Sample records for yellow-poplar liriodendron tulipifera

  1. Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera).

    PubMed

    Kim, Young-Hun; Lee, Soo-Min; Lee, Hyoung-Woo; Lee, Jae-Won

    2012-07-01

    We investigated the characteristics of torrefied yellow poplar (Liriodendron tulipifera) depending on reaction time (30 min) and temperature (240-280 °C). The thermogravimetric, grindability and calorific value of torrefied biomass were analyzed. As the torrefaction temperature increased, the carbon content of torrefied biomass increased from 49.50% to 54.42%, while the hydrogen and oxygen contents decreased from 6.09% to 5.65% and 28.71% to 26.61%, respectively. The highest calorific value was 1233 kJ/kg when torrefaction was performed at 280 °C for 30 min. An overall increase in energy density and decrease in mass and energy yield was observed with the increase in torrefaction temperature. The analysis of thermal decomposition demonstrated that the hemicelluloses contained in torrefied biomass decreased with increasing torrefaction temperature, whereas cellulose and lignin were only slightly affected. The grindability of torrefied biomass was significantly improved when torrefaction was performed at high temperature. Torrefaction of yellow poplar improved the chemical and physical fuel properties of the biomass. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. Yellow-Poplar Site Index Curves

    Treesearch

    Donald E. Beck

    1962-01-01

    Yellow-poplar (Liriodendron tulipifera L.) occurs naturally throughout the eastern and central United States from southern New England west to Michigan and south to Florida and Louisiana. Because of its wide occurrence, yellow-poplar grows under a variety of climatic, edaphic, and biotic conditions. Combinations of these different environmental...

  3. Dimension yields from yellow-poplar lumber

    Treesearch

    R. C. Gilmore; J. D. Danielson

    1984-01-01

    The available supply of yellow poplar (Liriodendron tulipifera L.), its potential for new uses, and its continuing importance to the furniture industry have created a need to accumulate additional information about this species. As an aid to better utilization of this species, charts for determining cutting stock yields from yellow poplar lumber are presented for each...

  4. Long-term response of yellow-poplar to thinning in the Southern Appalachian Mountains

    Treesearch

    Tara L. Keyser; Peter M. Brown

    2015-01-01

    Yellow-poplar (Liriodendron tulipifera L.) is the most abundant individual tree species (in terms of volume) in the southern Appalachian Mountains, with Forest Inventory and Analysis (FIA) reports documenting a continuous increase in yellow-poplar over the recent years (Brown 2003, Schweitzer 1999, Thompson 1998). Current management efforts in evenaged yellow-poplar...

  5. Potential Utilization of Sweetgum and Yellow-Poplar for Structural Lumber

    Treesearch

    Timothy D. Faust; Robert H. McAlister; Stanley J. Zarnoch; Christopher B. Stephens

    1991-01-01

    The forest resource base in the Southeast is rapidly changing. Dwindling reserves of high quality pine sawlogs will provide incentive to utilize low-density hardwoods such as yellow-poplar and sweetgum for structural lumber. Inventories of sweetgum (Liquidambar styraciflua, L.) and yellow-poplar (Liriodendron tulipifera, L.) are currently high and growth is exceeding...

  6. Board-Foot and Diameter Growth of Yellow-Poplar After Thinning

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1975-01-01

    Board-foot growth and yield of thinned yellow-poplar stands (Liriodendron tulipifera L.)is related to age, site index, residual basal area, and residual quadratic mean stand diameter after thinning. Diameter growth of individual trees is increased considerably by thinning. Equations describing growth and yield are based on data from 141 natura1 yellow-poplar stands in...

  7. Bud-grafting yellow-poplar

    Treesearch

    David T. Funk

    1963-01-01

    Several years ago we began work on the vegetative propagation of yellow-poplar (Liriodendron tulipifera L.) with the aim of eventually establishing a clonal seed orchard. We tried field grafting, field budding, and air layering. We then attempted rooting cuttings in the greenhouse and in an indoor propagation bench. The best we could do with any of these methods was 4...

  8. Growth and Yield of Thinned Yellow-Poplar

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1972-01-01

    Diameter distributions and yields for various combinations of site index, age, and density for unthinned and largely undisturbed stands of yellow-poplar (Liriodendron tulipifera L. ) have been presented by McGee and Della-Bianca (1967) and Beck and Della-Bianca (1970). Their results were based on the initial measurements of a network of permanent sample plots...

  9. Foliar physiology of yellow-poplar (Liriodendron tulipifera L.) exposed to O3 and elevated CO2 over five seasons

    Treesearch

    Joanne Rebbeck; Amy J. Scherzer; Ken V. Loats

    2004-01-01

    The chronic effects of ozone (03) alone or combined with elevated carbon dioxide (CO2) on the foliar physiology of unfertilized field-grown yellowpoplar (Liriodendron tulipifera L.) seedlings were studied from 1992 to 1996.

  10. Strength and Stiffness Properties of Sweetgum and Yellow-poplar Structural Lumber

    Treesearch

    Timothy D. Faust; Robert H. McAlister; Stanley J. Zarnoch

    1990-01-01

    The forest resource base in the Southeast is rapidly changing. Dwindling reserves of high quality pine sawlogs will provide incentives to utilize low-density hardwoods such as yellow-poplar and sweetgum for structural lumber. Inventories of sweetgum (Liriodendron tulipifera L.) are currently high and growth is exceeding removals. The mechanical propertiees of dimension...

  11. Biomass of Yellow-Poplar in Natural Stands in Western North Carolina

    Treesearch

    Alexander Clark; James G. Schroeder

    1977-01-01

    Aboveground biomass was determined for yellow-poplar(Liriodendron tulipifera L.) trees 6 to 28 inches d. b. h. growingin natural, uneven-aged mountaincovestandsin western North Carolina.Specific gravity, moisture content, and green weight per cubic foot are presented for the total tree and its components. Tables developed from regression equations show weight and...

  12. Yellow-poplar seed quality varies by seed trees, stands, and years

    Treesearch

    G.A. Limstrom

    1959-01-01

    The number of year-old yellow-poplar (Liriodendron tulipifera L.) seedlings grown from equal quantities of seed varies as much among individual seed trees within a stand as among stands of different geographic location. Moreover, production will vary from one year to another. This information was obtained from an experiment begun in the Central...

  13. Decay in yellow-poplar, maple, black gum, and ash in the central hardwood region

    Treesearch

    Frederick H. Berry

    1977-01-01

    In a study of decay in yellow-poplar (Liriodendron tulipifera L.), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), black gum (Nyssa sylvatica Marsh.), and ash (Fraxinus spp.) in the central hardwood region, decay was found in 57 of 148 study trees. Extent of...

  14. Growth of yellow-poplar and associated species in West Virginia ...as a guide to selective cutting

    Treesearch

    Carl J. Holcomb; C. Allen Bickford

    1952-01-01

    Yellow-poplar (Liriodendron tulipifera L.) has long been recognized as a valuable species. Lumbermen prize the long, straight, clear boles. Foresters like its silvicultural attributes. They also regard well the other species that are associated with it: ash, basswood, birch, maple, and cherry.

  15. Durability of yellow-poplar and sweetgum and service life of finishes after long-term exposure

    Treesearch

    R. Sam Williams; William C. Feist

    2004-01-01

    This report describes the results of long-term outdoor exposure on durability of hardwood plywood and the service life of various finishes. Smooth (abrasive-planed) and rough (saw-textured) yellow-poplar (Liriodendron tulipifera L.) and sweetgum (Liquidambar styraciflua L.) plywood panelswere exposed outdoors for 16 years near Madison, Wisconsin. The performance of...

  16. Dynamics of planted cherrybark oak seedlings and yellow-poplar from seed following a regeneration clearcut

    Treesearch

    Wayne K. Clatterbuck

    2011-01-01

    A bottomland loblolly pine (Pinus taeda) stand originating from an early 1940s planting on a minor stream bottom of the Coastal Plain in west Tennessee was harvested in 1992 and allowed to regenerate to hardwoods. Although the pines had been planted, a few naturally regenerated yellow-poplar (Liriodendron tulipifera) and sweetgum...

  17. Geologic Variable Associated with Height of Yellow-Poplar Stand in the Bald Mountains of North Carolina

    Treesearch

    W. Henry McNab; Carl E. Merschat

    1990-01-01

    Quartz grain size and mylonitization, geologic variables determined fromrocks on sites, were associated with total height of yellow-poplar (Liriodendron tulipifera L.) standsand may be of value as independent variables in modeling tree growth from site characteristics. A predictive model containing quartz grain site and stand age accounted for about 54% of the...

  18. Growth and Development of Yellow-Poplar Plantations On Three Sites Ranging From 9 to 18 Years

    Treesearch

    Wayne K. Clatterbuck

    2004-01-01

    Planting pine for conversion of former agricultural land to managed forests is well-documented, but little informa-tion is available for hardwood plantings. This study references three yellow poplar (Liriodendron tulipifera L.) plantations (ages 9, 12, and 18 years) on different sites totaling 95 acres. The sites were located in middle Tennessee...

  19. Net production relations of three tree species at Oak Ridge, Tennessee. [Liriodendron tulipifera; Quercus alba; Pinus echinata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, R.H.; Cohen, N.; Olson, J.S.

    Measurement of productivity of forests is a difficult problem which has been variously approached. Results from an exploratory application of one approach (Whittaker 1961) to trees of three species - Liriodendron tulipifera (tulip tree or yellow poplar), Quercus alba (white oak), and Pinus echinata (shortleaf pine) - are reported here. The trees were felled in a logging operation at Oak Ridge National Laboratory in a mature second-growth, mixed oak-pine forest including also Quercus velutina, Q. coccinea, Q. falcata, Pinus virginiana, Acer rubrum, Nyssa sylvatica, Oxydendrum arboreum, and Carya ovalis. The forest grew on slopes of low hills on Knox dolomitemore » at about 300 m elevation. 22 references, 1 figure, 2 tables.« less

  20. The chronic response of yellow-poplar and eastern white pine to ozone and elevated carbon dioxide: three-year summary

    Treesearch

    Joanne Rebbeck

    1996-01-01

    The objective of this study was to determine the long-term effects of ozone (O3) and carbon dioxide (CO2) on the growth and physiology of eastern white pine (Pinus strobus) and yellow-poplar (Liriodendron tulipifera) under plantation conditions. Two separate plantations of each species...

  1. Growth and yield for a 7-year-old yellow-poplar plantation in northern West Virginia

    Treesearch

    John R. Brooks

    2013-01-01

    Results for several major stand level variables from a 7-year-old yellow-poplar (Liriodendron tulipifera L.) plantation established in a converted pasture in northern West Virginia were summarized based on initial planting densities of 1,517 trees/ac, 972 trees/ac, 765 trees/ac, and 602 trees/ac. Stand basal area/acre at age 7 was greatest (54.7 ft...

  2. Dark respiration and carbohydrate status of two forest species grown in elevated carbon dioxide. [Liriodendron tulipifera L. ; Quercus alba L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, S.D.; Norby, R.J.; Hendrix, D.L.

    1991-05-01

    Carbon assimilation is often increased by CO{sub 2} enrichment, but the response of dark respiration and carbohydrate metabolism to elevated CO{sub 2} is less well documented. The authors examined the diurnal response of these two processes in yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) seedling exposed to CO{sub 2} enrichment under field conditions. One-year-old seedlings of yellow-poplar and white oak were grown in open-top chambers and exposed to ambient, +150 {mu}mol mol{sup {minus}1}, or +300 {mu}mol mol{sup {minus}1} CO{sub 2} concentrations. After 24 weeks, mature leaves of yellow-poplar and white oak seedlings grown at high CO{sub 2}more » showed a 37% and 52% reduction in nighttime respiration, respectively. Morning starch levels for yellow-poplar and white oak grown at +300 {mu}mol mol{sup {minus}1} increased 72% and 40%, respectively, compared to ambient-grown plants. Yellow-poplar and white oak seedlings grown at high CO{sub 2} contained 17% and 27% less morning sucrose, respectively than did plants grown at ambient CO{sub 2} concentration. Starch accumulation and the subsequent depletion of sucrose for plants grown under CO{sub 2} enrichment, resulted in a pronounced rise in the starch/sucrose ratio with increasing CO{sub 2} concentration. The diurnal pattern of dark respiration suggested that a relationship with carbohydrate status might exist.« less

  3. Silvical Characteristics of Yellow-Poplar

    Treesearch

    David F. Olson

    1969-01-01

    Yellow-poplar (Liriorlentlron tulipifera L.) is also commonly known as tulip poplar, tulip tree, white-poplar, whitewood, and "poplar" (60). It gets its name from the tulip-like flowers which it bears in the late spring. Because of the excellent form and rapid growth of the tree, plus the fine working qualities of the wood, yellow-poplar is one of the most...

  4. Yield of Unthinned Yellow-Poplar

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1970-01-01

    Cubic-foot and board-foot yields of unthinned yellow-poplar (Liriodendron Tulipiferi L.) stands are described in relation to stand age, site index, and number of trees per acre. The yield tables are based on analysis of diameter distributions and height-diameter relationships obtained from 141 natural, unthinned yellow-poplar stands in the...

  5. Dry deposition of sulfate to Quercus rubra and Liriodendron tulipifera foliage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandenberg, J.J.

    1987-01-01

    Estimates were made of the rate of dry deposition to red oak (Quercus rubra) and tulip poplar (Liriodendron tulipifera) foliage. In the laboratory, radioactive ammonium sulfate aerosols were generated in an exposure chamber. These aerosols were dry deposited onto leaves that were sequentially washed to examine the efficacy of washing procedures in removal of surface deposits. Over 90% of dry deposited sulfate was removed after a 30 second wash duration. Laboratory procedures also estimated the magnitude of foliar sulfur that leached into leaf wash solutions. The majority of laboratory leaves demonstrated no leaching of sulfur from the internal pool. However,more » some leaves showed significant sulfur leaching. It was concluded that leaching of internal sulfur was highly leaf specific. This indicated that each leaf used in field experiments needed to be individually examined for leaching.« less

  6. Effects of stem size on stem respiration and its flux components in yellow-poplar (Liriodendron tulipifera L.) trees.

    PubMed

    Fan, Hailan; McGuire, Mary Anne; Teskey, Robert O

    2017-11-01

    Carbon dioxide (CO2) released from respiring cells in the stems of trees (RS) can diffuse radially to the atmosphere (EA) or dissolve in xylem sap and move internally in the tree (FT). Previous studies have observed that EA decreases as stem or branch diameter increases, but the cause of this relationship has not been determined, nor has the relationship been confirmed between stem diameter and RS, which includes both EA and FT. In this study, for the first time the mass balance technique was used to estimate RS of stems of Liriodendron tulipifera L. trees of different diameters, ranging from 16 to 60 cm, growing on the same site. The magnitude of the component fluxes scaled with tree size. Among the five trees, the contribution of EA to RS decreased linearly with increasing stem diameter and sapwood area while the contribution of FT to RS increased linearly with stem diameter and sapwood area. For the smallest tree EA was 86% of RS but it was only 46% of RS in the largest tree. As tree size increased a greater proportion of respired CO2 dissolved in sap and remained within the tree. Due to increase in FT with tree size, we observed that trees of different sizes had the same RS even though they had different EA. This appears to explain why the EA of stems and branches decreases as their size increases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Development of a Southern Appalachian Hardwood Stand After Clearcutting

    Treesearch

    Donald E. Beck; Ralph M. Hooper

    1986-01-01

    A mixed hardwood stand composed of 53% oak (Quercus spp.), 33% yellow-poplar(Liriodendron tulipifera L.), and 14% other species, was clearcut in 1963. Twenty years later a developing, even-aged stand of predominantly sprout origin is dominated by yellow-poplar, black locust(Robinia pseudoacacia L.), redmaple (...

  8. Potential Utilization of Sweetgum for Structural Lumber

    Treesearch

    Timothy D. Faust; Robert H. McAlister; Peter J. Stewart; Frederick W. Cubbage; Philip A. Araman

    1991-01-01

    The forest resource base in the Southeast is rapidly changing. Dwindling reserves of high quality pine sawlogs will provide incentive to utilize low-density hardwoods such as yellow-poplar and sweetgum for structural lumber. Inventories of sweetgum (Liquidambar styraciflua, L.) and yellow-poplar (Liriodendron tulipifera, L.) are currently high and growth is exceeding...

  9. Growth response of four species of Eastern hardwood tree seedlings exposed to ozone, acidic precipitation, and sulfur dioxide. [Prunus serotina, Acer rubrum, Quercus rubra, Liriodendron tulipifera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, D.D. Skelly, J.M.

    1992-03-01

    In 1987 a study was conducted in controlled environment chambers to determine the foliar sensitivity of tree seedlings of eight species to ozone and acidic precipitation, and to determine the influence of leaf position on symptom severity. Jensen and Dochinger conducted concurrent similar studies in Continuously Stirred Tank Reactor (CSTR) chambers with ten species of forest trees. Based on the results of these initial studies, four species representing a range in foliar sensitivity to ozone were chosen: black cherry (Prunus serotina Ehrh.), red maple (Acer rubrum L.), northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.). These speciesmore » were also chosen because of their ecological and/or commercial importance in Pennsylvania. Seedlings were exposed in growth chambers simulated acid rain. In addition acute exposures to sulfur dioxide were conducted in a regime based on unpublished monitoring data collected near coal-fired power plants. The objective of this study was to determine if the pollutant treatments influenced the growth and productivity of seedlings of these four species. This information will help researchers and foresters understand the role of air pollution in productivity of eastern forests.« less

  10. Spatio-temporal Variability of Stemflow Volume in a Beech-Yellow Poplar Forest in Relation to Tree Species and Size

    NASA Astrophysics Data System (ADS)

    Levia, D. F.; van Stan, J. T.; Mage, S.; Hauske, P. W.

    2009-05-01

    Stemflow is a localized point input at the base of trees that can account for more than 10% of the incident gross precipitation in deciduous forests. Despite the fact that stemflow has been documented to be of hydropedological importance, affecting soil moisture patterns, soil erosion, soil chemistry, and the distribution of understory vegetation, our current understanding of the temporal variability of stemflow yield is poor. The aim of the present study, conducted in a beech-yellow poplar forest in northeastern Maryland (39°42'N, 75°50'W), was to better understand the temporal and variability of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to meteorological conditions and season in order to better assess its importance to canopy-soil interactions. The experimental plot had a stand density of 225 trees/ha, a stand basal area of 36.8 sq. m/ha, a mean dbh of 40.8 cm, and a mean tree height of 27.8 m. The stand leaf area index (LAI) is 5.3. Yellow poplar and beech constitute three- quarters of the stand basal area. Using a high resolution (5 min) sequential stemflow sampling network, consisting of tipping-bucket gauges interfaced with a Campbell CR1000 datalogger, the temporal variability of stemflow yield was examined. Beech produced significantly larger stemflow amounts than yellow poplar. The amount of stemflow produced by individual beech trees in 5 minute intervals reached three liters. Stemflow yield and funneling ratios decreased with increasing rain intensity. Temporal variability of stemflow inputs were affected by the nature of incident gross rainfall, season, tree species, tree size, and bark water storage capacity. Stemflow was greater during the leafless period than full leaf period. Stemflow yield was greater for larger beech trees and smaller yellow poplar trees, owing to differences in bark water storage capacity. The findings of this study indicate that stemflow has a

  11. Yield and utilization of hardwood fiber grown on short rotations. [Platanus occidentalis, Liquidambar styraciflua, Liriodendron tulipifera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinbeck, K.; Brown, C.L.

    1976-01-01

    Plantations of broad-leaved tree species harvested in cycles of less than 10 years can help meet man's increasing cellulose and energy needs. A system of growing hardwoods like an agricultural row crop, harvested with equipment equivalent to corn silage cutters and using the ensuing sprout growth as the next crop, was conceived by foresters in Georgia in 1965. Research has focused on the tree species, sites, and cultural practices suited for this concept as well as the biomass yields and the utility of the fiber that was produced. About 70 hectares of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styracifluamore » L.), and yellow poplar (Liriodendron tulipifera L.) test plantings have been established in the Piedmont and Coastal Plain regions of Georgia. These species, when given proper care, can be grown successfully on many sites previously deemed unsuitable for hardwood growth. Stumps will resprout throughout the year, ensuring a continuous flow of raw material to the user. The biomass yields from hardwood fields vary with species, site, cultural practices, and rotation age. Fresh weight yields of unfoliated sycamore sprouts grown on an upland site varied from 14.3 tons/ha/yr when harvested annually to 21.8 tons/ha/yr with harvest at age four. When sprouts were harvested every two years, 46 kg/ha/2 yrs of nitrogen, 35 kg calcium, 22 kg potassium, and 6 kg phosphorus were removed in the harvested material. Juvenile American sycamore stump sprouts have been successfully converted into corrugating medium, particleboard, fiberboard, hardboard, and newsprint. It can be cooked by the Kraft and NSSC processes. One-, two-, and four-year-old sycamore sprouts presented no unusual problems in the Kraft process, and yields ranged from 45 to 57 percent with an average yield of 52 percent. Cooking times were relatively short.« less

  12. Relationship of stump diameter to d. b. h. for yellow-poplar in the Northeast

    Treesearch

    Frederick E. Hampf

    1955-01-01

    This is the sixth report on a series of studies to show the relationship of stump diameter to diameter breast high (d. b. h.) for commercially important tree species in the Northeast. This report is for yellow-poplar (Lirodendron tulipifera).

  13. Complete Genome Sequence of Spiroplasma floricola 23-6T (ATCC 29989), a Bacterium Isolated from a Tulip Tree (Liriodendron tulipifera L.).

    PubMed

    Tsai, Yi-Ming; Wu, Pei-Shan; Lo, Wen-Sui; Kuo, Chih-Horng

    2018-04-19

    Spiroplasma floricola 23-6 T (ATCC 29989) was isolated from the flower surface of a tulip tree ( Liriodendron tulipifera L.). Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species. Copyright © 2018 Tsai et al.

  14. Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed

    Treesearch

    Desta Fekedulegn; Ray R., Jr. Hicks; J.J. Colbert

    2003-01-01

    This study used dated and measured tree-ring data to examine relationships between radial growth, topographic aspect, and precipitation for four hardwood species, yellow-poplar (Liriodendron tulipifera L.), northern red oak ( L.), chestnut oak (Quercus prinus L.), and red maple (Acer rubum...

  15. Species Diversity in Planted Pine and Natural Hardwoods 24 years After Sharing and Chipping on the Cumberland Plateau, TN

    Treesearch

    Karen Kuers

    2002-01-01

    Plant species richness in 24 year-old planted lobiolly pine (Pinus taeda L.), eastern white pine (Pinus strobus L.), yellow-poplar (Liriodendron tulipifera L.), naturally regenerated hardwoods, and mature hardwoods was compared using the North Carolina Vegetation Survey protocol. Comparisons were made in...

  16. Comparison of the chemical alteration trajectory of Liriodendron tulipifera L. leaf litter among forests with different earthworm abundance

    NASA Astrophysics Data System (ADS)

    Filley, Timothy R.; McCormick, Melissa K.; Crow, Susan E.; Szlavecz, Katalin; Whigham, Dennis F.; Johnston, Cliff T.; van den Heuvel, Ronald N.

    2008-03-01

    To investigate the control of earthworm populations on leaf litter biopolymer decay dynamics, we analyzed the residues of Liriodendron tulipifera L. (tulip poplar) leaves after six months of decay, comparing open surface litter and litter bag experiments among forests with different native and invasive earthworm abundances. Six plots were established in successional tulip poplar forests where sites varied in earthworm density and biomass, roughly 4-10 fold, of nonnative lumbricid species. Analysis of residues by diffuse reflectance Fourier transform infrared spectroscopy and alkaline CuO extraction indicated that open decay in sites with abundant earthworms resulted in residues depleted in cuticular aliphatic and polysaccharide components and enriched in ether-linked lignin relative to open decay in low earthworm abundance plots. Decay within earthworm-excluding litter bags resulted in an increase in aliphatic components relative to initial amendment and similar chemical trajectory to low earthworm open decay experiments. All litter exhibited a decline in cinnamyl-based lignin and an increase in nitrogen content. The influence of earthworm density on the chemical trajectory of litter decay was primarily a manifestation of the physical separation and concentration of lignin-rich and cutin-poor petioles with additional changes promoted by either microorganisms and/or mesofauna resulting in nitrogen addition and polysaccharide loss. These results illustrate how projected increases in invasive earthworm activity in northern North American forests could alter the chemical composition of organic matter in litter residues and potentially organic matter reaching the soil which may result in shifts in the aromatic and aliphatic composition of soils in different systems.

  17. Nanofibrillated cellulose from appalachian hardwoods logging residues as template for antimicrobial copper

    Treesearch

    Masoumeh Hassanzadeh; Ronald Sabo; Alan Rudie; Richard Reiner; Roland Gleisner; Gloria S. Oporto

    2017-01-01

    TEMPO nanofibrillated cellulose (TNFC) fromtwo underutilized Appalachian hardwoods, Northern red oak (Quercus rubra) and yellow poplar (Liriodendron tulipifera), was prepared to determine its feasibility to be used as template for antimicrobial metallic copper particles. In addition, a comparison of the TNFC from the two...

  18. Photosynthetic responses of yellow poplar and white oak to long term atmospheric CO sub 2 enrichment in the field. [Liriondendron tulipifera L; Quercus alba L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunderson, C.A.; Norby, R.J.

    1991-05-01

    A critical consideration in evaluating forest response to rising atmospheric CO{sub 2} is whether the enhancement of net photosynthesis (P{sub N}) by elevated CO{sub 2} can be sustained over the long term. There are reports of declining enhancement of P{sub N} with duration of exposure to elevated CO{sub 2}, associated with decreases in photosynthetic capacity and carboxylation efficiency. We investigated whether this photosynthetic acclimation occurs in two tree species under field conditions. Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were planted in the ground within six open-top field chambers in May 1989 and have beenmore » exposed continuously to CO{sub 2} enrichment during the last two growing seasons. The three CO{sub 2} treatment levels were: ambient, ambient +150, and ambient +300 {mu}L/L. Throughout the second season, gas exchange of upper, light-saturated leaves was surveyed periodically, and leaves of different ages and canopy positions were measured occasionally. Net photosynthesis remained higher at higher CO{sub 2} levels (28-32% higher in +150 and 49-67% higher in +300 seedlings) in both species throughout the season, regardless of increasing leaf age and duration of exposure to CO{sub 2} enrichment. Stomatal conductance remained unchanged or decreased slightly with increasing CO{sub 2}, but instantaneous water use efficiency (P{sub N}/transpiration) increased significantly with CO{sub 2}. Analysis of P{sub N} versus internal CO{sub 2} concentration indicated no significant treatment differences in carboxylation efficiency, CO{sub 2}-saturated P{sub N}, or CO{sub 2} compensation point. There was no evidence of a downward acclimation of photosynthesis to CO{sub 2} enrichment in this system.« less

  19. Pallet cant soundness at Appalachian sawmills and marketing recommendations

    Treesearch

    Philip A. Araman; Matthew F. Winn; Mohammed F. Kabir; Xavier Torcheux; Guillaume Loizeaud

    2002-01-01

    Pallet cants were inspected at selected sawmills in Virginia and West Virginia. We were looking for unsound defects such as splits, wane, shake, holes, rot, decay, unsound knots, bark pockets, and mechanical defects. Red oak (Quercus rubra, L.), white oak (Quercus alba, L), yellow-poplar (Liriodendron tulipifera...

  20. Development of seven hardwood species in small forest openings: 22-year results

    Treesearch

    R.L. Johnson; R.M. Krinard

    1983-01-01

    Small forest openings planted with seven leading commercial tree species were completely dominated by yellow-poplar (Liriodendron tulipifera) that ave raged 90 feet tall after 22 years. Of the other planted species, swamp chestnut oak (Quercus michauxii) was most shade tolerant while shumard oaks (Q. shumardii),...

  1. Seventeen-Year Growth of Cherrybark Oak and Loblolly Pine on a Previously Farmed Bottomland Site

    Treesearch

    Warren D. Devine; John C. Rennie; Allan E. Houston; Donald D. Tyler; Vernon H. Reich

    2002-01-01

    This study documents the effects of cultural treatments on 17-year growth of cherrybark oak (Quercus pagoda Raf.) and lobiolly pine (Pinus taeda L.) planted on a previously farmed bottomland site in southwestern Tennessee. Yellow-poplar (Liriodendron tulipifera L.) was part of the original study, but was...

  2. Effects of Landform on site index for two mesophytic tree species in the Appalachian Mountains of North Carolina, USA

    Treesearch

    W.Henry. McNab

    2010-01-01

    The effects of soil and topographic variables on forest site index were determined for two mesophytic tree species, northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.) in the Southern Appalachian Mountains of North Carolina. Stand variables included soil solum thickness, soil A-horizon thickness,...

  3. Osmotic adjustment in five tree species under elevated CO sub 2 and water stress. [Platanus occidentalis L. ; Liquidambar styraciflua L. ; Quercus rubra L. ; Acer saccharum Marsh; Liriodendron tulipifera L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tschaplinski, T.J.; Hanson, P.J.; Norby, R.J.

    1991-05-01

    Since osmotic adjustment to water stress requires carbon assimilation during stress, the stimulation of photosynthesis by elevated CO{sub 2} may enhance osmotic adjustment. Osmotic adjustment of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.), sugar maple (Acer saccharum Marsh.), yellow-poplar (Liriodendron tulipifera L.), and northern red oak (Quercus rubra L.) to water stress was assessed under ambient and elevated CO{sub 2} (ambient +300 {mu}L L{sup {minus}1}), with seedlings grown in 8-L pots in four open-top chambers, fitted with rain exclusion canopies. Trees were subjected to repeated water stress cycles over a six-week period. Well-watered trees were watered daily tomore » maintain a soil matric potential > {minus}0.3 MPa, whereas stressed trees were watered when soil matric potential declined to < {minus}0.9 MPa. Gas exchange and water relations were monitored at the depth of stress and after rewatering. All species displayed an increase in leaf-level water-use efficiency (net photosynthesis/transpiration). Leaves of sycamore and sweetgum displayed an adjustment in osmotic potential at saturation (pressure-volume analysis) of 0.3 MPa and 0.6 MPa, respectively. Elevated CO{sub 2} did not enhance osmotic adjustment in leaves of any of the species studied. Studies to characterize organic solute concentrations in roots are ongoing to determine if osmotic adjustment occurred in the roots.« less

  4. Species composition changes under individual tree selection cutting in cove hardwoods

    Treesearch

    George R., Jr. Trimble

    1965-01-01

    In the past, uncontrolled clearcutting on many of the good to excellent hardwood sites in the Appalachians has resulted in forest stands composed of the so-called cove hardwoods, a high proportion of which are intolerant species. Characteristically these stands run heavily to yellow-poplar (Liriodendron tulipifera L.), northern red oak (...

  5. Air pollutants affect the relative growth rate of hardwood seedlings

    Treesearch

    Keith F. Jensen

    1981-01-01

    One-year-old seedlings of yellow-poplar (Liriodendron tulipifera L.), eastern cottonwood (Populus deltoides Bartr.), and white ash (Fraxinus americana L.) were divided into four groups. One group served as the control, and the other groups were fumigated for 12 hours per day with either 0.1 ppm O3...

  6. A comparison of canopy structure measures for predicting height growth of underplanted seedlings

    Treesearch

    John M. Lhotka; Edward F. Loewenstein

    2013-01-01

    The study compares the relationship between 15 measures of canopy structure and height growth of underplanted yellow-poplar (Liriodendron tulipifera L.) seedlings. Investigators used 4 midstory removal intensities to create a structural gradient across fifty 0.05-ha experimental plots; removals resulted in a range of canopy cover between 51 to 96...

  7. Effects of uneven-aged and diameter-limit management on West Virginia tree and wood quality

    Treesearch

    Michael C. Wiemann; Thomas M. Schuler; John E. Baumgras

    2004-01-01

    Uneven-aged and diameter-limit management were compared with an unmanaged control on the Fernow Experimental Forest near Parsons, West Virginia, to determine how treatment affects the quality of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.), and yellow-poplar (Liriodendron tulipifera L.). Periodic harvests slightly increased stem lean, which often...

  8. Ultrasonic detection of knots, cross grain and bark pockets in wooden pallet parts

    Treesearch

    Mohammed F. Kabir; Daniel L. Schmoldt; Mark E. Schafer

    2000-01-01

    This study investigates defect detection in wooden pallet parts using ultrasonic scanning. Yellow-poplar (Liriodendron tulipifera, L.) deckboards were scanned using two rolling transducers in a pitch-catch arrangement to detect unsound and sound knots, bark pockets and cross grain. Data were collected, stored, and processed using LabView? software. Six ultrasonic...

  9. Understory composition of hardwood stands in north central West Virginia

    Treesearch

    M.J. Twery

    1991-01-01

    Understory composition was measured on 960 10.5 m2 plots in 16 stands on the West Virginia University Forest in north-central West Virginia. The overstory composition was dominated by oaks (Quercus spp.) on 50% of the stands and by a mixture of oaks and yellow-poplar (Liriodendron tulipifera L.) on 50%. All...

  10. Comparison of lumber values for Grade-3 hardwood logs from thinnings and mature stands

    Treesearch

    David M. Emanuel

    1983-01-01

    The value per M bf (thousand board feet) of the lumber sawed from Grade-3 logs, 8 to 11 inches in diameter, from thinnings was compared with that from a harvest of mature-stand cut. The species tested were red oak (Quercus rubra L.), yellow-poplar (Liriodendron tulipifera L.), and hard maple (Acer saccharum Marsh...

  11. Pallet cant soundness at Appalachian sawmills and marketing recommendations

    Treesearch

    Philip A. Araman; Matthew F. Winn; Mohammed F. Kabir; Xavier Torcheux; Guillaume Loizeaud

    2002-01-01

    Pallet cants were inspected at selected sawmills in Virginia and West Virginia. We were looking for unsound defects such as splits, wane, shake, holes, rot, decay, unsound knots, bark pockets, and mechanical defects. Red oak (Quercus rubra, L.), white oak (Quercus alba, L), yellow-poplar (Liriodendron tulipifera, L.) and bass-wood (Tilia americana, L.) cants were...

  12. Classifying defects in pallet stringers by ultrasonic scanning

    Treesearch

    Mohammed F. Kabir; Daniel L. Schmoldt; Philip A. Araman; Mark E. Schafer; Sang-Mook Lee

    2003-01-01

    Detecting and classifying defects are required to grade and sort pallet parts. Use of quality parts can extend the life cycle of pallets and can reduce long-term cost. An investigation has been carried out to detect and classify defects in yellow-poplar (Liriodendron tulipifera, L.) and red oak (Quercus rubra, L.) stringers using ultrasonic scanning. Data were...

  13. Comparison of glue-line quality between gang edging and straight-line ripping

    Treesearch

    Charles J. Gatchell; James R. Olson; James R. Olson

    1986-01-01

    Gang edging with a dip-chain fed gang ripsaw produces gluing surfaces equal to those from a straight-line ripsaw in yellow-poplar (Liriodendron tulipifera) and red oak (Quercus rubra). Special care in gluing red oak was needed to get shear strengths equal to solid wood values. However, the strength comparisons between sawing methods showed no differences between gang...

  14. Response to prescribed burning of 5-year-old hardwood regeneration on a mesic site in the Southern Appalachian Mountains

    Treesearch

    W. Henry McNab; Erik C. Berg; Ted M. Oprean

    2013-01-01

    Five years after a Southern Appalachian cove was regenerated, vegetation was dominated by a dense stand of yellow-poplar (Liriodendron tulipifera), which averaged 9,181±13,042 stems per acre, and other mesophytic hardwood seedlings and saplings. The stand was prescribed burned during late spring to improve habitat for turkey by reducing density of...

  15. Potential sources of variation that influence the final moisture content of kiln-dried hardwood lumber

    Treesearch

    Hongmei Gu; Timothy M. Young; William W. Moschler; Brian H. Bond

    2004-01-01

    Excessive variability in the final moisture content (MC) of hardwood lumber may have a significant impact on secondary wood processing and final product performance. Sources of final MC variation during kiln- drying have been studied in prior research. A test examining the final MC of red oak (Quercus spp.) and yellow-poplar (Liriodendron tulipifera) lumber after kiln-...

  16. Oxidation-Reduction Potential of Saturated Forest Soils

    Treesearch

    F. T. Bonner; C. W. Ralston

    1968-01-01

    Large decreases in redox potentials of saturated soil over a 25-day incubation period were favored by high temperature and the addition of sucrose, loblolly pine needles (Pinus taeda L. ), or yellow-poplar leaves (Liriodendron tulipifera L.). The addition of a complete nutrient solution had no effect in soils incubated with sucrose, but it reduced the drop in potential...

  17. Insect enemies of yellow-poplar

    Treesearch

    Denver P. Burns; Denver P. Burns

    1970-01-01

    Yellow-poplar, like the other desirable hardwoods, is attacked by a variety of insects. However, only four species of insects are considered economically important: the tuliptree scale, the yellow-poplar weevil, the root-collar borer, and the Columbian timber beetle. These are native enemies of yellow-poplar (Liriodendvon tzllipifera L.) wherever the tree grows.

  18. Characterizing water use strategies of Acer saccharum, Liriodendron tulipifera, and Quercus spp. during a severe drought

    NASA Astrophysics Data System (ADS)

    Yi, K.; Novick, K. A.; Dragoni, D.; Moore, W.; Roman, D. T.

    2014-12-01

    In many areas, drought is expected to occur more frequently and intensely in the future due to climate change; however, drought effects on ecosystem-scale fluxes in diverse forests will reflect the diversity of water use strategies among the dominant tree species. For three years (2011-2013) that included a severe drought event (in 2012), we measured the sap flow densities along the sapwood profiles (four radial depths: 1, 2, 3, 4 cm) in Acer saccharum, Liriodendron tulipifera, and Quercus spp. using the compensation heat pulse technique at the Morgan-Monroe State Forest (Indiana, USA). Sap flow velocity varies along the radial profile of the stem, and thus characterizing its pattern is important for estimating whole tree sap flow, and for characterizing the extent to which water stress alters the radial pattern of flow. We also focused on the nocturnal sap flow, which may be used to replenish stored water depleted during the daytime, in order to assess the extent to which the three species rely on hydraulic capacitance to cope with water stress. Sap flow densities along the sapwood profile of all three species tended to increase toward the cambium under moderate climate, while the tendency was reversed under severe drought. This shift may indicate greater reliance on stored water in the inner sapwood or cavitation of outer sapwood during the drought. It was also noticeable that Quercus spp. showed lower maximum sap flow density and narrower range (1.5 - 4.6 cm h-1) than other species (A. saccharum: 1.0 - 20.8 cm h-1, L. tulipifera: < 0.1 - 45.2 cm h-1) during 3 years of measurements. In addition, nocturnal/diurnal ratios of volumetric sap flows were significantly higher in the drought year for A. saccharum (0.140.01 in 2011 and 0.200.01 in 2013 vs. 0.290.01 in 2012) and L. tulipifera (0.140.00 in 2011 and 0.090.01 in 2013 vs. 0.300.01 in 2012), while Quercus spp. didn't show a significant difference between moderate and drought years. This may be due to the

  19. Yellow-poplar seedfall pattern

    Treesearch

    LaMont G. Engle

    1960-01-01

    Knowing the pattern of seedfall can be helpful when trying to regenerate yellow-poplar. This is especially true if the stand contains only scattered yellow-poplar seed trees. Information obtained from seed collections in Indiana shows that most of the seed falls north and northeast of seed trees.

  20. The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate.

    PubMed

    Richardson, Aaron O; Rice, Danny W; Young, Gregory J; Alverson, Andrew J; Palmer, Jeffrey D

    2013-04-15

    The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.

  1. Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends.

    PubMed

    Hosseinaei, Omid; Harper, David P; Bozell, Joseph J; Rials, Timothy G

    2017-07-01

    Lignin/lignin blends were used to improve fiber spinning, stabilization rates, and properties of lignin-based carbon fibers. Organosolv lignin from Alamo switchgrass ( Panicum virgatum ) and yellow poplar ( Liriodendron tulipifera ) were used as blends for making lignin-based carbon fibers. Different ratios of yellow poplar:switchgrass lignin blends were prepared (50:50, 75:25, and 85:15 w/w ). Chemical composition and thermal properties of lignin samples were determined. Thermal properties of lignins were analyzed using thermogravimetric analysis and differential scanning calorimetry. Thermal analysis confirmed switchgrass and yellow poplar lignin form miscible blends, as a single glass transition was observed. Lignin fibers were produced via melt-spinning by twin-screw extrusion. Lignin fibers were thermostabilized at different rates and subsequently carbonized. Spinnability of switchgrass lignin markedly improved by blending with yellow poplar lignin. On the other hand, switchgrass lignin significantly improved thermostabilization performance of yellow poplar fibers, preventing fusion of fibers during fast stabilization and improving mechanical properties of fibers. These results suggest a route towards a 100% renewable carbon fiber with significant decrease in production time and improved mechanical performance.

  2. Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends

    PubMed Central

    Hosseinaei, Omid; Bozell, Joseph J.; Rials, Timothy G.

    2017-01-01

    Lignin/lignin blends were used to improve fiber spinning, stabilization rates, and properties of lignin-based carbon fibers. Organosolv lignin from Alamo switchgrass (Panicum virgatum) and yellow poplar (Liriodendron tulipifera) were used as blends for making lignin-based carbon fibers. Different ratios of yellow poplar:switchgrass lignin blends were prepared (50:50, 75:25, and 85:15 w/w). Chemical composition and thermal properties of lignin samples were determined. Thermal properties of lignins were analyzed using thermogravimetric analysis and differential scanning calorimetry. Thermal analysis confirmed switchgrass and yellow poplar lignin form miscible blends, as a single glass transition was observed. Lignin fibers were produced via melt-spinning by twin-screw extrusion. Lignin fibers were thermostabilized at different rates and subsequently carbonized. Spinnability of switchgrass lignin markedly improved by blending with yellow poplar lignin. On the other hand, switchgrass lignin significantly improved thermostabilization performance of yellow poplar fibers, preventing fusion of fibers during fast stabilization and improving mechanical properties of fibers. These results suggest a route towards a 100% renewable carbon fiber with significant decrease in production time and improved mechanical performance. PMID:28671571

  3. Diurnal and seasonal changes in stem increment and water use by yellow poplar trees in response to environmental stress.

    PubMed

    McLaughlin, Samuel B; Wullschleger, Stan D; Nosal, Miloslav

    2003-11-01

    To evaluate indicators of whole-tree physiological responses to climate stress, we determined seasonal, daily and diurnal patterns of growth and water use in 10 yellow poplar (Liriodendron tulipifera L.) trees in a stand recently released from competition. Precise measurements of stem increment and sap flow made with automated electronic dendrometers and thermal dissipation probes, respectively, indicated close temporal linkages between water use and patterns of stem shrinkage and swelling during daily cycles of water depletion and recharge of extensible outer-stem tissues. These cycles also determined net daily basal area increment. Multivariate regression models based on a 123-day data series showed that daily diameter increments were related negatively to vapor pressure deficit (VPD), but positively to precipitation and temperature. The same model form with slight changes in coefficients yielded coefficients of determination of about 0.62 (0.57-0.66) across data subsets that included widely variable growth rates and VPDs. Model R2 was improved to 0.75 by using 3-day running mean daily growth data. Rapid recovery of stem diameter growth following short-term, diurnal reductions in VPD indicated that water stored in extensible stem tissues was part of a fast recharge system that limited hydration changes in the cambial zone during periods of water stress. There were substantial differences in the seasonal dynamics of growth among individual trees, and analyses indicated that faster-growing trees were more positively affected by precipitation, solar irradiance and temperature and more negatively affected by high VPD than slower-growing trees. There were no negative effects of ozone on daily growth rates in a year of low ozone concentrations.

  4. Yellow-Poplar Rooting Habits

    Treesearch

    John K. Francis

    1979-01-01

    Although the configuration of pole-sized yellow-poplar root systems in Tennessee is quite variable, a branched taproot with several widely spreading laterals is typical. Rooting depth is particularly limited by clayey texture, wetness, and firmness of subsoils.

  5. Bedding Improves Yellow-Poplar Growth on Fragipan Soils

    Treesearch

    John K. Francis

    1979-01-01

    Yellow-poplar can be grown on soils that have a shallow fragipan--but unless such sites are bedded, growth is likely to be extremely poor. In a Tennessee study, bedding increased height of planted yellow-poplar over 5 years, but fertilizer did not. Because of the cost of bedding and the availability of nonfragipan sites, it would ordinarily be better not to plant...

  6. Seedling tree responses to nutrient stress under atmospheric CO/sub 2/ enrichment. [Quercus alba; Liriodendron tulipifera; Pinus virginiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; Norby, R.J.; O'Neill, E.G.

    1986-01-01

    Three species of seedling trees were grown in pots containing low-nutrient soil for periods of up to 40 weeks under a range of atmospheric CO/sub 2/ concentrations. In all cases, total dry weight increased with CO/sub 2/ enrichment, with a greater relative increase in root weight than shoot weight. In an experiment with Pinus virginiana in open-top field chambers, phosphorus and potassium uptake did not increase with an increase in CO/sub 2/ from 365 to 690 ..mu..L/L, even though dry matter gain increased by 37% during the exposure period. In experiments with Quercus alba and Liriodendron tulipifera under controlled environmentmore » conditions there were obvious symptoms of nitrogen deficiency and total nitrogen uptake did not increase with CO/sub 2/ enrichment. However, dry weight gain was more than 90% higher at 690 ..mu..L/L CO/sub 2/. The three experiments with CO/sub 2/ enrichment treatments demonstrate that increases in plant dry weight can occur without increased uptake of some nutrients from the low-nutrient soil. A mechanism for these responses may involve increased mobilization of nutrients in association with increased sucrose transport under elevated CO/sub 2/ conditions.« less

  7. Upgrading Yellow-Poplar Seeds

    Treesearch

    F. T. Bonner; G. L. Switzer

    1971-01-01

    Yellow-poplar seed lots can be upgraded considerably by dewinging in a debearder and then cleaning and separating the seeds into four specific-gravity fractions with a fractionating aspirator or a gravity separator. By this process, lots with an original soundness of 6 to 10 percent were upgraded to between 60 and 65 percent full seeds.

  8. Yellow-Poplar: Characteristics and Management

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1981-01-01

    This reference tool and field guide for foresters and other landmanagers includes a synthesis of information on the characteristics of yellow-poplar with guidelines for managing the species. It is based on research conducted by many individuals in State and Federal forestry organizations and in universities throughout the Eastern United States. This handbook...

  9. Utilization of leaf litter as a potential feed source

    USDA-ARS?s Scientific Manuscript database

    Proximate analysis and In-situ nylon bag ruminal dry matter degradation of fall dropped Liriodendron tulipifera (tulip poplar) and Quercus alba (white oak) leaves were used to determine their potential use as a feed source for ruminant livestock animals. Ash content was 8.24 and 4.69 ...

  10. Fertilizer and Mulch Improves Yellow-Poplar Growth on Exposed harsells Subsoils

    Treesearch

    John K. Francis

    1977-01-01

    Fertilizing and mulching of eroded Hartsells soil increased height and diameter of yellow-poplars. To see if chemical infertility of exposed Hartsells subsoils limits yellow-poplar growth and to test fertilizer and mulch as remedial agents, seedlings were planted on undisturbed soil, soil with the topsoil removed, and soil with the topsoil removed but mulched with leaf...

  11. Overrun in Second-Growth Yellow-Poplar

    Treesearch

    Robert A. Campbell

    1959-01-01

    Second-growth yellow-poplar is reaching merchantable size in the Southern Appalachians in increasing quantities each year. Although the timber is young and logs are small, it produces lumber of sufficiently high quality to supply the needs of Carolina wood-using industries.

  12. Survival and growth of yellow-poplar seedlings depend on date of germination

    Treesearch

    George R., Jr. Trimble; E. H. Tryon

    1969-01-01

    A study of yellow-poplar seedlings showed that early survival and growth were best among stems that originated in May and early June. Few, if any, seedlings that emerged after 1 July were in favorable competitive condition 3 years later. This indicates that clearcuttings made for maximum natural regeneration of yellow-poplar should be carried out in fall and winter to...

  13. Expressed sequence tag analysis of functional genes associated with adventitious rooting in Liriodendron hybrids.

    PubMed

    Zhong, Y D; Sun, X Y; Liu, E Y; Li, Y Q; Gao, Z; Yu, F X

    2016-06-24

    Liriodendron hybrids (Liriodendron chinense x L. tulipifera) are important landscaping and afforestation hardwood trees. To date, little genomic research on adventitious rooting has been reported in these hybrids, as well as in the genus Liriodendron. In the present study, we used adventitious roots to construct the first cDNA library for Liriodendron hybrids. A total of 5176 expressed sequence tags (ESTs) were generated and clustered into 2921 unigenes. Among these unigenes, 2547 had significant homology to the non-redundant protein database representing a wide variety of putative functions. Homologs of these genes regulated many aspects of adventitious rooting, including those for auxin signal transduction and root hair development. Results of quantitative real-time polymerase chain reaction showed that AUX1, IRE, and FB1 were highly expressed in adventitious roots and the expression of AUX1, ARF1, NAC1, RHD1, and IRE increased during the development of adventitious roots. Additionally, 181 simple sequence repeats were identified from 166 ESTs and more than 91.16% of these were dinucleotide and trinucleotide repeats. To the best of our knowledge, the present study reports the identification of the genes associated with adventitious rooting in the genus Liriodendron for the first time and provides a valuable resource for future genomic studies. Expression analysis of selected genes could allow us to identify regulatory genes that may be essential for adventitious rooting.

  14. Changes in tree density do not influence epicormic branching of yellow-poplar

    Treesearch

    H. Clay Smith

    1977-01-01

    Epicormic branching was studied in a West Virginia yellow-poplar stand thinned to various tree density levels. Study trees in the 55- to 60-year-old second-growth stand were primarily codominant in crown class with 32 to 48 feet of log height. Eight-year study results indicated that yellow-poplar trees in this age class and locale could be thinned without serious loss...

  15. Maturation and Collection of Yellow-Poplar Seeds in the Midsouth

    Treesearch

    F. T. Bonner

    1976-01-01

    Yellow-poplar fruits are best collected in late October when their color changes from green to yellow-green or yellow. There were no other obvious physical or chemical changes indicating maturity. The seeds are physiologically mature as early as September 1, although high fruit moisture contents make special handling necessary if fruits are collected at this time....

  16. Estimating yellow-poplar growth and yield

    Treesearch

    Donald E. Beck

    1989-01-01

    Yellow-poplar grows in essentially pure, even-aged stands, so you can make growth and yield estimates from relatively few stand characteristics. The tables and models described here require only measures of stand age, stand basal area in trees 4.5 inches and larger, and site index. They were developed by remeasuring (at 5-year intervals over a 20-year period) many...

  17. Diameter Distributions in Natural Yellow-Poplar Stands

    Treesearch

    Charles E. McGee; Lino Della-Bianca

    1967-01-01

    Diameter distributions obtained from 141 pure, natural unthinned yellow-poplar stands in the Appalachian Mountains of Virginia, North Carolina, and Georgia are presented in tables. The distributions are described in relation to stand age, site index, and total number of trees per acre, and are useful for stand management planning.

  18. Virulence of Three Cylindrocladium Species to Yellow-Poplar Seedlings

    Treesearch

    T. H. Filer

    1970-01-01

    Cylindrocladium crotalariae and C. scoparium caused severe root rot on potted yellow-poplar seedlings. They appeared to be equally virulent. C. floridanum caused necrosis only on feeder roots of the seedlings.

  19. Plant responses to elevated atmospheric CO/sub 2/ with emphasis on belowground processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.; Luxmoore, R.J.; O'Neill, E.G.

    1984-12-01

    Consideration of the interrelationships between carbon, water, and nutrient pathways in soil-plant systems has led to the hypothesis that stimulation of root and rhizosphere processes by elevated levels of CO/sub 2/ will increase nutrient availability and lead to an increase in plant growth. Several experiments were conducted to investigate the effects of CO/sub 2/ concentration on carbon allocation, root exudation, nitrogen utilization, and microbial responses, as well as overall plant growth and nutrient utilization. Increases in the growth of yellow-poplar (Liriodendron tulipifera L.) seedlings in response to elevated CO/sub 2/ were demonstrated even when the plants were under apparent nutrientmore » limitation in a forest soil. The proportion of photosynthetically fixed carbon that was allocated to the roots of yellow-poplar and hazel alder (Alnus serrulata (Ait.) Willd.) seedlings was greater at 700 ppM CO/sub 2/ than at ambient CO/sub 2/. Exudation of carbon from yellow-poplar roots also tended to be higher in elevated CO/sub 2/. Responses of rhizosphere microbial populations to elevated CO/sub 2/ were inconsistent, but there was a trend toward relatively fewer ammonium oxidizers, nitrite oxidizers, and phosphate solubilizers in the rhizosphere population of yellow-poplar seedlings grown in 700 ppM CO/sub 2/ compared to that of seedlings grown in ambient CO/sub 2/. Other observed trends included increased nodulation and nitrogenase activity and decreased nitrate reductase activity in hazel alder seedlings in elevated CO/sub 2/. Net uptake of some essential plant nutrients, aluminum, and other trace metals by Virginia pine (Pinus virginiana Mill.) increased with increasing CO/sub 2/ concentration. There was less leaching of some nutrients from soil-plant systems with Virginia pine and yellow-poplar seedlings but increased leaching of zinc. 123 references, 16 figures, 17 tables.« less

  20. Planting Yellow-Poplar--Where We Stand Today

    Treesearch

    T.E. Russell

    1977-01-01

    Yellow-poplar can be established on a wide variety of sites with bare-rooted seedlings and standard planting techniques. Many past plantings have performed poorly because substandard seedlings have been planted on unsuitable sites and competing vegetation has not been adequately controlled. Research over the past two decades, however, provides workable guides for site...

  1. Locust sprouts reduce growth of yellow-poplar seedlings

    Treesearch

    Donald E. Beck; Charles E. McGee

    1974-01-01

    Dense thickets of black locust which often appear after clearcutting in the Southern Appalachians and Piedmont, can severely reduce growth of other desirable hardwoods. Released yellow-poplar seedlings were 51 percent taller and 79 percent larger in diameter than unreleased ones 6 years after treatment.

  2. Heavy metal accumulation and growth of seedlings of five forest species as influenced by soil cadmium level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.M.; Parker, G.R.; McFee, W.W.

    1979-07-01

    White pine (Pinus strobus L.), loblolly pine (P. taeda L.), yellow poplar (Liriodendron tulipifera L.), yellow birch (Betula alleghaniensis Britt.), and choke cherry (Prunus virginiana L.) were grown from seeds in the greenhouse for 17 weeks. Plainfield fine sand, with pretreatment cadmium, lead, copper, and zinc concentrations of 0.6, 11.4, 2.0, and 20.6 ppM, respectively, was used as the growth medium. This soil was amended with CdCl/sub 2/ to produce cadmium addition levels of 0, 15, and 100 ppM. Shoot elongation and root and shoot dry weights were reduced with increasing levels of soil cadmium. All species exhibited increased cadmiummore » content in roots and shoots in response to increased soil cadmium levels; however, content varied according to species. Root and shoot accumulations of lead, copper, and zinc also varied with species as well as cadmium concentration in the soil.« less

  3. To Make Long Character-Marked Cuttings From Low-Grade Yellow-Poplar Lumber - Rip First

    Treesearch

    Philip A. Araman

    1979-01-01

    Long, character-marked furniture cuttings are easily obtained when low-grade (2A and 2B Common) yellow-poplar lumber is first ripped into strips and then crosscut to remove objectionable defects. Overall yields of character-marked material using this procedure were 78% from 1 Common and 2A Common and 70% from 2B Common yellow-poplar lumber. Furthermore, 82% of the 1...

  4. Effect of calcium cyanamide on growth and nutrition of plan fed yellow-poplar seedlings

    Treesearch

    L.R. Auchmoody; G.W. Wendel; G.W. Wendel

    1973-01-01

    Calcium cyanamide, a nitrogenous fertilizer that also acts as an herbicide, was evaluated over a 3-year period for use in establishing planted yellow-poplar on an old-field site. Results of this study show that first and second year growth of yellow-poplar can be increased by nbroadcasting CaCN2 around the seedlings. When applied at rates of 400 to 500 pounds of...

  5. Symptoms of Nutrient Deficiency in Yellow-Poplar Seedlings

    Treesearch

    Albert F. Ike

    1968-01-01

    Visual symptoms are described for leaves of yellow-poplar seedlings supplied N, P. and K in varying concentrations ranging from minimal to excessive. Probability of growth responses to added N is high when tissue levels are below 2 percent; no response is likely when they exceed 3 percent.

  6. West Virginia yellow-poplar lumber defect database

    Treesearch

    Lawrence E. Osborn; Charles J. Gatchell; Curt C. Hassler; Curt C. Hassler

    1992-01-01

    Describes the data collection methods and the format of the new West Virginia yellow-poplar lumber defect database that was developed for use with computer simulation programs. The database contains descriptions of 627 boards, totaling approximately 3,800 board. feet, collected in West Virginia in grades FAS, FASlF, No. 1 Common, No. 2A Common, and No. 2B Common. The...

  7. Dimension Yields from Yellow-Poplar Lumber.

    DTIC Science & Technology

    1984-06-01

    the poor SP Split (includes end checks longer face and then on the good face. than 4 in.) - - The boards and each of their SW Sapwood + + defects were...Cutting Size Random SA = surface area of cutting width Adjustment Adjusted Y-ekd in square inches Length Width reading reading Using the previous...cutting sizes from 4 4 surface area of a 57- by 4-inch FAS yellow-poplar lumber cutting is 1.583 square feet: 3551.58 = 224 cuttings per 1.000 Cutting

  8. A preliminary model of yellow-poplar seedling establishment two years after a growing season prescribed fire in southern Appalachian oak stands

    Treesearch

    Henry McNab

    2016-01-01

    Factors affecting the density and distribution of yellow-poplar regeneration after a single growing season prescribed fire were studied in mature upland oak stands in the southern Appalachian Mountains. In burned and unburned stands, density of one and two year old yellow-poplar seedlings was inventoried within 50 m from isolated yellow-poplar canopy seed trees in...

  9. Distributing value gain from three growth factors for yellow-poplar

    Treesearch

    Roger E. McCay

    1969-01-01

    A method of apportioning the maximum dollar value gain from tree growth into the amounts contributed by diameter growth, merchantable height increase, and quality improvement is described. The results of this method are presented for various sizes and qualities of yellow-poplar trees.

  10. Release Accelerates Growth of Yellow-Poplar -- an 18-Year Look

    Treesearch

    Robert D. Williams

    1976-01-01

    Yellow-poplar seedlings that germinated and were completely released from woody competition in 1957 (the first year after a harvest cut) were four times taller and five times larger in diameter after the 1973 growing season than seedlings that were not released.

  11. Effect of defoliation on carbohydrate content of yellow-poplar seedlings

    Treesearch

    Keith F. Jensen; Roberta G. Masters

    1973-01-01

    Sixty yellow-poplar seedlings were divided into two groups. One group was defoliated twice, and the second group served as the control. Three months after the second defoliation there was no difference in carbohydrate content between the defoliated and undefoliated seedlings in either the stems or roots.

  12. Planting yellow-poplar, white ash, black cherry, and black locust

    Treesearch

    Robert D. Williams; Calvin F. Bey

    1989-01-01

    Hardwood plantations that include yellow-poplar, white ash, black cherry, and black locust can be established on upland sites in the central hardwoods region (see Note 3.06 Seeding and Planting Upland Oaks, and Note 3.08 Seeding and Planting Walnut). Even though hardwoods are more difficult to establish than conifers, there are...

  13. Evaluation of cement-excelsior boards made from yellow-poplar and sweetgum

    Treesearch

    Andy W.C. Lee; Chung Y Hse

    1993-01-01

    Previous research conducted in the laboratory pointed out several hardwood species which were either superior, comparable, marginal, or unsuitable for manufacturing cement-excelsior board (CEB). In this study, forty full-sized boards were manufactured in a commercial production facility with the following species: yellow-poplar, sweetgum, southern pine, and sweetgum/...

  14. Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.

    PubMed

    Shiklomanov, Alexey N; Levia, Delphis F

    2014-10-01

    Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Growth and Yield Model for Thinned Stands of Yellow-Poplar

    Treesearch

    Bruce R. Knoebel; Harold E. Burkhart; Donald E. Beck

    1986-01-01

    Simultaneous growth and yield equations were developed for predicting basal area growth and cubic-foot volume growth and yield in thinned stands of yellow-poplar. A joint loss function involving both volume and basal area was used to estimate the coefficients in the system of equations. The estimates obtained were analytically compatible, invariant for projection...

  16. Some effects of competition on the survival of yellow-poplar seedlings

    Treesearch

    J. J. Phillips

    1962-01-01

    In the upper Coastal Plain and northward in New Jersey, yellow-poplar is an important component of the hardwood forests because of its rapid growth, straight and clear bole, and desirable wood characteristics. But attempts to reproduce this species naturally after harvest cuttings have often been unsuccessful. Though poor seed crops and unfavorable seedbed conditions...

  17. Treatments needed to regenerate yellow-poplar in New Jersey and Maryland

    Treesearch

    S. Little

    1967-01-01

    In 17 areas, mostly in the Coastal Plain and Piedmont sections of New Jersey and Maryland, treatments were made to favor the establishment and growth of yellow-poplar reproduction. Results emphasize the importance of fairly large overstory openings (preferably 1 acre or more) and of reductions in understories by mistblowing, burning, or disking, but show that seedbed...

  18. 60. May 1985. DEPENDENCIES NORTHWEST OF MAIN HOUSE, LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. May 1985. DEPENDENCIES NORTHWEST OF MAIN HOUSE, LOOKING NORTH ALONG EASTERN BOUNDARY ALLEE IN SPRING (The courtyard in middle of view used to be a chicken yard. Dependencies, from left to right: Smokehouse, wash house, chicken house, chicken brooder, then garage to right of tree. Steel structure in view to left of tree is tower for television antenna. Tree in foreground is a tulip poplar, Liriodendron tulipifera.) - Borough House, West Side State Route 261, about .1 mile south side of junction with old Garners Ferry Road, Stateburg, Sumter County, SC

  19. Growth and Development of Thinned Versus Unthinned Yellow-Poplar Sprout Clumps

    Treesearch

    Donald E. Beck

    1977-01-01

    Yellow-poplar stump sprouts are capable of very rapid growth and often dominate stands on good sites following harvest cutting. Thinning to one stem per stump at 6 years of age did not affect either height or diameter growth over the succeeding 18 years. The untreated clumps thinned themselves to an average of two stems per clump during the same time period. Thinning...

  20. Grade Distribution and Drying Degrade of Sweetgum and Yellow-poplar Structural Lumber

    Treesearch

    Timothy D. Faust

    1990-01-01

    The fact that the supply of southern pine timber is changing to include more lower quality plantation stock may provide incentive for utilizing lower density hardwoods for structural lumber. Yellow-poplar and sweetgum are potential substitutes for southern pine. A major problem in utilizing soft hardwoods for structural lumber is the difficulties associated with drying...

  1. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    PubMed

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in

  2. Hydrological and biogeochemical variation of stemflow from live, stressed, and dead codominant deciduous canopy trees

    NASA Astrophysics Data System (ADS)

    Frost, E. E.; Levia, D. F.

    2011-12-01

    Stemflow, a critical localized point source of both water and nutrients in forested ecosystems, was examined as a function of species and mortality in a mid-Atlantic deciduous forest. Thirty trees across two species, Fagus grandifolia [American beech] and Liriodendron tulipifera [yellow poplar], and three mortality classes, live, stressed, and dead, were sampled and analyzed on an event basis for one year. Significant interspecific differences in volume and nutrient content of stemflow were found that were attributable to differences in canopy structure between the species. Funneling ratios across all three mortality classes were significantly different for F. grandifolia and between dead and live/stressed classes for L. tulipifera. Stemflow volumes from the dead trees of both species were a fraction of that from live and stressed trees. This was attributable to increased relative water storage capacities, canopy crown position, and the lack of surface area contributing to stemflow generation in upper canopy. Concentrations of nutrients in stemflow from dead trees were significantly higher than those found in both live and stressed stems for most nutrients analyzed. Enrichment ratios from dead stems were generally lower given the reduced volumes observed. Given the multi-decadal impact of standing dead trees in forest ecosystems and the uncertainty of changes in morality patterns in forests, additional research is warranted to further quantify the hydrobiochemical impact of stemflow from dying stems over their entire lifecycle.

  3. Effect of thinning on height and diameter growth of oak & yellow-poplar saplings

    Treesearch

    Rufus H., Jr. Allen; David A. Marquis; David A. Marquis

    1970-01-01

    Studying the response to thinning of a 7- to 9-year-old upland hardwood sapling stand, we found that height growth of yellow-poplar and oak trees was markedly reduced by heavy thinning. This suggests that stand density should be carefully controlled to achieve maximum benefit from thinnings in very young stands.

  4. Effect of ammate on unwanted growth in oak--yellow-poplar stands in New Jersey

    Treesearch

    S. Little; H. A. Somes

    1954-01-01

    Stands of mixed oaks and yellow-poplar form the most valuable forest crop on many sites in central and northern New Jersey and in the Delaware Valley of southern New Jersey. However, these stands often contain shrubs and low-value hardwood trees that prevent satisfactory restocking of cutover areas.

  5. Growth of Planted Yellow-Poplar After Vertical Mulching and Fertilization on Eroded Soils

    Treesearch

    J.B. Baker; B.G. Blackmon

    1976-01-01

    Fertilization and vertical mulching improved height growth of yellow-poplars planted on eroded soils. A growing demand for hardwood timber accompanied by a diminishing land base has prompted land managers to consider planting hardwoods on marginal sites such as the eroded soils in the Silty Uplands of Arkansas, Louisiana, and Mississippi. Many of these areas were well...

  6. Inhibition of forage seed germination by leaf litter extracts of overstory hardwoods used in silvopastoral systems

    USDA-ARS?s Scientific Manuscript database

    Silvopastoral management strategies seek to expand spatial and temporal boundaries of forage production and promote ecosystem integrity through a combination of tree thinning and understory pastures. We determined the effects of water extracts of leaf litter from yellow poplar, Liriodendron tulipife...

  7. Nutrient composition of blades, petioles, and whole leaves from fertilized and unfertilized yellow-poplar

    Treesearch

    L. R. Auchmoody

    1974-01-01

    Nitrogen (N) and phosphorus (P) concentrations in leaf blades and petioles obtained from three fertilized and three unfertilized yellow-poplar sample trees were determined annually during a 4-year period. Concentrations were substantially higher in blades than in petioles. Fertilization increased N and P concentrations in blades, but petioles showed only a slight...

  8. Comparison of yellow poplar growth models on the basis of derived growth analysis variables

    Treesearch

    Keith F. Jensen; Daniel A. Yaussy

    1986-01-01

    Quadratic and cubic polynomials, and Gompertz and Richards asymptotic models were fitted to yellow poplar growth data. These data included height, leaf area, leaf weight and new shoot height for 23 weeks. Seven growth analysis variables were estimated from each function. The Gompertz and Richards models fitted the data best and provided the most accurate derived...

  9. Photographic guide of selected external defect indicators and associated internal defects in yellow-poplar

    Treesearch

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow-poplar. Twelve types of external...

  10. Crop-tree release increases growth of 12-year-old yellow-poplar and black cherry

    Treesearch

    Neil I. Lamson; H. Clay Smith; H. Clay Smith

    1989-01-01

    Precommercial thinning was done in a 12-year-old Appalachian hardwood sapling stand in West Virginia. Two crop-tree release techniques were used--crown touching and crown touching plus 5 feet. Results indicated that both treatments significantly increased 5-year d.b.h. growth for released yellow-poplar and black cherry crop trees. Although there was a major increase in...

  11. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  12. Seasonal variation in the structure of red reflectance of leaves from yellow poplar, red oak, and red maple

    NASA Technical Reports Server (NTRS)

    Brakke, Thomas W.; Wergin, William P.; Erbe, Eric F.; Harnden, Joann M.

    1993-01-01

    The light scattered from leaves was measured as a function of view angle in the principal plane for yellow poplar, red oak, and red maple. The source was a parallel-polarized helium-neon laser. Yellow poplar leaves had the highest reflectance of the three species, which may have been due to its shorter palisade cells and more extensive spongy mesophyll. Prior to senescence, there was a significant decrease, but not total extinction, in the reflectance of the beam incident at 60 deg from nadir on the adaxial side of the leaves of all three species. Low-temperature SEM observations showed differences in the surface wax patterns among the three species but did not indicate a cause of the reflectance changes other than possibly the accumulation and aging of the wax.

  13. One-step pretreatment of yellow poplar biomass using peracetic acid to enhance enzymatic digestibility.

    PubMed

    Lee, Hyeong Rae; Kazlauskas, Romas J; Park, Tai Hyun

    2017-09-22

    Pretreatment of biomass with dilute acid requires high temperatures of >160 °C to remove xylan and does not remove lignin. Here we report that the addition of peracetic acid, a strong oxidant, to mild dilute acid pretreatment reduces the temperature requirement to only 120 °C. Pretreatment of yellow poplar with peracetic acid (300 mM, 2.3 wt%) and dilute sulfuric acid (100 mM, 1.0 wt%) at 120 °C for 5 min removed 85.7% of the xylan and 90.4% of the lignin leaving a solid consisting of 75.6% glucan, 6.0% xylan and 4.7% lignin. Low enzyme loadings of 5 FPU/g glucan and 10 pNPGU/g glucan converted this solid to glucose with an 84.0% yield. This amount of glucose was 2.5 times higher than with dilute acid-pretreated solid and 13.8 times higher than with untreated yellow poplar. Thus, the addition of peracetic acid, easily generated from acetic acid and hydrogen peroxide, dramatically increases the effectiveness of dilute acid pretreatment of biomass.

  14. Fertilization Increases Growth of Sawlog-Size Yellow-Poplar and Red Oak in West Virginia

    Treesearch

    N. I. Lamson

    1978-01-01

    Sawlog-size even-aged hardwood stands in north-central West Virginia were fertilized with N, P, and K, singly and in combinations. Applications of N alone increased the annual basal area growth of yellow-poplar more than that of red oak during the first 7 years after fertilization, whereas P alone increased the annual basal area growth of red oak more than that of...

  15. High-temperature drying of 7/4 yellow-poplar flitches for S-D-R studs

    Treesearch

    R. Sidney Boone; Robert R. Maeglin

    1980-01-01

    Yellow-poplar was dried as 7/4 flitches at high temperatures and subsequently ripped into studs to meet National Grading Rule Standards for STUD grade. The effects of growth stresses in these flitches from smaller logs appear to be minimized by this process. Dry bulb temperatures from 235° to 295° F were explored in five drying trials. Best results were by drying for...

  16. Evaluation of veneer yields and grades from yellow-poplar, white oak, and sweetgum from the southeast

    Treesearch

    Robert H. McAlister

    1980-01-01

    Dry volume yields and standard grades of veneer are given for yellow-poplar, sweetgum, and white oak by tree diameter and location within the stem. Results show that the typical stands of mixed southern pine and hardwood timer yield enough veneer to utilize almost 90 percent of the stand volume in the production of COM-PLY lumber and panels

  17. Response to crop-tree release by 7-year-old stems of yellow-poplar and black cherry

    Treesearch

    G.R. Jr. Trimble; G.R. Jr. Trimble

    1973-01-01

    Five years after crop-tree release of yellow-poplar and black cherry sterns in a 7-year-old stand of Appalachian hardwoods, measurements indicated that released trees were but slightly superior to control trees in height, diameter, and crown position. Sprout regrowth of cut tree stems and grapevines had largely nullified the effects of release. Indications are that for...

  18. Coopers Rock Crop Tree Demonstration Area—20-year results

    Treesearch

    Arlyn W. Perkey; Gary W. Miller; David L. Feicht

    2011-01-01

    During the 1988/1989 dormant season, the Coopers Rock Crop Tree Demonstration Area was established in a 55-year-old central Appalachian hardwood forest in north-central West Virginia. After treatment, 89 northern red oak (Quercus rubra L.) and 147 yellow-poplar (Liriodentron tulipifera L.) crop trees were monitored for 20 years....

  19. Humectants as Post-plant Soil Amendments: Effects on Growth and Physiological Activity of Drought-stressed, Container-grown Tree Seedlings

    USDA-ARS?s Scientific Manuscript database

    One-year-o1d, container-grown seedlings of red maple (Acer rubrum L.) and yellow-poplar (Liriodendron tulipirera L.) were treated with Hydretain ES~ (HydES) or Ecosentia1~ (ECOS) applied as a soil drench. A p~ogressive drought cycle was imposed after treatment and, as each seedling wilted, the leave...

  20. A Comparison of Four Techniques for Producing High-Grade Furniture Core Material From Low-Grade Yellow-Poplar

    Treesearch

    Philip A. Araman

    1978-01-01

    Four Methods of converting low-grade yellow-poplar lumber into high-grade furniture core material (lumber core) were compared. High-grade core material is used in tops, shelves, doors, and drawer fronts and only minor defects are allowed. Three gang-rip first and the conventional crosscut-first manufacturing sequences were evaluated in combination with 1 Common, 2A...

  1. Effect of acid mist and air pollutants on yellow-poplar seedling height and leaf growth

    Treesearch

    Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen

    1985-01-01

    One-year-old yellow-poplar seedlings were treated with acid mist at pH 2.5, 3.5, 4.5, and 5.5 either alone or in combination with 0.1 ppm 03, S02, and NO2 or NO2 plus S02. After 4 and 8 weeks of treatment, height, leaf area, and leaf and new shoot weight were determined and growth analysis variables calculated. Height, leaf area, and dry weight decreased with...

  2. Liriodendron growth on native and stripmine soils

    Treesearch

    W. Clark Ashby

    2003-01-01

    Liriodendron seedlings were planted each spring and fall for 5 years on unmined lands, ungraded spoils, graded to approximate original contour (AOC), and graded to contour with "topsoil" replaced. Survival was greatest on unmined lands and height greatest on ungraded ridge and valley spoil. No Liriodendron seedlings survived on AOC graded mine land. A few...

  3. Response to Crop-Tree Release: Sugar Maple, Red Oak, Black Cherry, and Yellow-Poplar Saplings in a 9-Year-Old Stand

    Treesearch

    Neil I. Lamson; H. Clay Smith

    1978-01-01

    Crop trees were released in an Appalachian hardwood stand (site index 70 for northern red oak) that had been clearcut 9 years earlier. We released 134 yellow-poplar, red oak, black cherry, and sugar maple stems of seedling origin to a 5-foot radius around the bole of each study tree; 140 comparable stems were not released. These trees were dominant, codominant, or...

  4. Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells

    PubMed Central

    Huo, Ailing; Chen, Zhenyu; Wang, Pengkai; Yang, Liming; Wang, Guangping; Wang, Dandan; Liao, Suchan; Cheng, Tielong; Chen, Jinhui; Shi, Jisen

    2017-01-01

    Liriodendron is a genus of the magnolia family comprised of two flowering tree species that produce hardwoods of great ecological and economic value. However, only a limited amount of genetic research has been performed on the Liriodendron genus partly because transient or stable transgenic trees have been difficult to produce. In general, transient expression systems are indispensable for rapid, high-throughput screening and systematic characterization of gene functions at a low cost; therefore, development of such a system for Liriodendron would provide a necessary step forward for research on Magnoliaceae and other woody trees. Herein, we describe an efficient and rapid protocol for preparing protoplasts from the leaf mesophyll tissue of a Liriodendron hybrid and an optimized system for polyethylene glycol–mediated transient transfection of the protoplasts. Because the leaves of the Liriodendron hybrid are waxy, we formulated an enzyme mix containing 1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10, and 0.1% (w/v) Pectolyase Y-23 to efficiently isolate protoplasts from the Liriodendron hybrid leaf mesophyll tissue in 3 h. We optimized Liriodendron protoplast transfection efficiency by including 20 μg plasmid DNA per 104 protoplasts, a transformation time of 20 min, and inclusion of 20% (w/v) polyethylene glycol 4000. After integrating the Liriodendron WOX1 gene into pJIT166-GFP to produce a WOX1-GFP fusion product and transfecting it into isolated protoplasts, LhWOX1-GFP was found to localize to the nucleus according to its green fluorescence. PMID:28323890

  5. Establishment of transient gene expression systems in protoplasts from Liriodendron hybrid mesophyll cells.

    PubMed

    Huo, Ailing; Chen, Zhenyu; Wang, Pengkai; Yang, Liming; Wang, Guangping; Wang, Dandan; Liao, Suchan; Cheng, Tielong; Chen, Jinhui; Shi, Jisen

    2017-01-01

    Liriodendron is a genus of the magnolia family comprised of two flowering tree species that produce hardwoods of great ecological and economic value. However, only a limited amount of genetic research has been performed on the Liriodendron genus partly because transient or stable transgenic trees have been difficult to produce. In general, transient expression systems are indispensable for rapid, high-throughput screening and systematic characterization of gene functions at a low cost; therefore, development of such a system for Liriodendron would provide a necessary step forward for research on Magnoliaceae and other woody trees. Herein, we describe an efficient and rapid protocol for preparing protoplasts from the leaf mesophyll tissue of a Liriodendron hybrid and an optimized system for polyethylene glycol-mediated transient transfection of the protoplasts. Because the leaves of the Liriodendron hybrid are waxy, we formulated an enzyme mix containing 1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10, and 0.1% (w/v) Pectolyase Y-23 to efficiently isolate protoplasts from the Liriodendron hybrid leaf mesophyll tissue in 3 h. We optimized Liriodendron protoplast transfection efficiency by including 20 μg plasmid DNA per 104 protoplasts, a transformation time of 20 min, and inclusion of 20% (w/v) polyethylene glycol 4000. After integrating the Liriodendron WOX1 gene into pJIT166-GFP to produce a WOX1-GFP fusion product and transfecting it into isolated protoplasts, LhWOX1-GFP was found to localize to the nucleus according to its green fluorescence.

  6. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    PubMed Central

    2012-01-01

    Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels. PMID:22490508

  7. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, H.; Tucker, M. P.; Baker, J. O.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as amore » model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.« less

  8. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species

    Treesearch

    Jonathan G. Martin; Brian D. Kloeppel; Tara L. Schaefer; Darrin L. Kimbler; Steven G. McNulty

    1998-01-01

    Allometric equations were developed for mature trees of 10 deciduous species (Acer rubrum L.; Betula lenta L.; Carya spp.; Cornus florida L.; Liriodendron tulipifera L.; Oxydendrum arboreum (L.) DC.; Quercus alba L.; Quercus...

  9. Decomposition of hardwood leaves grown under elevated O[sub 3] and/or CO[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boerner, R.E.J.; Rebbeck, J.

    1993-06-01

    We measured mass loss and N release from leaves of three hardwoods which varied in O[sub 3] sensitivity: O[sub 3]-tolerant sugar maple (Acer saccharum/SM), black cherry (Prunus serotina/BC), and putatively O[sub 3]-sensitive yellow poplar (Liriodendron tulipifera/YP), grown in pots in charcoal-filtered air (CF), ambient O[sub 3], or twice ambient O[sub 3] (2X) in open top chambers. Mass loss was not affected by the O[sub 3] regime in which the leaves were grown. k values averaged SM:-0.707, BC:-0.613, and YP:-0.859. N loss from ambient O[sub 3]-grown SM was significantly greater than from CF; N loss from BC did not differ amongmore » treatments. Significantly less N was released from CF-grown YP leaves than from O[sup 3]-treated leaves. YP leaves from plants grown in pots at 2X O[sub 3] and 350 ppm supplemental CO[sub 2] in CSTRs loss 40% as much mass and 27% as much N over one year as did leaves from YP grown in CF or 2X O[sub 3]. Thus, for leaves from plants grown in pots in fumigation chambers, the concentrations of both O[sub 3] and CO[sub 2] can affect N release from litter incubated in the field whereas mass loss rate was affected only by CO[sub 2].« less

  10. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species

    Treesearch

    W.J. Rietveld

    1983-01-01

    Laboratory experiments were conducted to determine juglone sensitivity of 16 species (Trifolium incarnatum, Coronilla varia, Vicia villosa, Lespedeza stipulacea, L. cuneata, Acer ginnala, Caragana arboreseens, Elaegnus angustifolia, E. umbellata, Lonieera maackii, Quercus alba, Fraxinus americana, Liriodendron tulipifera, Alnus glutinosa, Pinus strobus...

  11. Rating poplars for Melampsora leaf rust infection

    Treesearch

    Ernst J. Schreiner

    1959-01-01

    Melampsora leaf rust occurs in all countries where poplars are native or where they have been introduced for ornamental use or timber culture. The rust is easily recognized by the bright orange-yellow spore masses on the undersides of the leaves during most of the growing season.

  12. Microclimatological and Physiological Controls of Stomatal Conductance and Transpiration of Co-Occurring Seedlings with Varying Shade Tolerance

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Levia, D. F.

    2010-12-01

    Forest ecosystems provide a significant portion of fresh water to the hydrologic cycle through transpiration, the majority of which is supplied by saplings and mature trees. However, a smaller, yet measurable, proportion is also supplied by seedlings. The contribution of seedlings is dependent upon physiological characteristics of the species, whose range of habitat is ultimately controlled by microclimate. The objectives of this study were to (1) observe meteorological conditions of two forest microlimates and (2) assess the intra- and interspecific stomatal conductance and transpiration responses of naturally occurring seedlings of varying shade tolerance. Naturally established seedlings in a deciduous forest understory and an adjacent clearing were monitored throughout the 2008 growing season in southeastern Pennsylvania (39°49'N, 75°43'W). Clear spatial and temporal trends of stomatal conductance and transpiration were observed throughout this study. The understory microclimate conditions overall had a lower degree of variability and had consistently lower mean quantum flux density, air temperature, vapor pressure deficit, volumetric water content, and soil temperature than the clearing plot. Shade tolerant understory seedlings (Fagus grandifolia Ehrh. (American beech) and Prunus serotina L. (black cherry)) had significantly lower mean monthly rates of water loss (p = 0.05) than shade intolerant clearing seedlings (P. serotina and Liriodendron tulipifera L. (yellow poplar)). Additionally, water loss by shade grown P. serotina was significantly lower (p = 0.05) than by sun grown P. serotina. Significant intraspecific responses (p = 0.05) were also observed on a monthly basis, with the exception of L. tulipifera. These findings indicate that physiological differences, specifically shade tolerance, play an important role in determining rates of stomatal conductance and transpiration in tree seedlings. To a lesser degree, microclimate variability was also shown

  13. Macroscale intraspecific variation and environmental heterogeneity: analysis of cold and warm zone abundance, mortality, and regeneration distributions of four eastern US tree species

    Treesearch

    Anantha M. Prasad

    2015-01-01

    I test for macroscale intraspecific variation of abundance, mortality, and regeneration of four eastern US tree species (Tsuga canadensis, Betula lenta, Liriodendron tulipifera, and Quercus prinus) by splitting them into three climatic zones based on plant hardiness zones (PHZs). The primary goals of the analysis are to assess the...

  14. Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (PARAFAC) modeling and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Wheeler, K. I.; Levia, D. F.; Hudson, J. E.

    2017-09-01

    In autumn, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams in forested watersheds changes as trees undergo resorption, senescence, and leaf abscission. Despite its biogeochemical importance, little work has investigated how leaf litter leachate DOM changes throughout autumn and how any changes might differ interspecifically and intraspecifically. Since climate change is expected to cause vegetation migration, it is necessary to learn how changes in forest composition could affect DOM inputs via leaf litter leachate. We examined changes in leaf litter leachate fluorescent DOM (FDOM) from American beech (Fagus grandifolia Ehrh.) leaves in Maryland, Rhode Island, Vermont, and North Carolina and from yellow poplar (Liriodendron tulipifera L.) leaves from Maryland. FDOM in leachate samples was characterized by excitation-emission matrices (EEMs). A six-component parallel factor analysis (PARAFAC) model was created to identify components that accounted for the majority of the variation in the data set. Self-organizing maps (SOM) compared the PARAFAC component proportions of leachate samples. Phenophase and species exerted much stronger influence on the determination of a sample's SOM placement than geographic origin. As expected, FDOM from all trees transitioned from more protein-like components to more humic-like components with senescence. Percent greenness of sampled leaves and the proportion of tyrosine-like component 1 were found to be significantly different between the two genetic beech clusters, suggesting differences in photosynthesis and resorption. Our results highlight the need to account for interspecific and intraspecific variations in leaf litter leachate FDOM throughout autumn when examining the influence of allochthonous inputs to streams.

  15. Electron microscopy of vesicular-arbuscular mycorrhizae of yellow poplar. III Host-endophyte interactions during arbuscular development.

    PubMed

    Kinden, D A; Brown, M F

    1975-12-01

    Scanning- and transmission-electron microscopy were used to examine developing and mature functional arbuscules in mycorrhizal roots of yellow poplar. Arbuscules developed from intracellular hyphae which branched repeatedly upon penetration into the host cells. Intermediate and late stages of developemnt were characterized by the production of numerous, short, bifurcate hyphae throughout the arbuscule. Mature arbuscules exhibited a coralloid morphology which resulted in a considerable increase in the surface area of the endophyte exposed within the host cells. Distinctive ultrastructural features of arbuscular hyphae included osmiophilic walls, nuclei, abundant cytoplasm, glycogen, and numerous small vacuoles. All arbuscular components were enclosed by host wall material and cytoplasm during development and at maturity. In infected cells, host nuclei were enlarged and the cytoplasm associated with the arbuscular branches typically contained abundant mitochondria, endoplasmic reticulum, and proplastids. Ultrastructural observations suggested that nutrient transfer may be predominantly directed toward the fungal endophyte during arbuscular development and while mature arbuscules remain functional.

  16. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs

    Treesearch

    Jeffrey D. May; Sarah Beth Burdette; Frank S. Gilliam; Mary Beth Adams

    2005-01-01

    We studied the effects of excessive nitrogen (N) fertilization on foliar nutrient dynamics and stem growth in three important tree species in a mixed-deciduous forest. Stem diameter growth, foliar N concentrations, nitrogen-phosphorus (NIP) ratios, and nutrient resorption were determined for Acer rubrum L. (ACRU), Liriodendron tulipifera L. (LITU), and Prunas serotina...

  17. Electron microscopy of vesicular-arbuscular mycorrhizae of yellow poplar. II. Intracellular hyphae and vesicles.

    PubMed

    Kinden, D A; Brown, M F

    1975-11-01

    Intracellular hyphae and vesicles in mycorrhizal roots of yellow poplar were examined by electron microscopy. An investing layer of host wall material and cytoplasm enclosed the endophyte within the cells. Young developing hyphae contained abundant cytoplasm and few vacuoles. As hyphae matured, they became highly vacuolated and accumulated carbohydrate (glycogen) and lipid reserves. Mature vesicles were engorged with lipid droplets, possessed a trilaminate wall and were also enclosed by host wall material and cytoplasm. Compared with uninfected cells, infected cortical cells showed an increase in cytoplasmic volume, enlarged nuclei, and a reduction of starch reserves. Host nuclei were always proximal to the hyphae during hyphal development and deterioration. While other cytoplasmic components of infected and uninfected cells were comparable large electron-dense bodies occurred in vacuoles of most cells containing hyphae. Deterioration of intracellular hyphae occurred throughout the samples examined. Septa separated functional and degenerating portions of the hyphae. Hyphal deterioration involved degeneration and ultimate disappearance of fungal cytoplasm as well as collapse of hyphal walls. Based on these observations, the authors hypothesize that deterioration of the endophyte may release significant quantities of mineral nutrients, via hyphal contents, which are absorbed by the host.

  18. The resilience of upland-oak forest canopy trees to chronic and acute precipitation manipulations

    Treesearch

    Paul J. Hanson; Timothy J. Tschaplinski; Stand D. Wullschleger; Donald e. Todd; Robert M. Auge

    2007-01-01

    Abstract—Implications of chronic (±33 percent) and acute (-100 percent) precipitation change were evaluated for trees of upland-oak forests of the eastern United States. Chronic manipulations have been conducted since 1993, and acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were initiated in 2003. Through 12...

  19. SEM technique for displaying the three-dimensional structure of wood

    Treesearch

    C.W. McMillin

    1977-01-01

    Samples of green Liriodendron tulipifera L. were bandsawed into l/4-inch cubes and boiled in water for 1 hour. Smooth intersecting radial, tangential, and transverse surfaces were prepared with a handheld, single-edge razor blade. After drying, the cubes were affixed to stubs so that the intersection point of the three sectioned surfaces was...

  20. SEM technique for displaying the three-dimensional structure of wood

    Treesearch

    Charles W. McMillin

    1977-01-01

    Samples of green Liriodendron tulipifera L. were bandsawed into 1/4-inch cubes and boiled in water for 1 hour. Smooth intersecting radial, tangential, and transverse surfaces were prepared with a handheld, single-edge razor blade. After drying, the cubes were affixed to stubs so that the intersection point of the three sectioned surfaces was...

  1. Effects of UV-B radiation on phenolic composition and deposition patterns and leaf physiology in three Eastern tree species

    NASA Astrophysics Data System (ADS)

    Sullivan, Joseph H.; Gitz, Dennis C.; Peek, Michael S.; McElrone, Andrew J.

    2002-01-01

    Quantitative changes in foliar chemistry in response to UVB radiation are frequently reported but less is known about the qualitative changes in putative UV-screening compounds. It has also not been conclusively shown whether qualitative differences in screening compounds or differences in localization patterns influences the sensitivity of plants to damage from UVB radiation. In this study we evaluated the chemical composition and deposition patterns of UV-absorbing compounds in three tree species and assayed these species for possible effects on gas exchange and photosynthetic carbon assimilation. Branches of mature trees of sweetgum (Liquidambar styraciflua), tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were exposed to supplemental levels of UVB radiation over three growing seasons. Controls for UVA were also measured by exposing branches to supplemental UVA only, and additional branches not irradiated were also used for controls. These species demonstrated contrasting chemical composition and deposition patterns with poplar being the most responsive in terms of epidermal accumulation of phenolics including flavonols and chlorogenic acid and hydroxycinnamates. Sweetgum and red maple showed increases primarily in hydroxycinnamates, particularly in the mesophyll in red maple. Leaf area was marginally influenced by UV exposure level. Assimilation was generally not reduced by UVB radiation in these species and was enhanced in red maple by both UVB and UVA and by UVA in sweetgum. These finding are consistent with a hypothesis that epidermal attenuation of UVB would only be reduced in poplar, which accumulated the additional epidermal screening compounds. It is possible that photosynthetic efficiency was enhanced in red maple by the increased absorption of blue light within the mesophyll. Stomatal conductance was generally reduced, and this led to an increase in water use efficiency in red maple and poplar.

  2. Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.

    PubMed

    Levia, Delphis F; Shiklomanov, Alexey N; Van Stan, John T; Scheick, Carrie E; Inamdar, Shreeram P; Mitchell, Myron J; McHale, Patrick J

    2015-07-01

    Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.

  3. Relocation of Joint Munitions Storage Area. Environmental Assessment

    DTIC Science & Technology

    2008-10-01

    N IT IO N S S TO R A G E A R EA D S ou rc e: A nd re w +s A FB Fi gu re 3 -1 . N oi se C on to ur s at A nd re w s...Liriodendron tulipifera). Mountain laurel (Kalmia latifolia), highbush blueberry (Vaccinium corymbosum), and Christmas fern (Polystichium acrostichoides

  4. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  5. Using parallel factor analysis modeling (PARAFAC) and self-organizing maps to track senescence-induced patterns in leaf litter leachate

    NASA Astrophysics Data System (ADS)

    Wheeler, K. I.; Levia, D. F., Jr.; Hudson, J. E.

    2017-12-01

    As trees undergo autumnal processes such as resorption, senescence, and leaf abscission, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams changes. However, little research has investigated how the fluorescent DOM (FDOM) changes throughout the autumn and how this differs inter- and intraspecifically. Two of the major impacts of global climate change on forested ecosystems include altering phenology and causing forest community species and subspecies composition restructuring. We examined changes in FDOM in leachate from American beech (Fagus grandifolia Ehrh.) leaves in Maryland, Rhode Island, Vermont, and North Carolina and yellow poplar (Liriodendron tulipifera L.) leaves from Maryland throughout three different phenophases: green, senescing, and freshly abscissed. Beech leaves from Maryland and Rhode Island have previously been identified as belonging to the same distinct genetic cluster and beech trees from Vermont and the study site in North Carolina from the other. FDOM in samples was characterized using excitation-emission matrices (EEMs) and a six-component parallel factor analysis (PARAFAC) model was created to identify components. Self-organizing maps (SOMs) were used to visualize variation and patterns in the PARAFAC component proportions of the leachate samples. Phenophase and species had the greatest influence on determining where a sample mapped on the SOM when compared to genetic clusters and geographic origin. Throughout senescence, FDOM from all the trees transitioned from more protein-like components to more humic-like ones. Percent greenness of the sampled leaves and the proportion of the tyrosine-like component 1 were found to significantly differ between the two genetic beech clusters. This suggests possible differences in photosynthesis and resorption between the two genetic clusters of beech. The use of SOMs to visualize differences in patterns of senescence between the different species and genetic

  6. Host Plants of Xylosandrus mutilatus in Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, W.D.; Nebeker, T.E.; Gerard, P.D.

    Host range of Xylosandrus mutilatus (Blandford) in North America is reported here for the first time. Descriptive data such as number of attacks per host, size of stems at point of attacks, and height of attacks above ground are presented. Hosts observed in Mississippi were Acer rubrum L., Acer saccharum Marsh., Acer palmatum Thunb., Ostrya virginiana (Mill.) K. Koch., Cornus florida L., Fagus grandifolia Ehrh., Liquidamber styraciflua L., Carya spp., Liriodendron tulipifera L., Melia azedarach L., Pinus taeda L., Prunus serotina Ehrh., Prunus americana Marsh., Ulmus alata Michaux, and Vitus rotundifolia Michaux. Liquidamber styraciflua had significantly more successful attacks, significantlymore » higher probability of attacks, and significantly higher number of adult beetles per host tree than did Carya spp., A. rubrum, and L. tulipifera. This information is relevant in determining the impact this exotic beetle may have in nurseries, urban areas, and other forestry systems where this beetle becomes established. (author) [Spanish] El rango de hospederos de Xylosandrus mutilatus (Blandford) en America del Norte esta reportado aqui por la primera vez. Se presentan datos descriptivos como el numero de ataques por hospederos, el tamano de los tallos en el punto de ataque y la altura por encima del nivel de tierra de los ataques. Los hospederos observados en el estado de Mississippi fueron Acer rubrum L., Acer saccharum Marsh., Acer palmatum Thunb., Ostrya virginiana (Mill.) K. Koch., Cornus florida L., Fagus grandifolia Ehrh., Liquidamber styraciflua L., Carya spp., Liriodendron tulipifera L., Melia azedarach L., Pinus taeda L., Prunus serotina Ehrh., Prunus americana Marsh., Ulmus alata Michaux y Vitus rotundifolia Michaux. Liquidamber styraciflua tuvo ataques significativamente mas exitosos, una probabilidad significativamente mas alta de ataques y un numero significativamente mayor de adultos de escarabajos por arbol hospedero que Carya spp., A. rubrum y L

  7. Response of Sap-Flow Measurements on Environmental Forcings

    NASA Astrophysics Data System (ADS)

    Howe, J. A.; Dragoni, D.; Schmid, H.

    2005-05-01

    The exchange of water between the atmosphere and biosphere is an important determinant of climate and the productivity of vegetation. Both evaporation and transpiration involve substantial amounts of energy exchange at the interface of the biosphere and atmosphere. Knowing how transpiration changes throughout the seasonal and diurnal cycles can help increase the understanding of how a forest reacts to changes in the biosphere and atmosphere. A common way to estimate transpiration is by measuring the sap flowing through the living tissues of trees. A study was conducted at Morgan-Monroe State Forest, a mixed deciduous forest in south central Indiana (USA), to investigate how sap flow in trees responds to changes in meteorological and environmental conditions. The heat -dissipation technique was used to estimate sap velocities from two Big Tooth Aspen (Populus grandidentata) and two Tulip Poplars (Liriodendron tulipifera). Sap velocity patterns (normalized by a reference potential evapo-transpiration) were directly compared with meteorological and ecological measurements, such as vapor pressure deficits, photosynthetic active radiation (PAR), rain fall, and soil moisture content. In this study, we also investigated the uncertainties and problems that arise in using the heat dissipation technique to extrapolate the single-tree measurements to the forest scale.

  8. Temporal Variability of Stemflow Dissolved Organic Carbon (DOC) Concentrations and Quality from Morphologically Contrasting Deciduous Canopies

    NASA Astrophysics Data System (ADS)

    van Stan, J. T.; Levia, D. F.; Inamdar, S. P.; Mitchell, M. J.; Mage, S. M.

    2010-12-01

    Dissolved organic carbon (DOC) inputs from canopy-derived hydrologic fluxes play a significant role in the terrestrial carbon budgets of forested ecosystems. However, no studies known to the authors have examined the variability of both DOC concentrations and quality for stemflow across time scales, nor has any study to date evaluated the effects of canopy structure on stemflow DOC characteristics. This investigation seeks to rectify this knowledge gap by examining the variability of stemflow DOC concentrations and quality across contrasting canopy morphologies and time scales (seasonal, storm and intrastorm). Bulk and intrastorm stemflow samples from a less dense, rough-barked, more plagiophile (Liriodendron tulipifera L. (tulip poplar)) and a denser, thin-barked, more erectophile (Fagus grandifolia Ehrh. (American beech)) canopy were collected and analyzed for DOC quality using metrics derived from UV-vis spectroscopy (E2:E3 ratio, SUVA254, select spectral slope (S), and spectral slope ratios (SR)). Our results suggest that stemflow DOC concentrations and quality change as crown architectural traits enhance or diminish hydrologic retention time within the canopy. The architecture of L. tulipifera canopies likely retards the flow of intercepted water, increasing chemical exchange with bark and foliar surfaces. UV-vis metrics indicated that this increased chemical exchange, particularly with bark surfaces, generally enhanced aromatic hydrocarbon content and increased molecular weight. Because leaf presence influenced DOC quality, stemflow DOC characteristics also varied seasonally in response to canopy condition. At the inter- and intrastorm scale, stemflow DOC concentration and quality varied with meteorological and antecedent canopy conditions. Since recent studies have linked stemflow production to preferential subsurface transport of dissolved chemistries, trends in DOC speciation and fluxes described in this study may impact soil environments within wooded

  9. Poplar Interactome: Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, Pankaj

    The feedstock plant Poplar has many advantages over traditional crop plants. Not only Poplar needs low energy input and off season storage as compared to feedstocks such as corn, in the winter season Poplar biomass is stored on the stem/trunk, and Poplar plantations serve as large carbon sink. A key constraint to the expansion of cellulosic bioenergy sources such as in Poplar however, is the negative consequence of converting land use from food crops to energy crops. Therefore in order for Poplar to become a viable energy crop it needs to be grown mostly on marginal land unsuitable agricultural crops.more » For this we need a better understanding of abiotic stress and adaptation response in poplar. In the process we expected to find new and existing poplar genes and their function that respond to sustain abiotic stress. We carried out an extensive gene expression study on the control untreated and stress (drought, salinity, cold and heat) treated poplar plants. The samples were collected from the stem, leaf and root tissues. The RNA of protein coding genes and regulatory smallRNA genes were sequenced generating more than a billion reads. This is the first such known study in Poplar plants. These were used for quantification and genomic analysis to identify stress responsive genes in poplar. Based on the quantification and genomic analysis, a select set of genes were studied for gene-gene interactions to find their association to stress response. The data was also used to find novel stress responsive genes in poplar that were previously not identified in the Poplar reference genome. The data is made available to the public through the national and international genomic data archives.« less

  10. Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq

    PubMed Central

    Wei, Hui; Fu, Yan; Magnusson, Lauren; Baker, John O.; Maness, Pin-Ching; Xu, Qi; Yang, Shihui; Bowersox, Andrew; Bogorad, Igor; Wang, Wei; Tucker, Melvin P.; Himmel, Michael E.; Ding, Shi-You

    2014-01-01

    The anaerobic, thermophilic bacterium, Clostridium thermocellum, secretes multi-protein enzyme complexes, termed cellulosomes, which synergistically interact with the microbial cell surface and efficiently disassemble plant cell wall biomass. C. thermocellum has also been considered a potential consolidated bioprocessing (CBP) organism due to its ability to produce the biofuel products, hydrogen, and ethanol. We found that C. thermocellum fermentation of pretreated yellow poplar (PYP) produced 30 and 39% of ethanol and hydrogen product concentrations, respectively, compared to fermentation of cellobiose. RNA-seq was used to analyze the transcriptional profiles of these cells. The PYP-grown cells taken for analysis at the late stationary phase showed 1211 genes up-regulated and 314 down-regulated by more than two-fold compared to the cellobiose-grown cells. These affected genes cover a broad spectrum of specific functional categories. The transcriptional analysis was further validated by sub-proteomics data taken from the literature; as well as by quantitative reverse transcription-PCR (qRT-PCR) analyses of selected genes. Specifically, 47 cellulosomal protein-encoding genes, genes for 4 pairs of SigI-RsgI for polysaccharide sensing, 7 cellodextrin ABC transporter genes, and a set of NAD(P)H hydogenase and alcohol dehydrogenase genes were up-regulated for cells growing on PYP compared to cellobiose. These genes could be potential candidates for future studies aimed at gaining insight into the regulatory mechanism of this organism as well as for improvement of C. thermocellum in its role as a CBP organism. PMID:24782837

  11. In situ measurements of root exudation in three hardwood species in southern Indiana

    NASA Astrophysics Data System (ADS)

    O'Connor, D. A.; Brzostek, E. R.; Fisher, J. B.; Phillips, R.

    2012-12-01

    Root exudation - the release of soluble organic compounds to soil - has long been considered a black box in ecology owing to methodological difficulties associated with measuring this flux in situ. This knowledge gap is significant given recent findings that suggest exudate inputs are appreciable in magnitude (2-5% of net primary production) and are coupled to microbial activities, nutrient release and soil organic matter decomposition. We developed a novel experimental system for collecting exudates from intact roots of field-grown trees using cuvettes filled with sterile glass beads. We measured root exudation for three tree species in ~80 year old mixed hardwood forest in south central Indiana, USA in the summer of 2012. Exudation rates varied from 0 to 1413 ug C/g root/day, and differed by sampling date and among trees species. Overall, rates were greater in early relative to late July, and greater in sugar maple (Acer saccharum) and white oak (Quercus alba) relative to tulip poplar (Liriodendron tulipifera). Across all species, exudation rates were correlated with root mass, indicating that greater allocation to roots likely increases the amount of C available to fuel soil microbial activity. Collectively, the results of this study should enable us to develop improved model parameterizations of the C costs associated with nutrient acquisition, an important feedback for predicting the role of vegetation in mediating climate change.

  12. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Levis, S.; Bonan, G.; Sparks, J. P.

    2012-08-01

    Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  13. Vegetation classification in southern pine mixed hardwood forests using airborne scanning laser point data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGaughey, Robert J.; Reutebuch, Stephen E.

    2012-10-15

    Forests of the southeastern United States are dominated by a relatively small number of conifer species. However, many of these forests also have a hardwood component composed of a wide variety of species that are found in all canopy positions. The presence or absence of hardwood species and their position in the canopy often dictates management activities such as thinning or prescribed burning. In addition, the characteristics of the under- and mid-story layers, often dominated by hardwood species, are key factors when assessing suitable habitat for threatened and endangered species such as the Red Cockaded Woodpecker (Picoides borealis) (RCW), makingmore » information describing the hardwood component important to forest managers. General classification of cover types using LIDAR data has been reported (Song et al. 2002, Brennan and Webster 2006) but most efforts focusing on the identification of individual species or species groups rely on some type of imagery to provide more complete spectral information for the study area. Brandtberg (2007) found that use of intensity data significantly improved LIDAR detection and classification of three leaf-off deciduous eastern species: oaks (Quercus spp.), red maple (Acer rubrum L.), and yellow poplar (Liriodendron tulipifera L.). Our primary objective was to determine the proportion of hardwood species present in the canopy using only the LIDAR point data and derived products. However, the presence of several hardwood species that retain their foliage through the winter months complicated our analyses. We present two classification approaches. The first identifies areas containing hardwood and softwood (conifer) species (H/S) and the second identifies vegetation with foliage absent or present (FA/FP) at the time of the LIDAR data acquisition. The classification results were used to develop predictor variables for forest inventory models. The ability to incorporate the proportion of hardwood and softwood was important

  14. Ecology and silviculture of poplar plantations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanturf, John A.; Van Oosten, Cees; Netzer, Daniel A.

    2002-07-01

    D.I.; Isebrands, J.G.; Eckenwalder, J.E.; Richardson, J., eds. Poplar culture in North America, part A, chapter 5. Ottawa: NRC Research Press, National Research Council of Canada: 153-206. ABSTRACT. Poplars are some of the fastest growing trees in North America and foresters have sought to capitalize on this potential since the 1940s. Interest in growing poplars has fluctuated, and objectives have shifted between producing sawlogs, pulp-wood, or more densely spaced "woodgrass" or biofuels. Currently, most poplar plantations are established for pulpwood or chip production on rotations of 10 years or less, but interest in sawlog production is increasing. Sid McKnight characterizedmore » cottonwood as a prima donna species: under ideal conditions, growth rates are just short of spectacular. Just as this can be applied to all poplars, it is equally true that all poplars are demanding of good sites and careful establishment. Growing poplars in plantations is challenging, and good establishment the first year is critical to long-term success. If a grower lacks the commitment or resources to provide needed treatments at critical times, then species other than poplars should be considered. Our objective in this chapter is to provide growers with current information for establishing and tending poplar plantations, as practiced in North America. Where we have sufficient information, differences between the poplar-growing regions of the United States and Canada will be noted. Mostly information is available on eastern and black cottonwood and their hybrids.« less

  15. Environmental benefits of poplar culture

    Treesearch

    J. G. Isebrands; D.F. Karnosky.

    2001-01-01

    Poplars have important values above and beyond wood or fiber production. Poplars have been planted for environmental purposes for centuries. There are reports of poplar plantings dating back to early Chinese history and biblical times in the Middle East, When immigrants came to North America in the 18th and 19th century, they often brought cuttings of their favorite...

  16. Ecology and silviculture of poplar plantations

    Treesearch

    John A. Stanturf; Cees van Oosten; Daniel A. Netzer; Mark D. Coleman; C. Jeffrey Portwood

    2002-01-01

    Poplars are some of the fastest growing trees in North America and foresters have sought to capitalize on this potential since the 1940s. Interest in growing poplars has fluctuated, and objectives have shifted between producing sawlogs, pulp-wood, or more densely spaced "woodgrass" or biofuels. Currently, most poplar plantations are established for pulpwood...

  17. Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles.

    PubMed

    Müller, Anna; Kaling, Moritz; Faubert, Patrick; Gort, Gerrit; Smid, Hans M; Van Loon, Joop J A; Dicke, Marcel; Kanawati, Basem; Schmitt-Kopplin, Philippe; Polle, Andrea; Schnitzler, Jörg-Peter; Rosenkranz, Maaria

    2015-06-30

    Chrysomela populi (poplar leaf beetle) is a common herbivore in poplar plantations whose infestation causes major economic losses. Because plant volatiles act as infochemicals, we tested whether isoprene, the main volatile organic compound (VOC) produced by poplars (Populus x canescens), affects the performance of C. populi employing isoprene emitting (IE) and transgenic isoprene non-emitting (NE) plants. Our hypothesis was that isoprene is sensed and affects beetle orientation or that the lack of isoprene affects plant VOC profiles and metabolome with consequences for C. populi feeding. Electroantennographic analysis revealed that C. populi can detect higher terpenes, but not isoprene. In accordance to the inability to detect isoprene, C. populi showed no clear preference for IE or NE poplar genotypes in the choice experiments, however, the beetles consumed a little bit less leaf mass and laid fewer eggs on NE poplar trees in field experiments. Slight differences in the profiles of volatile terpenoids between IE and NE genotypes were detected by gas chromatography - mass spectrometry. Non-targeted metabolomics analysis by Fourier Transform Ion Cyclotron Resonance Mass Spectrometer revealed genotype-, time- and herbivore feeding-dependent metabolic changes both in the infested and adjacent undamaged leaves under field conditions. We show for the first time that C. populi is unable to sense isoprene. The detected minor differences in insect feeding in choice experiments and field bioassays may be related to the revealed changes in leaf volatile emission and metabolite composition between the IE and NE poplars. Overall our results indicate that lacking isoprene emission is of minor importance for C. populi herbivory under natural conditions, and that the lack of isoprene is not expected to change the economic losses in poplar plantations caused by C. populi infestation.

  18. Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink.

    PubMed

    McGarvey, Jennifer C; Thompson, Jonathan R; Epstein, Howard E; Shugart, Herman H

    2015-02-01

    Few old-growth stands remain in the matrix of secondary forests that dominates the eastern North American landscape. These remnant stands offer insight on the potential carbon (C) storage capacity of now-recovering secondary forests. We surveyed the remaining old-growth forests on sites characteristic of the general Mid-Atlantic United States and estimated the size of multiple components of forest C storage. Within and between old-growth stands, variability in C density is high and related to overstory tree species composition. The sites contain 219 ± 46 Mg C/ha (mean ± SD), including live and dead aboveground biomass, leaf litter, and the soil O horizon, with over 20% stored in downed wood and snags. Stands dominated by tulip poplar (Liriodendron tulipifera) store the most live biomass, while the mixed oak (Quercus spp.) stands overall store more dead wood. Total C density is 30% higher (154 Mg C/ha), and dead wood C density is 1800% higher (46 Mg C/ha) in the old-growth forests than in the surrounding younger forests (120 and 5 Mg C/ha, respectively). The high density of dead wood in old growth relative to secondary forests reflects a stark difference in historical land use and, possibly, the legacy of the local disturbance (e.g., disease) history. Our results demonstrate the potential for dead wood to maintain the sink capacity of secondary forests for many decades to come.

  19. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    PubMed

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  20. Horizontal Gene Transfer to Endogenous Endophytic Bacteria from Poplar Improves Phytoremediation of Toluene

    PubMed Central

    Taghavi, Safiyh; Barac, Tanja; Greenberg, Bill; Borremans, Brigitte; Vangronsveld, Jaco; van der Lelie, Daniel

    2005-01-01

    Poplar, a plant species frequently used for phytoremediation of groundwater contaminated with organic solvents, was inoculated with the endophyte Burkholderia cepacia VM1468. This strain, whose natural host is yellow lupine, contains the pTOM-Bu61 plasmid coding for constitutively expressed toluene degradation. Noninoculated plants or plants inoculated with the soil bacterium B. cepacia Bu61(pTOM-Bu61) were used as controls. Inoculation of poplar had a positive effect on plant growth in the presence of toluene and reduced the amount of toluene released via evapotranspiration. These effects were more dramatic for VM1468, the endophytic strain, than for Bu61. Remarkably, none of the strains became established at detectable levels in the endophytic community, but there was horizontal gene transfer of pTOM-Bu61 to different members of the endogenous endophytic community, both in the presence and in the absence of toluene. This work is the first report of in planta horizontal gene transfer among plant-associated endophytic bacteria and demonstrates that such transfer could be used to change natural endophytic microbial communities in order to improve the remediation of environmental insults. PMID:16332840

  1. Nitrogen nutrition of poplar trees.

    PubMed

    Rennenberg, H; Wildhagen, H; Ehlting, B

    2010-03-01

    Many forest ecosystems have evolved at sites with growth-limiting nitrogen (N) availability, low N input from external sources and high ecosystem internal cycling of N. By contrast, many poplar species are frequent constituents of floodplain forests where they are exposed to a significant ecosystem external supply of N, mainly nitrate, in the moving water table. Therefore, nitrate is much more important for N nutrition of these poplar species than for many other tree species. We summarise current knowledge of nitrate uptake and its regulation by tree internal signals, as well as acquisition of ammonium and organic N from the soil. Unlike herbaceous plants, N nutrition of trees is sustained by seasonal, tree internal cycling. Recent advances in the understanding of seasonal storage and mobilisation in poplar bark and regulation of these processes by temperature and daylength are addressed. To explore consequences of global climate change on N nutrition of poplar trees, responses of N uptake and metabolism to increased atmospheric CO(2) and O(3) concentrations, increased air and soil temperatures, drought and salt stress are highlighted.

  2. Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.

    PubMed

    Brantley, Steven; Ford, Chelcy R; Vose, James M

    2013-06-01

    Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a

  3. Observations on a hybrid poplar test planting in West Virginia

    Treesearch

    Arthur R. Eschner

    1960-01-01

    Hybrid poplars, crosses between European and American Aigeiros poplars, have been grown in Europe for about 200 years. The rapid growth and high productivity of some of these hybrids on sites to which they are adapted has stimulated interest in poplar growing in this country. And demand for these poplars is developing in many parts of the United States.

  4. Growth of Appalachian hardwoods kept free to grow from 2 to 12 years after clearcutting

    Treesearch

    H. Clay Smith

    1983-01-01

    Free-to-grow sapling-size, yellow-poplars of seedling origin outgrew similar black cherry and red oak in both dbh and total height (especially on good sites). Yellow-poplar consistently grew faster in dbh throughout the study, particularly on the better oak sites. Black cherry had an edge over yellow-poplar in total height during the early years of the study, but...

  5. Properties and utilization of poplar wood

    Treesearch

    John J. Balatinecz; David E. Kretschmann

    2001-01-01

    Hybrid poplars are fast-growing, moisture-loving, full-sun-loving large trees that can be a rapid source of wood fiber. With the introduction of waferboard, oriented strandboard (OSB), and laminated strand lumber (LSL), aspen utilization has dramatically increased. Indigenous and hybrid poplars, however, present their own challenges, such as high discoloration...

  6. Determination of Tree and Understory Water Sources and Residence Times Using Stable Isotopes in a Southern Appalachian Forest

    NASA Astrophysics Data System (ADS)

    Stewart, A. N.; Knoepp, J.; Miniat, C.; Oishi, A. C.; Emanuel, R. E.

    2017-12-01

    The development of accurate hydrologic models is key to describing changes in hydrologic processes due to land use and climate change. Hydrologic models typically simplify biological processes associated with plant water uptake and transpiration, assuming that roots take up water from the same moisture pool that feeds the stream; however, this assumption is not valid for all systems. Novel combinations of climate and forest composition and structure, caused by ecosystem succession, management decisions, and climate variability, will require a better understanding of sources of water for transpiration in order to accurately estimate impact on forest water yield. Here we examine red maple (Acer rubrum), rhododendron (Rhododendron maximum), tulip poplar (Liriodendron tulipifera), and white oak (Quercus alba) trees at Coweeta Hydrologic Laboratory, a long-term hydrological and ecological research site in western NC, USA, and explore whether source water use differs by species and landscape position. We analyzed stable isotopes of water (18O and 2H) in tree cores, stream water, soil water, and precipitation using laser spectrometry and compare the isotopic composition of the various pools. We place these results in broader context using meteorological and ecophysiological data collected nearby. These findings have implications for plant water stress and drought vulnerability. They also contribute to process-based knowledge of plant water use that better captures the sensitivity of transpiration to physical and biological controls at the sub-catchment scale. This work aims to help establish novel ways to model transpiration and improve understanding of water balance, biogeochemical cycling, and transport of nutrients to streams.

  7. Progress in developing disease control strategies for hybrid poplars

    Treesearch

    Michael E. Ostry

    2000-01-01

    Hybrid poplars are being grown throughout many regions of the world for purposes including the production of fiber and energy, ornamental landscape plantings, and soil stabilization. Disease has often been responsible for planting failures resulting in poplars being labeled the universal host to many damaging pathogens. However, many of the poplar species and their...

  8. Environmental applications of poplars and willows

    Treesearch

    J.G. Isebrands; P. Aronsson; M. Carlson; R. Ceulemans; M. Coleman; N. Dickinson; J. Dimitriou; S. Doty; E. Gardiner; K. Heinsoo; J.D. Johnson; Y.B. Koo; J. Kort; J. Kuzovkina; L. Licht; A.R. McCracken; I. McIvor; P. Mertens; K. Perttu; D. Riddell-Black; B. Robins; G. Scarascia-Mugnozza; W.R. Schroeder; John Stanturf; T.A. Volk; M. Weih

    2014-01-01

    Poplars and willows have been planted for environmental purposes for millennia. There are reports that poplars were planted to improve the human environment 4000 years ago in the third dynasty of Ur, for streamside stabilization 2000 years ago in what is now the south-western USA by native North Americans and for urban amenities by the early Chinese dynasties (see...

  9. Durability of structural lumber products after exposure at 82°C and 80% relative humidity

    Treesearch

    David W. Green; James W. Evans; Cherilyn A. Hatfield; Pamela J. Byrd

    2005-01-01

    Solid-sawn lumber (Douglas-fir, southern pine, Spruce–Pine–Fir, and yellow-poplar), laminated veneer lumber (Douglas-fir, southern pine, and yellow-poplar), and laminated strand lumber (aspen and yellow-poplar) were heated continuously at 82°C (180°F) and 80% relative humidity (RH) for periods of up to 24 months. The lumber was then reconditioned to room temperature at...

  10. Numerical Analysis of the Bending Properties of Cathay Poplar Glulam

    PubMed Central

    Gao, Ying; Wu, Yuxuan; Zhu, Xudong; Zhu, Lei; Yu, Zhiming; Wu, Yong

    2015-01-01

    This paper presents the formulae and finite element analysis models for predicting the Modulus of Elastic (MOE) and Modulus of Rupture (MOR) of Cathay poplar finger-jointed glulam. The formula of the MOE predicts the MOE of Cathay poplar glulam glued with one-component polyurethane precisely. Three formulae are used to predict the MOR, and Equation (12) predicts the MOR of Cathay poplar glulam precisely. The finite element analysis simulation results of both the MOE and MOR are similar to the experimental results. The predicted results of the finite element analysis are shown to be more accurate than those of the formulae, because the finite element analysis considers the glue layers, but the formulae do not. Three types of typical failure modes due to bending were summarized. The bending properties of Cathay poplar glulam were compared to those of Douglas fir glulam. The results show that Cathay poplar glulam has a lower stiffness, but a marginally higher strength. One-component polyurethane adhesive is shown to be more effective than resorcinol formaldehyde resin adhesive for Cathay poplar glulam. This study shows that Cathay poplar has the potential to be a glulam material in China. PMID:28793619

  11. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    PubMed

    Hu, Jianjun; Zhang, Jin; Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  12. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation

    PubMed Central

    Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations. PMID:28085955

  13. Hybrid poplar planting in the Lake States

    Treesearch

    Paul O. Rudolf

    1948-01-01

    Poplars are among our fastest growing trees. Many of them are also relatively easy to grow from cuttings and to hybridize by means of cut flower-bearing twigs. Their wood is in demand for pulpwood, veneer for match and crate production, boxboards, and other uses. For these reasons there has been interest in many countries in selecting and breeding poplars. The tree...

  14. Survey of twenty-six hybrid poplar lines for poplar borer

    Treesearch

    W. Doug Stone; T. Keith Beatty; T. Evan Nebeker

    2006-01-01

    An insect survey was completed on 26 lines of hybrid poplar (Populus nigra x P. maximowiczii) that had the Roundup® Ready and Bt (Bacillus thuringiensis) genes. The survey was conducted in Kentucky in cooperation with MeadWestvaco. A total of 260 trees were evaluated. Survival rate averaged...

  15. Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

    PubMed

    Kannenberg, Steven A; Phillips, Richard P

    2017-03-01

    Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.

  16. Antibiosis/antixenosis in tulip tree and quaking aspen leaves against the polyphagous southern armyworm, Spodoptera eridania.

    PubMed

    Manuwoto, S; Scriber, J M; Hsia, M T; Sunarjo, P

    1985-08-01

    Previous studies have shown leaves of tulip tree, Liriodendron tulipifera L. (of the Magnoliaceae) and of Populus tremuloides Michx. (of the Salicaceae) to be antixenotic/antibiotic to many Lepidoptera, including one of the most polyphagous of all phytophagous insects, the southern armyworm, Spodoptera eridania Cramer (Noctuidae). We investigated the physiological responses to this phytochemical activity on neonate and late instar armyworm larvae in controlled environments with particular emphasis upon the leaf extracts containing condensed tannins and hydrolysable tannins. These tannin-containing extracts of tulip tree leaves and quaking aspen leaves were generally toxic to neonate larvae. For later instars, growth suppression was not due to digestibility-reduction, but instead to suppressed consumption rates and greatly increased metabolic (respiratory) costs as reflected in reduced biomass conversion efficiencies.

  17. Increased concentrations of potassium in heartwood of trees in response to groundwater contamination

    NASA Astrophysics Data System (ADS)

    Vroblesky, Don A.; Yanosky, Thomas M.; Siegel, Frederic R.

    1992-03-01

    The wood of tuliptrees ( Liriodendron tulipifera L.) growing above groundwater contamination from a hazardous-waste landfill in Maryland contained elevated concentrations of potassium (K). The groundwater contamination also contained elevated concentrations of dissolved K, as well as arsenic (As), cadmium (Cd), chloride (Cl), iron (Fe), manganese (Mn), zinc (Zn), and organic solvents. The dissolved K is derived from disposed smoke munitions. The excess K in the tuliptrees is concentrated in the heartwood, the part of the xylem most depleted in K in trees growing outside of the contamination. These data show that the uptake and translocation of K by tuliptrees can be strongly influenced by the availability of K in groundwater contamination and suggest the utility of this species as an areal indicator of groundwater contamination.

  18. Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering[W

    PubMed Central

    Hsu, Chuan-Yu; Liu, Yunxia; Luthe, Dawn S.; Yuceer, Cetin

    2006-01-01

    Many woody perennials, such as poplar (Populus deltoides), are not able to form flower buds during the first several years of their life cycle. They must undergo a transition from the juvenile phase to the reproductive phase to be competent to produce flower buds. After this transition, trees begin to form flower buds in the spring of each growing season. The genetic factors that control flower initiation, ending the juvenile phase, are unknown in poplar. The factors that regulate seasonal flower bud formation are also unknown. Here, we report that poplar FLOWERING LOCUS T2 (FT2), a relative of the Arabidopsis thaliana flowering-time gene FT, controls first-time and seasonal flowering in poplar. The FT2 transcript is rare during the juvenile phase of poplar. When juvenile poplar is transformed with FT2 and transcript levels are increased, flowering is induced within 1 year. During the transition between vegetative and reproductive growth in mature trees, FT2 transcripts are abundant during reproductive growth under long days. Subsequently, floral meristems emerge on flanks of the axillary inflorescence shoots. These findings suggest that FT2 is part of the flower initiation pathway in poplar and plays an additional role in regulating seasonal flower initiation that is integrated with the poplar perennial growth habit. PMID:16844908

  19. Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins.

    PubMed

    Lapierre, Catherine; Pilate, Gilles; Pollet, Brigitte; Mila, Isabelle; Leplé, Jean-Charles; Jouanin, Lise; Kim, Hoon; Ralph, John

    2004-02-01

    A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.

  20. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1

    PubMed Central

    Adams, Joshua P.; Adeli, Ardeshir; Hsu, Chuan-Yu; Harkess, Richard L.; Page, Grier P.; dePamphilis, Claude W.; Schultz, Emily B.; Yuceer, Cetin

    2011-01-01

    Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation. PMID:21504875

  1. Harvesting systems and costs for short rotation poplar

    Treesearch

    B. Rummer; D. Mitchell

    2013-01-01

    The objective of this review is to compare the cost of coppice and longer rotation poplar harvesting technology. Harvesting technology for short rotation poplar has evolved over the years to address both coppice harvest and single-stem harvest systems. Two potential approaches for coppice harvesting are modified forage harvesters and modified mulcher-balers. Both of...

  2. The salinity tolerant poplar database (STPD): a comprehensive database for studying tree salt-tolerant adaption and poplar genomics.

    PubMed

    Ma, Yazhen; Xu, Ting; Wan, Dongshi; Ma, Tao; Shi, Sheng; Liu, Jianquan; Hu, Quanjun

    2015-03-17

    Soil salinity is a significant factor that impairs plant growth and agricultural productivity, and numerous efforts are underway to enhance salt tolerance of economically important plants. Populus species are widely cultivated for diverse uses. Especially, they grow in different habitats, from salty soil to mesophytic environment, and are therefore used as a model genus for elucidating physiological and molecular mechanisms of stress tolerance in woody plants. The Salinity Tolerant Poplar Database (STPD) is an integrative database for salt-tolerant poplar genome biology. Currently the STPD contains Populus euphratica genome and its related genetic resources. P. euphratica, with a preference of the salty habitats, has become a valuable genetic resource for the exploitation of tolerance characteristics in trees. This database contains curated data including genomic sequence, genes and gene functional information, non-coding RNA sequences, transposable elements, simple sequence repeats and single nucleotide polymorphisms information of P. euphratica, gene expression data between P. euphratica and Populus tomentosa, and whole-genome alignments between Populus trichocarpa, P. euphratica and Salix suchowensis. The STPD provides useful searching and data mining tools, including GBrowse genome browser, BLAST servers and genome alignments viewer, which can be used to browse genome regions, identify similar sequences and visualize genome alignments. Datasets within the STPD can also be downloaded to perform local searches. A new Salinity Tolerant Poplar Database has been developed to assist studies of salt tolerance in trees and poplar genomics. The database will be continuously updated to incorporate new genome-wide data of related poplar species. This database will serve as an infrastructure for researches on the molecular function of genes, comparative genomics, and evolution in closely related species as well as promote advances in molecular breeding within Populus. The

  3. Use of Sulfometuron in Hybrid Poplar Energy Plantations

    Treesearch

    Daniel A. Netzer

    1995-01-01

    Reports that low rates of sulfometuron, 70 grams per hactare (1 ounce product or 0.75 ounces active ingredient per acre), applied when hybrid poplars are completely dormant, can provide season-long weed control and increase hybrid poplar growth. If plantation access is not possible before growth activity begins in the spring, late fall application of this herbicide...

  4. Rhizosphere Competitiveness of Trichloroethylene-Degrading, Poplar-Colonizing Recombinant Bacteria

    PubMed Central

    Shim, Hojae; Chauhan, Sadhana; Ryoo, Doohyun; Bowers, Kally; Thomas, Stuart M.; Canada, Keith A.; Burken, Joel G.; Wood, Thomas K.

    2000-01-01

    Indigenous bacteria from poplar tree (Populus canadensis var. eugenei ‘Imperial Carolina’) and southern California shrub rhizospheres, as well as two tree-colonizing Rhizobium strains (ATCC 10320 and ATCC 35645), were engineered to express constitutively and stably toluene o-monooxygenase (TOM) from Burkholderia cepacia G4 by integrating the tom locus into the chromosome. The poplar and Rhizobium recombinant bacteria degraded trichloroethylene at a rate of 0.8 to 2.1 nmol/min/mg of protein and were competitive against the unengineered hosts in wheat and barley rhizospheres for 1 month (colonization occurred at a level of 1.0 × 105 to 23 × 105 CFU/cm of root). In addition, six of these recombinants colonized poplar roots stably and competitively with populations as large as 79% ± 12% of all rhizosphere bacteria after 28 days (0.2 × 105 to 31 × 105 CFU/cm of root). Furthermore, five of the most competitive poplar recombinants (e.g., Pb3-1 and Pb5-1, which were identified as Pseudomonas sp. strain PsK recombinants) retained the ability to express TOM for 29 days as 100% ± 0% of the recombinants detected in the poplar rhizosphere expressed TOM constitutively. PMID:11055909

  5. Mycorrhizae of poplars

    Treesearch

    R. C. Schultz; J. G. Isebrands; P. P. Kormanik

    1983-01-01

    Poplar hybrids, being screened for short-rotation intensive culture, can form ecto-, endo-, or ectendo-mycorrhizae or may be autotrophic. Different sections of the genus Populus tend to be selective in the type of mycorrhizae formed. Knowledge of which types are formed influences the kinds of propagule production, site preparation, and herbicide...

  6. Investigating the Role of Extensin Proteins in Poplar Biomass Recalcitrance

    DOE PAGES

    Fleming, Margaret Brigham; Decker, Stephen R.; Bedinger, Patricia A.

    2016-02-03

    The biological conversion of cellulosic biomass to biofuel is hindered by cell wall recalcitrance, which can limit the ability of cellulases to access and break down cellulose. The purpose of this study was to investigate whether hydroxyproline-rich cell wall proteins (extensins) are present in poplar stem biomass, and whether these proteins may contribute to recalcitrance. Three classical extensin genes were identified in Populus trichocarpa through bioinformatic analysis of poplar genome sequences, with the following proposed names: PtEXTENSIN1 (Potri.001G019700); PtEXTENSIN2 (Potri.001G020100); PtEXTENSIN3 (Potri.018G050100). Tissue print immunoblots localized the extensin proteins in poplar stems to regions near the vascular cambium. Different thermochemicalmore » pretreatments reduced but did not eliminate hydroxyproline (Hyp, a proxy for extensins) from the biomass. Protease treatment of liquid hot water-pretreated poplar biomass reduced Hyp content by a further 16% and increased subsequent glucose yield by 20%. These data suggest that extensins may contribute to recalcitrance in pretreated poplar biomass, and that incorporating protease treatment into pretreatment protocols could result in a small but significant increase in the yield of fermentable glucose.« less

  7. High sensitivity of broadleaf trees to water availability in northeastern United States

    NASA Astrophysics Data System (ADS)

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2016-04-01

    Broadleaf dominated forests of eastern US cover more than one million km2 and provide ecosystem services to millions of people. High species diversity and a varied sensitivity to drought make it uncertain whether these forests will be carbon sinks or sources under climate change. Ongoing climate change, increased in atmospheric CO2 concentration (ca) and strong reductions in acidic depositions are expected to alter growth and gas exchange of trees, and ultimately forest productivity. Still, the magnitude of these effects is unclear. A better comprehension of the species-specific responses to environmental changes will better inform models and managers on the vulnerability and resiliency of these forests. Here, we combined tree-ring width data with δ13C and δ18O measurements to investigate growth and physiological responses of red oak (Quercus rubra L.) and tulip poplar (Liriodendron tulipifera L.) in northeastern US to changes in water availability, ca and acidic depositions for the period 1950-2014. Based on structural equation modeling approaches, we found that summer water availability (June-August) is the main environmental variable driving growth, water-use efficiency and δ18O of broadleaf trees whereas ca and acidic depositions have little effects. This high sensitivity to moisture availability was also supported by the very strong correlations found between summer vapor pressure deficit (VPD) and tree-ring δ13C (r = 0.67 and 0.71), and δ18O series (r = 0.62 and 0.72), for red oak and tulip poplar, respectively. In contrast, tree-ring width was less sensitive to summer VPD (r = -0.44 and-0.31). Since the mid 1980s, pluvial conditions occurring in northeastern US have increased stomatal conductance, carbon uptake, and growth of both species. Further, the strong spatial field correlations found between the tree-ring δ13C and δ18O and summer VPD indicate a greater sensitivity of eastern US broadleaf forests to moisture availability than previously known

  8. High sensitivity of northeastern broadleaf forest trees to water availability

    NASA Astrophysics Data System (ADS)

    Levesque, M.; Pederson, N.; Andreu-Hayles, L.

    2015-12-01

    Temperate deciduous forests of eastern US provide goods and services to millions of people and play a vital role in the terrestrial carbon and hydrological cycles. However, ongoing climate change and increased in CO2 concentration in the atmosphere (ca) are expected to alter growth and gas exchange of trees, and ultimately forest productivity. Still, the magnitude of these effects is unclear. A better comprehension of the species-specific responses to environmental changes will better inform models and managers on the vulnerability and resiliency of these forests. Tree-ring analysis was combined with δ¹³C and δ18O measurements to investigate growth and physiological responses of red oak (Quercus rubra L.) and tulip poplar (Liriodendron tulipifera L.) in northeastern US to changes in water availability and ca for the period 1950-2014. We found very strong correlations between summer climatic water balance (June-August) and isotopic tree-ring series for δ¹³C (r = -0.65 and -0.73), and δ18O (r = -0.59 and -0.70), for red oak and tulip poplar, respectively. In contrast, tree-ring width was less sensitive to summer water availability (r = 0.33-0.39). Prior to the mid 1980s, low water availability resulted in low stomatal conductance, photosynthesis, and growth. Since that period, pluvial conditions occurring in northeastern US have increased stomatal conductance, carbon uptake, and growth of both species. These findings demonstrate that broadleaf trees in this region could be more sensitive to drought than expected. This appears especially true since much of the calibration period looks wet in a multi-centennial perspective. Further, stronger spatial correlations were found between climate data with tree-ring isotopes than with tree-ring width and the geographical area of the observed δ18O-precipitation response (i.e. the area over which correlations are > 0.5) covers most of the northeastern US. Given the good fit between the isotopic time series and water

  9. Increased concentrations of potassium in heartwood of trees in response to groundwater contamination

    USGS Publications Warehouse

    Vroblesky, D.A.; Yanosky, T.M.; Siegel, F.R.

    1992-01-01

    The wood of tuliptrees (Liriodendron tulipifera L.) growing above groundwater contamination from a hazardous-waste landfill in Maryland contained elevated concentrations of potassium (K). The groundwater contamination also contained elevated concentrations of dissolved K, as well as arsenic (As), cadmium (Cd), chloride (Cl), iron (Fe), manganese (Mn), zinc (Zn), and organic solvents. The dissolved K is derived from disposed smoke munitions. The excess K in the tuliptrees is concentrated in the heartwood, the part of the xylem most depleted in K in trees growing outside of the contamination. These data show that the uptake and translocation of K by tuliptrees can be strongly influenced by the availability of K in groundwater contamination and suggest the utility of this species as an areal indicator of groundwater contamination. ?? 1992 Springer-Verlag New York Inc.

  10. 7. GENERAL VIEW EAST FROM ROOFTOP OF POPLAR FOREST TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. GENERAL VIEW EAST FROM ROOFTOP OF POPLAR FOREST TOWARDS SUMMER KITCHEN (FOREGROUND) AND DAIRY; CHIMNEY OF SOUTH TENANT HOUSE BARELY VISIBLE THROUGH TREES; EAST PRIVY RARELY VISIBLE OVER EAST MOUND (1987) - Poplar Forest, Summer Kitchen, State Route 661, Forest, Bedford County, VA

  11. Effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China

    PubMed Central

    Li, Youzhi; Chen, Xinsheng; Xie, Yonghong; Li, Xu; Li, Feng; Hou, Zhiyong

    2014-01-01

    This study evaluated the effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Poplar plantations resulted in a higher species number and Shannon's diversity. Species compositions were different between areas with poplar and reed populations: a lower ratio of hygrophytes but a higher ratio of mesophytes, and a higher ratio of heliophytes but a lower ratio of neutrophilous or shade plants in poplar areas compared to reed areas. Poplar plantations supported a higher ratio of ligneous plants in the entire Dongting Lake area, but there was no difference in the monitored plots. Unlike reedy areas, poplar plantations had higher light availability but lower soil water content during the growing seasons. These data suggest that young poplar plantations generally increased species richness and plant diversity, but significantly changed species composition due to the reduced soil water and increased light availability. PMID:25208975

  12. Effect of Continuous Cropping Generations on Each Component Biomass of Poplar Seedlings during Different Growth Periods

    PubMed Central

    Xia, Jiangbao; Zhang, Shuyong; Li, Tian; Liu, Xia; Zhang, Ronghua; Zhang, Guangcan

    2014-01-01

    In order to investigate the change rules and response characteristics of growth status on each component of poplar seedling followed by continuous cropping generations and growth period, we clear the biomass distribution pattern of poplar seedling, adapt continuous cropping, and provide theoretical foundation and technical reference on cultivation management of poplar seedling, the first generation, second generation, and third generation continuous cropping poplar seedlings were taken as study objects, and the whole poplar seedling was harvested to measure and analyze the change of each component biomass on different growth period poplar leaves, newly emerging branches, trunks and root system, and so forth. The results showed that the whole biomass of poplar seedling decreased significantly with the leaf area and its ratio increased, and the growth was inhibited obviously. The biomass aboveground was more than that underground. The ratios of leaf biomass and newly emerging branches biomass of first continuous cropping poplar seedling were relatively high. With the continuous cropping generations and growth cycle increasing, poplar seedling had a growth strategy to improve the ratio of root-shoot and root-leaf to adapt the limited soil nutrient of continuous cropping. PMID:25401150

  13. Wood reinforcement of poplar by rice NAC transcription factor

    PubMed Central

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-01

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961

  14. Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants

    PubMed Central

    Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.

    2013-01-01

    4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently utilized in phytoremediation. Results showed poplar plants could metabolize PCB3 into PCB3 sulfates during 25 day exposures. Three sulfate metabolites, including 2′-PCB3 sulfate, 3′-PCB3 sulfate and 4′-PCB3 sulfate, were identified in poplar roots and their concentrations increased in the roots from day 10 to day 25. The major products were 2′-PCB3 sulfate and 4′-PCB3 sulfate. However, the concentrations of PCB3 sulfates were much lower than those of OH-PCB3s in the roots, suggesting the sequential transformation of these hydroxylated PCB3 metabolites into PCB3 sulfates in whole poplars. In addition, 2′-PCB3 sulfate or 4′-PCB3 sulfate was also found in the bottom wood samples indicating some translocation or metabolism in woody tissue. Results suggested that OH-PCB3s were the substrates of sulfotransferases which catalyzed the formation of PCB3 sulfates in the metabolic pathway of PCB3. PMID:23215248

  15. 21st Session of the International Poplar Commission (IPC-2000): poplar and willow culture: meeting the needs of society and the environment; 200 September 24-28; Vancouver, WA.

    Treesearch

    J.G. Isebrands; J. Richardson

    2000-01-01

    Research results and ongoing research activities on poplar and willow breeding, diseases, insects, production, and utilization are described in 220 abstracts from the International Poplar Commission meeting in Vancouver, Washington, September 24-28, 2000.

  16. A critical analysis of species selection and high vs. low-input silviculture on establishment success and early productivity of model short-rotation wood-energy cropping systems

    DOE PAGES

    Fischer, M.; Kelley, A. M.; Ward, E. J.; ...

    2017-02-03

    Most research on bioenergy short rotation woody crops (SRWC) has been dedicated to the genera Populus and Salix. These species generally require relatively high-input culture, including intensive weed competition control, which increases costs and environmental externalities. Widespread native early successional species, characterized by high productivity and good coppicing ability, may be better adapted to local environmental stresses and therefore could offer alternative low-input bioenergy production systems. In order to test this concept, we established a three-year experiment comparing a widely-used hybrid poplar (Populus nigra × P. maximowiczii, clone ‘NM6’) to two native species, American sycamore (Platanus occidentalis L.) and tuliptreemore » (Liriodendron tulipifera L.) grown under contrasting weed and pest control at a coastal plain site in eastern North Carolina, USA. Mean cumulative aboveground wood production was significantly greater in sycamore, with yields of 46.6 Mg ha -11 under high-inputs and 32.7 Mg ha -1 under low-input culture, which rivaled the high-input NM6 yield of 32.9 Mg ha -1. NM6 under low-input management provided noncompetitive yield of 6.2 Mg ha -1. We also found that sycamore showed superiority in survival, biomass increment, weed resistance, treatment convergence, and within-stand uniformity. All are important characteristics for a bioenergy feedstock crop species, leading to reliable establishment and efficient biomass production. Poor performance in all traits was found for tuliptree, with a maximum yield of 1.2 Mg ha -1, suggesting this native species is a poor choice for SRWC. We then conclude that careful species selection beyond the conventionally used genera may enhance reliability and decrease negative environmental impacts of the bioenergy biomass production sector.« less

  17. A critical analysis of species selection and high vs. low-input silviculture on establishment success and early productivity of model short-rotation wood-energy cropping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, M.; Kelley, A. M.; Ward, E. J.

    Most research on bioenergy short rotation woody crops (SRWC) has been dedicated to the genera Populus and Salix. These species generally require relatively high-input culture, including intensive weed competition control, which increases costs and environmental externalities. Widespread native early successional species, characterized by high productivity and good coppicing ability, may be better adapted to local environmental stresses and therefore could offer alternative low-input bioenergy production systems. In order to test this concept, we established a three-year experiment comparing a widely-used hybrid poplar (Populus nigra × P. maximowiczii, clone ‘NM6’) to two native species, American sycamore (Platanus occidentalis L.) and tuliptreemore » (Liriodendron tulipifera L.) grown under contrasting weed and pest control at a coastal plain site in eastern North Carolina, USA. Mean cumulative aboveground wood production was significantly greater in sycamore, with yields of 46.6 Mg ha -11 under high-inputs and 32.7 Mg ha -1 under low-input culture, which rivaled the high-input NM6 yield of 32.9 Mg ha -1. NM6 under low-input management provided noncompetitive yield of 6.2 Mg ha -1. We also found that sycamore showed superiority in survival, biomass increment, weed resistance, treatment convergence, and within-stand uniformity. All are important characteristics for a bioenergy feedstock crop species, leading to reliable establishment and efficient biomass production. Poor performance in all traits was found for tuliptree, with a maximum yield of 1.2 Mg ha -1, suggesting this native species is a poor choice for SRWC. We then conclude that careful species selection beyond the conventionally used genera may enhance reliability and decrease negative environmental impacts of the bioenergy biomass production sector.« less

  18. Hybrid poplars: fast-growing, disease-resistant species has multiple uses

    Treesearch

    Ronald S., Jr. Zalesny

    2004-01-01

    The production of alternative fuels as a source of energy is a focus of concern in the United States. Intensively cultured hybrid poplar plantations have been used to supplement industrial fiber supplies in several areas of the United States, and have therefore gained attention in the North Central region. Attention is focused on poplars because they are fast growing...

  19. Silvicultural systems for harvesting mixed hardwood stands

    Treesearch

    H. Clay Smith; Ivan L. Sander

    1989-01-01

    Mixed stands that include oaks, yellow-poplar, black cherry, maples, white ash, basswood, birches, American beech, and other species are commonly found in the central hardwood forest. Depending on site quality and past stand treatment, overstory composition may range from nearly pure stands of oak or yellow-poplar to mixtures of 20 or more species.

  20. Visible dormant buds as related to tree diameter and log position

    Treesearch

    H. Clay Smith

    1967-01-01

    Red oaks and yellow-poplars in a stand of second-growth cove hardwoods in West Virginia were studied to determine whether visible dormant buds are related to tree size or log position. No correlation was found between dormant buds and tree size, for either species; but yellow-poplars had a significantly greater number of buds on the upper log.

  1. Hybrid poplar pulpwood and lumber from a reclaimed strip-mine

    Treesearch

    Walter H. Davidson

    1979-01-01

    A 2-acre hybrid poplar planting on a reclaimed strip-mine was harvested at age 16. The commercial clearcut yielded 90 tons of pulpwood and 9,400 board feet of lumber. This is equal to a growth rate of approximately 2 cords per acre per year. Selected physical properties of the hybrid poplars were compared with those of other commercial eastern species.

  2. Delimbing hybrid poplar prior to processing with a flail/chipper

    Treesearch

    Bruce Hartsough; Raffaele Spinelli; Steve Pottle

    2000-01-01

    We compared the performance of a flail/chipper for processing a) whole poplar trees and b) poplar trees that had been roughly delimbed with a pull-through delimber. Production rate was about 10% higher for the delimbed trees. The reduced cost of flail/chipping would not cover the additional cost of delimbing with the machine mix tested, but changes to equipment might...

  3. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    PubMed

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  4. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

    PubMed

    Dou, Chang; Marcondes, Wilian F; Djaja, Jessica E; Bura, Renata; Gustafson, Rick

    2017-01-01

    Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar. The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the

  5. Poplar response to cadmium and lead soil contamination.

    PubMed

    Radojčić Redovniković, Ivana; De Marco, Alessandra; Proietti, Chiara; Hanousek, Karla; Sedak, Marija; Bilandžić, Nina; Jakovljević, Tamara

    2017-10-01

    An outdoor pot experiment was designed to study the potential of poplar (Populus nigra 'Italica') in phytoremediation of cadmium (Cd) and lead (Pb). Poplar was treated with a combination of different concentrations of Cd (w = 10, 25, 50mgkg -1 soil) and Pb (400, 800, 1200mgkg -1 soil) and several physiological and biochemical parameters were monitored including the accumulation and distribution of metals in different plant parts (leaf, stem, root). Simultaneously, the changes in the antioxidant system in roots and leaves were monitored to be able to follow synergistic effects of both heavy metals. Moreover, a statistical analysis based on the Random Forests Analysis (RFA) was performed in order to determine the most important predictors affecting growth and antioxidative machinery activities of poplar under heavy metal stress. The study demonstrated that tested poplar could be a good candidate for phytoextraction processes of Cd in moderately contaminated soils, while in heavily contaminated soil it could be only considered as a phytostabilisator. For Pb remediation only phytostabilisation process could be considered. By using RFA we pointed out that it is important to conduct the experiments in an outdoor space and include environmental conditions in order to study more realistic changes of growth parameters and accumulation and distribution of heavy metals. Also, to be able to better understand the interactions among previously mentioned parameters, it is important to conduct the experiments during prolonged time exposure., This is especially important for the long life cycle woody species. Copyright © 2017. Published by Elsevier Inc.

  6. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    PubMed

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  7. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral “Salicoid” Genome Duplication

    PubMed Central

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-01-01

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the “salicoid” duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants. PMID:27352946

  8. Quality Index Tables for Some Eastern Hardwood Species Based on Lumber Prices from 1970 to 1974

    Treesearch

    Joseph J. Mendel; Margaret K. Peirsol

    1977-01-01

    Revised quality index (QI) tables for white ash, beech, black cherry, birch, hard maple, soft maple, red oak, white oak, and yellow-poplar are based on 1970-74 lumber prices for the Appalachian and northeastern marketing areas. Changes in QI since 1964-68 were greatest for white oak; there also were significant changes in QI for red oak, white ash, and yellow-poplar....

  9. Genomic insights into salt adaptation in a desert poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tao; Wang, Junyi; Zhou, Gongke

    2013-01-01

    Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to sa lt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories relatedmore » to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.« less

  10. Effect of sterilizing treatments on survival and growth of hybrid poplar cuttings

    Treesearch

    Harold F. Ford

    1954-01-01

    Fungus diseases of poplars might be spread to new locations if hybrid poplar cuttings (now being test-planted in various parts of the northeast) were not sterilized before shipment. Among these diseases are the canker-producing fungi Septoria musiva and Dothichiza populea and the leafblotch fungus Septotinia populiperda.

  11. WUS and STM-based reporter genes for studying meristem development in poplar

    USDA-ARS?s Scientific Manuscript database

    We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5’ flanking regions of close homologs were used to drive expression o...

  12. Heat transfer mechanisms in poplar wood undergoing torrefaction

    NASA Astrophysics Data System (ADS)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  13. Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Roger W.; Reinot, Tonu; McClelland, John F.

    2010-08-03

    Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500°C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzing cellulose,more » xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products.« less

  14. Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Roger W.; Reinot, Tonu; McClelland, John F.

    2010-08-30

    Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500 C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzingmore » cellulose, xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products.« less

  15. A comprehensive database of poplar research in North America from 1980 - 2010

    Treesearch

    David R. Coyle; Jill A. Zalesny; Ronald S. Jr. Zalesny

    2010-01-01

    Short rotation woody crops such as Populus species and hybrids (hereafter referred to as poplars) are renewable energy feedstocks that can potentially be used to offset electricity generation and natural gas use in many temperature regions. Highly productive poplars grown primarily on marginal agricultural sites are an important component of the...

  16. [Phosphorus transfer between mixed poplar and black locust seedlings].

    PubMed

    He, Wei; Jia, Liming; Hao, Baogang; Wen, Xuejun; Zhai, Mingpu

    2003-04-01

    In this paper, the 32P radio-tracer technique was applied to study the ways of phosphorus transfer between poplar (Populus euramericana cv. 'I-214') and black locust (Robinia pseudoacacia). A five compartment root box (18 cm x 18 cm x 26 cm) was used for testing the existence of the hyphal links between the roots of two tree species when inoculated with vesicular-arbuscular (VA) mycorrhizal fungus (Glomus mosseae). Populus I-214 (donor) and Robinia pseudoacacia (receiver) were grown in two terminal compartments, separated by a 2 cm root-free soil layer. The root compartments were lined with bags of nylon mesh (38 microns) that allowed the passage of hyphae but not roots. The top soil of a mixed stand of poplar and black locust, autoclaved at 121 degrees C for one hour, was used for growing seedlings for testing. In 5 compartment root box, mycorrhizal root colonization of poplar was 34%, in which VA mycorrhizal fungus was inoculated, whereas 26% mycorrhizal root colonization was observed in black locust, the other terminal compartment, 20 weeks after planting. No root colonization was observed in non-inoculated plant pairs. This indicated that the mycorrhizal root colonization of black locust was caused by hyphal spreading from the poplar. Test of tracer isotope of 32P showed that the radioactivity of the treatment significantly higher than that of the control (P < 0.05), 14 days from the tracer applied, to 27 days after, when VA mycorrhizal fungus was inoculated in poplar root. Furthermore, mycorrhizal interconnections between the roots of poplar and black locust seedlings was observed in situ by binocular in root box. All these experiments showed that the hyphal links was formed between the roots of two species of trees inoculated by VA mycorrhizal fungus. Four treatments were designed according to if there were two nets (mesh 38 microns), 2 cm apart, between the poplar and black locust, and if the soil in root box was pasteurized. Most significant differences of

  17. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

    Treesearch

    Andrew Groover; Joseph R. Fontana; Gayle Dupper; Caiping Ma; Robert Martienssen; Steven Strauss; Richard Meilan

    2004-01-01

    We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS...

  18. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars.

    PubMed

    Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C

    2012-07-01

    Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions. © 2012 Blackwell Publishing Ltd.

  19. Energy partitioning and surface resistance of a poplar plantation in northern China

    NASA Astrophysics Data System (ADS)

    Kang, M.; Zhang, Z.; Noormets, A.; Fang, X.; Zha, T.; Zhou, J.; Sun, G.; McNulty, S. G.; Chen, J.

    2015-07-01

    Poplar (Populus sp.) plantations have been, on the one hand, broadly used in northern China for urban greening, combating desertification, as well as for paper and wood production. On the other hand, such plantations have been questioned occasionally for their possible negative impacts on water availability due to the higher water-use nature of poplar trees compared with other tree species in water-limited dryland regions. To further understand the acclimation of poplar species to semiarid environments and to evaluate the potential impacts of these plantations on the broader context of the region's water supply, we examine the variability of bulk resistance parameters and energy partitioning in a poplar (Populus euramericana cv. "74/76") plantation located in northern China over a 4-year period, encompassing both dry and wet conditions. The partitioning of available energy to latent heat flux (LE) decreased from 0.62 to 0.53 under mediated meteorological drought by irrigation applications. A concomitant increase in sensible heat flux (H) resulted in the increase of a Bowen ratio from 0.83 to 1.57. Partial correlation analysis indicated that surface resistance (Rs) normalized by leaf area index (LAI; Rs:LAI) increased by 50 % under drought conditions and was the dominant factor controlling the Bowen ratio. Furthermore, Rs was the main factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively). Rs was also a major regulator of the LE / LEeq ratio, which decreased from 0.81 in wet years to 0.68 in dry years. All physiological and bioclimatological metrics indicated that the water demands of the poplar plantation were greater than the amount available through precipitation, highlighting the poor match of a water-intensive species like poplar for this water-limited region.

  20. [Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China.

    PubMed

    Zhang, Huan; Cao, Jun; Wang, Hua Bing; Song, Bo; Jia, Guo Dong; Liu, Zi Qiang; Yu, Xin Xiao; Zeng, Jia

    2018-05-01

    In Zhangbei County, Hebei Province, poplar-dominated shelterbelts are degraded to different extents. Water availability is the main limiting factor for plant survival in arid areas. The purpose of this study was to reveal the relationship between water availability and poplar degradation. Based on the hydrogen and oxygen stable isotope techniques, we explored the water sources of Populus simonii under different degradation degrees by comparing the isotopic values of P. simonii xylem water with that in potential water source, and calculated the utilization ratio of each water source. The results showed that the water sources of poplar trees varied with degradation degree. The water sources of P. simonii gradually transferred from the deep layer to the surface layer with the increases of degradation. P. simonii with no degradation mainly absorbed soil water in the range of 320-400 cm, with the utilization rate being 25.1%. P. simonii with slight degradation mainly used soil water at depth of 120-180, 180-240 and 240-320 cm. The total utilization rate of three layers was close to 50.0%, with less utilization of water from other layers. The moderately degraded P. simonii mainly used soil water at depth of 20-40, 40-60 and 60-80 cm. The utilization rate of each layer was 17.5%-20.9%, and the contribution rate of soil water under 120 cm was less than 10.0%. The severely degraded P. simonii mainly used water from surface soil layer (0-20 cm), with the utilization rate being 30.4%, which was significantly higher than that of other water sources. The water sources of poplar shelter forests were gradually shallower during the process of degradation. However, the low soil water content in the shallow layer could not meet the normal water demand of poplar, which would accelerate the degradation and even decline of poplar.

  1. Antibiofilm and Antioxidant Activity of Propolis and Bud Poplar Resins versus Pseudomonas aeruginosa

    PubMed Central

    De Marco, Stefania; Piccioni, Miranda; Pagiotti, Rita

    2017-01-01

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in lung, skin, and systemic infections. Biofilms are majorly associated with chronic lung infection, which is the most severe complication in cystic fibrosis patients characterized by drug-resistant biofilms in the bronchial mucus with zones, where reactive oxygen species concentration is increased mainly due to neutrophil activity. Aim of this work is to verify the anti-Pseudomonas property of propolis or bud poplar resins extracts. The antimicrobial activity of propolis and bud poplar resins extracts was determined by MIC and biofilm quantification. Moreover, we tested the antioxidant activity by DPPH and neutrophil oxidative burst assays. In the end, both propolis and bud poplar resins extracts were able to inhibit P. aeruginosa biofilm formation and to influence both swimming and swarming motility. Moreover, the extracts could inhibit proinflammatory cytokine production by human PBMC and showed both direct and indirect antioxidant activity. This work is the first to demonstrate that propolis and bud poplar resins extracts can influence biofilm formation of P. aeruginosa contrasting the inflammation and the oxidation state typical of chronic infection suggesting that propolis or bud poplar resins can be used along with antibiotic as adjuvant in the therapy against P. aeruginosa infections related to biofilm. PMID:28127379

  2. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Completemore » descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral meristem identity gene

  3. Biochemical response of hybrid black poplar tissue culture (Populus × canadensis) on water stress.

    PubMed

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tari, I; Csiszár, J; Gallé, Á; Poór, P; Galović, V; Trudić, B; Orlović, S

    2017-05-01

    In this study, poplar tissue culture (hybrid black poplar, M1 genotype) was subjected to water stress influenced by polyethyleneglycol 6000 (100 and 200 mOsm PEG 6000). The aim of the research was to investigate the biochemical response of poplar tissue culture on water deficit regime. Antioxidant status was analyzed including antioxidant enzymes, superoxide-dismutase (SOD), catalase (CAT), guiacol-peroxidase (GPx), glutathione-peroxidase (GSH-Px), glutathione-reductase, reduced glutathione, total phenol content, Ferric reducing antioxidant power and DPPH radical antioxidant power. Polyphenol oxidase and phenylalanine-ammonium-lyase were determined as enzymatic markers of polyphenol metabolism. Among oxidative stress parameters lipid peroxidation, carbonyl-proteins, hydrogen-peroxide, reactive oxygen species, nitric-oxide and peroxynitrite were determined. Proline, proline-dehydrogenase and glycinebetaine were measured also as parameters of water stress. Cell viability is finally determined as a biological indicator of osmotic stress. It was found that water stress induced reactive oxygen and nitrogen species and lipid peroxidation in leaves of hybrid black poplar and reduced cell viability. Antioxidant enzymes including SOD, GPx, CAT and GSH-Px were induced but total phenol content and antioxidant capacity were reduced by PEG 6000 mediated osmotic stress. The highest biochemical response and adaptive reaction was the increase of proline and GB especially by 200 mOsm PEG. While long term molecular analysis will be necessary to fully address the poplar potentials for water stress adaptation, our results on hybrid black poplar suggest that glycine-betaine, proline and PDH enzyme might be the most important markers of poplar on water stress and that future efforts should be focused on these markers and strategies to enhance their concentration in poplar.

  4. Differential ecophysiological responses and resilience to heat wave events in four co-occurring temperate tree species

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Han, Jimei; Cummings, Cadan; McLennan, David A.; Warren, Jeffrey M.

    2018-06-01

    Extreme summer heat waves are known to induce foliar and stem mortality in temperate forest ecosystems, yet our mechanistic knowledge of physiological thresholds for damage is lacking. Current spatiotemporal simulations of forest growth responses to climate change fail to explain the variability between co-occurring tree species to climate extremes, indicating a need for new model frameworks that include mechanistic understanding of trait-specific responses. In this context, using manipulative heat wave (hw) experiments we investigated ecophysiological responses and physiological recovery in four co-occurring temperate tree species of the southeastern United States including three deciduous angiosperms: southern red oak (Quercus falcata Michx.), shumard oak (Q. shumardii Buckl.) and, tulip-poplar (Liriodendron tulipifera L.) and one evergreen conifer: eastern white pine (Pinus strobus L.). The objectives were to investigate inter-specific differences in ecophysiological responses to hw events to understand mechanistic differences in resilience that may be useful for future model development. Two-year-old, well-irrigated potted saplings were exposed to progressively increasing extreme hw diurnal cycles followed by a recovery cycle, with peak midday air temperature increasing from 37 °C to a maximum of 51 °C on the third day of the hw. Plants were assessed for various photosynthetic and water use responses, chlorophyll fluorescence and photosystem-II (PSII) activity, leaf temperature and foliar pigments. Intense heat caused progressive down-regulation in net photosynthesis, but the stomata remained operational, which helped cool leaves through loss of latent heat. Even though whole plant transpiration increased for all species, the rate plateaued at higher hw events that allowed leaf temperature to exceed 45 °C, well beyond the optimal range. A significant increase in non-photochemical quenching over the hw cycles was evident in all species though

  5. Effect of Genetically Modified Poplars on Soil Microbial Communities during the Phytoremediation of Waste Mine Tailings▿†

    PubMed Central

    Hur, Moonsuk; Kim, Yongho; Song, Hae-Ryong; Kim, Jong Min; Choi, Young Im; Yi, Hana

    2011-01-01

    The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat. PMID:21890678

  6. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.

    PubMed

    Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H

    2015-11-01

    The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  7. Finding Fingerprints of Selection in Poplar Genomes

    ScienceCinema

    Tuskan, Gerald

    2018-05-30

    Jerry Tuskan of Oak Ridge National Laboratory and the DOE JGI talks about poplar trees as models for selective adaptation to an environment. This video complements a study published ahead online August 24, 2014 in Nature Genetics.

  8. Soil Requirements for Aigeiros Poplar Plantations

    Treesearch

    James B. Baker; W. M. Broadfoot

    1976-01-01

    Information about soil requirements and site selection for poplars is reviewed; and a new technique for evaluating potential sites for planting eastern cottonwood (Populus deltoides Bartr.) in the United States is proposed. This method should serve as a practical field aid in site evaluation for cottonwood. If modified for...

  9. [Canopy conductance characteristics of poplar in agroforestry system in west Liaoning Province of Northeast China].

    PubMed

    Li, Zheng; Niu, Li-Hua; Yuan, Feng-Hui; Guan, De-Xin; Wang, An-Zhi; Jin, Chang-Jie; Wu, Jia-Bing

    2012-11-01

    By using Granier' s thermal dissipation probe, the sap flow of poplar in a poplar-maize agroforestry system in west Liaoning was continuously measured, and as well, the environmental factors such as air temperature, air humidity, net radiation, wind speed, soil temperature, and soil moisture content were synchronically measured. Based on the sap flow data, the canopy conductance of poplar was calculated with simplified Penman-Monteith equation. In the study area, the diurnal variation of poplar' s canopy conductance showed a "single peak" curve, whereas the seasonal variation showed a decreasing trend. There was a negative logarithm relationship between the canopy conductance and vapor pressure deficit, with the sensitivity of canopy conductance to vapor pressure deficit change decreased gradually from May to September. The canopy conductance had a positive relationship with solar radiation. In different months, the correlation degree of canopy conductance with environmental factors differed. The vapor pressure deficit in the whole growth period of poplar was the most significant environmental factor correlated with the canopy conductance.

  10. Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide.

    PubMed

    Gupta, Rajesh; Lee, Y Y

    2010-01-01

    Sodium hydroxide and its derivatives are used as pulping reagents, wherein the spent NaOH is recovered in salt form and reused. In this study, use of low concentration NaOH (1-5%) in pretreatment of corn stover and hybrid poplar was investigated. It was done with the understanding that NaOH can be recovered. One of the main objectives in this study is to explore the potential of H(2)O(2) with NaOH for pretreatment of high lignin substrate such as hybrid poplar. Pretreatment time has not been optimized in this study but held constant at 24 h. Corn stover, after treatment with NaOH under moderate conditions, attains near quantitative glucan digestibility. On the other hand, hybrid poplar requires treatment at higher temperature and NaOH concentration to attain acceptable level of digestibility. Supplementation of hydrogen peroxide in the pretreatment significantly raises delignification and digestibility of hybrid poplar. It was also helpful in retaining the carbohydrates in the treated solids. Retention of hemicellulose after pretreatment provides a significant economic benefit as it eliminates the need for detoxifying hemicellulose sugars. As the residual xylan remaining after pretreatment is an impediment to enzymatic digestion of glucan, supplementation of xylanase has significantly increased the digestibility of glucan as well as xylan of the treated hybrid poplar. (c) 2010 American Institute of Chemical Engineers

  11. Biological Control of Septoria Leaf Spot Disease of Hybrid Poplar in the Field

    Treesearch

    Laszlo Gyenis; Neil A. Anderson; Michael E. Ostry

    2003-01-01

    Biological control of Septoria leaf spot of hrhrid poplars was investigated using disease-suppressive Streptomyces strains. Field experiments were conducted in 1998 and 1999 on potted trees placed in a hybrid poplar plantation near Rosemount, MN, and on field-planted trees in 1998 at St. Paul. At both locations, one resistant and three susceptible...

  12. Yellow Fever

    MedlinePlus

    ... Testing Vaccine Information Testing for Vaccine Adverse Events Yellow fever Vaccine Continuing Education Course Yellow Fever Home Prevention Vaccine Vaccine Recommendations Reactions to Yellow Fever Vacine Yellow Fever Vaccine, Pregnancy, & ... Transmission Symptoms, Diagnosis, & Treatment Maps Africa ...

  13. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  14. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil.

    PubMed

    Wang, Xin; Jia, Youngfeng

    2010-08-01

    Field experiments at the Shenyang Experimental Station of Ecology were conducted to study the adsorption, accumulation, and remediation of heavy metals by poplar and larch grown in artificially contaminated soil. The soil was spiked with a combination of Cd, Cu, and Zn at concentrations of 1.5, 100, and 200 mg.kg(-1), respectively. The results showed that the biomass of poplar (Populus canadensis Moench) was lower by 26.0% in the soil spiked with a mixture of Cd, Cu, and Zn, compared with the control. Concentrations of Cd in poplar leaf and Cu in poplar roots in the treated soil were 4.11 and 14.55 mg kg(-1), respectively, which are much greater than in corresponding controls. The migration of heavy metals in woody plant body was in the order Cd > Zn > Cu. Poplar had higher metal concentrations in aboveground tissues and a higher biomass compared with larch of the same age and therefore is potentially more suitable for remediation. In the heavy metal-polluted soil of this study, phytoremediation by poplar may take 56 and 245 years for Cd and Cu, respectively, for meeting the soil standards of heavy metals, and the corresponding phytoremediation times by larch would take 211 and 438 years. The research findings could be used as a basis to develop ecological engineering technologies for environmental control and remediation of pollution caused by heavy metals in soils.

  15. [Spatio-temporal characteristics of the expansion of poplar plantation in West Dongting Lake wetland, China.

    PubMed

    Jing, Lei; Lyu, Cai; Zhou, Yan; Zuo, Ao Jie; Lei, Guang Chun

    2016-07-01

    The rapid expansion of poplar plantation and its impacts on the wetland ecosystem have become a critical issue in West Dongting Lake ecosystem management. In the study, we explored the spatio-temporal characteristics of poplar plantation distribution in West Dongting Lake from 2000-2014 using Landsat imagery, topographic and hydrological data. Results showed that the area of the poplar plantation increased from 3233.5 hm 2 to 10915.6 hm 2 during the period of 2000 to 2011 (i.e. mean growth rate was 698.4 hm 2 ·a -1 ), and the highest growth rate happened during the period of 2004 to 2007 (1000.6 hm 2 ·a -1 ). Then, from 2011 to 2014, the expansion rate recorded a net loss, with the total poplar plantation area decreasing to 10153.1 hm 2 in 2014. Reed marsh, open water and mudflat, and wet meadows contributed to the expansion of poplar plantation, which accounted for 41.8%, 37.0% and 21.2%, respectively. Failure policy incentives, as well as the market need for economic interests were the key drivers of the popular plantation expansion, and meanwhile, operation of the Three Gorges Dam that lowered down the flooding water level, as well as the sediment deposition within the lake bed offered favorable environment for popular tree growth. The project of "returning forest to wetland" after 2013 was the main reason for the decreased poplar plantation area in 2014.

  16. Isoprene function in two contrasting poplars under salt and sunflecks.

    PubMed

    Behnke, K; Ghirardo, A; Janz, D; Kanawati, B; Esperschütz, J; Zimmer, I; Schmitt-Kopplin, P; Niinemets, Ü; Polle, A; Schnitzler, J P; Rosenkranz, M

    2013-06-01

    In the present study, biogenic volatile organic compound (BVOC) emissions and photosynthetic gas exchange of salt-sensitive (Populus x canescens (Aiton) Sm.) and salt-tolerant (Populus euphratica Oliv.) isoprene-emitting and non-isoprene-emitting poplars were examined under controlled high-salinity and high-temperature and -light episode ('sunfleck') treatments. Combined treatment with salt and sunflecks led to an increased isoprene emission capacity in both poplar species, although the photosynthetic performance of P. × canescens was reduced. Indeed, different allocations of isoprene precursors between the cytosol and the chloroplast in the two species were uncovered by means of (13)CO2 labeling. Populus × canescens leaves, moreover, increased their use of 'alternative' carbon (C) sources in comparison with recently fixed C for isoprene biosynthesis under salinity. Our studies show, however, that isoprene itself does not have a function in poplar survival under salt stress: the non-isoprene-emitting leaves showed only a slightly decreased photosynthetic performance compared with wild type under salt treatment. Lipid composition analysis revealed differences in the double bond index between the isoprene-emitting and non-isoprene-emitting poplars. Four clear metabolomics patterns were recognized, reflecting systemic changes in flavonoids, sterols and C fixation metabolites due to the lack/presence of isoprene and the absence/presence of salt stress. The studies were complemented by long-term temperature stress experiments, which revealed the thermotolerance role of isoprene as the non-isoprene-emitting leaves collapsed under high temperature, releasing a burst of BVOCs. Engineered plants with a low isoprene emission potential might therefore not be capable of resisting high-temperature episodes.

  17. Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense.

    PubMed

    Yang, Aihong; Dick, Christopher W; Yao, Xiaohong; Huang, Hongwen

    2016-05-10

    Species ranges are influenced by past climate oscillations, geographical constraints, and adaptive potential to colonize novel habitats at range limits. This study used Liriodendron chinense, an important temperate Asian tree species, as a model system to evaluate the roles of biogeographic history and marginal population genetics in determining range limits. We examined the demographic history and genetic diversity of 29 L. chinense populations using both chloroplast and nuclear microsatellite loci. Significant phylogeographic structure was recovered with haplotype clusters coinciding with major mountain regions. Long-term demographical stability was suggested by mismatch distribution analyses, neutrality tests, and ecological niche models (ENM) and suggested the existence of LGM refuges within mountain regions. Differences in genetic diversity between central and marginal populations were not significant for either genomic region. However, asymmetrical gene flow was inferred from central populations to marginal populations, which could potentially limit range adaptation and expansion of L. chinense.

  18. Methods of establishing plantations of hybrid-poplar cuttings

    Treesearch

    Frank E. Cunningham

    1954-01-01

    Fast-growing hybrid poplars are now being tested in plantations scattered from Maine to West Virginia to find out how the different hybrids respond to a wide range of environmental conditions throughout the Northeast.

  19. Hydrologic Evaluation of a Humid Climate Poplar Phytoremediation Barrier

    NASA Astrophysics Data System (ADS)

    Swensen, K.; Rabideau, A. J.

    2016-12-01

    The emplacement of hybrid poplar trees to function as phytoremediation barriers is an appealing and sustainable groundwater management strategy because of low maintenance costs and the potential to extract large amounts of groundwater without pumping. While the effectiveness of poplar barriers has been assessed by groundwater quality monitoring, less attention has been given to physical hydrologic evaluations needed to improve barrier designs. In this research, a five year hydrologic evaluation was conducted at a poplar phytoremediation site in western NY, with the goal of quantifying ETg (evapotranspiration from groundwater) as a measure of the barrier's effectiveness in a humid climate. To consider transpiration from both vadose zone and groundwater, the hydrologic evaluation included four components: physical ET measurements, theoretical ET calculations, analysis of diurnal groundwater table fluctuations, and vadose zone modeling. The direct measurements of ETT (total) were obtained using sap flow meters installed on multiple trees within the barrier. These data were interpreted using a regression model that included theoretical ET calculations and site-specific measurements of weather parameters and poplar trunk area. Application of this model was challenged by the spatial variation in rooting depth as determined by tree excavations. To further quantify the removal of groundwater by the phytobarrier (ETg), the White Method was applied to interpret diurnal groundwater fluctuations from monitoring wells located within the barrier, in conjunction with a variably saturated-saturated flow model configured to confirm water extraction from ETg. Taken together, the results of this five year hydrologic evaluation highlight the complexity in quantifying humid climate groundwater extraction, as a large number of variables were found to influence these rates. Improved understanding of these controls will contribute to improved barrier designs that maximize ETg.

  20. A survey of the pyrabactin resistance-like abscisic acid receptor gene family in poplar.

    PubMed

    Yu, Jingling; Li, Hejuan; Peng, Yajing; Yang, Lei; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2017-08-03

    The conserved PYR/PYL/RCAR family acts as abscisic acid (ABA) receptors for land plants to adapt to terrestrial environments. Our recent study reported that the exogenous overexpression of poplar PtPYRL1 and PtPYRL5, the PYR/PYL/RCAR orthologs, promoted the sensitivity of transgenic Arabidopsis to ABA responses. Here, we surveyed the PtPYRL family in poplar, and revealed that although the sequence and structure are relatively conserved among these receptors, PtPYRL members have differential expression patterns and the sensitivity to ABA or drought treatment, suggesting that PtPYRLs might be good candidates to a future biotechnological use to enhance poplar resistance to water-stress environments.

  1. Surface sterilization of hybrid poplar cuttings

    Treesearch

    Alma M. Waterman

    1954-01-01

    Fungus diseases of hybrid poplars may be spread by spores that lodge in the resinous coating of buds of dormant cuttings, and in the lenticels. Surface sterilization by dipping the cuttings in fungicides was tested to determine whether such treatment would prevent the germination of spores of the canker-producing fungi Septoria musiva and Dothichiza populea and the...

  2. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode × Populus bollena Lauche

    PubMed Central

    Han, Xue; Ma, Shurong; Kong, Xianghui; Takano, Tetsuo; Liu, Shenkui

    2013-01-01

    Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L) 6-benzylaminopurine and (0.08 mg/L) naphthaleneacetic acid, we have achieved the highest frequency (90%) for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0) and an infection time (20–30 min). According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP) marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30%) than older leaves (10%). PMID:23354481

  3. A System for Dosage-Based Functional Genomics in Poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Isabelle M.; Zinkgraf, Matthew S.; Groover, Andrew T.

    Altering gene dosage through variation in gene copy number is a powerful approach to addressing questions regarding gene regulation, quantitative trait loci, and heterosis, but one that is not easily applied to sexually transmitted species. Elite poplar (Populus spp) varieties are created through interspecific hybridization, followed by clonal propagation. Altered gene dosage relationships are believed to contribute to hybrid performance. Clonal propagation allows for replication and maintenance of meiotically unstable ploidy or structural variants and provides an alternative approach to investigating gene dosage effects not possible in sexually propagated species. Here, we built a genome-wide structural variation system for dosage-basedmore » functional genomics and breeding of poplar. We pollinated Populus deltoides with gamma-irradiated Populus nigra pollen to produce >500 F1 seedlings containing dosage lesions in the form of deletions and insertions of chromosomal segments (indel mutations). Using high-precision dosage analysis, we detected indel mutations in ~55% of the progeny. These indels varied in length, position, and number per individual, cumulatively tiling >99% of the genome, with an average of 10 indels per gene. Combined with future phenotype and transcriptome data, this population will provide an excellent resource for creating and characterizing dosage-based variation in poplar, including the contribution of dosage to quantitative traits and heterosis.« less

  4. A System for Dosage-Based Functional Genomics in Poplar

    DOE PAGES

    Henry, Isabelle M.; Zinkgraf, Matthew S.; Groover, Andrew T.; ...

    2015-08-28

    Altering gene dosage through variation in gene copy number is a powerful approach to addressing questions regarding gene regulation, quantitative trait loci, and heterosis, but one that is not easily applied to sexually transmitted species. Elite poplar (Populus spp) varieties are created through interspecific hybridization, followed by clonal propagation. Altered gene dosage relationships are believed to contribute to hybrid performance. Clonal propagation allows for replication and maintenance of meiotically unstable ploidy or structural variants and provides an alternative approach to investigating gene dosage effects not possible in sexually propagated species. Here, we built a genome-wide structural variation system for dosage-basedmore » functional genomics and breeding of poplar. We pollinated Populus deltoides with gamma-irradiated Populus nigra pollen to produce >500 F1 seedlings containing dosage lesions in the form of deletions and insertions of chromosomal segments (indel mutations). Using high-precision dosage analysis, we detected indel mutations in ~55% of the progeny. These indels varied in length, position, and number per individual, cumulatively tiling >99% of the genome, with an average of 10 indels per gene. Combined with future phenotype and transcriptome data, this population will provide an excellent resource for creating and characterizing dosage-based variation in poplar, including the contribution of dosage to quantitative traits and heterosis.« less

  5. Improved diffusivity of NaOH solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production.

    PubMed

    Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi

    2018-07-01

    This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; ...

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H 2O 2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H 2O 2 was added batch-wise overmore » the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H 2O 2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H 2O 2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  7. Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar.

    PubMed

    Wang, Lei; Su, Hongyan; Han, Liya; Wang, Chuanqi; Sun, Yanlin; Liu, Fenghong

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance.

    PubMed

    Coble, Adam P; Fogel, Marilyn L; Parker, Geoffrey G

    2017-10-01

    In temperate deciduous forests, vertical gradients in leaf mass per area (LMA) and area-based leaf nitrogen (Narea) are strongly controlled by gradients in light availability. While there is evidence that hydrostatic constraints on leaf development may diminish LMA and Narea responses to light, inherent differences among tree species may also influence leaf developmental and morphological response to light. We investigated vertical gradients in LMA, Narea and leaf carbon isotope composition (δ13C) for three temperate deciduous species (Carpinus caroliniana Walter, Fagus grandifolia Ehrh., Liriodendron tulipifera L.) that differed in growth strategy (e.g., indeterminate and determinate growth), shade tolerance and leaf area to sapwood ratio (Al:As). Leaves were sampled across a broad range of light conditions within three vertical layers of tree crowns to maximize variation in light availability at each height and to minimize collinearity between light and height. All species displayed similar responses to light with respect to Narea and δ13C, but not for LMA. Light was more important for gradients in LMA for the shade-tolerant (C. caroliniana) and -intolerant (L. tulipifera) species with indeterminate growth, and height (e.g., hydrostatic gradients) and light were equally important for the shade-tolerant (F. grandifolia) species with determinate growth. Fagus grandifolia had a higher morphological plasticity in response to light, which may offer a competitive advantage in occupying a broader range of light conditions throughout the canopy. Differences in responses to light and height for the taller tree species, L. tulipifera and F. grandifolia, may be attributed to differences in growth strategy or Al:As, which may alter morphological and functional responses to light availability. While height was important in F. grandifolia, height was no more robust in predicting LMA than light in any of the species, confirming the strong role of light availability in

  9. Can gas exchange dynamics predict non-structural carbohydrate use under drought stress?

    NASA Astrophysics Data System (ADS)

    Kannenberg, S.; Phillips, R.

    2016-12-01

    A recent conceptual framework for understanding tree drought responses characterizes species along a continuum from isohydry to anisohydry, with theory predicting that isohydric and anisohydric trees should display different carbon (C) allocation patterns under drought conditions. We tested the hypothesis that the trade-offs inherent in the isohydry-anisohydry framework (i.e., C starvation vs. hydraulic failure) necessitate different allocation patterns to non-structural carbohydrates (NSCs), growth, and respiration. Specifically, we hypothesized that isohydric trees would decrease NSC stores and growth in the face of reduced incoming photoassimilate, whereas anisohydric trees would maintain assimilation, growth, and NSC pools due to decreased demand for stored metabolic C and enhanced osmoregulatory needs. To test this, we subjected saplings of Liriodendron tulipifera (an isohydric tree) and Quercus alba (an anisohydric tree) to a six week drought in the greenhouse, and measured assimilation, leaf water potential (midday and predawn), growth, leaf dark respiration and NSCs (both sugars and starch in aboveground and belowground tissues) in control and droughted plants. Overall, we confirmed that the isohydric and anisohydric species used NSCs differently during drought. In most tissues, both species had similar responses of NSCs to drought: starch NSCs were maintained or decreased while sugar NSCs tended to increase. Stem NSCs were a notable exception, as L. tulipifera decreased total NSC to almost zero while NSCs in Q. alba remained constant. This depletion of stem NSC in L. tulipifera was offset by increases in other tissues, however, resulting in no net change to total NSC during the drought. In contrast, Q. alba increased total NSC. Interestingly, Q. alba also decreased assimilation and growth, indicating a potential trade-off between NSC and biomass allocation. Our results show that NSCs in different tissues may have contrasting uses as storage or

  10. Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations.

    PubMed

    Wang, Dan; Fan, Jiazhi; Jing, Panpan; Cheng, Yong; Ruan, Honghua

    2016-01-01

    It is crucial to investigate how climate and management factors impact poplar plantation production and soil carbon sequestration interactively. We extracted above-ground net primary production (ANPP), climate and management factors from peer-reviewed journal articles and analyzed impact of management factor and climate on the mean annual increment (MAI) of poplar ANPP statistically. Previously validated mechanistic model (ED) is used to perform case simulations for managed poplar plantations under different harvesting rotations. The meta-analysis indicate that the dry matter MAI was 6.3 Mg ha(-1) yr(-1) (n=641, sd=4.9) globally, and 5.1 (n=292, sd=4.0), 8.1 (n=224, sd=4.7) and 4.4 Mg ha(-1) yr(-1) (n=125, sd=3.2) in Europe, the US and China, respectively. Poplar MAI showed a significant response to GDD, precipitation and planting density and formed a quadratic relationship with stand age. The low annual production for poplar globally was probably caused by suboptimal water availability, rotation length and planting density. SEM attributes the variance of poplar growth rate more to climate than to management effects. Case simulations indicated that longer rotation cycle significantly increased soil carbon storage. Findings of this work suggests that management factor of rotation cycle alone could have dramatic impact on the above ground growth, as well as on the soil carbon sequestration of poplar plantations and will be helpful to quantify the long-term carbon sequestration through short rotation plantation. The findings of this study are useful in guiding further research, policy and management decisions towards sustainable poplar plantations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cadmium accumulation and growth responses of a poplar (Populus deltoidsxPopulus nigra) in cadmium contaminated purple soil and alluvial soil.

    PubMed

    Wu, Fuzhong; Yang, Wanqin; Zhang, Jian; Zhou, Liqiang

    2010-05-15

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoidsxPopulus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98+/-19.22 and 576.75+/-40.55 microg cadmium per plant with 110.77+/-12.68 and 202.54+/-19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  12. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2012-01-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (<0.5 nmol m-2 s-1) in isoprene emission-repressed plants (line RA22), respectively. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  13. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2011-08-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar, modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (<0.5 nmol m-2 s-1) in isoprene emission-repressed lines (line RA22), respectively. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3 % of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  14. Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations.

    PubMed

    Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing

    2018-05-25

    The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.

  15. Yield physiology of short rotation intensively cultured poplars

    Treesearch

    J. G. Isebrands; N. D. Nelson; D. I. Dickmann; D. A. Michael

    1983-01-01

    An integrated research approach is described for studying yield physiology of short rotation intensively cultured (SRIC) poplar plantations. Branch architecture differs with clone and stand density, but the clonal ranking of important branch characteristics does not change with spacing.

  16. Seasonal variation in hybrid poplar tolerance to glyphosate.

    Treesearch

    Daniel Netzer; Edward Hansen

    1992-01-01

    Reports that glyphosate applied during April or May in hybrid poplar plantations usually results in tree growth increases and that later summer applications often result in tree damage, growth loss, or mortality. Introduces the concept of "physiological" and "morphological" herbicide tolerance.

  17. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  18. Case history development of a hybrid poplar nursery at Reynolds Metals Company, Massena, New York. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marler, R.L.

    1981-11-01

    Intensive cultivation of fast-growing hardwoods, such as hybrid poplars, is a promising method of assuring adequate supplies of biomass for energy purposes. This report details the establishment of a hybrid poplar nursery on formerly unused land at the Reynolds Metals Company's reduction plant in Massena, NY and presents the results obtained during the first growing season. Cuttings from the nursery replanted during the Spring of 1982 are the first phase of a 600-acre hybrid poplar plantation at the Reynolds site.

  19. Contribution factor of wood properties of three poplar clones to strength of laminated veneer lumber

    Treesearch

    Fucheng Bao; Feng Fu; Elvin Choong; Chung-Yun Hse

    2001-01-01

    The term "Contribution Factor" (c.) was introduced in this paper to indicate the contribution ratio of solid wood properties to laminated veneer lumber (LVL) strength. Three poplar (Populus sp.) clones were studied, and the results showed that poplar with good solid wood properties has high Contribution Factor. The average Contribution...

  20. Modeling sustainable reuse of nitrogen-laden wastewater by poplar.

    PubMed

    Wang, Yusong; Licht, Louis; Just, Craig

    2016-01-01

    Numerical modeling was used to simulate the leaching of nitrogen (N) to groundwater as a consequence of irrigating food processing wastewater onto grass and poplar under various management scenarios. Under current management practices for a large food processor, a simulated annual N loading of 540 kg ha(-1) yielded 93 kg ha(-1) of N leaching for grass and no N leaching for poplar during the growing season. Increasing the annual growing season N loading to approximately 1,550 kg ha(-1) for poplar only, using "weekly", "daily" and "calculated" irrigation scenarios, yielded N leaching of 17 kg ha(-1), 6 kg ha(-1), and 4 kg ha(-1), respectively. Constraining the simulated irrigation schedule by the current onsite wastewater storage capacity of approximately 757 megaliters (Ml) yielded N leaching of 146 kg ha(-1) yr(-1) while storage capacity scenarios of 3,024 and 4,536 Ml yielded N leaching of 65 and 13 kg ha(-1) yr(-1), respectively, for a loading of 1,550 kg ha(-1) yr(-1). Further constraining the model by the current wastewater storage volume and the available land area (approximately 1,000 hectares) required a "diverse" irrigation schedule that was predicted to leach a weighted average of 13 kg-N ha(-1) yr(-1) when dosed with 1,063 kg-N ha(-1) yr(-1).

  1. Metabolic Responses of Poplar to Apripona germari (Hope) as Revealed by Metabolite Profiling

    PubMed Central

    Wang, Lijuan; Qu, Liangjian; Zhang, Liwei; Hu, Jianjun; Tang, Fang; Lu, Mengzhu

    2016-01-01

    Plants have developed biochemical responses to adapt to biotic stress. To characterize the resistance mechanisms in poplar tree against Apripona germari, comprehensive metabolomic changes of poplar bark and xylem in response to A. germari infection were examined by gas chromatography time-of-flight mass spectrometry (GC–TOF/MS). It was found that, four days after feeding (stage I), A. germari infection brought about changes in various metabolites, such as phenolics, amino acids and sugars in both bark and xylem. Quinic acid, epicatechin, epigallocatechin and salicin might play a role in resistance response in bark, while coniferyl alcohol, ferulic acid and salicin contribute resistance in xylem. At feeding stages II when the larvae fed for more than one month, fewer defensive metabolites were induced, but levels of many intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were reduced, especially in xylem. These results suggested that the defense strategies against A. germari might depend mainly on the early defense responses in poplar. In addition, it was found that bark and xylem in infected trees accumulated higher levels of salicylic acid and 4-aminobutyric acid, respectively, these tissues displaying a direct and systemic reaction against A. germari. However, the actual role of the two metabolites in A. germari-induced defense in poplar requires further investigation. PMID:27331808

  2. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought.

    PubMed

    Yi, Koong; Dragoni, Danilo; Phillips, Richard P; Roman, D Tyler; Novick, Kimberly A

    2017-10-01

    Predicting the impact of drought on forest ecosystem processes requires an understanding of trees' species-specific responses to drought, especially in the Eastern USA, where species composition is highly dynamic due to historical changes in land use and fire regime. Here, we adapted a framework that classifies trees' water-use strategy along the spectrum of isohydric to anisohydric behavior to determine the responses of three canopy-dominant species to drought. We used a collection of leaf-level gas exchange, tree-level sap flux and stand-level eddy covariance data collected in south-central Indiana from 2011 to 2013, which included an unusually severe drought in the summer of 2012. Our goal was to assess how patterns in the radial profile of sap flux and reliance on hydraulic capacitance differed among species of contrasting water-use strategies. In isohydric species, which included sugar maple (Acer saccharum Marsh.) and tulip poplar (Liriodendron tulipifera L.), we found that the sap flux in the outer xylem experienced dramatic declines during drought, but sap flux at inner xylem was buffered from reductions in water availability. In contrast, for anisohydric oak species (Quercus alba L. and Quercus rubra L.), we observed relatively smaller variations in sap flux during drought in both inner and outer xylem, and higher nighttime refilling when compared with isohydric species. This reliance on nocturnal refilling, which occurred coincident with a decoupling between leaf- and tree-level water-use dynamics, suggests that anisohydric species may benefit from a reliance on hydraulic capacitance to mitigate the risk of hydraulic failure associated with maintaining high transpiration rates during drought. In the case of both isohydric and anisohydric species, our work demonstrates that failure to account for shifts in the radial profile of sap flux during drought could introduce substantial bias in estimates of tree water use during both drought and non

  3. An approach for siting poplar energy production systems to increase productivity and associated ecosystem services

    Treesearch

    R.S. Jr. Zalesny; D.M. Donner; D.R. Coyle; W.L. Headlee; R.B. Hall

    2010-01-01

    Short rotation woody crops (SRWC) such as Populus species and hybrids (i.e., poplars) are renewable energy feedstocks that are vital to reducing our dependence on non-renewable and foreign sources of energy used for heat, power, and transportation fuels. Highly productive poplars grown primarily on marginal agricultural sites are an important...

  4. A heterogeneous boron distribution in soil influences the poplar root system architecture development

    NASA Astrophysics Data System (ADS)

    Rees, R.; Robinson, B. H.; Hartmann, S.; Lehmann, E.; Schulin, R.

    2009-04-01

    Poplars are well suited for the phytomanagement of boron (B)-contaminated sites, due to their high transpiration rate and tolerance to elevated soil B concentrations. However, the uptake and the fate of B in poplar stands are not well understood. This information is crucial to improve the design of phytomanagement systems, where the primary role of poplars is to reduce B leaching by reducing the water flux through the contaminated material. Like other trace elements, B occurs heterogeneously in soils. Concentrations can differ up to an order of magnitude within centimetres. These gradients affect plant root growth and thus via preferential flow along the roots water and mass transport in soils to ground and surface waters. Generally there are three possible reactions of plant roots to patches with elevated trace element concentrations in soils: indifference, avoidance, or foraging. While avoidance or indifference might seem to be the most obvious strategies, foraging cannot be excluded a priori, because of the high demand of poplars for B compared to other tree species. We aimed to determine the rooting strategies of poplars in soils where B is either homo- or heterogeneously distributed. We planted 5 cm cuttings of Populus tremula var. Birmensdorf clones in aluminum (Al) containers with internal dimensions of 64 x 67 x 1.2 cm. The soil used was subsoil from northern Switzerland with a naturally low B and organic C concentration. We setup two treatments and a control with three replicates each. We spiked a bigger and a smaller portion of the soil with the same amount of B(OH)3-salt, in order to obtain soil concentrations of 7.5 mg B kg-1 and 20 mg B kg-1. We filled the containers with (a) un-spiked soil, (b) the 7.5 mg B kg-1 soil and (c) heterogeneously. The heterogeneous treatment consisted of one third 20 mg B kg-1 soil and two thirds control soil. We grew the poplars in a small greenhouse over 2 months and from then on in a climate chamber for another 3 months

  5. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-06-01

    The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Sisbnd Osbnd C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  6. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar.

    PubMed

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-04-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5' and 3' flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Early root development of poplars ( Populus spp.) in relation to moist and saturated soil conditions

    Treesearch

    Rebecka Mc Carthy; Magnus Löf; Emile S. Gardiner

    2017-01-01

    Poplars (Populus spp.) are among the fastest growing trees raised in temperate regions of the world. Testing of newly developed cultivars informs assessment of potential planting stock for local environments. Initial rooting by nine poplar clones was tested in moist and saturated soil conditions during an 18-day greenhouse experiment. Clones responded differently to...

  8. Methods of rapid, early selection of poplar clones for maximum yield potential: a manual of procedures.

    Treesearch

    USDA FS

    1982-01-01

    Instructions, illustrated with examples and experimental results, are given for the controlled-environment propagation and selection of poplar clones. Greenhouse and growth-room culture of poplar stock plants and scions are described, and statistical techniques for discriminating among clones on the basis of growth variables are emphasized.

  9. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    PubMed

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  10. [Yellow fever].

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio

    2007-06-01

    After the discovery of the New World, yellow fever proved to be an important risk factor of morbidity and mortality for Caribbean populations. In the following centuries epidemic risk, expanded by sea trade and travel, progressively reached the settlements in North America and Brazil as well as the Atlantic seaboard of tropical and equatorial Africa. In the eighteenth century and the first half of the nineteenth century epidemics of yellow fever were reported in some coastal towns in the Iberian peninsula, French coast, Great Britain and Italy, where, in 1804 at Leghorn, only one epidemic was documented. Prevention and control programs against yellow fever, developed at the beginning of the twentieth century in Cuba and in Panama, were a major breakthrough in understanding definitively its aetiology and pathogenesis. Subsequently, further advances in knowledge of yellow fever epidemiology were obtained when French scientists, working in West and Central Africa, showed that monkeys were major hosts of the yellow fever virus (the wild yellow fever virus), besides man. In addition, advances in research, contributing to the development of vaccines against the yellow fever virus in the first half of the nineteenth century, are reported in this paper.

  11. Hybrid Poplar Plantations Outgrow Deer Browsing Effects

    Treesearch

    Daniel A. Netzer

    1984-01-01

    Good plantation establishment techniques along with fast growing clones result in minimal deer damage to hybrid poplar plantations. Although deer prefer certain clones, as food becomes scarce they eventually browse all clones. With proper establishment trees grow to or beyond the reach of browsing deer in the first year and well beyond in the second. Poorly...

  12. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

    NASA Astrophysics Data System (ADS)

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-09-01

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.

  13. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level.

    PubMed

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-09-12

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.

  14. Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.

    PubMed

    Skyba, Oleksandr; Douglas, Carl J; Mansfield, Shawn D

    2013-04-01

    In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance.

  15. Syringyl-Rich Lignin Renders Poplars More Resistant to Degradation by Wood Decay Fungi

    PubMed Central

    Skyba, Oleksandr; Douglas, Carl J.

    2013-01-01

    In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance. PMID:23396333

  16. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar.

    PubMed

    Wang, Lijun; Ran, Lingyu; Hou, Yisu; Tian, Qiaoyan; Li, Chaofeng; Liu, Rui; Fan, Di; Luo, Keming

    2017-07-01

    Proanthocyanidins (PAs) are major defense phenolic compounds in the leaves of poplar (Populus spp.) in response to abiotic and biotic stresses. Transcriptional regulation of PA biosynthetic genes by the MYB-basic helix-loop-helix (bHLH)-WD40 complexes in poplar is not still fully understood. Here, an Arabidopsis TT2-like gene MYB115 was isolated from Populus tomentosa and characterized by various molecular, genetic and biochemical approaches. MYB115 restored PA productions in the seed coat of the Arabidopsis tt2 mutant. Overexpression of MYB115 in poplar activated expression of PA biosynthetic genes, resulting in a significant increase in PA concentrations. By contrast, the CRISPR/Cas9-generated myb115 mutant exhibited reduced PA content and decreased expression of PA biosynthetic genes. MYB115 directly activated the promoters of PA-specific structural genes. MYB115 interacted with poplar TT8. Coexpression of MYB115, TT8 and poplar TTG1 significantly enhanced the expression of ANR1 and LAR3. Additionally, transgenic plants overexpressing MYB115 had increased resistance to the fungal pathogen Dothiorella gregaria, whereas myb115 mutant exhibited greater sensitivity compared with wild-type plants. Our data provide insight into the regulatory mechanisms controlling PA biosynthesis by MYB115 in poplar, which could be effectively employed for metabolic engineering of PAs to improve resistance to fungal pathogens. No claim to original Chinese Government works New Phytologist © 2017 New Phytologist Trust.

  17. The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars.

    PubMed

    Özparpucu, Merve; Gierlinger, Notburga; Burgert, Ingo; Van Acker, Rebecca; Vanholme, Ruben; Boerjan, Wout; Pilate, Gilles; Déjardin, Annabelle; Rüggeberg, Markus

    2018-04-01

    CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.

  18. Identification of a novel hydroxylated metabolite of 2,2′,3,5′,6-pentachlorobiphenyl formed in whole poplar plants

    PubMed Central

    Ma, Cunxian; Zhai, Guangshu; Wu, Huimin; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Schnoor, Jerald L

    2015-01-01

    Polychlorinated biphenyls (PCBs) are a group of persistent organic pollutants consisting of 209 congeners. Oxidation of several PCB congeners to hydroxylated PCBs (OH-PCBs) in whole poplar plants has been reported before. Moreover, 2,2′,3,5′,6-pentachlorobiphenyl (PCB95), as a chiral congener, has been previously shown to be atropselectively taken up and transformed in whole poplar plants. The objective of this study was to determine if PCB95 is atropselectively metabolized to OH-PCBs in whole poplar plants. Two hydroxylated PCB95s were detected by high performance liquid chromatography-mass spectrometry in the roots of whole poplar plants exposed to racemic PCB95 for 30 days. The major metabolite was confirmed to be 4′-hydroxy-2,2′,3,5′,6-pentachlorobiphenyl (4′-OH-PCB95) by gas chromatography-mass spectrometry (GC-MS) using an authentic reference standard. Enantioselective analysis showed that 4′-OH-PCB95 was formed atropselectively, with the atropisomer eluting second on the Nucleodex β-PM column (E2-4′-OH-PCB95) being slightly more abundant in the roots of whole poplar plants. Therefore, PCB95 can at least be metabolized into 4′-OH-PCB95 and another unknown hydroxylated PCB95 (as a minor metabolite) in whole poplar plants. Both atropisomers of 4′-OH-PCB95 are formed, but E2-4′-OH-PCB95 has greater atropisomeric enrichment in the roots of whole poplar plants. A comparison with mammalian biotransformation studies indicates a distinctively different metabolite profile of OH-PCB95 metabolites in whole poplar plants. Our observations suggest that biotransformation of chiral PCBs to OH-PCBs by plants may represent an important source of enantiomerically enriched OH-PCBs in the environment. PMID:26676542

  19. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China

    Treesearch

    Jie Zhou; Zhiqiang Zhang; Ge Sun; Xianrui Fang; Tonggang Zha; Steve McNulty; Jiquan Chen; Ying Jin; Asko Noormets

    2013-01-01

    Poplar plantations are widely used for timber production and ecological restoration in northern China,a region that experiences frequent droughts and water scarcity. An open-path eddy-covariance (EC)system was used to continuously measure the carbon,water,and energy fluxes in a poplar plantation during the growing season (i.e., April–October)over the period 2006–2008...

  20. Epigenetic Diversity of Clonal White Poplar (Populus alba L.) Populations: Could Methylation Support the Success of Vegetative Reproduction Strategy?

    PubMed

    Guarino, Francesco; Cicatelli, Angela; Brundu, Giuseppe; Heinze, Berthold; Castiglione, Stefano

    2015-01-01

    The widespread poplar populations of Sardinia are vegetatively propagated and live in different natural environments forming large monoclonal stands. The main goals of the present study were: i) to investigate/measure the epigenetic diversity of the poplar populations by determining their DNA methylation status; ii) to assess if and how methylation status influences population clustering; iii) to shed light on the changes that occur in the epigenome of ramets of the same poplar clone. To these purposes, 83 white poplar trees were sampled at different locations on the island of Sardinia. Methylation sensitive amplified polymorphism analysis was carried out on the genomic DNA extracted from leaves at the same juvenile stage. The study showed that the genetic biodiversity of poplars is quite limited but it is counterbalanced by epigenetic inter-population molecular variability. The comparison between MspI and HpaII DNA fragmentation profiles revealed that environmental conditions strongly influence hemi-methylation of the inner cytosine. The variable epigenetic status of Sardinian white poplars revealed a decreased number of population clusters. Landscape genetics analyses clearly demonstrated that ramets of the same clone were differentially methylated in relation to their geographic position. Therefore, our data support the notion that studies on plant biodiversity should no longer be restricted to genetic aspects, especially in the case of vegetatively propagated plant species.

  1. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment.

    PubMed

    Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J; Yang, Haitao

    2018-01-01

    Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H , respectively). Three different lignin fractions were extracted using ethanol, followed by p -dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively). Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weights for the other two lignin fractions were similar. 31 P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p -hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β- O -4 linkages with small amounts of β-5 and β-β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L 1  >  L 3  >  L 2 for the low recalcitrance poplar and H 1  >  H 2  >  H 3 for the high recalcitrance poplar. Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption

  2. Weed Control for Establishing Intensively Cultured Hybrid Poplar Plantations

    Treesearch

    Edward Hansen; Daniel Netzer; W.J. Rietveld

    1984-01-01

    Compares effeects of various wee-control methods, including hericides, cultivation, and legume cover crop, on tree survival and height growth of 2-year-old hybrid poplars. Cultivation and herbicides singly or in combination gave consistently better results than the other treatment tested.

  3. Effect of autohydrolysis on the wettability, absorbility and further alkali impregnation of poplar wood chips.

    PubMed

    Xu, Ningpan; Liu, Wei; Hou, Qingxi; Wang, Peiyun; Yao, Zhirong

    2016-09-01

    Autohydrolysis with different severity factors was performed on poplar wood chips prior to pulping, and the wettability, absorbility and the following impregnation of NaOH solution for the poplar wood chips were then investigated. The results showed that after autohydrolysis pretreatment the porosity, shrinkage and fiber saturation point (FSP) of the poplar wood chips were increased, while the surface contact angle decreased as the severity factor was increased. The autohydrolyzed chips absorbed more NaOH in impregnation that resulted in a low NaOH concentration in the bulk impregnation liquor (i.e., the impregnation liquor outside wood chips), while the concentration in the entrapped liquor (i.e., the impregnation liquor inside wood chips) was increased. Autohydrolysis substantially improved the effectiveness of alkali impregnation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings.

    PubMed

    Huang, Ping; Wan, Xianchong; Lieffers, Victor J

    2016-05-01

    This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response. © 2015 Scandinavian Plant Physiology Society.

  5. Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).

    PubMed

    Rees, Rainer; Robinson, Brett H; Menon, Manoj; Lehmann, Eberhard; Günthardt-Goerg, Madeleine S; Schulin, Rainer

    2011-12-15

    Poplars accumulate high B concentrations and are thus used for the phytomanagement of B contaminated soils. Here, we performed pot experiments in which Populus nigra × euramericana were grown on a substrate with B concentrations ranging from 13 to 280 mg kg(-1) as H(3)BO(3). Salix viminalis, Brassica juncea, and Lupinus albus were grown under some growing conditions for comparison. Poplar growth was unaffected at soil B treatment levels up to 93 mg kg(-1). Growth was progressively reduced at levels of 168 and 280 mg kg(-1). None of the other species survived at these substrate B levels. At leaf B concentrations <900 mg kg(-1) only <10% of the poplar leaf area showed signs of toxicity. Neutron radiography revealed that chlorotic leaf tissues had B concentrations of 1000-2000 mg kg(-1), while necrotic tissues had >2000 mg kg(-1). Average B concentrations of up to 3500 mg kg(-1) were found in leaves, while spots within leaves had concentrations >7000 mg kg(-1), showing that B accumulation in leaf tissue continued even after the onset of necrosis. The B accumulation ability of P. nigra × euramericana is associated with B hypertolerance in the living tissue and storage of B in dead leaf tissue.

  6. Establishing intensively cultured hybrid poplar plantations for fuel and fiber.

    Treesearch

    Edward Hansen; Lincoln Moore; Daniel Netzer; Michael Ostry; Howard Phipps; Jaroslav Zavitkovski

    1983-01-01

    This paper describes a step-by-step procedure for establishing commercial size intensively cultured plantations of hybrid poplar and summarizes the state-of-knowledge as developed during 10 years of field research at Rhinelander, Wisconsin.

  7. Yellow fever.

    PubMed

    Monath, Thomas P; Vasconcelos, Pedro F C

    2015-03-01

    Yellow fever, a mosquito-borne flavivirus disease occurs in tropical areas of South America and Africa. It is a disease of major historical importance, but remains a threat to travelers to and residents of endemic areas despite the availability of an effective vaccine for nearly 70 years. An important aspect is the receptivity of many non-endemic areas to introduction and spread of yellow fever. This paper reviews the clinical aspects, pathogenesis, and epidemiology of yellow fever, with an emphasis on recent changes in the distribution and incidence of the disease. Recent knowledge about yellow fever 17D vaccine mechanism of action and safety are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation.

    PubMed

    Tang, Yong; Dou, Xiaoli; Hu, Jinguang; Jiang, Jianxin; Saddler, Jack N

    2018-01-01

    The merit of deacetylation of corn stover prior to pretreatment is decreasing the formation of inhibitors and improving enzyme hydrolysis, proved in dilute acid pretreatment. However, few studies are done on how deacetylation would affect bioconversion process containing steam explosion. In this study, the effect of deacetylation on steam explosion was conducted using poplar as substrate. About 57 to 90% of acetyl group in poplar, depending on alkaline types and concentration, was removed by dilute alkaline deacetylation in 6 h. Deacetylation eliminated over 85% of inhibitor formation during downstream steam explosion. However, deacetylation prior to steam explosion decreased the dissolution of hemicellulose, thus reducing the cellulose accessibility of pretreated poplar, finally resulting in 5-20% decrease in glucose yield and 20-35% decrease in xylose yield. The addition of 5% SO 2 during steam explosion significantly improved the hydrolysis of deacetylated and pretreated poplar without significantly increasing the concentration of inhibitors. Incorporating 45 mmol/kg sulfoacid group in lignin fraction of deacetylated and then pretreated poplar dramatically improved the xylose yield to about 100% and increased the glucose yield by 30%.

  9. A system for dosage-based functional genomics in poplar

    Treesearch

    Isabelle M. Henry; Matthew S. Zinkgraf; Andrew T. Groover; Luca Comai

    2015-01-01

    Altering gene dosage through variation in gene copy number is a powerful approach to addressing questions regarding gene regulation, quantitative trait loci, and heterosis, but one that is not easily applied to sexually transmitted species. Elite poplar (Populus spp) varieties are created through interspecific hybridization, followed by...

  10. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy.

    PubMed

    Castro-Rodríguez, Vanessa; García-Gutiérrez, Angel; Canales, Javier; Cañas, Rafael A; Kirby, Edward G; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild-type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen-use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above-ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes.

    PubMed

    Paës, Gabriel; Habrant, Anouck; Ossemond, Jordane; Chabbert, Brigitte

    2017-01-01

    The lignocellulosic cell wall network is resistant to enzymatic degradation due to the complex chemical and structural features. Pretreatments are thus commonly used to overcome natural recalcitrance of lignocellulose. Characterization of their impact on architecture requires combinatory approaches. However, the accessibility of the lignocellulosic cell walls still needs further insights to provide relevant information. Poplar specimens were pretreated using different conditions. Chemical, spectral, microscopic and immunolabeling analysis revealed that poplar cell walls were more altered by sodium chlorite-acetic acid and hydrothermal pretreatments but weakly modified by soaking in aqueous ammonium. In order to evaluate the accessibility of the pretreated poplar samples, two fluorescent probes (rhodamine B-isothiocyanate-dextrans of 20 and 70 kDa) were selected, and their mobility was measured by using the fluorescence recovery after photobleaching (FRAP) technique in a full factorial experiment. The mobility of the probes was dependent on the pretreatment type, the cell wall localization (secondary cell wall and cell corner middle lamella) and the probe size. Overall, combinatory analysis of pretreated poplar samples showed that even the partial removal of hemicellulose contributed to facilitate the accessibility to the fluorescent probes. On the contrary, nearly complete removal of lignin was detrimental to accessibility due to the possible cellulose-hemicellulose collapse. Evaluation of plant cell wall accessibility through FRAP measurement brings further insights into the impact of physicochemical pretreatments on lignocellulosic samples in combination with chemical and histochemical analysis. This technique thus represents a relevant approach to better understand the effect of pretreatments on lignocellulose architecture, while considering different limitations as non-specific interactions and enzyme efficiency.

  12. [Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method].

    PubMed

    Miao, Bo; Meng, Ping; Zhang, Jin Song; He, Fang Jie; Sun, Shou Jia

    2017-07-18

    The water sources and transpiration of poplar trees in Zhangbei County were measured using stable hydrogen isotope and thermal dissipation method. The differences in water relationships between dieback and non-dieback poplar trees were analyzed. The results showed that the dieback trees mainly used shallow water from 0-30 cm soil layer during growing season while the non-dieback trees mainly used water from 30-80 cm soil layer. There was a significant difference in water source between them. The non-dieback trees used more water from middle and deep soil layers than that of the dieback trees during the dry season. The percentage of poplar trees using water from 0-30 cm soil layer increased in wet season, and the increase of dieback trees was higher than that of non-dieback trees. The contributions of water from 30-180 cm soil layer of dieback and non-dieback trees both decreased in wet season. The sap flow rate of non-dieback trees was higher than that of dieback trees. There was a similar variation tend of sap flow rate between dieback and non-dieback trees in different weather conditions, but the start time of sap flow of non-dieback trees was earlier than that of dieback trees. Correlation analysis showed that the sap flow rate of either dieback or non-dieback poplar trees strongly related to soil temperature, wind speed, photosynthetically active radiation, relative humidity and air temperature. The sap flow rate of die-back poplar trees strongly negatively related to soil temperature and relative humidity, and strongly positively related to the other factors. The sap flow rate of non-dieback poplar trees only strongly negatively related to relative humidity but positively related to the other factors. The results revealed transpiration of both poplar trees was easily affected by environmental factors. The water consumption of dieback trees was less than non-dieback trees because the cumulative sap flow amount of dieback trees was lower. Reduced transpiration

  13. Spiroplasmas: serological grouping of strains associated with plants and insects.

    PubMed

    Davis, R E; Lee, I M; Basciano, L K

    1979-08-01

    Spiroplasma strains from plant and arthropod hosts, and from surfaces of flowers, were classified into three serological groups (designated I, II, and III) based on results from growth-inhibition tests. No significant cross reactions were observed among groups. The groupings were confirmed by ring-interface precipitin and microprecipitin tests, using membrane preparations as test antigens, and by organism-deformation tests. Serogroup I contained three subgroups: subgroup A (Spiroplasma citri strains Maroc R8A2 and C189), subgroup B (strain AS 576 and closely related strains from honeybee or flowers), and subgroup C (corn stunt spiroplasma strains). Serogroup II contained strains 23-6 and 27-31 isolated from flowers of the tulip tree (Liriodendron tulipifera L.) growing in Maryland. Serogroup III contained strains SR 3 and SR 9 isolated from flowers of the tulip growing in Connecticut. The subgroups of serogroup I were based on organism deformation, microprecipitin, and ring-interface precipitin tests. The data are consistent with the hypothesis that the three serogroups represent no less than three distinct spiroplasma species.

  14. Three new combinations in Drepanopeziza for species on poplar

    USDA-ARS?s Scientific Manuscript database

    Three species of Drepanopeziza that cause diseases of poplars have been known using scientific names for their sexual and asexual morphs, which is no longer allowed with the change to one scientific name for fungi. For each species, the oldest epithet is provided by the asexual morph; however, neith...

  15. Strontium isotope detection of brine contamination in the East Poplar oil field, Montana

    USGS Publications Warehouse

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Oliver, Thomas A.

    2010-01-01

    Brine contamination of groundwater in the East Poplar oil field was first documented in the mid-1980s by the U.S. Geological Survey by using hydrochemistry, with an emphasis on chloride (Cl) and total dissolved solids concentrations. Supply wells for the City of Poplar are located downgradient from the oil field, are completed in the same shallow aquifers that are documented as contaminated, and therefore are potentially at risk of being contaminated. In cooperation with the Office of Environmental Protection of the Fort Peck Tribes, groundwater samples were collected in 2009 and 2010 from supply wells, monitor wells, and the Poplar River for analyses of major and trace elements, including strontium (Sr) concentrations and isotopic compositions. The ratio of strontium-87 to strontium-86 (87Sr/86Sr) is used extensively as a natural tracer in groundwater to detect mixing among waters from different sources and to study the effects of water/rock interaction. On a plot of the reciprocal strontium concentration against the 87Sr/86Sr ratio, mixtures of two end members will produce a linear array. Using this plotting method, data for samples from most of the wells, including the City of Poplar wells, define an array with reciprocal strontium values ranging from 0.08 to 4.15 and 87Sr/86Sr ratios ranging from 0.70811 to 0.70828. This array is composed of a brine end member with an average 87Sr/86Sr of 0.70822, strontium concentrations in excess of 12.5 milligrams per liter (mg/L), and chloride concentrations exceeding 8,000 mg/L mixing with uncontaminated water similar to that in USGS06-08 with 18.0 mg/L chloride, 0.24 mg/L strontium, and a 87Sr/86Sr ratio of 0.70811. The position of samples from the City of Poplar public-water supply wells within this array indicates that brine contamination has reached all three wells. Outliers from this array are EPU-4G (groundwater from the Cretaceous Judith River Formation), brine samples from disposal wells (Huber 5-D and EPU 1-D

  16. Net primary production and phenology on a southern Appalachian watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, F.P. Jr.; Monk, C.D.

    1977-10-01

    Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by vernier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Caryamore » glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha/sup -1/ yr/sup -1/ and included 47.9% leaves, 33.2% wood, 7.8% bark, 4.8% reproductive tissues, 4.2% loss to consumers, and 2.1% twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering ocurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.« less

  17. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi

    Background: Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H, respectively). Three different lignin fractions were extracted using ethanol, followed by p-dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively).Results: Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weightsmore » for the other two lignin fractions were similar. 31P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p-hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β-O-4 linkages with small amounts of β-5 and β–β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L1 > L3 > L2 for the low recalcitrance poplar and H1 > H2 > H3 for the high recalcitrance poplar.Conclusions: Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH

  18. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment

    DOE PAGES

    Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; ...

    2018-04-04

    Background: Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H, respectively). Three different lignin fractions were extracted using ethanol, followed by p-dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively).Results: Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weightsmore » for the other two lignin fractions were similar. 31P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p-hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β-O-4 linkages with small amounts of β-5 and β–β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L1 > L3 > L2 for the low recalcitrance poplar and H1 > H2 > H3 for the high recalcitrance poplar.Conclusions: Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH

  19. Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring.

    PubMed

    Hoenicka, Hans; Lehnhardt, Denise; Nilsson, Ove; Hanelt, Dieter; Fladung, Matthias

    2014-10-01

    In forest tree species, the reproductive phase is reached only after many years or even decades of juvenile growth. Different early flowering systems based on the genetic transfer of heat-shock promoter driven flowering-time genes have been proposed for poplar; however, no fertile flowers were reported until now. Here, we studied flower and pollen development in both HSP::AtFT and wild-type male poplar in detail and developed an optimized heat treatment protocol to obtain fertile HSP::AtFT flowers. Anthers from HSP::AtFT poplar flowers containing fertile pollen grains showed arrested development in stage 12 instead of reaching phase 13 as do wild-type flowers. Pollen grains could be isolated under the binocular microscope and were used for intra- and interspecific crossings with wild-type poplar. F1-seedlings segregating the HSP::AtFT gene construct according to Mendelian laws were obtained. A comparison between intra- and interspecific crossings revealed that genetic transformation had no detrimental effects on F1-seedlings. However, interspecific crossings, a broadly accepted breeding method, produced 47% seedlings with an aberrant phenotype. The early flowering system presented in this study opens new possibilities for accelerating breeding of poplar and other forest tree species. Fast breeding and the selection of transgene-free plants, once the breeding process is concluded, can represent an attractive alternative even under very restrictive regulations. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis.

    PubMed

    Langer, Katharina; Ache, Peter; Geiger, Dietmar; Stinzing, Andrea; Arend, Matthias; Wind, Christa; Regan, Sharon; Fromm, Jörg; Hedrich, Rainer

    2002-12-01

    The cambial K+ content of poplar increases during the growth period in a K+ supply dependent manner. Upon K+ starvation or application of tetraethylammoniumchloride (TEA+), a K+ channel blocker, the average vessel lumen and expansion zone area were significantly reduced. In search for the molecular basis of potassium-dependent xylogenesis in poplar, K+ transporters homologous to those of known function in Arabidopis phloem- and xylem-physiology were isolated from a poplar wood EST library. The expression profile of three distinct K+ channel types and one K+ transporter, Populus tremula K+ uptake transporter 1 (PtKUP1), was analysed by quantitative RT-PCR. Thereby, we found P. tremula outward rectifying K+ channel (PTORK) and P. tremula K+ channel 2 (PTK2) correlated with the seasonal wood production. K+ transporter P. tremula 1 (KPT1) was predominantly found in guard cells. Following the heterologous expression in Xenopus oocytes the biophysical properties of the different channels were determined. PTORK, upon membrane de-polarization mediates potassium release. PTK2 is almost voltage independent, carrying inward K+ flux at hyperpolarized potential and K+ release upon de-polarization. PtKUP1 was expressed in a K+ uptake-deficient Escherichia coli strain, where this K+ transporter rescued K+-dependent growth. In order to link the different K+ transporters to the cambial activity and wood production, we compared the expression profiles to seasonal changes in the K+ content of the bark as well as xylem vessel diameter. Thereby, we found PTORK and PTK2 transcripts to follow the annual K+ variations in poplar branches. PtKUP1 was expressed at a low level throughout the year, suggesting a housekeeping function. From these data, we conclude that K+ channels are involved in the regulation of K+-dependent wood production.

  1. Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.

    PubMed

    Carnegie, D; Ramsay, J A

    2009-07-01

    Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l(-1) (120 g l(-1)) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO(2) produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l(-1) day(-1) in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need

  2. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes.

    PubMed Central

    Han, Qian; Fang, Jianmin; Ding, Haizhen; Johnson, Jody K; Christensen, Bruce M; Li, Jianyong

    2002-01-01

    This study describes the identification of Drosophila yellow-f and yellow-f2 as dopachrome-conversion enzymes responsible for catalysing the conversion of dopachrome into 5,6-dihydroxyindole in the melanization pathway. Drosophila yellow -y gene and yellow -b, -c, -f and -f2 genes were expressed in an insect cell/baculovirus expression system and their corresponding recombinant proteins were screened for dopachrome-conversion enzyme activity. Among the yellow and yellow -related genes, the yellow -f and yellow -f2 genes were identified as the genes coding for Drosophila dopachrome-conversion enzyme based on the high activity of their recombinant proteins in catalysing the production of 5,6-dihydroxyindole from dopachrome. Both yellow-f and yellow-f2 are capable of mediating a decarboxylative structural rearrangement of dopachrome, as well as an isomerization/tautomerization of dopamine chrome and dopa methyl ester chrome. Northern hybridization revealed the transcription of yellow -f in larvae and pupae, but a high abundance of mRNA was observed in later larval and early pupal stages. In contrast, yellow-f2 transcripts were present at all stages, but high abundance of its mRNA was observed in later-stage pupae and adults. These data indicate that yellow-f and yellow-f2 complement each other during Drosophila development and that the yellow-f is involved in larval and pupal melanization, and yellow-f2 plays a major role in melanization reactions in Drosophila during later pupal and adult development. Results from this study provide the groundwork towards a better understanding of the physiological roles of the Drosophila yellow gene family. PMID:12164780

  3. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kwang Ho; Dutta, Tanmoy; Ralph, John

    Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). Themore » strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.« less

  4. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Ralph, John; ...

    2017-04-20

    Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). Themore » strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.« less

  5. Land use and wind direction drive hybridization between cultivated poplar and native species in a Mediterranean floodplain environment.

    PubMed

    Paffetti, Donatella; Travaglini, Davide; Labriola, Mariaceleste; Buonamici, Anna; Bottalico, Francesca; Materassi, Alessandro; Fasano, Gianni; Nocentini, Susanna; Vettori, Cristina

    2018-01-01

    Deforestation and intensive land use management with plantations of fast-growing tree species, like Populus spp., may endanger native trees not only by eliminating or reducing their habitats, but also by diminishing their species integrity via hybridization and introgression. The genus Populus has persistent natural hybrids because clonal and sexual reproduction is common. The objective of this study was to assess the effect of land use management of poplar plantations on the spatial genetic structure and species composition in poplar stands. Specifically, we studied the potential breeding between natural and cultivated poplar populations in the Mediterranean environment to gain insight into spontaneous hybridization events between exotic and native poplars; we also used a GIS-based model to evaluate the potential threats related to an intensive land use management. Two study areas, both near to poplar plantations (P.×euramericana), were designated in the native mixed stands of P. alba, P. nigra and P.×canescens within protected areas. We found that the spatial genetic structure differed between the two stands and their differences depended on their environmental features. We detected a hybridization event with P.×canescens that was made possible by the synchrony of flowering between the poplar plantation and P.×canescens and facilitated by the wind intensity and direction favoring the spread of pollen. Taken together, our results indicate that natural and artificial barriers are crucial to mitigate the threats, and so they should be explicitly considered in land use planning. For example, our results suggest the importance of conserving rows of trees and shrubs along rivers and in agricultural landscapes. In sum, it is necessary to understand, evaluate, and monitor the spread of exotic species and genetic material to ensure effective land use management and mitigation of their impact on native tree populations. Copyright © 2017 Elsevier B.V. All rights

  6. Identification of 4CL Genes in Desert Poplars and Their Changes in Expression in Response to Salt Stress.

    PubMed

    Zhang, Cai-Hua; Ma, Tao; Luo, Wen-Chun; Xu, Jian-Mei; Liu, Jian-Quan; Wan, Dong-Shi

    2015-09-18

    4-Coumarate:CoA ligase (4CL) genes are critical for the biosynthesis of plant phenylpropanoids. Here we identified 20 4CL genes in the genomes of two desert poplars (Populus euphratica and P. pruinosa) and salt-sensitive congener (P. trichocarpa), but 12 in Salix suchowensis (Salix willow). Phylogenetic analyses clustered all Salicaceae 4CL genes into two clades, and one of them (corresponding to the 4CL-like clade from Arabidopsis) showed signals of adaptive evolution, with more genes retained in Populus than Salix and Arabidopsis. We also found that 4CL12 (in 4CL-like clade) showed positive selection along the two desert poplar lineages. Transcriptional profiling analyses indicated that the expression of 4CL2, 4CL11, and 4CL12 changed significantly in one or both desert poplars in response to salt stress compared to that of in P. trichocarpa. Our results suggest that the evolution of the 4CL genes may have contributed to the development of salt tolerance in the two desert poplars.

  7. Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments

    Treesearch

    Z.J. Wang; J.Y. Zhu; Ronald S. Jr. Zalesny; K.F. Chen

    2012-05-01

    Dilute acid (DA) and Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) pretreatments were directly applied to wood chips of four poplar wood samples of different genotypes (hereafter referred to as poplars; Populus tremuloides Michx. ‘native aspen collection’; Populus deltoides Bartr. ex Marsh x Populus nigra L. ‘NE222’ and ‘DN5’; P. nigra x...

  8. Transgenic Hybrid Poplar for Sustainable and Scalable Production of the Commodity/Specialty Chemical, 2-Phenylethanol

    PubMed Central

    Costa, Michael A.; Marques, Joaquim V.; Dalisay, Doralyn S.; Herman, Barrington; Bedgar, Diana L.; Davin, Laurence B.; Lewis, Norman G.

    2013-01-01

    Fast growing hybrid poplar offers the means for sustainable production of specialty and commodity chemicals, in addition to rapid biomass production for lignocellulosic deconstruction. Herein we describe transformation of fast-growing transgenic hybrid poplar lines to produce 2-phenylethanol, this being an important fragrance, flavor, aroma, and commodity chemical. It is also readily converted into styrene or ethyl benzene, the latter being an important commodity aviation fuel component. Introducing this biochemical pathway into hybrid poplars marks the beginnings of developing a platform for a sustainable chemical delivery system to afford this and other valuable specialty/commodity chemicals at the scale and cost needed. These modified plant lines mainly sequester 2-phenylethanol via carbohydrate and other covalently linked derivatives, thereby providing an additional advantage of effective storage until needed. The future potential of this technology is discussed. MALDI metabolite tissue imaging also established localization of these metabolites in the leaf vasculature. PMID:24386157

  9. Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds.

    PubMed

    Toraman, Hilal E; Vanholme, Ruben; Borén, Eleonora; Vanwonterghem, Yumi; Djokic, Marko R; Yildiz, Guray; Ronsse, Frederik; Prins, Wolter; Boerjan, Wout; Van Geem, Kevin M; Marin, Guy B

    2016-05-01

    Wild-type and two genetically engineered hybrid poplar lines were pyrolyzed in a micro-pyrolysis (Py-GC/MS) and a bench scale setup for fast and intermediate pyrolysis studies. Principal component analysis showed that the pyrolysis vapors obtained by micro-pyrolysis from wood of caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT) down-regulated poplar trees differed significantly from the pyrolysis vapors obtained from non-transgenic control trees. Both fast micro-pyrolysis and intermediate pyrolysis of transgenic hybrid poplars showed that down-regulation of COMT can enhance the relative yield of guaiacyl lignin-derived products, while the relative yield of syringyl lignin-derived products was up to a factor 3 lower. This study indicates that lignin engineering via genetic modifications of genes involved in the phenylpropanoid and monolignol biosynthetic pathways can help to steer the pyrolytic production of guaiacyl and syringyl lignin-derived phenolic compounds such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, syringol, 4-vinylsyringol, and syringaldehyde present in the bio-oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but

  11. Growth, photosynthesis, and herbicide tolerance of genetically modified hybrid poplar

    Treesearch

    Raymond A. Donahue; Tim D. Davis; Charles H. Michler; Don E. Riemenschneider; Doug R. Carter; Paula E. Marquardt; Daksha Sankhla; Narendra Sankhla; Bruce E. Haissig; J. G. Isebrands

    1994-01-01

    Poplar hybrids have high light-saturated photosynthetic rates and potential utility as a renewable biofuel, but they lack tolerance to commercially important herbicides that may be needed for successful plantation management. Tolerance to glyphosate (N-(phosphonomethyl)glycine) has been conferred to many plants by Agrobacterium-mediated transfor-...

  12. Planting Depth of Hybrid Poplar Cuttings Influences Number of Shoots

    Treesearch

    Edward Hansen; David Tolsted; Matthew Tower

    1991-01-01

    Reports that planting unrooted hybrid poplar cuttings flush with the soil surface resulted in significantly fewer multiple-stem shoots compared to letting the cutting protrude 2.5 or 5.0 cm above the soil surface. There were no significant effects on shoot height growth or cutting mortality.

  13. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Treesearch

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  14. Investigation on effect of Populus alba stands distance on density of pests and their natural enemies population under poplar/alfalfa agroforestry system.

    PubMed

    Khabir, Z H; Sadeghi, S E; Hanifeh, S; Eivazi, A

    2009-01-15

    This study was carried out in order to distinguish the effect of agroforestry system (combination of agriculture and forestry) on pests and natural enemy's population in poplar research station. Wood is one of the first substances that naturally was used for a long period of time. Forage is an important production of natural resources too. Some factors such as proper lands deficit, lack of economy, pest and disease attacks and faced production of these materials with serious challenges. Agroforestry is a method for decrease of the mentioned problems. The stands of poplar had have planted by complete randomized design with 4 treatments (stand distance) of poplar/alfalfa include 3x4, 3x6.7, 3x8, 3x10 m and 2 control treatments, alfalfa and poplar. The results showed that Chaitophorus populeti had the highest density in poplar and 3x10 m treatments. Monosteira unicostata is another insect pest that had most density in 3x10 m treatment. And alfalfa had high density of Chrysoperla carnea. The density of Coccinella septempunctata, were almost equal in all treatments.

  15. Carbon budget and its response to environmental factors in young and mature poplar plantations along the middle and lower reaches of the Yangtze River, China

    Treesearch

    Jinxing Zhou; Yuan Wei; Jun Yang; Xiaohui Yang; Zeping Jiang; Jiquan Chen; Asko Noormets; Xiaosong Zhao

    2012-01-01

    Although poplar forest is the dominant plantation type in China, there is uncertainty about the carbon budget of these forests across the country. The observations, performed in 2006, of two eddy covariance flux towers on a young poplar plantation (Yueyang, Hunan province) and a mature poplar plantation (Huaining, Anhui province) provide an opportunity to understand...

  16. Economic investigations of short rotation intensively cultured hybrid poplars

    Treesearch

    David C. Lothner

    1983-01-01

    The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of $25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...

  17. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils.

    PubMed

    Komárek, Michael; Tlustos, Pavel; Száková, Jirina; Chrastný, Vladislav

    2008-01-01

    The efficiency of poplar (Populus nigra L.xPopulus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH4Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils.

  18. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE PAGES

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana; ...

    2017-02-10

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  19. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  20. Potential tree species for use in the restoration of unsanitary landfills.

    PubMed

    Kim, Kee Dae; Lee, Eun Ju

    2005-07-01

    biloba, Hibiscus syriacus, Koelreuteria paniculata, Ligustrum obtusifolium, Liriodendron tulipifera, Pinus koraiensis, Pinus thunbergii, and Sophora japonica. As a result of a comparison of the total ratio (sum of shoot extension and diameter growth at the landfill relative to a reference site) and mortality, six species (Liriodendron tulipifera, Albizzia julibrissin, Ligustrum obtusifolium, Buxus microphylla var. koreana, Hibiscus syriacus, and Sophora japonica), which had a total ratio >1 and experienced low mortality, are recommended as potentially suitable species for waste landfill remediation. We suggest that mixed plantations of ubiquitous adaptable species and naturally occurring black locust will enhance the landscape through synergistic effects.

  1. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.

    PubMed

    Johnson, Jon D; Tognetti, Roberto; Paris, Piero

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar.

  2. Reconnaissance evaluation of contamination in the alluvial aquifer in the East Poplar oil field, Roosevelt County, Montana

    USGS Publications Warehouse

    Levings, G.W.

    1984-01-01

    Water moving from north to south in the alluvial aquifer of the Poplar River valley becomes contaminated with sodium chloride in the area underlain by the East Poplar oil fields. Four types of ground water were identified in the study area. Type 1 is sodium bicarbonate water. Type 2 is sodium chloride water with varying quantities of calcium and magnesium. Type 3 water contains sodium and chloride in significantly larger concentrations than Type 2. Type 4 water is the brine being injected into brine-disposal wells. Contamination of the alluvial aquifer is indicated by a brine-freshwater interface in the alluvium, by downstream increase in chloride concentration of the Poplar River, and by downstream change in water type of the Poplar River. Contamination also may be indicated by the distribution of iron and manganese concentrations in water from wells near a brine-disposal well. Possible sources of sodium chloride contamination in the alluvium are brine-disposal wells, pipelines, and storage or evaporation pits. The contamination can occur from leaks in the casing of disposal wells or in pipelines caused by the corrosive nature of the brine or from storage or evaporation pits that have been improperly sealed or have sustained tears in the sealing material. (USGS)

  3. Overexpression of DEMETER, a DNA demethylase, promotes early apical bud maturation in poplar.

    PubMed

    Conde, Daniel; Moreno-Cortés, Alicia; Dervinis, Christopher; Ramos-Sánchez, José M; Kirst, Matias; Perales, Mariano; González-Melendi, Pablo; Allona, Isabel

    2017-11-01

    The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative ortholog in the more experimentally tractable hybrid poplar (Populus tremula × alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling, and 5-methyl-cytosine methylation immunodetection studies to evaluate the role of CsDML and its homolog in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analysed. Short days and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated short-day-induced bud formation, specifically from Stages 1 to 0. Buds acquired a red-brown coloration earlier than wild-type plants, alongside with the up-regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the shoot apical meristem and bud scales. Our data show that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter. © 2017 John Wiley & Sons Ltd.

  4. Yellow fever: epidemiology and prevention.

    PubMed

    Barnett, Elizabeth D

    2007-03-15

    Yellow fever continues to occur in regions of Africa and South America, despite the availability of effective vaccines. Recently, some cases of severe neurologic disease and multiorgan system disease have been described in individuals who received yellow fever vaccine. These events have focused attention on the need to define criteria for judicious use of yellow fever vaccine and to describe the spectrum of adverse events that may be associated with yellow fever vaccine. Describing host factors that would increase risk of these events and identifying potential treatment modalities for yellow fever and yellow fever vaccine-associated adverse events are subjects of intense investigation.

  5. Sapflow of hybrid poplar (Populus nigra L. x P. maximowiczii A. Henry 'NM6') during phytoremediation of landfill leachate

    Treesearch

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Don E. Riemenschneider

    2006-01-01

    Poplars are ideal for phytoremediation because of their high water usage, fast growth, and deep root systems. We measured in 2002 and 2003 the sapflow of hybrid poplars (Populus nigra L. x P. maximowiczii A. Henry 'NM6') planted in 1999 for phytoremediation of a landfill in Rhinelander, WI, USA (45.6?N, 89.4?W).

  6. Profile of Polyphenolic and Essential Oil Composition of Polish Propolis, Black Poplar and Aspens Buds.

    PubMed

    Okińczyc, Piotr; Szumny, Antoni; Szperlik, Jakub; Kulma, Anna; Franiczek, Roman; Żbikowska, Beata; Krzyżanowska, Barbara; Sroka, Zbigniew

    2018-05-25

    In this work, we studied similarities and differences between 70% ethanol in water extract (70EE) and essential oils (EOs) obtained from propolis, black poplars ( Populus nigra L.) and aspens ( P. tremula L.) to ascertain which of these is a better indicator of the plant species used by bees to collect propolis precursors. Composition of 70EE was analyzed by UPLC-PDA-MS, while GC-MS was used to research the EOs. Principal component analyses (PCA) and calculations of Spearman's coefficient rank were used for statistical analysis. Statistical analysis exhibited correlation between chemical compositions of propolis and Populus buds' 70EE. In the case of EOs, results were less clear. Compositions of black poplars, aspens EOs and propolises have shown more variability than 70EE. Different factors such as higher instability of EOs compared to 70EE, different degradation pattern of benzyl esters to benzoic acid, differences in plant metabolism and bees' preferences may be responsible for these phenomena. Our research has therefore shown that 70EE of propolis reflected the composition of P. nigra or complex aspen⁻black poplar origin.

  7. [Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].

    PubMed

    Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing

    2010-11-01

    By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.

  8. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.)

    PubMed Central

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-01-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to ‘pollen development genes’ from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7–10 years, can now be shortened to 6–10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. PMID:27052434

  9. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.).

    PubMed

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-05-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to 'pollen development genes' from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7-10 years, can now be shortened to 6-10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Sexual Dimorphism Floral MicroRNA Profiling and Target Gene Expression in Andromonoecious Poplar (Populus tomentosa)

    PubMed Central

    Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Zhang, Zhiyi; Zhang, Deqiang

    2013-01-01

    Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs). The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca2+ transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant. PMID:23667507

  11. A Field Trial of TCE Phytoremediation by Genetically Modified Poplars Expressing Cytochrome P450 2E1.

    PubMed

    Legault, Emily K; James, C Andrew; Stewart, Keith; Muiznieks, Indulis; Doty, Sharon L; Strand, Stuart E

    2017-06-06

    A controlled field study was performed to evaluate the effectiveness of transgenic poplars for phytoremediation. Three hydraulically contained test beds were planted with 12 transgenic poplars, 12 wild type (WT) poplars, or left unplanted, and dosed with equivalent concentrations of trichloroethylene (TCE). Removal of TCE was enhanced in the transgenic tree bed, but not to the extent of the enhanced removal observed in laboratory studies. Total chlorinated ethene removal was 87% in the CYP2E1 bed, 85% in the WT bed, and 34% in the unplanted bed in 2012. Evapotranspiration of TCE from transgenic leaves was reduced by 80% and diffusion of TCE from transgenic stems was reduced by 90% compared to WT. Cis-dichloroethene and vinyl chloride levels were reduced in the transgenic tree bed. Chloride ion accumulated in the planted beds corresponding to the TCE loss, suggesting that contaminant dehalogenation was the primary loss fate.

  12. Cytokinin signaling regulates cambial development in poplar

    PubMed Central

    Nieminen, Kaisa; Immanen, Juha; Laxell, Marjukka; Kauppinen, Leila; Tarkowski, Petr; Dolezal, Karel; Tähtiharju, Sari; Elo, Annakaisa; Decourteix, Mélanie; Ljung, Karin; Bhalerao, Rishikesh; Keinonen, Kaija; Albert, Victor A.; Helariutta, Ykä

    2008-01-01

    Although a substantial proportion of plant biomass originates from the activity of vascular cambium, the molecular basis of radial plant growth is still largely unknown. To address whether cytokinins are required for cambial activity, we studied cytokinin signaling across the cambial zones of 2 tree species, poplar (Populus trichocarpa) and birch (Betula pendula). We observed an expression peak for genes encoding cytokinin receptors in the dividing cambial cells. We reduced cytokinin levels endogenously by engineering transgenic poplar trees (P. tremula × tremuloides) to express a cytokinin catabolic gene, Arabidopsis CYTOKININ OXIDASE 2, under the promoter of a birch CYTOKININ RECEPTOR 1 gene. Transgenic trees showed reduced concentration of a biologically active cytokinin, correlating with impaired cytokinin responsiveness. In these trees, both apical and radial growth was compromised. However, radial growth was more affected, as illustrated by a thinner stem diameter than in WT at same height. To dissect radial from apical growth inhibition, we performed a reciprocal grafting experiment. WT scion outgrew the diameter of transgenic stock, implicating cytokinin activity as a direct determinant of radial growth. The reduced radial growth correlated with a reduced number of cambial cell layers. Moreover, expression of a cytokinin primary response gene was dramatically reduced in the thin-stemmed transgenic trees. Thus, a reduced level of cytokinin signaling is the primary basis for the impaired cambial growth observed. Together, our results show that cytokinins are major hormonal regulators required for cambial development. PMID:19064928

  13. Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought.

    PubMed

    Théroux Rancourt, Guillaume; Éthier, Gilbert; Pepin, Steeve

    2015-02-01

    Improvement of water use efficiency is a key objective to improve the sustainability of cultivated plants, especially fast growing species with high water consumption like poplar. It is well known that water use efficiency (WUE) varies considerably among poplar genotypes, and it was recently suggested that the use of the mesophyll-to-stomatal conductance ratio (gm/gs) would be an appropriate trait to improve WUE. The responses of 7-week-old cuttings of four hybrid poplar clones and one native Balsam poplar (Populus balsamifera L.) to a water stress-recovery cycle were examined to evaluate the relation between the gm/gs ratio and transpiration efficiency (TE), a leaf-level component of WUE. A contrasting gs response to water stress was observed among the five clones, from stomatal closure early on during soil drying up to limited closure in Balsam poplar. However in the hybrids, the decline in gm was consistently delayed by a few days compared with gs. Moreover, in the most water use-efficient hybrids, the recovery following rehydration occurred faster for gm than for gs. Thus, the delay in the response of gm to drought and its faster recovery upon rewatering increased the gm/gs of the hybrids and this ratio scaled positively with TE. Our results support the use of the gm/gs ratio to select genotypes with improved WUE, and the notion that breeding strategies focusing mainly on stomatal responses to soil drying should also look for a strong curvilinearity between net carbon assimilation rate and gs, the indication of a significant increase in gm/gs in the earlier stages of stomatal closure. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Feeding Preference of Penned Whitetailed Deer for Hybrid Poplar Clones

    Treesearch

    Richard L. Verch

    1979-01-01

    Five hybrid poplar clones were presented to 16 penned white-tailed deer on a feeding board over a 3-day period in September, 1978. A definite order of preference was observed over a 3-hour period fore each of 3 trials. Over a longer period (8-24 hours), all 5 clones were completely consumed.

  15. Borehole geophysical data for the East Poplar oil field area, Fort Peck Indian Reservation, northeastern Montana, 1993, 2004, and 2005

    USGS Publications Warehouse

    Smith, Bruce D.; Thamke, Joanna N.; Tyrrell, Christa

    2014-01-01

    Areas of high electrical conductivity in shallow aquifers in the East Poplar oil field area were delineated by the U.S. Geological Survey (USGS), in cooperation with the Fort Peck Assiniboine and Sioux Tribes, in order to interpret areas of saline-water contamination. Ground, airborne, and borehole geophysical data were collected in the East Poplar oil field area from 1992 through 2005 as part of this delineation. This report presents borehole geophysical data for thirty-two wells that were collected during, 1993, 2004, and 2005 in the East Poplar oil field study area. Natural-gamma and induction instruments were used to provide information about the lithology and conductivity of the soil, rock, and water matrix adjacent to and within the wells. The well logs were also collected to provide subsurface controls for interpretation of a helicopter electromagnetic survey flown over most of the East Poplar oil field in 2004. The objective of the USGS studies was to improve understanding of aquifer hydrogeology particularly in regard to variations in water quality.

  16. Net primary production and phenology on a southern Appalachian watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, F.P. Jr.; Monk, C.D.

    1977-01-01

    Net primary production (NPP) is an important function of plant communities which has not often been examined seasonally in a forested ecosystem. The major objective of the study was to measure above-ground NPP seasonally and relate it to phenological activity on a hardwood forest watershed at Coweeta Hydrologic Laboratory, North Carolina. NPP was estimated as the increase in biomass, estimated from regression equations on diameter. Diameter increases were measured by venier tree bands. Phenological observations were made on bud break, leaf emergence, flowering, mature fruit, leaf senescence, and leaf fall. The species studied intensively were Acer rubrum, Quercus prinus, Caryamore » glabra, Cornus florida, and Liriodendron tulipifera. Liriodendron was found to be the most productive species per individual, but Quercus prinus was the most productive per unit ground area. The total watershed estimate of aboveground NPP was 8,754 kg ha/sup -1/yr/sup -1/ and included 47.9 percent leaves, 33.2 percent wood, 7.8 percent bark, 4.8 percent reproductive tissues, 4.2 percent loss to consumers, and 2.1 percent twigs. Increases in leaf biomass were most rapid in the spring, but woody tissue production peaked in June and continued through August. Since leaf production peaked in the spring, the plants' photosynthetic machinery was activated early in the growing season to support woody tissue production, which followed the period of rapid leaf growth, and reproductive activity. Flowering occurred during the leaf expansion period except for Acer rubrum, which flowered before leaf emergence. Fruit maturation occurred during late summer to early fall, when there were no additional biomass increases. Acer rubrum was an exception as its fruit matured during the period of leaf expansion.« less

  17. Vacuum storage of yellow-poplar pollen

    Treesearch

    James R. Wilcox

    1966-01-01

    Vacuum-drying, followed by storage in vacuo or in an inert gas, is effective for storing pollen of many species. It permits storage at room environments without rigid controls of either temperature or humidity, an advantage that becomes paramount during long-distance transfers of pollen when critical storage conditions are impossible to maintain. In...

  18. The clonal root system of balsam poplar in upland sites of Quebec and Alberta.

    PubMed

    Adonsou, Kokouvi E; DesRochers, Annie; Tremblay, Francine; Thomas, Barb R; Isabel, Nathalie

    2016-10-01

    Balsam poplar seeds are short-lived and require moist seedbeds soon after they are released to germinate. In addition to sexual reproduction, balsam poplar stands can regenerate clonally by root suckering. The origin of stands will in turn affect their genetic structure and root system architecture, which are poorly understood for upland forest stands. Three stands were hydraulically excavated in Quebec (moist) and Alberta (dry) to determine the origin of trees and to characterize root systems with respect to presence of parental roots and root grafts connections. Clones were identified using single-nucleotide polymorphism (SNPs), and all stems, roots and root grafts were aged using dendrochronology techniques. All 82 excavated trees were of sucker origin, and four of the six stands contained a single clone. Parental root connections were found between 22% and 25% of excavated trees, and 53% and 48% of trees were linked with a root graft between the same or different clones, in Alberta and Quebec, respectively. Mean distance between trees connected by parental root was significantly lower than the distance between unconnected trees (0.47 ± 0.25 m vs. 3.14 ± 0.15 m and 1.55 ± 0.27 m vs. 4.25 ± 0.13 m) in Alberta and in Quebec, respectively. The excavations also revealed many dead stumps with live roots, maintained through root connections with live trees. This research highlights that balsam poplar growing in upland stands is a clonal species that can maintain relatively high genotypic diversity, with frequent root connections between trees at maturity. Maintaining an extensive root system through root connections increases the chances of a clone surviving when the above ground tree is dead and may also enhance the resilience of balsam poplar stands after disturbance.

  19. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    PubMed

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  20. Occurrence and severity of foliar ozone symptoms on sensitive hardwood species in Shenandoah National Park, VA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrand, E.; Skelly, J.M.

    1993-02-01

    To assess the extent of foliar symptoms due to ozone on sensitive hardwoods in the Shenandoah National Park in Virginia, three species were sampled and evaluated at sites of differing elevations adjacent to 3 ozone monitors in 1991 and 1992: black cherry, yellow poplar, and white ash. All foliar samples were evaluated to precent of symptomatic leaves on each branch and average precent leaf area affected. The Horsfall-Barratt rating scale was used to estimate the precent leaf area symptomatic. Ozone symptoms were manifested as stipple on the adazial leaf surface. In the preliminary 1991 sampling, 40, 87, and 7% ofmore » black cherry trees sampled were found to be symptomatic at the 3 sites; 63 and 67% of yellow poplar trees sampled were found to be symptomatic at sites 1 and 3, as were 43 and 63% of the white ash at sites 1 and 2 (3 complete sets were not found in 1991). In 1992, the sampling and rating of injury were repeated. Symptoms of ozone injury appeared on 23, 88, and 10% of black cherry, on 17, 7, and 80% of yellow poplar, and 27, 40, and 40% of white ash. Elevation and ozone exposure will be discussed.« less

  1. Summer is the best time to thin hybrid poplar plantations

    Treesearch

    Harold F. Ford; Albert G., Jr. Snow

    1954-01-01

    Hybrid poplar plantations are established by planting dormant cuttings in close spacing, usually 4 x 4 feet. They are cultivated during the first growing season to eliminate competition from grasses and weeds. After the first year, the more vigorous trees effectively shade out lower vegetation. But rapid tree growth often makes thinning necessary after 2 or 3 growing...

  2. Genome Survey and Characterization of Endophytic Bacteria Exhibiting a Beneficial Effect on Growth and Development of Poplar Trees ▿ †

    PubMed Central

    Taghavi, Safiyh; Garafola, Craig; Monchy, Sébastien; Newman, Lee; Hoffman, Adam; Weyens, Nele; Barac, Tanja; Vangronsveld, Jaco; van der Lelie, Daniel

    2009-01-01

    The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant growth promotion. Members of the Gammaproteobacteria dominated a collection of 78 bacterial endophytes isolated from poplar and willow trees. As representatives for the dominant genera of endophytic gammaproteobacteria, we selected Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant growth-promoting effects, including root development. Derivatives of these endophytes, labeled with gfp, were also used to study the colonization of their poplar hosts. In greenhouse studies, poplar cuttings (Populus deltoides × Populus nigra DN-34) inoculated with Enterobacter sp. strain 638 repeatedly showed the highest increase in biomass production compared to cuttings of noninoculated control plants. Sequence data combined with the analysis of their metabolic properties resulted in the identification of many putative mechanisms, including carbon source utilization, that help these endophytes to thrive within a plant environment and to potentially affect the growth and development of their plant hosts. Understanding the interactions between endophytic bacteria and their host plants should ultimately result in the design of strategies for improved poplar biomass production on marginal soils as a feedstock for biofuels. PMID:19060168

  3. Characterization and 2D structural model of corn straw and poplar leaf biochars.

    PubMed

    Zhao, Nan; Lv, YiZhong; Yang, XiXiang; Huang, Feng; Yang, JianWen

    2017-12-22

    The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars. High temperatures destroyed the pore structures of the biochars, forming a particle mixture of varying sizes. The ash content, yield, pH, and surface area were also observed to describe the biochars' properties. The yield decreases as the pyrolysis temperature increases. The biochars are neutral to alkaline. The biggest surface area is 251.11 m 2 /g for 700 °C corn straw biochar. Elemental analysis, infrared microspectroscopy, solid-state C-13 NMR spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were also used to study the structural characteristics and build the 2D structural models of biochars. The C content in the corn straw and poplar leaf biochars increases with the increase of the pyrolysis temperature. A higher pyrolysis temperature makes the aryl carbon increase, and C=O, OH, and aliphatic hydrocarbon content decrease in the IR spectra. Solid-state C-13 NMR spectra show that a higher pyrolysis temperature makes the alkyl carbon and alkoxy carbon decrease and the aryl carbon increase. The results of IR microspectra and solid-state C-13 NMR spectra reveal that some noticeable differences exist in these two kinds of biochars and in the same type of biochar but under different pyrolysis temperatures. The conceptual elemental compositions of 500 °C corn straw and poplar leaf biochars are C 61 H 33 NO 13 and C 59 H 41 N 3 O 12 , respectively. Significant differences exist in the SEM images, physicochemical properties, and structural characteristics of corn straw and poplar leaf biochars.

  4. Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.

    PubMed

    Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj

    2009-04-01

    An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location.

  5. Growth and physiological responses of isohydric and anisohydric poplars to drought

    DOE PAGES

    Attia, Ziv; Domec, Jean-Christophe; Oren, Ram; ...

    2015-05-07

    Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (g s), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Undermore » drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (K leaf) and E: isohydric plants reduced K leaf, g s, and E, whereas anisohydric genotypes maintained high K leaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (K plant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO 2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Lastly, we discuss implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions.« less

  6. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depthmore » review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and

  7. The yellow x paper birch hybrid--a potential substitute for yellow birch on problem sites

    Treesearch

    Knud E. Clausen

    1977-01-01

    Yellow x paper birch hybrids and yellow birches with common female parents were compared after 5 growing seasons in an open field. Survival of the hybrids was 91 percent compared with 64 percent for the yellow birch trees. The hybrids were from 25 to 32 percent taller than the yellow birches and had 19-40 percent greater diameter. Because this hybrid not only grows...

  8. Impacts of supplyshed-level differences in productivity and land Costs on the economics of hybrid poplar production in Minnesota, USA

    Treesearch

    William Lazarus; William L. Headlee; Ronald S. Zalesny

    2015-01-01

    The joint effects of poplar biomass productivity and land costs on poplar production economics were compared for 12 Minnesota counties and two genetic groups, using a process-based model (3-PG) to estimate productivity. The counties represent three levels of productivity and a range of land costs (annual rental rates) from $128/ha to $534/ha. An optimal rotation age...

  9. Hybrid poplar on two anthracite coal-mine spoils: 10-year results

    Treesearch

    Miroslaw M. Czapowskyj

    1978-01-01

    Unrooted dormant cuttings of 28 hybrid poplar clones were planted on two graded anthracite coal-mine spoils derived from sandstone or from glacial till. Ten-year results show that the plantation survived very well (82 percent), but that growth was extremely varied. Spoil Characteristics and performance of individual clones are presented.

  10. Predicted Cubic-foot Yields of Lumber, Sawdust, and Sawmill Residue from the Sawtimber Portions of Hardwood Trees

    Treesearch

    Leland F. Hanks

    1977-01-01

    We have presented prediction equations and tables for estimating the gross cubic-foot volume of sawtimber for hardwood trees, and cubic-foot yields of lumber, sawdust, and sawmill residue that are produced during the sawing process. Yields are presented for northern red oak, black oak, white oak, chestnut oak, red maple, sugar maple, yellow-poplar, yellow birch, paper...

  11. Evaluating potential impacts of species conversion on transpiration in the Piedmont of North Carolina

    NASA Astrophysics Data System (ADS)

    Boggs, J.; Treasure, E.; Simpson, G.; Domec, J.; Sun, G.; McNulty, S.

    2010-12-01

    Land management practices that include species conversion or vegetation manipulation can have consequences to surface water availability, groundwater recharge, streamflow generation, and water quality through altering the transpiration processes in forested watersheds. Our objective in this study is to compare stand water use or transpiration in a piedmont mixed hardwood stand (i.e., present stand) to five hypothetical single species stands (i.e., management scenarios), [Quercus spp. (oak), Acer Rubrum (red maple), Liquidambar styraciflua (sweetgum), Liriodendron tulipifera (tulip poplar), and Pinus Taeda (loblolly pine]. Since October 2007, six watersheds with a flume or v-notch weir installed at the watershed outlet have been monitored for baseline streamflow rates (mm d-1). In the summer of 2010, five trees from each of the above species were instrumented with sap flow sensors in the riparian upland of one watershed to develop linkages between stand stream runoff and transpiration. The sap flow or thermal heat dissipation method was used to calculate tree sap flux density for the mixed hardwood stand. Tree sapwood area and stand tree density were then used to compute stand transpiration rates, mm d-1, from June - August 2010. The parameters of the hypothetical single species stands were based on values determined from mixed hardwood stand conditions (e.g., the same stand sapwood area and stand tree density were applied to each option). The diameter at beast height of the monitored trees ranged from 10 cm to 38 cm with a water use range of 1.8 kg d-1 to 104 kg d-1. From our preliminary data, we found daily transpiration from the mixed hardwood stand (2.8 mm d-1 ± 0.06) was significantly (p < 0.05) lower than daily transpiration from the red maple (3.7 mm d-1 ± 0.14) and tulip poplar (3.5 mm d-1 ± 0.12) single species stand management option and significantly (p < 0.05) higher than the loblolly pine (2.3 mm d-1 ± 0.08), sweetgum (2.1 mm d-1 ± 0.08) and oak

  12. Uptake and Translocation of Lesser-Chlorinated Polychlorinated Biphenyls (PCBs) in Whole Hybrid Poplar Plants after Hydroponic Exposure

    PubMed Central

    Liu, Jiyan; Schnoor, Jerald L.

    2009-01-01

    Mono-, di-, tri-, and tetra-chlorinated polychlorinated biphenyls (PCBs) are congeners with greater volatility which remain in air, soils and sediments requiring treatment. In this study, the fate of these PCBs was investigated within whole poplar plants (Populus deltoides x nigra, DN34) with application for a treatment system such as a confined disposal facility for dredged material. Whole hybrid poplars were exposed hydroponically to a mixture of five congeners, common in the environment, having one to four chlorine atoms per molecule. Results indicated that PCB 3, 15, 28, 52, and 77 were initially sorbed to the root systems. The Root Concentration Factor (RCF) of PCBs during the exposure was calculated and correlated with Kow. PCB congeners were taken up by the roots of hybrid poplar, and the translocation of PCBs to stems was inversely related to congener hydrophobicity (Log Kow). PCB 3 and 15 were translocated to the upper stem at small but significant rates. PCB 28 was translocated to the wood of the main stem but no farther; translocation from the roots was not detected for PCB 52 and 77. The distribution of PCBs within poplars was determined, and mass balances were completed to within 15% for each chemical except for PCB 3, the most volatile congener. This is the first report on the transport of PCBs through whole plants designed for use in treatment at disposal facilities. PMID:18793792

  13. Case history development of a hybrid poplar nursery at Reynolds Metals Company, Massena, NY. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marler, R.L.

    1983-03-01

    The methods used to establish the hybrid poplar nursery and the results obtained in the first year's operation are discussed. It also documents the history of the project. Hybrid poplar clones were established in the nursery in 1980 and their growth performance was evaluated after one growing season. The results were most promising. The mean survivability rate ranged from 84.92% to 90.58% per clone, while the clone height growth ranged from 58.16 inches to 76.47 inches over the first growing season. Approximately 71,000 cuttings were estimated to be available for outplanting during the Spring of 1982.

  14. Comparative growth of hybrid poplars and native northern black cottonwoods.

    Treesearch

    Roy R. Silen

    1947-01-01

    Beginning in the early 1920's, some fast-growing hybrid poplars were developed by the Oxford Paper Company in New England. In 1938 cuttings of the 25 best hybrids developed were sent to the Northwest for trial. These were planted on Lady Island near Camas, Washington, on lands of the Crown Zellerbach Corporation. During 1946 the eighth-year measurement was made of...

  15. Flesh color inheritance and gene interactions among canary yellow, pale yellow and red watermelon

    USDA-ARS?s Scientific Manuscript database

    Two loci, C and i-C were previously reported to determine flesh color between canary yellow and red watermelon. Recently LCYB was found as a color determinant gene for canary yellow (C) and co-dominant CAPS marker was developed to identify canary yellow and red alleles. Another report suggested th...

  16. Beet yellow stunt

    USDA-ARS?s Scientific Manuscript database

    Beet yellow stunt virus (BYSV) is a potentially destructive yellows-type virus affecting plants in the family Asteraceae. The virus is a member of the genus Closterovirus, family Closteroviridae, and has been found in California and England. Initial symptoms consist of chlorosis of the older leaves,...

  17. Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.

    PubMed

    Gesell, Andreas; Yoshida, Kazuko; Tran, Lan T; Constabel, C Peter

    2014-09-01

    The apple MdMYB9 gene encodes a positive regulator of proanthocyanidin synthesis that activates anthocyanidin reductase promoters from apple and poplar via interaction with basic helix-loop-helix proteins. The regulation of proanthocyanidins (PAs, condensed tannins) is of great importance in food plants due to the many benefits of PAs in the human diet. Two candidate flavonoid MYB regulators, MdMYB9 and MdMYB11, were cloned from apple (Malus × domestica) based on their similarity to known MYB PA regulators. Transcript accumulation of both MdMYB9 and MdMYB11 was induced by high light and wounding, similar to the poplar (Populus spp) PA regulator PtMYB134. In transient activation assays with various basic helix-loop-helix (bHLH) co-regulators, MdMYB9 activated apple and poplar anthocyanidin reductase (ANR) promoters, while MdMYB11 showed no activity. Potential transcription factor binding elements were found within several ANR promoters, and the importance of the bHLH binding site (E-box) on ANR promoter activation was demonstrated via mutational analysis. The ability of MdMYB9 and PtMYB134 to reciprocally activate ANR promoters from both apple and poplar and to partner with heterologous bHLH co-factors from these plants confirms the high degree of conservation of PA regulatory complexes across species. The similarity in apple and poplar PA regulation suggests that regulatory genes from poplar could be effectively employed for metabolic engineering of the PA pathway in apple.

  18. Use of tree-ring chemistry to document historical ground-water contamination events

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  19. Intragranular diffusion--An important mechanism influencing solute transport in clastic aquifers?

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  20. Leafing-out date not indicative of growth rate in hybrid poplars

    Treesearch

    Harold F. Ford; Edward I. Sucoff

    1961-01-01

    In breeding trees for rapid growth, testing the progeny usually requires many years. To shorten the testing period, geneticists have tried to find characteristics in juvenile trees that would indicate mature-tree performance. With hybrid poplars (Populus spp.), work at the Northeastern Forest Experiment Station has shown that the thickness of bark on...

  1. A Practical Field Method of Site Evaluation for Commercially Important Southern Hardwoods

    Treesearch

    James B. Baker; W.M. Broadfoot

    1979-01-01

    A new method of evaluating sites for planted cottonwood, sweetgum, sycamore, green ash, hackberry, sugarberry, pecan, yellow poplar and Nuttall, water, willow, swamp chestnut, Shumard and cherrybark oaks is presented.

  2. Global Profiling of Rice and Poplar Transcriptomes Highlights Key Conserved Circadian-Controlled Pathways and cis-Regulatory Modules

    PubMed Central

    Filichkin, Sergei A.; Breton, Ghislain; Priest, Henry D.; Dharmawardhana, Palitha; Jaiswal, Pankaj; Fox, Samuel E.; Michael, Todd P.; Chory, Joanne; Kay, Steve A.; Mockler, Todd C.

    2011-01-01

    Background Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants. Methodology/Principal Findings Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice. Conclusions/Significance Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in

  3. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons

    Treesearch

    Ronald S., Jr. Zalesny; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

    2005-01-01

    Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2)...

  4. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.

    PubMed

    Kang, Jun Won; Doty, Sharon Lafferty

    2014-07-01

    Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4.

  5. Somaclonal variation in hybrid poplars for resistance to Septoria leaf spot

    Treesearch

    M.E. Ostry; D. D. Skilling

    1987-01-01

    Tissue culture techniques have been used to obtain hybrid poplars with putative resistance to leaf spot caused by Septoria musiva from clones previously susceptible to the disease. Stem internode explants were used to obtain proliferating callus cultures. Adventitious bud formation and shoot proliferation were then induced. Elongated shoots were excised and rooted in a...

  6. Poplar Wood Rays Are Involved in Seasonal Remodeling of Tree Physiology1[C][W

    PubMed Central

    Larisch, Christina; Dittrich, Marcus; Wildhagen, Henning; Lautner, Silke; Fromm, Jörg; Polle, Andrea; Hedrich, Rainer; Rennenberg, Heinz; Müller, Tobias; Ache, Peter

    2012-01-01

    Understanding seasonality and longevity is a major challenge in tree biology. In woody species, growth phases and dormancy follow one another consecutively. In the oldest living individuals, the annual cycle may run for more than 1,000 years. So far, however, not much is known about the processes triggering reactivation from dormancy. In this study, we focused on wood rays, which are known to play an important role in tree development. The transition phase from dormancy to flowering in early spring was compared with the phase of active growth in summer. Rays from wood samples of poplar (Populus × canescens) were enriched by laser microdissection, and transcripts were monitored by poplar whole-genome microarrays. The resulting seasonally varying complex expression and metabolite patterns were subjected to pathway analyses. In February, the metabolic pathways related to flower induction were high, indicating that reactivation from dormancy was already taking place at this time of the year. In July, the pathways related to active growth, like lignin biosynthesis, nitrogen assimilation, and defense, were enriched. Based on “marker” genes identified in our pathway analyses, we were able to validate periodical changes in wood samples by quantitative polymerase chain reaction. These studies, and the resulting ray database, provide new insights into the steps underlying the seasonality of poplar trees. PMID:22992511

  7. Feasibility study of transportation management strategies in the Poplar Corridor, Memphis, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siniard, D.

    1990-02-01

    This report documents the development and implementation of various transportation management strategies aimed at alleviating traffic congestion problems in the Poplar Corridor, a major transportation corridor located in a rapidly growing suburban area of Memphis, Tennessee. The project provided the opportunity for local governments to work with the private sector in a joint venture to address traffic congestion problems and to promote more efficient use of the area's transportation network. The project was carried out by the staff of Memphis Area Rideshare, a joint city/county agency which provides transit information and free carpool/vanpool computer matching services to area commuters. Publicmore » sector participants in the planning process included transportation and land use planners from the Office of Planning and Development, city traffic engineers, and representatives from the Memphis Area Transit Authority (MATA). Private sector input came from major developers and employers in the Poplar Corridor and from officials of schools located in the area.« less

  8. Sulfur content of hybrid poplar cuttings fumigated with sulfur dioxide

    Treesearch

    Keith F. Jensen

    1975-01-01

    Hybrid poplar cuttings were fumigated with sulfur dioxide ranging in concentration from 0.1 to 5 ppm for periods of 5 to 80 hours. At the end of the fumigation periods, the cuttings were harvested and the sulfur and chlorophyll contents of the leaves were measured. At 0.1 ppm and 0.25 ppm the sulfur content initially increased, but decreased as fumigation continued. At...

  9. Growth of hybrid poplars in Pennsylvania and Maryland clonal tests

    Treesearch

    Maurice E., Jr. Demeritt

    1981-01-01

    Average 4-year-height of 199 hybrid poplar clones ranged from 5.1 to 26.0 feet in Pennsylvania and 5.6 to 22.7 feet in Maryland. Several rapid-growing clones grew well at both locations, but height growth was affected by interactions of clones and location. The clones that grew best on both sites averaged 4 to 6 feet of height growth per year.

  10. Functional analysis of overexpressed PtDRS1 involved in abiotic stresses enhances growth in transgenic poplar.

    PubMed

    Mohammadi, Kourosh; Movahedi, Ali; Maleki, Samaneh Sadat; Sun, Weibo; Zhang, Jiaxin; Almasi Zadeh Yaghuti, Amir; Nourmohammadi, Saeed; Zhuge, Qiang

    2018-05-01

    Drought and salinity are two main abiotic stressors that can disrupt plant growth and survival. Various biotechnological approaches have been used to alleviate the problem of drought stress by improving water stress resistance in forestry and agriculture. The drought sensitive 1 (DRS1) gene acts as a regulator of drought stress, identified in human, yeast and some model plants, such as Arabidopsis thaliana, but there have been no reports of DRS1 transformation in poplar plants to date. In this study, we transformed the DRS1 gene from Populus trichocarpa into Populus deltoides × Populus euramericana 'Nanlin895' using Agrobacterium tumefaciens-mediated transformation. We confirmed that the DRS1 gene was transformed into 'Nanlin895' poplar genomes using reverse transcription polymerase chain reaction (PCR), multiplex PCR, real-time PCR, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All transformed and wild-type (WT) plants were then transferred into a greenhouse for complementary experiments. We analyzed the physiological and biochemical responses of transgenic plants under drought and salt stresses in the greenhouse, and the results were compared with control WT plants. Responses to abiotic stress were greater in transgenic plants compared with WT. Based on our results, introduction of the DRS1 gene into poplar 'Nanlin895' plants significantly enhanced the resistance of those plants to water deficit and high salinity, allowing higher growth rates of roots and shoots in those plants. Additionally, the clawed root rate increased in transformed poplars grown in culture media or in soil, and improved survival under drought and salt stress conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    PubMed

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

  12. Monitoring the effect of poplar trees on petroleum-hydrocarbon and chlorinated-solvent contaminated ground water

    USGS Publications Warehouse

    Landmeyer, James E.

    2001-01-01

    At contaminated groundwater sites, poplar trees can be used to affect ground-water levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.

  13. Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation.

    PubMed

    Doty, Sharon L; Freeman, John L; Cohu, Christopher M; Burken, Joel G; Firrincieli, Andrea; Simon, Andrew; Khan, Zareen; Isebrands, J G; Lukas, Joseph; Blaylock, Michael J

    2017-09-05

    Trichloroethylene (TCE) is a widespread environmental pollutant common in groundwater plumes associated with industrial manufacturing areas. We had previously isolated and characterized a natural bacterial endophyte, Enterobacter sp. strain PDN3, of poplar trees, that rapidly metabolizes TCE, releasing chloride ion. We now report findings from a successful three-year field trial of endophyte-assisted phytoremediation on the Middlefield-Ellis-Whisman Superfund Study Area TCE plume in the Silicon Valley of California. The inoculated poplar trees exhibited increased growth and reduced TCE phytotoxic effects with a 32% increase in trunk diameter compared to mock-inoculated control poplar trees. The inoculated trees excreted 50% more chloride ion into the rhizosphere, indicative of increased TCE metabolism in planta. Data from tree core analysis of the tree tissues provided further supporting evidence of the enhanced rate of degradation of the chlorinated solvents in the inoculated trees. Test well groundwater analyses demonstrated a marked decrease in concentration of TCE and its derivatives from the tree-associated groundwater plume. The concentration of TCE decreased from 300 μg/L upstream of the planted area to less than 5 μg/L downstream of the planted area. TCE derivatives were similarly removed with cis-1,2-dichloroethene decreasing from 160 μg/L to less than 5 μg/L and trans-1,2-dichloroethene decreasing from 3.1 μg/L to less than 0.5 μg/L downstream of the planted trees. 1,1-dichloroethene and vinyl chloride both decreased from 6.8 and 0.77 μg/L, respectively, to below the reporting limit of 0.5 μg/L providing strong evidence of the ability of the endophytic inoculated trees to effectively remove TCE from affected groundwater. The combination of native pollutant-degrading endophytic bacteria and fast-growing poplar tree systems offers a readily deployable, cost-effective approach for the degradation of TCE, and may help mitigate potential transfer up

  14. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields.

    PubMed

    Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack

    2006-08-05

    An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.

  15. Chemical and isotopic changes in Williston Basin brines during long-term oil production: An example from the Poplar dome, Montana

    USGS Publications Warehouse

    Peterman, Zell; Thamke, Joanna N.

    2016-01-01

    Brine samples were collected from 30 conventional oil wells producing mostly from the Charles Formation of the Madison Group in the East and Northwest Poplar oil fields on the Fort Peck Indian Reservation, Montana. Dissolved concentrations of major ions, trace metals, Sr isotopes, and stable isotopes (oxygen and hydrogen) were analyzed to compare with a brine contaminant that affected groundwater northeast of the town of Poplar. Two groups of brine compositions, designated group I and group II, are identified on the basis of chemistry and 87Sr/86Sr ratios. The solute chemistry and Sr isotopic composition of group I brines are consistent with long-term residency in Mississippian carbonate rocks, and brines similar to these contaminated the groundwater. Group II brines probably resided in clastic rocks younger than the Mississippian limestones before moving into the Poplar dome to replenish the long-term fluid extraction from the Charles Formation. Collapse of strata at the crest of the Poplar dome resulting from dissolution of Charles salt in the early Paleogene probably developed pathways for the ingress of group II brines from overlying clastic aquifers into the Charles reservoir. Such changes in brine chemistry associated with long-term oil production may be a widespread phenomenon in the Williston Basin.

  16. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    PubMed

    Yu, Jingling; Yang, Lei; Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-01-01

    Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  17. Production of Hybrid Poplar under Short-Term, Intensive Culture in Western Colorado

    USDA-ARS?s Scientific Manuscript database

    An irrigated study was conducted at the Western Colorado Research Center at Fruita for 6 yr to evaluate eight hybrid poplar clones under short-term, intensive culture. The eight clones included in the study were Populus nigra x P. maximowiczii (NM6), P. trichocarpa x P. deltoides (52225, OP367), and...

  18. Phytoextraction of risk elements by willow and poplar trees.

    PubMed

    Kacálková, Lada; Tlustoš, Pavel; Száková, Jiřina

    2015-01-01

    To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4-2.0 mg Cd.kg(-1), 78-313 mg Zn.kg(-1), 21.3-118 mg Cu.kg(-1)). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg(-1), 909 mg Zn.kg(-1), and 17.7 mg Cu.kg(-1)) compared to Populus clones (maximum 2.06 mg Cd.kg(-1), 463 mg Zn.kg(-1), and 11.8 mg Cu.kg(-1)). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.

  19. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylanmore » that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.« less

  20. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.

    PubMed

    Movahedi, Ali; Zhang, Jiaxin; Sun, Weibo; Mohammadi, Kourosh; Almasi Zadeh Yaghuti, Amir; Wei, Hui; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2018-06-01

    Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities

    Treesearch

    Chao Zhang; Xinshu Zhuang; Zhao Jiang Wang; Fred Matt; Franz St. John; J.Y. Zhu

    2013-01-01

    Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose...

  2. Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture

    Treesearch

    Sridev Mohapatra; Rakesh Minocha; Stephanie Long

    2009-01-01

    While polyamines (PAs) have been suggested to protect cells against Reactive Oxygen Species (ROS), their catabolism is known to generate ROS. We compared the activities of several enzymes and cellular metabolites involved in the ROS scavenging pathways in two isogenic cell lines of poplar (Populus nigra × maximowiczii) differing in their PA...

  3. An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock

    DOE PAGES

    Meng, Xianzhi; Pu, Yunqiao; Yoo, Chang Geun; ...

    2016-12-12

    Here, in an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and 13C solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons’ stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg gmore » $$–1\\atop{biomass}$$ as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and 31P NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor.« less

  4. An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xianzhi; Pu, Yunqiao; Yoo, Chang Geun

    Here, in an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and 13C solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons’ stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg gmore » $$–1\\atop{biomass}$$ as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and 31P NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor.« less

  5. Mercury Content of Sediments in East Fork Poplar Creek: Current Assessment and Past Trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Scott C.; Eller, Virginia A.; Dickson, Johnbull O.

    2017-01-01

    This study provided new information on sediment mercury (Hg) and monomethylmercury (MMHg) content and chemistry. The current inventory of Hg in East Fork Poplar Creek (EFPC) bed sediments was estimated to be 334 kg, which represents a ~67% decrease relative to the initial investigations in 1984. MMHg sediment inventory was estimated to be 44.1 g, lower but roughly similar to past estimates. The results support the relevance and potential impacts of other active and planned investigations within the Mercury Remediation Technology Development for Lower East Fork Poplar Creek project (e.g., assessment and control of bank soil inputs, sorbents for Hgmore » and MMHg removal, re-introduction of freshwater clams to EFPC), and identify gaps in current understanding that represent opportunities to understand controlling variables that may inform future technology development studies.« less

  6. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill.

    PubMed

    Rees, Rainer; Robinson, Brett H; Rog, Christopher J; Papritz, Andreas; Schulin, Rainer

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effects of root pruning on the physicochemical properties and microbial activities of poplar rhizosphere soil.

    PubMed

    Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng

    2017-01-01

    This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. 'Neva') trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil.

  8. Effects of root pruning on the physicochemical properties and microbial activities of poplar rhizosphere soil

    PubMed Central

    Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng

    2017-01-01

    This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. ‘Neva’) trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil. PMID:29117215

  9. Yellow fever: an update.

    PubMed

    Monath, T P

    2001-08-01

    Yellow fever, the original viral haemorrhagic fever, was one of the most feared lethal diseases before the development of an effective vaccine. Today the disease still affects as many as 200,000 persons annually in tropical regions of Africa and South America, and poses a significant hazard to unvaccinated travellers to these areas. Yellow fever is transmitted in a cycle involving monkeys and mosquitoes, but human beings can also serve as the viraemic host for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean and Asia. Here I review the clinical features of the disease, its pathogenesis and pathophysiology. The disease mechanisms are poorly understood and have not been the subject of modern clinical research. Since there is no specific treatment, and management of patients with the disease is extremely problematic, the emphasis is on preventative vaccination. As a zoonosis, yellow fever cannot be eradicated, but reduction of the human disease burden is achievable through routine childhood vaccination in endemic countries, with a low cost for the benefits obtained. The biological characteristics, safety, and efficacy of live attenuated, yellow fever 17D vaccine are reviewed. New applications of yellow fever 17D virus as a vector for foreign genes hold considerable promise as a means of developing new vaccines against other viruses, and possibly against cancers.

  10. Recycling and the Use of Wood Materials by the U.S. Pallet Industry

    Treesearch

    Robert J. Bush; Eric Hansen; Philip A. Araman

    1994-01-01

    Estimates of the use of new and recycled wood materials by the U.S. pallet industry are presented. The industry (including SICs 2441, 2448, 2449) consumed 4.74 billion board feet of solid hardwoods and 2.15 billion board feet of solid softwoods in 1992. The most common individual hardwood species were oak and yellow-poplar. Douglas-fir and southern yellow pine were the...

  11. Engineering Monolignol p-Coumarate Conjugates into Poplar and Arabidopsis Lignins1

    PubMed Central

    Smith, Rebecca A.; Gonzales-Vigil, Eliana; Karlen, Steven D.; Park, Ji-Young; Lu, Fachuang; Wilkerson, Curtis G.; Samuels, Lacey; Ralph, John; Mansfield, Shawn D.

    2015-01-01

    Lignin acylation, the decoration of hydroxyls on lignin structural units with acyl groups, is common in many plant species. Monocot lignins are decorated with p-coumarates by the polymerization of monolignol p-coumarate conjugates. The acyltransferase involved in the formation of these conjugates has been identified in a number of model monocot species, but the effect of monolignol p-coumarate conjugates on lignification and plant growth and development has not yet been examined in plants that do not inherently possess p-coumarates on their lignins. The rice (Oryza sativa) p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE gene was introduced into two eudicots, Arabidopsis (Arabidopsis thaliana) and poplar (Populus alba × grandidentata), and a series of analytical methods was used to show the incorporation of the ensuing monolignol p-coumarate conjugates into the lignin of these plants. In poplar, specifically, the addition of these conjugates did not occur at the expense of the naturally incorporated monolignol p-hydroxybenzoates. Plants expressing the p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE transgene can therefore produce monolignol p-coumarate conjugates essentially without competing with the formation of other acylated monolignols and without drastically impacting normal monolignol production. PMID:26511914

  12. Energy partitioning and surface resistance of a poplar plantation in northern China

    Treesearch

    M. Kang; Z. Zhang; A. Noormets; X. Fang; T. Zha; J. Zhou; G. Sun; S. G. McNulty; J. Chen

    2015-01-01

    Poplar (Populus sp.) plantations have been, on the one hand, broadly used in northern China for urban greening, combating desertification, as well as for paper and wood production. On the other hand, such plantations have been questioned occasionally for their possible negative impacts on water availability due to the higher water-use nature of...

  13. Accumulation and Distribution of Dry Matter and Nutrients in Aigeiros Poplar Plantations

    Treesearch

    G. L. Switzer; L. E. Nelson; James B. Baker

    1976-01-01

    Patterns of accumulation of dry matter and nutrients through 20 years in Aigeiros poplar plantations are strongly influenced by mode of plantation culture. Accumulation of both dry matter and nutrients in closely spaced thinned plantations is linear through age 12 to 14, after which accumulation declines and then stabilizes. In contrast, dry matter and nutrient...

  14. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar.

    PubMed

    Sun, Liping; Ma, Yifeng; Wang, Huihong; Huang, Weipeng; Wang, Xiaozhu; Han, Li; Sun, Wanmei; Han, Erqin; Wang, Bangjun

    2018-03-18

    Mercury (Hg) is a highly biotoxic heavy metal that contaminates the environment. Phytoremediation is a green technology for environmental remediation and is used to clean up Hg contaminated soil in recent years. In this study, we isolated an ATP-binding cassette (ABC) transporter gene PtABCC1 from Populus trichocarpa and overexpressed it in Arabidopsis and poplar. The transgenic plants conferred higher Hg tolerance than wild type (WT) plants, and overexpression of PtABCC1 could lead to 26-72% or 7-160% increase of Hg accumulation in Arabidopsis or poplar plants, respectively. These results demonstrated that PtABCC1 plays a crucial role in enhancing tolerance and accumulation to Hg in plants, which provides a promising way for phytoremediation of Hg contamination. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Phylogeny of Yellow Fever Virus, Uganda, 2016.

    PubMed

    Hughes, Holly R; Kayiwa, John; Mossel, Eric C; Lutwama, Julius; Staples, J Erin; Lambert, Amy J

    2018-08-17

    In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.

  16. Fiber Recovery with Chain Flail Delimbing/Debarking and Chipping of Hybrid Poplar

    Treesearch

    Bruce Hartsough; Raffaele Spinelli; Steve Pottle; John Klepac

    2000-01-01

    This study determined how much wood was potentially available From short rotation hybrid poplar, and how mtich was actually recovered when trees were delimbed and debarked with chain flails and chipped. 3 1 groups of five trees each were measured and then processed. For trees larger than 50 kg total dry weight, potentially recoverable wood averaged 75% oftotal weight...

  17. Achievements in the utilzation of poplar wood : guideposts for the future : [abstract

    Treesearch

    John J. Balatinecz; Andre Leclercq; David E. Kretschmann

    2000-01-01

    Poplar wood is suitable and is utilized for a broad range of forest products worldwide. The utilization of any species is governed by a number of factors, such as basic wood properties, overall quality, quantity and price of the resource, available processing technologies, local as well as international market conditions for the products, and the availability and price...

  18. Sprouting of thinned hybrid poplars on bituminous strip-mine spoils in Pennsylvania

    Treesearch

    Walter H. Davidson; Grant Davis

    1972-01-01

    Various thinning techniques were applied to 5-year old hybrid poplar stands on bituminous strip-mine spoils. Basal and stump sprays of 2, 4, 5-T in diesel oil were effective for killing the trees. There was no evidence that chemical treatments affected adjacent trees. Where trees were cut and stumps were not chemically treated, all clones sprouted prolifically....

  19. 21 CFR 137.215 - Yellow corn flour.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...

  20. 21 CFR 137.275 - Yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead of...

  1. 21 CFR 137.215 - Yellow corn flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...

  2. 21 CFR 137.275 - Yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead of...

  3. Large-scale hybrid poplar production economics: 1995 Alexandria, Minnesota establishment cost and management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downing, M.; Langseth, D.; Stoffel, R.

    1996-12-31

    The purpose of this project was to track and monitor costs of planting, maintaining, and monitoring large scale commercial plantings of hybrid poplar in Minnesota. These costs assists potential growers and purchasers of this resource to determine the ways in which supply and demand may be secured through developing markets.

  4. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    USDA-ARS?s Scientific Manuscript database

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  5. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.).

    PubMed

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tumbas-Šaponjac, V; Čanadanović-Brunet, J; Orlović, S

    2016-08-01

    This paper is aimed to characterize young poplar plants under the influence of water stress provoked by polyethileneglycol 6000 (PEG 6000). Three polar genotypes (M1, B229, and PE19/66) were grown in hydroponics and subjected to 100 and 200 mOsm PEG 6000 during six days. Polyphenol characterization, two enzymatic markers and antioxidant capacity in leaves and roots were investigated in stressed plants. Total phenol content, ferric reducing antioxidant capacity (FRAP) and DPPH antiradical power (DPPH ARP) were determined for estimating total antioxidant capacity. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were determined as enzymatic markers. Polyphenol characterization of poplar samples was performed by HPLC-PDA analysis. All results were subjected to correlation analysis and principal component analysis (PCA). Inspite of the decrease of total phenol content in investigated genotypes, as well as total antioxidant capacity, some of polyphenols were affected by stress like flavonoids chrysin, myricetine, kaempferol and isoferulic acid in roots of B229 genotype (Populus deltoides). Genotype B229 also showed the increase of antioxidant capacity and PAL activity in root and leaves under stress what could be the indicator of the adaptability of poplar plants to water stress. Significant positive correlations were obtained between PAL, antioxidant capacity as well as phenolic acids among themselves. Chemometric evaluation showed close interdependence between flavonoids, FRAP, DPPH antiradical power and both investigated enzymes of polyphenol metabolism, PAL and PPO. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Overexpression of a cytosolic NADP+-isocitrate dehydrogenase causes alterations in the vascular development of hybrid poplars.

    PubMed

    Pascual, María Belén; Molina-Rueda, Juan Jesús; Cánovas, Francisco M; Gallardo, Fernando

    2018-06-15

    Cytosolic NADP+-isocitrate dehydrogenase (ICDH) is one of the major enzymes involved in the production of 2-oxoglutarate for amino acid biosynthesis in plants. In most plants studied, ICDH is encoded by either one gene or a small gene family, and the protein sequence has been highly conserved during evolution, suggesting it plays different and essential roles in metabolism and differentiation. To elucidate the role of ICDH in hybrid poplar (Populus tremula x P. alba), transgenic plants overexpressing the Pinus pinaster gene were generated. Overexpression of ICDH resulted in hybrid poplar (Populus tremula × P. alba) trees with higher expression levels of the endogenous ICDH gene and higher enzyme content than control untransformed plants. Transgenic poplars also showed an increased expression of glutamine synthetase (GS1.3), glutamate decarboxylase (GAD) and other genes associated with vascular differentiation. Furthermore, these plants exhibited increased growth in height, longer internodes and enhanced vascular development in young leaves and the apical region of stem. Modifications in amino acid and organic acid content were observed in young leaves of the transgenic lines, suggesting an increased biosynthesis of amino acids for building new structures and also for transport to other sink organs, as expanding leaves or young stems. Taken together, these results support an important role of ICDH in plant growth and vascular development.

  7. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar

    PubMed Central

    de Jong, Femke; Hanley, Steven J.; Beale, Michael H.; Karp, Angela

    2015-01-01

    Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow. PMID:26070140

  8. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival

    Treesearch

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Peter Kitin; Steven H. Strauss

    2011-01-01

    We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after...

  9. An economic and energy analysis of poplar intensive cultures in the Lake States.

    Treesearch

    Dietmar Rose; Karen Ferguson; David C. Lothner; J. Zavitkovski

    1981-01-01

    Short- (5 to 10 years) and long- (15 years) rotation, irrigated and nonirrigated intensive cultures of hybrid poplar were analyzed economically via cash flow analysis. Energy balances we also calculated for each alternative. Nonirrigated systems offer reasonable economic returns whereas irrigated systems do not. All systems produce more energy than they use as...

  10. Hardwood siding performance.

    Treesearch

    Glenn A. Cooper

    1967-01-01

    A 6-year exposure test of three styles of siding made from nine hardwoods and given three treatments showed that full-length yellow-poplar vertical tongue-and-groove siding dip-treated in a water-repellent preservative performed best.

  11. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    PubMed

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  12. Evaluating hybrid poplar rooting. I. genotype x environment interactions in three contrasting sites

    Treesearch

    Ronald S., Jr. Zalesny; Don E. Riemenschneider; Richard B. Hall

    2002-01-01

    We need to learn more about environmental conditions that promote or hinder rooting of unrooted dormant hybrid poplar cuttings. Planting cuttings and recording survival after the growing season is not suitable to keep up with industrial demands for improved stock. This method does not provide information about specific genotype x environment interactions. We know very...

  13. Growth of hybrid poplars, white spruce, and jack pine under various artificial lights.

    Treesearch

    Pamela S. Roberts; J. Zavitkovski

    1981-01-01

    Describes the energy consumption and biological effects of fluorescent, incandescent, and high pressure sodium lighting on the growth of poplars, white spruce, and jack pine in a greenhouse. At similar light levels the biological effects of all three light sources were similar. The incandescent lamps consumed several times more energy than the other two light...

  14. Cytotoxicity of yellow sand in lung epithelial cells.

    PubMed

    Kim, Y H; Kim, K S; Kwak, N J; Lee, K H; Kweon, S A; Lim, Y

    2003-02-01

    The present study was carried out to observe the cytotoxicity of yellow sand in comparison with silica and titanium dioxide in a rat alveolar type II cell line (RLE-6TN). Yellow sand (China Loess) was obtained from the loess layer in the Gunsu Province of China. The mean particle diameter of yellow sand was about 0.003 +/- 0.001 mm. Major elements of yellow sand were Si(27.7 +/- 0.6%), Al(6.01 +/- 0.17%), and Ca(5.83 +/- 0.23%) in that order. Silica and yellow sand significantly decreased cell viability and increased [Ca2+]i. All three particles increased the generation of H2O2. TiO2 did not change Fenton activity, while silica induced a slight increase of Fenton activity. In contrast, yellow sand induced a significant increase of Fenton activity. Silica, yellow sand and TiO2 induced significant nitrite formations in RLE-6TN cells. Silica showed the highest increase in nitrite formation, while yellow sand induced the least formation of nitrite. Silica and yellow sand increased the release of TNF-a. Based on these results, we suggest that yellow sand can induce cytotoxicity in RLE-6TN cells and reactive oxygen species, Fenton activity and reactive nitrogen species might be involved in this toxicity.

  15. Yellow phosphorus-induced Brugada phenocopy.

    PubMed

    Dharanipradab, Mayakrishnan; Viswanathan, Stalin; Kumar, Gokula Raman; Krishnamurthy, Vijayalatchumy; Stanley, Daphene Divya

    Metallic phosphides (of aluminum and phosphide) and yellow phosphorus are commonly used rodenticide compounds in developing countries. Toxicity of yellow phosphorus mostly pertains to the liver, kidney, heart, pancreas and the brain. Cardiotoxicity with associated Brugada ECG pattern has been reported only in poisoning with metallic phosphides. Brugada phenocopy and hepatic dysfunction were observed in a 29-year-old male following yellow phosphorus consumption. He had both type 1 (day1) and type 2 (day2) Brugada patterns in the electrocardiogram, which resolved spontaneously by the third day without hemodynamic compromise. Toxins such as aluminum and zinc phosphide have been reported to induce Brugada ECG patterns due to the generation of phosphine. We report the first case of yellow phosphorus-related Brugada phenocopy, without hemodynamic compromise or malignant arrhythmia. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    DOE PAGES

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; ...

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have largemore » implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DP w) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of

  17. Perinatal Yellow Fever: A Case Report.

    PubMed

    Diniz, Lilian Martins Oliveira; Romanelli, Roberta Maia Castro; de Carvalho, Andréa Lucchesi; Teixeira, Daniela Caldas; de Carvalho, Luis Fernando Andrade; Cury, Verônica Ferreira; Filho, Marcelo Pereira Lima; Perígolo, Graciele; Heringer, Tiago Pires

    2018-04-09

    An outbreak of yellow fever in Brazil made it possible to assess different presentations of disease such as perinatal transmission. A pregnant woman was admitted to hospital with yellow fever symptoms. She was submitted to cesarean section and died due to fulminant hepatitis. On the 6th day the newborn developed liver failure and died 13 days later. Yellow fever PCR was positive for both.

  18. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  19. Biochar as a substitute for vermiculite in potting mix for hybrid poplar

    Treesearch

    William L. Headlee; Catherine E. Brewer; Richard B. Hall

    2014-01-01

    The purpose of this study was to evaluate biochar as a substitute for vermiculite in potting mixes for unrooted vegetative cuttings of hybrid poplar as represented by the clone ‘NM6’ (Populus nigra L. × Populus suaveolens Fischer subsp. maximowiczii A. Henry). We compared three treatments (peat moss (control), peat moss mixed with vermiculite, and peat moss mixed with...

  20. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Treesearch

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  1. Lamination of Hardwood Composite Framing With an Emulsion Polymer-lsocyanate Adhesive and Radio-Frequency Curing

    Treesearch

    Charles B. Vick

    1987-01-01

    Composite framing msde from yellow-poplar and sweetgum parallel-laminated veneer and oriented flakeboard was effectively laminated with an emulsion polymer/isocyanate adhesive and radio-frequency curing at an assumed but typical range of material surface characteristics and factory assembly conditions.

  2. Diameter increase in second-growth Appalachian hardwood stands - a comparison of species

    Treesearch

    George R., Jr. Trimble

    1967-01-01

    A study of growth at d.b.h. among eight hardwood species after partial cutting in second-growth stands. Red oak grew fastest, followed in order by yellow-poplar, sugar maple, basswood, black cherry, white ash, beech, and chestnut oak.

  3. Soil Management in Hardwood Plantations

    Treesearch

    B. G. Blackmon

    1978-01-01

    Several soil management techniques--fertilization, deep plowing, cover cropping, summer fallowing, Irrigation, and cultivation--can benefit hardwood plantations. The applicability of the treatments to plantations of cottonwood, sweetgum, sycamore, green ash, yellow-poplar, and oaks depends largely on site conditions.

  4. An evaluation of yellow-flowering magnolias and magnolia rootstocks

    USDA-ARS?s Scientific Manuscript database

    Yellow-flowering magnolias were evaluated for flower color, bloom duration and growth rate in USDA Hardiness Zone 6b. Of the thirty selections evaluated, all were reported to have yellow blooms; however, tepal color ranged from light pink with some yellow coloration, to creamy yellow to dark yellow....

  5. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  6. Biodegradation of Trichloroethylene by an Endophyte of Hybrid Poplar

    PubMed Central

    Kang, Jun Won; Khan, Zareen

    2012-01-01

    We isolated and characterized a novel endophyte from hybrid poplar. This unique endophyte, identified as Enterobacter sp. strain PDN3, showed high tolerance to trichloroethylene (TCE). Without the addition of inducers, such as toluene or phenol, PDN3 rapidly reduced TCE levels in medium from 72.4 μM to 30.1 μM in 24 h with a concurrent release of 127 μM chloride ion, and nearly 80% of TCE (55.3 μM) was dechlorinated by PDN3 in 5 days with 166 μM chloride ion production, suggesting TCE degradation. PMID:22367087

  7. Helicopter electromagnetic and magnetic survey maps and data, East Poplar Oil Field area, August 2004, Fort Peck Indian Reservation, northeastern Montana

    USGS Publications Warehouse

    Smith, Bruce D.; Thamke, Joanna N.; Cain, Michael J.; Tyrrell, Christa; Hill, Patricia L.

    2006-01-01

    This report is a data release for a helicopter electromagnetic and magnetic survey that was conducted during August 2004 in a 275-square-kilometer area that includes the East Poplar oil field on the Fort Peck Indian Reservation. The electromagnetic equipment consisted of six different coil-pair orientations that measured resistivity at separate frequencies from about 400 hertz to about 140,000 hertz. The electromagnetic resistivity data were converted to six electrical conductivity grids, each representing different approximate depths of investigation. The range of subsurface investigation is comparable to the depth of shallow aquifers. Areas of high conductivity in shallow aquifers in the East Poplar oil field area are being delineated by the U.S. Geological Survey, in cooperation with the Fort Peck Assiniboine and Sioux Tribes, in order to map areas of saline-water plumes. Ground electromagnetic methods were first used during the early 1990s to delineate more than 31 square kilometers of high conductivity saline-water plumes in a portion of the East Poplar oil field area. In the 10 years since the first delineation, the quality of water from some wells completed in the shallow aquifers in the East Poplar oil field changed markedly. The extent of saline-water plumes in 2004 likely differs from that delineated in the early 1990s. The geophysical and hydrologic information from U.S. Geological Survey studies is being used by resource managers to develop ground-water resource plans for the area.

  8. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  9. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress

    PubMed Central

    Hennig, Anne; Kleinschmit, Jörg R. G.; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites. PMID:26042130

  10. 21 CFR 137.285 - Degerminated yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...

  11. 21 CFR 137.285 - Degerminated yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...

  12. 17DD yellow fever vaccine

    PubMed Central

    Martins, Reinaldo M.; Maia, Maria de Lourdes S.; Farias, Roberto Henrique G.; Camacho, Luiz Antonio B.; Freire, Marcos S.; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C.; Lima, Sheila Maria B.; Nogueira, Rita Maria R.; Sá, Gloria Regina S.; Hokama, Darcy A.; de Carvalho, Ricardo; Freire, Ricardo Aguiar V.; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-01-01

    Objective: To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Results: Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Methods: Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. Conclusion: In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. International Register ISRCTN 38082350. PMID:23364472

  13. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes.

    PubMed Central

    Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J

    1993-01-01

    A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506

  14. Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery.

    PubMed

    Dou, Chang; Gustafson, Rick; Bura, Renata

    2018-01-01

    In the biofuel industry, land productivity is important to feedstock growers and conversion process product yield is important to the biorefinery. The crop productivity, however, may not positively correlate with bioconversion yield. Therefore, it is important to evaluate sugar yield and biomass productivity. In this study, 2-year-old poplar trees harvested in the first coppice cycle, including one low-productivity hybrid and one high-productivity hybrid, were collected from two poplar tree farms. Through steam pretreatment and enzymatic hydrolysis, the bioconversion yields of low- and high-productivity poplar hybrids were compared for both sites. The low-productivity hybrids had 9-19% higher sugar yields than the high-productivity hybrids, although they have the similar chemical composition. Economic calculations show the impact on the plantation and biorefinery of using the two feedstocks. Growing a high-productivity hybrid means the land owner would use 11-26% less land (which could be used for other crops) or collect $2.53-$3.46 MM/year extra revenue from the surplus feedstock. On the other side, the biorefinery would receive 5-10% additional revenue using the low-productivity hybrid. We propose a business model based on the integration of the plantation and the biorefinery. In this model, different feedstocks are assessed using a metric of product tonnage per unit land per year. Use of this new economic metric bridges the gap between feedstock growers and users to maximize the overall production efficiency.

  15. Hybrid poplar cultivars for maximizing phytomass production on gold mine tailings in the Black Hills

    Treesearch

    Ardell J. Bjugstad

    1987-01-01

    Twenty-six hybrid poplar clones were planted as cuttings on a gold mine tailings in the Black Hills. Four exhibited very good survival and growth. Other clones had relatively high (exceeding 50 percent) survival but slow growth (below 60 cm) over a 5-year period.

  16. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.

    PubMed

    Scheerer, Ursula; Haensch, Robert; Mendel, Ralf R; Kopriva, Stanislav; Rennenberg, Heinz; Herschbach, Cornelia

    2010-01-01

    Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment

  17. Regeneration trends 10 years after clearcutting of an Appalachian hardwood stand

    Treesearch

    Charles E. McGee; Ralph M. Hooper

    1975-01-01

    Ten years after a Southern Appalachian hardwood stand was clearcut, numbers of stems of desirable species appear adequate to restock the area. Yellow-poplar will dominate on the better sites. Some problems are anticipated from grapevines, black locust thickets, and red maple clumps.

  18. The Physics of Pollen and Spore Rebound from Plant Surfaces.

    NASA Astrophysics Data System (ADS)

    Paw U, Kyaw Tha

    1980-12-01

    The problem of particle rebound from plant surfaces has been examined. Particle rebound is a component of net deposition; the other components are reentrainment and impingement. I carried out several sets of wind tunnel experiments to examine the nature of rebound, reentrainment and impingement. Quantitative and qualitative analyses were carried out on the data. A simple computer model was created to predict particle deposition in wind tunnel conditions. My work confirms that rebound is an important process in the wind tunnel, and implies the existence of a process I call 'rebound/reentrainment'. I tested several major hypotheses. The first was that biological materials exhibit the same physical rebound characteristics as artificial materials. The second was that particles rebound in a manner predicted by Dahneke's (1971, 1975) theory. The third was that rebound is a dominant component of net deposition. The fourth was that surface characteristics may seriously influence rebound. I carried out my experiments in a low-speed wind tunnel. For surfaces I used glass and the leaves of tulip poplar (Liriodendron tulipifera), Coleus (Coleus blumeii) and American elm (Ulmus americana). For particles I used glass microbeads, lycopodium spores (Lycopodium spp.), and ragweed pollen (Ambrosia trifida). Four main sets of experiments were carried out. I examined rebound, as a function of particle speed, of particles impinging upon leaf surfaces, reentrainment of spores and pollen as a function of wind speed and time, net deposition, as a function of wind speed, and adhesion of pollen and spores to the leaf surfaces. From these experiments I concluded that in general, pollen and spore rebound can be described well by Dahneke's (1971, 1975) theory. Particle differences are far more significant than surface differences in the rebound process. I postulate the existence of rebound/reentrainment when particles impinge on surfaces with tangential fluid flow present. Particles will

  19. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    NASA Astrophysics Data System (ADS)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by

  20. Growth of five hybrid poplar genotypes exposed to interacting elevated CO2 and O3

    Treesearch

    R.E. Dickson; M.D. Coleman; D.E. Riemenschneider; J.G. Isebrands; G.D. Hogan; D.F. Karnosky

    1998-01-01

    A wide variety of hybrid poplar clones are being introduced for intensive culture biomass production, but the potential clonal or genotypic response to increasing tropospheric carbon dioxide (CO2), ozone (O3), and their interactions are unknown. To study these effects, we exposed five different hybrid Populus...

  1. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  2. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  3. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  4. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  5. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...

  6. Analysis of genetic and environmental effects on hybrid poplar rooting in Central and Northern Minnesota, USA

    Treesearch

    Ronald S., Jr. Zalesny; Don Riemenschneider; Edmund Bauer

    2000-01-01

    We studied genetic and environmental effects on adventitious root initiation and growth because rooting is biologically prerequisite to the establishment of hybrid poplar plantations. Six clones from two pedigrees (pure Populus deltoides "cottonwoods" and P. deltoides x P. maximowiczii hybrids) were...

  7. Intercropping with switchgrass improves net greenhouse gas balance in hybrid poplar plantations on a sand soil

    USDA-ARS?s Scientific Manuscript database

    Highly productive, commercial hybrid poplar plantations are being managed in the Pacific Northwest for high-value timber production at relatively low stocking densities under irrigation. The open understory was used to produce switchgrass (Panicum virgatum) prior to canopy closure. The objectives ...

  8. Fatal Yellow Fever in Travelers to Brazil, 2018.

    PubMed

    Hamer, Davidson H; Angelo, Kristina; Caumes, Eric; van Genderen, Perry J J; Florescu, Simin A; Popescu, Corneliu P; Perret, Cecilia; McBride, Angela; Checkley, Anna; Ryan, Jenny; Cetron, Martin; Schlagenhauf, Patricia

    2018-03-23

    Yellow fever virus is a mosquito-borne flavivirus that causes yellow fever, an acute infectious disease that occurs in South America and sub-Saharan Africa. Most patients with yellow fever are asymptomatic, but among the 15% who develop severe illness, the case fatality rate is 20%-60%. Effective live-attenuated virus vaccines are available that protect against yellow fever (1). An outbreak of yellow fever began in Brazil in December 2016; since July 2017, cases in both humans and nonhuman primates have been reported from the states of São Paulo, Minas Gerais, and Rio de Janeiro, including cases occurring near large urban centers in these states (2). On January 16, 2018, the World Health Organization updated yellow fever vaccination recommendations for Brazil to include all persons traveling to or living in Espírito Santo, São Paulo, and Rio de Janeiro states, and certain cities in Bahia state, in addition to areas where vaccination had been recommended before the recent outbreak (3). Since January 2018, 10 travel-related cases of yellow fever, including four deaths, have been reported in international travelers returning from Brazil. None of the 10 travelers had received yellow fever vaccination.

  9. Interaction between isoprene and ozone fluxes at ecosystem level in a poplar plantation and its impact at European level

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Hendriks, C.; Brilli, F.; Gioli, B.; Portillo Estrada, M.; Schaap, M.; Ceulemans, R.

    2015-12-01

    The emissions of Biogenic volatile organic compounds (BVOCs) from vegetation, mainly in form of isoprenoids, play an important role in the tropospheric ozone (O3) formation. The potential large expansion of isoprene emitter species (e.g. poplar) as biofuels feedstock might impact the ground level O3 formation. Here we report the simultaneous observations, using the eddy covariance (EC) technique, of isoprene, O3 and CO2 fluxes in a short rotation coppice (SRC) of poplar. The impact of current poplar plantations and associated isoprene emissions on ground level ozone concentrations for Europe was evaluated using a chemistry transport model (CTM) LOTOS-EUROS. The isoprene fluxes showed a well-defined seasonal and daily cycle that mirrored with the stomata O3 uptake. The isoprene emission and the stomata O3 uptake showed significant statistical relationship especially at elevated temperature. Isoprene was characterized by a remarkable peak of emissions (e.g. 38 nmol m-2s-1) occurring for few days as a consequence of the rapid variation of the air and surface temperature. During these days the photosynthetic apparatus (i.e. the CO2 fluxes) and transpiration rates did not show significant variation while we did observe a variation of the energy exchange and a reduction of the bowen ratio. The response of isoprene emissions to ambient O3 concentration follows the common form of the hormetic dose-response curve with a considerable reduction of the isoprene emissions at [O3] > 80 ppbv indicating a potential damping effect of the O3 levels on isoprene. Under the current condition the impact of SRC plantations on ozone concentrations / formation is very limited in Europe. Our findings indicate that, even with future scenarios with more SRC, or conventional poplar plantations, the impact on Ozone formation is negligible.

  10. The MYB182 Protein Down-Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Poplar by Repressing Both Structural and Regulatory Flavonoid Genes1[OPEN

    PubMed Central

    Yoshida, Kazuko; Ma, Dawei; Constabel, C. Peter

    2015-01-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. PMID:25624398

  11. Genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome.

    PubMed

    Velikova, Violeta; Ghirardo, Andrea; Vanzo, Elisa; Merl, Juliane; Hauck, Stefanie M; Schnitzler, Jörg-Peter

    2014-04-04

    Biogenic isoprene (2-methyl-1,3-butadiene) improves the integrity and functionality of thylakoid membranes and scavenges reactive oxygen species (ROS) in plant tissue under stress conditions. On the basis of available physiological studies, we hypothesized that the suppression of isoprene production in the poplar plant by genetic engineering would cause changes in the chloroplast protein pattern, which in turn would compensate for changes in chloroplast functionality and overall plant performance under abiotic stress. To test this hypothesis, we used a stable isotope-coded protein-labeling technique in conjunction with polyacrylamide gel electrophoresis and liquid chromatography tandem mass spectrometry. We analyzed quantitative and qualitative changes in the chloroplast proteome of isoprene-emitting and non isoprene-emitting poplars. Here we demonstrate that suppression of isoprene synthase by RNA interference resulted in decreased levels of chloroplast proteins involved in photosynthesis and increased levels of histones, ribosomal proteins, and proteins related to metabolism. Overall, our results show that the absence of isoprene triggers a rearrangement of the chloroplast protein profile to minimize the negative stress effects resulting from the absence of isoprene. The present data strongly support the idea that isoprene improves/stabilizes thylakoid membrane structure and interferes with the production of ROS.

  12. Nutrient Distribution Indicated Whole-Tree Harvesting as a Possible Factor Restricting the Sustainable Productivity of a Poplar Plantation System in China

    PubMed Central

    Ge, Xiaomin; Tian, Ye; Tang, Luozhong

    2015-01-01

    We evaluated the biomass and contents of five major macronutrients (N, P, K, Ca and Mg) in 10-year-old poplar trees (Populus deltoids Bartr. cv. “Lux”), and determined their nutrient use efficiencies (NUEs) at Zhoushan Forestry Farm (32°20′ N, 119°40′ E), Jiangsu province, in eastern China. The above- and below-ground biomass of poplar trees was 161.7 t ha-1, of which 53.3% was stemwood. The nutrient contents in the aboveground part were as follows: 415.1 kg N ha-1, 29.7 kg P ha-1, 352.0 kg K ha-1, 1083.0 kg Ca ha-1, and 89.8 kg Mg ha-1. The highest nutrient contents were in stembark, followed by branches, roots, stemwood, and foliage. The NUEs of the aboveground parts of poplar for N, P, K, Ca and Mg were 0.313, 4.377, 0.369, 0.120, 1.448 t dry biomass kg-1 nutrient, respectively, while those of stemwood were 1.294, 33.154, 1.253, 0.667, and 3.328 t dry biomass kg-1, respectively. The cycling coefficients, defined as the percentage of annual nutrient return in annual nutrient uptake, of N, P, K, Ca and Mg for the aboveground part were 87, 95, 69, 92, and 84%, respectively. Based on the NUE and nutrient cycling characteristics, shifting from whole-tree harvesting to stemwood-only harvesting and appropriately extending the harvest rotation could prevent site deterioration and support sustainable productivity of poplar plantation systems. PMID:25992549

  13. Determination of Fe, Hg, Mn, and Pb in three-rings of poplar (Populus alba L.) by U-shaped DC arc

    NASA Astrophysics Data System (ADS)

    Marković, D. M.; Novović, I.; Vilotić, D.; Ignjatović, Lj.

    2007-09-01

    The U-shaped DC arc with aerosol supply was applied for the determination of Fe, Hg, Mn, and Pb in poplar (Populus alba L.) tree-rings. By optimization of the operating parameters and by selection of the most appropriate signal integration time (20 s for Fe, Mn, and Pb and 30 s for Hg), the obtained limits of detection for Fe, Hg, Mn, and Pb are 5.8, 2.6, 1.6, and 2.0 ng/ml, respectively. The detection limits achieved by this method for Fe, Hg, Mn, and Pb are comparable with the detection limits obtained for these elements by such methods as inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasmatomic emission spectrometry (DCP-AES), and microwave-induced plasma-atomic emission spectrometry (MIP-AES). We used the tree-rings of poplar from two different locations. The first one is in the area close to the power plant “Nikola Tesla” TENT A, Obrenovac, while the other one is in the urban area of Novi Sad. In almost all cases, samples from the location at Obrenovac registered elevated average concentrations of Fe, Hg, Mn, and Pb in the tree-rings of poplar.

  14. Putrescine overproduction does not affect the catabolism of spermidine and spermine in poplar and Arabidopsis

    Treesearch

    Lin Shao; Pratiksha Bhatnagar; Rajtilak Majumdar; Rakesh Minocha; Subhash C. Minocha

    2014-01-01

    The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra x maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse...

  15. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism

    Treesearch

    Pratiksha Bhatnagar; Rakesh Minocha; Subhash C. Minocha

    2002-01-01

    We investigated the catabolism of putrescine (Put) in a non-transgenic (NT) and a transgenic cell line of poplar (Populus nigra x maximowiczii) expressing a mouse (Mus musculus) ornithine (Orn) decarboxylase (odc) cDNA. The transgenic cells produce 3- to 4-fold higher amounts of Put than the NT...

  16. Facing the Future: Effects of Short-Term Climate Extremes on Isoprene-Emitting and Nonemitting Poplar.

    PubMed

    Vanzo, Elisa; Jud, Werner; Li, Ziru; Albert, Andreas; Domagalska, Malgorzata A; Ghirardo, Andrea; Niederbacher, Bishu; Frenzel, Juliane; Beemster, Gerrit T S; Asard, Han; Rennenberg, Heinz; Sharkey, Thomas D; Hansel, Armin; Schnitzler, Jörg-Peter

    2015-09-01

    Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    PubMed

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O 3 ) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O 3 sensitive hybrid poplar clone ('546') under three O 3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O 3 . Impairment of photosynthesis by O 3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO 2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O 3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O 3 were less in RW than in WW for total biomass per plant. A stomatal O 3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O 3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O 3 .m -2 .s -1 (POD 7 ) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m -2 . Our results suggest that current O 3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O 3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Poplar plantation has the potential to alter the water balance in semiarid inner Mongolia

    Treesearch

    Burkhard Wilske; Long Wei; Shiping Chen; Tonggang Zha; Chenfeng Liu; Wenting Xu; Asko Noormets; Jianhui Haung; Yafen Wei; Jun Chen; Zhiqiang Zhang; Jian Ni; Ge Sun; Kirk Guo; Steve McNulty; Ranjeet John; Xiangguo Han; Guanghui Lin; Jiquan Chen

    2009-01-01

    Poplar plantation is the most dominant broadleaf forest type in northern China. Since the mid-1990s plantation was intensified to combat desertification along China’s northwestern border, i.e., within Inner Mongolia (IM). This evoked much concern regarding the ecological and environmental effects on areas that naturally grow grass or shrub vegetation. To highlight...

  19. How to Determine Polyetheylene Glycol 1,000 Content in Treated Wood

    Treesearch

    Howard N. Rosen

    1975-01-01

    An experimental technique using water extraction for evaluation of the content of ployethylene glycol of molecular weight 1,000 in wood where the ovendry weight of the untreated wood is not available was shown to be applicable for PEG-treated black oak and yellow-poplar.

  20. Plant Guide: Yellow beeplant (Cleome lutea Hook)

    Treesearch

    Derek Tilley; Jim Cane; Loren St. John; Dan Ogle; Nancy Shaw

    2012-01-01

    Yellow beeplant is a valuable native forage species for bees wasps and butterflies. Over 140 species of native bees have been observed foraging for nectar or pollen on yellow beeplant in southern Utah (Cane, 2008). Yellow beeplant is an annual forb which could provide food to insects in the first growing season of a range seeding (Ogle and others, 2011a). This...

  1. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar.

    PubMed

    Jeon, Hyung-Woo; Cho, Jin-Seong; Park, Eung-Jun; Han, Kyung-Hwan; Choi, Young-Im; Ko, Jae-Heung

    2016-04-01

    Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)-preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20-oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX-specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild-type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue-specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Facing the Future: Effects of Short-Term Climate Extremes on Isoprene-Emitting and Nonemitting Poplar1

    PubMed Central

    Vanzo, Elisa; Jud, Werner; Li, Ziru; Albert, Andreas; Domagalska, Malgorzata A.; Ghirardo, Andrea; Niederbacher, Bishu; Frenzel, Juliane; Beemster, Gerrit T.S.; Asard, Han; Rennenberg, Heinz; Sharkey, Thomas D.; Hansel, Armin; Schnitzler, Jörg-Peter

    2015-01-01

    Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions. PMID:26162427

  3. Why is my alfalfa yellow?

    USDA-ARS?s Scientific Manuscript database

    In 2016, many parts of the Midwest experienced far wetter than normal summer weather and by August or September, many growers were asking, “Why is my alfalfa yellow?” When all or part of an alfalfa field is yellow, it is a certain sign that something has gone wrong. In this case the problem in most ...

  4. Financial maturity of yellow birch

    Treesearch

    William B. Leak

    1969-01-01

    The methods used to compute financial maturity of yellow birch sawtimber are similar to those used for paper birch sawtimber, except for minor differences in detail. The procedure followed for yellow-birch veneer-log trees was also similar, except that local veneer grades and local veneer-log prices were used as the basis for the financial maturity computations.

  5. Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantation

    Treesearch

    M. D. Coleman; Richard E. Dickson; J. G. Isebrands

    2000-01-01

    Tree root activity, including fine-root production, turnover and metabolic activity are significant components of forest productivity and nutrient cycling. Differences in root activity among forest types are not well known. A 3-year study was undertaken in red pine (Pinus resinosa Ait.) and hybrid poplar (Populus tristis X P.

  6. Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations

    Treesearch

    M.D. Coleman; R.E. Dickson; J.G. Isebrands

    2000-01-01

    Tree root activity, including fine-root production, turnover and metabolic activity are significant components of forest productivity and nutrient cycling. Differences in root activity among forest types are not well known. A 3-year study was undertaken in red pine (Pinus resinosa Ait.) and hybrid poplar (Populus tristis X P.

  7. Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna

    Treesearch

    Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese

    2009-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...

  8. Delineation of brine contamination in and near the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana, 2004-09

    USGS Publications Warehouse

    Thamke, Joanna N.; Smith, Bruce D.

    2014-01-01

    The extent of brine contamination in the shallow aquifers in and near the East Poplar oil field is as much as 17.9 square miles and appears to be present throughout the entire saturated zone in contaminated areas. The brine contamination affects 15–37 billion gallons of groundwater. Brine contamination in the shallow aquifers east of the Poplar River generally moves to the southwest toward the river and then southward in the Poplar River valley. The likely source of brine contamination in the shallow aquifers is brine that is produced with crude oil in the East Poplar oil field study area. Brine contamination has not only affected the water quality from privately owned wells in and near the East Poplar oil field, but also the city of Poplar’s public water-supply wells. Three water-quality types characterize water in the shallow aquifers; a fourth water-quality type in the study area characterizes the brine. Type 1 is uncontaminated water that is suitable for most domestic purposes and typically contains sodium bicarbonate and sodium/magnesium sulfate as the dominant ions. Type 2 is moderately contaminated water that is suitable for some domestic purposes, but not used for drinking water, and typically contains sodium and chloride as the dominant ions. Type 3 is considerably contaminated water that is unsuitable for any domestic purpose and always contains sodium and chloride as the dominant ions. Type 3 quality of water in the shallow aquifers is similar to Type 4, which is the brine that is produced with crude oil. Electromagnetic apparent conductivity data were collected in the 106 square-mile area and used to determine extent of brine contamination. These data were collected and interpreted in conjunction with water-quality data collected through 2009 to delineate brine plumes in the shallow aquifers. Monitoring wells subsequently were drilled in some areas without existing water wells to confirm most of the delineated brine plumes; however, several possible

  9. Viscerotropic disease following yellow fever vaccination in Peru.

    PubMed

    Whittembury, Alvaro; Ramirez, Gladys; Hernández, Herminio; Ropero, Alba Maria; Waterman, Steve; Ticona, María; Brinton, Margo; Uchuya, Jorge; Gershman, Mark; Toledo, Washington; Staples, Erin; Campos, Clarense; Martínez, Mario; Chang, Gwong-Jen J; Cabezas, Cesar; Lanciotti, Robert; Zaki, Sherif; Montgomery, Joel M; Monath, Thomas; Hayes, Edward

    2009-10-09

    Five suspected cases of yellow fever vaccine-associated viscerotropic disease (YEL-AVD) clustered in space and time following a vaccination campaign in Ica, Peru in 2007. All five people received the same lot of 17DD live attenuated yellow fever vaccine before their illness; four of the five died of confirmed YEL-AVD. The surviving case was classified as probable YEL-AVD. Intensive investigation yielded no abnormalities of the implicated vaccine lot and no common risk factors. This is the first described space-time cluster of yellow fever viscerotropic disease involving more than two cases. Mass yellow fever vaccination should be avoided in areas that present extremely low risk of yellow fever.

  10. [Effect of transparent yellow and orange colored contact lenses on color discrimination in the yellow color range].

    PubMed

    Schürer, M; Walter, A; Brünner, H; Langenbucher, A

    2015-08-01

    Colored transparent filters cause a change in color perception and have an impact on the perceptible amount of different colors and especially on the ability to discriminate between them. Yellow or orange tinted contact lenses worn to enhance contrast vision by reducing or blocking short wavelengths also have an effect on color perception. The impact of the yellow and orange tinted contact lenses Wöhlk SPORT CONTRAST on color discrimination was investigated with the Erlangen colour measurement system in a study with 14 and 16 subjects, respectively. In relation to a yellow reference color located at u' = 0.2487/v' = 0.5433, measurements of color discrimination thresholds were taken in up to 6 different color coordinate axes. Based on these thresholds, color discrimination ellipses were calculated. These results are given in the Derrington, Krauskopf and Lennie (DKL) color system. Both contact lenses caused a shift of the reference color towards higher saturated colors. Color discrimination ability with the yellow and orange colored lenses was significantly enhanced along the blue-yellow axis in comparison to the reference measurements without a tinted filter. Along the red-green axis only the orange lens caused a significant reduction of color discrimination threshold distance to the reference color. Yellow and orange tinted contact lenses enhance the ability of color discrimination. If the transmission spectra and the induced changes are taken into account, these results can also be applied to other filter media, such as blue filter intraocular lenses.

  11. Minimizing yellow-bellied sapsucker damage

    Treesearch

    Gayne G. Erdmann; Ralph M., Jr. Peterson

    1992-01-01

    The yellow-bellied sapsucker is a migratory woodpecker that feeds on a wide variety of orchard, shade, and forest trees. Instead of drilling holes to find insects like other woodpeckers, sapsuckers drill holes in living trees to feed on sap and phloem tissues. Yellow and paper birches are their favorite summer food sources on their nesting grounds in Upper Michigan and...

  12. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves.

    PubMed

    Kieffer, Pol; Planchon, Sébastien; Oufir, Mouhssin; Ziebel, Johanna; Dommes, Jacques; Hoffmann, Lucien; Hausman, Jean-François; Renaut, Jenny

    2009-01-01

    A proteomic analysis of poplar leaves exposed to cadmium, combined with biochemical analysis of pigments and carbohydrates revealed changes in primary carbon metabolism. Proteomic results suggested that photosynthesis was slightly affected. Together with a growth inhibition, photoassimilates were less needed for developmental processes and could be stored in the form of hexoses or complex sugars, acting also as osmoprotectants. Simultaneously, mitochondrial respiration was upregulated, providing energy needs of cadmium-exposed plants.

  13. An approach for siting poplar energy production systems to increase productivity and associated ecosystem services

    Treesearch

    Ronald S. Zalesny; Deahn M. Donner; David R. Coyle; William L. Headlee

    2012-01-01

    Short rotation woody crops such as Populus spp. and their hybrids (i.e., poplars) are a significant component of the total biofuels and bioenergy feedstock resource in the USA. Production of these dedicated energy crops may result in large-scale land conversion, which leads to questions about their economic, logistic, and ecologic feasibility. To...

  14. The bionomics of the cottonwood leaf beetle, Chrysomela scripta Fab., on tissue culture hybrid poplars

    Treesearch

    T.R. Burkot; D.M. Benjamin

    1977-01-01

    Tissue culture methods are applied to poplars of the Aigeiros group in attempts to overcome premature decline thought to be associated with viral infections. Hybrid selections from such cultures outplanted in 1975 at the F. G. Wilson Nursery in Boscobel, Wisconsin subsequently were severely infested by the Cottonwood Leaf Beetle, Chrysomela scripta Fab. Beetle...

  15. Light-use efficiency of native and hybrid poplar genotypes at high levels of intracanopy competition

    Treesearch

    D. Scott Green; Eric L. Kruger; Glen R, Stanosz; J. G. Isebrands

    2001-01-01

    In southern Wisconsin, U.S.A., tree growth and associated canopy traits were compared among five native and hybrid genotypes of poplar (Populus spp.) in replicated, monoclonal stands planted at a 1 x 1 m spacing. The overall objective of this study was to assess clonal suitability to cultural conditions entailing high levels of intracanopy...

  16. Dermatology Internet Yellow Page advertising.

    PubMed

    Francis, Shayla; Kozak, Katarzyna Z; Heilig, Lauren; Lundahl, Kristy; Bowland, Terri; Hester, Eric; Best, Arthur; Dellavalle, Robert P

    2006-07-01

    Patients may use Internet Yellow Pages to help select a physician. We sought to describe dermatology Internet Yellow Page advertising. Dermatology advertisements in Colorado, California, New York, and Texas at 3 Yellow Page World Wide Web sites were systematically examined. Most advertisements (76%; 223/292) listed only one provider, 56 listed more than one provider, and 13 listed no practitioner names. Five advertisements listed provider names without any credentialing letters, 265 listed at least one doctor of medicine or osteopathy, and 9 listed only providers with other credentials (6 doctors of podiatric medicine and 3 registered nurses). Most advertisements (61%; 179/292) listed a doctor of medicine or osteopathy claiming board certification, 78% (139/179) in dermatology and 22% (40/179) in other medical specialties. Four (1%; 4/292) claims of board certification could not be verified (one each in dermatology, family practice, dermatologic/cosmetologic surgery, and laser surgery). Board certification could be verified for most doctors of medicine and osteopathy not advertising claims of board certification (68%; 41/60; 32 dermatology, 9 other specialties). A total of 50 advertisements (17%) contained unverifiable or no board certification information, and 47 (16%) listed a physician with verifiable board certification in a field other than dermatology. All Internet Yellow Page World Wide Web sites and all US states were not examined. Nonphysicians, physicians board certified in medical specialties other than dermatology, and individuals without verifiable board certification in any medical specialty are advertising in dermatology Internet Yellow Pages. Many board-certified dermatologists are not advertising this certification.

  17. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  18. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  19. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  20. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  1. 21 CFR 573.1020 - Yellow prussiate of soda.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda (sodium... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Yellow prussiate of soda. 573.1020 Section 573...

  2. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?

    PubMed

    Hukin, D; Cochard, H; Dreyer, E; Le Thiec, D; Bogeat-Triboulot, M B

    2005-08-01

    Populus euphratica is a poplar species growing in arid regions of Central Asia, where its distribution remains nevertheless restricted to river-banks or to areas with an access to deep water tables. To test whether the hydraulic architecture of this species differs from that of other poplars with respect to this ecological distribution, the vulnerability to cavitation of P. euphratica was compared with that of P. alba and of P. trichocarpa x koreana. The occurrence of a potential hydraulic segmentation through cavitation was also investigated by assessing the vulnerability of roots, stems, and leaf mid-rib veins. Cryo-scanning electron microscopy (cryo-SEM) was used to assess the level of embolism in fine roots and leaf mid-ribs and a low pressure flowmeter (LPFM) was used for stems and main roots. The cryo-SEM technique was validated against LPFM measurements on paired samples. In P. alba and P. trichocarpa x koreana, leaf mid-ribs were more vulnerable to cavitation than stems and roots. In P. euphratica, leaf mid-ribs and stems were equally vulnerable and, contrary to what has been observed in other species, roots were significantly less vulnerable than shoots. P. euphratica was by far the most vulnerable. The water potential inducing 50% loss of conductivity in stems was close to -0.7 MPa, against approximately -1.45 MPa for the two others species. Such a large vulnerability was confirmed by recording losses of conductivity during a gradual drought. Moreover, significant stem embolism was recorded before stomatal closure, indicating the lack of an efficient safety margin for hydraulic functions in this species. Embolism was not reversed by rewatering. These observations are discussed with respect to the ecology of P. euphratica.

  3. Limitations for phytoextraction management on metal-polluted soils with poplar short rotation coppice-evidence from a 6-year field trial.

    PubMed

    Michels, E; Annicaerta, B; De Moor, S; Van Nevel, L; De Fraeye, M; Meiresonne, L; Vangronsveld, J; Tack, F M G; Ok, Y S; Meers, Erik

    2018-01-02

    Poplar clones were studied for their phytoextraction capacity in the second growth cycle (6-year growth) on a site in the Belgian Campine region, which is contaminated with Cd and Zn via historic atmospheric deposition of nearby zinc smelter activities. The field trial revealed regrowth problems for some clones that could not be predicted in the first growth cycle. Four allometric relations were assessed for their capacity to predict biomass yield in the second growth cycle. A power function based on the shoot diameter best estimates the biomass production of poplar with R 2 values between 0.94 and 0.98. The woody biomass yield ranged from 2.1 to 4.8 ton woody Dry Mass (DM) ha -1 y -1 . The primary goal was to reduce soil concentrations of metals caused by phytoextraction. Nevertheless, increased metal concentrations were determined in the topsoil. This increase can partially be explained by the input of metals from deeper soil layers in the top soil through litterfall. The phytoextraction option with poplar short rotation coppice in this setup did not lead to the intended soil remediation in a reasonable time span. Therefore, harvest of the leaf biomass is put forward as a crucial part of the strategy for soil remediation through Cd/Zn phytoextraction.

  4. Yellow fever: the recurring plague.

    PubMed

    Tomori, Oyewale

    2004-01-01

    Despite the availability of a safe and efficacious vaccine, yellow fever (YF) remains a disease of significant public health importance, with an estimated 200,000 cases and 30,000 deaths annually. The disease is endemic in tropical regions of Africa and South America; nearly 90% of YF cases and deaths occur in Africa. It is a significant hazard to unvaccinated travelers to these endemic areas. Virus transmission occurs between humans, mosquitoes, and monkeys. The mosquito, the true reservoir of YF, is infected throughout its life, and can transmit the virus transovarially through infected eggs. Man and monkeys, on the other hand, play the role of temporary amplifiers of the virus available for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean, the Middle East, Asia, Australia, and Oceania. It is an acute infectious disease characterized by sudden onset with a two-phase development, separated by a short period of remission. The clinical spectrum of yellow fever varies from very mild, nonspecific, febrile illness to a fulminating, sometimes fatal disease with pathognomic features. In severe cases, jaundice, bleeding diathesis, with hepatorenal involvement are common. The case fatality rate of severe yellow fever is 50% or higher. The pathogenesis and pathophysiology of the disease are poorly understood and have not been the subject of modern clinical research. There is no specific treatment for YF, making the management of YF patients extremely problematic. YF is a zoonotic disease that cannot be eradicated, therefore instituting preventive vaccination through routine childhood vaccination in endemic countries, can significantly reduce the burden of the disease. The distinctive properties of lifelong immunity after a single dose of yellow fever vaccination are the

  5. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    PubMed

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  6. Influence of the Yellow Sea Warm Current on phytoplankton community in the central Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Chiang, Kuo-Ping; Liu, Su-Mei; Wei, Hao; Zhao, Yuan; Huang, Bang-Qin

    2015-12-01

    In early spring, a hydrological front emerges in the central Yellow Sea, resulting from the intrusion of the high temperature and salinity Yellow Sea Warm Current (YSWC). The present study, applying phytoplankton pigments and flow cytometry measurements in March of 2007 and 2009, focuses on the biogeochemical effects of the YSWC. The nutrients fronts were coincident with the hydrological front, and a positive linear relationship between nitrate and salinity was found in the frontal area. This contrast with the common situation of coastal waters where high salinity values usually correlate with poor nutrients. We suggested nutrient concentrations of the YSWC waters might have been enhanced by mixing with the local nutrient-rich waters when it invaded the Yellow Sea from the north of the Changjiang estuary. In addition, our results indicate that the relative abundance of diatoms ranged from 26% to 90%, showing a higher value in the YSCC than in YSWC waters. Similar distributions were found between diatoms and dinoflagellates, however the cyanobacteria and prasinophytes showed an opposite distribution pattern. Good correlations were found between the pigments and flow cytometry observations on the picophytoplankton groups. Prasinophytes might be the major contributor to pico-eukaryotes in the central Yellow Sea as similar distributional patterns and significant correlations between them. It seems that the front separates the YSWC from the coastal water, and different phytoplankton groups are transported in these water masses and follow their movement. These results imply that the YSWC plays important roles in the distribution of nutrients, phytoplankton biomass and also in the community structure of the central Yellow Sea.

  7. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66 gallons...

  8. 49 CFR 173.188 - White or yellow phosphorus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66 gallons...

  9. The use of short rotation willows and poplars for the recycling of saline waste waters

    Treesearch

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  10. Second-year results of hybrid poplar test plantings on bituminous strip-mine spoils in Pennsylvania

    Treesearch

    Grant Davis

    1964-01-01

    During the period 1946-49, The Pennsylvania State University established 22 experimental plantings of trees and shrubs on strip-mine spoil banks in the Bituminous Region of Pennsylvania to determine which species were best suited for revegetating such sites. When 10-year growth on the experimental plots was evaluated, a clone of hybrid poplar was found to have outgrown...

  11. Predicting the effect of deep-rooted hybrid poplars on the groundwater flow system at a large-scale phytoremediation site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, J. J.; Negri, M. C.; Hinchman, R. R.

    2001-03-01

    Estimating the effect of phreatophytes on the groundwater flow field is critical in the design or evaluation of a phytoremediation system. Complex hydrogeological conditions and the transient water use rates of trees require the application of numerical modeling to address such issues as hydraulic containment, seasonality, and system design. In 1999, 809 hybrid poplars and willows were planted to phytoremediate the 317 and 319 Areas of Argonne National Laboratory near Chicago, Illinois. Contaminants of concern are volatile organic compounds and tritium. The site hydrogeology is a complex framework of glacial tills interlaced with sands, gravels, and silts of varying character,more » thickness, and lateral extent. A total of 420 poplars were installed using a technology to direct the roots through a 25-ft (8-m)-thick till to a contaminated aquifer. Numerical modeling was used to simulate the effect of the deep-rooted poplars on this aquifer of concern. Initially, the best estimates of input parameters and boundary conditions were determined to provide a suitable match to historical transient ground-water flow conditions. The model was applied to calculate the future effect of the developing deep-rooted poplars over a 6 year period. The first 3 years represent the development period of the trees. In the fourth year, canopy closure is expected to occur; modeling continues through the first 3 years of the mature plantation. Monthly estimates of water use by the trees are incorporated. The modeling suggested that the mature trees in the plantation design will provide a large degree of containment of groundwater from the upgradient source areas, despite the seasonal nature of the trees' water consumption. The results indicate the likely areas where seasonal dewatering of the aquifer may limit the availability of water for the trees. The modeling also provided estimates of the residence time of groundwater in the geochemically altered rhizosphere of the plantation.« less

  12. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...

  13. 21 CFR 137.280 - Bolted yellow corn meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...

  14. Hybrid poplar grows poorly on acid spoil banks at high elevations in West Virginia

    Treesearch

    George R., Jr. Trimble

    1963-01-01

    In the early 1950s, a region-wide series of hybrid poplar clonal tests was begun in the Northeast to evaluate the performance of 50 selected clones under a variety of site and climatic conditions. The basic test unit was a block of 50 randomized plots-1 plot for each of the 50 clones. In each plot, 16 cuttings were planted at 4-foot spacing.

  15. Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union.

    PubMed

    Littlewood, Jade; Guo, Miao; Boerjan, Wout; Murphy, Richard J

    2014-01-01

    The European Union has made it a strategic objective to develop its biofuels market in order to minimize greenhouse gas (GHG) emissions, to help mitigate climate change and to address energy insecurity within the transport sector. Despite targets set at national and supranational levels, lignocellulosic bioethanol production has yet to be widely commercialized in the European Union. Here, we use techno-economic modeling to compare the price of bioethanol produced from short rotation coppice (SRC) poplar feedstocks under two leading processing technologies in five European countries. Our evaluation shows that the type of processing technology and varying national costs between countries results in a wide range of bioethanol production prices (€0.275 to 0.727/l). The lowest production prices for bioethanol were found in countries that had cheap feedstock costs and high prices for renewable electricity. Taxes and other costs had a significant influence on fuel prices at the petrol station, and therefore the presence and amount of government support for bioethanol was a major factor determining the competitiveness of bioethanol with conventional fuel. In a forward-looking scenario, genetically engineering poplar with a reduced lignin content showed potential to enhance the competitiveness of bioethanol with conventional fuel by reducing overall costs by approximately 41% in four out of the five countries modeled. However, the possible wider phenotypic traits of advanced poplars needs to be fully investigated to ensure that these do not unintentionally negate the cost savings indicated. Through these evaluations, we highlight the key bottlenecks within the bioethanol supply chain from the standpoint of various stakeholders. For producers, technologies that are best suited to the specific feedstock composition and national policies should be optimized. For policymakers, support schemes that benefit emerging bioethanol producers and allow renewable fuel to be

  16. Yellow Fever Outbreak, Southern Sudan, 2003

    PubMed Central

    Onyango, Clayton O.; Grobbelaar, Antoinette A.; Gibson, Georgina V.F.; Sang, Rosemary C.; Sow, Abdourahmane; Swanepoel, Robert

    2004-01-01

    In May 2003, an outbreak of fatal hemorrhagic fever, caused by yellow fever virus, occurred in southern Sudan. Phylogenetic analysis showed that the virus belonged to the East African genotype, which supports the contention that yellow fever is endemic in East Africa with the potential to cause large outbreaks in humans. PMID:15498174

  17. Various Measures of the Effectiveness of Yellow Goggles

    DTIC Science & Technology

    1980-10-08

    technique which is widely used r.o improve vision under these conditions is the use of yellow goggles. Skiers commonly don yellow goggles...different laboratory studies are presented. Two of the studies were of depth perception, since skiers believe that yellow goggles help them...selected for measurement because of practical considerations and theoretical implications. EXPERIMENTS ON DEPTH PERCEPTION Background Since skiers

  18. Response of the Imported Willow Leaf Beetle to Bacillus thuringiensis var. san diego on Poplar Willow1

    Treesearch

    Leah S. Bauer

    1992-01-01

    The imported willow leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae), a multivoltine defoliator of willow and poplar (Salicaceae), is considered a significant pest throughout eastern North America (W.T. Johnson and H.H Lyon, "Insects that Feed on Trees and Shrubs," Cornell University Press, Ithaca, 1988)....

  19. Using a combined hydrolysis factor to optimize high titer ethanol production from sulfite-pretreated poplar without detoxification

    Treesearch

    Jingzhi Zhang; Feng Gu; J.Y. Zhu; Ronald S. Zalesny Jr.

    2015-01-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to poplar NE222 chips in a range of chemical loadings, temperatures, and times. The combined hydrolysis factor (CHF) as a pretreatment severity accurately predicted xylan dissolution by SPORL. Good correlations between CHF and pretreated...

  20. Post-treatment mechanical refining as a method to improve overall sugar recovery of steam pretreated hybrid poplar.

    PubMed

    Dou, Chang; Ewanick, Shannon; Bura, Renata; Gustafson, Rick

    2016-05-01

    This study investigates the effect of mechanical refining to improve the sugar yield from biomass processed under a wide range of steam pretreatment conditions. Hybrid poplar chips were steam pretreated using six different conditions with or without SO2. The resulting water insoluble fractions were subjected to mechanical refining. After refining, poplar pretreated at 205°C for 10min without SO2 obtained a 32% improvement in enzymatic hydrolysis and achieved similar overall monomeric sugar recovery (539kg/tonne) to samples pretreated with SO2. Refining did not improve hydrolyzability of samples pretreated at more severe conditions, nor did it improve the overall sugar recovery. By maximizing overall sugar recovery, refining could partially decouple the pretreatment from other unit operations, and enable the use of low temperature, non-sulfur pretreatment conditions. The study demonstrates the possibility of using post-treatment refining to accommodate potential pretreatment process upsets without sacrificing sugar yields. Copyright © 2016 Elsevier Ltd. All rights reserved.