blackgram, French bean and soybean) collected from different places in India, SYMMV was detected only in 16 samples of mungbean and one sample of blackgram. The natural infection of SYMMV in mungbean and blackgram was further confirmed based on CP gene sequence. This study provides evidence of occurrence of a new variant of SYMMV with distinct symptom phenotype and extended host-range in India.

  9. Yellow fever vaccine-associated neurological disease, a suspicious case.

    PubMed

    Beirão, Pedro; Pereira, Patrícia; Nunes, Andreia; Antunes, Pedro

    2017-03-02

    A 70-year-old man with known cardiovascular risk factors, presented with acute onset expression aphasia, agraphia, dyscalculia, right-left disorientation and finger agnosia, without fever or meningeal signs. Stroke was thought to be the cause, but cerebrovascular disease investigation was negative. Interviewing the family revealed he had undergone yellow fever vaccination 18 days before. Lumbar puncture revealed mild protein elevation. Cultural examinations, Coxiella burnetti, and neurotropic virus serologies were negative. Regarding the yellow fever virus, IgG was identified in serum and cerebrospinal fluid (CSF), with negative IgM and virus PCR in CSF. EEG showed an encephalopathic pattern. The patient improved gradually and a week after discharge was his usual self. Only criteria for suspect neurotropic disease were met, but it's possible the time spent between symptom onset and lumbar puncture prevented a definite diagnosis of yellow fever vaccine-associated neurological disease. This gap would have been smaller if the vaccination history had been collected earlier. 2017 BMJ Publishing Group Ltd.

  10. Detection and occurrence of Melon yellow spot virus in Ecuador: an emergent threat to melon and watermelon production

    USDA-ARS?s Scientific Manuscript database

    Worldwide, more than fifty viruses have been reported in cucurbit crops. In Ecuador, approximately 3000 Ha of watermelon, melon and cucumbers are cultivated annually. However, very few studies have been conducted to identify viruses responsible for important epidemics in this crop in Ecuador. During...

  11. Complete nucleotide sequence of clematis chlorotic mottle virus, a new member of the family Tombusviridae.

    PubMed

    McLaughlin, Margaret; Lockhart, Ben; Jordan, Ramon; Denton, Geoff; Mollov, Dimitre

    2017-05-01

    Clematis chlorotic mottle virus (ClCMV) is a previously undescribed virus associated with symptoms of yellow mottling and veining, chlorotic ring spots, line pattern mosaics, and flower distortion and discoloration on ornamental Clematis. The ClCMV genome is 3,880 nt in length with five open reading frames (ORFs) encoding a 27-kDa protein (ORF 1), an 87-kDa replicase protein (ORF 2), two centrally located movement proteins (ORF 3 and 4), and a 37-kDa capsid protein (ORF 5). Based on morphological, genomic, and phylogenetic analysis, ClCMV is predicted to be a member of the genus Pelarspovirus in the family Tombusviridae.

  12. Increasing use of yellow colors in Kyoto

    NASA Astrophysics Data System (ADS)

    Akita, Munehira; Nara, Iwao

    2002-06-01

    Colors used for commercial signboards, displayed outdoors as well as indoors through windows, such as a store sign, an advertising sign, a sky sign, a poster, a placard, and a billboard were extensively surveyed in Kyoto City, Japan, in 1998. The survey showed that various kinds of yellow painted signs have increased rapidly and invaded a center area and suburbs of the city. Vivid yellow, what we called it the Y98 virus, is specially considered a color unpleasantly matched to the city image of Kyoto which was the capital of Japan for nearly 1000 years (794 to 1868) and is endowed with cultural and historic heritage. Discussions trying to find out what we could do to prevent the rapid spread of a big commercial display painted with vivid yellows what we called 'the Y98 virus' over the city will be summarized in a main text.

  13. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies.

    PubMed

    Wang, Lan-Lan; Wang, Xin-Ru; Wei, Xue-Mei; Huang, Huang; Wu, Jian-Xiang; Chen, Xue-Xin; Liu, Shu-Sheng; Wang, Xiao-Wei

    2016-09-01

    Macroautophagy/autophagy plays an important role against pathogen infection in mammals and plants. However, little has been known about the role of autophagy in the interactions of insect vectors with the plant viruses, which they transmit. Begomoviruses are a group of single-stranded DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. In this study, we found that the infection of a begomovirus, tomato yellow leaf curl virus (TYLCV) could activate the autophagy pathway in the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex as evidenced by the formation of autophagosomes and ATG8-II. Interestingly, the activation of autophagy led to the subsequent degradation of TYLCV coat protein (CP) and genomic DNA. While feeding the whitefly with 2 autophagy inhibitors (3-methyladenine and bafilomycin A1) and silencing the expression of Atg3 and Atg9 increased the viral load; autophagy activation via feeding of rapamycin notably decreased the amount of viral CP and DNA in the whitefly. Furthermore, we found that activation of whitefly autophagy could inhibit the efficiency of virus transmission; whereas inhibiting autophagy facilitated virus transmission. Taken together, these results indicate that TYLCV infection can activate the whitefly autophagy pathway, which leads to the subsequent degradation of virus. Furthermore, our report proves that an insect vector uses autophagy as an intrinsic antiviral program to repress the infection of a circulative-transmitted plant virus. Our data also demonstrate that TYLCV may replicate and trigger complex interactions with the insect vector.

  14. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar

    PubMed Central

    Nováková, Slavomíra; Flores-Ramírez, Gabriela; Glasa, Miroslav; Danchenko, Maksym; Fiala, Roderik; Skultety, Ludovit

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6–7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis. PMID:25972878

  15. Antibodies to canine and feline viruses in spotted hyenas (Crocuta crocuta) in the Masai Mara National Reserve.

    PubMed

    Harrison, Tara M; Mazet, Jonna K; Holekamp, Kay E; Dubovi, Edward; Engh, Anne L; Nelson, Keith; Van Horn, Russell C; Munson, Linda

    2004-01-01

    Spotted hyenas (Crocuta crocuta) are abundant predators in the Serengeti ecosystem and interact with other species of wild carnivores and domestic animals in ways that could encourage disease transmission. Hyenas also have a unique hierarchical social system that might affect the flow of pathogens. Antibodies to canine distemper virus (CDV), feline immunodeficiency virus (FIV), feline panleukopenia virus/canine parvovirus (FPLV/CPV), feline coronavirus/ feline infectious peritonitis virus (FECV/IPV), feline calicivirus (FCV), and feline herpesvirus 1 (FHV1) have been detected in other Serengeti predators, indicating that these viruses are present in the ecosystem. The purpose of this study was to determine whether spotted hyenas also had been infected with these viruses and to assess risk factors for infection. Serum samples were collected between 1993 and 2001 from 119 animals in a single clan for which behavioral data on social structure were available and from 121 hyenas ill several other clans. All animals resided in the Masai Mara National Reserve. Antibodies to CDV, FIV, FPLV/CPV, FECV/FIPV, FCV, and FHV1 were present in 47%, 3.5%, 81%, 36%, 72%, and 0.5% of study hyenas, respectively. Antibody prevalence was greater in adults for FIV and FECV/FIPV, and being a female of high social rank was a risk factor for FIV. Hyenas near human habitation appeared to be at lower risk to have CDV, FIV, and FECV/FIPV antibodies, whereas being near human habitation increased the risk for FPLV/CPV antibodies. Canine (distemper virus and FECV/FIPV antibody prevalence varied considerably over time, whereas FIV, FPLV/CPV, and FCV had a stable, apparently endemic temporal pattern. These results indicate that hyenas might play a role in the ecology of these viruses in the Serengeti ecosystem. The effect of these viruses on hyena health should be further investigated. The lower prevalence of CDV antibody-positive hyenas near human habitation suggests that reservoirs for CDV other

  16. DNA-immunisation with dengue virus E protein domains I/II, but not domain III, enhances Zika, West Nile and Yellow Fever virus infection.

    PubMed

    Slon Campos, Jose L; Poggianella, Monica; Marchese, Sara; Mossenta, Monica; Rana, Jyoti; Arnoldi, Francesca; Bestagno, Marco; Burrone, Oscar R

    2017-01-01

    Dengue virus (DENV), the causative agent of dengue disease, is among the most important mosquito-borne pathogens worldwide. DENV is composed of four closely related serotypes and belongs to the Flaviviridae family alongside other important arthropod-borne viral pathogens such as Zika virus (ZIKV), West Nile virus (WNV) and Yellow Fever virus (YFV). After infection, the antibody response is mostly directed to the viral E glycoprotein which is composed of three structural domains named DI, DII and DIII that share variable degrees of homology among different viruses. Recent evidence supports a close serological interaction between ZIKV and DENV. The possibility of worse clinical outcomes as a consequence of antibody-dependent enhancement of infection (ADE) due to cross-reactive antibodies with poor neutralisation activity is a matter of concern. We tested polyclonal sera from groups of female Balb/C mice vaccinated with DNA constructs expressing DI/DII, DIII or the whole sE from different DENV serotypes and compared their activity in terms of cross-reactivity, neutralisation of virus infection and ADE. Our results indicate that the polyclonal antibody responses against the whole sE protein are highly cross-reactive with strong ADE and poor neutralisation activities due to DI/DII immunodominance. Conversely, anti-DIII polyclonal antibodies are type-specific, with no ADE towards ZIKV, WNV and YFV, and strong neutralisation activity restricted only to DENV.

  17. Molecular characterization of faba bean necrotic yellows viruses in Tunisia.

    PubMed

    Kraberger, Simona; Kumari, Safaa G; Najar, Asma; Stainton, Daisy; Martin, Darren P; Varsani, Arvind

    2018-03-01

    Faba bean necrotic yellows virus (FBNYV) (genus Nanovirus; family Nanoviridae) has a genome comprising eight individually encapsidated circular single-stranded DNA components. It has frequently been found infecting faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) in association with satellite molecules (alphasatellites). Genome sequences of FBNYV from Azerbaijan, Egypt, Iran, Morocco, Spain and Syria have been determined previously and we now report the first five genome sequences of FBNYV and associated alphasatellites from faba bean sampled in Tunisia. In addition, we have determined the genome sequences of two additional FBNYV isolates from chickpea plants sampled in Syria and Iran. All individual FBNYV genome component sequences that were determined here share > 84% nucleotide sequence identity with FBNYV sequences available in public databases, with the DNA-M component displaying the highest degree of diversity. As with other studied nanoviruses, recombination and genome component reassortment occurs frequently both between FBNYV genomes and between genomes of nanoviruses belonging to other species.

  18. Rapid detection of Piper yellow mottle virus and Cucumber mosaic virus infecting black pepper (Piper nigrum) by loop-mediated isothermal amplification (LAMP).

    PubMed

    Bhat, A I; Siljo, A; Deeshma, K P

    2013-10-01

    The loop-mediated isothermal amplification (LAMP) assay for Piper yellow mottle virus and the reverse transcription (RT) LAMP assay for Cucumber mosaic virus each consisted of a set of five primers designed against the conserved sequences in the viral genome. Both RNA and DNA isolated from black pepper were used as a template for the assay. The results were assessed visually by checking turbidity, green fluorescence and pellet formation in the reaction tube and also by gel electrophoresis. The assay successfully detected both viruses in infected plants whereas no cross-reactions were recorded with healthy plants. Optimum conditions for successful amplification were determined in terms of the concentrations of magnesium sulphate and betaine, temperature, and duration. The detection limit for both LAMP and RT-LAMP was up to 100 times that for conventional PCR and up to one-hundredth of that for real-time PCR. The optimal conditions arrived at were validated by testing field samples of infected vines of three species from different regions. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Changes in the intraisolate genetic structure of Beet necrotic yellow vein virus populations associated with plant resistance breakdown.

    PubMed

    Acosta-Leal, Rodolfo; Fawley, Marvin W; Rush, Charles M

    2008-06-20

    The causal agent of rhizomania disease, Beet necrotic yellow vein virus (BNYVV), typically produces asymptomatic root-limited infections in sugar beets (Beta vulgaris) carrying the Rz1-allele. Unfortunately, this dominant resistance has been recently overcome. Multiple cDNA clones of the viral pathogenic determinant p25, derived from populations infecting susceptible or resistant plants, were sequenced to identify host effects on the viral population structure. Populations isolated from compatible plant-virus interactions (susceptible plant-wild type virus and resistant plant-resistant breaking variants) were large and relatively homogeneous, whereas those from the incompatible interaction (resistant plant-avirulent type virus) were small and highly heterogeneous. All populations from susceptible plants had the same dominant haplotype, whereas those from resistant cultivars had a different haplotype surrounded by a spectrum of mutants. Selection and diversification analyses suggest an evolutionary trajectory of BNYVV with positive selection for changes required to overcome resistance, followed by elimination of hitchhiking mutations through purifying selection.

  20. Patterns of a sylvatic yellow fever virus amplification in southeastern Senegal, 2010.

    PubMed

    Diallo, Diawo; Sall, Amadou A; Diagne, Cheikh T; Faye, Oumar; Hanley, Kathryn A; Buenemann, Michaela; Ba, Yamar; Faye, Ousmane; Weaver, Scott C; Diallo, Mawlouth

    2014-06-01

    During the wet season of 2010, yellow fever virus (YFV) was detected in field-collected mosquitoes in the Kédougou region in southeastern Senegal. During this outbreak, we studied the association of the abundance of YFV-infected mosquitoes and land cover features to try and understand the dynamics of YFV transmission within the region. In total, 41,234 mosquito females were collected and tested for virus infection in 5,152 pools. YFV was detected in 67 pools; species including Aedes furcifer (52.2% of the infected pools), Ae. luteocephalus (31.3% of the infected pools), Ae. taylori (6.0% of the infected pools) and six other species (10.4% of the infected pools) captured in September (13.4%), October (70.1%), and November (16.4%). Spatially, YFV was detected from mosquitoes collected in all land cover classes but mainly, forest canopies (49.2%). Human infection is likely mediated by Ae. furcifer, the only species found infected with YFV within villages. Villages containing YFV-infected mosquitoes were significantly closer to large forests (> 2 ha) than villages in which no infected mosquitoes were detected. © The American Society of Tropical Medicine and Hygiene.

  1. Molecular characterization and phylogenetic analysis of Sugarcane yellow leaf virus isolates from China.

    PubMed

    Gao, San-Ji; Lin, Yi-Hua; Pan, Yong-Bao; Damaj, Mona B; Wang, Qin-Nan; Mirkov, T Erik; Chen, Ru-Kai

    2012-10-01

    Sugarcane yellow leaf virus (SCYLV) (genus Polerovirus, family Luteoviridae), the causal agent of sugarcane yellow leaf disease (YLD), was first detected in China in 2006. To assess the distribution of SCYLV in the major sugarcane-growing Chinese provinces, leaf samples from 22 sugarcane clones (Saccharum spp. hybrid) showing YLD symptoms were collected and analyzed for infection by the virus using reverse transcription PCR (RT-PCR), quantitative RT-PCR, and immunological assays. A complete genomic sequence (5,879 nt) of the Chinese SCYLV isolate CHN-FJ1 and partial genomic sequences (2,915 nt) of 13 other Chinese SCYLV isolates from this study were amplified, cloned, and sequenced. The genomic sequence of the CHN-FJ1 isolate was found to share a high identity (98.4-99.1 %) with those of the Brazilian (BRA) genotype isolates and a low identity (86.5-86.9 %) with those of the CHN1 and Cuban (CUB) genotype isolates. The genetic diversity of these 14 Chinese SCYLV isolates was assessed along with that of 29 SCYLV isolates of worldwide origin reported in the GenBank database, based on the full or partial genomic sequence. Phylogenetic analysis demonstrated that all the 14 Chinese SCYLV isolates clustered into one large group with the BRA genotype and 12 other reported SCYLV isolates. In addition, five reported Chinese SCYLV isolates were grouped with the Peruvian (PER), CHN1 and CUB genotypes. We therefore speculated that at least four SCYLV genotypes, BRA, PER, CHN1, and CUB, are associated with YLD in China. Interestingly, a 39-nt deletion was detected in the sequence of the CHN-GD3 isolate, in the middle of the ORF1 region adjacent to the overlap between ORF1 and ORF2. This location is known to be one of the recombination breakpoints in the Luteoviridae family.

  2. [Present status of an arbovirus infection: yellow fever, its natural history of hemorrhagic fever, Rift Valley fever].

    PubMed

    Digoutte, J P

    1999-12-01

    In the early 20th century, when it was discovered that the yellow fever virus was transmitted in its urban cycle by Aedes aegypti, measures of control were introduced leading to its disappearance. Progressive neglect of the disease, however, led to a new outbreak in 1927 during which the etiological agent was isolated; some years later a vaccine was discovered and yellow fever disappeared again. In the 1960s, rare cases of encephalitis were observed in young children after vaccination and the administration of the vaccine was forbidden for children under 10 years. Five years later, a new outbreak of yellow fever in Diourbel, Senegal, was linked to the presence of Aedes aegypti. In the late 1970s, the idea of a selvatic cycle for yellow fever arose. Thanks to new investigative techniques in Senegal and Côte d'Ivoire, the yellow fever virus was isolated from the reservoir of virus and vectors. The isolated virus was identified in monkeys and several vectors: Aedes furcifer, Aedes taylori, Aedes luteocephalus. Most importantly, the virus was isolated in male mosquitoes. Until recently, the only known cycle had been that of Haddow in East Africa. The virus circulate in the canopea between monkeys and Aedes africanus. These monkeys infect Aedes bromeliae when they come to eat in banana plantations. This cycle does not occur in West Africa. Vertical transmission is the main method of maintenance of the virus through the dry season. "Reservoirs of virus" are often mentioned in medical literature, monkeys having a short viremia whereas mosquitoes remain infected throughout their life cycle. In such a selvatic cycle, circulation can reach very high levels and no child would be able to escape an infecting bite and yet no clinical cases of yellow fever have been reported. The virulence--as it affects man--of the yellow fever virus in its wild cycle is very low. In areas where the virus can circulate in epidemic form, two types of circulation can be distinguished

  3. Empty Turnip yellow mosaic virus capsids as delivery vehicles to mammalian cells.

    PubMed

    Kim, Doyeong; Lee, Younghee; Dreher, Theo W; Cho, Tae-Ju

    2018-05-03

    Turnip yellow mosaic virus (TYMV) was able to enter animal cells when the spherical plant virus was conjugated with Tat, a cell penetrating peptide (CPP). Tat was chemically attached to the surface lysine residues of TYMV using hydrazone chemistry. Baby hamster kidney (BHK) cells were incubated with either unmodified or Tat-conjugated TYMV and examined by flow cytometry and confocal microscopic analyses. Tat conjugation was shown to be more efficient than Lipofectamine in allowing TYMV to enter the mammalian cells. Tat-assisted-transfection was also associated with less loss of cell viability than lipofection. Among the CPPs tested (Tat, R8, Pep-1 and Pen), it was observed that R8 and Pen were also effective while Pep-1 was not. We also examined if the internal space of TYMV can be used to load fluorescein dye as a model cargo. When TYMV is treated by freezing and thawing, the virus is known to convert into a structure with a 6-8 nm hole and release viral RNA. When the resultant pot-like particles were reacted with fluorescein-5-maleimide using interior sulfhydryl groups as conjugation sites, about 145 fluorescein molecules were added per particle. The fluorescein-loaded TYMV particles were conjugated with Tat and introduced into BHK cells, again with higher transfection efficiency compared to lipofection. Our studies demonstrate the potential of modified TYMV as an efficient system for therapeutic cargo delivery to mammalian cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus

    USDA-ARS?s Scientific Manuscript database

    The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12,792 nucleotides long and organized into seven open reading frames with the gene order 3’-N-X-P-Y-M-G-L-5’, which encodes the nucleocapsid, phosphoprotein, movement, matrix, glycoprotein and RNA-d...

  5. A simple and efficient method for agroinfection of Vernonia cinerea with infectious clones of Vernonia yellow vein virus.

    PubMed

    Packialakshmi, R M; Usha, R

    2011-12-01

    Vernonia yellow vein virus (VeYVV) is a distinct monopartite begomovirus associated with a satellite DNA β. After constructing dimers of both DNA A and DNA β in binary vectors, a number of infection methods were attempted. However, only a modified stem-prick method produced up to 83% infection in the natural host Vernonia cinerea, thus, fulfilling the Koch's postulate. The presence of the viral DNA in the agroinfected plants was confirmed by rolling circle amplification (RCA), followed by Southern hybridization. DNA β induces typical symptoms of Vernonia yellow vein disease (VeYVD) when co-agroinoculated with the begomovirus to Vernonia and also leads to the accumulation of DNA A systemically. VeYVV represents a new member of the emerging group of monopartite begomoviruses requiring a satellite component for symptom induction.

  6. Oxylipin Biosynthesis Genes Positively Regulate Programmed Cell Death during Compatible Infections with the Synergistic Pair Potato Virus X-Potato Virus Y and Tomato Spotted Wilt Virus

    PubMed Central

    García-Marcos, Alberto; Pacheco, Remedios; Manzano, Aranzazu; Aguilar, Emmanuel

    2013-01-01

    One of the most severe symptoms caused by compatible plant-virus interactions is systemic necrosis, which shares common attributes with the hypersensitive response to incompatible pathogens. Although several studies have identified viral symptom determinants responsible for systemic necrosis, mechanistic models of how they contribute to necrosis in infected plants remain scarce. Here, we examined the involvement of different branches of the oxylipin biosynthesis pathway in the systemic necrosis response caused either by the synergistic interaction of Potato virus X with Potato virus Y (PVX-PVY) or by Tomato spotted wilt virus (TSWV) in Nicotiana benthamiana. Silencing either 9-lipoxygenase (LOX), 13-LOX, or α-dioxygenase-1 (α-DOX-1) attenuated the programmed cell death (PCD)-associated symptoms caused by infection with either PVX-PVY or TSWV. In contrast, silencing of the jasmonic acid perception gene, COI1 (Coronatine insensitive 1), expedited cell death during infection with compatible viruses. This correlated with an enhanced expression of oxylipin biosynthesis genes and dioxygenase activity in PVX-PVY-infected plants. Moreover, the Arabidopsis thaliana double lox1 α-dox-1 mutant became less susceptible to TSWV infection. We conclude that oxylipin metabolism is a critical component that positively regulates the process of PCD during compatible plant-virus interactions but does not play a role in restraining virus accumulation in planta. PMID:23487466

  7. Distinct gene expression profiles in peripheral blood mononuclear cells from patients infected with vaccinia virus, yellow fever 17D virus, or upper respiratory infections.

    PubMed

    Scherer, Christina A; Magness, Charles L; Steiger, Kathryn V; Poitinger, Nicholas D; Caputo, Christine M; Miner, Douglas G; Winokur, Patricia L; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A; Gillham, Martha H; Haulman, N Jean; Stapleton, Jack T; Iadonato, Shawn P

    2007-08-29

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents.

  8. One-step reverse transcription loop mediated isothermal amplification assay for detection of Apple chlorotic leaf spot virus

    USDA-ARS?s Scientific Manuscript database

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Apple chlorotic leaf spot virus (ACLSV) was developed. In this method, a set of four primers was designed based on the conserved regions in the coat protein gene of ACLSV, and was synthesized for the ...

  9. Simultaneous detection and differentiation of three genotypes of Brassica yellows virus by multiplex reverse transcription-polymerase chain reaction.

    PubMed

    Zhang, Xiaoyan; Peng, Yanmei; Wang, Ying; Zhang, Zongying; Li, Dawei; Yu, Jialin; Han, Chenggui

    2016-11-22

    Brassica yellows virus (BrYV), proposed to be a new polerovirus species, three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) have been described. This study was to develop a simple, rapid, sensitive, cost-effective method for simultaneous detection and differentiation of three genotypes of BrYV. In this study, a multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for simultaneous detection and differentiation of the three genotypes of BrYV. The three genotypes of BrYV and Tunip yellows virus (TuYV) could be differentiated simultaneously using six optimized specific oligonucleotide primers, including one universal primer for detecting BrYV, three BrYV genotype-specific primers, and a pair of primers for specific detection of TuYV. Primers were designed from conserved regions of each virus and their specificity was confirmed by sequencing PCR products. The mRT-PCR products were 278 bp for BrYV-A, 674 bp for BrYV-B, 505 bp for BrYV-C, and 205 bp for TuYV. Amplification of three target genotypes was optimized by increasing the PCR annealing temperatures to 62 °C. One to three fragments specific for the virus genotypes were simultaneously amplified from infected samples and identified by their specific molecular sizes in agarose gel electrophoresis. No specific products could be amplified from cDNAs of other viruses which could infect crucifer crops. Detection limits of the plasmids for multiplex PCR were 100 fg for BrYV-A and BrYV-B, 10 pg for BrYV-C, and 1 pg for TuYV, respectively. The mRT-PCR was applied successfully for detection of three BrYV genotypes from field samples collected in China. The simple, rapid, sensitive, and cost-effective mRT-PCR was developed successfully for detection and differentiation of the three genotypes of BrYV.

  10. Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus.

    PubMed

    Salem, Nida' M; Miller, W Allen; Rowhani, Adib; Golino, Deborah A; Moyne, Anne-Laure; Falk, Bryce W

    2008-06-05

    We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5'- and 3'-RACE showed the RSDaV genomic RNA to be 5808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3'-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5' ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5' end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3' cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae.

  11. Biological properties of Beet soil-borne mosaic virus and Beet necrotic yellow vein virus cDNA clones produced by isothermal in vitro recombination: Insights for reassortant appearance.

    PubMed

    Laufer, Marlene; Mohammad, Hamza; Maiss, Edgar; Richert-Pöggeler, Katja; Dall'Ara, Mattia; Ratti, Claudio; Gilmer, David; Liebe, Sebastian; Varrelmann, Mark

    2018-05-01

    Two members of the Benyviridae family and genus Benyvirus, Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), possess identical genome organization, host range and high sequence similarity; they infect Beta vulgaris with variable symptom expression. In the US, mixed infections are described with limited information about viral interactions. Vectors suitable for agroinoculation of all genome components of both viruses were constructed by isothermal in vitro recombination. All 35S promoter-driven cDNA clones allowed production of recombinant viruses competent for Nicotiana benthamiana and Beta macrocarpa systemic infection and Polymyxa betae transmission and were compared to available BNYVV B-type clone. BNYVV and BSBMV RNA1 + 2 reassortants were viable and spread long-distance in N. benthamiana with symptoms dependent on the BNYVV type. Small genomic RNAs were exchangeable and systemically infected B. macrocarpa. These infectious clones represent a powerful tool for the identification of specific molecular host-pathogen determinants. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Complete genome sequence of a new begomovirus associated with yellow mosaic disease of Hemidesmus indicus in India.

    PubMed

    Reddy, M Sreekanth; Kanakala, S; Srinivas, K P; Hema, M; Malathi, V G; Sreenivasulu, P

    2014-05-01

    The complete DNA A genome of a virus isolate associated with yellow mosaic disease of a medicinal plant, Hemidesmus indicus, from India was cloned and sequenced. The length of DNA A was 2825 nucleotides, 35 nucleotides longer than the unit genome of monopartite begomoviruses. Comparison of the nucleotide sequence of DNA A of the virus isolate with those of other begomoviruses showed maximum sequence identity of 69 % to DNA A of ageratum yellow vein China virus (AYVCNV; AJ558120) and 68 % with tomato yellow leaf curl virus- LBa4 (TYLCV; EF185318), and it formed a distinct clade in phylogenetic analysis. The genome organization of the present virus isolate was found to be similar to that of Old World monopartite begomoviruses. The genome was considered to be monopartite, because association of DNA B and β satellite DNA components was not detected. Based on its sequence identity (<70 %) to all other begomoviruses known to date and ICTV (International Committee on Taxonomy of Viruses) species demarcating criteria (<89 % identity), it is considered a member of a novel begomovirus species, and the tentative name "Hemidesmus yellow mosaic virus" (HeYMV) is proposed.

  13. Detection and molecular characterization of tomato yellow leaf curl virus naturally infecting Lycopersicon esculentum in Egypt.

    PubMed

    Rabie, M; Ratti, C; Abdel Aleem, E; Fattouh, F

    Tomato yellow leaf curl virus (TYLCV) infections of tomato crops in Egypt were widely spread in 2014. Infected symptomatic tomato plants from different governorates were sampled. TYLCV strains Israel and Mild (TYLCV-IL, TYLCV-Mild) were identified by multiplex and real-time PCR. In addition, nucleotide sequence analysis of the V1 and V2 protein genes, revealed ten TYLCV Egyptian isolates (TYLCV from TY1 to 10). Phylogenetic analysis showed their high degree of relatedness with TYLCV-IL Jordan isolate (98%). Here we have showed the complete nucleotide sequence of the TYLCV Egyptian isolate TY10, sampled from El Beheira. A high degree of similarity to other previously reported Egyptian isolates and isolates from Jordan and Japan reflect the importance of phylogenetic analysis in monitoring virus genetic diversity and possibilities for divergence of more virulent strains or genotypes.

  14. Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses.

    PubMed

    Silva, José V J; Lopes, Thaísa R R; Oliveira-Filho, Edmilson F de; Oliveira, Renato A S; Durães-Carvalho, Ricardo; Gil, Laura H V G

    2018-06-01

    Emerging and re-emerging viral infections transmitted by insect vectors (arthopode-borne viruses, arbovirus) are a serious threat to global public health. Among them, yellow fever (YFV), dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses are particularly important in tropical and subtropical regions. Although vector control is one of the most used prophylactic measures against arboviruses, it often faces obstacles, such as vector diversity, uncontrolled urbanization and increasing resistance to insecticides. In this context, vaccines may be the best control strategy for arboviral diseases. Here, we provide a general overview about licensed vaccines and the most advanced vaccine candidates against YFV, DENV, CHIKV and ZIKV. In particular, we highlight vaccine difficulties, the current status of the most advanced strategies and discuss how the molecular characteristics of each virus can influence the choice of the different vaccine formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Purification of white spot syndrome virus by iodixanol density gradient centrifugation.

    PubMed

    Dantas-Lima, J J; Corteel, M; Cornelissen, M; Bossier, P; Sorgeloos, P; Nauwynck, H J

    2013-10-01

    Up to now, only a few brief procedures for purifying white spot syndrome virus (WSSV) have been described. They were mainly based on sucrose, NaBr and CsCl density gradient centrifugation. This work describes for the first time the purification of WSSV through iodixanol density gradients, using virus isolated from infected tissues and haemolymph of Penaeus vannamei (Boone). The purification from tissues included a concentration step by centrifugation (2.5 h at 60,000 g) onto a 50% iodixanol cushion and a purification step by centrifugation (3 h at 80,000 g) through a discontinuous iodixanol gradient (phosphate-buffered saline, 5%, 10%, 15% and 20%). The purification from infected haemolymph enclosed a dialysis step with a membrane of 1,000 kDa (18 h) and a purification step through the earlier iodixanol gradient. The gradients were collected in fractions and analysed. The number of particles, infectivity titre (in vivo), total protein and viral protein content were evaluated. The purification from infected tissues gave WSSV suspensions with a very high infectivity and an acceptable purity, while virus purified from haemolymph had a high infectivity and a very high purity. Additionally, it was observed that WSSV has an unusually low buoyant density and that it is very sensitive to high external pressures. © 2013 John Wiley & Sons Ltd.

  17. An epidemiological model for externally sourced vector-borne viruses applied to Bean yellow mosaic virus in lupin crops in a Mediterranean-type environment.

    PubMed

    Maling, T; Diggle, A J; Thackray, D J; Siddique, K H M; Jones, R A C

    2008-12-01

    A hybrid mechanistic/statistical model was developed to predict vector activity and epidemics of vector-borne viruses spreading from external virus sources to an adjacent crop. The pathosystem tested was Bean yellow mosaic virus (BYMV) spreading from annually self-regenerating, legume-based pastures to adjacent crops of narrow-leafed lupin (Lupinus angustifolius) in the winter-spring growing season in a region with a Mediterranean-type environment where the virus persists over summer within dormant seed of annual clovers. The model uses a combination of daily rainfall and mean temperature during late summer and early fall to drive aphid population increase, migration of aphids from pasture to lupin crops, and the spread of BYMV. The model predicted time of arrival of aphid vectors and resulting BYMV spread successfully for seven of eight datasets from 2 years of field observations at four sites representing different rainfall and geographic zones of the southwestern Australian grainbelt. Sensitivity analysis was performed to determine the relative importance of the main parameters that describe the pathosystem. The hybrid mechanistic/statistical approach used created a flexible analytical tool for vector-mediated plant pathosystems that made useful predictions even when field data were not available for some components of the system.

  18. First report of tomato chlorotic spot virus in sweet basil (Ocimum basilicum) and purslane (Portulaca oleracea) in Florida

    USDA-ARS?s Scientific Manuscript database

    Tomato chlorotic spot virus (TCSV) has been recently detected in tomato, pepper, hoya and vinca in Florida. Observations of additional crops in 2016 and 2017 revealed TCSV-like symptoms. Testing of these symptomatic plants identified three new hosts of TCSV in Florida: sweet basil (Ocimum basilicu...

  19. Development of a membrane adsorber based capture step for the purification of yellow fever virus.

    PubMed

    Pato, Tânia P; Souza, Marta Cristina O; Silva, Andréa N M R; Pereira, Renata C; Silva, Marlon V; Caride, Elena; Gaspar, Luciane P; Freire, Marcos S; Castilho, Leda R

    2014-05-19

    Yellow fever (YF) is an endemic disease in some tropical areas of South America and Africa that presents lethality rate between 20 and 50%. There is no specific treatment and to control this disease a highly effective live-attenuated egg based vaccine is widely used for travelers and residents of areas where YF is endemic. However, recent reports of rare, sometimes fatal, adverse events post-vaccination have raised concerns. In order to increase safety records, alternative strategies should be considered, such as developing a new inactivated vaccine using a cell culture based technology, capable of meeting the demands in cases of epidemic. With this goal, the production of YF virus in Vero cells grown on microcarriers and its subsequent purification by chromatographic techniques was studied. In this work we investigate the capture step of the purification process of the YF virus. At first, virus stability was studied over a wide pH range, showing best results for the alkaline region. Considering this result and the pI of the envelope protein previously determined in silico, a strong anion exchanger was considered most suitable. Due to the easy scalability, simplicity to handle, absence of diffusional limitations and suitability for virus handling of membrane adsorbers, a Q membrane was evaluated. The amount of antigen adsorbed onto the membrane was investigated within the pH range for virus stability, and the best pH for virus adsorption was considered to be 8.5. Finally, studies on gradient and step elution allowed to determine the most adequate salt concentration for washing (0.15M) and virus elution (0.30 M). Under these operating conditions, it was shown that this capture step is quite efficient, showing high product recovery (93.2±30.3%) and efficient DNA clearance (0.9±0.3 ng/dose). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Yellow Fever Outbreak - Kongo Central Province, Democratic Republic of the Congo, August 2016.

    PubMed

    Otshudiema, John O; Ndakala, Nestor G; Mawanda, Elande-Taty K; Tshapenda, Gaston P; Kimfuta, Jacques M; Nsibu, Loupy-Régence N; Gueye, Abdou S; Dee, Jacob; Philen, Rossanne M; Giese, Coralie; Murrill, Christopher S; Arthur, Ray R; Kebela, Benoit I

    2017-03-31

    On April 23, 2016, the Democratic Republic of the Congo's (DRC's) Ministry of Health declared a yellow fever outbreak. As of May 24, 2016, approximately 90% of suspected yellow fever cases (n = 459) and deaths (45) were reported in a single province, Kongo Central Province, that borders Angola, where a large yellow fever outbreak had begun in December 2015. Two yellow fever mass vaccination campaigns were conducted in Kongo Central Province during May 25-June 7, 2016 and August 17-28, 2016. In June 2016, the DRC Ministry of Health requested assistance from CDC to control the outbreak. As of August 18, 2016, a total of 410 suspected yellow fever cases and 42 deaths were reported in Kongo Central Province. Thirty seven of the 393 specimens tested in the laboratory were confirmed as positive for yellow fever virus (local outbreak threshold is one laboratory-confirmed case of yellow fever). Although not well-documented for this outbreak, malaria, viral hepatitis, and typhoid fever are common differential diagnoses among suspected yellow fever cases in this region. Other possible diagnoses include Zika, West Nile, or dengue viruses; however, no laboratory-confirmed cases of these viruses were reported. Thirty five of the 37 cases of yellow fever were imported from Angola. Two-thirds of confirmed cases occurred in persons who crossed the DRC-Angola border at one market city on the DRC side, where ≤40,000 travelers cross the border each week on market day. Strategies to improve coordination between health surveillance and cross-border trade activities at land borders and to enhance laboratory and case-based surveillance and health border screening capacity are needed to prevent and control future yellow fever outbreaks.

  1. Serologic assessment of yellow fever immunity in the rural population of a yellow fever-endemic area in Central Brazil.

    PubMed

    Machado, Vanessa Wolff; Vasconcelos, Pedro Fernando da Costa; Silva, Eliana Vieira Pinto; Santos, João Barberino

    2013-01-01

    The yellow fever epidemic that occurred in 1972/73 in Central Brazil surprised the majority of the population unprotected. A clinical-epidemiological survey conducted at that time in the rural area of 19 municipalities found that the highest (13.8%) number of disease cases were present in the municipality of Luziânia, State of Goiás. Thirty-eight years later, a new seroepidemiological survey was conducted with the aim of assessing the degree of immune protection of the rural population of Luziânia, following the continuous attempts of public health services to obtain vaccination coverage in the region. A total of 383 volunteers, aged between 5 and 89 years and with predominant rural labor activities (75.5%), were interviewed. The presence of antibodies against the yellow fever was also investigated in these individuals, by using plaque reduction neutralization test, and correlated to information regarding residency, occupation, epidemiological data and immunity against the yellow fever virus. We found a high (97.6%) frequency of protective titers (>1:10) of neutralizing antibodies against the yellow fever virus; the frequency of titers of 1:640 or higher was 23.2%, indicating wide immune protection against the disease in the study population. The presence of protective immunity was correlated to increasing age. This study reinforces the importance of surveys to address the immune state of a population at risk for yellow fever infection and to the surveillance of actions to control the disease in endemic areas.

  2. Genome characterization of sugarcane yellow leaf virus from China reveals a novel recombinant genotype.

    PubMed

    Lin, Yi-Hua; Gao, San-Ji; Damaj, Mona B; Fu, Hua-Ying; Chen, Ru-Kai; Mirkov, T Erik

    2014-06-01

    Sugarcane yellow leaf virus (SCYLV; genus Polerovirus, family Luteoviridae) is a recombinant virus associated with yellow leaf disease, a serious threat to sugarcane in China and worldwide. Among the nine known SCYLV genotypes existing worldwide, COL, HAW, REU, IND, CHN1, CHN2, BRA, CUB and PER, the last five have been reported in China. In this study, the complete genome sequences (5,880 nt) of GZ-GZ18 and HN-CP502 isolates from the Chinese provinces of Guizhou and Hainan, respectively, were cloned, sequenced and characterized. Phylogenetic analysis showed that, among 29 SCYLV isolates described worldwide, the two Chinese isolates clustered together into an independent clade based on the near-complete genome nucleotide (ORF0-ORF5) or amino acid sequences of individual genes, except for the MP protein (ORF4). We propose that the two isolates represent a novel genotype, CHN3, diverging from other genotypes by 1.7-13.6 % nucleotide differences in ORF0-ORF5, and 2.7-28.1 %, 1.8-20.4 %, 0.5-5.1 % and 2.7-15.9 % amino acid differences in P0 (ORF0), RdRp (RNA-dependent RNA polymerase) (ORF1+2), CP (coat protein) (ORF3) and RT (readthrough protein) (ORF3+5), respectively. CHN3 was closely related to the BRA, HAW and PER genotypes, differing by 1.7-3.8 % in the near-complete genome nucleotide sequence. Recombination analysis further identified CHN3 as a new recombinant strain, arising from the major parent CHN-HN1 and the minor parent CHN-GD-WY19. Recombination breakpoints were distributed mostly within the RdRp region in CHN3 and the four significant recombinant genotypes, IND, REU, CUB and BRA. Recombination is considered to contribute significantly to the evolution and emergence of such new SCYLV variants.

  3. Yellow Fever Outbreak, Imatong, Southern Sudan

    PubMed Central

    Ofula, Victor O.; Sang, Rosemary C.; Konongoi, Samson L.; Sow, Abdourahmane; De Cock, Kevin M.; Tukei, Peter M.; Okoth, Fredrick A.; Swanepoel, Robert; Burt, Felicity J.; Waters, Norman C.; Coldren, Rodney L.

    2004-01-01

    In May 2003, the World Health Organization received reports about a possible outbreak of a hemorrhagic disease of unknown cause in the Imatong Mountains of southern Sudan. Laboratory investigations were conducted on 28 serum samples collected from patients in the Imatong region. Serum samples from 13 patients were positive for immunoglobulin M antibody to flavivirus, and serum samples from 5 patients were positive by reverse transcription–polymerase chain reaction with both the genus Flavivirus–reactive primers and yellow fever virus–specific primers. Nucleotide sequencing of the amplicons obtained with the genus Flavivirus oligonucleotide primers confirmed yellow fever virus as the etiologic agent. Isolation attempts in newborn mice and Vero cells from the samples yielded virus isolates from five patients. Rapid and accurate laboratory diagnosis enabled an interagency emergency task force to initiate a targeted vaccination campaign to control the outbreak. PMID:15207058

  4. Update on the watermelon vine decline virus and other whitefly-transmitted cucurbit viruses in Florida, and their effects on watermelon

    USDA-ARS?s Scientific Manuscript database

    Whitefly-transmitted Squash vein yellowing virus (SqVYV) was shown in the mid-2000’s to cause a watermelon vine decline in southwest and west-central Florida. More recently, Cucurbit leaf crumple virus (CuLCrV) and Cucurbit yellow stunting disorder virus (CYSDV), also whitefly-transmitted, have bee...

  5. Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm.

    PubMed

    Zhang, J S; Li, Z J; Wen, G L; Wang, Y L; Luo, L; Zhang, H J; Dong, H B

    2016-01-01

    An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH 4 -N, and NO 2 -N) were continually monitored through one tropical storm. The WSSV loads decreased when tropical storm made landfall, and substantially increased when typhoon passed. The variation of WSSV loads was correlated with DO, temperature, heterotrophic bacteria count, and ammonia-N concentrations. These results suggested that maintaining high level DO and promoting heterotrophic bacteria growth in the shrimp ponds might prevent the diseases' outbreak after the landfall of tropical storm.

  6. Investigation of a possible yellow fever epidemic and serosurvey for flavivirus infections in northern Cameroon, 1984

    PubMed Central

    Tsai, T. F.; Lazuick, J. S.; Ngah, R. W.; Mafiamba, P. C.; Quincke, G.; Monath, T. P.

    1987-01-01

    A cluster of fatal hepatitis cases in northern Cameroon in 1984 stimulated a field investigation to rule out an epidemic of yellow fever. A serosurvey of villages in the extreme north of the country, in a Sudan savanna (SS) phytogeographical zone, disclosed no evidence of recent yellow fever infection. However, further south, in a Guinea savanna (GS) phytogeographical zone, serological evidence was found of endemic yellow fever virus transmission. The results indicate a potential for epidemic spread of yellow fever virus from the southern GS zone to the nothern SS zone of Cameroon, where immunity in the population was low. PMID:3501739

  7. Investigation of a possible yellow fever epidemic and serosurvey for flavivirus infections in northern Cameroon, 1984.

    PubMed

    Tsai, T F; Lazuick, J S; Ngah, R W; Mafiamba, P C; Quincke, G; Monath, T P

    1987-01-01

    A cluster of fatal hepatitis cases in northern Cameroon in 1984 stimulated a field investigation to rule out an epidemic of yellow fever. A serosurvey of villages in the extreme north of the country, in a Sudan savanna (SS) phytogeographical zone, disclosed no evidence of recent yellow fever infection. However, further south, in a Guinea savanna (GS) phytogeographical zone, serological evidence was found of endemic yellow fever virus transmission. The results indicate a potential for epidemic spread of yellow fever virus from the southern GS zone to the nothern SS zone of Cameroon, where immunity in the population was low.

  8. Construction and applications of yellow fever virus replicons.

    PubMed

    Jones, Christopher T; Patkar, Chinmay G; Kuhn, Richard J

    2005-01-20

    Subgenomic replicons of yellow fever virus (YFV) were constructed to allow expression of heterologous reporter genes in a replication-dependent manner. Expression of the antibiotic resistance gene neomycin phosphotransferase II (Neo) from one of these YFV replicons allowed selection of a stable population of cells (BHK-REP cells) in which the YFV replicon persistently replicated. BHK-REP cells were successfully used to trans-complement replication-defective YFV replicons harboring large internal deletions within either the NS1 or NS3 proteins. Although replicons with large deletions in either NS1 or NS3 were trans-complemented in BHK-REP, replicons that contained deletions of NS3 were trans-complemented at lower levels. In addition, replicons that retained the N-terminal protease domain of NS3 in cis were trans-complemented with higher efficiency than replicons in which both the protease and helicase domains of NS3 were deleted. To study packaging of YFV replicons, Sindbis replicons were constructed that expressed the YFV structural proteins in trans. Using these Sindbis replicons, both replication-competent and trans-complemented, replication-defective YFV replicons could be packaged into pseudo-infectious particles (PIPs). Although these results eliminate a potential role of either NS1 or full-length NS3 in cis for packaging and assembly of the flavivirus virion, they do not preclude the possibility that these proteins may act in trans during these processes.

  9. Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus

    PubMed Central

    Salem, Nida’ M.; Miller, W. Allen; Rowhani, Adib; Golino, Deborah A.; Moyne, Anne-Laure; Falk, Bryce W.

    2015-01-01

    We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5′- and 3′-RACE showed the RSDaV genomic RNA to be 5,808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3′-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5′ ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5′ end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3′ cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae. PMID:18329064

  10. Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas.

    PubMed

    Bryant, Juliet E; Holmes, Edward C; Barrett, Alan D T

    2007-05-18

    Yellow fever virus (YFV) remains the cause of severe morbidity and mortality in South America and Africa. To determine the evolutionary history of this important reemerging pathogen, we performed a phylogenetic analysis of the largest YFV data set compiled to date, representing the prM/E gene region from 133 viral isolates sampled from 22 countries over a period of 76 years. We estimate that the currently circulating strains of YFV arose in Africa within the last 1,500 years and emerged in the Americas following the slave trade approximately 300-400 years ago. These viruses then spread westwards across the continent and persist there to this day in the jungles of South America. We therefore illustrate how gene sequence data can be used to test hypotheses of viral dispersal and demographics, and document the role of human migration in the spread of infectious disease.

  11. Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas

    PubMed Central

    Bryant, Juliet E; Holmes, Edward C; Barrett, Alan D. T

    2007-01-01

    Yellow fever virus (YFV) remains the cause of severe morbidity and mortality in South America and Africa. To determine the evolutionary history of this important reemerging pathogen, we performed a phylogenetic analysis of the largest YFV data set compiled to date, representing the prM/E gene region from 133 viral isolates sampled from 22 countries over a period of 76 years. We estimate that the currently circulating strains of YFV arose in Africa within the last 1,500 years and emerged in the Americas following the slave trade approximately 300–400 years ago. These viruses then spread westwards across the continent and persist there to this day in the jungles of South America. We therefore illustrate how gene sequence data can be used to test hypotheses of viral dispersal and demographics, and document the role of human migration in the spread of infectious disease. PMID:17511518

  12. Development of a quantitative NS1-capture enzyme-linked immunosorbent assay for early detection of yellow fever virus infection.

    PubMed

    Ricciardi-Jorge, Taissa; Bordignon, Juliano; Koishi, Andrea; Zanluca, Camila; Mosimann, Ana Luiza; Duarte Dos Santos, Claudia Nunes

    2017-11-24

    Yellow fever is an arboviral disease that causes thousands of deaths every year in Africa and the Americas. However, few commercial diagnostic kits are available. Non-structural protein 1 (NS1) is an early marker of several flavivirus infections and is widely used to diagnose dengue virus (DENV) infection. Nonetheless, little is known about the dynamics of Yellow fever virus (YFV) NS1 expression and secretion, to encourage its use in diagnosis. To tackle this issue, we developed a quantitative NS1-capture ELISA specific for YFV using a monoclonal antibody and recombinant NS1 protein. This test was used to quantify NS1 in mosquito and human cell line cultures infected with vaccine and wild YFV strains. Our results showed that NS1 was detectable in the culture supernatants of both cell lines; however, a higher concentration was maintained as cell-associated rather than secreted into the extracellular milieu. A panel of 73 human samples was used to demonstrate the suitability of YFV NS1 as a diagnostic tool, resulting in 80% sensitivity, 100% specificity, a 100% positive predictive value and a 95.5% negative predictive value compared with RT-PCR. Overall, the developed NS1-capture ELISA showed potential as a promising assay for the detection of early YF infection.

  13. Insights into human CD8(+) T-cell memory using the yellow fever and smallpox vaccines.

    PubMed

    Ahmed, Rafi; Akondy, Rama S

    2011-03-01

    Live virus vaccines provide a unique opportunity to study human CD8(+) T-cell memory in the context of a controlled, primary acute viral infection. Yellow fever virus-17D and Dryvax are two such live-virus vaccines that are highly efficacious, used worldwide and provide long-term immunity against yellow fever and smallpox respectively. In this review, we describe the properties of virus-specific memory CD8(+) T cells generated in smallpox and yellow fever vaccinees. We address fundamental questions regarding magnitude, functional quality and longevity of the CD8(+) T-cell response, which are otherwise challenging to address in humans. These findings provide insights into the attributes of the human immune system as well as provide a benchmark for the optimal quality of a CD8(+) T-cell response that can be used to evaluate novel candidate vaccines.

  14. Diversity and evolutionary history of lettuce necrotic yellows virus in Australia and New Zealand.

    PubMed

    Higgins, Colleen M; Chang, Wee-Leong; Khan, Subuhi; Tang, Joe; Elliott, Carol; Dietzgen, Ralf G

    2016-02-01

    Lettuce necrotic yellows virus (LNYV) is the type member of the genus Cytorhabdovirus, family Rhabdoviridae, and causes a severe disease of lettuce (Lactuca sativa L.). This virus has been described as endemic to Australia and New Zealand, with sporadic reports of a similar virus in Europe. Genetic variability studies of plant-infecting rhabdoviruses are scarce. We have extended a previous study on the variability of the LNYV nucleocapsid gene, comparing sequences from isolates sampled from both Australia and New Zealand, as well as analysing symptom expression on Nicotiana glutinosa. Phylogenetic and BEAST analyses confirm separation of LNYV isolates into two subgroups (I and II) and suggest that subgroup I is slightly older than subgroup II. No correlation was observed between isolate subgroup and disease symptoms on N. glutinosa. The origin of LNYV remains unclear; LNYV may have moved between native and weed hosts within Australia or New Zealand before infecting lettuce or may have appeared as a result of at least two incursions, with the first coinciding with the beginning of European agriculture in the region. The apparent extinction of subgroup I in Australia may have been due to less-efficient dispersal than that which has occurred for subgroup II - possibly a consequence of suboptimal interactions with plant and/or insect hosts. Introduction of subgroup II to New Zealand appears to be more recent. More-detailed epidemiological studies using molecular tools are needed to fully understand how LNYV interacts with its hosts and to determine where the virus originated.

  15. RNA interference-based resistance in transgenic tomato plants against Tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite.

    PubMed

    Ammara, Um e; Mansoor, Shahid; Saeed, Muhammad; Amin, Imran; Briddon, Rob W; Al-Sadi, Abdullah Mohammed

    2015-03-04

    Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus (family Geminiviridae) is responsible for heavy yield losses for tomato production around the globe. In Oman at least five distinct begomoviruses cause disease in tomato, including TYLCV. Unusually, TYLCV infections in Oman are sometimes associated with a betasatellite (Tomato leaf curl betasatellite [ToLCB]; a symptom modulating satellite). RNA interference (RNAi) can be used to develop resistance against begomoviruses at either the transcriptional or post-transcriptional levels. A hairpin RNAi (hpRNAi) construct to express double-stranded RNA homologous to sequences of the intergenic region, coat protein gene, V2 gene and replication-associated gene of Tomato yellow leaf curl virus-Oman (TYLCV-OM) was produced. Initially, transient expression of the hpRNAi construct at the site of virus inoculation was shown to reduce the number of plants developing symptoms when inoculated with either TYLCV-OM or TYLCV-OM with ToLCB-OM to Nicotiana benthamiana or tomato. Solanum lycopersicum L. cv. Pusa Ruby was transformed with the hpRNAi construct and nine confirmed transgenic lines were obtained and challenged with TYLCV-OM and ToLCB-OM by Agrobacterium-mediated inoculation. For all but one line, for which all plants remained symptomless, inoculation with TYLCV-OM led to a proportion (≤25%) of tomato plants developing symptoms of infection. For inoculation with TYLCV-OM and ToLCB-OM all lines showed a proportion of plants (≤45%) symptomatic. However, for all infected transgenic plants the symptoms were milder and virus titre in plants was lower than in infected non-transgenic tomato plants. These results show that RNAi can be used to develop resistance against geminiviruses in tomato. The resistance in this case is not immunity but does reduce the severity of infections and virus titer. Also, the betasatellite may compromise resistance, increasing the proportion of plants which ultimately show symptoms.

  16. Genome-Wide Association Mapping of Barley Yellow Dwarf Virus Tolerance in Spring Oat (Avena sativa L.)

    PubMed Central

    Foresman, Bradley J.; Oliver, Rebekah E.; Jackson, Eric W.; Chao, Shiaoman; Arruda, Marcio P.; Kolb, Frederic L.

    2016-01-01

    Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel. PMID:27175781

  17. STUDIES ON YELLOW FEVER IN SOUTH AMERICA

    PubMed Central

    Davis, Nelson C.; Shannon, Raymond C.

    1929-01-01

    1. Yellow fever virus has been transmitted from monkey to monkey both by the bites of Aëdes (Ochlerotatus) scapularis which had fed upon monkeys infected with yellow fever and by the injection of the ground up bodies of such mosquitoes. 2. A fatal infection has been obtained by the injection of the ground up bodies of Aëdes (Ochlerotatus) serratus, which had previously fed on an infected monkey, and a mild infection has been secured by the similar injection of Aëdes (Taeniorhynchus) taeniorhynchus. 3. No definite infection has been secured either by the bites or by the injection of Culex quinquefasciatus (C. fatigans). However, some of the experimental animals bitten by this species have been relatively immune following inoculations of blood or tissues containing virus. PMID:19869666

  18. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus

    PubMed Central

    Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-01-01

    Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector’s life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis’ life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector–based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector. PMID:27159134

  19. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus.

    PubMed

    Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-01-01

    Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.

  20. Formation of virions is strictly required for turnip yellows virus long-distance movement in plants.

    PubMed

    Hipper, Clémence; Monsion, Baptiste; Bortolamiol-Bécet, Diane; Ziegler-Graff, Véronique; Brault, Véronique

    2014-02-01

    Viral genomic RNA of the Turnip yellows virus (TuYV; genus Polerovirus; family Luteoviridae) is protected in virions formed by the major capsid protein (CP) and the minor component, the readthrough (RT*) protein. Long-distance transport, used commonly by viruses to systemically infect host plants, occurs in phloem sieve elements and two viral forms of transport have been described: virions and ribonucleoprotein (RNP) complexes. With regard to poleroviruses, virions have always been presumed to be the long-distance transport form, but the potential role of RNP complexes has not been investigated. Here, we examined the requirement of virions for polerovirus systemic movement by analysing CP-targeted mutants that were unable to form viral particles. We confirmed that TuYV mutants that cannot encapsidate into virions are not able to reach systemic leaves. To completely discard the possibility that the introduced mutations in CP simply blocked the formation or the movement of RNP complexes, we tested in trans complementation of TuYV CP mutants by providing WT CP expressed in transgenic plants. WT CP was able to facilitate systemic movement of TuYV CP mutants and this observation was always correlated with the formation of virions. This demonstrated clearly that virus particles are essential for polerovirus systemic movement.

  1. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector.

    PubMed

    Schneweis, Derek J; Whitfield, Anna E; Rotenberg, Dorith

    2017-01-01

    Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a circulative-propagative manner. Little is known about thrips vector response to TSWV during the infection process from larval acquisition to adult inoculation of plants. Whole-body transcriptome response to virus infection was determined for first-instar larval, pre-pupal and adult thrips using RNA-Seq. TSWV responsive genes were identified using preliminary sequence of a draft genome of F. occidentalis as a reference and three developmental-stage transcriptomes were assembled. Processes and functions associated with host defense, insect cuticle structure and development, metabolism and transport were perturbed by TSWV infection as inferred by ontologies of responsive genes. The repertoire of genes responsive to TSWV varied between developmental stages, possibly reflecting the link between thrips development and the virus dissemination route in the vector. This study provides the foundation for exploration of tissue-specific expression in response to TSWV and functional analysis of thrips gene function. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Surveillance for yellow Fever virus in non-human primates in southern Brazil, 2001-2011: a tool for prioritizing human populations for vaccination.

    PubMed

    Almeida, Marco A B; Cardoso, Jader da C; Dos Santos, Edmilson; da Fonseca, Daltro F; Cruz, Laura L; Faraco, Fernando J C; Bercini, Marilina A; Vettorello, Kátia C; Porto, Mariana A; Mohrdieck, Renate; Ranieri, Tani M S; Schermann, Maria T; Sperb, Alethéa F; Paz, Francisco Z; Nunes, Zenaida M A; Romano, Alessandro P M; Costa, Zouraide G; Gomes, Silvana L; Flannery, Brendan

    2014-03-01

    In Brazil, epizootics among New World monkey species may indicate circulation of yellow fever (YF) virus and provide early warning of risk to humans. Between 1999 and 2001, the southern Brazilian state of Rio Grande do Sul initiated surveillance for epizootics of YF in non-human primates to inform vaccination of human populations. Following a YF outbreak, we analyzed epizootic surveillance data and assessed YF vaccine coverage, timeliness of implementation of vaccination in unvaccinated human populations. From October 2008 through June 2009, circulation of YF virus was confirmed in 67 municipalities in Rio Grande do Sul State; vaccination was recommended in 23 (34%) prior to the outbreak and in 16 (24%) within two weeks of first epizootic report. In 28 (42%) municipalities, vaccination began more than two weeks after first epizootic report. Eleven (52%) of 21 laboratory-confirmed human YF cases occurred in two municipalities with delayed vaccination. By 2010, municipalities with confirmed YF epizootics reported higher vaccine coverage than other municipalities that began vaccination. In unvaccinated human populations timely response to epizootic events is critical to prevent human yellow fever cases.

  3. [The fourth horseman: The yellow fever].

    PubMed

    Vallejos-Parás, Alfonso; Cabrera-Gaytán, David Alejandro

    2017-01-01

    Dengue virus three, Chikunguya and Zika have entered the national territory through the south of the country. Cases and outbreaks of yellow fever have now been identified in the Americas where it threatens to expand. Although Mexico has a robust epidemiological surveillance system for vector-borne diseases, our country must be alert in case of its possible introduction into the national territory. This paper presents theoretical assumptions based on factual data on the behavior of yellow fever in the Americas, as well as reflections on the epidemiological surveillance of vector-borne diseases.

  4. Spatial And Temporal Analysis Of Multiple Whitefly Transmitted Virus Infections In Watermelon

    USDA-ARS?s Scientific Manuscript database

    Squash vein yellowing virus (SqVYV), Cucurbit leaf crumple virus (CuLCrV), and Cucurbit yellow stunting disorder virus (CYSDV) are three whitefly-transmitted viruses recently introduced to Florida that induce visually distinguishable symptoms on watermelon. The epidemiology of these three viruses wa...

  5. Field screening of sugarcane varieties for sugarcane yellow leaf in Louisiana

    USDA-ARS?s Scientific Manuscript database

    The causal agent of sugarcane yellow leaf is the Sugarcane yellow leaf virus (SCYLV), a member of Luteoviridae family. As with other luteoviruses, SCYLV is only transmitted by specific aphids in a circulative, non-propagative manner. In Louisiana, the primary vector of SCYLV is believed to be the su...

  6. Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm

    PubMed Central

    Zhang, J. S.; Li, Z. J.; Wen, G. L.; Wang, Y. L.; Luo, L.; Zhang, H. J.; Dong, H. B.

    2016-01-01

    An in-situ experiment was conducted to investigate the effect of tropical storm on the white spot syndrome virus (WSSV) loads in Litopenaeus vannamei rearing ponds. White spot syndrome virus loads, heterotrophic bacteria, Vibrio and water quality (including temperature, dissolved oxygen (DO), salinity, pH, NH4-N, and NO2-N) were continually monitored through one tropical storm. The WSSV loads decreased when tropical storm made landfall, and substantially increased when typhoon passed. The variation of WSSV loads was correlated with DO, temperature, heterotrophic bacteria count, and ammonia-N concentrations. These results suggested that maintaining high level DO and promoting heterotrophic bacteria growth in the shrimp ponds might prevent the diseases’ outbreak after the landfall of tropical storm. PMID:27822254

  7. Current Assessment of Yellow Fever and Yellow Fever Vaccine.

    PubMed

    Lefeuvre, Anabelle; Marianneau, Philippe; Deubel, Vincent

    2004-04-01

    Yellow fever (YF) is a mosquito-borne viral illness that causes hemorrhagic fever in tropical Africa and South America. Although a very safe and efficient vaccine (17D) is available, it is underused. An estimated 200,000 people are still infected annually, and YF remains a major public health concern. This article reviews the recent data on YF epidemiology, virology, and immunity, and analyzes the rare postvaccination adverse effects that have been recently reported. YF vaccine should be included in the expanded program of immunization for children and sustained for people living in or traveling to endemic areas. A surveillance of vaccinated people also should be reinforced. New research programs should be developed to identify molecular markers of YF virus tropism and attenuation, and to understand mechanisms of host responses to virus infection.

  8. Comparative susceptibility among three stocks of yellow perch, Perca flavescens (Mitchill), to viral haemorrhagic septicaemia virus strain IVb from the Great Lakes

    USGS Publications Warehouse

    Olson, W.; Emmenegger, E.; Glenn, J.; Winton, J.; Goetz, F.

    2013-01-01

    The Great Lakes strain of viral haemorrhagic septicaemia virus IVb (VHSV-IVb) is capable of infecting a wide number of naive species and has been associated with large fish kills in the Midwestern United States since its discovery in 2005. The yellow perch, Perca flavescens (Mitchill), a freshwater species commonly found throughout inland waters of the United States and prized for its high value in sport and commercial fisheries, is a species documented in several fish kills affiliated with VHS. In the present study, differences in survival after infection with VHSV IVb were observed among juvenile fish from three yellow perch broodstocks that were originally derived from distinct wild populations, suggesting innate differences in susceptibility due to genetic variance. While all three stocks were susceptible upon waterborne exposure to VHS virus infection, fish derived from the Midwest (Lake Winnebago, WI) showed significantly lower cumulative % survival compared with two perch stocks derived from the East Coast (Perquimans River, NC and Choptank River, MD) of the United States. However, despite differences in apparent susceptibility, clinical signs did not vary between stocks and included moderate-to-severe haemorrhages at the pelvic and pectoral fin bases and exophthalmia. After the 28-day challenge was complete, VHS virus was analysed in subsets of whole fish that had either survived or succumbed to the infection using both plaque assay and quantitative PCR methodologies. A direct correlation was identified between the two methods, suggesting the potential for both methods to be used to detect virus in a research setting.

  9. Tripartite Interactions of Barley Yellow Dwarf Virus, Sitobion avenae and Wheat Varieties

    PubMed Central

    Liu, Xiao-Feng; Hu, Xiang-Shun; Keller, Mike A.; Zhao, Hui-Yan; Wu, Yun-Feng; Liu, Tong-Xian

    2014-01-01

    The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing. PMID:25184214

  10. QTL for white spot syndrome virus resistance and the sex-determining locus in the Indian black tiger shrimp (Penaeus monodon).

    PubMed

    Robinson, Nicholas A; Gopikrishna, Gopalapillay; Baranski, Matthew; Katneni, Vinaya Kumar; Shekhar, Mudagandur S; Shanmugakarthik, Jayakani; Jothivel, Sarangapani; Gopal, Chavali; Ravichandran, Pitchaiyappan; Gitterle, Thomas; Ponniah, Alphis G

    2014-08-28

    Shrimp culture is a fast growing aquaculture sector, but in recent years there has been a shift away from tiger shrimp Penaeus monodon to other species. This is largely due to the susceptibility of P. monodon to white spot syndrome virus disease (Whispovirus sp.) which has impacted production around the world. As female penaeid shrimp grow more rapidly than males, mono-sex production would be advantageous, however little is known about genes controlling or markers associated with sex determination in shrimp. In this study, a mapped set of 3959 transcribed single nucleotide polymorphisms were used to scan the P. monodon genome for loci associated with resistance to white-spot syndrome virus and sex in seven full-sibling tiger shrimp families challenged with white spot syndrome virus. Linkage groups 2, 3, 5, 6, 17, 18, 19, 22, 27 and 43 were found to contain quantitative trait loci significantly associated with hours of survival after white spot syndrome virus infection (P < 0.05 after Bonferroni correction). Nine QTL were significantly associated with hours of survival. Of the SNPs mapping to these and other regions with suggestive associations, many were found to occur in transcripts showing homology to genes with putative immune functions of interest, including genes affecting the action of the ubiquitin-proteasome pathway, lymphocyte-cell function, heat shock proteins, the TOLL pathway, protein kinase signal transduction pathways, mRNA binding proteins, lectins and genes affecting the development and differentiation of the immune system (eg. RUNT protein 1A). Several SNPs significantly associated with sex were mapped to linkage group 30, the strongest associations (P < 0.001 after Bonferroni correction) for 3 SNPs located in a 0.8 cM stretch between positions 43.5 and 44.3 cM where the feminisation gene (FEM-1, affecting sexual differentiation in Caenorhabditis elegans) mapped. The markers for disease resistance and sexual differentiation identified by this study

  11. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  12. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease

    PubMed Central

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat. PMID:28932215

  13. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  14. Epidemiology and Association of Four Insect-Vectored Viruses in Florida Watermelon

    USDA-ARS?s Scientific Manuscript database

    Whitefly-transmitted Squash vein yellowing virus (SqVYV), Cucurbit leaf crumple virus (CuLCrV), Cucurbit yellow stunting disorder virus (CYSDV) and aphid-transmitted Papaya ringspot virus type W (PRSV-W) have had serious impact on watermelon production in southwest and west-central Florida in the pa...

  15. Comparative study on in vitro activities of citral, limonene and essential oils from Lippia citriodora and L. alba on yellow fever virus.

    PubMed

    Gómez, Luz Angela; Stashenko, Elena; Ocazionez, Raquel Elvira

    2013-02-01

    The aim of this study was to compare the antiviral activities in vitro of citral, limonene and essential oils (EOs) from Lippia citriodora and L. alba on the replication of yellow fever virus (YFV). Citral and EOs were active before and after virus adsorption on cells; IC50 values were between 4.3 and 25 microg/mL and SI ranged from 1.1 to 10.8. Results indicate that citral could contribute to the antiviral activity of the L. citriodora EO. Limonene was not active and seemed to play an insignificant role in the antiviral activity of the examined EOs.

  16. In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain).

    PubMed

    Ono, Lucy; Wollinger, Wagner; Rocco, Iray M; Coimbra, Terezinha L M; Gorin, Philip A J; Sierakowski, Maria-Rita

    2003-11-01

    Two galactomannans, one extracted from seeds of Mimosa scabrella, having a mannose to galactose ratio of 1.1, and another with a 1.4 ratio from seeds of Leucaena leucocephala, were sulfated. The products from M. scabrella (BRS) and L. leucocephala (LLS) had a degree of sulfation of 0.62 and 0.50, and an average molecular weight of 620x10(3) and 574x10(3) gmol(-1), respectively. Their activities against yellow fever virus (YFV; BeH111 strain) and dengue 1 virus (DEN-1; Hawaii strain) were evaluated. This was carried out in young mice following intraperitoneal infection with YFV. At a dose of 49 mgkg(-1), BRS and LLS gave protection against death in 87.7 and 96.5% of the mice, respectively. When challenged with 37.5 LD50 of YFV, mice previously inoculated with BRS+virus or LLS+virus, showed 93.3 and 100% resistance, respectively, with neutralization titers similar to mice injected with 25 LD50 of formaldehyde-inactivated YFV. In vitro experiments with YFV and DEN-1 in C6/36 cell culture assays in 24-well microplates showed that concentrations that produced a 100-fold decrease in virus titer of YFV were 586 and 385 mgl(-1) for BRS and LLS, respectively. For DEN-1 they were 347 and 37 mgl(-1), respectively. Sulfated galactomannans, thus demonstrate in vitro and in vivo activity against flaviviruses.

  17. A multiplex PCR method discriminating between the TYLCV and TYLCV-Mld clades of tomato yellow leaf curl virus.

    PubMed

    Lefeuvre, P; Hoareau, M; Delatte, H; Reynaud, B; Lett, J-M

    2007-09-01

    Tomato yellow leaf curl virus (TYLCV) is one of the causal agents of tomato yellow leaf curl disease (TYLCD) and can cause up to 100% yield losses in tomato fields. As TYLCV continues to spread, many isolates have been described in different parts of the world. Recently two closely related but distinct TYLCV clades, called TYLCV and TYLCV-Mld, have been identified. Isolates from those two clades differ mainly in the nucleotide sequences of their replication associated protein genes but do not display significantly different symptomatology. In order to improve monitoring of the rapidly expanding worldwide TYLCD epidemic, a multiplex polymerase chain reaction assay (mPCR) was developed. A set of three primers were designed to detect and characterize the TYLCV and TYLCV-Mld clade isolates. The specificity and sensitivity of the mPCR were validated on TYLCV infected tomato plants and Bemisia tabaci whiteflies. Being cheap, fast and highly sensitive this new diagnostic tool should greatly simplify efforts to trace the global spread of TYLCV.

  18. Screening, isolation and optimization of anti–white spot syndrome virus drug derived from terrestrial plants

    PubMed Central

    Ghosh, Upasana; Chakraborty, Somnath; Balasubramanian, Thangavel; Das, Punyabrata

    2014-01-01

    Objective To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various terrestrial plants and to evaluate the efficacy of the same in host–pathogen interaction model. Methods Thirty plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti–WSSV property in Litopenaeus vannamei. The best anti–WSSV plant isolate, TP22C was isolated and further analyzed. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug. Results Seven plant isolates exhibited significant survivability in host. The drug TP22C thus formulated showed 86% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of TP22C required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 750 mg/kg body weight/day survived at the rate of 86%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection. Conclusions The drug TP22C derived from Momordica charantia is a potent anti-white spot syndrome virus drug. PMID:25183066

  19. Risk of Disease from Mosquito and Tick Bites

    EPA Pesticide Factsheets

    Insect repellents help reduce the risk of mosquito and tick bites, which can transmit diseases including West Nile Virus, malaria, encephalitis, yellow fever, dengue fever, chikungunya virus, Lyme disease, Rocky Mountain spotted fever, and ehrlichiosis.

  20. Proteolytic Processing of Turnip Yellow Mosaic Virus Replication Proteins and Functional Impact on Infectivity▿

    PubMed Central

    Jakubiec, Anna; Drugeon, Gabrièle; Camborde, Laurent; Jupin, Isabelle

    2007-01-01

    Turnip yellow mosaic virus (TYMV), a positive-strand RNA virus belonging to the alphavirus-like supergroup, encodes its nonstructural replication proteins as a 206K precursor with domains indicative of methyltransferase (MT), proteinase (PRO), NTPase/helicase (HEL), and polymerase (POL) activities. Subsequent processing of 206K generates a 66K protein encompassing the POL domain and uncharacterized 115K and 85K proteins. Here, we demonstrate that TYMV proteinase mediates an additional cleavage between the PRO and HEL domains of the polyprotein, generating the 115K protein and a 42K protein encompassing the HEL domain that can be detected in plant cells using a specific antiserum. Deletion and substitution mutagenesis experiments and sequence comparisons indicate that the scissile bond is located between residues Ser879 and Gln880. The 85K protein is generated by a host proteinase and is likely to result from nonspecific proteolytic degradation occurring during protein sample extraction or analysis. We also report that TYMV proteinase has the ability to process substrates in trans in vivo. Finally, we examined the processing of the 206K protein containing native, mutated, or shuffled cleavage sites and analyzed the effects of cleavage mutations on viral infectivity and RNA synthesis by performing reverse-genetics experiments. We present evidence that PRO/HEL cleavage is critical for productive virus infection and that the impaired infectivity of PRO/HEL cleavage mutants is due mainly to defective synthesis of positive-strand RNA. PMID:17686855

  1. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti.

    PubMed

    van den Hurk, Andrew F; Hall-Mendelin, Sonja; Pyke, Alyssa T; Frentiu, Francesca D; McElroy, Kate; Day, Andrew; Higgs, Stephen; O'Neill, Scott L

    2012-01-01

    Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 10(4) times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression.

  2. Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti

    PubMed Central

    van den Hurk, Andrew F.; Hall-Mendelin, Sonja; Pyke, Alyssa T.; Frentiu, Francesca D.; McElroy, Kate; Day, Andrew; Higgs, Stephen; O'Neill, Scott L.

    2012-01-01

    Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 104 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression. PMID:23133693

  3. Expression kinetics of key genes in the early innate immune response to Great Lakes viral hemorrhagic septicemia virus IVb infection in yellow perch (Perca flavescens)

    USGS Publications Warehouse

    Olson, Wendy; Emmenegger, Eveline; Glenn, Jolene; Simchick, Crystal; Winton, Jim; Goetz, Frederick

    2013-01-01

    The recently discovered strain of viral hemorrhagic septicemia virus, VHSV-IVb, represents an example of the introduction of an extremely pathogenic rhabdovirus capable of infecting a wide variety of new fish species in a new host-environment. The goal of the present study was to delineate the expression kinetics of key genes in the innate immune response relative to the very early stages of VHSV-IVb infection using the yellow perch (Perca flavescens) as a model. Administration of VHSV-IVb by IP-injection into juvenile yellow perch resulted in 84% cumulative mortality, indicating their high susceptibility to this disease. In fish sampled in the very early stages of infection, a significant up-regulation of Mx gene expression in the liver, as well as IL-1β and SAA activation in the head kidney, spleen, and liver was directly correlated to viral load. The potential down-regulation of Mx in the hematopoietic tissues, head kidney and spleen, may represent a strategy utilized by the virus to increase replication.

  4. Proteomic characterization of seeds from yellow lupin (Lupinus luteus L.).

    PubMed

    Ogura, Takahiro; Ogihara, Jun; Sunairi, Michio; Takeishi, Hidetaka; Aizawa, Tomoko; Olivos-Trujillo, Marcos R; Maureira-Butler, Iván J; Salvo-Garrido, Haroldo E

    2014-06-01

    Yellow lupin (Lupinus luteus L.) is a legume crop containing a large amount of protein in its seeds. In this study, we constructed a seed-protein catalog to provide a foundation for further study of the seeds. A total of 736 proteins were identified in 341 2DE spots by nano-LC-MS/MS. Eight storage proteins were found as multiple spots in the 2DE gels. The 736 proteins correspond to 152 unique proteins as shown by UniRef50 clustering. Sixty-seven of the 152 proteins were associated with KEGG-defined pathways. Of the remaining proteins, 57 were classified according to a GO term. The functions of the remaining 28 proteins have yet to be determined. This is the first yellow lupin seed-protein catalog, and it contains considerably more data than previously reported for white lupin (L. albus L.). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental therapies for yellow fever

    PubMed Central

    Julander, Justin G.

    2013-01-01

    A number of viruses in the family Flaviviridae are the focus of efforts to develop effective antiviral therapies. Success has been achieved with inhibitors for the treatment of hepatitis C, and there is interest in clinical trials of drugs against dengue fever. Antiviral therapies have also been evaluated in patients with Japanese encephalitis and West Nile encephalitis. However, no treatment has been developed against the prototype flavivirus, yellow fever virus (YFV). Despite the availability of the live, attenuated 17D vaccine, thousands of cases of YF continue to occur each year in Africa and South America, with a significant mortality rate. In addition, a small number of vaccinees develop severe systemic infections with the 17D virus. This paper reviews current efforts to develop antiviral therapies, either directly targeting the virus or blocking detrimental host responses to infection. PMID:23237991

  6. Sequencing and Validation of Reference Genes to Analyze Endogenous Gene Expression and Quantify Yellow Dwarf Viruses Using RT-qPCR in Viruliferous Rhopalosiphum padi

    PubMed Central

    Wu, Keke; Liu, Wenwen; Mar, Thithi; Liu, Yan; Wu, Yunfeng; Wang, Xifeng

    2014-01-01

    The bird cherry-oat aphid (Rhopalosiphum padi), an important pest of cereal crops, not only directly sucks sap from plants, but also transmits a number of plant viruses, collectively the yellow dwarf viruses (YDVs). For quantifying changes in gene expression in vector aphids, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a touchstone method, but the selection and validation of housekeeping genes (HKGs) as reference genes to normalize the expression level of endogenous genes of the vector and for exogenous genes of the virus in the aphids is critical to obtaining valid results. Such an assessment has not been done, however, for R. padi and YDVs. Here, we tested three algorithms (GeNorm, NormFinder and BestKeeper) to assess the suitability of candidate reference genes (EF-1α, ACT1, GAPDH, 18S rRNA) in 6 combinations of YDV and vector aphid morph. EF-1α and ACT1 together or in combination with GAPDH or with GAPDH and 18S rRNA could confidently be used to normalize virus titre and expression levels of endogenous genes in winged or wingless R. padi infected with Barley yellow dwarf virus isolates (BYDV)-PAV and BYDV-GAV. The use of only one reference gene, whether the most stably expressed (EF-1α) or the least stably expressed (18S rRNA), was not adequate for obtaining valid relative expression data from the RT-qPCR. Because of discrepancies among values for changes in relative expression obtained using 3 regions of the same gene, different regions of an endogenous aphid gene, including each terminus and the middle, should be analyzed at the same time with RT-qPCR. Our results highlight the necessity of choosing the best reference genes to obtain valid experimental data and provide several HKGs for relative quantification of virus titre in YDV-viruliferous aphids. PMID:24810421

  7. Identification of a monopartite begomovirus associated with yellow vein mosaic of Mentha longifolia in Saudi Arabia.

    PubMed

    Sohrab, Sayed Sartaj; Daur, Ihsanullah

    2018-02-01

    Mentha is a very important crop grown and used extensively for many purposes in the Kingdom of Saudi Arabia. Begomoviruses are whitefly-transmitted viruses causing serious disease in many important plants exhibiting variable symptoms with significant economic loss globally. During farmers' field survey, yellow vein mosaic disease was observed in Mentha longifolia plants growing near tomato fields in Saudi Arabia. The causative agent was identified in 11 out of 19 samples using begomovirus-specific primers and the association of begomovirus with yellow vein mosaic disease in M. longifolia was confirmed. The full-length viral genome and betasatellite were amplified, cloned, and sequenced bidirectionally. The full DNA-A genome was found to have 2785 nucleotides with 1365 bp-associated betasatellite molecule. An attempt was made to amplify DNA-B, but none of the samples produced any positive amplicon of expected size which indicated the presence of monopartite begomovirus. The sequence identity matrix and phylogenetic analysis, based on full genome showed the highest identity (99.6%) with Tomato yellow leaf curl virus (TYLCV) and in phylogenetic analysis it formed a closed cluster with Tomato leaf curl virus infecting tomato and Corchorus crop in Saudi Arabia. The sequence analysis results of betasatellites showed the highest identity (98.9%) with Tomato yellow leaf curl betasatellites infecting tomato and phylogenetic analysis using betasatellites formed a close cluster with Tomato yellow leaf curl betasatellites infecting tomato and Corchorus crops, which has already been reported to cause yellow vein mosaic and leaf curl disease in many cultivated and weed crops growing in Saudi Arabia. The identified begomovirus associated with yellow vein mosaic disease in mentha could be a mutated strain of TYLCV and tentatively designated as TYLCV-Mentha isolate. Based on published data and latest information, this is the first report of identification of Tomato yellow leaf

  8. Yellow fever: a reemerging threat.

    PubMed

    Gardner, Christina L; Ryman, Kate D

    2010-03-01

    Yellow fever (YF) is a viral disease, endemic to tropical regions of Africa and the Americas, which principally affects humans and nonhuman primates and is transmitted via the bite of infected mosquitoes. Yellow fever virus (YFV) can cause devastating epidemics of potentially fatal, hemorrhagic disease. Despite mass vaccination campaigns to prevent and control these outbreaks, the risk of major YF epidemics, especially in densely populated, poor urban settings, both in Africa and South America, has greatly increased. Consequently, YF is considered an emerging, or reemerging disease of considerable importance. This article comprehensively reviews the history, microbiology, epidemiology, clinical presentation, diagnosis, and treatment of YFV, as well as the vaccines produced to combat YF. 2010 Elsevier Inc. All rights reserved.

  9. CD8+ T cells complement antibodies in protecting against yellow fever virus.

    PubMed

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A; Fenger, Christina; Rasmussen, Michael; Skjødt, Karsten; Finsen, Bente; Stryhn, Anette; Buus, Søren; Christensen, Jan P; Thomsen, Allan R

    2015-02-01

    The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral control in the presence of circulating YF-specific Abs. To our knowledge, this is the first time that YF-specific CD8(+) T cells have been demonstrated to possess antiviral activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Distinctive TLR7 signaling, type I IFN production, and attenuated innate and adaptive immune responses to yellow fever virus in a primate reservoir host.

    PubMed

    Mandl, Judith N; Akondy, Rama; Lawson, Benton; Kozyr, Natalia; Staprans, Silvija I; Ahmed, Rafi; Feinberg, Mark B

    2011-06-01

    Why cross-species transmissions of zoonotic viral infections to humans are frequently associated with severe disease when viruses responsible for many zoonotic diseases appear to cause only benign infections in their reservoir hosts is unclear. Sooty mangabeys (SMs), a reservoir host for SIV, do not develop disease following SIV infection, unlike nonnatural HIV-infected human or SIV-infected rhesus macaque (RM) hosts. SIV infections of SMs are characterized by an absence of chronic immune activation, in association with significantly reduced IFN-α production by plasmacytoid dendritic cells (pDCs) following exposure to SIV or other defined TLR7 or TLR9 ligands. In this study, we demonstrate that SM pDCs produce significantly less IFN-α following ex vivo exposure to the live attenuated yellow fever virus 17D strain vaccine, a virus that we show is also recognized by TLR7, than do RM or human pDCs. Furthermore, in contrast to RMs, SMs mount limited activation of innate immune responses and adaptive T cell proliferative responses, along with only transient antiviral Ab responses, following infection with yellow fever vaccine 17D strain. However, SMs do raise significant and durable cellular and humoral immune responses comparable to those seen in RMs when infected with modified vaccinia Ankara, a virus whose immunogenicity does not require TLR7/9 recognition. Hence, differences in the pattern of TLR7 signaling and type I IFN production by pDCs between primate species play an important role in determining their ability to mount and maintain innate and adaptive immune responses to specific viruses, and they may also contribute to determining whether disease follows infection.

  11. Ring structure amino acids affect the suppressor activity of melon aphid-borne yellows virus P0 protein.

    PubMed

    Han, Yan-Hong; Xiang, Hai-Ying; Wang, Qian; Li, Yuan-Yuan; Wu, Wen-Qi; Han, Cheng-Gui; Li, Da-Wei; Yu, Jia-Lin

    2010-10-10

    Melon aphid-borne yellows virus (MABYV) is a newly identified polerovirus occurring in China. Here, we demonstrate that the MABYV encoded P0 (P0(MA)) protein is a strong suppressor of post-transcriptional gene silencing (PTGS) with activity comparable to tobacco etch virus (TEV) HC-Pro. In addition we have shown that the LP F-box motif present at the N-terminus of P0(MA) is required for suppressor activity. Detailed mutational analyses on P0(MA) revealed that changing the conserved Trp 212 with non-ring structured amino acids altered silencing suppressor functions. Ala substitutions at positions 12 and 211 for Phe had no effect on P0 suppression-activity, whereas Arg and Glu substitutions had greatly decreased suppressor activity. Furthermore, substitutions targeting Phe at position 30 also resulted in reduced P0 suppression-activity. Altogether, these results suggest that ring structured Trp/Phe residues in P0 have important roles in suppressor activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    PubMed Central

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  13. Genetic population structure in the yellow mongoose, Cynictis penicillata.

    PubMed

    Van Vuuren, B J; Robinson, T J

    1997-12-01

    Phylogeographic structure was determined for the yellow mongoose, Cynictis penicillata, using mtDNA RFLPs and control region sequences. The RFLP analysis revealed 13 haplotypes which showed weak geographical patterning consistent with a recent range expansion from a refugial population(s). An analysis of molecular variance (AMOVA) revealed no correspondence between mtDNA phylogeography and subspecies delimitation, nor between matrilines and areas characterized by a high incidence of the viverrid-type rabies, of which the yellow mongoose is the principal vector. The lack of structure was also shown by control region sequences although four of the maternal lineages shared a near-perfect 81 bp repeat. We speculate that regional hot spots of the viverrid rabies biotype reflect population density differences in the yellow mongoose that are not underscored by genetic partitioning, at least at the level of resolution provided by our analyses.

  14. Treatment of yellow fever virus with an adenovirus-vectored interferon, DEF201, in a hamster model.

    PubMed

    Julander, Justin G; Ennis, Jane; Turner, Jeffrey; Morrey, John D

    2011-05-01

    Interferon (IFN) is an innate immune response protein that is involved in the antiviral response during viral infection. Treatment of acute viral infections with exogenous interferon may be effective but is generally not feasible for clinical use due to many factors, including cost, stability, and availability. To overcome these limitations, an adenovirus type 5-vectored consensus alpha IFN, termed DEF201, was constructed as a potential way to deliver sustained therapeutic levels of systemic IFN. To demonstrate the efficacy of DEF201 against acute flaviviral disease, various concentrations of the construct were administered as a single intranasal dose prior to virus infection, which resulted in a dose-responsive, protective effect in a hamster model of yellow fever virus (YFV) disease. A DEF201 dose of 5×10(7) PFU/animal administered intranasally just prior to YFV challenge protected 100% of the animals, while a 10-fold lower DEF201 dose exhibited lower, although significant, levels of protection. Virus titers in the liver and serum and levels of serum alanine aminotransferase were all significantly reduced as a result of DEF201 administration at all doses tested. No toxicity, as indicated by weight loss or gross morbidity, was observed in non-YFV-infected animals treated with DEF201. Protection of YFV-infected animals was observed when DEF201 was delivered as early as 7 days prior to virus challenge and as late as 2 days after virus challenge, demonstrating effective prophylaxis and therapy in a hamster model of disease. Overall, it appears that DEF201 is effective in the treatment of YFV in a hamster model.

  15. E Protein Domain III Determinants of Yellow Fever Virus 17D Vaccine Strain Enhance Binding to Glycosaminoglycans, Impede Virus Spread, and Attenuate Virulence▿

    PubMed Central

    Lee, Eva; Lobigs, Mario

    2008-01-01

    The yellow fever virus (YFV) 17D strain is one of the most effective live vaccines for human use, but the in vivo mechanisms for virulence attenuation of the vaccine and the corresponding molecular determinants remain elusive. The vaccine differs phenotypically from wild-type YFV by the loss of viscerotropism, despite replicative fitness in cell culture, and genetically by 20 amino acid changes predominantly located in the envelope (E) protein. We show that three residues in E protein domain III inhibit spread of 17D in extraneural tissues and attenuate virulence in type I/II interferon-deficient mice. One of these residues (Arg380) is a dominant glycosaminoglycan-binding determinant, which mainly accounts for more rapid in vivo clearance of 17D from the bloodstream in comparison to 17D-derived variants with wild-type-like E protein. While other mutations will account for loss of neurotropism and phenotypic stability, the described impact of E protein domain III changes on virus dissemination and virulence is the first rational explanation for the safety of the 17D vaccine in humans. PMID:18400851

  16. E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence.

    PubMed

    Lee, Eva; Lobigs, Mario

    2008-06-01

    The yellow fever virus (YFV) 17D strain is one of the most effective live vaccines for human use, but the in vivo mechanisms for virulence attenuation of the vaccine and the corresponding molecular determinants remain elusive. The vaccine differs phenotypically from wild-type YFV by the loss of viscerotropism, despite replicative fitness in cell culture, and genetically by 20 amino acid changes predominantly located in the envelope (E) protein. We show that three residues in E protein domain III inhibit spread of 17D in extraneural tissues and attenuate virulence in type I/II interferon-deficient mice. One of these residues (Arg380) is a dominant glycosaminoglycan-binding determinant, which mainly accounts for more rapid in vivo clearance of 17D from the bloodstream in comparison to 17D-derived variants with wild-type-like E protein. While other mutations will account for loss of neurotropism and phenotypic stability, the described impact of E protein domain III changes on virus dissemination and virulence is the first rational explanation for the safety of the 17D vaccine in humans.

  17. Identification of Dengue and Chikungunya Cases Among Suspected Cases of Yellow Fever in the Democratic Republic of the Congo.

    PubMed

    Makiala-Mandanda, Sheila; Ahuka-Mundeke, Steve; Abbate, Jessica L; Pukuta-Simbu, Elisabeth; Nsio-Mbeta, Justus; Berthet, Nicolas; Leroy, Eric Maurice; Becquart, Pierre; Muyembe-Tamfum, Jean-Jacques

    2018-05-16

    For more than 95% of acute febrile jaundice cases identified through surveillance for yellow fever, a reemerging arthropod-borne viral disease, no etiological exploration is ever done. The aim of this study was to test for other arthropod-borne viruses that can induce the same symptoms in patients enrolled in the yellow fever surveillance in the Democratic Republic of the Congo (DRC). Of 652 patients included in the surveillance of yellow fever in DRC from January 2003 to January 2012, 453 patients that tested negative for yellow fever virus (YFV) immunoglobulin M (IgM) antibodies were selected for the study. Real-time polymerase chain reaction was performed for the detection of dengue, West Nile, Chikungunya, O'nyong-nyong, Rift Valley fever, Zika, and YFV. The average age of patients was 22.1 years. We reported 16 cases (3.5%; confidence interval [CI]: 0.8-5.2) of dengue (serotypes 1 and 2) and 2 cases (0.4%; CI: 0.0-1.0) of Chikungunya. Three patients were co-infected with the two serotypes of dengue virus. Three cases of dengue were found in early July 2010 from the city of Titule (Oriental province) during a laboratory-confirmed outbreak of yellow fever, suggesting simultaneous circulation of dengue and yellow fever viruses. This study showed that dengue and Chikungunya viruses are potential causes of acute febrile jaundice in the DRC and highlights the need to consider dengue and Chikungunya diagnosis in the integrated disease surveillance and response program in the DRC. A prospective study is necessary to establish the epidemiology of these diseases.

  18. Insecticidal Effects on the Spatial Progression of Tomato Yellow Leaf Curl Virus and Movement of Its Whitefly Vector in Tomato.

    PubMed

    Dempsey, M; Riley, D G; Srinivasan, R

    2017-06-01

    Commercial management of whitefly-transmitted Tomato yellow leaf curl virus (TYLCV) typically relies on insecticide control of whitefly vectors as a first line of defense. We quantified this effect in crop tunnel studies, with validation in a tomato field setting. Tomato yellow leaf curl virus-infected and Bemisia tabaci (Gennadius)-infested source plants were planted at the beginning of tunneled rows to serve as inoculum source, so that movement of whiteflies and TYLCV symptoms could be tracked down the length of the tunnel over time. Tunnel study results showed that proximity to the source plant was a more important factor than insecticide treatments. Insecticide-treated tomato transplants did tend to suppress whitefly incidence and slowed TYLCV movement in comparison with the untreated check; however, tomato plants planted closer to the source plant had higher incidence of whiteflies and TYLCV infection, regardless of treatment. In a large tomato plot study with a controlled inoculum source, insecticide treatments significantly reduced the spread of TYLCV. When uninhibited by insecticide treatment, 80% of the TYLCV spread was restricted to <15 m from the source plant (<11 m in the validation study), with insecticide treatment generally reducing the distance and magnitude of this spread. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Is it time for a new yellow fever vaccine?

    PubMed

    Hayes, Edward B

    2010-11-29

    An inexpensive live attenuated vaccine (the 17D vaccine) against yellow fever has been effectively used to prevent yellow fever for more than 70 years. Interest in developing new inactivated vaccines has been spurred by recognition of rare but serious, sometimes fatal adverse events following live virus vaccination. A safer inactivated yellow fever vaccine could be useful for vaccinating people at higher risk of adverse events from the live vaccine, but could also have broader global health utility by lowering the risk-benefit threshold for assuring high levels of yellow fever vaccine coverage. If ongoing trials demonstrate favorable immunogenicity and safety compared to the current vaccine, the practical global health utility of an inactivated vaccine is likely to be determined mostly by cost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Recombinant Yellow Fever Viruses Elicit CD8+ T Cell Responses and Protective Immunity against Trypanosoma cruzi

    PubMed Central

    Nogueira, Raquel Tayar; Nogueira, Alanderson Rocha; Pereira, Mirian Claudia Souza; Rodrigues, Maurício Martins; Neves, Patrícia Cristina da Costa; Galler, Ricardo; Bonaldo, Myrna Cristina

    2013-01-01

    Chagas’ disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8+ T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8+ cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general. PMID:23527169

  1. Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypanosoma cruzi.

    PubMed

    Nogueira, Raquel Tayar; Nogueira, Alanderson Rocha; Pereira, Mirian Claudia Souza; Rodrigues, Maurício Martins; Neves, Patrícia Cristina da Costa; Galler, Ricardo; Bonaldo, Myrna Cristina

    2013-01-01

    Chagas' disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8(+) T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8(+) cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.

  2. Horizontal pollen transmission of Gentian ovary ring-spot virus is initiated during penetration of the stigma and style by infected pollen tubes.

    PubMed

    Isogai, Masamichi; Kamata, Yukie; Ando, Syunpei; Kamata, Misaki; Shirakawa, Asuka; Sekine, Ken-Taro; Yoshikawa, Nobuyuki

    2017-03-01

    Gentian ovary ring-spot virus (GORV) infected gentian plants by pollination with GORV-infected gentian pollen grains, but the virus was not horizontally transmitted to gentian plants by transfer of pollen from GORV-infected Nicotiana benthamiana plants. However, N. benthamiana plants were infected with the virus by pollination with infected gentian pollen as well as by pollination with infected N. benthamiana pollen. When infected gentian pollen grains were placed on N. benthamiana stigmas, germinating pollen tubes penetrated into the stigmas and the styles (stigma-style). Virus infection occurred during penetration of the stigma-style, and the virus subsequently spread systemically to the mother plant. On the other hand, most infected N. benthamiana pollen grains failed to germinate on gentian stigmas, and virus infections were not detected in the stigma-style. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance.

    PubMed

    Wai, T; Grumet, R

    1995-09-01

    The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20-30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.

  4. Complete genome sequence of jacquemontia yellow vein virus, a novel begomovirus infecting Jacquemontia tamnifolia in Venezuela.

    PubMed

    Fiallo-Olivé, Elvira; Chirinos, Dorys T; Geraud-Pouey, Francis; Navas-Castillo, Jesús

    2017-08-01

    Wild plants of the family Convolvulaceae are hosts for a few New World begomoviruses (genus Begomovirus, family Geminiviridae). In this work, we report the complete genome sequence of a new begomovirus infecting the wild convolvulaceous plant Jacquemontia tamnifolia in Venezuela. The cloned bipartite genome showed the organization of typical New World begomoviruses and was found to be phylogenetically related to those of begomoviruses from Venezuela and other Caribbean countries. Several recombination events have been shown to have occurred involving genome fragment exchange with related begomoviruses infecting crops such as tomato and cucurbits and wild plants, including Jacquemontia sp. We propose the name jacquemontia yellow vein virus (JacYVV) for this new begomovirus.

  5. The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner.

    PubMed

    Carbonell, Alberto; Dujovny, Gabriela; García, Juan Antonio; Valli, Adrian

    2012-02-01

    Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.

  6. Surveillance for Yellow Fever Virus in Non-Human Primates in Southern Brazil, 2001–2011: A Tool for Prioritizing Human Populations for Vaccination

    PubMed Central

    Almeida, Marco A. B.; Cardoso, Jader da C.; dos Santos, Edmilson; da Fonseca, Daltro F.; Cruz, Laura L.; Faraco, Fernando J. C.; Bercini, Marilina A.; Vettorello, Kátia C.; Porto, Mariana A.; Mohrdieck, Renate; Ranieri, Tani M. S.; Schermann, Maria T.; Sperb, Alethéa F.; Paz, Francisco Z.; Nunes, Zenaida M. A.; Romano, Alessandro P. M.; Costa, Zouraide G.; Gomes, Silvana L.; Flannery, Brendan

    2014-01-01

    In Brazil, epizootics among New World monkey species may indicate circulation of yellow fever (YF) virus and provide early warning of risk to humans. Between 1999 and 2001, the southern Brazilian state of Rio Grande do Sul initiated surveillance for epizootics of YF in non-human primates to inform vaccination of human populations. Following a YF outbreak, we analyzed epizootic surveillance data and assessed YF vaccine coverage, timeliness of implementation of vaccination in unvaccinated human populations. From October 2008 through June 2009, circulation of YF virus was confirmed in 67 municipalities in Rio Grande do Sul State; vaccination was recommended in 23 (34%) prior to the outbreak and in 16 (24%) within two weeks of first epizootic report. In 28 (42%) municipalities, vaccination began more than two weeks after first epizootic report. Eleven (52%) of 21 laboratory-confirmed human YF cases occurred in two municipalities with delayed vaccination. By 2010, municipalities with confirmed YF epizootics reported higher vaccine coverage than other municipalities that began vaccination. In unvaccinated human populations timely response to epizootic events is critical to prevent human yellow fever cases. PMID:24625681

  7. Categorizing Sugarcane Cultivar Resistance to the Sugarcane Aphid and Yellow Sugarcane Aphid (Hemiptera: Aphidae)

    USDA-ARS?s Scientific Manuscript database

    Sugarcane in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). The main problem associated with M. sacchari is transmission of sugarcane yellow leaf virus, a disease that has been added to certifica...

  8. The effects of a thermophile metabolite, tryptophol, upon protecting shrimp against white spot syndrome virus.

    PubMed

    Zhu, Fei; Jin, Min

    2015-12-01

    White spot syndrome virus (WSSV) is a shrimp pathogen responsible for significant economic loss in commercial shrimp farms and until now, there has been no effective approach to control this disease. In this study, tryptophol (indole-3-ethanol) was identified as a metabolite involved in bacteriophage-thermophile interactions. The dietary addition of tryptophol reduced the mortality in shrimp Marsupenaeus japonicus when orally challenged with WSSV. Our results revealed that 50 mg/kg tryptophol has a better protective effect in shrimp than 10 or 100 mg/kg tryptophol. WSSV copies in shrimp were reduced significantly (P < 0.01) when supplemented with 50 mg/kg tryptophol, indicating that virus replication was inhibited by tryptophol. Consequently, tryptophol represents an effective antiviral dietary supplement for shrimp, and thus holds significant promise as a novel and efficient therapeutic approach to control WSSV in shrimp aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effects of Point Mutations in the Major Capsid Protein of Beet Western Yellows Virus on Capsid Formation, Virus Accumulation, and Aphid Transmission

    PubMed Central

    Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.

    2003-01-01

    Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348

  10. Dengue-yellow fever sera cross-reactivity; challenges for diagnosis.

    PubMed

    Houghton-Triviño, Natalia; Montaña, Diana; Castellanos, Jaime

    2008-01-01

    The Flavivirus genera share epitopes inducing cross-reactive antibodies leading to great difficulty in differentially diagnosing flaviviral infections. This work was aimed at evaluating the complexity of dengue and yellow fever serological differential diagnosis. Dengue antibody capture ELISA and a yellow fever neutralisation test were carried out on 13 serum samples obtained from yellow fever patients, 20 acute serum samples from dengue patients and 19 voluntary serum samples pre- and post-vaccination with YF vaccine. Dengue ELISA revealed IgM reactivity in 46,2 % of yellow fever patients and 42 % of vaccinees. Sixteen out of 20 dengue patients (80 %) had high YF virus neutralisation titres. Such very high cross-reactivity data challenged differential laboratory diagnosis of dengue and yellow fever in areas where both flaviviruses co-circulate. New laboratory strategies are thus needed for improving the tests and providing a specific laboratory diagnosis. Cross-reactivity between Flaviviruses represents a great difficulty for epidemiological surveillance and preventing dengue, both of which demand urgent attention.

  11. Identification of two new races of Diplocarpon rosae Wolf, the causal agent of rose black spot disease

    USDA-ARS?s Scientific Manuscript database

    The fungal pathogen, Diplocarpon rosae Wolf, infects only roses (Rosa spp.) and leads to rose black spot disease. Rose black spot is the most problematic disease of outdoor grown roses worldwide, due to the potential for rapid leaf yellowing and defoliation. Plants repeatedly defoliated from black ...

  12. Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants.

    PubMed

    Chiba, Soutaro; Miyanishi, Masaki; Andika, Ida Bagus; Kondo, Hideki; Tamada, Tetsuo

    2008-05-01

    The RNA3-encoded p25 protein of beet necrotic yellow vein virus (BNYVV) is responsible for the production of rhizomania symptoms of sugar beet roots (Beta vulgaris subsp. vulgaris). Here, it was found that the presence of the p25 protein is also associated with the resistance response in rub-inoculated leaves of sugar beet and wild beet (Beta vulgaris subsp. maritima) plants. The resistance phenotype displayed a range of symptoms from no visible lesions to necrotic or greyish lesions at the inoculation site, and only very low levels of virus and viral RNA accumulated. The susceptible phenotype showed large, bright yellow lesions and developed high levels of virus accumulation. In roots after Polymyxa betae vector inoculation, however, no drastic differences in virus and viral RNA accumulation levels were found between plants with susceptible and resistant phenotypes, except at an early stage of infection. There was a genotype-specific interaction between BNYVV strains and two selected wild beet lines (MR1 and MR2) and sugar beet cultivars. Sequence analysis of natural BNYVV isolates and site-directed mutagenesis of the p25 protein revealed that 3 aa residues at positions 68, 70 and 179 are important in determining the resistance phenotype, and that host-genotype specificity is controlled by single amino acid changes at position 68. The mechanism of the occurrence of resistance-breaking BNYVV strains is discussed.

  13. Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations.

    PubMed

    Gómez-Aix, Cristina; Pascual, Laura; Cañizares, Joaquín; Sánchez-Pina, María Amelia; Aranda, Miguel A

    2016-06-07

    Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon have been extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes for breeding new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3'-untranslated regions. Melon plant tissues from the cultivars Tendral or Planters Jumbo were locally infected with either MNSV-Mα5 or MNSV-Mα5/3'264 and analysed in a time-course experiment. Principal component and hierarchical clustering analyses identified treatment (healthy vs. infected) and sampling date (3 vs. 5 dpi) as the primary and secondary variables, respectively. Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3'264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3'264 specifically deregulated 2925 and 1618 genes in Tendral and Planters Jumbo, respectively. The GO categories that were significantly affected were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed for the identification of two groups that were specifically deregulated by MNSV-Mα5/3'264 with respect to MNSV-Mα5 in Tendral, and one group that was antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3'264 infection. Genes in these three groups belonged to diverse functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only

  14. Genetic diversity and potential vectors and reservoirs of Cucurbit aphid-borne yellows virus in southeastern Spain.

    PubMed

    Kassem, Mona A; Juarez, Miguel; Gómez, Pedro; Mengual, Carmen M; Sempere, Raquel N; Plaza, María; Elena, Santiago F; Moreno, Aranzazu; Fereres, Alberto; Aranda, Miguel A

    2013-11-01

    The genetic variability of a Cucurbit aphid-borne yellows virus (CABYV) (genus Polerovirus, family Luteoviridae) population was evaluated by determining the nucleotide sequences of two genomic regions of CABYV isolates collected in open-field melon and squash crops during three consecutive years in Murcia (southeastern Spain). A phylogenetic analysis showed the existence of two major clades. The sequences did not cluster according to host, year, or locality of collection, and nucleotide similarities among isolates were 97 to 100 and 94 to 97% within and between clades, respectively. The ratio of nonsynonymous to synonymous nucleotide substitutions reflected that all open reading frames have been under purifying selection. Estimates of the population's genetic diversity were of the same magnitude as those previously reported for other plant virus populations sampled at larger spatial and temporal scales, suggesting either the presence of CABYV in the surveyed area long before it was first described, multiple introductions, or a particularly rapid diversification. We also determined the full-length sequences of three isolates, identifying the occurrence and location of recombination events along the CABYV genome. Furthermore, our field surveys indicated that Aphis gossypii was the major vector species of CABYV and the most abundant aphid species colonizing melon fields in the Murcia (Spain) region. Our surveys also suggested the importance of the weed species Ecballium elaterium as an alternative host and potential virus reservoir.

  15. Analysis of an RNA-seq Strand-Specific Library from an East Timorese Cucumber Sample Reveals a Complete Cucurbit aphid-borne yellows virus Genome.

    PubMed

    Maina, Solomon; Edwards, Owain R; de Almeida, Luis; Ximenes, Abel; Jones, Roger A C

    2017-05-11

    Analysis of an RNA-seq library from cucumber leaf RNA extracted from a fast technology for analysis of nucleic acids (FTA) card revealed the first complete genome of Cucurbit aphid-borne yellows virus (CABYV) from East Timor. We compare it with 35 complete CABYV genomes from other world regions. It most resembled the genome of the South Korean isolate HD118. Copyright © 2017 Maina et al.

  16. Analysis of an RNA-seq Strand-Specific Library from an East Timorese Cucumber Sample Reveals a Complete Cucurbit aphid-borne yellows virus Genome

    PubMed Central

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2017-01-01

    ABSTRACT Analysis of an RNA-seq library from cucumber leaf RNA extracted from a fast technology for analysis of nucleic acids (FTA) card revealed the first complete genome of Cucurbit aphid-borne yellows virus (CABYV) from East Timor. We compare it with 35 complete CABYV genomes from other world regions. It most resembled the genome of the South Korean isolate HD118. PMID:28495776

  17. Genomic and structural features of the yellow fever virus from the 2016-2017 Brazilian outbreak.

    PubMed

    Gómez, Mariela Martínez; Abreu, Filipe Vieira Santos de; Santos, Alexandre Araujo Cunha Dos; Mello, Iasmim Silva de; Santos, Marta Pereira; Ribeiro, Ieda Pereira; Ferreira-de-Brito, Anielly; Miranda, Rafaella Moraes de; Castro, Marcia Gonçalves de; Ribeiro, Mario Sergio; Laterrière Junior, Roberto da Costa; Aguiar, Shirlei Ferreira; Meira, Guilherme Louzada Silva; Antunes, Deborah; Torres, Pedro Henrique Monteiro; Mir, Daiana; Vicente, Ana Carolina Paulo; Guimarães, Ana Carolina Ramos; Caffarena, Ernesto Raul; Bello, Gonzalo; Lourenço-de-Oliveira, Ricardo; Bonaldo, Myrna Cristina

    2018-04-01

    Southeastern Brazil has been suffering a rapid expansion of a severe sylvatic yellow fever virus (YFV) outbreak since late 2016, which has reached one of the most populated zones in Brazil and South America, heretofore a yellow fever-free zone for more than 70 years. In the current study, we describe the complete genome of 12 YFV samples from mosquitoes, humans and non-human primates from the Brazilian 2017 epidemic. All of the YFV sequences belong to the modern lineage (sub-lineage 1E) of South American genotype I, having been circulating for several months prior to the December 2016 detection. Our data confirm that viral strains associated with the most severe YF epidemic in South America in the last 70 years display unique amino acid substitutions that are mainly located in highly conserved positions in non-structural proteins. Our data also corroborate that YFV has spread southward into Rio de Janeiro state following two main sylvatic dispersion routes that converged at the border of the great metropolitan area comprising nearly 12 million unvaccinated inhabitants. Our original results can help public health authorities to guide the surveillance, prophylaxis and control measures required to face such a severe epidemiological problem. Finally, it will also inspire other workers to further investigate the epidemiological and biological significance of the amino acid polymorphisms detected in the Brazilian 2017 YFV strains.

  18. Expression, purification and crystallization of two major envelope proteins from white spot syndrome virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xuhua; Hew, Choy Leong, E-mail: dbshewcl@nus.edu.sg

    2007-07-01

    The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals ofmore » SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.« less

  19. RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea.

    PubMed

    Kumar, Sanjeev; Tanti, Bhaben; Patil, Basavaprabhu L; Mukherjee, Sunil Kumar; Sahoo, Lingaraj

    2017-01-01

    Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea.

  20. RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea

    PubMed Central

    Kumar, Sanjeev; Tanti, Bhaben; Patil, Basavaprabhu L.; Mukherjee, Sunil Kumar

    2017-01-01

    Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea. PMID:29077738

  1. [Yellow fever virus 17D neutralising antibodies in vaccinated Colombian people and unvaccinated ones having immunity against dengue].

    PubMed

    Gómez, Sergio Y; Ocazionez, Raquel E

    2008-01-01

    Determining the frequency of yellow fever seroprotective antibody neutralising titres (YF-NT >or=1:10) in Colombians vaccinated with the 17 D virus and ascertaining the extent to which YF virus can be neutralised by dengue antibodies. Serum samples were taken from 100 subjects who showed their vaccination record and from 116 residents in municipalities (Norte de Santander) affected by a wild YF outbreak in 2002-2003 who were reported to have been YF vaccinated. Sera from individuals with (n=61) and without (n=16) dengue antibodies who had never been YF vaccinated were included. All the sera were tested by 75 % YF plaque-reduction neutralization test. YF-NT titres >or=1:10 were founded in 90 % of subjects with vaccination recorded with minors variations in relation to age. In contrast, there was correlation between decrease of seroprotective YF-NT titres frequency and increase of immunization time (r=0.95; p=0.04). In residents in YF endemic area, YF-NT titres >or= 1.10 were founded in 92,6 % adults and 69 % children. YF 17 D virus was neutralized (52-100 %) by dengue sera more efficiently than non-dengue immune sera (p<0.001). Individuals immunised with YF vaccine 17 D could not be protected against YF: up to 31% children and 10 % adults. Dengue antibodies inhibited YF virus and its significance in terms of YF protection must be investigated.

  2. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    PubMed

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  3. Realms of the Viruses Online

    ERIC Educational Resources Information Center

    Liu, Dennis

    2007-01-01

    Viruses have evolved strategies for infecting all taxa, but most viruses are highly specific about their cellular host. In humans, viruses cause diverse diseases, from chronic but benign warts, to acute and deadly hemorrhagic fever. Viruses have entertaining names like Zucchini Yellow Mosaic, Semliki Forest, Coxsackie, and the original terminator,…

  4. White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity.

    PubMed

    Ramos-Carreño, Santiago; Valencia-Yáñez, Ricardo; Correa-Sandoval, Francisco; Ruíz-García, Noé; Díaz-Herrera, Fernando; Giffard-Mena, Ivone

    2014-09-01

    White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high ([40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities ([28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.

  5. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission.

    PubMed

    Rotenberg, Dorith; Krishna Kumar, Nallur K; Ullman, Diane E; Montero-Astúa, Mauricio; Willis, David K; German, Thomas L; Whitfield, Anna E

    2009-04-01

    Tomato spotted wilt virus (TSWV) is transmitted in a persistent propagative manner by Frankliniella occidentalis, the western flower thrips. While it is well established that vector competence depends on TSWV acquisition by young larvae and virus replication within the insect, the biological factors associated with frequency of transmission have not been well characterized. We hypothesized that the number of transmission events by a single adult thrips is determined, in part, by the amount of virus harbored (titer) by the insect. Transmission time-course experiments were conducted using a leaf disk assay to determine the efficiency and frequency of TSWV transmission following 2-day inoculation access periods (IAPs). Virus titer in individual adult thrips was determined by real-time quantitative reverse transcriptase-PCR (qRT-PCR) at the end of the experiments. On average, 59% of adults transmitted the virus during the first IAP (2 to 3 days post adult-eclosion). Male thrips were more efficient at transmitting TSWV multiple times compared with female thrips of the same cohort. However, females harbored two to three times more copies of TSWV-N RNA per insect, indicating that factors other than absolute virus titer in the insect contribute to a successful transmission event. Examination of virus titer in individual insects at the end of the third IAP (7 days post adult-eclosion) revealed significant and consistent positive associations between frequency of transmission and virus titer. Our data support the hypothesis that a viruliferous thrips is more likely to transmit multiple times if it harbors a high titer of virus. This quantitative relationship provides new insights into the biological parameters that may influence the spread of TSWV by thrips.

  6. Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus.

    PubMed Central

    Leiser, R M; Ziegler-Graff, V; Reutenauer, A; Herrbach, E; Lemaire, O; Guilley, H; Richards, K; Jonard, G

    1992-01-01

    Beet western yellows luteovirus, like other luteoviruses, cannot be transmitted to host plants by mechanical inoculation but requires an aphid vector, a feature that has heretofore presented a serious obstacle to the study of such viruses. In this paper we describe use of agroinfection to infect hosts with beet western yellows virus without recourse to aphids. Agroinfection is a procedure for introducing a plant virus into a host via Agrobacterium tumefaciens harboring a Ti plasmid, which can efficiently transfer a portion of the plasmid (T-DNA) to plant cells near a wound. The viral genome must be inserted into the T-DNA in such a way that it can escape and begin autonomous replication, a requirement that has, so far, limited agroinfection to pathogens with a circular genome. We have cloned cDNA corresponding to the complete beet western yellows virus RNA genome between the cauliflower mosaic virus 35S promoter and the nopaline synthase transcription termination signal. In one construct, a self-cleaving (ribozyme) sequence was included so as to produce a transcript in planta with a 3' extremity almost identical to natural viral RNA. When inoculated mechanically to host plants, the naked plasmid DNA was not infectious but, when introduced into T-DNA and agroinfected to plants, both the construct with and without the ribozyme produced an infection. This approach should be applicable to virtually any plant virus with a linear plus-strand RNA genome. Images PMID:1409615

  7. Molecular Evidence for Occurrence of Tomato leaf curl New Delhi virus in Ash Gourd (Benincasa hispida) Germplasm Showing a Severe Yellow Stunt Disease in India.

    PubMed

    Roy, Anirban; Spoorthi, P; Panwar, G; Bag, Manas Kumar; Prasad, T V; Kumar, Gunjeet; Gangopadhyay, K K; Dutta, M

    2013-06-01

    An evaluation of 70 accessions of ash gourd germplasm grown at National Bureau of Plant Genetic Resources, New Delhi, India during Kharif season (2010) showed natural occurrence of a yellow stunt disease in three accessions (IC554690, IC036330 and Pusa Ujjwal). A set of begomovirus specific primers used in PCR gave expected amplicon from all the symptomatic plants; however no betasatellite was detected. Complete genome of the begomovirus (DNA-A and DNA-B), amplified through rolling circle amplification, was cloned and sequenced. The begomovirus under study shared high sequence identities to different isolates of Tomato leaf curl New Delhi virus (ToLCNDV) and clustered with them. Among those isolates, the DNA-A and DNA-B of the present begomovirus isolate showed highest 99.6 and 96.8 % sequence identities, respectively with an isolate reported on pumpkin from India (DNA-A: AM286433, DNA-B: AM286435). Based on the sequence analysis, the begomovirus obtained from ash gourd was considered as an isolate of ToLCNDV. Thus, the present findings constitute the first report of occurrence of a new yellow stunt disease in ash gourd from India and demonstrated the association of ToLCNDV with the symptomatic samples. Occurrence of ToLCNDV in ash gourd germplasm not only adds up a new cucurbitaceous host of this virus but also raises the concern about the perpetuation of this virus in absence of its main host tomato and thus has an epidemiological relevance for understanding the rapid spread of this virus in tomato and other hosts in Indian sub-continent.

  8. A mouse model for studying viscerotropic disease caused by yellow fever virus infection.

    PubMed

    Meier, Kathryn C; Gardner, Christina L; Khoretonenko, Mikhail V; Klimstra, William B; Ryman, Kate D

    2009-10-01

    Mosquito-borne yellow fever virus (YFV) causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-alpha/beta) in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-alpha/beta receptor (A129) or the STAT1 signaling molecule (STAT129) were highly susceptible to infection and disease, succumbing within 6-7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129-derived, but not WT

  9. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.

    PubMed

    Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena

    2015-08-20

    Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Yellow fever.

    PubMed

    Litvoc, Marcelo Nóbrega; Novaes, Christina Terra Gallafrio; Lopes, Max Igor Banks Ferreira

    2018-02-01

    The yellow fever (YF) virus is a Flavivirus, transmitted by Haemagogus, Sabethes or Aedes aegypti mosquitoes. The disease is endemic in forest areas in Africa and Latin America leading to epizootics in monkeys that constitute the reservoir of the disease. There are two forms of YF: sylvatic, transmitted accidentally when approaching the forests, and urban, which can be perpetuated by Aedes aegypti. In Brazil, the last case of urban YF occurred in 1942. Since then, there has been an expansion of transmission areas from the North and Midwest regions to the South and Southeast. In 2017, the country faced an important outbreak of the disease mainly in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. In 2018, its reach extended from Minas Gerais toward São Paulo. Yellow fever has an incubation period of 3 to 6 days and sudden onset of symptoms with high fever, myalgia, headache, nausea/vomiting and increased transaminases. The disease ranges from asymptomatic to severe forms. The most serious forms occur in around 15% of those infected, with high lethality rates. These forms lead to renal, hepatic and neurological impairment, and bleeding episodes. Treatment of mild and moderate forms is symptomatic, while severe and malignant forms depend on intensive care. Prevention is achieved by administering the vaccine, which is an effective (immunogenicity at 90-98%) and safe (0.4 severe events per 100,000 doses) measure. In 2018, the first transplants in the world due to YF were performed. There is also an attempt to evaluate the use of active drugs against the virus in order to reduce disease severity.

  11. Genetic characterization of novel putative rhabdovirus and dsRNA virus from Japanese persimmon.

    PubMed

    Ito, Takao; Suzaki, Koichi; Nakano, Masaaki

    2013-08-01

    Deep-sequencing analysis of nucleic acids from leaf tissue of Japanese persimmon trees exhibiting fruit apex disorder in some fruits detected two molecules that were graft transmitted to healthy seedlings. One of the complete genomes consisted of 13 467 nt and encoded six genes similar to those of plant rhabdoviruses. The virus formed a distinct cluster in the genus Cytorhabdovirus with lettuce necrotic yellows virus, lettuce yellow mottle virus and strawberry crinkle virus in a phylogenetic tree based on the L protein (RNA-dependent RNA polymerase, RdRp). The other consisted of 7475 nt and shared a genome organization similar to those of some insect and fungal viruses having dsRNA genomes. In a phylogenetic tree using the RdRp sequence of several unassigned dsRNA viruses, the virus formed a possible new genus cluster with two insect viruses, Circulifer tenellus virus 1 and Spissistilus festinus virus 1, and one plant virus, cucurbit yellows-associated virus.

  12. Fine mapping of RYMV3: a new resistance gene to Rice yellow mottle virus from Oryza glaberrima.

    PubMed

    Pidon, Hélène; Ghesquière, Alain; Chéron, Sophie; Issaka, Souley; Hébrard, Eugénie; Sabot, François; Kolade, Olufisayo; Silué, Drissa; Albar, Laurence

    2017-04-01

    A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.

  13. Pathology Associated with White Spot Virus (WSV) Infection in Wild Broodstock of Tiger Prawns (Penaeus monodon)

    PubMed Central

    Kua, Beng Chu; Rashid, Noraziah Mat

    2012-01-01

    A total of six wild broodstocks of tiger prawns, Penaeus monodon, were found positive for White Spot Virus (WSV) with an IQ2000 detection kit. Using histopathology, the intranuclear inclusion of haemocyte due to WSV infection was observed in the epithelium cells of the antennal gland, stomach and gills. This result confirmed that the wild broodstocks were positive with WSV without showing any white spot. Additionally, histopathological examination also revealed an accumulation of haemocytes around the hepatopancreatic tubules resulting from bacterial infection. Encapsulation and nodule formation, as well as related necrosis, were also observed around the hepatopancreatic tubules infected with a metazoan parasite. Encysted tylocephalum larval cestodes were observed in the hepatopancreas, with haemocytic aggregation being observed around the infected tubules. These findings showed some bacterial and parasitic infections which, in addition to the viral infection itself, could contribute to the 80% mortality rate in wild broodstocks infected with WSV. PMID:24575228

  14. Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds).

    PubMed

    Shrestha, Anita; Champagne, Donald E; Culbreath, Albert K; Rotenberg, Dorith; Whitfield, Anna E; Srinivasan, Rajagopalbabu

    2017-08-01

    Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.

  15. A method combining immunocapture and PCR amplification in a microtiter plate for the detection of plant viruses and subviral pathogens.

    PubMed

    Nolasco, G; de Blas, C; Torres, V; Ponz, F

    1993-12-15

    A method for the detection of RNA viral and subviral plant pathogens was developed that combines pathogen partial purification by solid-phase adsorbed antibodies, reverse transcriptional-polymerase chain reaction (RT-PCR) and quantitation of the amplified products by fluorescence. The reverse transcription of the RNA is performed directly on the retained material without any previous thermal or chemical disruption of the virus particles. The whole procedure can be carried out in a microtiter plate. Its validity has been successfully confirmed for the detection of bean yellow mosaic virus, cherry leafroll virus, cucumber mosaic virus, citrus tristeza virus, grapevine fanleaf virus, potato leafroll virus, pepper mild mottle virus, and tomato spotted wilt virus, as well as the satellite RNA of cucumber mosaic virus and potato spindle tuber viroid. In this procedure virus-specific antibodies can be replaced by monoclonal antibodies against double-stranded RNA, thus offering the possibility of detection when no specific virus antibodies are available, or immunological methods are difficult to use (i.e., subviral pathogens like satellite-RNAs or viroids). The method described has the typical sensitivity of assays based on the polymerase chain reaction, it is not more laborious than ELISA, and an equivalent degree of automation is possible.

  16. Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis.

    PubMed

    Eybishtz, Assaf; Peretz, Yuval; Sade, Dagan; Gorovits, Rena; Czosnek, Henryk

    2010-02-01

    To identify genes involved in resistance of tomato to Tomato yellow leaf curl virus (TYLCV), cDNA libraries from lines resistant (R) and susceptible (S) to the virus were compared. The hexose transporter LeHT1 was found to be expressed preferentially in R tomato plants. The role of LeHT1 in the establishment of TYLCV resistance was studied in R plants where LeHT1 has been silenced using Tobacco rattle virus-induced gene silencing (TRV VIGS). Following TYLCV inoculation, LeHT1-silenced R plants showed inhibition of growth and enhanced virus accumulation and spread. In addition, a necrotic response was observed along the stem and petioles of infected LeHT1-silenced R plants, but not on infected not-silenced R plants. This response was specific of R plants since it was absent in infected LeHT1-silenced S plants. Necrosis had several characteristics of programmed cell death (PCD): DNA from necrotic tissues presented a PCD-characteristic ladder pattern, the amount of a JNK analogue increased, and production of reactive oxygen was identified by DAB staining. A similar necrotic reaction along stem and petioles was observed in LeHT1-silenced R plants infected with the DNA virus Bean dwarf mosaic virus and the RNA viruses Cucumber mosaic virus and Tobacco mosaic virus. These results constitute the first evidence for a necrotic response backing natural resistance to TYLCV in tomato, confirming that plant defense is organized in multiple layers. They demonstrate that the hexose transporter LeHT1 is essential for the expression of natural resistance against TYLCV and its expression correlates with inhibition of virus replication and movement.

  17. Blueberry virus A

    USDA-ARS?s Scientific Manuscript database

    Leaf yellowing on highbush blueberry ‘Spartan’ prompted Isogai et al. to investigate whether a virus was the causal agent of the disorder. After double-stranded RNA extraction from symptomatic material they identified a single band of 17 Kb, indicative of virus infection. Shotgun cloning and sequenc...

  18. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone.

    PubMed

    Jiang, Xiaohong; Dalebout, Tim J; Lukashevich, Igor S; Bredenbeek, Peter J; Franco, David

    2015-04-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines. © 2015.

  19. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone

    PubMed Central

    Jiang, Xiaohong; Dalebout, Tim J.; Lukashevich, Igor S.; Bredenbeek, Peter J.

    2015-01-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime–boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines. PMID:25516543

  20. What a rheumatologist needs to know about yellow fever vaccine.

    PubMed

    Oliveira, Ana Cristina Vanderley; Mota, Licia Maria Henrique da; Santos-Neto, Leopoldo Luiz Dos; Tauil, Pedro Luiz

    2013-04-01

    Patients with rheumatic diseases are more susceptible to infection, due to the underlying disease itself or to its treatment. The rheumatologist should prevent infections in those patients, vaccination being one preventive measure to be adopted. Yellow fever is one of such infectious diseases that can be avoided.The yellow fever vaccine is safe and effective for the general population, but, being an attenuated live virus vaccine, it should be avoided whenever possible in rheumatic patients on immunosuppressive drugs. Considering that yellow fever is endemic in a large area of Brazil, and that vaccination against that disease is indicated for those living in such area or travelling there, rheumatologists need to know that disease, as well as the indications for the yellow fever vaccine and contraindications to it. Our paper was aimed at highlighting the major aspects rheumatologists need to know about the yellow fever vaccine to decide about its indication or contraindication in specific situations. 2013 Elsevier Editora Ltda. All rights reserved.

  1. Yellow Pygmy Rice Rat (Oligoryzomys flavescens) and Hantavirus Pulmonary Syndrome in Uruguay

    PubMed Central

    Delfraro, Adriana; Clara, Mario; Tomé, Lorena; Achaval, Federico; Levis, Silvana; Calderón, Gladys; Enria, Delia; Lozano, Mario; Russi, José

    2003-01-01

    During 5,230 trapping nights, 672 small mammals were trapped in the areas where most hantavirus pulmonary syndrome (HPS) cases occur in Uruguay. Yellow pygmy rice rats (Oligoryzomys flavescens) were the only rodents that showed evidence of antibodies to hantavirus, with a seroprevalence of 2.6%. The rodents were trapped in all the explored environments, and most of the seropositive rodents were found in habitats frequented by humans. Nucleotide sequences were obtained from four HPS case-patients and four yellow pygmy rice rats of the M genome segment. Sequence comparison and phylogenetic analysis showed that rodent-borne viruses and viruses from three HPS case-patients form a well-supported clade and share a 96.4% identity with the previously characterized Central Plata hantavirus. These results suggest that yellow pygmy rice rat (O. flavescens) may be the host for Central Plata, a hantavirus associated with HPS in the southern area of Uruguay.[ PMID:12890326

  2. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    PubMed

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  3. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX.

    PubMed

    Assunção-Miranda, I; Cruz-Oliveira, C; Neris, R L S; Figueiredo, C M; Pereira, L P S; Rodrigues, D; Araujo, D F F; Da Poian, A T; Bozza, M T

    2016-03-01

    To investigate the effect of heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX (CoPPIX and SnPPIX), macrocyclic structures composed by a tetrapyrrole ring with a central metallic ion, on Dengue Virus (DENV) and Yellow Fever Virus (YFV) infection. Treatment of HepG2 cells with heme, CoPPIX and SnPPIX after DENV infection reduced infectious particles without affecting viral RNA contents in infected cells. The reduction of viral load occurs only with the direct contact of DENV with porphyrins, suggesting a direct effect on viral particles. Previously incubation of DENV and YFV with heme, CoPPIX and SnPPIX resulted in viral particles inactivation in a dose-dependent manner. Biliverdin, a noncyclical porphyrin, was unable to inactivate the viruses tested. Infection of HepG2 cells with porphyrin-pretreated DENV2 results in a reduced or abolished viral protein synthesis, RNA replication and cell death. Treatment of HepG2 or THP-1 cell lineage with heme or CoPPIX after DENV infection with a very low MOI resulted in a decreased DENV replication and protection from death. Heme, CoPPIX and SnPPIX possess a marked ability to inactivate DENV and YFV, impairing its ability to infect and induce cytopathic effects on target cells. These results open the possibility of therapeutic application of porphyrins or their use as models to design new antiviral drugs against DENV and YFV. © 2016 The Society for Applied Microbiology.

  4. Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-beta, TNF-alpha and NK cells activity.

    PubMed

    Quaresma, Juarez A S; Barros, Vera L R S; Pagliari, Carla; Fernandes, Elaine R; Guedes, Fernanda; Takakura, Cleusa F H; Andrade, Heitor F; Vasconcelos, Pedro F C; Duarte, Maria I S

    2006-02-05

    Flavivirus infection as dengue and yellow fever persists as a terrible menace to pandemics, due to Aedes prevalence in the Americas. Yellow fever is characterized by hepatocyte damage, with steatosis, apoptosis and necrosis, mainly in the midzonal region of the liver, but the injury mechanism has not been studied at the light of recent knowledge, such as the advances in cell death mechanisms, inflammatory response and cytokine cell expression tools. We studied 53 human liver paraffin embedded blocks from patients who died with yellow fever, all with histological demonstration of higher prevalence of apoptosis over necrosis and mild disproportionate inflammatory response. Viral antigens were found most frequently in hepatocytes from the midzonal area than other lobule areas, as detected by specific immunohistochemistry. Infiltrating cell subpopulations showed mainly CD4+ T lymphocytes, with small numbers of CD8+ cytotoxic lymphocytes, CD20+ B lymphocytes, NKT+ cells and S100+ dendritic cells in the sites of inflammation, as compared to normal and leptospirosis liver blocks. Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever. Most affected hepatocyte presented apoptosis markers that appear at the cell death main pathway in this infection. Viral antigens, which production could interfere in hepatocyte biology, could induce the activation of apoptosis cascade, but TGF-beta was also an apoptosis promoter. Our finding supports the key effect of the yellow fever virus in hepatocyte injury, resulting in prevalence of apoptosis over necrosis, aside from a TGF-beta action induced by the inflammatory response.

  5. Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells.

    PubMed

    Luo, Huanle; Winkelmann, Evandro R; Fernandez-Salas, Ildefonso; Li, Li; Mayer, Sandra V; Danis-Lozano, Rogelio; Sanchez-Casas, Rosa Ma; Vasilakis, Nikos; Tesh, Robert; Barrett, Alan D; Weaver, Scott C; Wang, Tian

    2018-03-01

    Zika virus (ZIKV) is a mosquito-borne flavivirus associated with severe neonatal birth defects, but the causative mechanism is incompletely understood. ZIKV shares sequence homology and early clinical manifestations with yellow fever virus (YFV) and dengue virus (DENV) and are all transmitted in urban cycles by the same species of mosquitoes. However, YFV and DENV have been rarely reported to cause congenital diseases. Here, we compared infection with a contemporary ZIKV strain (FSS13025) to YFV17D and DENV-4 in human monocytic cells (THP-1) and first-trimester trophoblasts (HTR-8). Our results suggest that all three viruses have similar tropisms for both cells. Nevertheless, ZIKV induced strong type 1 IFN and inflammatory cytokine and chemokine production in monocytes and peripheral blood mononuclear cells. Furthermore, ZIKV infection in trophoblasts induced lower IFN and higher inflammatory immune responses. Placental inflammation is known to contribute to the risk of brain damage in preterm newborns. Inhibition of toll-like receptor (TLR)3 and TLR8 each abrogated the inflammatory cytokine responses in ZIKV-infected trophoblasts. Our findings identify a potential link between maternal immune activation and ZIKV-induced congenital diseases, and a potential therapeutic strategy that targets TLR-mediated inflammatory responses in the placenta. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Identification of insecticidal principals from cucumber seed oil against the yellow fever mosquito, Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    The yellow fever mosquito, Aedes aegypti, is one of the most medically important mosquito species due to its ability to spread viruses of yellow fever, dengue fever and Zika in humans. In this study, the insecticidal activity of seventeen plant essential oils were evaluated to toxicity by topical a...

  7. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization

    PubMed Central

    Co, Mary Dawn T; Kilpatrick, Elizabeth D; Rothman, Alan L

    2009-01-01

    Management of yellow fever is focused on the prevention of illness by the use of the yellow fever virus (YFV) 17D vaccine. The role of neutralizing antibodies in protection is generally accepted with YFV-specific T cells likely contributing to the control of viral replication. We studied CD8+ T-cell responses to four defined human leucocyte antigen-B35-restricted epitopes in YFV vaccine recipients as a model of the kinetics of cytotoxic T-lymphocyte responses to an acute human viral infection. Multiple features of these epitope-specific responses were analysed after vaccination including magnitude, cytokine production, phenotype and T-cell receptor repertoire. Peak peptide-specific interferon-γ (IFN-γ) responses of almost 1% of CD8+ T cells were seen as early as 2 weeks post-vaccination; however, dominant responses varied between donors. Peptide-specific responses were still detectable at 54 months post-vaccination. Tetramer-positive cells, at high frequencies, were detected as early as 7–9 days, before detectable IFN-γ-producing cells, suggesting a defect in the functional capacity of some antigen-specific cells early post-vaccination. The predominant memory phenotype of the tetramer-positive population was a differentiated effector (CD45RA+ CCR7− CD62L−) phenotype. The T-cell receptor Vβ analysis revealed a diverse oligoclonal repertoire in tetramer-positive T-cell populations in two individuals. These characteristics of the YFV-specific T-cell response could contribute to vaccine effectiveness. PMID:19740333

  8. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization.

    PubMed

    Co, Mary Dawn T; Kilpatrick, Elizabeth D; Rothman, Alan L

    2009-09-01

    Management of yellow fever is focused on the prevention of illness by the use of the yellow fever virus (YFV) 17D vaccine. The role of neutralizing antibodies in protection is generally accepted with YFV-specific T cells likely contributing to the control of viral replication. We studied CD8(+) T-cell responses to four defined human leucocyte antigen-B35-restricted epitopes in YFV vaccine recipients as a model of the kinetics of cytotoxic T-lymphocyte responses to an acute human viral infection. Multiple features of these epitope-specific responses were analysed after vaccination including magnitude, cytokine production, phenotype and T-cell receptor repertoire. Peak peptide-specific interferon-gamma (IFN-gamma) responses of almost 1% of CD8(+) T cells were seen as early as 2 weeks post-vaccination; however, dominant responses varied between donors. Peptide-specific responses were still detectable at 54 months post-vaccination. Tetramer-positive cells, at high frequencies, were detected as early as 7-9 days, before detectable IFN-gamma-producing cells, suggesting a defect in the functional capacity of some antigen-specific cells early post-vaccination. The predominant memory phenotype of the tetramer-positive population was a differentiated effector (CD45RA(+) CCR7(-) CD62L(-)) phenotype. The T-cell receptor Vbeta analysis revealed a diverse oligoclonal repertoire in tetramer-positive T-cell populations in two individuals. These characteristics of the YFV-specific T-cell response could contribute to vaccine effectiveness.

  9. Detection of Usutu virus in a bullfinch (Pyrrhula pyrrhula) and a great spotted woodpecker (Dendrocopos major) in north-west Europe.

    PubMed

    Garigliany, Mutien-Marie; Marlier, Didier; Tenner-Racz, Klara; Eiden, Martin; Cassart, Dominique; Gandar, Frédéric; Beer, Martin; Schmidt-Chanasit, Jonas; Desmecht, Daniel

    2014-01-01

    In October 2012, a 3-year-old bullfinch (Pyrrhula pyrrhula) held in captivity for its entire lifespan and a wild adult great spotted woodpecker (Dendrocopos major), both with neurological signs, were found 4 km from each other and 5 days apart in the Meuse Valley, Belgium. Non-suppurative encephalitis and mild degeneration and necrosis were identified in the brain and cerebellum, and Usutu virus antigen and RNA were detected by immunohistochemistry and real-time reverse transcriptase PCR, respectively. The two cases reported here represent the most western distribution of clinical disease in birds due to Usutu virus in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant

    PubMed Central

    Gabriel Peralta, Sergio M.; Harte-Maxwell, Patricia A.

    2018-01-01

    Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana. Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection. PMID:29538326

  11. Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant.

    PubMed

    Garcia-Ruiz, Hernan; Gabriel Peralta, Sergio M; Harte-Maxwell, Patricia A

    2018-03-14

    Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana . Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection.

  12. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States.

    PubMed

    Srinivasan, R; Abney, M R; Culbreath, A K; Kemerait, R C; Tubbs, R S; Monfort, W S; Pappu, H R

    2017-09-15

    Southeastern states namely Georgia, Florida, and Alabama produce two-thirds of the peanuts in the United States. Thrips-transmitted Tomato spotted wilt virus (TSWV), which causes spotted wilt disease, has been a major impediment to peanut production for the past three decades. The cultivars grown in the 1980s were extremely susceptible to TSWV. Early yield losses extended to tens of millions of dollars each year (up to 100% loss in many fields). This situation led to the creation of an interdisciplinary team known as "SWAT: Spotted Wilt Action Team". Initial efforts focused on risk mitigation using a combination of chemical and cultural management practices along with a strong investment in breeding programs. Beginning in the mid 1990s, cultivars with field resistance were developed and integrated with cultural and chemical management options. A Risk Mitigation Index (Peanut Rx) was made available to growers to assess risks, and provide options for mitigating risks such as planting field resistant cultivars with in-furrow insecticides, planting after peak thrips incidence, planting in twin rows, and increasing seeding rates. These efforts helped curtail losses due to spotted wilt. The Peanut Rx continues to be refined every year based on new research findings. Breeding efforts, predominantly in Georgia and Florida, continue to develop cultivars with incremental field resistance. The present-day cultivars (third-generation TSWV-resistant cultivars released after 2010) possess substantially greater field resistance than second-generation (cultivars released from 2000 to 2010) and first-generation (cultivars released from 1994 to 2000) TSWV resistant cultivars. Despite increased field resistance, these cultivars are not immune to TSWV and succumb under high thrips and TSWV pressure. Therefore, field resistant cultivars cannot serve as a 'stand-alone' option and have to be integrated with other management options. The mechanism of resistance is also unknown in field

  13. New developments in flavivirus vaccines with special attention to yellow fever.

    PubMed

    Pugachev, Konstantin V; Guirakhoo, Farshad; Monath, Thomas P

    2005-10-01

    Here we review recent epidemiological trends in flavivirus diseases, findings related to existing vaccines, and new directions in flavivirus vaccine research. We emphasize the need for stepped-up efforts to stop further spread and intensification of these infections worldwide. Although the incidence and geographic distribution of flavivirus diseases have increased in recent years, human vaccines are available only for yellow fever, Japanese encephalitis, tick-borne encephalitis and Kyasanur forest disease. Factors contributing to resurgence include insufficient supplies of available vaccines, incomplete vaccination coverage and relaxation in vector control. Research has been underway for 60 years to develop effective vaccines against dengue, and recent progress is encouraging. The development of vaccines against West Nile, virus recently introduced to North America, has been initiated. In addition, there is considerable interest in improving existing vaccines with respect to increasing safety (e.g. eliminating the newly recognized syndrome of yellow fever vaccine-associated viscerotropic adverse disease), and to reducing the cost and number of doses required for effective immunization. Traditional approaches to flavivirus vaccines are still employed, while recent advancements in biotechnology produced new approaches to vaccine design, such as recombinant live virus, subunit and DNA vaccines. Live chimeric vaccines against dengue, Japanese encephalitis and West Nile based on yellow fever 17D virus (ChimeriVax) are in phase I/II trials, with encouraging results. Other chimeric dengue, tick-borne encephalitis and West Nile virus candidates were developed based on attenuated dengue backbones. To further reduce the impact of flavivirus diseases, vaccination policies and vector control programs in affected countries require revision.

  14. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations.

    PubMed

    Couto-Lima, Dinair; Madec, Yoann; Bersot, Maria Ignez; Campos, Stephanie Silva; Motta, Monique de Albuquerque; Santos, Flávia Barreto Dos; Vazeille, Marie; Vasconcelos, Pedro Fernando da Costa; Lourenço-de-Oliveira, Ricardo; Failloux, Anna-Bella

    2017-07-07

    Yellow fever virus (YFV) causing a deadly viral disease is transmitted by the bite of infected mosquitoes. In Brazil, YFV is restricted to a forest cycle maintained between non-human primates and forest-canopy mosquitoes, where humans can be tangentially infected. Since late 2016, a growing number of human cases have been reported in Southeastern Brazil at the gates of the most populated areas of South America, the Atlantic coast, with Rio de Janeiro state hosting nearly 16 million people. We showed that the anthropophilic mosquitoes Aedes aegypti and Aedes albopictus as well as the YFV-enzootic mosquitoes Haemagogus leucocelaenus and Sabethes albiprivus from the YFV-free region of the Atlantic coast were highly susceptible to American and African YFV strains. Therefore, the risk of reemergence of urban YFV epidemics in South America is major with a virus introduced either from a forest cycle or by a traveler returning from the YFV-endemic region of Africa.

  15. [Serological diagnosis of dengue and yellow fever infections in suspected cases from Pará State, Brazil, 1999].

    PubMed

    de Araújo, Tais Pinheiro; Rodrigues, Sueli Guerreiro; Costa, Maria Irene Weyl de A; Vasconcelos, Pedro Fernando da Costa; da Rosa, Amélia P A Travassos

    2002-01-01

    From June to December 1999, 785 serum samples were obtained from patients clinically suspected of having dengue or yellow fever. The patients were referred by public health centers distributed within the six mesoregions of Par State, Brazil. Serum samples were tested for Flavivirus antibodies by hemagglutination inhibition test and for dengue and yellow fever viruses by enzyme-linked immunosorbent assay for IgM detection. Of the sera collected, 563 (71.7%) were positive by HI test and out of these 150 (26.6%) were positive by ELISA-IgM. Dengue virus was responsible for most of the recent infections in all regions; yellow fever cases detected in the current study were restricted to the Maraj and Southeast regions.

  16. Tangential flow ultrafiltration for detection of white spot syndrome virus (WSSV) in shrimp pond water.

    PubMed

    Alavandi, S V; Ananda Bharathi, R; Satheesh Kumar, S; Dineshkumar, N; Saravanakumar, C; Joseph Sahaya Rajan, J

    2015-06-15

    Water represents the most important component in the white spot syndrome virus (WSSV) transmission pathway in aquaculture, yet there is very little information. Detection of viruses in water is a challenge, since their counts will often be too low to be detected by available methods such as polymerase chain reaction (PCR). In order to overcome this difficulty, viruses in water have to be concentrated from large volumes of water prior to detection. In this study, a total of 19 water samples from aquaculture ecosystem comprising 3 creeks, 10 shrimp culture ponds, 3 shrimp broodstock tanks and 2 larval rearing tanks of shrimp hatcheries and a sample from a hatchery effluent treatment tank were subjected to concentration of viruses by ultrafiltration (UF) using tangential flow filtration (TFF). Twenty to 100l of water from these sources was concentrated to a final volume of 100mL (200-1000 fold). The efficiency of recovery of WSSV by TFF ranged from 7.5 to 89.61%. WSSV could be successfully detected by PCR in the viral concentrates obtained from water samples of three shrimp culture ponds, one each of the shrimp broodstock tank, larval rearing tank, and the shrimp hatchery effluent treatment tank with WSSV copy numbers ranging from 6 to 157mL(-1) by quantitative real time PCR. The ultrafiltration virus concentration technique enables efficient detection of shrimp viral pathogens in water from aquaculture facilities. It could be used as an important tool to understand the efficacy of biosecurity protocols adopted in the aquaculture facility and to carry out epidemiological investigations of aquatic viral pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Yellow Fever Vaccine: A History

    PubMed Central

    Frierson, J. Gordon

    2010-01-01

    After failed attempts at producing bacteria-based vaccines, the discovery of a viral agent causing yellow fever and its isolation in monkeys opened new avenues of research. Subsequent advances were the attenuation of the virus in mice and later in tissue culture; the creation of the seed lot system to avoid spontaneous mutations; the ability to produce the vaccine on a large scale in eggs; and the removal of dangerous contaminants. An important person in the story is Max Theiler, who was Professor of Epidemiology and Public Health at Yale from 1964-67, and whose work on virus attenuation created the modern vaccine and earned him the Nobel Prize. PMID:20589188

  18. Mapping the nuclear localization signal in the matrix protein of potato yellow dwarf virus.

    PubMed

    Anderson, Gavin; Jang, Chanyong; Wang, Renyuan; Goodin, Michael

    2018-05-01

    The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.

  19. Comparative molecular epidemiology provides new insights into Zucchini yellow mosaic virus occurrence in France.

    PubMed

    Lecoq, H; Wipf-Scheibel, C; Nozeran, K; Millot, P; Desbiez, C

    2014-06-24

    Zucchini yellow mosaic virus (ZYMV, genus Potyvirus) causes important crop losses in cucurbits worldwide. In France, ZYMV epidemics are sporadic but occasionally very severe. This contrasts with Watermelon mosaic virus (WMV, genus Potyvirus) which causes regular and early epidemics. Factors influencing ZYMV epidemiology are still poorly understood. In order to gain new insights on the ecology and epidemiology of this virus, a 5-year multilocation trial was conducted in which ZYMV spread and populations were studied in each of the 20 plot/year combinations and compared with WMV. Search for ZYMV alternative hosts was conducted by testing weeds growing naturally around one plot and also by checking ZYMV natural infections in selected ornamental species. Although similar ZYMV populations were observed occasionally in the same plot in two successive years suggesting the occurrence of overwintering hosts nearby, only two Lamium amplexicaule plants were found to be infected by ZYMV of 3459 weed samples that were tested. The scarcity of ZYMV reservoirs contrasts with the frequent detection of WMV in the same samples. Since ZYMV and WMV have many aphid vectors in common and are transmitted with similar efficiencies, the differences observed in ZYMV and WMV reservoir abundances could be a major explanatory factor for the differences observed in the typology of ZYMV and WMV epidemics in France. Other potential ZYMV alternative hosts have been identified in ornamental species including begonia. Although possible in a few cases, exchanges of populations between different plots located from 500 m to 4 km apart seem uncommon. Therefore, the potential dissemination range of ZYMV by its aphid vectors seems to be rather limited in a fragmented landscape. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene.

    PubMed

    Chen, Ming; Sun, Liying; Wu, Hongya; Chen, Jiong; Ma, Youzhi; Zhang, Xiaoxiang; Du, Lipu; Cheng, Shunhe; Zhang, Boqiao; Ye, Xingguo; Pang, Junlan; Zhang, Xinmei; Li, Liancheng; Andika, Ida B; Chen, Jianping; Xu, Huijun

    2014-05-01

    Wheat yellow mosaic virus (WYMV) has spread rapidly and causes serious yield losses in the major wheat-growing areas in China. Because it is vectored by the fungus-like organism Polymyxa graminis that survives for long periods in soil, it is difficult to eliminate by conventional crop management or fungicides. There is also only limited resistance in commercial cultivars. In this research, fourteen independent transgenic events were obtained by co-transformation with the antisense NIb8 gene (the NIb replicase of WYMV) and a selectable gene bar. Four original transgenic lines (N12, N13, N14 and N15) and an offspring line (N12-1) showed high and durable resistance to WYMV in the field. Four resistant lines were shown to have segregated and only contain NIb8 (without bar) by PCR and herbicide resistance testing in the later generations. Line N12-1 showed broad-spectrum resistance to WYMV isolates from different sites in China. After growing in the infested soil, WYMV could not be detected by tissue printing and Western blot assays of transgenic wheat. The grain yield of transgenic wheat was about 10% greater than the wild-type susceptible control. Northern blot and small RNA deep sequencing analyses showed that there was no accumulation of small interfering RNAs targeting the NIb8 gene in transgenic wheat plants, suggesting that transgene RNA silencing, a common mechanism of virus-derived disease resistance, is not involved in the process of WYMV resistance. This durable and broad-spectrum resistance to WYMV in transgenic wheat will be useful for alleviating the damage caused by WYMV. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Virus incidence in orchardgrass (Dactylis glomerata L.) seed production fields in the Willamette Valley

    USDA-ARS?s Scientific Manuscript database

    A survey was conducted over the course of three years (2014-2016) for the presence of Barley yellow dwarf virus (BYDV-MAV and BYDV-PAV), Cereal yellow dwarf virus (CYDV-RPV), and Cocksfoot mottle virus (CfMV) in orchardgrass (Dactylis glomerata) fields in the Willamette Valley, Oregon. There was an ...

  2. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing

    PubMed Central

    Xu, Chenxi; Taylor, Angela; Jiao, Chen; Xu, Yimin; Cai, Xiaofeng; Wang, Xiaoli; Ge, Chenhui; Pan, Guanghui; Wang, Quanxi

    2017-01-01

    ABSTRACT Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus. Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases. IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading

  3. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing.

    PubMed

    Xu, Chenxi; Sun, Xuepeng; Taylor, Angela; Jiao, Chen; Xu, Yimin; Cai, Xiaofeng; Wang, Xiaoli; Ge, Chenhui; Pan, Guanghui; Wang, Quanxi; Fei, Zhangjun; Wang, Quanhua

    2017-06-01

    Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases. IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in

  4. Serious adverse events associated with yellow fever vaccine.

    PubMed

    de Menezes Martins, Reinaldo; Fernandes Leal, Maria da Luz; Homma, Akira

    2015-01-01

    Yellow fever vaccine was considered one of the safest vaccines, but in recent years it was found that it could rarely cause invasive and disseminated disease in some otherwise healthy individuals, with high lethality. After extensive studies, although some risk factors have been identified, the real cause of causes of this serious adverse event are largely unknown, but findings point to individual host factors. Meningoencephalitis, once considered to happen only in children less than 6 months of age, has also been identified in older children and adults, but with good prognosis. Efforts are being made to develop a safer yellow fever vaccine, and an inactivated vaccine or a vaccine prepared with the vaccine virus envelope produced in plants are being tested. Even with serious and rare adverse events, yellow fever vaccine is the best way to avoid yellow fever, a disease of high lethality and should be used routinely in endemic areas, and on people from non-endemic areas that could be exposed, according to a careful risk-benefit analysis.

  5. The complete nucleotide sequence of the barley yellow dwarf GPV isolate from China shows that it is a new member of the genus Polerovirus.

    PubMed

    Zhang, Wenwei; Cheng, Zhuomin; Xu, Lei; Wu, Maosen; Waterhouse, Peter; Zhou, Guanghe; Li, Shifang

    2009-01-01

    The complete nucleotide sequence of the ssRNA genome of a Chinese GPV isolate of barley yellow dwarf virus (BYDV) was determined. It comprised 5673 nucleotides, and the deduced genome organization resembled that of members of the genus Polerovirus. It was most closely related to cereal yellow dwarf virus-RPV (77% nt identity over the entire genome; coat protein amino acid identity 79%). The GPV isolate also differs in vector specificity from other BYDV strains. Biological properties, phylogenetic analyses and detailed sequence comparisons suggest that GPV should be considered a member of a new species within the genus, and the name Wheat yellow dwarf virus-GPV is proposed.

  6. Detection of hepatitis B virus infection markers in dried plasma spots among patients in Congo-Brazzaville.

    PubMed

    Alidjinou, Enagnon Kazali; Moukassa, Donatien; Sané, Famara; Twagirimana Nyenyeli, Séraphin; Akoko, Estina Chandrelle; Mountou, Michèle Valy; Bocket, Laurence; Ibara, Jean-Rosaire; Hober, Didier

    2014-03-01

    The detection of hepatitis B virus (HBV) infection markers by using dried plasma spots from 32 patients living in Congo has been assessed. Considering frozen plasma samples as gold standard, the sensitivity and specificity of HBV serologic markers detection in dried plasma eluted from filter paper were 100%. The sensitivity and the specificity of HBV DNA detection reached 96% and 100%, respectively, with plasma samples dried on filter paper compared to standard samples. Dried plasma samples can represent an alternative to conventional sampling for HBV detection and management of the infection in developing countries. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Immunity and immune response, pathology and pathologic changes: progress and challenges in the immunopathology of yellow fever.

    PubMed

    Quaresma, Juarez A S; Pagliari, Carla; Medeiros, Daniele B A; Duarte, Maria I S; Vasconcelos, Pedro F C

    2013-09-01

    Yellow fever is a viral hemorrhagic fever, which affects people living in Africa and South America and is caused by the yellow fever virus, the prototype species in the Flavivirus genus (Flaviviridae family). Yellow fever virus infection can produce a wide spectrum of symptoms, ranging from asymptomatic infection or oligosymptomatic illness to severe disease with a high fatality rate. In this review, we focus in the mechanisms associated with the physiopathology of yellow fever in humans and animal models. It has been demonstrated that several factors play a role in the pathological outcome of the severe form of the disease including direct viral cytopathic effect, necrosis and apoptosis of hepatocyte cells in the midzone, and a minimal inflammatory response as well as low-flow hypoxia and cytokine overproduction. New information has filled several gaps in the understanding of yellow fever pathogenesis and helped comprehend the course of illness. Finally, we discuss prospects for an immune therapy in the light of new immunologic, viral, and pathologic tools. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Yellow fever 17-D vaccine is neurotropic and produces encephalitis in immunosuppressed hamsters.

    PubMed

    Mateo, Rosa I; Xiao, Shu-Yuan; Travassos da Rosa, Amelia P A; Lei, Hao; Guzman, Hilda; Lu, Liang; Tesh, Robert B

    2007-11-01

    Immunosuppressed (cyclophosphamide) adult golden hamsters inoculated intraperitoneally (i.p.) with wild-type Asibi yellow fever virus (YFV) developed a rapidly fatal illness. Histopathologic and immunohistochemical studies of tissues from these animals showed typical hepatic changes of severe yellow fever (inflammation, hepatocyte necrosis, and steatosis) without brain involvement. In contrast, 50% of immunosuppressed hamsters receiving the YFV-17D-attenuated vaccine developed a slowly progressive encephalitic-type illness. Brain tissue from these latter animals revealed focal neuronal changes, inflammation, and YFV antigen-positive neurons; however, the liver and spleen appeared normal. YFV was isolated from brain cultures of many of these animals. Immunocompetent (non-immunosuppressed) hamsters inoculated with both viruses developed a subclinical infection. Results of this study indicate that wild-type YFV is hepatotropic in immunosuppressed hamsters, whereas the attenuated YFV-17 is primarily neurotropic. These findings support current recommendations against yellow fever vaccination of immunosuppressed/immunocompromised people and suggest that this hamster model might be useful for monitoring the safety of other live-attenuated YFV vaccines.

  9. Distinct Gene Expression Profiles in Peripheral Blood Mononuclear Cells from Patients Infected with Vaccinia Virus, Yellow Fever 17D Virus, or Upper Respiratory Infections Running Title: PBMC Expression Response to Viral Agents

    PubMed Central

    Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.

    2007-01-01

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872

  10. Vegetable viruses emerging in Florida and the Caribbean region

    USDA-ARS?s Scientific Manuscript database

    Tomato chlorotic spot virus (TCSV) and a natural Groundnut ringspot virus (GRSV) reassortant (LGMTSG) with GRSV S and L RNAs and a TCSV M RNA have recently emerged and joined previously established Tomato spotted wilt virus (TSWV) as economically important vegetable pathogens in south Florida. TCSV...

  11. Biological and serological variability, evolution and molecular epidemiology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) with special reference to Caribbean islands.

    PubMed

    Desbiez, C; Wipf-Scheibel, C; Lecoq, H

    2002-04-23

    Zucchini yellow mosaic virus (ZYMV, Potyvirus) emerged as an important pathogen of cucurbits within the last 20 years. Its origins and mechanisms for evolution and worldwide spread represent important questions to understand plant virus emergence. Sequence analysis on a 250 nucleotide fragment including the N-terminal part of the coat protein coding region, revealed one major group of strains, and some highly divergent isolates from distinct origins. Within the major group, three subsets of strains were defined without correlation with geographic origin, year of collection or biological properties. ZYMV was first observed in Martinique and Guadeloupe in 1992 and 1994, respectively. We studied the evolution of ZYMV variability on both islands in the few years following the putative virus introduction. In Martinique, molecular divergence remained low even after 6 years, suggesting a lack of new introductions. Interactions between strains resulted in a stability of the high biological variability, while the serological diversity decreased and molecular divergence remained low. In Guadeloupe, as in Martinique in 1993, serological variability was high shortly after virus introduction. While the first introduction in Guadeloupe was independent from Martinique, the 'Martinique' type was detected in 1998, suggesting further introductions, maybe through viruliferous aphids or imported plant material.

  12. Intrathecal antibody production in two cases of yellow fever vaccine associated neurotropic disease in Argentina.

    PubMed

    Pires-Marczeski, Fanny Clara; Martinez, Valeria Paula; Nemirovsky, Corina; Padula, Paula Julieta

    2011-12-01

    During the period 2007-2008 several epizootics of Yellow fever with dead of monkeys occurred in southeastern Brasil, Paraguay, and northeastern Argentina. In 2008 after a Yellow fever outbreak an exhaustive prevention campaign took place in Argentina using 17D live attenuated Yellow fever vaccine. This vaccine is considered one of the safest live virus vaccines, although serious adverse reactions may occur after vaccination, and vaccine-associated neurotropic disease are reported rarely. The aim of this study was to confirm two serious adverse events associated to Yellow fever vaccine in Argentina, and to describe the analysis performed to assess the origin of specific IgM against Yellow fever virus (YFV) in cerebrospinal fluid (CSF). Both cases coincided with the Yellow fever vaccine-associated neurotropic disease case definition, being clinical diagnosis longitudinal myelitis (case 1) and meningoencephalitis (case 2). Specific YFV antibodies were detected in CSF and serum samples in both cases by IgM antibody-capture ELISA. No other cause of neurological disease was identified. In order to obtain a conclusive diagnosis of central nervous system (CNS) infection the IgM antibody index (AI(IgM) ) was calculated. High AI(IgM) values were found in both cases indicating intrathecal production of antibodies and, therefore, CNS post-vaccinal YFV infection could be definitively associated to YFV vaccination. Copyright © 2011 Wiley Periodicals, Inc.

  13. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp.

    PubMed

    Wijegoonawardane, Priyanjalie K M; Sittidilokratna, Nusra; Petchampai, Natthida; Cowley, Jeff A; Gudkovs, Nicholas; Walker, Peter J

    2009-07-20

    Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.

  14. Development of a new vector using Soybean yellow common mosaic virus for gene function study or heterologous protein expression in soybeans.

    PubMed

    Lim, Seungmo; Nam, Moon; Kim, Kil Hyun; Lee, Su-Heon; Moon, Jung-Kyung; Lim, Hyoun-Sub; Choung, Myoung-Gun; Kim, Sang-Mok; Moon, Jae Sun

    2016-02-01

    A new vector using Soybean yellow common mosaic virus (SYCMV) was constructed for gene function study or heterologous protein expression in soybeans. The in vitro transcript with a 5' cap analog m7GpppG from an SYCMV full-length infectious vector driven by a T7 promoter infected soybeans (pSYCMVT7-full). The symptoms observed in the soybeans infected with either the sap from SYCMV-infected leaves or pSYCMVT7-full were indistinguishable, suggesting that the vector exhibits equivalent biological activity as the virus itself. To utilize the vector further, a DNA-based vector driven by the Cauliflower mosaic virus (CaMV) 35S promoter was constructed. The complete sequence of the SYCMV genome was inserted into a binary vector flanked by a CaMV 35S promoter at the 5' terminus of the SYCMV genome and a cis-cleaving ribozyme sequence followed by a nopaline synthase terminator at the 3' terminus of the SYCMV genome (pSYCMV-full). The SYCMV-derived vector was tested for use as a virus-induced gene silencing (VIGS) vector for the functional analysis of soybean genes. VIGS constructs containing either a fragment of the Phytoene desaturase (PDS) gene (pSYCMV-PDS1) or a fragment of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS) gene (pSYCMV-RbcS2) were constructed. Plants infiltrated with each vector using the Agrobacterium-mediated inoculation method exhibited distinct symptoms, such as photo-bleaching in plants infiltrated with pSYCMV-PDS1 and yellow or pale green coloring in plants infiltrated with pSYCMV-RbcS2. In addition, down-regulation of the transcripts of the two target genes was confirmed via northern blot analysis. Particle bombardment and direct plasmid DNA rubbing were also confirmed as alternative inoculation methods. To determine if the SYCMV vector can be used for the expression of heterologous proteins in soybean plants, the vector encoding amino acids 135-160 of VP1 of Foot-and-mouth disease virus (FMDV) serotype O1 Campos (O1C

  15. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece.

    PubMed

    Orfanidou, C G; Dimitriou, C; Papayiannis, L C; Maliogka, V I; Katis, N I

    2014-06-24

    Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) are two whitefly transmitted viruses which are classified in the genus Crinivirus of the family Closteroviridae. Both induce similar yellowing symptoms in tomato and are responsible for severe economic losses. ToCV is transmitted by Bemisia tabaci Gennadious, Trialeurodes vaporariorum Westwood and Trialeurodes abutilonea Haldeman, whereas TICV is transmitted only by T. vaporariorum. An extensive study was conducted during 2009-2012 in order to identify the virus species involved in tomato yellowing disease in Greece. Samples from tomato, other crops and weeds belonging to 44 species from 26 families were collected and analyzed using molecular methods. In addition, adult whiteflies were collected and analyzed using morphological characters and DNA markers. Results showed that TICV prevailed in tomato crops (62.5%), while ToCV incidence was lower (20.5%) and confined in southern Greece. ToCV was also detected in lettuce plants showing mild yellowing symptoms for the first time in Greece. Approximately 13% of the tested weeds were found to be infected, with TICV being the predominant virus with an incidence of 10.8%, whereas ToCV was detected only in 2.2% of the analyzed samples. These results indicate that the host range of TICV and ToCV in Greece is far more extensive than previously believed. T. vaporariorum was the most widespread whitefly species in Greece (80%), followed by B. tabaci (biotypes B and Q) (20%). Sequence analysis of the CP and CPm genes from Greek tomato and weed isolates of ToCV and TICV showed that even though both viruses have very wide host ranges their populations show very low molecular divergence. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome

    PubMed Central

    Hartley, Carol A.; Vaz, Paola K.; Diaz-Méndez, Andrés; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M.

    2017-01-01

    ABSTRACT Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny

  17. Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome.

    PubMed

    Loncoman, Carlos A; Hartley, Carol A; Coppo, Mauricio J C; Vaz, Paola K; Diaz-Méndez, Andrés; Browning, Glenn F; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M

    2017-12-01

    Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1 ) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in

  18. Clematis Chlorotic Mottle Virus, a novel virus occurring in Clematis in the USA

    USDA-ARS?s Scientific Manuscript database

    Clematis is a genus of temperate climbing vines that are popular as ornamentals. Samples from domestic and international sources showing symptoms of yellow mottling and veining, chlorotic ring spots, line pattern mosaics, and in some cases flower distortion and discoloration were received at several...

  19. A single U/C nucleotide substitution changing alanine to valine in the beet necrotic yellow vein virus P25 protein promotes increased virus accumulation in roots of mechanically inoculated, partially resistant sugar beet seedlings.

    PubMed

    Koenig, R; Loss, S; Specht, J; Varrelmann, M; Lüddecke, P; Deml, G

    2009-03-01

    Beet necrotic yellow vein virus (BNYVV) A type isolates E12 and S8, originating from areas where resistance-breaking had or had not been observed, respectively, served as starting material for studying the influence of sequence variations in BNYVV RNA 3 on virus accumulation in partially resistant sugar beet varieties. Sub-isolates containing only RNAs 1 and 2 were obtained by serial local lesion passages; biologically active cDNA clones were prepared for RNAs 3 which differed in their coding sequences for P25 aa 67, 68 and 129. Sugar beet seedlings were mechanically inoculated with RNA 1+2/RNA 3 pseudorecombinants. The origin of RNAs 1+2 had little influence on virus accumulation in rootlets. E12 RNA 3 coding for V(67)C(68)Y(129) P25, however, enabled a much higher virus accumulation than S8 RNA 3 coding for A(67)H(68)H(129) P25. Mutants revealed that this was due only to the V(67) 'GUU' codon as opposed to the A(67) 'GCU' codon.

  20. Assessing the risk of international spread of yellow fever virus: a mathematical analysis of an urban outbreak in Asuncion, 2008.

    PubMed

    Johansson, Michael A; Arana-Vizcarrondo, Neysarí; Biggerstaff, Brad J; Gallagher, Nancy; Marano, Nina; Staples, J Erin

    2012-02-01

    Yellow fever virus (YFV), a mosquito-borne virus endemic to tropical Africa and South America, is capable of causing large urban outbreaks of human disease. With the ease of international travel, urban outbreaks could lead to the rapid spread and subsequent transmission of YFV in distant locations. We designed a stochastic metapopulation model with spatiotemporally explicit transmissibility scenarios to simulate the global spread of YFV from a single urban outbreak by infected airline travelers. In simulations of a 2008 outbreak in Asunción, Paraguay, local outbreaks occurred in 12.8% of simulations and international spread in 2.0%. Using simple probabilistic models, we found that local incidence, travel rates, and basic transmission parameters are sufficient to assess the probability of introduction and autochthonous transmission events. These models could be used to assess the risk of YFV spread during an urban outbreak and identify locations at risk for YFV introduction and subsequent autochthonous transmission.

  1. Phylodynamics of Yellow Fever Virus in the Americas: new insights into the origin of the 2017 Brazilian outbreak.

    PubMed

    Mir, Daiana; Delatorre, Edson; Bonaldo, Myrna; Lourenço-de-Oliveira, Ricardo; Vicente, Ana Carolina; Bello, Gonzalo

    2017-08-07

    Yellow fever virus (YFV) strains circulating in the Americas belong to two distinct genotypes (I and II) that have diversified into several concurrent enzootic lineages. Since 1999, YFV genotype I has spread outside endemic regions and its recent (2017) reemergence in non-endemic Southeastern Brazilian states fuels one of the largest epizootic of jungle Yellow Fever registered in the country. To better understand this phenomenon, we reconstructed the phylodynamics of YFV American genotypes using sequences from nine countries sampled along 60 years, including strains from Brazilian 2017 outbreak. Our analyses reveals that YFV genotypes I and II follow roughly similar evolutionary and demographic dynamics until the early 1990s, when a dramatic change in the diversification process of the genotype I occurred associated with the emergence and dissemination of a new lineage (here called modern). Trinidad and Tobago was the most likely source of the YFV modern-lineage that spread to Brazil and Venezuela around the late 1980s, where it replaced all lineages previously circulating. The modern-lineage caused all major YFV outbreaks detected in non-endemic South American regions since 2000, including the 2017 Brazilian outbreak, and its dissemination was coupled to the accumulation of several amino acid substitutions particularly within non-structural viral proteins.

  2. A variant of Rubus yellow net virus with altered genomic organization.

    PubMed

    Diaz-Lara, Alfredo; Mosier, Nola J; Keller, Karen E; Martin, Robert R

    2015-02-01

    Rubus yellow net virus (RYNV) is a member of the genus Badnavirus (family: Caulimoviridae). RYNV infects Rubus species causing chlorosis of the tissue along the leaf veins, giving an unevenly distributed netted symptom in some cultivars of red and black raspberry. Recently, a strain of RYNV was sequenced from a Rubus idaeus plant in Alberta, Canada, exhibiting such symptoms. The viral genome contained seven open reading frames (ORFs) with five of them in the sense-strand, including a large polyprotein. Here we describe a graft-transmissible strain of RYNV from Europe infecting cultivar 'Baumforth's Seedling A' (named RYNV-BS), which was sequenced using rolling circle amplification, enzymatic digestion, cloning and primer walking, and it was resequenced at a 5X coverage. This sequence was then compared with the RYNV-Ca genome and significant differences were observed. Genomic analysis identified differences in the arrangement of coding regions, promoter elements, and presence of motifs. The genomic organization of RYNV-BS consisted of five ORFs (four ORFs in the sense-strand and one ORF in the antisense-strand). ORFs 1, 2, and 3 showed a high degree of homology to RYNV-Ca, while ORFs 4 and 6 of RYNV-BS were quite distinct. Also, the predicted ORFs 5 and 7 in the RYNV-Ca were absent in the RYNV-BS sequence. These differences may account for the lack of aphid transmissibility of RYNV-BS.

  3. Frequency of histopathological changes in Howler monkeys ( Alouatta sp.) naturally infected with yellow fever virus in Brazil.

    PubMed

    Leal, Silvana Gomes; Romano, Alessandro Pecego Martins; Monteiro, Rafael Veríssimo; Melo, Cristiano Barros de; Vasconcelos, Pedro Fernando da Costa; Castro, Márcio Botelho de

    2016-02-01

    Due to the importance that Howler monkeys have on the yellow fever (YF) epidemiological sylvatic cycle in Brazil, more accurate morphological diagnostic criteria needs to be established, especially considering the differences that may exist between the genera of Brazilian non-human primates (NHPs) involved in yellow fever virus (YFV) epizootics. Records of YF epizootics in NHPs in Brazil between 2007 and 2009 were obtained from the Brazilian Ministry of Health database to select YF positive (n=98) Howler monkeys (Alouatta sp.) for this study. The changes described in the histopathological reports were categorized by organ and their frequencies calculated. The most frequent lesions observed in the animals with YF were hepatocyte apoptosis (Councilman body formation), midzonal hepatocyte necrosis, steatosis, liver hemorrhage, inflammatory mononuclear cell infiltration of the liver, renal acute tubular necrosis and interstitial nephritis. Midzonal hepatocyte necrosis, steatosis and hemorrhage presented positive correlations with apoptosis of hepatocytes, suggesting strong YFV pathogenic effect association; they were also the main histopathological changes in the Alouatta sp. A pronounced negative correlation between apoptosis of hepatocytes and hepatic mononuclear cell infiltration pointed to significant histopathological differences between YFV infection in Howler monkeys and humans. The results warn that NHPs may exhibit different response patterns following YFV infection and require a more careful diagnosis. Presumptive diagnosis based on primate histopathological lesions may contribute to public health service control.

  4. Characterization of the antigen distribution and tissue tropisms of three phenotypically distinct yellow fever virus variants in orally infected Aedes aegypti mosquitoes.

    PubMed

    McElroy, Kate L; Girard, Yvette A; McGee, Charles E; Tsetsarkin, Konstantin A; Vanlandingham, Dana L; Higgs, Stephen

    2008-10-01

    Arbovirus dissemination from the midgut of a vector mosquito is a critical step in facilitating virus transmission to a susceptible host. We previously characterized the genetic determinants of yellow fever virus (YFV) dissemination from the Aedes aegypti mosquito midgut using 2 genetically and phenotypically distinct strains of YFV: the wild-type, disseminating YFV Asibi strain and the attenuated, midgut-restricted YFV 17D vaccine strain. We examined the process of viral dissemination in YFV-infected Ae. aegypti by characterizing the tissue tropisms of 3 YF viruses in Ae. aegypti: Asibi, 17D, and a chimeric virus (17D/Asibi M-E) containing the Asibi membrane (M) and envelope (E) structural protein genes and 17D nonstructural genes. Ae. aegypti were infected orally, and whole, sectioned mosquitoes were evaluated for antigen distribution at 3, 7, 10, 14, and 21 days postinfection by immunohistochemical staining. Virus antigen was consistently observed in the posterior and anterior midgut, cardial epithelium, salivary glands, fat body, and nervous tissues in Asibi- and 17D/Asibi M-E-infected Ae. aegypti following 10 or 14-day extrinsic incubation, respectively. Amplification of virus in the abdominal and thoracic fat body is hypothesized to facilitate YFV infection of the Ae. aegypti salivary glands. As expected, 17D infection was generally limited to the midgut following oral infection. However, there did not appear to be a direct correlation between distribution of infection in the midgut and dissemination to the secondary tissues.

  5. Hematological changes in white spot syndrome virus-infected shrimp, Fenneropenaeus chinensis (Osbeck)

    NASA Astrophysics Data System (ADS)

    Feng, Shouming; Zhan, Wenbin; Xing, Jing; Li, Jun; Yang, Kai; Wang, Jing

    2008-08-01

    The pathological changes of hemocytes in the haemolymph and hepatopancreas were examined in experimentally and naturally WSSV (white spot syndrome virus) infected Fenneropenaeus chinensis. The results showed that the pathological manifestations of hemocytes were similar among moribund shrimps infected via injection, feeding and by nature. Firstly, the total hemocyte counts (THCs) in WSSV-infected shrimp were significantly lower than those in healthy shrimp. Secondly, necrotic, broken and disintegrated cells were often observed, and a typical hematolysis was present in the haemolymph smear of WSSV-infected shrimp. Thirdly, necrosis and typical apoptosis of hemocytes were detected with TEM in the peripheral haemolymph of WSSV-infected shrimp. Hyalinocytes and semi-granulocytes with masses of WSSVs in their nuclei often appeared, whereas no granular hemocytes with WSSV were found in the hepatopancreas of moribund infected shrimps. All our results supported that hemocytes were the main target cells of WSSV, and hyalinocytes and semigranular hemocytes seemed to be more favorable for WSSV infection in F. chinensis.

  6. Functional identification of the non-specific nuclease from white spot syndrome virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Li; Lin Shumei; Yanga Feng

    2005-07-05

    The product encoded by the wsv191 gene from shrimp white spot syndrome virus (WSSV) is homologous with non-specific nucleases (NSN) of other organisms. To functionally identify the protein, the wsv191 gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with 6His-tag at C-terminal. The fusion protein (termed as rWSSV-NSN) was purified using Ni-NTA affinity chromatography under denatured conditions, renatured and characterized by three methods. The results showed that rWSSV-NSN could hydrolyze both DNA and RNA. 5'-RACE result revealed that the transcription initiation site of the wsv191 gene was located at nucleotide residue G of the predictedmore » ATG triplet. Therefore, we concluded that the next ATG should be the genuine translation initiation codon of the wsv191 gene. Western blot analysis revealed that the molecular mass of natural WSSV-NSN was 37 kDa.« less

  7. Host-cell interaction of attenuated and wild-type strains of yellow fever virus can be differentiated at early stages of hepatocyte infection.

    PubMed

    Lefeuvre, Anabelle; Contamin, Hugues; Decelle, Thierry; Fournier, Christophe; Lang, Jean; Deubel, Vincent; Marianneau, Philippe

    2006-05-01

    Yellow fever (YF) virus is currently found in tropical Africa and South America, and is responsible for a febrile to severe illness characterized by organ failure and shock. The attenuated YF 17D strain, used in YF vaccine, was derived from the wild-type strain Asibi. Although studies have been done on genetic markers of YF virulence, differentiation of the two strains in terms of host-cell interaction during infection remains elusive. As YF wild-type strains are hepatotropic, we chose a hepatic cell line (HepG2) to study YF virus-host cell interaction. HepG2 cells rapidly produced high titres of infectious viral particles for 17D and Asibi YF strains. However, HepG2 cells were more susceptible to the attenuated 17D virus infection, and only this virus strain induced early apoptosis in these cells. Molecular markers specific for the 17D virus were identified by microarray analysis and confirmed by quantitative RT-PCR analysis. As early as 1h postinfection, three genes, (IEX-1, IRF-1, DEC-1) all implicated in apoptosis pathways, were upregulated. Later in infection (48 h) two other genes (HSP70-1A and 1B), expressed in cases of cellular stress, were highly upregulated in 17D-infected HepG2 cells. The early specific upregulation of these cellular genes in HepG2 cells may be considered markers of the 17D virus. This study on the YF attenuated strain gives a new approach to the analysis of the factors involved in virus attenuation.

  8. Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-α and IFN-α profiles.

    PubMed

    Gandini, Mariana; Reis, Sonia Regina Nogueira Ignacio; Torrentes-Carvalho, Amanda; Azeredo, Elzinandes Leal; Freire, Marcos da Silva; Galler, Ricardo; Kubelka, Claire Fernandes

    2011-08-01

    Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.

  9. Animal models of yellow fever and their application in clinical research.

    PubMed

    Julander, Justin G

    2016-06-01

    Yellow fever virus (YFV) is an arbovirus that causes significant human morbidity and mortality. This virus has been studied intensively over the past century, although there are still no treatment options for those who become infected. Periodic and unpredictable yellow fever (YF) outbreaks in Africa and South America continue to occur and underscore the ongoing need to further understand this viral disease and to develop additional countermeasures to prevent or treat cases of illness. The use of animal models of YF is critical to accomplishing this goal. There are several animal models of YF that replicate various aspects of clinical disease and have provided insight into pathogenic mechanisms of the virus. These typically include mice, hamsters and non-human primates (NHP). The utilities and shortcomings of the available animal models of YF are discussed. Information on recent discoveries that have been made in the field of YFV research is also included as well as important future directions in further ameliorating the morbidity and mortality that occur as a result of YFV infection. It is anticipated that these model systems will help facilitate further improvements in the understanding of this virus and in furthering countermeasures to prevent or treat infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon.

    PubMed

    Bourchookarn, Apichai; Havanapan, Phattara-Orn; Thongboonkerd, Visith; Krittanai, Chartchai

    2008-03-01

    A comparative proteomic analysis was employed to identify altered proteins in the yellow head virus (YHV) infected lymphoid organ (LO) of Penaeus monodon. At 24 h post-infection, the infected shrimps showed obvious signs of infection, while the control shrimps remained healthy. Two-dimensional electrophoresis of proteins extracted from the LO revealed significant alterations in abundance of several proteins in the infected group. Protein identification by MALDI-TOF MS and nanoLC-ESI-MS/MS revealed significant increase of transglutaminase, protein disulfide isomerase, ATP synthase beta subunit, V-ATPase subunit A, and hemocyanin fragments. A significant decrease was also identified for Rab GDP-dissociation inhibitor, 6-phosphogluconate dehydrogenase, actin, fast tropomyosin isoform, and hemolymph clottable protein. Some of these altered proteins were further investigated at the mRNA level using real-time RT-PCR, which confirmed the proteomic data. Identification of these altered proteins in the YHV-infected shrimps may provide novel insights into the molecular responses of P. monodon to YHV infection.

  11. [Investigation surrounding a fatal case of yellow fever in Côte d'Ivoire in 1999].

    PubMed

    Akoua-Koffi, C; Diarrassouba, S; Bénié, V B; Ngbichi, J M; Bozoua, T; Bosson, A; Akran, V; Carnevale, P; Ehouman, A

    2001-08-01

    Côte d'Ivoire is an endemic country for yellow fever, but no case was officially notified in recent years. In July 1999, however, one fatal case was reported. A German citizen was infected in the national park of Comoe, in the north eastern area of the country. In order to evaluate the extent of amaril virus circulation and the risk for local people, a virological, entomological and epidemiological investigation was carried out by the ministry of health, the OCCGE, the Côte d'Ivoire Pasteur Institute (IPCI) and the World Health Organisation in the area where the fatal case had been staying. 18 suspected and 24 confirmed mosquito catchers were identified by interview and a blood specimen was collected from each of them. In addition, 159 batches of mosquitoes from which 94 batches of potential vectors were collected; among the suspected cases, 22% were immunised against yellow fever. Serological and virological analyses were made at IPCI and the Paris Pasteur Institute by ELISA technique and isolation on cells cultures and newborn mice. All the suspicious sera and 87.5% of the catchers were positive for IgG anti-amaril virus. One catcher's serum was positive for IgM anti-amaril virus. 11 suspected sera were positive for IgG anti-dengue virus with 1 positive for IgM. 1 strain of amaril virus and 3 strains of Zika virus were isolated from mosquitoes at IPCI and confirmed by CRORA in Dakar. These results indicated that there is a yellow fever and dengue virus are prevalent among the human and vector populations in the study area. Preventive measures must be adopted to protect human beings at risk for amaril infection.

  12. Circulation of a Meaban-Like Virus in Yellow-Legged Gulls and Seabird Ticks in the Western Mediterranean Basin

    PubMed Central

    Cerdà-Cuéllar, Marta; Lecollinet, Sylvie; Pearce-Duvet, Jessica; Busquets, Núria; García-Bocanegra, Ignacio; Pagès, Nonito; Vittecoq, Marion; Hammouda, Abdessalem; Samraoui, Boudjéma; Garnier, Romain; Ramos, Raül; Selmi, Slaheddine; González-Solís, Jacob; Jourdain, Elsa; Boulinier, Thierry

    2014-01-01

    In recent years, a number of zoonotic flaviviruses have emerged worldwide, and wild birds serve as their major reservoirs. Epidemiological surveys of bird populations at various geographical scales can clarify key aspects of the eco-epidemiology of these viruses. In this study, we aimed at exploring the presence of flaviviruses in the western Mediterranean by sampling breeding populations of the yellow-legged gull (Larus michahellis), a widely distributed, anthropophilic, and abundant seabird species. For 3 years, we sampled eggs from 19 breeding colonies in Spain, France, Algeria, and Tunisia. First, ELISAs were used to determine if the eggs contained antibodies against flaviviruses. Second, neutralization assays were used to identify the specific flaviviruses present. Finally, for colonies in which ELISA-positive eggs had been found, chick serum samples and potential vectors, culicid mosquitoes and soft ticks (Ornithodoros maritimus), were collected and analyzed using serology and PCR, respectively. The prevalence of flavivirus-specific antibodies in eggs was highly spatially heterogeneous. In northeastern Spain, on the Medes Islands and in the nearby village of L'Escala, 56% of eggs had antibodies against the flavivirus envelope protein, but were negative for neutralizing antibodies against three common flaviviruses: West Nile, Usutu, and tick-borne encephalitis viruses. Furthermore, little evidence of past flavivirus exposure was obtained for the other colonies. A subset of the Ornithodoros ticks from Medes screened for flaviviral RNA tested positive for a virus whose NS5 gene was 95% similar to that of Meaban virus, a flavivirus previously isolated from ticks of Larus argentatus in western France. All ELISA-positive samples subsequently tested positive for Meaban virus neutralizing antibodies. This study shows that gulls in the western Mediterranean Basin are exposed to a tick-borne Meaban-like virus, which underscores the need of exploring the spatial and

  13. Implication of the Bacterial Endosymbiont Rickettsia spp. in Interactions of the Whitefly Bemisia tabaci with Tomato yellow leaf curl virus

    PubMed Central

    Kliot, Adi; Cilia, Michelle; Czosnek, Henryk

    2014-01-01

    ABSTRACT Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. We report here that infection with Rickettsia spp., a facultative endosymbiont of whiteflies, altered TYLCV-B. tabaci interactions. A B. tabaci strain infected with Rickettsia acquired more TYLCV from infected plants, retained the virus longer, and exhibited nearly double the transmission efficiency compared to an uninfected B. tabaci strain with the same genetic background. Temporal and spatial antagonistic relationships were discovered between Rickettsia and TYLCV within the whitefly. In different time course experiments, the levels of virus and Rickettsia within the insect were inversely correlated. Fluorescence in situ hybridization analysis of Rickettsia-infected midguts provided evidence for niche exclusion between Rickettsia and TYLCV. In particular, high levels of the bacterium in the midgut resulted in higher virus concentrations in the filter chamber, a favored site for virus translocation along the transmission pathway, whereas low levels of Rickettsia in the midgut resulted in an even distribution of the virus. Taken together, these results indicate that Rickettsia, by infecting the midgut, increases TYLCV transmission efficacy, adding further insights into the complex association between persistent plant viruses, their insect vectors, and microorganism tenants that reside within these insects. IMPORTANCE Interest in bacterial endosymbionts in arthropods and many aspects of their host biology in agricultural and human health systems has been increasing. A recent and relevant studied example is the influence of Wolbachia on dengue virus transmission by mosquitoes. In parallel with our recently studied whitefly-Rickettsia-TYLCV system, other studies have shown that dengue virus levels in the mosquito vector are inversely correlated with

  14. First full-length genome sequence of the polerovirus luffa aphid-borne yellows virus (LABYV) reveals the presence of at least two consensus sequences in an isolate from Thailand.

    PubMed

    Knierim, Dennis; Maiss, Edgar; Kenyon, Lawrence; Winter, Stephan; Menzel, Wulf

    2015-10-01

    Luffa aphid-borne yellows virus (LABYV) was proposed as the name for a previously undescribed polerovirus based on partial genome sequences obtained from samples of cucurbit plants collected in Thailand between 2008 and 2013. In this study, we determined the first full-length genome sequence of LABYV. Based on phylogenetic analysis and genome properties, it is clear that this virus represents a distinct species in the genus Polerovirus. Analysis of sequences from sample TH24, which was collected in 2010 from a luffa plant in Thailand, reveals the presence of two different full-length genome consensus sequences.

  15. IMMUNITY TO YELLOW FEVER ENCEPHALITIS OF MONKEYS AND MICE IMMUNIZED BY NEURAL AND EXTRANEURAL ROUTES

    PubMed Central

    Fox, John P.

    1943-01-01

    Monkeys and mice surviving cerebral infection with yellow fever virus of relatively avirulent strains have been found to resist maximal intracerebral doses of yellow fever virus of a highly neurotropic strain. Such animals, however, do not resist more than very small doses of intracerebrally inoculated virus of Eastern equine encephalomyelitis. Animals immunized by extraneural routes, on the other hand, are not uniformly resistant to neural infection with neurotropic yellow fever virus. Monkeys which have undergone systemic infection with virus of the avirulent 17D strain or of several jungle strains resist only small intracerebral doses of neurotropic virus; while mice, even when possessed of very high serum-antibody levels as the result of intraperitoneal hyperimmunization, manifest only an irregular resistance to intracerebral challenge inocula. The difference in the resistance of neurally and extraneurally immunized animals is not related to similar differences in the levels of protective antibody in the sera. Indeed, the average of the serum-antibody titers of the hyperimmune mice is several times that of the intracerebral immunes. A possibly significant relation does exist, however, between the resistance of mice to neural infection and the content of protective antibody in the brain. The protective activity of suspensions of brains from mice surviving cerebral infection was found to be several times that of brain suspensions from the hyperimmunized animals. It is concluded that the superior resistance to neural infection of animals whose immunity results from a previous non-fatal infection of the nervous system is effected by a specific local mechanism which is based at least in part upon an increased concentration of antibody in the cerebral tissue. PMID:19871299

  16. Incidence of viruses in fescue (Festuca sp.) seed production fields in the Willamette Valley in 2016

    USDA-ARS?s Scientific Manuscript database

    Tall Fescue seed production fields of Western Oregon were sampled and tested for the presence or absence of three viruses, Barley yellow dwarf virus (BYDV) -MAV and -PAV, and Cereal yellow dwarf virus (CYDV). There was no BYDV-MAV detected in any of the Fescue seed fields. The BYDV-PAV occurred in ...

  17. Selective constraints, molecular recombination structure and phylogenetic reconstruction of isometric plant RNA viruses of the families Luteoviridae and Tymoviridae.

    PubMed

    Boulila, Moncef

    2011-02-01

    In an effort to enhance the knowledge on molecular evolution of currently the known members of the families Luteoviridae and Tymoviridae, in-depth molecular investigations in the entire genome of 147 accessions retrieved from the international databases, were carried out. Two algorithms (RECCO and RDP version 3.31β) adapted to the mosaic structure of viruses were utilized. The recombination frequency along the sequences was dissected and demonstrated that the three virus genera of the family Luteoviridae comprise numerous members subjected to recombination. It has pointed out that the major viruses swapped a few but long genomic segments. In addition, in Barley yellow dwarf virus, heredity material might be exchanged between two different serotypes. Even more, putative recombination events occurred between two different genera. Based on Fisher's Exact Test of Neutrality, positive selection acting on protein expression was detected only in the poleroviruses Cereal yellow dwarf virus, Potato leafroll virus and Wheat yellow dwarf virus. In contrast, several components of the family Tymoviridae were highly recombinant. Genomic portion exchange arose in many positions consisting of short fragments. Furthermore, no positive selection was detected. The evolutionary history showed, in the Luteoviridae, that all screened isolates split into three clusters corresponding to the three virus genera forming this family. Moreover, in the serotype PAV of Barley yellow dwarf virus, two major clades corresponding to PAV-USA and PAV-China, were delineated. Similarly, in the Tymoviridae, all analyzed isolates fell into four groups corresponding to the three virus genera composing this family along with the unclassified Tymoviridae. Inferred phylogenies reshuffled the existing classification and showed that Wheat yellow dwarf virus-RPV was genetically closely related to Cereal yellow dwarf virus and the unclassified Tymoviridae Grapevine syrah virus-1 constituted an integral part of

  18. Concomitant outbreaks of yellow fever and hepatitis E virus in Darfur States, Sudan, 2012.

    PubMed

    Ahmed, Sarah S; Soghaier, Mohammed A; Mohammed, Sozan; Khogali, Hayat S; Osman, Muntasir M; Abdalla, Abdalla M

    2016-01-31

    Yellow fever (YF) is a vector-borne disease transmitted to humans by infected Aedes mosquitoes, while hepatitis E virus (HEV) is a waterborne disease that is transmitted through the fecal-oral route. Both diseases have very close clinical presentation, namely fever, jaundice, malaise, and dark urine; they differ in severity and outcome. In this cross-sectional, laboratory-based study, an attempt was made to measure the correlation of concomitant YF and HEV infection in Darfur States during the previous YF outbreak in 2012. Results found concomitant outbreaks of YF and HEV at the same time with very weak statistical correlation between the two infections during the outbreak period, with Cramer's V correlation 0.05 and insignificant p value of 0.86. This correlation indicates that clinicians and care providers in tropical areas have to deal with clinical case definitions used for disease surveillance very carefully since prevalence of HEV infection is relatively common and this increases the possibility of misclassification and missing YF cases, particularly initial index cases, in a season or outbreak.

  19. Diversity of citrus tristeza virus isolates indicated by dsRNA analysis.

    PubMed

    Dodds, J A; Jordan, R L; Roistacher, C N; Jarupat, T

    1987-01-01

    One major dsRNA of molecular weight (MW) 13.3 X 10(6) and two others (MW 1.9 X 10(6) and 0.8 X 10(6] were routinely detected by polyacrylamide gel electrophoresis in extracts from sweet orange (Citrus sinensis) or citron (Citrus medica) infected with each of 66 isolates of citrus tristeza virus (CTV). Several additional dsRNA were also commonly detected, usually as weakly stained bands in reproducible positions in gels, but some were very prominent, e.g., a dsRNA of MW 1.7 X 10(6) associated with a seedling yellows isolate (sy-1). No dsRNA was detected in equivalent extracts from noninoculated sweet orange and citron. End-labeled [32P] probes were made from purified full-length viral RNA or polyacrylamide gel-purified full-length dsRNA of a nonseedling yellows (nsy-1) and a seedling yellows (sy-1) isolate of CTV. Each of the four probes was able to hybridize to all major and most minor dsRNAs of both isolates in composite polyacrylamide/agrarose gels, including the 1.7 X 10(6) dsRNA specific to the seedling yellows isolate, and could readily detect CTV nucleic acid sequences in extracts from bark of infected sweet orange plants spotted onto nitrocellulose membranes. One dsRNA (MW 0.5 X 10(6] was very prominent in some isolates and much less so, or undetectable, in other isolates and 66 isolates have been screened for the presence of this dsRNA. There was a strong correlation between inability to detect the 0.5 X 10(6) dsRNA and the designation of an isolate as neither a seedling yellows type nor a stem pitting isolate of grapefruit; these properties were typical for isolates of CTV from southern California.

  20. The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis.

    PubMed

    Margaria, P; Bosco, L; Vallino, M; Ciuffo, M; Mautino, G C; Tavella, L; Turina, M

    2014-05-01

    Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches.