Sample records for yellowstone national parks

  1. Yellowstone Lake/National Park

    NASA Image and Video Library

    1994-09-30

    STS068-247-061 (30 September-11 October 1994) --- Photographed through the Space Shuttle Endeavour's flight windows, this 70mm frame centers on Yellowstone Lake in the Yellowstone National Park. North will be at the top if picture is oriented with series of sun glinted creeks and river branches at top center. The lake, at 2,320 meters (7,732 feet) above sea level, is the largest high altitude lake in North America. East of the park part of the Absaroka Range can be traced by following its north to south line of snow capped peaks. Jackson Lake is southeast of Yellowstone Park, and the connected Snake River can be seen in the lower left corner. Yellowstone, established in 1872 is the world's oldest national park. It covers an area of 9,000 kilometers (3,500 square miles), lying mainly on a broad plateau of the Rocky Mountains on the Continental Divide. It's average altitude is 2,440 meters (8,000 feet) above sea level. The plateau is surrounded by mountains exceeding 3,600 meters (12,000 feet) in height. Most of the plateau was formed from once-molten lava flows, the last of which is said to have occurred 100,000 years ago. Early volcanic activity is still evident in the region by nearly 10,000 hot springs, 200 geysers and numerous vents found throughout the park.

  2. New challenges for grizzly bear management in Yellowstone National Park

    USGS Publications Warehouse

    van Manen, Frank T.; Gunther, Kerry A.

    2016-01-01

    A key factor contributing to the success of grizzly bear Ursus arctos conservation in the Greater Yellowstone Ecosystem has been the existence of a large protected area, Yellowstone National Park. We provide an overview of recovery efforts, how demographic parameters changed as the population increased, and how the bear management program in Yellowstone National Park has evolved to address new management challenges over time. Finally, using the management experiences in Yellowstone National Park, we present comparisons and perspectives regarding brown bear management in Shiretoko National Park.

  3. Values associated with management of Yellowstone cutthroat trout in Yellowstone National Park

    USGS Publications Warehouse

    Gresswell, Robert E.; Liss, W.J.

    1995-01-01

    Recent emphasis on a holistic view of natural systems and their management is associated with a growing appreciation of the role of human values in these systems. In the past, resource management has been perceived as a dichotomy between extraction (harvest) and nonconsumptive use, but this appears to be an oversimplified view of natural-cultural systems. The recreational fishery for Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) in Yellowstone National Park is an example of the effects of management on a natural-cultural system. Although angler harvest has been drastically reduced or prohibited, the recreational value of Yellowstone cutthroat trout estimated by angling factors (such as landing rate or size) ranks above that of all other sport species in Yellowstone National Park. To maintain an indigenous fishery resource of this quality with hatchery propagation is not economically or technically feasible. Nonconsumptive uses of the Yellowstone cutthroat trout including fish-watching and intangible values, such as existence demand, provide additional support for protection of wild Yellowstone cutthroat trout populations. A management strategy that reduces resource extraction has provided a means to sustain a quality recreational fishery while enhancing values associated with the protection of natural systems.

  4. River Chemistry and Solute Flux in Yellowstone National Park

    USGS Publications Warehouse

    Hurwitz, Shaul; Eagan, Sean; Heasler, Henry; Mahony, Dan; Huebner, Mark A.; Lowenstern, Jacob B.

    2007-01-01

    Introduction The Yellowstone Volcano Observatory (YVO) was established to 'To strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region'. Yellowstone National Park is underlain by a voluminous magmatic system overlain by the most active hydrothermal system on Earth. Tracking changes in water and gas chemistry is of great importance because anomalous fluxes might signal one of the earliest warnings of volcanic unrest. Because of the tremendous number, chemical diversity, and large aerial coverage of Yellowstone's thermal features, it remains daunting to monitor individual features that might serve as proxies for anomalous activity in the hydrothermal system. Sampling rivers provides some advantages, because they integrate chemical fluxes over a very large area and therefore, river fluxes may reveal large-scale spatial patterns (Hurwitz et al., 2007). In addition, based on the application of the chloride-enthalpy method (Fournier, 1979), quantifying chloride flux in rivers provides an estimate of the total heat discharge from the Yellowstone volcanic system (Norton and Friedman 1985; Fournier, 1989; Friedman and Norton, in press). Intermittent sampling of the large rivers draining Yellowstone National Park began in the 1960's (Fournier et al., 1976) and continuous sampling has been carried out since water year (1 October - 30 September) 1983 excluding water years 1995 and 1996 (Norton and Friedman, 1985, 1991; Friedman and Norton, 1990, 2000, 2007). Between 1983 and 2001 only Cl concentrations and fluxes were determined. Starting in water year 2002, the concentrations and fluxes of other anions of possible magmatic origin (F-, Br-, HCO3- , and SO42-) were also determined, and several new sampling sites were established (Hurwitz et al., 2007). The ongoing sampling and analysis of river solute flux is a key component in the current monitoring program of YVO, and it is a collaboration between the U.S. Geological Survey

  5. Geothermal Monitoring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Heasler, H. P.; Jaworowski, C.; Susong, D. D.; Lowenstern, J. B.

    2007-12-01

    When the first exploring parties surveyed the Yellowstone region in the late 19th Century, it was the geologic wonders - geysers, hot springs, mudpots, fumaroles - that captured their imaginations. Because of these treasures, the U.S. Congress set aside and dedicated this land of "natural curiosities" as the world's first "public pleasuring ground". Protection of Yellowstone's unique geothermal features is a key mission of Yellowstone National Park as mandated by U. S. Congressional law. In response to that mandate, the Yellowstone National Park Geology Program developed a peer-reviewed, Geothermal Monitoring Plan in 2003. With partial Congressional funding of the Plan in 2005, implementation of a scientific monitoring effort began. Yellowstone's scientific geothermal monitoring effort includes the acquisition of time-temperature data using electronic data loggers, basic water quality data, chloride flux data, estimates of radiative heat flux using airborne, thermal infrared imagery, geothermal gas monitoring, and the monitoring of groundwater wells. Time- temperature data are acquired for geysers, hot springs, steam vents, wells, rivers, and the ground. Uses of the time-temperature data include public safety, calibrating airborne thermal infrared-imagery, monitoring selected thermal features for potential hydrothermal explosions, and determining the spatial and temporal changes in thermal areas. Since 2003, upgrades of Yellowstone's stream gaging network have improved the spatial and temporal precision of the chloride flux, water quality, and groundwater components of the Geothermal Monitoring Plan. All of these methods serve both for geothermal monitoring and volcano monitoring as part of the Yellowstone Volcano Observatory. A major component of the Geothermal Monitoring Plan is remote sensing of the Yellowstone volcano and its active hydrothermal areas at various scales. The National Center for Landscape Fire Analysis at the University of Montana and the USDA

  6. Flood estimates for ungaged streams in Glacier and Yellowstone National Parks, Montana

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1983-01-01

    Estimates of 100-year discharges were made at 59 sites in Glacier National Park and 21 sites in Yellowstone National Park to assist the National Park Services in quantifying stream inflow and outflow in the Parks. The estimates were made using regression equations previously developed for Montana. The resulting 100-year discharges are listed in tables; the discharges ranged from 260 to 53,200 cu ft/s in Glacier National Park and from 110 to 27,900 cu ft/s in Yellowstone National Park. (USGS)

  7. Conservation of Yellowstone Cutthroat Trout in Yellowstone National Park: A Case Study

    ERIC Educational Resources Information Center

    Duncan, Michael B.; Murphy, Brian R.; Zale, Alexander V.

    2009-01-01

    The Yellowstone cutthroat trout (YCT; "Oncorhynchus clarki bouvieri") has become a species of special concern for Yellowstone National Park (YNP) fisheries biologists. Although this subspecies formerly occupied a greater area than any other inland cutthroat trout, the current distribution of YCT is now limited to several watersheds within the…

  8. 36 CFR 7.13 - Yellowstone National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... license. Non-commercially guided group means a group of no more than five snowmobiles, including a non... traveling together in Yellowstone National Park on any given day or a non-commercially guided group, which... ascertain which snowmobiles in the park are part of a non-commercially guided group. (vi) Non-commercial...

  9. On the origin of brucellosis in bison of Yellowstone National Park: a review

    USGS Publications Warehouse

    Meagher, Mary; Meyer, Margaret E.

    1994-01-01

    Brucellosis caused by Brucella abortus occurs in the free-ranging bison (Bison bison) of Yellowstone and Wood Buffalo National Parks and in elk (Cervus elaphus) of the Greater Yellowstone Area. As a result of nationwide bovine brucellosis eradication programs, states and provinces proximate to the national parks are considered free of bovine brucellosis. Thus, increased attention has been focused on the wildlife within these areas as potential reservoirs for transmission to cattle. Because the national parks are mandated as natural areas, the question has been raised as to whether Brucella abortus is endogenous or exogenous to bison, particularly for Yellowstone National Park. We synthesized diverse lines of inquiry, including the evolutionary history of both bison and Brucella, wild animals as Brucella hosts, biochemical and genetic information, behavioral characteristics of host and organism, and area history to develop an evaluation of the question for the National Park Service. All lines of inquiry indicated that the organism was introduced to North America with cattle, and that the introduction into the Yellowstone bison probably was directly from cattle shortly before 1917. Fistulous withers of horses was a less likely possibility. Elk on winter feedgrounds south of Yellowstone National Park apparently acquired the disease directly from cattle. Bison presently using Grand Teton National Park probably acquired brucellosis from feedground elk.

  10. 76 FR 77131 - Special Regulations; Areas of the National Park System, Yellowstone National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... FURTHER INFORMATION CONTACT: Steve Iobst, Deputy Superintendent, Yellowstone National Park, (307) 344-2002... material way the economy, productivity, competition, jobs, the environment, public health or safety, or...

  11. Amphibian decline in Yellowstone National Park

    Treesearch

    Debra A. Patla; Charles R. Peterson; Paul Stephen Corn

    2009-01-01

    We conduct long-term amphibian monitoring in Yellowstone National Park (YNP) (1) and read McMenamin et al.'s article (2) with interest. This study documents decline in the extent of seasonal wetlands in the Lamar Valley of YNP during extended drought, but the conclusion, widely reported in the media, of "severe declines in 4 once-common amphibian species,...

  12. Examining winter visitor use in Yellowstone National Park

    Treesearch

    Mae A. Davenport; Wayne A. Freimund; William T. Borrie; Robert E. Manning; William A. Valliere; Benjamin Wang

    2000-01-01

    This research was designed to assist the managers of Yellowstone National Park (YNP) in their decision making about winter visitation. The focus of this report is on winter use patterns and winter visitor preferences. It is the author’s hope that this information will benefit both the quality of winter experiences and the stewardship of the park resources. This report...

  13. Exterior sound level measurements of snowcoaches at Yellowstone National Park

    DOT National Transportation Integrated Search

    2010-04-01

    Sounds associated with oversnow vehicles, such as snowmobiles and snowcoaches, are an important management concern at Yellowstone and Grand Teton National Parks. The John A. Volpe National Transportation Systems Centers Environmental Measurement a...

  14. 78 FR 12353 - Winter Use Plan, Supplemental Environmental Impact Statement, Yellowstone National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-IMR-YELL-12081; PPWONRADE2, PMP00EI05.YP0000] Winter Use Plan, Supplemental Environmental Impact Statement, Yellowstone National Park AGENCY: National Park Service, Interior. ACTION: Notice of Availability. SUMMARY: Pursuant to the National Environmental...

  15. Denali Park wolf studies: Implications for Yellowstone

    USGS Publications Warehouse

    Mech, L. David; Meier, Thomas J.; Burch, John W.

    1991-01-01

    The Northern Rocky Mountain Wolf Recovery Plan approved by the U.S. Fish and Wildlife Service (1987) recommends re-establishment of wolves (Canis lupus) in Yellowstone National Park. Bills proposing wolf re-establishment in the Park have been introduced into the U.S. House and Senate. However, several questions have been raised about the possible effects of wolf re-establishment on other Yellowstone Park fauna, on human use of the Park and on human use of surrounding areas. Thus the proposed wolf re-establishment remains controversial.Information pertinent to some of the above questions is available from a current study of wolf ecology in Denali National Park and Preserve, Alaska, which we began in 1986. Although Denali Park differs from Yellowstone in several ways, it is also similar enough in important respects to provide insight into questions raised about wolf re-establishment in Yellowstone.

  16. The Geologic Story of Yellowstone National Park

    USGS Publications Warehouse

    Keefer, William Richard

    1971-01-01

    In the aftermath of the Civil War, the United States expanded the exploration of her western frontiers to gain a measure of the vast lands and natural resources in the region now occupied by our Rocky Mountain States. As part of this effort, the Geological and Geographical Survey of the Territories was organized within the Department of the Interior, and staffed by a group of hardy, pioneering scientists under the leadership of geologist F. V. Hayden. During the summer of 1871, these men, accompanied by photographer William H. Jackson and artist Thomas Moran, made a reconnaissance geological study of the legendary and mysterious 'Yellowstone Wonderland' in remote northwestern Wyoming Territory. The scientific reports and illustrations prepared by Hayden and his colleagues, supplementing the startling accounts that had been published by members of the famous Washburn-Doane Expedition a year earlier, erased all doubts that this unique land was eminently worthy of being set aside 'for the benefit and enjoyment of the people.' By Act of Congress on March 1, 1872, our first National Park was established. During the past century, 50 million people have toured Yellowstone National Park, marveling at its never-ending display of natural wonders. No doubt many have paused to wonder about the origin of these unusual and complex geological features - a question, needless to say, that has intrigued and challenged scientists from the very first days of the Hayden Survey. During the past decade a group of U. S. Geological Survey scientists, in cooperation with the National Park Service and aided by the interest of the National Aeronautics and Space Administration in remote sensing of the geologic phenomena, has been probing the depths and farthest corners of the Park seeking more of the answers. Some of the results of this work, and those of earlier studies, are described in this book to provide a better understanding and enjoyment of this great National Park.

  17. Ferdinand Vandiveer Hayden and the founding of the Yellowstone National Park

    USGS Publications Warehouse

    ,

    1973-01-01

    Following the Civil War, the United States intensified the exploration of her western frontiers to gain a measure of the vast lands and natural resources in the region now occupied by our Rocky Mountain States. As part of this effort, the U.S. Geological and Geographical Survey of the Territories was formed and staffed under the leadership of geologist Ferdinand Vandiveer Hayden. Originally organized under the U.S. Public Land Office in 1861, the Hayden Survey (as it was most often identified) was placed under the Secretary of the Interior in 1869 and later, under the newly created U.S. Geological Survey. Its records, maps, and photographs were then transferred to the latter agency. In commemorating the centennial of Yellowstone National Park, the U.S. Geological Survey drew upon those items deposited by Hayden to describe the early exploration of the Yellowstone area and to recount events that led to the establishment of Yellowstone as the Nation's first national park.

  18. 77 FR 38824 - Winter Use Plan, Supplemental Draft Environmental Impact Statement, Yellowstone National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... made publicly available at any time. While you can ask us in your comment to withhold your personal... DEPARTMENT OF THE INTERIOR National Park Service [2310-0070-422] Winter Use Plan, Supplemental Draft Environmental Impact Statement, Yellowstone National Park AGENCY: National Park Service, Interior...

  19. Exterior sound level measurements of over-snow vehicles at Yellowstone National Park.

    DOT National Transportation Integrated Search

    2008-09-30

    Sounds associated with oversnow vehicles, such as snowmobiles and snowcoaches, are an : important management concern at Yellowstone and Grand Teton National Parks. The John A. : Volpe National Transportation Systems Centers Environmental Measureme...

  20. The U S national parks in international perspective: The Yellowstone model or conservation syncretism?

    Treesearch

    John Schelhas

    2010-01-01

    In recent years, international conservation scholars and practitioners have largely dismissed the U.S. national park experience, often termed the “Yellowstone model,” as being too protectionist and exclusionary, and therefore irrelevant and even detrimental to park management and policy in lesser developed countries. A review of the U.S. national park experience finds...

  1. Bathymetry and Geology of the Floor of Yellowstone Lake, Yellowstone National Park, Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lee, G.K.; Webring, M.W.

    2007-01-01

    High-resolution, multi-beam sonar mapping of Yellowstone Lake was conducted by the U.S. Geological Survey in conjunction with the National Park Service from 1999 to 2002. Yellowstone Lake is the largest high-altitude lake in North America, at an altitude of 2,357 m with a surface area of 341 km2. More than 140 rivers and streams flow into Yellowstone Lake. The Yellowstone River, which enters at the southern end of the lake into the Southeast Arm, dominates the inflow of water and sediment (Shanks and others, 2005). The only outlet from the lake is at Fishing Bridge where the Yellowstone River flows northward discharging 375 to 4,600 cubic feet per second. The multi-beam sonar mapping occurred over a four-year period beginning in 1999 with mapping of the northern basin, continued in 2000 in West Thumb basin, in 2001 in the central basin, and in 2002 in the southern part of the lake including the Flat Mountain, South, and Southeast Arms.

  2. Landsat 7 - First Cloud-free Image of Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Yellowstone Lake, in the center of Yellowstone National Park, was taken by Landsat 7 on July 13, 1999. Bands 5 (1.65um),4 (.825um), and 2 (.565um) were used for red, green, and blue, respectively. Water appears blue/black, snow light blue, mature forest red/green, young forest pink, and grass and fields appear light green. Southwest of the lake is young forest that is growing in the wake of the widespread fires of 1988. For more information, see: Landsat 7 Fact Sheet Landsat 7 in Mission Control Image by Rich Irish, NASA GSFC

  3. The 2017 Maple Creek Seismic Swarm in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Pang, G.; Hale, J. M.; Farrell, J.; Burlacu, R.; Koper, K. D.; Smith, R. B.

    2017-12-01

    The University of Utah Seismograph Stations (UUSS) performs near-real-time monitoring of seismicity in the region around Yellowstone National Park in partnership with the United States Geological Survey and the National Park Service. UUSS operates and maintains 29 seismic stations with network code WY (short-period, strong-motion, and broadband) and records data from five other seismic networks—IW, MB, PB, TA, and US—to enhance the location capabilities in the Yellowstone region. A seismic catalog is produced using a conventional STA/LTA detector and single-event location techniques (Hypoinverse). On June 12, 2017, a seismic swarm began in Yellowstone National Park about 5 km east of Hebgen Lake. The swarm is adjacent to the source region of the 1959 MW 7.3 Hebgen Lake earthquake, in an area corresponding to positive Coulumb stress change from that event. As of Aug. 1, 2017, the swarm consists of 1481 earthquakes with 1 earthquake above magnitude 4, 8 earthquakes in the magnitude 3 range, 115 earthquakes in the magnitude 2 range, 469 earthquakes in the magnitude 1 range, 856 earthquakes in the magnitude 0 range, 22 earthquakes with negative magnitudes, and 10 earthquakes with no magnitude. Earthquake depths are mostly between 3 and 10 km and earthquake depth increases toward the northwest. Moment tensors for the 2 largest events (3.6 MW and 4.4. MW) show strike-slip faulting with T axes oriented NE-SW, consistent with the regional stress field. We are currently using waveform cross-correlation methods to measure differential travel times that are being used with the GrowClust program to generate high-accuracy relative relocations. Those locations will be used to identify structures in the seismicity and make inferences about the tectonic and magmatic processes causing the swarm.

  4. Development of a tool for modeling snowmobile and snowcoach noise in Yellowstone and Grand Teton National Parks

    DOT National Transportation Integrated Search

    2010-11-01

    The National Park Service (NPS) develops winter use plans for Yellowstone and Grand Teton National Parks to help manage the use of Over-Snow Vehicles (OSVs), such as snowmobiles and snowcoaches. The use and management of OSVs in the parks is an issue...

  5. Protecting the Geyser Basins of Yellowstone National Park: Toward a New National Policy for a Vulnerable Environmental Resource

    NASA Astrophysics Data System (ADS)

    Barrick, Kenneth A.

    2010-01-01

    Geyser basins provide high value recreation, scientific, economic and national heritage benefits. Geysers are globally rare, in part, because development activities have quenched about 260 of the natural endowment. Today, more than half of the world’s remaining geysers are located in Yellowstone National Park, northwest Wyoming, USA. However, the hydrothermal reservoirs that supply Yellowstone’s geysers extend well beyond the Park borders, and onto two “Known Geothermal Resource Areas”—Island Park to the west and Corwin Springs on the north. Geysers are sensitive geologic features that are easily quenched by nearby geothermal wells. Therefore, the potential for geothermal energy development adjacent to Yellowstone poses a threat to the sustainability of about 500 geysers and 10,000 hydrothermal features. The purpose here is to propose that Yellowstone be protected by a “Geyser Protection Area” (GPA) extending in a 120-km radius from Old Faithful Geyser. The GPA concept would prohibit geothermal and large-scale groundwater wells, and thereby protect the water and heat supply of the hydrothermal reservoirs that support Yellowstone’s geyser basins and important hot springs. Proactive federal leadership, including buyouts of private groundwater development rights, can assist in navigating the GPA through the greater Yellowstone area’s “wicked” public policy environment. Moreover, the potential impacts on geyser basins from intrusive research sampling techniques are considered in order to facilitate the updating of national park research regulations to a precautionary standard. The GPA model can provide the basis for protecting the world’s few remaining geyser basins.

  6. Creating Conditions for Policy Change in National Parks: Contrasting Cases in Yellowstone and Yosemite

    NASA Astrophysics Data System (ADS)

    Yochim, Michael J.; Lowry, William R.

    2016-05-01

    Public agencies face significant political obstacles when they try to change long-standing policies. This paper examines efforts by the U.S. National Park Service to change long-term policies in Yellowstone and Yosemite national parks. We argue that, to be successful, the agency and pro-change allies must expand the sphere of conflict to engage the support of the broader American public through positive framing, supportive science, compelling economic arguments, consistent goals, and the commitment of other institutional actors. We show that the agency is capable of creating these conditions, as in the reintroduction of wolves to Yellowstone, but we argue that this is not always the outcome, as in reducing automobile congestion in Yosemite Valley.

  7. Creating Conditions for Policy Change in National Parks: Contrasting Cases in Yellowstone and Yosemite.

    PubMed

    Yochim, Michael J; Lowry, William R

    2016-05-01

    Public agencies face significant political obstacles when they try to change long-standing policies. This paper examines efforts by the U.S. National Park Service to change long-term policies in Yellowstone and Yosemite national parks. We argue that, to be successful, the agency and pro-change allies must expand the sphere of conflict to engage the support of the broader American public through positive framing, supportive science, compelling economic arguments, consistent goals, and the commitment of other institutional actors. We show that the agency is capable of creating these conditions, as in the reintroduction of wolves to Yellowstone, but we argue that this is not always the outcome, as in reducing automobile congestion in Yosemite Valley.

  8. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs

    USGS Publications Warehouse

    Campbell, Kate M.; Kouris, Angela; England, Whitney; Anderson, Rika E.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Whitaker, Rachel J.

    2017-01-01

    Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.

  9. Winter visitor use planning in Yellowstone and Grand Teton National Parks

    Treesearch

    John A. Sacklin; Kristin L. Legg; M. Sarah Creachbaum; Clifford L. Hawkes; George Helfrich

    2000-01-01

    Winter use in Yellowstone and Grand Teton National Parks increased dramatically in the 1980s and early 1990s. That increase and the emphasis on snowmobiles as the primary mode of transportation brought into focus a host of winter-related issues, including air pollution, unwanted sound, wildlife impacts and the adequacy of agency budgets, staff and infrastructure to...

  10. Grizzly bear management in Yellowstone National Park: The heart of recovery in the Yellowstone Ecosystem

    USGS Publications Warehouse

    Schwartz, C.C.; Gunther, K.; McCullough, Dale R.; Kaji, Koichi; Yamanaka, Masami

    2006-01-01

    Grizzly bear (Ursus arctos) management in the Greater Yellowstone Ecosystem (GYE) in the past quarter century has resulted in more than doubling of the population from around 200 to more than 500, expansion of range back into habitats where the bear has extirpated more than a century ago, and a move toward removal from the U.S. Endangered Species list. At the center of this success story are the management programs in Yellowstone National Park (YNP). Regulations that restrict human activity, camping, and food storage, elimination of human food and garbage as attractants, and ranger attendance of roadside bears have all resulted in the population of grizzlies in YNP approaching carrying capacity. Recent studies suggest, however, that YNP alone is too small to support the current population, making management beyond the park boundary important and necessary to the demographics of the population as a whole. Demographic analyses suggest a source-sink dynamic exists within the GYE, with YNP and lands outside the park within the Grizzly Bear Recovery Zone (RZ) representing source habitats, whereas lands beyond the RZ constitute sinks. The source-sink demography in the GYE is indicative of carnivore conservation issues worldwide where many national parks or preserves designed to protect out natural resources are inadequate in size or shape to provide all necessary life history requirements for these wide-ranging species. Additionally, wide-ranging behavior and long-distance dispersal seem inherent to large carnivores, so mortality around the edges is virtually inevitable, and conservation in the GYE is inextricably linked to management regimes not only within YNP, but within the GYE as a whole. We discuss those needs here.

  11. Draft Genome Sequence of Bacillus altitudinis YNP4-TSU, Isolated from Yellowstone National Park

    PubMed Central

    OHair, Joshua A.; Li, Hui; Thapa, Santosh; Scholz, Matthew

    2017-01-01

    ABSTRACT Undisturbed hot springs inside Yellowstone National Park remain a dynamic biome for novel cellulolytic thermophiles. We report here the draft genome sequence of one of these isolates, Bacillus altitudinis YNP4-TSU. PMID:28705979

  12. Vegetation Cover Change in Yellowstone National Park Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2015-01-01

    Results from Landsat satellite image analysis since 1987 in all unburned areas (since the 1880s) of Yellowstone National Park (YNP) showed that consistent decreases in the normalized difference vegetation index (NDVI) have been strongly dependent on periodic variations in peak annual snow water equivalents (SWE).

  13. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.

    2015-01-01

    This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.

  14. Modeling sound due to over-snow vehicles in Yellowstone and Grand Teton National Parks

    DOT National Transportation Integrated Search

    2006-10-01

    A modified version of the FAAs Integrated Noise Model (INM) Version 6.2 was used to : model the sound of over-snow vehicles (OSVs) (snowmobiles and snowcoaches) in : Yellowstone and Grand Teton National Parks for ten modeling scenarios provided by...

  15. Effects of metal mining and milling on boundary waters of Yellowstone National Park, USA

    USGS Publications Warehouse

    Nimmo, D.R.; Willox, M.J.; Lafrancois, T.D.; Chapman, P.L.; Brinkman, S.F.; Greene, J.C.

    1998-01-01

    Aquatic resources in Soda Butte Creek within Yellowstone National Park, USA, continue to be threatened by heavy metals from historical mining and milling activities that occurred upstream of the park's boundary. This includes the residue of gold, silver, and copper ore mining and processing in the early 1900s near Cooke City, Montana, just downstream of the creek's headwaters. Toxicity tests, using surrogate test species, and analyses of metals in water, sediments, and macroinvertebrate tissue were conducted from 1993 to 1995. Chronic toxicity to test species was greater in the spring than the fall and metal concentrations were elevated in the spring with copper exceeding water quality criteria in 1995. Tests with amphipods using pore water and whole sediment from the creek and copper concentrations in the tissue of macroinvertebrates and fish also suggest that copper is the metal of concern in the watershed. In order to understand current conditions in Soda Butte Creek, heavy metals, especially copper, must be considered important factors in the aquatic and riparian ecosystems within and along the creek extending into Yellowstone National Park.

  16. Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models

    PubMed Central

    Geremia, Chris; White, P. J.; Wallen, Rick L.; Watson, Fred G. R.; Treanor, John J.; Borkowski, John; Potter, Christopher S.; Crabtree, Robert L.

    2011-01-01

    Long distance migrations by ungulate species often surpass the boundaries of preservation areas where conflicts with various publics lead to management actions that can threaten populations. We chose the partially migratory bison (Bison bison) population in Yellowstone National Park as an example of integrating science into management policies to better conserve migratory ungulates. Approximately 60% of these bison have been exposed to bovine brucellosis and thousands of migrants exiting the park boundary have been culled during the past two decades to reduce the risk of disease transmission to cattle. Data were assimilated using models representing competing hypotheses of bison migration during 1990–2009 in a hierarchal Bayesian framework. Migration differed at the scale of herds, but a single unifying logistic model was useful for predicting migrations by both herds. Migration beyond the northern park boundary was affected by herd size, accumulated snow water equivalent, and aboveground dried biomass. Migration beyond the western park boundary was less influenced by these predictors and process model performance suggested an important control on recent migrations was excluded. Simulations of migrations over the next decade suggest that allowing increased numbers of bison beyond park boundaries during severe climate conditions may be the only means of avoiding episodic, large-scale reductions to the Yellowstone bison population in the foreseeable future. This research is an example of how long distance migration dynamics can be incorporated into improved management policies. PMID:21340035

  17. Grizzly bear nutrition and ecology studies in Yellowstone National Park

    USGS Publications Warehouse

    Robbins, Charles T.; Schwartz, Charles C.; Gunther, Kerry A.; Servheen, Christopher

    2006-01-01

    T HE CHANCE TO SEE a wild grizzly bear is often the first or second reason people give for visiting Yellow - stone National Park. Public interest in bears is closely coupled with a desire to perpetuate this wild symbol of the American West. Grizzly bears have long been described as a wilderness species requiring large tracts of undisturbed habitat. However, in today’s world, most grizzly bears live in close proximity to humans (Schwartz et al. 2003). Even in Yellowstone National Park, the impacts of humans can affect the long-term survival of bears (Gunther et al. 2002). As a consequence, the park has long supported grizzly bear research in an effort to understand these impacts. Most people are familiar with what happened when the park and the State of Montana closed open-pit garbage dumps in the late 1960s and early 1970s, when at least 229 bears died as a direct result of conflict with humans. However, many may not be as familiar with the ongoing changes in the park’s plant and animal communities that have the potential to further alter the park’s ability to support grizzly bears.

  18. The mosquitoes and chaoborids of Glacier and Yellowstone National Parks with new records and Ochlerotatus nevadensis, a new state record for Montana.

    PubMed

    Nielsen, Lewis T

    2012-03-01

    The known mosquito fauna of Glacier National Park, Montana, and Yellowstone National Park, Wyoming, is reported with new records, including a list of the species of Chaoboridae known from both parks. Ochlerotatus nevadensis (= Aedes nevadensis) from Glacier National Park is a new record for the state of Montana.

  19. Taming of a Wild Research Well in Yellowstone National Park during November 1992

    USGS Publications Warehouse

    Fournier, Robert O.; Moore, Michael M.

    2008-01-01

    Much of our current understanding of Yellowstone's geothermal areas comes from research drilling by the USGS during 1967 and 1968. Thirteen wells were drilled in thermal areas around the park. Scientists collected waters and rocks, measured temperatures and pressures and performed other tests to characterize the shallow subsurface at Yellowstone. Most wells were plugged and abandoned, but a few were left open for future scientific tests and sampling. One of those wells, the Y8, was located at Biscuit Basin, 2 miles north of Old Faithful. In November 1992, a valve at the ground surface failed, leading to a blowout, an uncontrolled eruption of steam and hot water. The USGS and Yellowstone National Park worked with a drilling contractor to control the flow and plug the well. The lead scientist, Robert Fournier, used video taken by the drilling contractor, Tonto Services, to create this fascinating 28-minute-long film. It is followed by a short news story by CNN, also from November 1992. Fifteen years later, we felt that the video was of sufficient scientific and historical interest that it was worth publishing as a USGS Open-file report, where it can be accessed into the future. Enjoy!

  20. Geologic studies of Yellowstone National Park imagery using an electronic image enhancement system

    NASA Technical Reports Server (NTRS)

    Smedes, H. W.

    1970-01-01

    The image enhancement system is described, as well as the kinds of enhancement attained. Results were obtained from various kinds of remote sensing imagery (mainly black and white multiband, color, color infrared, thermal infrared, and side-looking K-band radar) of parts of Yellowstone National Park. Possible additional fields of application of these techniques are considered.

  1. The Impact of Field Experiences in Yellowstone National Park on Practice in Secondary Classrooms

    ERIC Educational Resources Information Center

    McGrew, Christopher N.

    2012-01-01

    The current study focused on how six participants of a 2009 professional development activity at Yellowstone National Park described their experience and classroom instructional impact. The author focused on words and phrases illustrating perspective gathering, reflection and public performance to determine the impact of both the experience at…

  2. Atlas of Yellowstone

    USGS Publications Warehouse

    Pierce, Kenneth L.; Marcus, A. W.; Meachan, J. E.; Rodman, A. W.; Steingisser, A. Y.; Allan, Stuart; West, Ross

    2012-01-01

    Established in 1872, Yellowstone National Park was the world’s first national park. In a fitting tribute to this diverse and beautiful region, the Atlas of Yellowstone is a compelling visual guide to this unique national park and its surrounding area. Ranging from art to wolves, from American Indians to the Yellowstone Volcano, and from geysers to population, each page explains something new about the dynamic forces shaping Yellowstone. Equal parts reference and travel guide, the Atlas of Yellowstone is an unsurpassed resource.

  3. Aspen overstory recruitment in northern Yellowstone National Park during the last 200 years

    Treesearch

    Eric J. Larsen; William J. Ripple

    2001-01-01

    Using a monograph provided by Warren (1926) and two sets of aspen increment cores collected in 1997 and 1998, we analyzed aspen overstory recruitment in Yellowstone National Park (YNP) over the past 200 years. We found that successful aspen overstory recruitment occurred on the northern range of YNP from the middle to late 1700s until the 1920s, after which it...

  4. Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park

    USGS Publications Warehouse

    Christiansen, Robert L.; Blank, H. Richard

    1972-01-01

    The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.

  5. Teleseismic studies indicate existence of deep magma chamber below Yellowstone National Park

    USGS Publications Warehouse

    Iyer, H.M.

    1974-01-01

    The secrets of Yellowstone National Park's spectacular geysers and other hot water and steam phenomena are being explored by the U.S Geological Survey with the aid of distant earthquakes (teleseisms). For some time geologists have known that the remarkable array of steam and hot water displays, for which the park is internationally famous, is associated with intense volcanic activity that occurred in the reigon during the last 2 million years. The most recent volcanic eruption took place about 600,000 years ago creating a large caldera, or crater, 75 kilometers long and 50 kilometers wide. This caldera occupies most of the central part of the present-day park. geologists knew from studies of the surface geology that the volcanic activity which creates the present caldera was caused the present caldera was caused by a large body of magma, a mixture composed of molten rock, hot liquids, and gases, that had forced its way from the deep interior of the Earth into the upper mantle and crust below the Yellowstone area. The dimensions and depth below the surface of this magma body were largely unknown, however, because there was no way to "see" deep below the surface. A tool was needed that would enable earth scientists to look into the curst and upper mantle of the Earth. Such a tool became availabe with the installation by the Geological Survey of a network of seismograph stations in the park

  6. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  7. Yellowstone Park

    NASA Image and Video Library

    2002-10-15

    Thirteen years after devastating forest fires burned over 1.6 million acres in Yellowstone National Park, the scars are still evident. In this simulated natural color ASTER image, burned areas appear gray, in contrast to the dark green of unburned forests. The image covers an area of 60 x 63 km. This image was acquired on July 2, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03875

  8. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park.

    PubMed

    McMenamin, Sarah K; Hadly, Elizabeth A; Wright, Christopher K

    2008-11-04

    Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species' vulnerability do not adequately consider such impacts.

  9. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park

    PubMed Central

    McMenamin, Sarah K.; Hadly, Elizabeth A.; Wright, Christopher K.

    2008-01-01

    Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species' vulnerability do not adequately consider such impacts. PMID:18955700

  10. Geothermal chemical elements in lichens of Yellowstone National Park

    USGS Publications Warehouse

    Bennett, J.P.; Wetmore, C.M.

    1999-01-01

    Geothermal features (e.g. geysers, fumaroles, vents, and springs) emit gaseous mercury, sulfur and heavy metals and therefore, are natural sources of these elements in the atmosphere. Field studies of heavy metals in lichens in Italy have detected elevated concentrations near geothermal power plants, and have determined that the origin of mercury is from soil degassing, not soil particles. We studied this phenomenon in a geothermal area without power plants to determine the natural levels of mercury and other elements. Two common and abundant species of epiphytic Lichens, Bryoria fremontii and Letharia vulpina, were collected at six localities in Yellowstone National Park, USA in 1998 and analyzed for 22 chemical elements. Thirteen elements differed significantly between species. Some elements were significantly higher in the southern part of the park, while others were higher in the north. Levels of most elements were comparable with those in other national parks and wilderness areas in the region, except Hg, which was unusually high. The most likely sources of this element are the geothermal features, which are known emitters of Hg. Multivariate analyses revealed strong positive associations of Hg with S, and negative associations with soil elements, providing strong evidence that the Hg in the lichens is the result of soil degassing of elemental Hg rather than particulate Hg directly from soils. Average Hg levels in the lichens were 140 p.p.b. in Bryoria and 110 p.p.b. in Letharia, but maxima were 291 and 243 p.p.b., respectively. In spite of this, both species were healthy and abundant throughout the park.

  11. Feeding ecology of native and nonnative salmonids during the expansion of a nonnative apex predator in Yellowstone Lake, Yellowstone National Park

    USGS Publications Warehouse

    Syslo, John M.; Guy, Christopher S.; Koel, Todd M.

    2016-01-01

    The illegal introduction of Lake Trout Salvelinus namaycush into Yellowstone Lake, Yellowstone National Park, preceded the collapse of the native population of Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri, producing a four-level trophic cascade. The Yellowstone Cutthroat Trout population’s collapse and the coinciding increase in Lake Trout abundance provided a rare opportunity to evaluate the feeding ecology of a native prey species and a nonnative piscivore species after the restructuring of a large lentic ecosystem. We assessed diets, stable isotope signatures, and depth-related CPUE patterns for Yellowstone Cutthroat Trout and Lake Trout during 2011–2013 to evaluate trophic overlap. To evaluate diet shifts related to density, we also compared 2011–2013 diets to those from studies conducted during previous periods with contrasting Yellowstone Cutthroat Trout and Lake Trout CPUEs. We illustrate the complex interactions between predator and prey in a simple assemblage and demonstrate how a nonnative apex predator can alter competitive interactions. The diets of Yellowstone Cutthroat Trout were dominated by zooplankton during a period when the Yellowstone Cutthroat Trout CPUE was high and were dominated by amphipods when the CPUE was reduced. Lake Trout shifted from a diet that was dominated by Yellowstone Cutthroat Trout during the early stages of the invasion to a diet that was dominated by amphipods after Lake Trout abundance had increased and after Yellowstone Cutthroat Trout prey had declined. The shifts in Yellowstone Cutthroat Trout and Lake Trout diets resulted in increased trophic similarity of these species through time due to their shared reliance on benthic amphipods. Yellowstone Cutthroat Trout not only face the threat posed by Lake Trout predation but also face the potential threat of competition with Lake Trout if amphipods are limiting. Our results demonstrate the importance of studying the long-term feeding ecology of fishes in

  12. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reysenbach, A.L.; Wickham, G.S.; Pace, N.R.

    1994-06-01

    This study uses a molecular phylogenetic approach to characterize the pink filament community at the outflow of Octopus Spring in Yellowstone National Park. The temperature range of the spring is from 84 to 88 C. The authors show that the pink filaments are most closely related to the hydrogen-oxidizing bacterium Aquifex pyrophilus and a close relative Hydrogenobacter thermophilus. 38 refs., 4 figs., 1 tab.

  13. Development of a Wireless Network of Temperature Sensors for Yellowstone National Park (USA)

    NASA Astrophysics Data System (ADS)

    Munday, D. A.; Hutter, T.; Minolli, M.; Obraczka, K.; Manduchi, R.; Petersen, S.; Lowenstern, J. B.; Heasler, H.

    2007-12-01

    Temperature sensors deployed at Yellowstone clearly document that thermal features can vary in temperature on a variety of timescales and show regional correlations unrelated to meteorological variables such as air temperature. Yellowstone National Park (YNP) staff currently measures temperatures at over 40 thermal features and streams within the park, utilizing USGS stream gaging stations and portable data loggers deployed in geyser basins. The latter measure temperature every 1 to 15 minutes, and the data are physically downloaded after about 30 days. Installation of a wireless sensor network would: 1) save considerable time and effort in data retrieval, 2) minimize lost data due to equipment failure, and 3) provide a means to monitor thermal perturbations in near-real time. To meet this need, we developed a wireless sensor network capable of in-situ monitoring of air and water temperature. Temperature sensors are dispersed as nodes that communicate among themselves and through relays to a single base-station linked to the Internet. The small, weatherproof sensors operate unattended for over six months at temperatures as low as -40°C. Each uses an ultra-low-power Texas Instruments' MSP430 microcontroller and an SD card as mass storage. They are powered by 15Ah, 3.6 v, inert Li-ion batteries and transmit data via 900MHz radio modules with a 1-km range. The initial prototype consists of 4 nodes, and is designed to scale with additional nodes for finer spatial resolution and broader coverage. Temperature measurements are asynchronous from node to node, with intervals as frequent as 30 seconds. Data are stored internally to withstand temporary communication failures; underlying intelligent software is capable of re-routing data through alternative nodes to the base station and a MySQL data archiving system. We also developed a Google-Maps-based, front-end that displays the data, recent trends and sensor locations. The system was tested in the Santa Cruz Mountains

  14. Fungi from geothermal soils in Yellowstone National Park

    USGS Publications Warehouse

    Redman, R.S.; Litvintseva, A.; Sheehan, K.B.; Henson, J.M.; Rodriguez, R.J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70??C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22??C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.

  15. Fungi from Geothermal Soils in Yellowstone National Park

    PubMed Central

    Redman, Regina S.; Litvintseva, Anastassia; Sheehan, Kathy B.; Henson, Joan M.; Rodriguez, Rusty J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70°C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22°C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature. PMID:10583964

  16. Wolf-bison interactions in Yellowstone National Park

    USGS Publications Warehouse

    Smith, Douglas W.; Mech, L. David; Meagher, Mary; Clark, Wendy E.; Jaffe, Rosemary; Phillips, Michael K.; Mack, John A.

    2000-01-01

    We studied interactions of reintroduced wolves (Canis lupus) with bison (Bison bison) in Yellowstone National Park. Only 2 of 41 wolves in this study had been exposed to bison before their translocation. Wolves were more successful killing elk (Cervus elaphus) than bison, and elk were more abundant than bison, so elk were the primary prey of wolves. Except for a lone emaciated bison calf killed by 8 1-year-old wolves 21 days after their release, the 1st documented kill occurred 25 months after wolves were released. Fourteen bison kills were documented from April 1995 through March 1999. All kills were made in late winter when bison were vulnerable because of poor condition or of bison that were injured or young. Wolves learned to kill bison and killed more bison where elk were absent or scarce. We predict that wolves that have learned to kill bison will kill them more regularly, at least in spring. The results of this study indicate how adaptable wolves are at killing prey species new to them.

  17. Geochemical evidence for hydroclimatic variability over the last 2460 years from Crevice Lake in Yellowstone National Park, USA

    USGS Publications Warehouse

    Stevens, L.R.; Dean, W.E.

    2008-01-01

    A 2460-year-long hydroclimatic record for Crevice Lake, Yellowstone National Park, Montana was constructed from the ??18O values of endogenic carbonates. The ??18O record is compared to the Palmer Hydrologic Drought Index (PHDI) and Pacific Decadal Oscillation (PDO) indices, as well as inferred discharge of the Yellowstone River. During the last century, high ??18O values coincide with drought conditions and the warm phase of the PDO index. Low ??18O values coincide with wet years and a negative PDO index. Comparison of tree-ring inferred discharge of the Yellowstone River with the ??18O record over the last 300 years indicates that periods of high discharge (i.e., wet winters with significant snow pack) correspond with low ??18O values. Extrapolating this relationship we infer wet winters and high river discharge for the periods of 1090-1030, 970-870, 670-620, and 500-430 cal years BP. The wet intervals at 670 and 500 cal BP are synchronous with similar events in Banff, Canada and Walker Lake, Nevada. The wet intervals at 970 and 670 cal BP overlap with wet intervals at Walker Lake and major drought events identified in the western Great Basin. These results suggest that the northern border of Yellowstone National Park straddles the boundary between Northern Rocky Mountains and Great Basin climate regimes. ?? 2007 Elsevier Ltd and INQUA.

  18. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    USGS Publications Warehouse

    Finn, C.A.; Morgan, L.A.

    2002-01-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  19. 75 FR 53979 - Bison Brucellosis Remote Vaccination, Draft Environmental Impact Statement, Yellowstone National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... CONTACT: The Bison Ecology and Management Office, Yellowstone National Park, P.O. Box 168, Yellowstone... comments to the Bison Ecology and Management Office, Center for Resources, P.O. Box 168, Yellowstone...

  20. Science and Art in the National Parks

    ERIC Educational Resources Information Center

    Clary, Renee

    2016-01-01

    This year marks the U.S. National Park Service's 100th anniversary. Although the nation's first national park--Yellowstone--dates to 1872, the government organization protecting and administering the national parks was founded just a hundred years ago, in 1916. Many U.S. national parks were established to preserve their unique geology or biology.…

  1. Controls on Thermal Discharge in Yellowstone NAtional Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Mohrmann, Jacob Steven

    2007-10-01

    Significant fluctuations in discharge occur in hot springs in Yellowstone National Park on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 2002). The purpose of this study was to determine the interval of the fluctuations in discharge and to explain what causes those discharge patterns in three thermally influenced streams in Yellowstone National Park. By monitoring flow in these streams, whose primary source of input is thermal discharge, we were able to find several significant patterns of discharge fluctuations. Patterns were found by using two techniques of spectral analysis. The spectral analyses completed involved using the program "R" as well as Microsoft Excel, both of which use Fourier transforms. The Fourier transform is a linear operator that identifies frequencies in the original function. Stream flow data were collected using a FloDar open channel flow monitor. The flow meter collected data at15-minute intervals at White Creek and Rabbit Creek for a period of approximately two weeks each during the Fall. Flow data were also used from 15-minute data interval from a USGS gaging station at Tantalus Creek. Patterns of discharge fluctuation were found in each stream. By comparing spectral analysis results of flow data with spectral analysis of published tide data and barometric pressure data, connections were drawn between fluctuations in tidal and barometric-pressure patterns and flow patterns. Also, visual comparisons used to identify potential correspondence with earthquakes and precipitation events. At Tantalus Creek, patterns were affected only by barometric pressure changes. At White Creek, one pattern was attributed to barometric pressure fluctuations, and another pattern was found that could be associated with earth-tide forces. At Rabbit Creek, these patterns were absent. A pattern at 8.55 hours, which could not be attributed to barometric pressure or earth tide forces, was found at Rabbit and White Creeks. The 8

  2. Chlamydial-caused infectious keratoconjunctivitis in bighorn sheep of Yellowstone National Park

    USGS Publications Warehouse

    Meagher, Mary; Quinn, William J.; Stackhouse, Larry

    1992-01-01

    An epizootic of infectious keratoconjuctivitis occurred in bighorn sheep (Ovis canadensis) in Yellowstone National Park during the winter of 1981-82. The causative organism was identified as Chlamydia sp. Mortality related to the epizootic was approximately 60% of an estimated 500 bighorn sheep in the northern range population. The infection probably affected all sex and age classes, but field surveys of live animals and mortality suggested that mature rams died disproportionately. Limited field observations the following winter on individuals having both normal and cloudy-appearing eyes suggested that half of the bighorns then present on the core units of winter range had contracted the disease and survived. By 1988, there were about 300 bighorn sheep in the population.

  3. Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park.

    PubMed

    Boomer, S M; Pierson, B K; Austinhirst, R; Castenholz, R W

    2000-09-01

    Novel red, filamentous, gliding bacteria formed deep red layers in several alkaline hot springs in Yellowstone National Park. Filaments contained densely layered intracellular membranes and bacteriochlorophyll a. The in vivo absorption spectrum of the red layer filaments was distinct from other phototrophs, with unusual bacteriochlorophyll a signature peaks in the near-infrared (IR) region (807 nm and 911 nm). These absorption peaks were similar to the wavelengths penetrating to the red layer of the mats as measured with in situ spectroradiometry. The filaments also demonstrated maximal photosynthetic uptake of radiolabeled carbon sources at these wavelengths. The red layer filaments displayed anoxygenic photoheterotrophy, as evidenced by the specific incorporation of acetate, not bicarbonate, and by the absence of oxygen production. Photoheterotrophy was unaffected by sulfide and oxygen, but was diminished by high-intensity visible light. Near-IR radiation supported photoheterotrophy. Morphologically and spectrally similar filaments were observed in several springs in Yellowstone National Park, including Octopus Spring. Taken together, these data suggest that the red layer filaments are most similar to the photoheterotroph, Heliothrix oregonensis. Notable differences include mat position and coloration, absorption spectra, and prominent intracellular membranes.

  4. Annual precipitation in the Yellowstone National Park region since AD 1173

    USGS Publications Warehouse

    Gray, Stephen T.; Graumlich, Lisa J.; Betancourt, Julio L.

    2007-01-01

    Cores and cross sections from 133 limber pine (Pinus flexilis James) and Douglas fir (Pseudotsuga menziesii (Mirbel) Franco) at four sites were used to estimate annual (July to June) precipitation in the Yellowstone National Park region for the period from AD 1173 to 1998. Examination of the long-term record shows that the early 20th century was markedly wet compared to the previous 700 yr. Extreme wet and dry years within the instrumental period fall within the range of past variability, and the magnitude of the worst-case droughts of the 20th century (AD 1930s and 1950s) was likely equaled or exceeded on numerous occasions before AD 1900. Spectral analysis showed significant decadal to multidecadal precipitation variability. At times this lower frequency variability produces strong regime-like behavior in regional precipitation, with the potential for rapid, high-amplitude switching between predominately wet and predominately dry conditions. Over multiple time scales, strong Yellowstone region precipitation anomalies were almost always associated with spatially extensive events spanning various combinations of the central and southern U.S. Rockies, the northern U.S.-Southern Canadian Rockies and the Pacific Northwest.

  5. Annual precipitation in the Yellowstone National Park region since AD 1173

    USGS Publications Warehouse

    Gray, S.T.; Graumlich, L.J.; Betancourt, J.L.

    2007-01-01

    Cores and cross sections from 133 limber pine (Pinus flexilis James) and Douglas fir (Pseudotsuga menziesii (Mirbel) Franco) at four sites were used to estimate annual (July to June) precipitation in the Yellowstone National Park region for the period from AD 1173 to 1998. Examination of the long-term record shows that the early 20th century was markedly wet compared to the previous 700??yr. Extreme wet and dry years within the instrumental period fall within the range of past variability, and the magnitude of the worst-case droughts of the 20th century (AD 1930s and 1950s) was likely equaled or exceeded on numerous occasions before AD 1900. Spectral analysis showed significant decadal to multidecadal precipitation variability. At times this lower frequency variability produces strong regime-like behavior in regional precipitation, with the potential for rapid, high-amplitude switching between predominately wet and predominately dry conditions. Over multiple time scales, strong Yellowstone region precipitation anomalies were almost always associated with spatially extensive events spanning various combinations of the central and southern U.S. Rockies, the northern U.S.-Southern Canadian Rockies and the Pacific Northwest. ?? 2007 University of Washington.

  6. Water chemistry and electrical conductivity database for rivers in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Clor, Laura E.; McCleskey, R. Blaine; Huebner, Mark A.; Lowenstern, Jacob B.; Heasler, Henry P.; Mahony, Dan L.; Maloney, Tim; Evans, William C.

    2012-01-01

    This study aims to quantify relations between solute concentrations (especially chloride) and electrical conductivity for several rivers in Yellowstone National Park (YNP), by using automated samplers and conductivity meters. Norton and Friedman (1985) found that chloride concentrations and electrical conductivity have a good correlation in the Falls, Snake, Madison, and Yellowstone Rivers. However, their results are based on limited sampling and hydrologic conditions and their relation with other solutes was not determined. Once the correlations are established, conductivity measurements can then be used as a proxy for chloride concentrations, thereby enabling continuous heat-flow estimation on a much finer timescale and at lower cost than is currently possible with direct sampling. This publication serves as a repository for all data collected during the course of the study from May 2010 through July 2011, but it does not include correlations between solutes and conductivity or recommendations for quantification of chloride through continuous electrical conductivity measurements. This will be the object of a future document.

  7. Predatory behavior of grizzly bears feeding on elk calves in Yellowstone National Park

    USGS Publications Warehouse

    French, Steven P.; French, Marilynn G.

    1990-01-01

    Grizzly bears (Ursus arctos horribilis) were observed preying on elk calves (Cervus elaphus) on 60 occasions in Yellowstone National Park, with 29 confirmed kills. Some bears were deliberate predators and effectively preyed on elk calves for short periods each spring, killing up to 1 calf daily. Primary hunting techniques were searching and chasing although some bears used a variety of techniques during a single hunt. They hunted both day and night and preyed on calves in the open and in the woods. Excess killing occurred when circumstances permitted. One bear caught 5 calves in a 15-minute interval. Elk used a variety of antipredator defenses and occasionally attacked predacious bears. The current level of this feeding behavior appears to be greater than previously reported. This is probably related to the increased availability of calves providing a greater opportunity for learning, and the adaptation of a more predatory behavior by some grizzly bears in Yellowstone.

  8. Wastewater movement near four treatment and disposal sites in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Cox, E.R.

    1986-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the effects on nearby streams and lakes of treated wastewater effluents that percolate from sewage lagoons at four sites in Yellowstone National Park. A network of observation wells has been established near the sites, and water level and water quality data were collected from 1974 through 1982. Groundwater mounds occur under the lagoons as percolation of effluents occurs. The percolating effluents mix with groundwater and form plumes of water that contain chemical constituents from the effluents. These plumes move down the hydraulic gradient toward groundwater discharge areas. The directions of movement of percolating effluents have been determined by analyzing water samples from wells near the lagoons for specific conductance, chloride concentration, and nitrite plus nitrate concentration. Other constituents and properties also were determined. The percolating effluents are diluted by groundwater and have no discernible effects on the quality of water in the nearby streams and lakes. (USGS)

  9. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric

    2003-01-01

    Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).

  10. HYDROTHERMAL MINERALOGY OF RESEARCH DRILL HOLE Y-3, YELLOWSTONE NATIONAL PARK, WYOMING.

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1984-01-01

    The approximate paragenetic sequence of hydrothermal minerals in the Y-3 U. S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, is: hydrothermal chalcedony, hematite, pyrite, quartz, clay minerals (smectite and mixed-layer illite-smectite), calcite, chlorite, fluorite, pyrite, quartz, zeolite minerals (analcime, dachiardite, laumontite, stilbite, and yugawaralite), and clay minerals (smectite and mixed-layer illite-smectite). A few hydrothermal minerals that were identified in drill core Y-3 (lepidolite, aegirine, pectolite, and truscottite) are rarely found in modern geothermal areas. The alteration minerals occur primarily as vug and fracture fillings that were deposited from cooling thermal water. Refs.

  11. Who Visits a National Park and What do They Get Out of It?: A Joint Visitor Cluster Analysis and Travel Cost Model for Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Benson, Charles; Watson, Philip; Taylor, Garth; Cook, Philip; Hollenhorst, Steve

    2013-10-01

    Yellowstone National Park visitor data were obtained from a survey collected for the National Park Service by the Park Studies Unit at the University of Idaho. Travel cost models have been conducted for national parks in the United States; however, this study builds on these studies and investigates how benefits vary by types of visitors who participate in different activities while at the park. Visitor clusters were developed based on activities in which a visitor participated while at the park. The clusters were analyzed and then incorporated into a travel cost model to determine the economic value (consumer surplus) that the different visitor groups received from visiting the park. The model was estimated using a zero-truncated negative binomial regression corrected for endogenous stratification. The travel cost price variable was estimated using both 1/3 and 1/4 the wage rate to test for sensitivity to opportunity cost specification. The average benefit across all visitor cluster groups was estimated at between 235 and 276 per person per trip. However, per trip benefits varied substantially across clusters; from 90 to 103 for the "value picnickers," to 185-263 for the "backcountry enthusiasts," 189-278 for the "do it all adventurists," 204-303 for the "windshield tourists," and 323-714 for the "creature comfort" cluster group.

  12. Serological survey for diseases in free-ranging coyotes (Canis latrans) in Yellowstone National Park, Wyoming.

    PubMed

    Gese, E M; Schultz, R D; Johnson, M R; Williams, E S; Crabtree, R L; Ruff, R L

    1997-01-01

    From October 1989 to June 1993, we captured and sampled 110 coyotes (Canis latrans) for various diseases in Yellowstone National Park, Wyoming (USA). Prevalence of antibodies against canine parvovirus (CPV) was 100% for adults (> 24 months old), 100% for yearlings (12 to 24 months old), and 100% for old pups (4 to 12 months old); 0% of the young pups (< 3 months old) had antibodies against CPV. Presence of antibodies against canine distemper virus (CDV) was associated with the age of the coyote, with 88%, 54%, 23%, and 0% prevalence among adults, yearlings, old pups, and young pups, respectively. Prevalence of CDV antibodies declined over time from 100% in 1989 to 33% in 1992. The prevalence of canine infectious hepatitis (ICH) virus antibodies was 97%, 82%, 54%, and 33%, for adults, yearlings, old pups, and young pups, respectively. The percentage of coyotes with ICH virus antibodies also declined over time from a high of 100% in 1989 to 31% in 1992, and 42% in 1993. Prevalence of antibodies against Yersinia pestis was 86%, 33%, 80%, and 7%, for adults, yearlings, old pups, and young pups, respectively, and changed over time from 57% in 1991 to 0% in 1993. The prevalence of antibodies against Francisella tularensis was 21%, 17%, 10%, and 20%, for adults, yearlings, old pups, and young pups, respectively. No coyotes had serologic evidence of exposure to brucellosis, either Brucella abortus or Brucella canis. No coyotes were seropositive to Leptospira interrogans (serovars canicola, hardjo, and icterohemorrhagiae). Prevalence of antibodies against L. interrogans serovar pomona was 7%, 0%, 0%, and 9%, for adults, yearlings, old pups, and young pups, respectively. Antibodies against L. interrogans serovar grippotyphosa were present in 17% of adults and 0% of yearlings, old pups, and young pups. Many infectious canine pathogens (CPV, CDV, ICH virus) are prevalent in coyotes in Yellowstone National Park, with CPV influencing coyote pup survival during the first 3 months

  13. Chemical analyses of hot springs, pools, geysers, and surface waters from Yellowstone National Park, Wyoming, and vicinity, 1974-1975

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.; Vivit, Davison V.

    1998-01-01

    This report presents all analytical determinations for samples collected from Yellowstone National Park and vicinity during 1974 and 1975. Water temperature, pH, Eh, and dissolved O2 were determined on-site. Total alkalinity and F were determined on the day of sample collection. Flame atomic-absorption spectrometry was used to determine concentrations of Li, Na, K, Ca, and Mg. Ultraviolet/visible spectrophotometry was used to determine concentrations of Fe(II), Fe(III), As(III), and As(V). Direct-current plasma-optical-emission spectrometry was used to determine the concentrations of B, Ba, Cd, Cs, Cu, Mn, Ni, Pb, Rb, Sr, and Zn. Two samples collected from Yellowstone Park in June 1974 were used as reference samples for testing the plasma analytical method. Results of these tests demonstrate acceptable precision for all detectable elements. Charge imbalance calculations revealed a small number of samples that may have been subject to measurement errors in pH or alkalinity. These data represent some of the most complete analyses of Yellowstone waters available.

  14. Draft Genome Sequence of Bacillus licheniformis Strain YNP1-TSU Isolated from Whiterock Springs in Yellowstone National Park

    PubMed Central

    O'Hair, Joshua A.; Li, Hui; Thapa, Santosh; Scholz, Matthew B.

    2017-01-01

    ABSTRACT Novel cellulolytic microorganisms can potentially influence second-generation biofuel production. This paper reports the draft genome sequence of Bacillus licheniformis strain YNP1-TSU, isolated from hydrothermal-vegetative microbiomes inside Yellowstone National Park. The assembled sequence contigs predicted 4,230 coding genes, 66 tRNAs, and 10 rRNAs through automated annotation. PMID:28254968

  15. Taming a wild geothermal research well in yellowstone national park

    USGS Publications Warehouse

    Fournier, Robert O.; Pisto, Larry M.; Howell, Bruce B.; Hutchnson, Roderick A.; ,

    1993-01-01

    In November 1992 the valve at the top of a U.S. Geological Survey drill hole in Yellowstone National Park parted from the casting as a result of corrosion. This allowed uncontrolled venting of boiling water and steam from the well at an estimated liquid flow rate of about 25-50 gallons per minute. A flow diverter assembly was designed, fabricated and installed on the well within 16 days, which allowed drill rods to be safely stripped into the well through on annular Blow-Out Preventer. Once this was accomplished it was a relatively routine matter to set a packer in the casting and cement the well shut permanently. The drill hole was brought under control and cemented shut within 18 days of the wellhead failure at a total cost of $47,066, which was about $5,000 less than anticipated.

  16. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    USGS Publications Warehouse

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean < 1%; SE < 1%) and snorkeling (mean = 1%; SE = 1%) surveys; Arctic grayling constituted 0–14% of the salmonid catch obtained by targeted angling (3 of 22 fish; mean = 4%; SE = 5%). Low values of the genetic differentiation index (F ST = 0.0021 ± 0.002 [mean ± 95% confidence interval]) between headwater lake and river Arctic grayling indicated that fish from throughout the Gibbon River system probably belonged to the same population. Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  17. Illuminating the Voluminous Subsurface Structures of Old Faithful Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Shelly, David R.

    2017-10-01

    Old Faithful geyser in Yellowstone National Park has attracted scientific research for almost a century and a half. Temperature and pressure measurements and video recordings in the geyser's conduit led to proposals of many quantitative eruption models. Nevertheless, information on the processes that initiate the geyser's eruption in the subsurface remained limited. Two new studies, specifically Wu et al. (2017) and Ward and Lin (2017), take advantage of recent developments in seismic data acquisition technology and processing methods to illuminate subsurface structures. Using a dense array of three-component nodal geophones, these studies delineate subsurface structures on a scale larger than previously realized, which exert control on the spectacular eruptions of Old Faithful geyser.

  18. Atmospheric mercury speciation in Yellowstone National Park

    USGS Publications Warehouse

    Hall, B.D.; Olson, M.L.; Rutter, A.P.; Frontiera, R.R.; Krabbenhoft, D.P.; Gross, D.S.; Yuen, M.; Rudolph, T.M.; Schauer, J.J.

    2006-01-01

    Atmospheric concentrations of elemental mercury (Hg0), reactive gaseous Hg (RGM), and particulate Hg (pHg) concentrations were measured in Yellowstone National Park (YNP), U.S.A. using high resolution, real time atmospheric mercury analyzers (Tekran 2537A, 1130, and 1135). A survey of Hg0 concentrations at various locations within YNP showed that concentrations generally reflect global background concentrations of 1.5-2.0 ng m- 3, but a few specific locations associated with concentrated geothermal activity showed distinctly elevated Hg0 concentrations (about 9.0 ng m- 3). At the site of intensive study located centrally in YNP (Canyon Village), Hg0 concentrations did not exceed 2.5 ng m- 3; concentrations of RGM were generally below detection limits of 0.88 pg m- 3 and never exceeded 5 pg m- 3. Concentrations of pHg ranged from below detection limits to close to 30 pg m-3. RGM and pHg concentrations were not correlated with any criteria gases (SO2, NOx, O3); however pHg was weakly correlated with the concentration of atmospheric particles. We investigated three likely sources of Hg at the intensive monitoring site: numerous geothermal features scattered throughout YNP, re-suspended soils, and wildfires near or in YNP. We examined relationships between the chemical properties of aerosols (as measured using real time, single particle mass spectrometry; aerosol time-of-flight mass spectrometer; ATOFMS) and concentrations of atmospheric pHg. Based on the presence of particles with distinct chemical signatures of the wildfires, and the absence of signatures associated with the other sources, we concluded that wildfires in the park were the main source of aerosols and associated pHg to our sampling site. ?? 2005 Elsevier B.V. All rights reserved.

  19. Long-term limnological data from the larger lakes of Yellowstone National Park, Wyoming, USA

    USGS Publications Warehouse

    Theriot, E.C.; Fritz, S.C.; Gresswell, Robert E.

    1997-01-01

    Long-term limnological data from the four largest lakes in Yellowstone National Park (Yellowstone, Lewis, Shoshone, Heart) are used to characterize their limnology and patterns of temporal and spatial variability. Heart Lake has distinctively high concentrations of dissolved materials, apparently reflecting high thermal inputs. Shoshone and Lewis lakes have the highest total SiO2 concentrations (averaging over 23.5 mg L-1), apparently as a result of the rhyolitic drainage basins. Within Yellowstone Lake spatial variability is low and ephemeral for most measured variables, except that the Southeast Arm has lower average Na concentrations. Seasonal variation is evident for Secchi transparency, pH, and total-SiO2 and probably reflects seasonal changes in phytoplankton biomass and productivity. Total dissolved solids (TDS) and total-SiO2 generally show a gradual decline from the mid-1970s through mid-1980s, followed by a sharp increase. Ratios of Kjeldahl-N to total-PO4 (KN:TP) suggest that the lakes, especially Shoshone, are often nitrogen limited. Kjeldahl-N is positively correlated with winter precipitation, but TP and total-SiO2 are counterintuitively negatively correlated with precipitation. We speculate that increased winter precipitation, rather than watershed fires, increases N-loading which, in turn, leads to increased demand for TP and total SiO2.

  20. The phenology of space: Spatial aspects of bison density dependence in Yellowstone National Park

    USGS Publications Warehouse

    Taper, M.L.; Meagher, M.; Jerde, C.L.

    2000-01-01

    The Yellowstone bison represent the only bison population in the United States that survived in the wild the near-extermination of the late 1800's. This paper capitalizes on a unique opportunity provided by the record of the bison population of Yellowstone National Park (YNP). This population has been intensely monitored for almost four decades. The analysis of long-term spatio-temporal data from 1970-1997 supports the following conclusions. 1) Even though the Yellowstone bison herd exhibits an extended period of what appears to be linear growth, this pattern can be explained with classical density dependent dynamics if one realizes that perhaps the primary response of the herd to increased density is range expansion. 2) Several spatial aspects of social behavior in the YNP bison may be behavioral adaptations by the bison to environmental changes. These behavioral strategies may buffer, temporarily at least, bison population dynamics from the immediate repercussions of possible environmental stress and habitat deterioration. 3) Bison ecological carrying capacity for YNP is on the order of 2800 to 3200 animals. 4) There do appear to be indications of changes in the bison dynamics that are associated with increasing use of sections of the interior road system in winter. 5) The possibility of habitat degradation is indicated.

  1. Forecasts of 21st Century Snowpack and Implications for Snowmobile and Snowcoach Use in Yellowstone National Park

    PubMed Central

    Tercek, Michael; Rodman, Ann

    2016-01-01

    Climate models project a general decline in western US snowpack throughout the 21st century, but long-term, spatially fine-grained, management-relevant projections of snowpack are not available for Yellowstone National Park. We focus on the implications that future snow declines may have for oversnow vehicle (snowmobile and snowcoach) use because oversnow tourism is critical to the local economy and has been a contentious issue in the park for more than 30 years. Using temperature-indexed snow melt and accumulation equations with temperature and precipitation data from downscaled global climate models, we forecast the number of days that will be suitable for oversnow travel on each Yellowstone road segment during the mid- and late-21st century. The west entrance road was forecast to be the least suitable for oversnow use in the future while the south entrance road was forecast to remain at near historical levels of driveability. The greatest snow losses were forecast for the west entrance road where as little as 29% of the December–March oversnow season was forecast to be driveable by late century. The climatic conditions that allow oversnow vehicle use in Yellowstone are forecast by our methods to deteriorate significantly in the future. At some point it may be prudent to consider plowing the roads that experience the greatest snow losses. PMID:27467778

  2. Water resources of Teton County, Wyoming, exclusive of Yellowstone National Park

    USGS Publications Warehouse

    Nolan, B.T.; Miller, K.A.

    1995-01-01

    Surface- and ground-water data were collected and analyzed to describe the water resources of that part of Teton County, Wyoming located south of Yellowstone National Park. Wells and springs inventoried in the Teton County study area most commonly were completed in or issued from Quaternary unconsolidated deposits and Tertiary, Mesozoic, and Paleozoic rocks. The largest measured, reported, or estimated discharges were from Quaternary uncon- solidated deposits (3,000 gallons per minute), the Bacon Ridge Sandstone of Cretaceous age (800 gallons per minute), and the Madison Limestone of Mississippian age (800 gallons per minute). Dissolved-solids concentrations in water samples from Quaternary unconsolidated deposits and Tertiary, Mesozoic, and Paleozoic rocks ranged from 80 to 1,060 milligrams per liter. A time-domain electromagnetic survey of Jackson Hole indicated that the depth of Quaternary unconsolidated deposits ranged from about 380 feet in the northern part of Antelope Flats to about 2,400 feet near the Potholes area in Grand Teton National Park. A streamflow gain-and-loss study indicated that the ground-water discharge to the Snake River between gaging stations near Moran and south of the Flat Creek confluence, near Jackson, was 395 cubic feet per second. Water level contours generated from 137 water-level measurements and 118 stream altitudes indicated that water in Quaternary unconsolidated deposits flows southwest in the general direction of the Snake River.

  3. Climate and reproduction of grizzly bears in Yellowstone National Park

    USGS Publications Warehouse

    Picton, Harold D.

    1978-01-01

    Controversy surrounds the conflicts between the requirements of human safety and the preservation of grizzly bears (Ursus arctos horribilis) in western North America. It has been difficult to separate the effect of factors such as the closure of garbage dumps from that of the climate. It has also proved difficult to relate climatic data to changes in the populations of large mammals. I report here a correlation of climatic change with fluctuations in the sizes of litters of grizzly bears born in Yellowstone National Park, Wyoming, during 1958–1976. The decrease in litter sizes observed since the closure of garbage dumps seems to be largely a consequence of unfavourable weather during the periods of the final fattening of the mother, winter sleep, birth, lactation and early spring foraging. This study represents one of the few times that the effects of climate have been demonstrated for large omnivorous or carnivorous mammals.

  4. Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.

    2008-01-01

    This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.

  5. Effects of snowmobile use on snowpack chemistry in Yellowstone National Park, 1998

    USGS Publications Warehouse

    Ingersoll, George P.

    1999-01-01

    Snowmobile use in Yellowstone National Park has increased substantially in the past three decades. In areas of greatest snowmobile use, elevated levels of by-products of gasoline combustion such as ammonium and benzene have been detected in snowpack samples. Annual snowpacks and snow-covered roadways trap deposition from local and regional atmospheric emissions. Snowpack samples representing most of the winter precipitation were collected at about the time of maximum annual snow accumulation at a variety of locations in the park to observe effects of a range of snowmobile traffic levels. Concentrations of organic and inorganic compounds in snow samples from pairs of sites located directly in and off snow-packed roadways used by snowmobiles were compared to concentrations in samples collected at nearby off-road sites. Concentrations of ammonium were 2 to 5 times higher for the in-road snow compared to off-road snow for each pair of sites. Thus, concentrations decreased rapidly with distance from roadways. In addition, concentrations of ammonium, nitrate, sulfate, benzene, and toluene in snow were positively correlated with snowmobile use.

  6. Using monitoring data to map amphibian breeding hotspots and describe wetland vulnerability in Yellowstone and Grand Teton National Parks

    USGS Publications Warehouse

    Ray, Andrew M.; Legg, Kristin; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra

    2015-01-01

    Amphibians have been selected as a “vital sign” by several National Park Service (NPS) Inventory and Monitoring (I&M) networks. An eight-year amphibian monitoring data set provided opportunities to examine spatial and temporal patterns in amphibian breeding richness and wetland desiccation across Yellowstone and Grand Teton National Parks. Amphibian breeding richness was variable across both parks and only four of 31 permanent monitoring catchments contained all four widely distributed species. Annual breeding richness was also variable through time and fluctuated by as much as 75% in some years and catchments. Wetland desiccation was also documented across the region, but alone did not explain variations in amphibian richness. High annual variability across the region emphasizes the need for multiple years of monitoring to accurately describe amphibian richness and wetland desiccation dynamics.

  7. Volatile Emissions from Hot Spring Basin, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    Werner, C.; Hurwitz, S.; Bergfeld, D.; Evans, W. C.; Lowenstern, J. B.; Jaworowski, C.; Heasler, H.

    2007-12-01

    The flux and composition of magmatic volatiles were characterized for Hot Spring Basin (HSB), Yellowstone National Park, in August 2006. Diffuse fluxes of CO2 (228 sites) from thermal soil were elevated, with a population distribution similar to that of other acid-sulfate areas in Yellowstone. Thus the estimated diffuse emission rate at HSB is proportionately larger than other areas due to its large area, and could be as high as 1000 td-1 CO2. The diffuse flux of H2S was only above detection limits at 20 of the 31 sites measured. The estimated diffuse H2S emission rate was ~ 4 td-1. Good correlation exists between the log of CO2 flux and shallow soil temperatures, indicating linked steam and gas upflow in the subsurface. The correlation between CO2 and H2S fluxes is weak, and the CO2 / H2S diffuse flux ratio was higher than in fumarolic ratios of CO2 to H2S. This suggests that various reactions, e.g., native sulfur deposition, act to remove H2S from the original gas stream in the diffuse low- temperature environment. Dissolved sulfate flux through Shallow Creek, which drains part of HSB, was ~ 4 td-1. Comparing dissolved sulfate flux to estimates of primary emission of H2S based on fumarolic gas geochemistry gives first order estimates of the sulfur consumed in surficial or subsurface mineral deposition. Total C and S outputs from HSB are comparable to other active volcanic systems.

  8. Speciation of volatile arsenic at geothermal features in Yellowstone National Park

    USGS Publications Warehouse

    Planer-Friedrich, B.; Lehr, C.; Matschullat, J.; Merkel, B.J.; Nordstrom, D. Kirk; Sandstrom, M.W.

    2006-01-01

    Geothermal features in the Yellowstone National Park contain up to several milligram per liter of aqueous arsenic. Part of this arsenic is volatilized and released into the atmosphere. Total volatile arsenic concentrations of 0.5-200 mg/m3 at the surface of the hot springs were found to exceed the previously assumed nanogram per cubic meter range of background concentrations by orders of magnitude. Speciation of the volatile arsenic was performed using solid-phase micro-extraction fibers with analysis by GC-MS. The arsenic species most frequently identified in the samples is (CH3)2AsCl, followed by (CH3)3As, (CH3)2AsSCH3, and CH3AsCl2 in decreasing order of frequency. This report contains the first documented occurrence of chloro- and thioarsines in a natural environment. Toxicity, mobility, and degradation products are unknown. ?? 2006 Elsevier Inc. All rights reserved.

  9. Climate-induced variations of geyser periodicity in Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, S.; Kumar, A.; Taylor, R.; Heasler, H.

    2008-01-01

    The geysers of Yellowstone National Park, United States, attract millions of visitors each year, and their eruption dynamics have been the subject of extensive research for more than a century. Although many of the fundamental aspects associated with the dynamics of geyser eruptions have been elucidated, the relationship between external forcing (Earth tides, barometric pressure, and precipitation) and geyser eruption intervals (GEIs) remains a matter of ongoing debate. We present new instrumental GEI data and demonstrate, through detailed time-series analysis, that geysers respond to both long-term precipitation trends and to the seasonal hydrologic cycle. Responsiveness to long-term trends is reflected by a negative correlation between the annual averages of GEIs and stream flow in the Madison River. This response is probably associated with long-term pressure changes in the underlying hydrothermal reservoir. We relate seasonal GEI lengthening to snowmelt recharge. ?? 2008 The Geological Society of America.

  10. Development of Ground Reference GIS for Assessing Land Cover Maps of Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Warner, Amanda; Terrie, Greg; Davis, Bruce

    2001-01-01

    GIS technology and ground reference data often play vital roles in assessing land cover maps derived from remotely sensed data. This poster illustrates these roles, using results from a study done in Northeast Yellowstone National Park. This area holds many forest, range, and wetland cover types of interest to park managers. Several recent studies have focused on this locale, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project performed by Yellowstone Ecosystems Studies (YES) on riparian and in-stream habitat mapping. This poster regards a spin-off to the EOCAP project in which YES and NASA's Earth Science Applications Directorate explored the potential for synergistic use of hyperspecral, synthetic aperture radar, and multiband thermal imagery in mapping land cover types. The project included development of a ground reference GIS for site-specific data needed to evaluate maps from remotely sensed imagery. Field survey data included reflectance of plant communities, native and exotic plant species, and forest health conditions. Researchers also collected GPS points, annotated aerial photographs, and took hand held photographs of reference sites. The use of ESRI, ERDAS, and ENVI software enabled reference data entry into a GIS for comparision to georeferenced imagery and thematic maps. The GIS-based ground reference data layers supported development and assessment of multiple maps from remotely sensed data sets acquired over the study area.

  11. Draft Genome Sequences of Three Cellulolytic Bacillus licheniformis Strains Isolated from Imperial Geyser, Amphitheater Springs, and Whiterock Springs inside Yellowstone National Park

    PubMed Central

    O' Hair, Joshua A.; Li, Hui; Thapa, Santosh; Scholz, Matthew

    2017-01-01

    ABSTRACT Novel cellulolytic microorganisms are becoming more important for rapidly growing biofuel industries. This paper reports the draft genome sequences of Bacillus licheniformis strains YNP2-TSU, YNP3-TSU, and YNP5-TSU. These cellulolytic isolates were collected from several hydrothermal features inside Yellowstone National Park. PMID:28360181

  12. Arsenite-Oxidizing Hydrogenobaculum Strain Isolated from an Acid-Sulfate-Chloride Geothermal Spring in Yellowstone National Park

    PubMed Central

    Donahoe-Christiansen, Jessica; D'Imperio, Seth; Jackson, Colin R.; Inskeep, William P.; McDermott, Timothy R.

    2004-01-01

    An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H2 as its sole energy source and had an optimum temperature of 55 to 60°C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and was strongly inhibited by H2S. PMID:15006819

  13. Hydrothermal disturbances at the Norris Geyser Basin, Yellowstone National Park (USA) in 2003

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Heasler, H.; Smith, R. B.

    2003-12-01

    The Norris Geyser Basin in north-central Yellowstone National Park (YNP) experienced a series of notable changes during 2003, including formation of new hot springs and fumaroles, renewed activity of dormant geysers and elevated ground temperatures. This abstract provides a short synopsis of the new hydrothermal activity. In 2000, Yellowstone's tallest geyser, Steamboat, erupted after a dormant period of nearly 9 years. It erupted twice in 2002 and then again on 26 March and 27 April 2003. Surges in flux of thermal water preceding the eruptions (preplay) were recorded by a couplet of temperature data loggers placed in the outlet stream. The data indicated pulses of water flow with 1 and ~3 day intervals. On 10 July 2003, a new thermal feature was reported just west of Nymph Lake, ~ 3.5 km northwest of the Norris Museum. A linear series of vigorous fumaroles, about 75 m long had formed in a forested area, ~ 200 m up a hill on the lake's west shore. Fine particles of rock and mineral fragments coated nearby vegetation. Fumarole temperatures were around the local boiling temperature of water (92° C). After two months, somewhat reduced steam emission was accompanied by discharge of ~ 3-10 gallons per minute of near-neutral thermal water. Trees within 4 meters of the lineament were dead and were being slowly combusted. Porkchop Geyser in Norris' Back Basin had been dormant since it exploded in 1989, littering the nearby area with boulders up to over 1 m in diameter. Since that time, its water had remained well below the boiling temperature of water. From 1 April through 1 July `03, the temperature of waters in Porkchop's vent increased continuously from 67° to 88° C. Each Summer, Norris' Back Basin experiences an "annual disturbance" where individual hot springs and geysers typically show anomalous boiling, and have measurable increases in turbidity, acidity and SO4/Cl ratios. The disturbance has been linked to depressurization of the hydrothermal system as the

  14. Magma beneath Yellowstone National Park

    USGS Publications Warehouse

    Eaton, G.P.; Christiansen, R.L.; Iyer, H.M.; Pitt, A.M.; Mabey, D.R.; Blank, H.R.; Zietz, I.; Gettings, M.E.

    1975-01-01

    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  15. High altitude aircraft remote sensing during the 1988 Yellowstone National Park wildfires

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.

    1990-01-01

    An overview is presented of the effects of the wildfires that occurred in the Yellowstone National Park during 1988 and the techniques employed to combat these fires with the use of remote sensing. The fire management team utilized King-Air and Merlin aircraft flying night missions with a thermal IR line-scanning system. NASA-Ames Research Center assisted with an ER-2 high altitude aircraft with the ability to down-link active data from the aircraft via a teledetection system. The ER-2 was equipped with a multispectral Thematic Mapper Simulator scanner and the resultant map data and video imagery was provided to the fire command personnel for field evaluation and fire suppression activities. This type of information proved very valuable to the fire control management personnel and to the continuing ecological research goals of NASA-Ames scientists analyzing the effects of burn type and severity on ecosystem recovery and development.

  16. The 1988 Fires in Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2008-01-01

    The 1988 fires at Yellowstone National Park burned 1.4 million acres in the tri-state areas of Wyoming, Montana, and Idaho--encompassing the greater Yellowstone area--and burned some 800,000 acres within the park itself (Franke 2000). This article discusses this extraordinary fire event and contains helpful resources for bringing the science of…

  17. 76 FR 68503 - Winter Use Plan, Final Environmental Impact Statement, Yellowstone National Park, Idaho, Montana...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... to 318 commercially guided, best available technology snowmobiles and 78 commercially guided... available technology snowmobiles and 78 commercially guided snowcoaches would be allowed in the park per day... and a detailed history of winter use in Yellowstone, is available at http://www.nps.gov/yell/planvisit...

  18. Interactions between wolves and female grizzly bears with cubs in Yellowstone National Park

    USGS Publications Warehouse

    Gunther, Kerry A.; Smith, Douglas W.

    2004-01-01

    Gray wolves (Canis lupus) were extirpated from Yellowstone National Park (YNP) by the 1920s through predator control actions (Murie 1940,Young and Goldman 1944, Weaver 1978), then reintroduced into the park from 1995 to 1996 to restore ecological integrity and adhere to legal mandates (Bangs and Fritts 1996, Phillips and Smith 1996, Smith et al. 2000). Prior to reintroduction, the potential effects of wolves on the region’s threatened grizzly bear (Ursus arctos) population were evaluated (Servheen and Knight 1993). In areas where wolves and grizzly bears are sympatric, interspecific killing by both species occasionally occurs (Ballard 1980, 1982; Hayes and Baer 1992). Most agonistic interactions between wolves and grizzly bears involve defense of young or competition for carcasses (Murie 1944, 1981; Ballard 1982; Hornbeck and Horejsi 1986; Hayes and Mossop 1987; Kehoe 1995; McNulty et al. 2001). Servheen and Knight (1993) predicted that reintroduced wolves could reduce the frequency of winter-killed and disease-killed ungulates available for bears to scavenge, and that grizzly bears would occasionally usurp wolf-killed ungulate carcasses. Servheen and Knight (1993) hypothesized that interspecific killing and competition for carcasses would have little or no population level effect on either species.

  19. Sequoia National Park

    NASA Image and Video Library

    2017-12-08

    Naked peaks, sheltered valleys, snowfields, towering trees, and alpine meadows make up the varied landscape of Sequoia National Park in California. Established as a National Park by Congress on September 25, 1890, Sequoia National Park is the second-oldest U.S. National Park, after Yellowstone. This national park borders Kings Canyon National Park. The Thematic Mapper sensor on NASA’s Landsat 5 satellite captured this true-color image of Sequoia National Park, outlined in white, on October 22, 2008. Sunlight illuminates southern slopes, leaving northern faces in shadow in this autumn image. In the west, deep green conifers carpet most of the land. These forested mountains are home to the park’s most famous giant sequoia trees. Sequoia National Park sits at the southern end of the Sierra Nevada mountains. Terrain alternates between extremes, from peaks such as Mt. Whitney—the highest peak in the contiguous United States—to deep caverns. The rivers and lakes in this region are part of a watershed valuable not only to the plants and animals of the park, but also to farms and cities in California’s Central Valley. Read more: go.nasa.gov/2bzGOXr Credit: NASA/Landsat5 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Space Radar Image of Yellowstone Park, Wyoming

    NASA Image and Video Library

    1999-05-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  1. Preliminary study of wastewater movement in Yellowstone National Park, Wyoming, July 1975 through September 1976

    USGS Publications Warehouse

    Cox, Edward Riley

    1976-01-01

    This report describes a study by the U.S. Geological Survey in cooperation with the National Park Service to determine the effects on nearby lakes and streams of wastewater effluents that percolate from sewage lagoons at four sites in Yellowstone National Park. A network of observation wells has been established near the sites, and data have been collected from the wells and from nearby streams. Ground-water mounds have built up under the lagoons as percolation of effluents occurred. Percolating effluents mix with ground water and form plumes of ground water that contain chemical constituents for the effluents. Each plume tends to move down the hydraulic gradient in a direction generally perpendicular to the water-level contours. Water-level contours and most likely areas of movement of the plumes are shown on maps. Tests using rhodamine WT dye and dissolved solids as tracers suggested that chemical constituents in the plumes travel at different velocities as a result of dispersion and adsorlption. Chemical constituents from effluent percolating from the Old Faithful lagoons probably discharge into nearby Iron Spring Creek. Constituents from lagoons at the other three sites studied probably have not reached nearby streams or lakes. (Woodard-USGS)

  2. Deciphering the Preparatory and Triggering Factors Responsible for Post-Glacial Slope Failures: Insights from Landslide Age and Morphology in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Nicholas, G.; Dixon, J. L.; Pierce, K. L.

    2017-12-01

    Landslides are ubiquitous to post-glacial landscapes worldwide. Withdrawal of glacier ice exposes oversteepened landscapes that may be unstable, and consequently susceptible to landsliding. Several disparate mechanisms can act as triggers: glacial debuttressing can directly destabilize slopes; however, changes in climate resulting in greater effective moisture and subsequent degradation of permafrost may also play a role. Here, we quantify relative age, spatial relationships, and topographic metrics in a set of post-glacial landslides in northwest Yellowstone National Park. Preliminary analysis of high-resolution topography indicates increasing surface roughness of non-active landslides southward, consistent with younging ages along the retreat path of the Yellowstone Ice Cap. These roughness values in ancient slides are roughly half those of the active Slide Lake Landslide within the same study region. However, the changes in roughness within the non-active landslides disappear when we remove biases such as gullying, fluvial erosional contacts, and areas believed to have been remobilized. These removed areas appear largely linked to a Holocene incision pulse up the Gardiner River, which interacts with the toes of landslides in the southern region. Stream power analysis indicates that incision is focused at a knickpoint locally coincident with the toe of the modern and active Slide Lake Landslide. Our results indicate caution should be used when using surface roughness for landslide ages without accounting for both intrinsic and extrinsic changes in erosion of the landslide system, and suggest tight links between modern stream erosion and landslide reactivation. Insights from this dynamic landscape in Yellowstone National Park are actively being used by park officials to mitigate risk, and broadly show that quantifying the temporal and spatial patterns of landslides can provide diagnostic understanding of the long-term controls on post-glacial slope failure.

  3. Three Short Videos by the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  4. Metal loading in Soda Butte Creek upstream of Yellowstone National Park, Montana and Wyoming; a retrospective analysis of previous research; and quantification of metal loading, August 1999

    USGS Publications Warehouse

    Boughton, G.K.

    2001-01-01

    Acid drainage from historic mining activities has affected the water quality and aquatic biota of Soda Butte Creek upstream of Yellowstone National Park. Numerous investigations focusing on metals contamination have been conducted in the Soda Butte Creek basin, but interpretations of how metals contamination is currently impacting Soda Butte Creek differ greatly. A retrospective analysis of previous research on metal loading in Soda Butte Creek was completed to provide summaries of studies pertinent to metal loading in Soda Butte Creek and to identify data gaps warranting further investigation. Identification and quantification of the sources of metal loading to Soda Butte Creek was recognized as a significant data gap. The McLaren Mine tailings impoundment and mill site has long been identified as a source of metals but its contribution relative to the total metal load entering Yellowstone National Park was unknown. A tracer-injection and synoptic-sampling study was designed to determine metal loads upstream of Yellowstone National Park.A tracer-injection and synoptic-sampling study was conducted on an 8,511-meter reach of Soda Butte Creek from upstream of the McLaren Mine tailings impoundment and mill site downstream to the Yellowstone National Park boundary in August 1999. Synoptic-sampling sites were selected to divide the creek into discrete segments. A lithium bromide tracer was injected continuously into Soda Butte Creek for 24.5 hours. Downstream dilution of the tracer and current-meter measurements were used to calculate the stream discharge. Stream discharge values, combined with constituent concentrations obtained by synoptic sampling, were used to quantify constituent loading in each segment of Soda Butte Creek.Loads were calculated for dissolved calcium, silica, and sulfate, as well as for dissolved and total-recoverable iron, aluminum, and manganese. Loads were not calculated for cadmium, copper, lead, and zinc because these elements were infrequently

  5. Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1970-01-01

    Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile

  6. Tilt observations using borehole tiltmeters: 2. Analysis of data from Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Meertens, Charles; Levine, Judah; Busby, Robert

    1989-01-01

    We have installed borehole tiltmeters at five sites in Yellowstone National Park, Wyoming, and have used these instruments to measure the spatial variation of the amplitude and phase of the principal semidiurnal tide. The measured tides vary both with position and azimuth and differ from the sum of the body tide and the ocean load by up to 50%. The difference predicted by a finite element model constructed from seismic, refraction, and gravity data has a maximum value of only 12%, although the discrepancy between our observations and the model is only marginally significant at some sites. The disagreement between the model and our observations is much larger than we observed using the same instruments at other sites and cannot be attributed to an instrumental effect. We have been unable to modify the model to explain our results while keeping it consistent with the previous observations.

  7. Large carnivores response to recreational big game hunting along the Yellowstone National Park and Absaroka-Beartooth Wilderness boundary

    USGS Publications Warehouse

    Ruth, T.E.; Smith, D.W.; Haroldson, M.A.; Buotte, P.C.; Schwartz, C.C.; Quigley, H.B.; Cherry, S.; Tyres, D.; Frey, K.

    2003-01-01

    The Greater Yellowstone Ecosystem contains the rare combination of an intact guild of native large carnivores, their prey, and differing land management policies (National Park versus National Forest; no hunting versus hunting). Concurrent field studies on large carnivores allowed us to investigate activities of humans and carnivores on Yellowstone National Park's (YNP) northern boundary. Prior to and during the backcountry big-game hunting season, we monitored movements of grizzly bears (Ursus arctos), wolves (Canis lupus), and cougars (Puma concolor) on the northern boundary of YNP. Daily aerial telemetry locations (September 1999), augmented with weekly telemetry locations (August and October 1999), were obtained for 3 grizzly bears, 7 wolves in 2 groups of 1 pack, and 3 cougars in 1 family group. Grizzly bears were more likely located inside the YNP boundary during the pre-hunt period and north of the boundary once hunting began. The cougar family tended to be found outside YNP during the pre-hunt period and moved inside YNP when hunting began. Wolves did not significantly change their movement patterns during the pre-hunt and hunting periods. Qualitative information on elk (Cervus elaphus) indicated they moved into YNP once hunting started, suggesting that cougars followed living prey or responded to hunting activity, grizzly bears focused on dead prey (e.g., gut piles, crippled elk), and wolves may have taken advantage of both. Measures of association (Jacob's Index) were positive within carnivore species but inconclusive among species. Further collaborative research and the use of new technologies such as Global Positioning System (GPS) telemetry collars will advance our ability to understand these species, the carnivore community and its interactions, and human influences on carnivores.

  8. Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and "Korarchaeota" coexist.

    PubMed

    Reysenbach, A L; Ehringer, M; Hershberger, K

    2000-02-01

    The use of molecular phylogenetic approaches in microbial ecology has revolutionized our view of microbial diversity at high temperatures and led to the proposal of a new kingdom within the Archaea, namely, the "Korarchaeota." We report here the occurrence of another member of this archaeal group and a deeply rooted bacterial sequence from a thermal spring in Yellowstone National Park (USA). The DNA of a mixed community growing at 83 degrees C, pH 7.6, was extracted and the small subunit ribosomal RNA gene (16S rDNA) sequences were obtained using the polymerase chain reaction. The products were cloned and five different phylogenetic types ("phylotypes") were identified: four archaeal phylotypes, designated pBA1, pBA2, pBA3, and pBA5, and only one bacterial phylotype, designated pBB. pBA5 is very closely related to the korarchaeotal phylotype, pJP27, from Obsidian Pool in Yellowstone National Park. The pBB phylotype is a lineage within the Aquificales and, based on 16S rRNA sequence, is different enough from the members of the Aquificales to constitute a different genus. In situ hybridization with bacterial-specific and Aquificales-specific fluorescent oligonucleotide probes indicated the bacterial population dominated the community and most likely contributed significantly to biogeochemical cycling within the community.

  9. Sensitivity of alpine and subalpine lakes to acidification from atmospheric deposition in Grand Teton National Park and Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Nanus, Leora; Campbell, Donald H.; Williams, Mark W.

    2005-01-01

    The sensitivity of 400 lakes in Grand Teton and Yellowstone National Parks to acidification from atmospheric deposition of nitrogen and sulfur was estimated based on statistical relations between acid-neutralizing capacity concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. Acid-neutralizing capacity concentrations that were measured at 52 lakes in Grand Teton and 23 lakes in Yellowstone during synoptic surveys were used to calibrate the statistical models. Three acid-neutralizing capacity concentration bins (bins) were selected that are within the U.S. Environmental Protection Agency criteria of sensitive to acidification; less than 50 microequivalents per liter (?eq/L) (0-50), less than 100 ?eq/L (0-100), and less than 200 ?eq/L (0-200). The development of discrete bins enables resource managers to have the ability to change criteria based on the focus of their study. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare in Grand Teton (n = 106) and Yellowstone (n = 294). A higher percentage of lakes in Grand Teton than in Yellowstone were predicted to be sensitive to atmospheric deposition in all three bins. For Grand Teton, 7 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-50 bin, 36 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-100 bin, and 59 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity

  10. Expedition: Yellowstone! A Cooperative School Outreach Project.

    ERIC Educational Resources Information Center

    de Golia, Jack; And Others

    Designed to help upper elementary school teachers prepare for a class expedition to Yellowstone National Park, this workbook presents environmental learning activities that are also useful in schools too distant for an actual visit. Either way, the workbook aims to develop student appreciation of Yellowstone, the life in it, and the park's value…

  11. Low Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joe

    2001-01-01

    Yellowstone National Park (YNP) contains a diversity of land cover. YNP managers need site-specific land cover maps, which may be produced more effectively using high-resolution hyperspectral imagery. ISODATA clustering techniques have aided operational multispectral image classification and may benefit certain hyperspectral data applications if optimally applied. In response, a study was performed for an area in northeast YNP using 11 select bands of low-altitude AVIRIS data calibrated to ground reflectance. These data were subjected to ISODATA clustering and Maximum Likelihood Classification techniques to produce a moderately detailed land cover map. The latter has good apparent overall agreement with field surveys and aerial photo interpretation.

  12. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park

    USGS Publications Warehouse

    Vaughan, R. Greg; Keszthelyi, Laszlo P.; Lowenstern, Jacob B.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The overarching aim of this study was to use satellite thermal infrared (TIR) remote sensing to monitor geothermal activity within the Yellowstone geothermal area to meet the missions of both the U.S. Geological Survey and the Yellowstone National Park Geology Program. Specific goals were to: 1) address the challenges of monitoring the surface thermal characteristics of the > 10,000 spatially and temporally dynamic thermal features in the Park (including hot springs, pools, geysers, fumaroles, and mud pots) that are spread out over ~ 5000 km2, by using satellite TIR remote sensing tools (e.g., ASTER and MODIS), 2) to estimate the radiant geothermal heat flux (GHF) for Yellowstone's thermal areas, and 3) to identify normal, background thermal changes so that significant, abnormal changes can be recognized, should they ever occur (e.g., changes related to tectonic, hydrothermal, impending volcanic processes, or human activities, such as nearby geothermal development). ASTER TIR data (90-m pixels) were used to estimate the radiant GHF from all of Yellowstone's thermal features and update maps of thermal areas. MODIS TIR data (1-km pixels) were used to record background thermal radiance variations from March 2000 through December 2010 and establish thermal change detection limits. A lower limit for the radiant GHF estimated from ASTER TIR temperature data was established at ~ 2.0 GW, which is ~ 30–45% of the heat flux estimated through geochemical thermometry. Also, about 5 km2 of thermal areas was added to the geodatabase of mapped thermal areas. A decade-long time-series of MODIS TIR radiance data was dominated by seasonal cycles. A background subtraction technique was used in an attempt to isolate variations due to geothermal changes. Several statistically significant perturbations were noted in the time-series from Norris Geyser Basin, however many of these did not correspond to documented thermal disturbances. This study provides concrete examples of the

  13. Preliminary Reconnaissance of West Astringent Creek Thermal Area, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fairley, J. P., Jr.; Villegas, G.; Aunan, M. M.; Lindsey, C.; Sorensen, A.; Larson, P. B.

    2016-12-01

    The West Astringent Creek Thermal Area (WACTA) is one of the newest thermal areas in Yellowstone National Park (YNP). Thermal activity in the headwaters region of Astringent Creek, on the southeast edge of Sour Creek Dome, was rst noted in 1985; subsequent developments included the appearance of a high-temperature (104C) hydrothermal fumarole (which later metamorphosed into a mud volcano) and an area of tree-kill due to rising ground temperatures [Hutchinson, 1996]. We conducted a preliminary exploration of the hydrothermal area through visual evaluation of the spatial extent, location of the features, and nature of the hydrothermal area. 16 features were chosen based upon the following criteria: 1) initial appearance, 2) location in the thermal area, 3) location with respect to each other, and 4) accessibility. From these features we collected in-situ temperature and pH, as well as aqueous samples for geochemical analysis of cations, and deuterium and oxygen isotopes. With the information collected we will make a brief description of the thermal area and present a basis to conduct future research to obtain an amplified characterization of the WACTA.

  14. Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park

    PubMed Central

    Mead, David A.; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Cheng, Jan-Feng; Bruce, David C.; Goodwin, Lynne A.; Pitluck, Sam; Chertkov, Olga; Zhang, Xiaojing; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam; Hauser, Loren J.; Chang, Yun-juan; Kyrpides, Nikos C.; Ivanova, Natalia N.; Ovchinnikova, Galina; Woyke, Tanja; Brumm, Catherine; Hochstein, Rebecca; Schoenfeld, Thomas; Brumm, Phillip

    2012-01-01

    Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely related to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome sequence was deposited at the NCBI in October 2009 (NC_013406). The genome of Paenibacillus sp. Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other paenibacilli. The Y412MC10 genome shows a high level of synteny and homology to the draft sequence of Paenibacillus sp. HGF5, an organism from the Human Microbiome Project (HMP) Reference Genomes. This, combined with genomic CAZyme analysis, suggests an intestinal, rather than environmental origin for Y412MC10. PMID:23408395

  15. Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park.

    PubMed

    Mead, David A; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Cheng, Jan-Feng; Bruce, David C; Goodwin, Lynne A; Pitluck, Sam; Chertkov, Olga; Zhang, Xiaojing; Detter, John C; Han, Cliff S; Tapia, Roxanne; Land, Miriam; Hauser, Loren J; Chang, Yun-Juan; Kyrpides, Nikos C; Ivanova, Natalia N; Ovchinnikova, Galina; Woyke, Tanja; Brumm, Catherine; Hochstein, Rebecca; Schoenfeld, Thomas; Brumm, Phillip

    2012-07-30

    Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely related to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome sequence was deposited at the NCBI in October 2009 (NC_013406). The genome of Paenibacillus sp. Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other paenibacilli. The Y412MC10 genome shows a high level of synteny and homology to the draft sequence of Paenibacillus sp. HGF5, an organism from the Human Microbiome Project (HMP) Reference Genomes. This, combined with genomic CAZyme analysis, suggests an intestinal, rather than environmental origin for Y412MC10.

  16. Archaeal and bacterial community analysis of several Yellowstone National Park hot springs

    NASA Astrophysics Data System (ADS)

    Colman, D. R.; Takacs-Vesbach, C. D.

    2012-12-01

    The hot springs of Yellowstone National Park (YNP) are home to a diverse assemblage of microorganisms. Culture-independent studies have significantly expanded our understanding of the diversity of both Bacteria and Archaea present in YNP springs as well as the geochemical and ecological controls on communities. While the ecological analysis of Bacteria among the physicochemically heterogenous springs of YNP has been previously conducted, less is known about the extent of diversity of Archaeal communities and the chemical and ecological controls on their populations. Here we report a culture-independent analysis of 31 hot spring archaeal and bacterial communities of YNP springs using next generation sequencing. We found the phylogenetic diversity of Archaea to be generally comparable to that of co-occurring bacterial communities although overall, in the springs we investigated, diversity was higher for Bacteria than Archaea. Chemical and physical controls were similar for both domains with pH correlating most strongly with community composition. Community differences reflected the partitioning of taxonomic groups in low or high pH springs for both domains. Results will be discussed in a geochemical and ecological context.

  17. 75 FR 27579 - Bison Brucellosis Remote Vaccination, Draft Environmental Impact Statement, Yellowstone National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... INFORMATION CONTACT: Rick Wallen, Bison Ecology and Management Office, Yellowstone National Park, P.O. Box 168... may submit your comments by any one of several methods. You may mail comments to the Bison Ecology and...

  18. Collection and production of indigenous plant material for national park restoration

    Treesearch

    Mark Majerus

    1999-01-01

    The National Park Service is taking the "Restoration" approach to reestablishing native plant communities by salvaging topsoil and by seeding and planting native indigenous plant materials. In this way, they are making every effort to protect the genetic integrity of the often unique native plant resource. Since 1985, Yellowstone and Glacier National Parks...

  19. Brucellosis in Yellowstone National Park bison: Quantitative serology and infection

    USGS Publications Warehouse

    Roffe, T.J.; Rhyan, Jack C.; Aune, K.; Philo, L.M.; Ewalt, D.R.; Gidlewski, T.; Hennager, S.G.

    1999-01-01

    We collected complete sets of tissues, fluids, and swabs (approx 30) from 37 Yellowstone National Park (YNP) female bison (Bison bison) killed as a result of management actions by the Montana Department of Livestock and YNP personnel. Our goal was to establish the relation between blood tests demonstrating an animal has antibody to Brucella and the potential of that animal to be infected during the second trimester of pregnancy, the time when most management actions are taken. Twenty-eight of the 37 bison were seropositive adults (27) or a seropositive calf (1). We cultured samples using macerated whole tissues plated onto 4 Brucella-selective media and incubated with added CO2 for 1 week. Specimens from 2 adult seropositive females were contaminated, thus eliminating them from our data. Twelve of the remaining 26 seropositive adult and calf female bison (46%) were culture positive for Brucella abortus from 1 or more tissues. Culture positive adult females had high serologic titers. All 11 adults measured 3+ at 1:40 for 10 of 11 (91%) animals. All culture positive female adults had either a PCFIA ???0.080 or a CF reaction ???4+ at 1:80. However 5 (36%) bison with high titers were culture negative for B. abortus. Our findings on the relation between Brucella serology and culture are similar to those reported from studies of chronically infected cattle herds.

  20. Origins of water and solutes in and north of the Norris-Mammoth Corridor, Yellowstone National Park

    USGS Publications Warehouse

    Kharaka, Yousif; Mariner, Robert; Ambats, Gil; Evans, William; White, Lloyd; Bullen, Thomas; Kennedy, B. Mack

    1990-01-01

    This study was initiated to investigate the impacts of geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA) on the hydrothermal features of Yellowstone National Park. To determine possible hydrogeochemical connections, we used the diagnostic stable and radioactive isotopes of several elements, and the chemical and gas compositions of thermal and cold waters from the Norris-Mammoth Corridor and areas north of the Park. The investigations were particularly comprehensive in the Mammoth Hot Springs area, Corwin Springs KGRA, and Chico Hot Springs. The geochemical tools used are still subject to uncertainties of 1 - 5%. Preliminary interpretation of the data, especially the ??D and ??18O values of water, 87Sr/86Sr ratios, ??11B values, composition and isotopes of noble gases and several conservative chemical species would indicate that the waters from Mammoth Hot Springs and La Duke Spring area have evolved chemically and isotopically by reactions with different rock types, and are probably not directly connected. These data indicate that a component (<20%) of water in Bear Creek Springs may be derived from the Mammoth system.

  1. Using geochemistry in the greater Yellowstone area

    USGS Publications Warehouse

    ,

    1995-01-01

    The greater Yellowstone area lies within adjoining parts of Wyoming, Montana, and Idaho (see figure) and includes Yellowstone and Grand Teton National Parks, parts of six national forests, plus State lands, national wildlife refuges, Bureau of Land Management lands, and private lands. This area is known worldwide for its scenic beauty, wildlife, and geologic and geothermal features.

  2. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    PubMed Central

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among

  3. Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA

    USGS Publications Warehouse

    Stauffer, R.E.; Thompson, J.M.

    1984-01-01

    A total of 268 thermal spring samples were analyzed for total soluble As using reduced molybdenum-blue; 27 of these samples were also analyzed for total Sb using flame atomic absorption spectrometry. At Yellowstone the Cl As atomic ratio is nearly constant among neutral-alkaline springs with Cl > 100 mg L-1, and within restricted geographic areas, indicating no differential effects of adiabatic vs. conductive cooling on arsenic. The Cl As ratio increases with silica and decreases with decreasing Cl ??CO3; the latter relationship is best exemplified for springs along the extensively sampled SE-NW trend within the Lone Star-Upper-Midway Basin region. The relationship between Cl As and Cl ??CO3 at Yellowstone suggests a possible rock leaching rather than magmatic origin for much of the Park's total As flux. Condensed vapor springs are low in both As and Cl. Very high Cl As ratios ( > 1000) are associated exclusively with highly diluted (Cl < 100 mg L-1) mixed springs in the Norris and Shoshone Basins and in the Upper White Creek and Firehole Lake areas of Lower Basin. The high ratios are associated with acidity and/or oxygen and iron; they indicate precipitation of As following massive dilution of the Asbearing high-Cl parent water. Yellowstone Sb ranged from 0.009 at Mammoth to 0.166 mg L-1 at Joseph's Coat Spring. Within basins, the Cl Sb ratio increases as the Cl ??CO3 ratio decreases, in marked contrast to As. Mixed springs also have elevated Cl Sb ratios. White (1967) and Weissberg (1969) previously reported stibnite (Sb2S3), but not orpiment (As2S3), precipitating in the near surface zone of alkaline geothermal systems. ?? 1984.

  4. Low-Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2001-01-01

    Northeast Yellowstone National Park (YNP) has a diversity of forest, range, and wetland cover types. Several remote sensing studies have recently been done in this area, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project conducted by Yellowstone Ecosystems Studies (YES) on the use of hyperspectral imaging for assessing riparian and in-stream habitats. In 1999, YES and NASA's Commercial Remote Sensing Program Office began collaborative study of this area, assessing the potential of synergistic use of hyperspectral, synthetic aperture radar (SAR), and multiband thermal data for mapping forest, range, and wetland land cover. Since the beginning, a quality 'reference' land cover map has been desired as a tool for developing and validating other land cover maps produced during the project. This paper recounts an effort to produce such a reference land cover map using low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and unsupervised classification techniques. The main objective of this study is to assess ISODATA classification for mapping land cover in Northeast YNP using select bands of low-altitude AVIRIS data. A secondary, more long-term objective is to assess the potential for improving ISODATA-based classification of land cover through use of principal components analysis and minimum noise fraction (MNF) techniques. This paper will primarily report on work regarding the primary research objective. This study focuses on an AVIRIS cube acquired on July 23, 1999, by the confluence of Soda Butte Creek with the Lamar River. Range and wetland habitats dominate the image with forested habitats being a comparatively minor component of the scene. The scene generally tracks from southwest to northeast. Most of the scene is valley bottom with some lower side slopes occurring on the western portion. Elevations within the AVIRIS scene range from approximately 1998 to 2165 m above sea level, based on US

  5. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  6. Aerial survey methodology for bison population estimation in Yellowstone National Park

    USGS Publications Warehouse

    Hess, Steven C.

    2002-01-01

    I developed aerial survey methods for statistically rigorous bison population estimation in Yellowstone National Park to support sound resource management decisions and to understand bison ecology. Survey protocols, data recording procedures, a geographic framework, and seasonal stratifications were based on field observations from February 1998-September 2000. The reliability of this framework and strata were tested with long-term data from 1970-1997. I simulated different sample survey designs and compared them to high-effort censuses of well-defined large areas to evaluate effort, precision, and bias. Sample survey designs require much effort and extensive information on the current spatial distribution of bison and therefore do not offer any substantial reduction in time and effort over censuses. I conducted concurrent ground surveys, or 'double sampling' to estimate detection probability during aerial surveys. Group size distribution and habitat strongly affected detection probability. In winter, 75% of the groups and 92% of individual bison were detected on average from aircraft, while in summer, 79% of groups and 97% of individual bison were detected. I also used photography to quantify the bias due to counting large groups of bison accurately and found that undercounting increased with group size and could reach 15%. I compared survey conditions between seasons and identified optimal time windows for conducting surveys in both winter and summer. These windows account for the habitats and total area bison occupy, and group size distribution. Bison became increasingly scattered over the Yellowstone region in smaller groups and more occupied unfavorable habitats as winter progressed. Therefore, the best conditions for winter surveys occur early in the season (Dec-Jan). In summer, bison were most spatially aggregated and occurred in the largest groups by early August. Low variability between surveys and high detection probability provide population estimates

  7. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau

    USGS Publications Warehouse

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.

    2017-11-20

    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  8. Yellowstone and the biology of time: Photographs across a century

    USGS Publications Warehouse

    Meagher, Mary; Houston, Douglas B.

    1999-01-01

    Established in 1872, Yellowstone National Park is the oldest and one of the largest national parks in the world. In this remarkable book, scientists Mary Meagher and Douglas B. Houston present 100 sets of photographs that compare the Yellowstone of old with the park of today.Most of the photo sets include three pictures-not the usual two-with many of the original views dating back to the 1870s and 1880s. From the same photo points used by early photographers, Meagher and Houston rephotographed the scenes in the 1970s, and then, following the great fires of 1988, again in the 1990s. The result is an illuminating record of Yellowstone’s dynamic ecosystem and its changes over time.Through close analysis of the photos and reference to the vast amount of available data, Meagher and Houston describe changes in vegetation, growth of wildlife populations, the effect of beaver occupancy on wetland areas, and geothermal and elevational shifts. At the same time they point out the extent to which many sites have not changed-despite important switches in park policy and an increase in human activity.Yellowstone National Park has long been the focus of major ecological debates. Should managers allow wildfires to burn? Should the elk and bison populations be controlled? Are too many people visiting the park? Yellowstone And The Biology Of Time offers a wealth of information to help us answer these questions. A visual treasure, this book will be of value to scientists from various disciplines as well as to the many people who care about Yellowstone and other protected wilderness areas around the world.

  9. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    PubMed

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP.

  10. Bottom-up factors influencing riparian willow recovery in Yellowstone National Park

    USGS Publications Warehouse

    Tercek, M.T.; Stottlemyer, R.; Renkin, R.

    2010-01-01

    After the elimination of wolves (Canis lupis L.) in the 1920s, woody riparian plant communities on the northern range of Yellowstone National Park (YNP) declined an estimated 50%. After the reintroduction of wolves in 19951996, riparian willows (Salix spp.) on YNP's northern range showed significant growth for the first time since the 1920s. However, the pace of willow recovery has not been uniform. Some communities have exceeded 400 cm, while others are still at pre-1995 levels of 250 cm max. height) willow sites where willows had escaped elk (Cervus elaphus L.) browsing with "short" willow sites that could still be browsed. Unlike studies that manipulated willow height with fences and artificial dams, we examined sites that had natural growth differences in height since the reintroduction of wolves. Tall willow sites had greater water availability, more-rapid net soil nitrogen mineralization, greater snow depth, lower soil respiration rates, and cooler summer soil temperatures than nearby short willow sites. Most of these differences were measured both in herbaceous areas adjacent to the willow patches and in the willow patches themselves, suggesting that they were not effects of varying willow height recovery but were instead preexisting site differences that may have contributed to increased plant productivity. Our results agree with earlier studies in experimental plots which suggest that the varying pace of willow recovery has been influenced by abiotic limiting factors that interact with top-down reductions in willow browsing by elk. ?? 2010 Western North American Naturalist.

  11. Research Coordination Network: Geothermal Biology and Geochemistry in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Inskeep, W. P.; Young, M. J.; Jay, Z.

    2006-12-01

    The number and diversity of geothermal features in Yellowstone National Park (YNP) represent a fascinating array of high temperature geochemical environments that host a corresponding number of unique and potentially novel organisms in all of the three recognized domains of life: Bacteria, Archaea and Eukarya. The geothermal features of YNP have long been the subject of scientific inquiry, especially in the fields of microbiology, geochemistry, geothermal hydrology, microbial ecology, and population biology. However, there are no organized forums for scientists working in YNP geothermal areas to present research results, exchange ideas, discuss research priorities, and enhance synergism among research groups. The primary goal of the YNP Research Coordination Network (GEOTHERM) is to develop a more unified effort among scientists and resource agencies to characterize, describe, understand and inventory the diverse biota associated with geothermal habitats in YNP. The YNP RCN commenced in January 2005 as a collaborative effort among numerous university scientists, governmental agencies and private industry. The YNP RCN hosted a workshop in February 2006 to discuss research results and to form three working groups focused on (i) web-site and digital library content, (ii) metagenomics of thermophilic microbial communities and (iii) development of geochemical methods appropriate for geomicrobiological studies. The working groups represent one strategy for enhancing communication, collaboration and most importantly, productivity among the RCN participants. If you have an interest in the geomicrobiology of geothermal systems, please feel welcome to join and or participate in the YNP RCN.

  12. Information technology to support alternative vehicle travel in Yellowstone National Park

    DOT National Transportation Integrated Search

    2003-10-01

    Because of crowding, overuse, and pollution, the National Park Service is conducting a major effort to develop alternative forms of transportation in the national parks. A new generation of busses and trams will provide features that motivate visitor...

  13. Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mead, David; Lucas, Susan; Copeland, A

    2012-01-01

    Paenibacillus speciesY412MC10 was one of a number of organisms initially isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA. The isolate Y412MC10 was initially classified as a Geobacillus sp. based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species and not Geobacillus; the 16S rRNA analysis indicated the organism was a strain of Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute.more » The genome of Paenibacillus lautus strain Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. The Paenibacillus sp.Y412MC10 genome sequence was deposited at the NCBI in October 2009 (NC{_}013406). Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other Paenibacilli. Over 25% of the proteins predicted by the Y412MC10 genome share no identity with the closest sequenced Paenibacillus species; most of these are predicted hypothetical proteins and their specific function in the environment is unknown.« less

  14. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment.

    PubMed Central

    Barns, S M; Fundyga, R E; Jeffries, M W; Pace, N R

    1994-01-01

    Of the three primary phylogenetic domains--Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes)--Archaea is the least understood in terms of its diversity, physiologies, and ecological panorama. Although many species of Crenarchaeota (one of the two recognized archaeal kingdoms sensu Woese [Woese, C. R., Kandler, O. & Wheelis, M. L. (1990) Proc. Natl. Acad. Sci. USA 87, 4576-4579]) have been isolated, they constitute a relatively tight-knit cluster of lineages in phylogenetic analyses of rRNA sequences. It seemed possible that this limited diversity is merely apparent and reflects only a failure to culture organisms, not their absence. We report here phylogenetic characterization of many archaeal small subunit rRNA gene sequences obtained by polymerase chain reaction amplification of mixed population DNA extracted directly from sediment of a hot spring in Yellowstone National Park. This approach obviates the need for cultivation to identify organisms. The analyses document the existence not only of species belonging to well-characterized crenarchaeal genera or families but also of crenarchaeal species for which no close relatives have so far been found. The large number of distinct archaeal sequence types retrieved from this single hot spring was unexpected and demonstrates that Crenarchaeota is a much more diverse group than was previously suspected. The results have impact on our concepts of the phylogenetic organization of Archaea. PMID:7510403

  15. Ectomycorrhizal Specificity Patterns in a Mixed Pinus contorta and Picea engelmannii Forest in Yellowstone National Park

    PubMed Central

    Cullings, Kenneth W.; Vogler, Detlev R.; Parker, Virgil T.; Finley, Sara Katherine

    2000-01-01

    We used molecular genetic methods to test two hypotheses, (i) that host plant specificity among ectomycorrhizal fungi would be common in a closed-canopy, mixed Pinus contorta-Picea engelmannii forest in Yellowstone National Park and (ii) that specificity would be more common in the early successional tree species, P. contorta, than in the invader, P. engelmannii. We identified 28 ectomycorrhizal fungal species collected from 27 soil cores. The proportion of P. engelmannii to P. contorta ectomycorrhizae was nearly equal (52 and 48%, respectively). Of the 28 fungal species, 18 composed greater than 95% of the fungal community. No species was associated exclusively with P. contorta, but four species, each found in only one core, and one species found in two cores were associated exclusively with P. engelmannii. These fungi composed less than 5% of the total ectomycorrhizae. Thus, neither hypothesis was supported, and hypothesized benefits of ectomycorrhizal specificity to both trees and fungi probably do not exist in this system. PMID:11055953

  16. Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Cullings, K. W.; Vogler, D. R.; Parker, V. T.; Finley, S. K.

    2000-01-01

    We used molecular genetic methods to test two hypotheses, (i) that host plant specificity among ectomycorrhizal fungi would be common in a closed-canopy, mixed Pinus contorta-Picea engelmannii forest in Yellowstone National Park and (ii) that specificity would be more common in the early successional tree species, P. contorta, than in the invader, P. engelmannii. We identified 28 ectomycorrhizal fungal species collected from 27 soil cores. The proportion of P. engelmannii to P. contorta ectomycorrhizae was nearly equal (52 and 48%, respectively). Of the 28 fungal species, 18 composed greater than 95% of the fungal community. No species was associated exclusively with P. contorta, but four species, each found in only one core, and one species found in two cores were associated exclusively with P. engelmannii. These fungi composed less than 5% of the total ectomycorrhizae. Thus, neither hypothesis was supported, and hypothesized benefits of ectomycorrhizal specificity to both trees and fungi probably do not exist in this system.

  17. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park.

    PubMed

    Brumm, Phillip; Land, Miriam L; Hauser, Loren J; Jeffries, Cynthia D; Chang, Yun-Juan; Mead, David A

    2015-01-01

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides.

  18. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park

    DOE PAGES

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.; ...

    2015-10-19

    We isolated geobacillus sp. Y412MC52 from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. Moreover, te genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid ofmore » 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Finally, we present transport and utilization clusters for other carbohydrates including starch, cellobiose, and - and -galactooligosaccharides.« less

  19. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.

    We isolated geobacillus sp. Y412MC52 from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. Moreover, te genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid ofmore » 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Finally, we present transport and utilization clusters for other carbohydrates including starch, cellobiose, and - and -galactooligosaccharides.« less

  20. Thioarsenates in geothermal waters of yellowstone National Park: Determination, preservation, and geochemical importance

    USGS Publications Warehouse

    Planer-Friedrich, B.; London, J.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Wallschlager, D.

    2007-01-01

    Mono-, di-, tri-, and tetrathioarsenate, as well as methylated arsenic oxy- and thioanions, were determined besides arsenite and arsenate in geothermal waters of Yellowstone National Park using anion-exchange chromatography inductively coupled plasma mass spectrometry. Retention time match with synthetic standards, measured S:As ratios, and molecular electrospray mass spectra support the identification. Acidification was unsuitable for arsenic species preservation in sulfidic waters, with HCl addition causing loss of total dissolved arsenic, presumably by precipitation of arsenic-sulfides. Flash-freezing is preferred for the preservation of arsenic species for several weeks. After thawing, samples must be analyzed immediately. Thioarsenates occurred over a pH range of 2.1 to 9.3 in the geothermal waters. They clearly predominated under alkaline conditions (up to 83% of total arsenic), but monothioarsenate also was detected in acidic waters (up to 34%). Kinetic studies along a drainage channel showed the importance of thioarsenates for the fate of arsenic discharged from the sulfidic hot spring. The observed arsenic speciation changes suggest three separate reactions: the transformation of trithioarsenate to arsenite (major initial reaction), the stepwise ligand exchange from tri- via di- and monothioarsenate to arsenate (minor reaction), and the oxidation of arsenite to arsenate, which only becomes quantitatively important after thioarsenates have disappeared. ?? 2007 American Chemical Society.

  1. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  2. Fine-scale predation risk on elk after wolf reintroduction in Yellowstone National Park, USA.

    PubMed

    Halofsky, Joshua S; Ripple, William J

    2008-04-01

    While patterns from trophic cascade studies have largely focused on density-mediated effects of predators on prey, there is increasing recognition that behaviorally mediated indirect effects of predators on prey can, at least in part, explain trophic cascade patterns. To determine if a relationship exists between predation risk perceived by elk (Cervus elaphus) while browsing and elk position within the landscape, we observed a total of 56 female elk during two summers and 29 female elk during one winter. At a fine spatial (0-187 m) and temporal scale (145-300 s), results from our model selection indicated summer vigilance levels were greater for females with calves than for females without calves, with vigilance levels greater for all females at closer escape-impediment distances. Winter results also suggested greater female vigilance levels at closer escape-impediment distances, but further indicated an increase in vigilance levels with closer conifer-edge distances. Placed within the context of other studies, the results were consistent with a behaviorally mediated trophic cascade and provide a potential mechanism to explain the variability in observed woody plant release from browsing in Yellowstone National Park, Wyoming, USA.

  3. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs

    PubMed Central

    Munson-McGee, Jacob H.; Field, Erin K.; Bateson, Mary; Rooney, Colleen; Stepanauskas, Ramunas

    2015-01-01

    Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota. PMID:26341207

  4. Wolverine in Greater Yellowstone

    Treesearch

    Kerry Murphy; Jason Wilmot; Jeff Copeland; Dan Tyers; John Squires

    2011-01-01

    The wolverine is one of the least studied carnivores in North America, particularly in the contiguous United States where it occurs at the southern extent of its range. This project documented the distribution of wolverines in the eastern portion of Yellowstone National Park and adjoining areas of national forest and their population characteristics, habitat...

  5. Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park.

    PubMed

    Pepe-Ranney, Charles; Berelson, William M; Corsetti, Frank A; Treants, Merika; Spear, John R

    2012-05-01

    Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Boyd, E.S.; King, S.; Tomberlin, J.K.; Nordstrom, D. Kirk; Krabbenhoft, D.P.; Barkay, T.; Geesey, G.G.

    2009-01-01

    Summary Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH ??? 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg +), while undetectable or near the detection limit (0.025 ng l -1) in the source water of the springs, was present at concentrations of 4-7 ng g-1 dry weight of mat biomass. Detection of MeHg + in tracheal tissue of larvae grazing the mat suggests that MeHg+ enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg+ was two to five times higher in larval tissue than mat biomass indicating MeHg+ biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg+ to species in the food web whose range extends beyond a particular geothermal feature of YNP. ?? 2008 The Authors. Journal compilation ?? 2008 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Pathology of brucellosis in bison from Yellowstone National Park

    USGS Publications Warehouse

    Rhyan, Jack C.; Gidlewski, T.; Roffe, T.J.; Aune, K.; Philo, L.M.; Ewalt, D.R.

    2001-01-01

    Between February 1995 and June 1999, specimens from seven aborted bison (Bison bison) fetuses or stillborn calves and their placentas, two additional placentas, three dead neonates, one 2-wk-old calf, and 35 juvenile and adult female bison from Yellowstone National Park (USA) were submitted for bacteriologic and histopathologic examination. One adult animal with a retained placenta had recently aborted. Serum samples from the 35 juvenile and adult bison were tested for Brucella spp. antibodies. Twenty-six bison, including the cow with the retained placenta, were seropositive, one was suspect, and eight were seronegative. Brucella abortus biovar 1 was isolated from three aborted fetuses and associated placentas, an additional placenta, the 2-wk-old calf, and 11 of the seropositive female bison including the animal that had recently aborted. Brucella abortus biovar 2 was isolated from one additional seropositive adult female bison. Brucella abortus was recovered from numerous tissue sites from the aborted fetuses, placentas and 2-wk-old calf. In the juvenile and adult bison, the organism was more frequently isolated from supramammary (83%), retropharyngeal (67%), and iliac (58%) lymph nodes than from other tissues cultured. Cultures from the seronegative and suspect bison were negative for B. abortus. Lesions in the B. abortus-infected, aborted placentas and fetuses consisted of necropurulent placentitis and mild bronchointerstitial pneumonia. The infected 2-wk-old calf had bronchointerstitial pneumonia, focal splenic infarction, and purulent nephritis. The recently-aborting bison cow had purulent endometritis and necropurulent placentitis. Immunohistochemical staining of tissues from the culture-positive aborted fetuses, placentas, 2-wk-old calf, and recently-aborting cow disclosed large numbers of B. abortus in placental trophoblasts and exudate, and fetal and calf lung. A similar study with the same tissue collection and culture protocol was done using six

  8. Heat‐tolerant Flowering Plants of Active Geothermal Areas in Yellowstone National Park

    PubMed Central

    STOUT, RICHARD G.; AL‐NIEMI, THAMIR S.

    2002-01-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (≥40 °C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 °C at 2–5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long‐term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 °C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti‐sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 °C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs. PMID:12197524

  9. Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park

    USGS Publications Warehouse

    Green, Gerald I.; Mattson, D.J.; Peek, J.M.

    1997-01-01

    We studied the spring use of ungulate carcasses by grizzly bears (Ursus arctos horribilis) on ungulate winter ranges in Yellowstone National Park. We observed carcasses and bear tracks on survey routes that were travelled biweekly during spring of 1985-90 in the Firehole-Gibbon winter range and spring of 1987-90 in the Northern winter range. The probability that grizzly bears used a carcass was positively related to elevation and was lower within 400 m of a road, or within 5 km of a major recreational development compared to elsewhere. Carcass use peaked in April, coincident with peak ungulate deaths. Grizzly bears also were more likely to use carcasses in the Firehole-Gibbon compared to Northern Range study area. We attributed the effects of study area and elevation to the fact that grizzly bears den and are first active in the spring at high elevations and to differences in densities of competing scavengers. Probability of grizzly bear use was strongly related to body mass of carcasses on the Northern Range where densities of coyotes (Canis latrans) and black bears (U. americanus) appeared to be much higher than in the Firehole-Gibbon study area. We suggest that additional restrictions on human activity in ungulate winter ranges or movement of carcasses to remote areas could increase grizzly bear use of carrion. Fewer competing scavengers and greater numbers of adult ungulates vulnerable to winter mortality could have the same effect.

  10. Volcanism in national parks: summary of the workshop convened by the U.S. Geological Survey and National Park Service, 26-29 September 2000, Redding, California

    USGS Publications Warehouse

    Guffanti, Marianne; Brantley, Steven R.; McClelland, Lindsay

    2001-01-01

    Spectacular volcanic scenery and features were the inspiration for creating many of our national parks and monuments and continue to enhance the visitor experience today (Table 1). At the same time, several of these parks include active and potentially active volcanoes that could pose serious hazards - earthquakes, mudflows, and hydrothermal explosions, as well as eruptions - events that would profoundly affect park visitors, employees, and infrastructure. Although most parks are in relatively remote areas, those with high visitation have daily populations during the peak season equivalent to those of moderate-sized cities. For example, Yellowstone and Grand Teton national parks can have a combined daily population of 80,000 during the summer, with total annual visitation of 7 million. Nearly 3 million people enter Hawai`i Volcanoes National Park every year, where the on-going (since 1983) eruption of Kilauea presents the challenge of keeping visitors out of harm's way while still allowing them to enjoy the volcano's spellbinding activity.

  11. Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics

    USGS Publications Warehouse

    Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine

    2013-01-01

    Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.

  12. Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park

    USGS Publications Warehouse

    McCleskey, R. Blaine; Clor, Laura; Lowenstern, Jacob B.; Evans, William C.; Nordstrom, D. Kirk; Heasler, Henry; Huebner, Mark

    2012-01-01

    The thermal output from the Yellowstone magma chamber can be estimated from the Cl flux in the major rivers in Yellowstone National Park; and by utilizing continuous discharge and electrical conductivity measurements the Cl flux can be calculated. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes (Na, SO4, F, HCO3, SiO2, K, Li, B, and As) was quantified at monitoring sites along the Madison, Gibbon, and Firehole Rivers, which receive discharge from some of the largest and most active geothermal areas in Yellowstone. Except for some trace elements, most solutes behave conservatively and the ratios between geothermal solute concentrations are constant in the Madison, Gibbon, and Firehole Rivers. Hence, dissolved concentrations of Cl, Na, SO4, F, HCO3, SiO2, K, Li, Ca, B and As correlate well with conductivity (R2 > 0.9 for most solutes) and most exhibit linear trends. The 2011 flux for Cl, SO4, F and HCO3 determined using automated conductivity sensors and discharge data from nearby USGS gaging stations is in good agreement with those of previous years (1983–1994 and 1997–2008) at each of the monitoring sites. Continuous conductivity monitoring provides a cost- and labor-effective alternative to existing protocols whereby flux is estimated through manual collection of numerous water samples and subsequent chemical analysis. Electrical conductivity data also yield insights into a variety of topics of research interest at Yellowstone and elsewhere: (1) Geyser eruptions are easily identified and the solute flux quantified with conductivity data. (2) Short-term heavy rain events can produce conductivity anomalies due to dissolution of efflorescent salts that are temporarily trapped in and around geyser basins during low-flow periods. During a major rain event in October 2010, 180,000 kg of additional solute was measured in the Madison River. (3) The output of thermal water from the Gibbon River appears to have

  13. Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes

    USGS Publications Warehouse

    Hurwitz, S.; Lowenstern, J. B.; Heasler, H.

    2007-01-01

    We present and analyze a chemical dataset that includes the concentrations and fluxes of HCO3-, SO42-, Cl-, and F- in the major rivers draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order, HCO3- > Cl- > SO42- > F-, but each river is characterized by a distinct chemical composition, implying large-scale spatial heterogeneity in the inputs of the various solutes. The data also display non-uniform temporal trends; whereas solute concentrations and fluxes are nearly constant during base-flow conditions, concentrations decrease, solute fluxes increase, and HCO3-/Cl-, and SO42-/Cl- increase during the late-spring high-flow period. HCO3-/SO42- decreases with increasing discharge in the Madison and Falls Rivers, but increases with discharge in the Yellowstone and Snake Rivers. The non-linear relations between solute concentrations and river discharge and the change in anion ratios associated with spring runoff are explained by mixing between two components: (1) a component that is discharged during base-flow conditions and (2) a component associated with snow-melt runoff characterized by higher HCO3-/Cl- and SO42-/Cl-. The fraction of the second component is greater in the Yellowstone and Snake Rivers, which host lakes in their drainage basins and where a large fraction of the solute flux follows thaw of ice cover in the spring months. Although the total river HCO3- flux is larger than the flux of other solutes (HCO3-/Cl- ??? 3), the CO2 equivalent flux is only ??? 1% of the estimated emission of magmatic CO2 soil emissions from Yellowstone. No anomalous solute flux in response to perturbations in the hydrothermal system was observed, possibly because gage locations are too distant from areas of disturbance, or because of the relatively low sampling frequency. In order to detect changes in river hydrothermal solute fluxes, sampling at higher

  14. A serological survey of infectious disease in Yellowstone National Park's canid community.

    PubMed

    Almberg, Emily S; Mech, L David; Smith, Douglas W; Sheldon, Jennifer W; Crabtree, Robert L

    2009-09-16

    Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks. We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991-2007, to identify long-term patterns of pathogen exposure, identify associated risk factors, and examine evidence for disease-induced mortality among wolves for which there were survival data. We found high, constant exposure to canine parvovirus (wolf seroprevalence: 100%; coyote: 94%), canine adenovirus-1 (wolf pups [0.5-0.9 yr]: 91%, adults [>or=1 yr]: 96%; coyote juveniles [0.5-1.5 yrs]: 18%, adults [>or=1.6 yrs]: 83%), and canine herpesvirus (wolf: 87%; coyote juveniles: 23%, young adults [1.6-4.9 yrs]: 51%, old adults [>or=5 yrs]: 87%) suggesting that these pathogens were enzootic within YNP wolves and coyotes. An average of 50% of wolves exhibited exposure to the protozoan parasite, Neospora caninum, although individuals' odds of exposure tended to increase with age and was temporally variable. Wolf, coyote, and fox exposure to canine distemper virus (CDV) was temporally variable, with evidence for distinct multi-host outbreaks in 1999 and 2005, and perhaps a smaller, isolated outbreak among wolves in the interior of YNP in 2002. The years of high wolf-pup mortality in 1999 and 2005 in the northern region of the park were correlated with peaks in CDV seroprevalence, suggesting that CDV contributed to the observed mortality. Of the pathogens we examined, none appear to jeopardize the long-term population of canids in YNP. However, CDV appears capable of causing short-term population declines. Additional information on how and where CDV is maintained and the frequency with which future epizootics might be expected might be useful for future management of the Northern Rocky

  15. A serological survey of infectious disease in Yellowstone National Park's canid community

    USGS Publications Warehouse

    Almberg, E.S.; Mech, L.D.; Smith, D.W.; Sheldon, J.W.; Crabtree, R.L.

    2009-01-01

    Background: Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks. Methodology/Principal Findings: We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991–2007, to identify long-term patterns of pathogen exposure, identify associated risk factors, and examine evidence for disease-induced mortality among wolves for which there were survival data. We found high, constant exposure to canine parvovirus (wolf seroprevalence: 100%; coyote: 94%), canine adenovirus-1 (wolf pups [0.5–0.9 yr]: 91%, adults [≥1 yr]: 96%; coyote juveniles [0.5–1.5 yrs]: 18%, adults [≥1.6 yrs]: 83%), and canine herpesvirus (wolf: 87%; coyote juveniles: 23%, young adults [1.6–4.9 yrs]: 51%, old adults [≥5 yrs]: 87%) suggesting that these pathogens were enzootic within YNP wolves and coyotes. An average of 50% of wolves exhibited exposure to the protozoan parasite, Neospora caninum, although individuals’ odds of exposure tended to increase with age and was temporally variable. Wolf, coyote, and fox exposure to canine distemper virus (CDV) was temporally variable, with evidence for distinct multi-host outbreaks in 1999 and 2005, and perhaps a smaller, isolated outbreak among wolves in the interior of YNP in 2002. The years of high wolf-pup mortality in 1999 and 2005 in the northern region of the park were correlated with peaks in CDV seroprevalence, suggesting that CDV contributed to the observed mortality. Conclusions/Significance: Of the pathogens we examined, none appear to jeopardize the long-term population of canids in YNP. However, CDV appears capable of causing short-term population declines. Additional information on how and where CDV is maintained and the frequency with which future epizootics

  16. Evolution of geothermal fluids deduced from chemistry plots: Yellowstone National Park (U.S.A.)

    USGS Publications Warehouse

    Mazor, E.; Thompson, J.M.

    1982-01-01

    Large amounts of chemical data, obtained in geothermal fields, may readily be sorted-out by the aid of a simple set of graphs that provide a clear over-all picture and facilitate the understanding of geochemical processes taking place. As a case study, data from several hundred samples of the thermal springs at the well-known Yellowstone National Park are discussed. The pattern obtained seems to indicate: (1) geochemical similarity between the spring groups of Heart Lake, Shoshone, Upper, Midway, Lower and Norris Geyser Basins, i.e., a geochemical uniformity of major spring groups located over 40 km apart; (2) these groups may be described as originating from a common fluid, most resembling the composition of Norris waters, accompanied by CO2, and other volatiles, that react with igneous rocks, forming local variations; (3) the secondary reactions occur at (medium) depth, before the ascent to the surface; (4) extensive concentration-dilution processes occur during the ascent to the surface. The water of the Mammoth group may be described as originating from the same Norris-like fluid that has been diluted (low Na and Cl contents) and intensively reacted with carbonaceous rocks, thus gaining in Ca, Mg, SO4, and HCO3. ?? 1982.

  17. Proposal for a study of computer mapping of terrain using multispectral data from ERTS-A for the Yellowstone National Park test site

    NASA Technical Reports Server (NTRS)

    Smedes, H. W. (Principal Investigator); Root, R. R.; Roller, N. E. G.; Despain, D.

    1978-01-01

    The author has identified the following significant results. A terrain map of Yellowstone National Park showed plant community types and other classes of ground cover in what is basically a wild land. The map comprised 12 classes, six of which were mapped with accuracies of 70 to 95%. The remaining six classes had spectral reflectances that overlapped appreciably, and hence, those were mapped less accurately. Techniques were devised for quantitatively comparing the recognition map of the park with control data acquired from ground inspection and from analysis of sidelooking radar images, a thermal IR mosaic, and IR aerial photos of several scales. Quantitative analyses were made in ten 40 sq km test areas. Comparison mechanics were performed by computer with the final results displayed on line printer output. Forested areas were mapped by computer using ERTS data for less than 1/4 the cost of the conventional forest mapping technique for topographic base maps.

  18. Evaluating the Synergistic Use of Low-Altitude AVIRIS and AIRSAR Data for Land Cover Mapping in Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Spruce, Joseph

    2001-01-01

    Current land cover maps are needed by Yellowstone National Park (YNP) managers to assist them in protecting and preserving native flora and fauna. Synergistic use of hyperspectral and radar imagery offers great promise for mapping habitat in terms of cover type composition and structure. In response, a study was conducted to assess the utility of combining low-altitude AVIRIS and AIRSAR data for mapping land cover in a portion of northeast YNP. Land cover maps were produced from individual AVIRIS and AIRSAR data sets, as well as from a hybrid data stack of selected AVIRIS and AIRSAR data bands. The three resulting classifications were compared to field survey data and aerial photography to assess apparent benefits of hyperspectral/SAR data fusion for land cover mapping. Preliminary results will be presented.

  19. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  20. Isotope and chemical compositions of meteoric and thermal waters and snow from the greater Yellowstone National Park region

    USGS Publications Warehouse

    Kharaka, Yousif K.; Thordsen, James J.; White, Lloyd D.

    2002-01-01

    An intensive hydrogeologic investigation, mandated by U.S. Congress and centered on the Norris-Mammoth corridor was conducted by USGS and other scientists during 1988-90 to determine the effects of using thermal water from a private well located in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal springs of Yellowstone National Park (YNP), especially Mammoth Hot Springs. As part of this investigation, we carried out a detailed study of the isotopic and chemical compositions of meteoric water from cold springs and wells, of thermal water, especially from the Norris-Mammoth corridor and of snow. Additional sampling of meteoric and thermal waters from YNP and surrounding region in northwest Wyoming, southwest Montana and southeast Idaho was carried out in 1991-92 to characterize the distribution of water isotopes in this mountainous region and to determine the origin and possible recharge locations of thermal waters in and adjacent to the Park. The D and 18O values for 40 snow samples range from ?88 to ?178? and ?12.5 to ?23.9?, respectively, and define a well constrained line given by D = 8.2 18O + 14.7 (r2 = 0.99) that is nearly identical to the Global Meteoric Water Line. The D and 18O values of 173 cold water samples range from ?115 to ?153? and ?15.2 to ?20.2?, respectively, and exhibit a similar relationship although with more scatter and with some shift to heavier isotopes, most likely due to evaporation effects. The spatial distribution of cold-water isotopes shows a roughly circular pattern with isotopically lightest waters centered on the mountains and high plateau in the northwest corner of Yellowstone National Park and becoming heavier in all directions. The temperature effect due to altitude is the dominant control on stable water isotopes throughout the region; however, this effect is obscured in narrow 'canyons' and areas of high topographic relief. The effects due to distance (i.e. 'continental') and latitude on water

  1. Public acceptance of management actions and judgments of responsibility for the wolves of the southern Greater Yellowstone Area: Report to Grand Teton National Park

    USGS Publications Warehouse

    Taylor, Jonathan G.; Johnson, S. Shea; Shelby, Lori B.

    2005-01-01

    Introduction Wolves of Grand Teton National Park and the Greater Yellowstone Area Gray wolves (Canis lupus) appeared in Grand Teton National Park (GRTE) in October of 1998, two years after being reintroduced to Yellowstone National Park (YNP). Since that time, five packs have been within the GRTE borders - Gros Ventre Pack, Nez Perce Pack, Yellowstone Delta Pack, Teton Pack, and Green River Pack (Table 1). Wolves in the Greater Yellowstone Area are increasing and spreading out geographically (USFWS and others, 2004). This dispersion was demonstrated recently by the death of a 2-year-old female wolf from the Swan Lake pack on I-70 in Colorado (June 7, 2004; http://mountain-prairie.USFWS.gov/pressrel /04-43.htm). The organization of wolf packs in the GYA is dynamic and highly structured. In 2003, for example, a wolf from the Teton Pack joined with the Green River Pack, and several young wolves left the Teton Pack and moved south (USFWS and others, 2004). Pack size (averaging five to ten members) is dependent on hunting efficiency, which depends on prey size, type, and density. Each pack defends home ranges of several hundred square miles. The social structure of the pack is based on a breeding pair (an alpha male and female). Other wolves in the pack can be categorized as betas (males and/or females second in rank to the alphas), subordinates, pups, and occasional omegas (outcasts). Because generally only the alpha pair breeds, subordinate wolves of reproductive age must disperse from their packs and form new associations in order to breed. (http://www.nps.gov/grte/wolf/biolo.htm). The reintroduced wolves are classified by the U.S. Fish and Wildlife Service (USFWS) as "nonessential experimental" under section 10(j) of the Endangered Species Act. The recovery criteria for the GYA wolves were met in 2002 for removing the wolves from the Endangered Species List (30 or more breeding pairs). Currently, the USFWS manages wolf populations in the GYA until delisting occurs

  2. Preliminary Results from an Integrated Airborne EM and Aeromagnetic Survey in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Dickey, K.; Holbrook, W. S.; Finn, C.; Auken, E.; Carr, B.; Sims, K. W. W.; Bedrosian, P.; Lowenstern, J. B.; Hurwitz, S.; Pedersen, J. B. B.

    2017-12-01

    Yellowstone National Park hosts over 10,000 thermal features (e.g. geysers, fumaroles, mud pots, and hot springs), yet little is known about the circulation depth of meteoric water feeding these features, nor the lithological and structural bounds on the pathways that guide deep, hot fluids to the surface. Previous near-surface geophysical studies have been effective in imaging shallow hydrothermal pathways in some areas of the park, but these methods are difficult to conduct over the large areas needed to characterize entire hydrothermal systems. Transient electromagnetic (TEM) soundings and 2D direct current (DC) resistivity profiles show that hydrothermal fluids at active sites have a higher electrical conductivity than the surrounding hydrothermally inactive areas. For that reason, airborne TEM is an effective method to characterize large areas and identify hydrothermally active and inactive zones using electrical conductivity. Aeromagnetic data have been useful in mapping faults that localize hot springs, making the integration of aeromagnetic and EM data effective for structurally characterizing fluid pathways. Here we present the preliminary results from an airborne transient electromagnetic (TEM) and magnetic survey acquired jointly by the U.S. Geological Survey (USGS) and the University of Wyoming (UW) in November 2016. We integrate the EM and magnetic data for the purpose of edge detection of rhyolite flow boundaries as well as source depth of hydrothermal features. The maximum horizontal gradient technique applied on magnetic data is a useful tool that used to estimate source depth as well as indicate faults and fractures. The integration of EM with magnetics allows us to distinguish hydrothermally altered fault systems that guide fluids in the subsurface. We have used preliminary 2D inversions of EM from Aarhus Workbench to delineate rhyolite flow edges in the upper 300-600 meters and cross-checked those boundaries with the aeromagnetic map.

  3. Ground Water at Grant Village Site, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Gordon, Ellis D.; McCullough, Richard A.; Weeks, Edwin P.

    1961-01-01

    On behalf of the National Park Service, the U.S. Geological Survey during the summer of 1959 made a study of ground-water conditions in the area of the Grant Village site, along the shore of the West Thumb of Yellowstone Lake, 1 to 2 miles south of the present facilities at West Thumb. The water supply for the present development at West Thumb is obtained from Duck Lake, but the quantity of water available from this source probably will be inadequate for the planned development at Grant Village. During the investigation, 11 auger holes were bored and 6 test wells were drilled. Aquifer tests by pumping and bailing methods were made at two of the test wells. All material penetrated in the auger holes and test wells is of Quaternary age except the welded tuff of possible Pliocene age that was penetrated in the lower part of test well 4. Small to moderate quantities of water were obtained from the test wells in the area. Test well 2 yielded 35 gpm (gallons per minute) at a temperature of nearly 100 deg F. Test well 6 yielded about 15 gpm at a temperature of 48 deg F. The yield of this well might be increased by perforation of additional sections of casing, followed by further development of the well. Water from the other four test wells was of inadequate quantity, too highly mineralized, or too warm to be effectively utilized. Most of the ground water sampled had high concentrations of silica and iron, and part of the water was excessively high in fluoride content. Otherwise, the ground water was of generally suitable quality for most uses. The most favorable area for obtaining water supplies from wells is near the lakeshore, where a large part of the water pumped would be ground-water flow diverted from its normal discharge into the lake. Moderate quantities of relatively cool water of fairly good quality may be available near the lakeshore between test wells 5 and 6 and immediately east of test well 6.

  4. Phenotypic and genetic differentiation among yellow monkeyflower populations from thermal and non-thermal soils in Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Roskilly, Beth; Hendrick, Margaret F; Zabinski, Catherine A; Barr, Camille M; Fishman, Lila

    2012-09-01

    In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby (<500 m distant) in non-thermal soils. In simulated thermal and non-thermal environments, thermal plants remained significantly divergent from non-thermal plants in vegetative, floral, mating system, and phenological traits. Plants from both thermal populations flowered closer to the ground, allocated relatively more to sexual reproduction, were more likely to initiate flowering under short daylengths, and made smaller flowers that could efficiently self-fertilize without pollinators. These shared differences are consistent with local adaptation to life in the ephemeral window for growth and reproduction created by winter and spring snowmelt on hot soils. In contrast, habitat type (thermal vs. non-thermal) explained little of the genetic variation at neutral markers. Instead, we found that one thermal population (Agrostis Headquarters; AHQ-T) was strongly differentiated from all other populations (all F (ST) > 0.34), which were only weakly differentiated from each other (all F (ST) < 0.07). Phenotypic differentiation of thermal M. guttatus, but little population genetic evidence of long-term ecotypic divergence, encourages further investigations of the potential for fine-scale adaptation and reproductive isolation across the geothermal gradient in Yellowstone.

  5. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park.

    PubMed

    Brumm, Phillip J; Land, Miriam L; Mead, David A

    2015-01-01

    Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.

  6. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park

    DOE PAGES

    Brumm, Phillip J.; Land, Miriam L.; Mead, David A.

    2015-10-05

    Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. We sequenced the genome, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Moreover, the genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G.more » thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. Furthermore this cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.« less

  7. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip J.; Land, Miriam L.; Mead, David A.

    Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. We sequenced the genome, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Moreover, the genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G.more » thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. Furthermore this cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.« less

  8. Roadside bear viewing opportunities in Yellowstone National Park: characteristics, trends, and influence of whitebark pine

    USGS Publications Warehouse

    Haroldson, Mark A.; Gunther, Kerry

    2014-01-01

    Opportunities for viewing grizzly bears (Ursus arctos) and American black bears (U. americanus) from roadways in Yellowstone National Park (YNP) have increased in recent years. Unlike the panhandling bears common prior to the 1970s, current viewing usually involves bears feeding on natural foods. We define roadside bear viewing opportunities that cause traffic congestion as ‘‘bear-jams.’’ We investigated characteristics of bear-jams and their frequency relative to whitebark pine (Pinus albicaulis) cone production, an important fall food for bears, during 1990–2004. We observed a difference in diel distribution of bear-jams between species (x2=70.609, 4 df, P<0.001) with the occurrence of grizzly bear-jams being more crepuscular. We found evidence for decreasing distances between bears and roadways and increasing durations of bears-jams. The annual proportion of bear-jams for both species occurring after the week of 13–19 August were 3–4 times higher during poor cone crop years than good. We suggest that native foods found in road corridors may be especially important to some individual bears during years exhibiting poor whitebark pine crops. We discuss management implications of threats to whitebark pine and increasing habituation of bears to people.

  9. Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand.

    PubMed

    Toplin, J A; Norris, T B; Lehr, C R; McDermott, T R; Castenholz, R W

    2008-05-01

    Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extreme environments that combine low pH levels ( approximately 0.2 to 4.0) and moderately high temperatures of 40 to 56 degrees C. These unicellular algae occur in far-flung volcanic areas throughout the earth. Three genera (Cyanidium, Galdieria, and Cyanidioschyzon) are recognized. The phylogenetic diversity of culture isolates of the Cyanidiales from habitats throughout Yellowstone National Park (YNP), three areas in Japan, and seven regions in New Zealand was examined by using the chloroplast RuBisCO large subunit gene (rbcL) and the 18S rRNA gene. Based on the nucleotide sequences of both genes, the YNP isolates fall into two groups, one with high identity to Galdieria sulphuraria (type II) and another that is by far the most common and extensively distributed Yellowstone type (type IA). The latter is a spherical, walled cell that reproduces by internal divisions, with a subsequent release of smaller daughter cells. This type, nevertheless, shows a 99 to 100% identity to Cyanidioschyzon merolae (type IB), which lacks a wall, divides by "fission"-like cytokinesis into two daughter cells, and has less than 5% of the cell volume of type IA. The evolutionary and taxonomic ramifications of this disparity are discussed. Although the 18S rRNA and rbcL genes did not reveal diversity among the numerous isolates of type IA, chloroplast short sequence repeats did show some variation by location within YNP. In contrast, Japanese and New Zealand strains showed considerable diversity when we examined only the sequences of 18S and rbcL genes. Most exhibited identities closer to Galdieria maxima than to other strains, but these identities were commonly as low as 91 to 93%. Some of these Japanese and New Zealand strains probably represent undescribed species that diverged after long-term geographic isolation.

  10. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    USGS Publications Warehouse

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  11. A sense of place: Ecoregional design at Mesa Verde National Park

    Treesearch

    Robert G. Bailey

    2012-01-01

    When the National Park Service was established in 1916, the new agency inherited an architectural legacy developed by private interests, particularly the railroads. This legacy included Northern Pacific's Old Faithful Inn in Yellowstone and Santa Fe's El Tovar at the south rim of the Grand Canyon, both built in the Swiss Chalet­Norway Villa tradition. This...

  12. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    PubMed Central

    2011-01-01

    Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire

  13. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling.

    PubMed

    Potter, Christopher; Klooster, Steven; Crabtree, Robert; Huang, Shengli; Gross, Peggy; Genovese, Vanessa

    2011-08-11

    A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Rates of

  14. Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry

    2005-01-01

    Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.

  15. The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park: Chapter H in Integrated geoscience studies in Integrated geoscience studies in the Greater Yellowstone Area—Volcanic, tectonic, and hydrothermal processes in the Yellowstone geoecosystem

    USGS Publications Warehouse

    Rye, Robert O.; Truesdell, Alfred Hemingway; Morgan, Lisa A.

    2007-01-01

    The extraordinary number, size, and unspoiled beauty of the geysers and hot springs of Yellowstone National Park (the Park) make them a national treasure. The hydrology of these special features and their relation to cold waters of the Yellowstone area are poorly known. In the absence of deep drill holes, such information is available only indirectly from isotope studies. The δD-δ18O values of precipitation and cold surface-water and ground-water samples are close to the global meteoric water line (Craig, 1961). δD values of monthly samples of rain and snow collected from 1978 to 1981 at two stations in the Park show strong seasonal variations, with average values for winter months close to those for cold waters near the collection sites. δD values of more than 300 samples from cold springs, cold streams, and rivers collected during the fall from 1967 to 1992 show consistent north-south and east-west patterns throughout and outside of the Park, although values at a given site vary by as much as 8 ‰ from year to year. These data, along with hot-spring data (Truesdell and others, 1977; Pearson and Truesdell, 1978), show that ascending Yellowstone thermal waters are modified isotopically and chemically by a variety of boiling and mixing processes in shallow reservoirs. Near geyser basins, shallow recharge waters from nearby rhyolite plateaus dilute the ascending deep thermal waters, particularly at basin margins, and mix and boil in reservoirs that commonly are interconnected. Deep recharge appears to derive from a major deep thermal-reservoir fluid that supplies steam and hot water to all geyser basins on the west side of the Park and perhaps in the entire Yellowstone caldera. This water (T ≥350°C; δD = –149±1 ‰) is isotopically lighter than all but the farthest north, highest altitude cold springs and streams and a sinter-producing warm spring (δD = –153 ‰) north of the Park. Derivation of this deep fluid solely from present-day recharge is

  16. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park

    DOE PAGES

    Vishnivetskaya, Tatiana A.; Hamilton-Brehm, Scott D.; Podar, Mircea; ...

    2014-10-16

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this paper, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversitymore » in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55–85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Finally, independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.« less

  17. Microbial Composition of Near-Boiling Silica-Depositing Thermal Springs throughout Yellowstone National Park

    PubMed Central

    Blank, Carrine E.; Cady, Sherry L.; Pace, Norman R.

    2002-01-01

    The extent of hyperthermophilic microbial diversity associated with siliceous sinter (geyserite) was characterized in seven near-boiling silica-depositing springs throughout Yellowstone National Park using environmental PCR amplification of small-subunit rRNA genes (SSU rDNA), large-subunit rDNA, and the internal transcribed spacer (ITS). We found that Thermocrinis ruber, a member of the order Aquificales, is ubiquitous, an indication that primary production in these springs is driven by hydrogen oxidation. Several other lineages with no known close relatives were identified that branch among the hyperthermophilic bacteria. Although they all branch deep in the bacterial tree, the precise phylogenetic placement of many of these lineages is unresolved at this time. While some springs contained a fair amount of phylogenetic diversity, others did not. Within the same spring, communities in the subaqueous environment were not appreciably different than those in the splash zone at the edge of the pool, although a greater number of phylotypes was found along the pool's edge. Also, microbial community composition appeared to have little correlation with the type of sinter morphology. The number of cell morphotypes identified by fluorescence in situ hybridization and scanning electron microscopy was greater than the number of phylotypes in SSU clone libraries. Despite little variation in Thermocrinis ruber SSU sequences, abundant variation was found in the hypervariable ITS region. The distribution of ITS sequence types appeared to be correlated with distinct morphotypes of Thermocrinis ruber in different pools. Therefore, species- or subspecies-level divergences are present but not detectable in highly conserved SSU sequences. PMID:12324363

  18. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.

    PubMed

    Vishnivetskaya, Tatiana A; Hamilton-Brehm, Scott D; Podar, Mircea; Mosher, Jennifer J; Palumbo, Anthony V; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2015-02-01

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.

  19. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.

    2016-01-01

    Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.

  20. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnivetskaya, Tatiana A.; Hamilton-Brehm, Scott D.; Podar, Mircea

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this paper, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversitymore » in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55–85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Finally, independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.« less

  1. Geologic applications of thermal-inertia mapping from satellite. [Powder River, Wyoming; Cubeza Prieta, Arizona, and Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Offield, T. W. (Principal Investigator); Watson, K.; Hummer-Miller, S.

    1981-01-01

    In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed.

  2. Optimal wildlife management in the greater Yellowstone ecosystem: A spatiotemporal model of disease risk

    USDA-ARS?s Scientific Manuscript database

    South of Yellowstone National Park there are twenty-three sites where elk herds are provided supplementary feeding during the winter and spring months. Supplementary feeding of elk in the Greater Yellowstone Ecosystem (GYE) has been practiced since the early twentieth century, but the practice has b...

  3. Database for the Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana (Database for Professional Paper 729-G)

    USGS Publications Warehouse

    Koch, Richard D.; Ramsey, David W.; Christiansen, Robert L.

    2011-01-01

    The superlative hot springs, geysers, and fumarole fields of Yellowstone National Park are vivid reminders of a recent volcanic past. Volcanism on an immense scale largely shaped the unique landscape of central and western Yellowstone Park, and intimately related tectonism and seismicity continue even now. Furthermore, the volcanism that gave rise to Yellowstone's hydrothermal displays was only part of a long history of late Cenozoic eruptions in southern and eastern Idaho, northwestern Wyoming, and southwestern Montana. The late Cenozoic volcanism of Yellowstone National Park, although long believed to have occurred in late Tertiary time, is now known to have been of latest Pliocene and Pleistocene age. The eruptions formed a complex plateau of voluminous rhyolitic ash-flow tuffs and lavas, but basaltic lavas too have erupted intermittently around the margins of the rhyolite plateau. Volcanism almost certainly will recur in the Yellowstone National Park region. This digital release contains all the information used to produce the geologic maps published as plates in U.S. Geological Survey Professional Paper 729-G (Christiansen, 2001). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains files to view or print the geologic maps and main report text from Professional Paper 729-G.

  4. Climate changes and wildfire alter vegetation of Yellowstone National Park, but forest cover persists

    USGS Publications Warehouse

    Clark, Jason A.; Loehman, Rachel A.; Keane, Robert E.

    2017-01-01

    We present landscape simulation results contrasting effects of changing climates on forest vegetation and fire regimes in Yellowstone National Park, USA, by mid-21st century. We simulated potential changes to fire dynamics and forest characteristics under three future climate projections representing a range of potential future conditions using the FireBGCv2 model. Under the future climate scenarios with moderate warming (>2°C) and moderate increases in precipitation (3–5%), model simulations resulted in 1.2–4.2 times more burned area, decreases in forest cover (10–44%), and reductions in basal area (14–60%). In these same scenarios, lodgepole pine (Pinus contorta) decreased in basal area (18–41%), while Douglas-fir (Pseudotsuga menziesii) basal area increased (21–58%). Conversely, mild warming (<2°C) coupled with greater increases in precipitation (12–13%) suggested an increase in forest cover and basal area by mid-century, with spruce and subalpine fir increasing in abundance. Overall, we found changes in forest tree species compositions were caused by the climate-mediated changes in fire regime (56–315% increase in annual area burned). Simulated changes in forest composition and fire regime under warming climates portray a landscape that shifts from lodgepole pine to Douglas-fir caused by the interaction between the magnitude and seasonality of future climate changes, by climate-induced changes in the frequency and intensity of wildfires, and by tree species response.

  5. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    USGS Publications Warehouse

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J.S.; Soule, S. Adam; McPhee, Darcy K.; Glen, Jonathan M.G.; Karlstrom, Leif; Murphy, Fred

    2014-01-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  6. Group composition effects on aggressive interpack interactions of gray wolves in Yellowstone National Park

    USGS Publications Warehouse

    Cassidy, Kira A.; MacNulty, Daniel R.; Stahler, Daniel R.; Smith, Douglas W.; Mech, L. David

    2015-01-01

    Knowledge of characteristics that promote group success during intraspecific encounters is key to understanding the adaptive advantages of sociality for many group-living species. In addition, some individuals in a group may be more likely than others to influence intergroup conflicts, a relatively neglected idea in research on social animals. Here we use observations of aggressive interactions between wolf (Canis lupus) packs over an extended period and use pack characteristics to determine which groups had an advantage over their opponents. During 16 years of observation in Yellowstone National Park from 1995 to 2010, we documented 121 interpack aggressive interactions. We recorded pack sizes, compositions, and spatial orientation related to residency to determine their effects on the outcomes of interactions between packs. Relative pack size (RPS) improved the odds of a pack displacing its opponent. However, pack composition moderated the effect of RPS as packs with relatively more old members (>6.0 years old) or adult males had higher odds of winning despite a numerical disadvantage. The location of the interaction with respect to pack territories had no effect on the outcome of interpack interactions. Although the importance of RPS in successful territorial defense suggests the evolution and maintenance of group living may be at least partly due to larger packs’ success during interpack interactions, group composition is also an important factor, highlighting that some individuals are more valuable than others during interpack conflicts.

  7. Bimodal Distribution of Geyser Preplay Eruptions: Lone Star Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Hurwitz, S.; Murphy, F.; Manga, M.

    2014-12-01

    Geyser eruption intervals are determined by rates of water and heat discharge into shallow subsurface reservoirs and the conduit. In some geysers, small amounts of water discharge prior to a main eruption ('Preplay') can affect eruption intervals. Water discharge during preplay reduces the hydrostatic pressure, which in turn, induces boiling of water that is at, or near the critical temperature. Ascending steam slugs from depth can also lead to shorter eruption intervals (Namiki et al., 2014). In April 2014, we carried a five day experiment at Lone Star Geyser, Yellowstone National Park. Eruptions and their preplays were recorded with an infrared sensor that measured temperature variations immediately above the geyser cone (3.4~m high), temperature loggers that measured water temperature at the base of the cone and in the outflow channels, and visual observations. At Lone Star Geyser, during the preplay phase of the eruption, mainly liquid water is erupted, whereas the main phase of the eruption begins with the liquid-water dominated eruption and turns into the steam discharge. The temperature rise in an outflow channel indicates the occurrence of preplays and initiation of the main eruption. The acquired data suggests that the preplay patterns of Lone Star Geyser are vigorous and complex, consistent with previous observations (Karlstrom et al., 2013). Our new observations reveal two typical styles: 1) vigorous preplays with few events (<5) and long intervals (>20~minutes) that last approximately 40~minutes, and 2) less vigorous preplays that include several events (>5) with short intervals (few minutes), and continue approximately for one hour. Probability distributions of preplay durations show two peaks indicating the bimodal activity. The bimodality of Lone Star preplays may be a result of subtle change of temperature distribution in a convecting reservoir which has been observed in laboratory experiments (Toramaru and Maeda, 2013).

  8. Context-specific parasitism in Tubifex tubifex in geothermally influenced stream reaches in Yellowstone National Park

    USGS Publications Warehouse

    Alexander, Julie D.; Kerans, Billie L.; Koel, Todd M.; Rasmussen, Charlotte

    2011-01-01

    Parasites can regulate host abundance and influence the composition and structure of communities. However, host-parasite interactions might be context-specific if environmental conditions can alter the outcome of parasitism and disease. An understanding of how host-parasite interactions might change in different contexts will be useful for predicting and managing disease against a background of anthropogenic environmental change. We examined the ecology of Myxobolus cerebralis, the parasite that causes whirling disease in salmonids, and its obligate host, Tubifex tubifex, in geothermally variable stream reaches in Yellowstone National Park. We identified reaches in 4 categories of geothermal influence, which were characterized by variable substrates, temperatures, specific conductivities, and pH. In each reach, we measured aspects of host ecology (abundance, relative abundance, size, and genotype of T. tubifex), parasite ecology (infection prevalence in T. tubifex and abundance of M. cerebralis-infected T. tubifex), and risk to fish of contracting whirling disease. Tubifex tubifex abundance was high all in reaches characterized by geothermal influence, whereas abundance of M. cerebralis-infected T. tubifex was high only in reaches characterized by intermediate geothermal influence. We suggest that habitat had a contextual effect on parasitism in the oligochaete host. Abundance of infected hosts appeared to depend on host abundance in all reach types except those with high geothermal influence, where abundance of infected hosts depended on environmental factors.

  9. Geothermal systems within the Mammoth Corridor in Yellowstone National Park and the adjacent Corwin Springs KGRA

    USGS Publications Warehouse

    Sorey, Michael; Colvard, Elizabeth; Sturchio, N.C.

    1990-01-01

    A study of potential impacts of geothermal development in the Corwin Springs KGRA north of Yellowstone Park on thermal springs within the Park is being conducted by the U.S. Geological Survey. Thermal waters in the KGRA and at Mammoth Hot Springs, located 13 km inside the Park boundary, are high in bicarbonate and sulfate and are actively depositing travertine. These similarities and the existence of numerous regional-scale structural and stratigraphic features that could provide conduits for fluid flow at depth indicate a possible cause for concern. The objectives of this study include delineations of any hydrologic connections between these thermal waters, the level of impact of geothermal development in the event of such connections, and mitigation measures to minimize or eliminate adverse impacts. The study involves a number of geochemical, geophysical, geologic, and hydrologic techniques, but does not include any test drilling. Preliminary results suggest that thermal waters at Bear Creek Springs may contain a component of water derived from Mammoth but that thermal waters at La Duke Hot Spring do not. The total rate of thermal water that discharges in the area proposed for geothermal development (near La Duke) has been determined; restricting the net production of thermal water to rates less than this total could provide a satisfactory margin of safety for development.

  10. Earthshots: Satellite images of environmental change – Yellowstone National Park, USA

    USGS Publications Warehouse

    Adamson, Thomas

    2014-01-01

    Yellowstone is representative of temperate mountain ecosystems throughout western North America. What is learned from the massive 1988 fires and subsequent recovery of these ecosystems can be applied to other regions.

  11. A multitracer approach for characterizing interactions between shallow groundwater and the hydrothermal system in the Norris Geyser Basin area, Yellowstone National Park

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2011-01-01

    Multiple environmental tracers are used to investigate age distribution, evolution, and mixing in local- to regional-scale groundwater circulation around the Norris Geyser Basin area in Yellowstone National Park. Springs ranging in temperature from 3??C to 90??C in the Norris Geyser Basin area were sampled for stable isotopes of hydrogen and oxygen, major and minor element chemistry, dissolved chlorofluorocarbons, and tritium. Groundwater near Norris Geyser Basin is comprised of two distinct systems: a shallow, cool water system and a deep, high-temperature hydrothermal system. These two end-member systems mix to create springs with intermediate temperature and composition. Using multiple tracers from a large number of springs, it is possible constrain the distribution of possible flow paths and refine conceptual models of groundwater circulation in and around a large, complex hydrothermal system. Copyright 2011 by the American Geophysical Union.

  12. Gas and isotope chemistry of thermal features in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bergfeld, D.; Lowenstern, Jacob B.; Hunt, Andrew G.; Shanks, W.C. Pat; Evans, William

    2011-01-01

    This report presents 130 gas analyses and 31 related water analyses on samples collected from thermal features at Yellowstone between 2003 and 2009. An overview of previous studies of gas emissions at Yellowstone is also given. The analytical results from the present study include bulk chemistry of gases and waters and isotope values for water and steam (delta18O, dealtaD), carbon dioxide (delta13C only), methane (delta13C only), helium, neon, and argon. We include appendixes containing photos of sample sites, geographic information system (GIS) files including shape and kml formats, and analytical results in spreadsheets. In addition, we provide a lengthy discussion of previous work on gas chemistry at Yellowstone and a general discussion of the implications of our results. We demonstrate that gases collected from different thermal areas often have distinct chemical signatures, and that differences across the thermal areas are not a simple function of surface temperatures or the type of feature. Instead, gas chemistry and isotopic composition are linked to subsurface lithologies and varying contributions from magmatic, crustal, and meteoric sources.

  13. Multi-method, multi-scale geophysical observations in the Obsidian Pool Thermal Area, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Holbrook, W. S.; Carr, B.; Pasquet, S.; Sims, K. W. W.; Dickey, K.

    2016-12-01

    Despite the prominence of Yellowstone as the world's most active hydrothermal province, relatively little is known about the plumbing systems that link deeper hydrothermal fluids to the charismatic hot springs, geysers and mud pots at the surface. We present the results of a multi-method, multi-scale geophysical investigation of the Obsidian Pool Thermal Area (OPTA) in Yellowstone National Park. OPTA hosts acid-sulfate hot springs and mud pots with relatively low pH. We present the results of seismic refraction, electrical resistivity, time-domain EM (TEM), soil conductivity meter (EMI), and GPR data acquired in July 2016. There is a strong contrast in physical properties in the upper 50 m of the subsurface between the low-lying hydrothermal area and surrounding hills: the hydrothermal area has much lower seismic velocities ( 1 km/s vs 3 km/s) and electrical resistivity ( 20 ohm-m vs 300 ohm-m). A prominent zone of very low resistivity (<10 ohm-m) exists at about 20 m depth beneath all hydrothermal features. Poisson's ratio, calculated from P-wave refraction tomography and surface wave inversions, shows low values beneath the "frying pan," where gas is emerging in small fumaroles, suggesting that Poisson's ratio is an effective "gas detector" in hydrothermal areas. Near-surface resistivity mapped from EMI shows a strong correlation with hydrothermal areas previously mapped by heat flow, with areas of high heat flow generally having low resistivity near the surface. Two exceptions are (1) the "frying pan," which shows a central area of high resistivity (corresponding to escaping gas) surrounding by a halo of low resistivity, and (2) a broad area of low resistivity connecting the hydrothermal centers to the lake, which may be clay deposits. TEM data penetrate up to 200 m in depth and suggest that a reservoir of hydrothermal fluids may underlie the entire area, including beneath the forested hills, at depths greater than 100 m, but that they rise toward the surface in

  14. Evaluation of Integrating the Invasive Species Forecasting System to Support National Park Service Decisions on Fire Management Activities and Invasive Plant Species Control

    NASA Technical Reports Server (NTRS)

    Ma, Peter; Morisette, T.; Rodman, Ann; McClure, Craig; Pedelty, Jeff; Benson, Nate; Paintner, Kara; Most, Neal; Ullah, Asad; Cai, Weijie; hide

    2007-01-01

    The USGS and NASA, in conjunction with Colorado State University, George Mason University and other partners, have developed the Invasive Species Forecasting System (ISFS), a flexible tool that capitalizes on NASA's remote sensing resource to produce dynamic habitat maps of invasive terrestrial plant species across the United States. In 2006 ISFS was adopted to generate predictive invasive habitat maps to benefit noxious plant and fire management teams in three major National Park systems: The Greater Yellowstone Area (Yellowstone / Grand Tetons National Parks), Sequoia and Kings Canyon National Park, and interior Alaskan (between Denali, Gates of The Arctic and Yukon-Charley). One of the objectives of this study is to explore how the ISFS enhances decision support apparatus in use by National Park management teams. The first step with each park system was to work closely with park managers to select top-priority invasive species. Specific species were chosen for each study area based on management priorities, availability of observational data, and their potential for invasion after fire disturbances. Once focal species were selected, sources of presence/absence data were collected from previous surveys for each species in and around the Parks. Using logistic regression to couple presence/absence points with environmental data layers, the first round of ISFS habitat suitability maps were generated for each National Park system and presented during park visits over the summer of 2006. This first engagement provided a demonstration of what the park service can expect from ISFS and initiated the ongoing dialog on how the parks can best utilized the system to enhance their decisions related to invasive species control. During the park visits it was discovered that separate "expert opinion" maps would provide a valuable baseline to compare against the ISFS model output. Opinion maps are a means of spatially representing qualitative knowledge into a quantitative two

  15. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters

    USGS Publications Warehouse

    Druschel, G.K.; Schoonen, M.A.A.; Nordstorm, D.K.; Ball, J.W.; Xu, Y.; Cohn, C.A.

    2003-01-01

    A sampling protocol for the retention, extraction, and analysis of sulfoxyanions in hydrothermal waters has been developed in the laboratory and tested at Yellowstone National Park and Green Lake, NY. Initial laboratory testing of the anion-exchange resin Bio-Rad??? AG1-X8 indicated that the resin was well suited for the sampling, preservation, and extraction of sulfate and thiosulfate. Synthetic solutions containing sulfate and thiosulfate were passed through AG1-X8 resin columns and eluted with 1 and 3 M KCl, respectively. Recovery ranged from 89 to 100%. Comparison of results for water samples collected from five pools in Yellowstone National Park between on-site IC analysis (U.S. Geological Survey mobile lab) and IC analysis of resin-stored sample at SUNY-Stony Brook indicates 96 to 100% agreement for three pools (Cinder, Cistern, and an unnamed pool near Cistern) and 76 and 63% agreement for two pools (Sulfur Dust and Frying Pan). Attempts to extract polythionates from the AG1-X8 resin were made using HCl solutions, but were unsuccessful. Bio-Rad??? AG2-X8, an anion-exchange resin with weaker binding sites than the AG1-X8 resin, is better suited for polythionate extraction. Sulfate and thiosulfate extraction with this resin has been accomplished with KCl solutions of 0.1 and 0.5 M, respectively. Trithionate and tetrathionate can be extracted with 4 M KCl. Higher polythionates can be extracted with 9 M hydrochloric acid. Polythionate concentrations can then be determined directly using ion chromatographic methods, and laboratory results indicate recovery of up to 90% for synthetic polythionate solutions using AG2-X8 resin columns. ?? The Royal Society of Chemistry and the Division of Geochemistry of the American Chemical Society 2003.

  16. Track of the Yellowstone hotspot: young and ongoing geologic processes from the Snake River Plain to the Yellowstone Plateau and Tetons

    USGS Publications Warehouse

    Morgan, Lisa A.; Pierce, Kenneth L.; Shanks, Pat; Raynolds, Robert G.H.

    2008-01-01

    This field trip highlights various stages in the evolution of the Snake River Plain–Yellowstone Plateau bimodal volcanic province, and associated faulting and uplift, also known as the track of the Yellowstone hotspot. The 16 Ma Yellowstone hotspot track is one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Recent interest in young and possible renewed volcanism at Yellowstone along with new discoveries and synthesis of previous studies, i.e., tomographic, deformation, bathymetric, and seismic surveys, provide a framework of evidence of plate motion over a mantle plume. This 3-day trip is organized to present an overview into volcanism and tectonism in this dynamically active region. Field trip stops will include the young basaltic Craters of the Moon, exposures of 12–4 Ma rhyolites and edges of their associated collapsed calderas on the Snake River Plain, and exposures of faults which show an age progression similar to the volcanic fields. An essential stop is Yellowstone National Park, where the last major caldera-forming event occurred 640,000 years ago and now is host to the world's largest concentration of hydrothermal features (>10,000 hot springs and geysers). This trip presents a quick, intensive overview into volcanism and tectonism in this dynamically active region. Field stops are directly linked to conceptual models related to hotspot passage through this volcano-tectonic province. Features that may reflect a tilted thermal mantle plume suggested in recent tomographic studies will be examined. The drive home will pass through Grand Teton National Park, where the Teton Range is currently rising in response to the passage of the North American plate over the Yellowstone hotspot.

  17. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    Werner, C.; Hurwitz, S.; Evans, William C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.

    2008-01-01

    We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640??ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300????C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ?? 140??t d- 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4??t d- 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42- in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370??MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO2, 2-8% for heat) of that estimated for the entire

  18. Movements of a male Canada lynx crossing the greater Yellowstone Area, including highways

    Treesearch

    John R. Squires; Robert Oakleaf

    2005-01-01

    From 1999-2001, a male Canada lynx engaged in yearly exploratory movements across the greater Yellowstone area including the Teton Wilderness Area and Yellowstone National Park. For three consecutive summers, the lynx traversed a similar path in a northwesterly direction from the animal’s home range in the Wyoming Range near Big Piney, Wyoming, to as far as...

  19. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton-Brehm, Scott D.; Gibson, Robert A.; Green, Stefan J.

    2013-01-24

    A novel sulfate-reducing bacterium designated OPF15T was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70 90 C and an optimum of 83 C. Optimal pH was around 6.5 7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve asmore » electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15T was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15T representing the type strain.« less

  20. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park.

    PubMed

    Hamilton-Brehm, Scott D; Gibson, Robert A; Green, Stefan J; Hopmans, Ellen C; Schouten, Stefan; van der Meer, Marcel T J; Shields, John P; Damsté, Jaap S S; Elkins, James G

    2013-03-01

    A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain.

  1. Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA

    USGS Publications Warehouse

    King, S.A.; Behnke, S.; Slack, K.; Krabbenhoft, D.P.; Nordstrom, D. Kirk; Burr, M.D.; Striegl, Robert G.

    2006-01-01

    Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats. Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g-1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g-1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L-1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site. ?? 2006.

  2. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  3. Beaver damming, fluvial geomorphology, and climate in Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Persico, L.; Meyer, G.

    2008-12-01

    Beaver habitation is an important component of many fluvial landscapes that can impact a variety of hydrologic, geomorphic, and ecologic processes. Beaver damming, via long term valley aggradation, is thought to be important to the postglacial geomorphic evolution of many smaller mountain stream networks in the western United States. Loss of beaver dams can also cause rapid channel incision. Although several studies have documented rapid short-term aggradation of channels behind single beaver dams, there is little actual data on the long-term cumulative effect of beaver damming. In Yellowstone''s Northern Range, field surveys and stratigraphic section along six streams in the Northern Range reveal net thickness of mostly <2 m and patchy distribution of Holocene beaver-pond deposits. We estimate that reaches with clear morphologic and stratigraphic evidence for beaver-related aggradation constitute about 19% of the total stream network length. Reaches with probable and possible beaver-related aggradation make up an additional 8% and 2% of the network, respectively. The remaining 71% of the network has no clear evidence for beaver-related aggradation. Thirty-nine radiocarbon ages on beaver-pond deposits in northern Yellowstone fall primarily within the last 4000 yr, but gaps in dated beaver occupation from 2200-1800 and 950-750 cal yr BP correspond with severe and persistent droughts that likely caused low to ephemeral discharges in smaller streams. In the last two decades, severe drought has also caused streams that were occupied by beaver in the 1920s to become ephemeral. Beaver have been largely absent from the Northern Range since the mid-20th century, probably due to multiple ecological and climatic factors. This loss of beaver is thought to have led to widespread degradation of stream and riparian habitat via channel incision. Although 20th-century beaver loss has caused significant channel incision at some former dam sites, downcutting elsewhere in northern

  4. Chemistry of selected high-elevation lakes in seven national parks in the western United States

    USGS Publications Warehouse

    Clow, David W.; Striegl, Robert G.; Nanus, Leora; Mast, M. Alisa; Campbell, Donald H.; Krabbenhoft, David P.

    2002-01-01

    A chemical survey of 69 high-altitude lakes in seven national parks in the western United States was conducted during the fallof 1999; the lakes were previously sampled during the fall of 1985, as part of the Western Lake Survey. Lakes in parks in the Sierra/southern Cascades (Lassen Volcanic, Yosemite, Sequoia/Kings Canyon National Parks) and in the southern RockyMountains (Rocky Mountain National Park) were very dilute; medianspecific conductance ranged from 4.4 to 12.2 μS cm-1 andmedian alkalinity concentrations ranged from 32.2 to 72.9 μeqL-1. Specific conductances and alkalinity concentrations were substantially higher in lakes in the central and northernRocky Mountains parks (Grand Teton, Yellowstone, and GlacierNational Parks), probably due to the prevalence of more reactivebedrock types. Regional patterns in lake concentrations of NO3 and SO4 were similar to regional patterns in NO3 and SO4 concentrations in precipitation, suggestingthat the lakes are showing a response to atmospheric deposition.Concentrations of NO3 were particularly high in Rocky Mountain National Park, where some ecosystems appear to be undergoing nitrogen saturation.

  5. Chronology of awareness about US National Park external threats.

    PubMed

    Shafer, Craig L

    2012-12-01

    The objective of this paper is to raise understanding of the history of protected area external threat awareness in the United States and at World Protected Area Congresses. The earliest concerns about external threats to US national parks began in the late nineteenth century: a potential railroad transgression of Yellowstone National Park in the 1880s. During the early and mid 1930s, George Wright and colleagues focused on outside boundary concerns like of hunting and trapping of furbearers, grazing, logging, disease and hybridization between species. In the 1960s, a worldwide recognition began about the role of outside habitat fragmentation/isolation on nature reserves and human generated stressors crossing their boundaries. The State of the Park Report 1980 added a plethora of threats: oil/gas and geothermal exploration and development, hydropower and reclamation projects, urban encroachment, roads, resorts, and recreational facilities. The early 1980s ushered in political interference with NPS threats abatement efforts as well as Congressional legislative initiatives to support the abatement challenges of the agency. By 1987, the Government Accounting Office issued its first report on National Park Service (NPS) progress in dealing with external threats. Climate change impacts on parks, especially in terms of animals adjusting their temperature and moisture requirements by latitude and altitude, surfaced in the technical literature by the mid-1980s. By 1992, the world parks community stressed the need to integrate protected areas into the surrounding landscape and human community. The importance of the matrix has gradually gained appreciation in the scientific community. This chronology represents one example of national park and protected areas' institutional history contributing to the breath of modern conservation science.

  6. Chronology of Awareness About US National Park External Threats

    NASA Astrophysics Data System (ADS)

    Shafer, Craig L.

    2012-12-01

    The objective of this paper is to raise understanding of the history of protected area external threat awareness in the United States and at World Protected Area Congresses. The earliest concerns about external threats to US national parks began in the late nineteenth century: a potential railroad transgression of Yellowstone National Park in the 1880s. During the early and mid 1930s, George Wright and colleagues focused on outside boundary concerns like of hunting and trapping of furbearers, grazing, logging, disease and hybridization between species. In the 1960s, a worldwide recognition began about the role of outside habitat fragmentation/isolation on nature reserves and human generated stressors crossing their boundaries. The State of the Park Report 1980 added a plethora of threats: oil/gas and geothermal exploration and development, hydropower and reclamation projects, urban encroachment, roads, resorts, and recreational facilities. The early 1980s ushered in political interference with NPS threats abatement efforts as well as Congressional legislative initiatives to support the abatement challenges of the agency. By 1987, the Government Accounting Office issued its first report on National Park Service (NPS) progress in dealing with external threats. Climate change impacts on parks, especially in terms of animals adjusting their temperature and moisture requirements by latitude and altitude, surfaced in the technical literature by the mid-1980s. By 1992, the world parks community stressed the need to integrate protected areas into the surrounding landscape and human community. The importance of the matrix has gradually gained appreciation in the scientific community. This chronology represents one example of national park and protected areas' institutional history contributing to the breath of modern conservation science.

  7. Predicting breeding habitat for amphibians: a spatiotemporal analysis across Yellowstone National Park

    USGS Publications Warehouse

    Bartelt, Paul E.; Gallant, Alisa L.; Klaver, Robert W.; Wright, Christopher K.; Patla, Debra A.; Peterson, Charles R.

    2011-01-01

    The ability to predict amphibian breeding across landscapes is important for informing land management decisions and helping biologists better understand and remediate factors contributing to declines in amphibian populations. We built geospatial models of likely breeding habitats for each of four amphibian species that breed in Yellowstone National Park (YNP). We used field data collected in 2000-2002 from 497 sites among 16 basins and predictor variables from geospatial models produced from remotely sensed data (e.g., digital elevation model, complex topographic index, landform data, wetland probabililty, and vegetative cover). Except for 31 sites in one basin that were surveyed in both 2000 and 2002, all sites were surveyed once. We used polytomous regression to build statistical models for each species of amphibian from 1) field survey site data only, 2) field data combined with data from geospatial models, and 3) data from geospatial models only. Based on measures of receiver operating characteristic (ROC) scores, models of the second type best explained likely breeding habitat because they contained the most information (ROC values ranged from 0.70 - 0.88). However, models of the third type could be applied to the entire YNP landscape and produced maps that could be verified with reserve field data. Accuracy rates for models built for single years were highly variable, ranging from 0.30 to 0.78. Accuracy rates for models built with data combined from multiple years were higher and less variable, ranging from 0.60 to 0.80. Combining results from the geospatial multiyear models yielded maps of "core" breeding areas (areas with high probability values for all three years) surrounded by areas that scored high for only one or two years, providing an estimate of variability among years. Such information can highlight landscape options for amphibian conservation. For example, our models identify alternative for areas that could be protected for each species

  8. Hydrologic regime and herbivory stabilize an alternative state in Yellowstone National Park.

    PubMed

    Wolf, Evan C; Cooper, David J; Hobbs, N Thompson

    2007-09-01

    A decline in the stature and abundance of willows during the 20th century occurred throughout the northern range of Yellowstone National Park, where riparian woody-plant communities are key components in multiple-trophic-level interactions. The potential causes of willow decline include climate change, increased elk browsing coincident with the loss of an apex predator, the gray wolf, and an absence of habitat engineering by beavers. The goal of this study was to determine the spatial and temporal patterns of willow establishment through the 20th century and to identify causal processes. Sampled willows established from 1917 to 1999 and contained far fewer young individuals than was predicted from a modeled stable willow population, indicating reduced establishment during recent decades. Two hydrologically distinct willow establishment environments were identified: fine-grained beaver pond sediments and coarse-grained alluvium. Willows established on beaver pond sediment earlier in time, higher on floodplain surfaces, and farther from the current stream channel than did willows on alluvial sediment. Significant linear declines from the 1940s to the 1990s in alluvial willow establishment elevation and lateral distance from the stream channel resulted in a much reduced area of alluvial willow establishment. Willow establishment was not well correlated with climate-driven hydrologic variables, but the trends were consistent with the effects of stream channel incision initiated in ca. 1950, 20-30 years after beaver dam abandonment. Radiocarbon dates and floodplain stratigraphy indicate that stream incision of the present magnitude may be unprecedented in the past two millennia. We propose that hydrologic changes, stemming from competitive exclusion of beaver by elk overbrowsing, caused the landscape to transition from a historical beaver-pond and willow-mosaic state to its current alternative stable state where active beaver dams and many willow stands are absent

  9. Predicting breeding habitat for amphibians: a spatiotemporal analysis across Yellowstone National Park.

    PubMed

    Bartelt, Paul E; Gallant, Alisa L; Klaver, Robert W; Wright, Chris K; Patla, Debra A; Peterson, Charles R

    2011-10-01

    The ability to predict amphibian breeding across landscapes is important for informing land management decisions and helping biologists better understand and remediate factors contributing to declines in amphibian populations. We built geospatial models of likely breeding habitats for each of four amphibian species that breed in Yellowstone National Park (YNP). We used field data collected in 2000-2002 from 497 sites among 16 basins and predictor variables from geospatial models produced from remotely sensed data (e.g., digital elevation model, complex topographic index, landform data, wetland probability, and vegetative cover). Except for 31 sites in one basin that were surveyed in both 2000 and 2002, all sites were surveyed once. We used polytomous regression to build statistical models for each species of amphibian from (1) field survey site data only, (2) field data combined with data from geospatial models, and (3) data from geospatial models only. Based on measures of receiver operating characteristic (ROC) scores, models of the second type best explained likely breeding habitat because they contained the most information (ROC values ranged from 0.70 to 0.88). However, models of the third type could be applied to the entire YNP landscape and produced maps that could be verified with reserve field data. Accuracy rates for models built for single years were highly variable, ranging from 0.30 to 0.78. Accuracy rates for models built with data combined from multiple years were higher and less variable, ranging from 0.60 to 0.80. Combining results from the geospatial multiyear models yielded maps of "core" breeding areas (areas with high probability values for all three years) surrounded by areas that scored high for only one or two years, providing an estimate of variability among years. Such information can highlight landscape options for amphibian conservation. For example, our models identify alternative areas that could be protected for each species

  10. Outcomes of the 'Data Curation for Geobiology at Yellowstone National Park' Workshop

    NASA Astrophysics Data System (ADS)

    Thomer, A.; Palmer, C. L.; Fouke, B. W.; Rodman, A.; Choudhury, G. S.; Baker, K. S.; Asangba, A. E.; Wickett, K.; DiLauro, T.; Varvel, V.

    2013-12-01

    The continuing proliferation of geological and biological data generated at scientifically significant sites (such as hot springs, coral reefs, volcanic fields and other unique, data-rich locales) has created a clear need for the curation and active management of these data. However, there has been little exploration of what these curation processes and policies would entail. To that end, the Site-Based Data Curation (SBDC) project is developing a framework of guidelines and processes for the curation of research data generated at scientifically significant sites. A workshop was held in April 2013 at Yellowstone National Park (YNP) to gather input from scientists and stakeholders. Workshop participants included nine researchers actively conducting geobiology research at YNP, and seven YNP representatives, including permitting staff and information professionals from the YNP research library and archive. Researchers came from a range of research areas -- geology, molecular and microbial biology, ecology, environmental engineering, and science education. Through group discussions, breakout sessions and hands-on activities, we sought to generate policy recommendations and curation guidelines for the collection, representation, sharing and quality control of geobiological datasets. We report on key themes that emerged from workshop discussions, including: - participants' broad conceptions of the long-term usefulness, reusability and value of data. - the benefits of aggregating site-specific data in general, and geobiological data in particular. - the importance of capturing a dataset's originating context, and the potential usefulness of photographs as a reliable and easy way of documenting context. - researchers' and resource managers' overlapping priorities with regards to 'big picture' data collection and management in the long-term. Overall, we found that workshop participants were enthusiastic and optimistic about future collaboration and development of community

  11. Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY

    USGS Publications Warehouse

    McCleskey, R. Blaine; Lowenstern, Jacob B.; Schaper, Jonas; Nordstrom, D. Kirk; Heasler, Henry P.; Mahony, Dan

    2016-01-01

    The combined geothermal discharge from over 10,000 features in Yellowstone National Park (YNP) can be can be estimated from the Cl flux in the Madison, Yellowstone, Falls, and Snake Rivers. Over the last 30 years, the Cl flux in YNP Rivers has been calculated using discharge measurements and Cl concentrations determined in discrete water samples and it has been determined that approximately 12% of the Cl flux exiting YNP is from the Snake River. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes was quantified at a monitoring site located downstream from the thermal inputs in the Snake River. Beginning in 2012, continuous (15 min) electrical conductivity measurements have been made at the monitoring site. Combining continuous electrical conductivity and discharge data, the Cl and other geothermal solute fluxes were determined. The 2013–2015 Cl fluxes (5.3–5.8 kt/yr) determined using electrical conductivity are comparable to historical data. In addition, synoptic water samples and discharge data were obtained from sites along the Snake River under low-flow conditions of September 2014. The synoptic water study extended 17 km upstream from the monitoring site. Surface inflows were sampled to identify sources and to quantify solute loading. The Lewis River was the primary source of Cl, Na, K, Cl, SiO2, Rb, and As loads (50–80%) in the Snake River. The largest source of SO4 was from the upper Snake River (50%). Most of the Ca and Mg (50–55%) originate from the Snake Hot Springs. Chloride, Ca, Mg, Na, K, SiO2, F, HCO3, SO4, B, Li, Rb, and As behave conservatively in the Snake River, and therefore correlate well with conductivity (R2 ≥ 0.97).

  12. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.

    PubMed

    Berelson, W M; Corsetti, F A; Pepe-Ranney, C; Hammond, D E; Beaumont, W; Spear, J R

    2011-09-01

    Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility. © 2011 Blackwell Publishing Ltd.

  13. The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    White, Donald Edward; Hutchinson, Roderick A.; Keith, Terry E.C.

    1988-01-01

    Norris Geyser Basin, normally shortened to Norris Basin, is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. An east-west fault zone terminates the Gallatin Range at its southern end and extends from Hebgen Lake, west of the park, to Norris Basin. No local evidence exists at the surface in Norris Basin for the two oldest Yellowstone volcanic caldera cycles (~2.0 and 1.3 m.y.B.P.). The third and youngest cycle formed the Yellowstone caldera, which erupted the 600,000-year-old Lava Creek Tuff. No evidence is preserved of hydrothermal activity near Norris Basin during the first 300,000.years after the caldera collapse. Glaciation probably removed most of the early evidence, but erratics of hot-spring sinter that had been converted diagenetically to extremely hard, resistant chalcedonic sinter are present as cobbles in and on some moraines and till from the last two glacial stages, here correlated with the early and late stages of the Pinedale glaciation <150,000 years B.P.). Indirect evidence for the oldest hydrothermal system at Norris Basin indicates an age probably older than both stages of Pinedale glaciation. Stream deposits consisting mainly of rounded quartz phenocrysts of the Lava Creek Tuff were subaerial, perhaps in part windblown and redeposited by streams. A few small rounded pebbles are interpreted as chalcedonic sinter of a still older cycle. None of these are precisely dated but are unlikely to be more than 150,000 to 200,000 years old. ...Most studies of active hydrothermal areas have noted chemical differences in fluids and alteration products but have given little attention to differences and models to explain evolution in types. This report, in contrast, emphasizes the kinds of changes in vents and their changing chemical types of waters and then

  14. America National Parks Viewed in 3D by NASA MISR Anaglyph 2

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Grand Teton National Park, John D. Rockefeller Memorial Parkway, Yellowstone National Park, and parts of Craters of the Moon National Monument. MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired June 25, 2016, Orbit 87876. http://photojournal.jpl.nasa.gov/catalog/PIA20890

  15. Radiocarbon dating of silica sinter deposits in shallow drill cores from the Upper Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Hurwitz, Shaul; McGeehin, John

    2016-01-01

    To explore the timing of hydrothermal activity at the Upper Geyser Basin (UGB) in Yellowstone National Park, we obtained seven new accelerator mass spectrometry (AMS) radiocarbon 14C ages of carbonaceous material trapped within siliceous sinter. Five samples came from depths of 15–152 cm within the Y-1 well, and two samples were from well Y-7 (depths of 24 cm and 122 cm). These two wells, at Black Sand and Biscuit Basins, respectively, were drilled in 1967 as part of a scientific drilling program by the U.S. Geological Survey (White et al., 1975). Even with samples as small as 15 g, we obtained sufficient carbonaceous material (a mixture of thermophilic mats, pollen, and charcoal) for the 14C analyses. Apparent time of deposition ranged from 3775 ± 25 and 2910 ± 30 14C years BP at the top of the cores to about 8000 years BP at the bottom. The dates are consistent with variable rates of sinter formation at individual sites within the UGB over the Holocene. On a basin-wide scale, though, these and other existing 14C dates hint that hydrothermal activity at the UGB may have been continuous throughout the Holocene.

  16. Seeking a scientific approach to backcountry management in Yellowstone National Park

    Treesearch

    S. Thomas Olliff; Sue Consolo Murphy

    2000-01-01

    Three criteria are used to assess how Yellowstone’s wilderness managers incorporate science into management: preciousness, vulnerability and responsiveness to management. Four observations are proposed. First, where scientists lead, managers will follow. Scientists that leave the best trail will be followed most closely. Second, managers need to refocus efforts on...

  17. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. B. Johnson; N. Okibe; F. F. Roberto

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (30–83 °C) acidic (pH 2.7– 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 °C, and pH 1.0–1.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstonemore » strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.« less

  18. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in Cinder Pool

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Schoonen, M. A. A.; Nordstrom, D. K.; Cunningham, K. M.; Ball, J. W.

    2000-04-01

    Cinder Pool is an acid-sulfate-chloride boiling spring in Norris Geyser Basin, Yellowstone National Park. The pool is unique in that its surface is partially covered with mm-size, black, hollow sulfur spherules, while a layer of molten sulfur resides at the bottom of the pool (18 m depth). The sulfur speciation in the pool was determined on four different days over a period of two years. Samples were taken to evaluate changes with depth and to evaluate the importance of the sulfur spherules on sulfur redox chemistry. All analyses were conducted on site using a combination of ion chromatography and colorimetric techniques. Dissolved sulfide (H2S), thiosulfate (S2O32-), polythionates (SxO62-), and sulfate were detected. The polythionate concentration was highly variable in time and space. The highest concentrations were found in surficial samples taken from among the sulfur spherules. With depth, the polythionate concentrations dropped off. The maximum observed polythionate concentration was 8 μM. Thiosulfate was rather uniformly distributed throughout the pool and concentrations ranged from 35 to 45 μM. Total dissolved sulfide concentrations varied with time, concentrations ranged from 16 to 48 μM. Sulfate was relatively constant, with concentrations ranging from 1150 to 1300 μM. The sulfur speciation of Cinder Pool is unique in that the thiosulfate and polythionate concentrations are significantly higher than for any other acid-sulfate spring yet sampled in Yellowstone National Park. Complementary laboratory experiments show that thiosulfate is the intermediate sulfoxyanion formed from sulfur hydrolysis under conditions similar to those found in Cinder Pool and that polythionates are formed via the oxidation of thiosulfate by dissolved oxygen. This last reaction is catalyzed by pyrite that occurs as a minor constituent in the sulfur spherules floating on the pool's surface. Polythionate decomposition proceeds via two pathways: (1) a reaction with H2S, yielding

  19. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in Cinder Pool

    USGS Publications Warehouse

    Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.

    2000-01-01

    Cinder Pool is an acid-sulfate-chloride boiling spring in Norris Geyser Basin, Yellowstone National Park. The pool is unique in that its surface is partially covered with mm-size, black, hollow sulfur spherules, while a layer of molten sulfur resides at the bottom of the pool (18 m depth). The sulfur speciation in the pool was determined on four different days over a period of two years. Samples were taken to evaluate changes with depth and to evaluate the importance of the sulfur spherules on sulfur redox chemistry. All analyses were conducted on site using a combination of ion chromatography and colorimetric techniques. Dissolved sulfide (H2S), thiosulfate (S2O32−), polythionates (SxO62−), and sulfate were detected. The polythionate concentration was highly variable in time and space. The highest concentrations were found in surficial samples taken from among the sulfur spherules. With depth, the polythionate concentrations dropped off. The maximum observed polythionate concentration was 8 μM. Thiosulfate was rather uniformly distributed throughout the pool and concentrations ranged from 35 to 45 μM. Total dissolved sulfide concentrations varied with time, concentrations ranged from 16 to 48 μM. Sulfate was relatively constant, with concentrations ranging from 1150 to 1300 μM. The sulfur speciation of Cinder Pool is unique in that the thiosulfate and polythionate concentrations are significantly higher than for any other acid-sulfate spring yet sampled in Yellowstone National Park. Complementary laboratory experiments show that thiosulfate is the intermediate sulfoxyanion formed from sulfur hydrolysis under conditions similar to those found in Cinder Pool and that polythionates are formed via the oxidation of thiosulfate by dissolved oxygen. This last reaction is catalyzed by pyrite that occurs as a minor constituent in the sulfur spherules floating on the pool's surface. Polythionate decomposition proceeds via two pathways: (1) a reaction with H2S

  20. Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation

    USGS Publications Warehouse

    Holloway, J.M.; Nordstrom, D. Kirk; Böhlke, J.K.; McCleskey, R. Blaine; Ball, J.W.

    2011-01-01

    Dissolved inorganic nitrogen, largely in reduced form (NH4(T)≈NH4(aq)++NH3(aq)o), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with NH3(aq)o loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to NH3(g)o condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.

  1. Comparative Genomic Analysis of Phylogenetically Closely Related Hydrogenobaculum sp. Isolates from Yellowstone National Park

    PubMed Central

    Romano, Christine; D'Imperio, Seth; Woyke, Tanja; Mavromatis, Konstantinos; Lasken, Roger; Shock, Everett L.

    2013-01-01

    We describe the complete genome sequences of four closely related Hydrogenobaculum sp. isolates (≥99.7% 16S rRNA gene identity) that were isolated from the outflow channel of Dragon Spring (DS), Norris Geyser Basin, in Yellowstone National Park (YNP), WY. The genomes range in size from 1,552,607 to 1,552,931 bp, contain 1,667 to 1,676 predicted genes, and are highly syntenic. There are subtle differences among the DS isolates, which as a group are different from Hydrogenobaculum sp. strain Y04AAS1 that was previously isolated from a geographically distinct YNP geothermal feature. Genes unique to the DS genomes encode arsenite [As(III)] oxidation, NADH-ubiquinone-plastoquinone (complex I), NADH-ubiquinone oxidoreductase chain, a DNA photolyase, and elements of a type II secretion system. Functions unique to strain Y04AAS1 include thiosulfate metabolism, nitrate respiration, and mercury resistance determinants. DS genomes contain seven CRISPR loci that are almost identical but are different from the single CRISPR locus in strain Y04AAS1. Other differences between the DS and Y04AAS1 genomes include average nucleotide identity (94.764%) and percentage conserved DNA (80.552%). Approximately half of the genes unique to Y04AAS1 are predicted to have been acquired via horizontal gene transfer. Fragment recruitment analysis and marker gene searches demonstrated that the DS metagenome was more similar to the DS genomes than to the Y04AAS1 genome, but that the DS community is likely comprised of a continuum of Hydrogenobaculum genotypes that span from the DS genomes described here to an Y04AAS1-like organism, which appears to represent a distinct ecotype relative to the DS genomes characterized. PMID:23435891

  2. Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Meadow, James; Rohr, Jason R; Redecker, Dirk; Zabinski, Catherine A

    2011-06-01

    The relative importance of dispersal and niche restrictions remains a controversial topic in community ecology, especially for microorganisms that are often assumed to be ubiquitous. We investigated the impact of these factors for the community assembly of the root-symbiont arbuscular mycorrhizal fungi (AMF) by sampling roots from geothermal and nonthermal grasslands in Yellowstone National Park (YNP), followed by sequencing and RFLP of AMF ribosomal DNA. With the exception of an apparent generalist RFLP type closely related to Glomus intraradices, a distance-based redundancy analysis indicated that the AMF community composition correlated with soil pH or pH-driven changes in soil chemistry. This was unexpected, given the large differences in soil temperature and plant community composition between the geothermal and nonthermal grasslands. RFLP types were found in either the acidic geothermal grasslands or in the neutral to alkaline grasslands, one of which was geothermal. The direct effect of the soil chemical environment on the distribution of two AMF morphospecies isolated from acidic geothermal grasslands was supported in a controlled greenhouse experiment. Paraglomus occultum and Scutellospora pellucida were more beneficial to plants and formed significantly more spores when grown in acidic than in alkaline soil. Distance among grasslands, used as an estimate of dispersal limitations, was not a significant predictor of AMF community similarity within YNP, and most fungal taxa may be part of a metacommunity. The isolation of several viable AMF taxa from bison feces indicates that wide-ranging bison could be a vector for at least some RFLP types among grasslands within YNP. In support of classical niche theory and the Baas-Becking hypothesis, our results suggest that AMF are not limited by dispersal at the scale of YNP, but that the soil environment appears to be the primary factor affecting community composition and distribution.

  3. YELLOWSTONE MAGMATIC-HYDROTHERMAL SYSTEM, U. S. A.

    USGS Publications Warehouse

    Fournier, R.O.; Pitt, A.M.; ,

    1985-01-01

    At Yellowstone National Park, the deep permeability and fluid circulation are probably controlled and maintained by repeated brittle fracture of rocks in response to local and regional stress. Focal depths of earthquakes beneath the Yellowstone caldera suggest that the transition from brittle fracture to quasi-plastic flow takes place at about 3 to 4 km. The maximum temperature likely to be attained by the hydrothermal system is 350 to 450 degree C, the convective thermal output is about 5. 5 multiplied by 10**9 watts, and the minimum average thermal flux is about 1800 mW/m**2 throughout 2,500 km**2. The average thermal gradient between the heat source and the convecting hydrothermal system must be at least 700 to 1000 degree C/km. Crystallization and partial cooling of about 0. 082 km**3 of basalt or 0. 10 km**3 of rhyolite annually could furnish the heat discharged in the hot-spring system. The Yellowstone magmatic-hydrothermal system as a whole appears to be cooling down, in spite of a relatively large rate of inflation of the Yellowstone caldera.

  4. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  5. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus).

    PubMed

    Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim

    2014-11-01

    Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high

  6. Use of dye tracing to determine ground-water movement to Mammoth Crystal Springs, Sylvan Pass area, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Spangler, Lawrence E.; Susong, David D.

    2006-01-01

    At the request of and in cooperation with the Geology Program at Yellowstone National Park, the U.S. Geological Survey conducted a hydrologic investigation of the Sylvan Pass area in June 2005 to determine the relation between surface water and ground-water flow to Mammoth Crystal Springs. Results of a dye-tracing investigation indicate that streamflow lost into talus deposits on Sylvan Pass enters the ground-water system and moves to the southeast to discharge at Mammoth Crystal Springs. Ground-water travel times to the springs from a distance of 1.45 miles and a vertical relief of 500 feet were less than 1 day, indicating apparent rates of movement of at least 8,000 feet per day, values that are similar to those in karst aquifers. Peak dye concentrations were reached about 2 days after dye injection, and transit time of most of the dye mass through the system was about 3 weeks. High permeability and rapid travel times within this aquifer also are indicated by the large variation in springflow in response to snowmelt runoff and precipitation, and by the high concentration of suspended sediment (turbidity) in the water discharging into the spring-fed lake.

  7. Isostatic gravity map and principal facts for 694 gravity stations in Yellowstone National Park and vicinity, Wyoming, Montana, and Idaho

    USGS Publications Warehouse

    Carle, S.F.; Glen, J.M.; Langenheim, V.E.; Smith, R.B.; Oliver, H.W.

    1990-01-01

    The report presents the principal facts for gravity stations compiled for Yellowstone National Park and vicinity. The gravity data were compiled from three sources: Defense Mapping Agency, University of Utah, and U.S. Geological Survey. Part A of the report is a paper copy describing how the compilation was done and presenting the data in tabular format as well as a map; part B is a 5-1/4 inch floppy diskette containing only the data files in ASCII format. Requirements for part B: IBM PC or compatible, DOS v. 2.0 or higher. Files contained on this diskette: DOD.ISO -- File containing the principal facts of the 514 gravity stations obtained from the Defense Mapping Agency. The data are in Plouff format* (see file PFTAB.TEX). UTAH.ISO -- File containing the principal facts of 153 gravity stations obtained from the University of Utah. Data are in Plouff format. USGS.ISO -- File containing the principal facts of 27 gravity stations collected by the U.S. Geological Survey in July 1987. Data are in Plouff format. PFTAB.TXT -- File containing explanation of principal fact format. ACC.TXT -- File containing explanation of accuracy codes.

  8. Insights into archaeal evolution and symbiosis from the genomes of a Nanoarchaeon and its crenarchaeal host from Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podar, Mircea; Graham, David E; Reysenbach, Anna-Louise

    A hyperthemophilic member of the Nanoarchaeota from Obsidian Pool, a thermal feature in Yellowstone National Park was characterized using single cell isolation and sequencing, together with its putative host, a Sulfolobales archaeon. This first representative of a non-marine Nanoarchaeota (Nst1) resembles Nanoarchaeum equitans by lacking most biosynthetic capabilities, the two forming a deep-branching archaeal lineage. However, the Nst1 genome is over 20% larger, encodes a complete gluconeogenesis pathway and a full complement of archaeal flagellum proteins. Comparison of the two genomes suggests that the marine and terrestrial Nanoarchaeota lineages share a common ancestor that was already a symbiont of anothermore » archaeon. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. The two distinct Nanoarchaeota-host genomic data sets offer insights into the evolution of archaeal symbiosis and parasitism and will further enable studies of the cellular and molecular mechanisms of these relationships.« less

  9. Predicting breeding habitat for amphibians: A spatiotemporal analysis across Yellowstone National Park

    USGS Publications Warehouse

    Bartelt, Paul E.; Gallant, Alisa L.; Klaver, Robert W.; Wright, C.K.; Patla, Debra A.; Peterson, Charles R.

    2011-01-01

    The ability to predict amphibian breeding across landscapes is important for informing land management decisions and helping biologists better understand and remediate factors contributing to declines in amphibian populations. We built geospatial models of likely breeding habitats for each of four amphibian species that breed in Yellowstone National Park (YNP). We used field data collected in 2000-2002 from 497 sites among 16 basins and predictor variables from geospatial models produced from remotely sensed data (e.g., digital elevation model, complex topographic index, landform data, wetland probability, and vegetative cover). Except for 31 sites in one basin that were surveyed in both 2000 and 2002, all sites were surveyed once. We used polytomous regression to build statistical models for each species of amphibian from (1) field survey site data only, (2) field data combined with data from geospatial models, and (3) data from geospatial models only. Based on measures of receiver operating characteristic (ROC) scores, models of the second type best explained likely breeding habitat because they contained the most information (ROC values ranged from 0.70 to 0.88). However, models of the third type could be applied to the entire YNP landscape and produced maps that could be verified with reserve field data. Accuracy rates for models built for single years were highly variable, ranging from 0.30 to 0.78. Accuracy rates for models built with data combined from multiple years were higher and less variable, ranging from 0.60 to 0.80. Combining results from the geospatial multiyear models yielded maps of "core" breeding areas (areas with high probability values for all three years) surrounded by areas that scored high for only one or two years, providing an estimate of variability among years. Such information can highlight landscape options for amphibian conservation. For example, our models identify alternative areas that could be protected for each species

  10. Fossilization of Coniform (Phormidium) Stromatolites In Siliceous Thermal Springs, Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Farmer, Jack; Bebout, Brad; Jahnke, Linda; Chang, Sherwood (Technical Monitor)

    1997-01-01

    We have studied fossilization processes in well-developed cyanobacterial mats present in mid-terrace ponds of silica-precipitating thermal springs of Yellowstone National Park. These mats occur over temperatures of approx.35-60 C and are dominated by species of Phormidium. Within Bonded systems two end member environments have been distinguished based temperature, depth, and the stability of spring inflows, each differing substantially in the style of stromatolite morphogenesis and fossilization. Type 1 systems include shallow, ephemeral ponds where water flow and temperature fluctuates widely on a seasonal basis; mats typically secrete rapidly up to the air-water interface, forming exposed islands. Silicification occurs primarily by the wicking of water onto the surface of exposed mats, leading to the evaporative concentration of silica near the surface. pH microelectronic measurements in partially-exposed columns show strong gradients in pH with values exceeding 10.5 in the upper am of silicifying mats, decreasing to <9.0 a few mm below the surface. High oxygen concentrations lead to the rapid oxidation of most organic materials. In Type I systems, the tops of coniform and columnar stromatolites become silicified first, followed by the bases. This typically leads to extensive fragmentation during the initial stages of burial. Case 2 systems include deeper ponds where the water flow, temperature and depth are seasonally more stable, and where mats develop larger-scale tufts and columns. Alkalinity in permanently submerged mats increases into tuft interiors from approx.9.0 near the surface to >10.0 at depth. Moderate silicification is apparent throughout mat frameworks, although there is frequently a densely silicified core near the base. In Type 2 systems, preservation of the coniform and columnar architecture of stromatoilites is much more robust. Sub-fossil examples suggest minimal fragmentation prior to burial. Comparative rapid analysis of the phone zones of

  11. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  12. 75 FR 4842 - Winter Use Plan, Environmental Impact Statement, Yellowstone National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... establish a management framework that allows the public to experience Yellowstone's unique winter resources... the environmental effects of winter use on air quality and visibility, wildlife, natural soundscapes... U.S. Forest Service. A scoping brochure has been prepared that details the issues identified to date...

  13. Vegetation monitoring to detect and predict vegetation change: Connecting historical and future shrub/steppe data in Yellowstone National Park

    Treesearch

    Geneva Chong; David Barnett; Benjamin Chemel; Roy Renkin; Pamela Sikkink

    2011-01-01

    A 2002 National Research Council (NRC) evaluation of ungulate management practices in Yellowstone specifically concluded that previous (1957 to present) vegetation monitoring efforts were insufficient to determine whether climate or ungulates were more influential on shrub/steppe dynamics on the northern ungulate winter range. The NRC further recommended that the...

  14. Dissolved Free Amino Acids in Hydrothermal Springs at Yellowstone National Park, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cox, J. S.; Holland, M. E.; Shock, E. L.

    2004-12-01

    Insights into the organic geochemistry of hydrothermal systems, as well as the dynamics of biotic processes in hot spring ecosystems, can be gained by identifying and quantifying dissolved free amino acids (DFAA). Hydrothermal systems form a unique environmental subset relative to other aqueous settings due to their higher temperatures, largely uncharacterized and exotic microbiology, wider pH range, and elevated levels of rare metals, sulfur, and dissolved gases. Previous studies of hot spring and geothermal systems (e.g. Mukhin et al., 1979; Svensson et al., 2004) indicated the presence of micromolar quantities of various amino acids, but the underlying mechanisms controlling amino acid production and disappearance/consumption have continued to remain elusive. DFAA were identified and quantified in five hot springs at Yellowstone National Park that span a range of pH (2 to 8) and temperature (75 to 93° C/boiling). Biotic uptake experiments and enantiomeric analyses on samples from one location were also performed to elucidate biotic pathways. Analyses were performed using high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which is able to resolve amino acids as well as certain carbohydrates, oligopeptides, and a variety of related biological molecules. Preliminary data indicate that total DFAA concentrations are quite low (sub-micromolar range) and that amino acids with aliphatic and nitrogen-containing R-groups are predominant in the DFAA fraction. The types and concentrations of amino acids were variable across the sites. Obsidian Pool (pH 5.1, 77.5° C), where multiple microbiological studies have been conducted, was found to have a DFAA fraction consisting primarily of glycine with trace amounts of arginine, lysine, and histidine. In comparison, an acidic spring in the Sylvan Springs area (pH 1.9, 79.7° C) had higher total DFAA concentrations and was found to contain primarily arginine, lysine, and leucine, together

  15. Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake.

    PubMed

    Roddewig, Michael R; Churnside, James H; Hauer, F Richard; Williams, Jacob; Bigelow, Patricia E; Koel, Todd M; Shaw, Joseph A

    2018-05-20

    The use of airborne lidar to survey fisheries has not yet been extensively applied in freshwater environments. In this study, we investigated the applicability of this technology to identify invasive lake trout (Salvelinus namaycush) in Yellowstone Lake, Yellowstone National Park, USA. Results of experimental trials conducted in 2004 and in 2015-16 provided lidar data that identified groups of fish coherent with current knowledge and models of lake trout spawning sites, and one identified site was later confirmed to have lake trout.

  16. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park

    PubMed Central

    Beam, Jacob P; Jay, Zackary J; Kozubal, Mark A; Inskeep, William P

    2014-01-01

    Novel lineages of the phylum Thaumarchaeota are endemic to thermal habitats, and may exhibit physiological capabilities that are not yet observed in members of this phylum. The primary goals of this study were to conduct detailed phylogenetic and functional analyses of metagenome sequence assemblies of two different thaumarchaeal populations found in high-temperature (65–72 °C), acidic (pH∼3) iron oxide and sulfur sediment environments of Yellowstone National Park (YNP). Metabolic reconstruction was coupled with detailed geochemical measurements of each geothermal habitat and reverse-transcriptase PCR to confirm the in situ activity of these populations. Phylogenetic analyses of ribosomal and housekeeping proteins place these archaea near the root of the thaumarchaeal branch. Metabolic reconstruction suggests that these populations are chemoorganotrophic and couple growth with the reduction of oxygen or nitrate in iron oxide habitats, or sulfur in hypoxic sulfur sediments. The iron oxide population has the potential for growth via the oxidation of sulfide to sulfate using a novel reverse sulfate reduction pathway. Possible carbon sources include aromatic compounds (for example, 4-hydroxyphenylacetate), complex carbohydrates (for example, starch), oligopeptides and amino acids. Both populations contain a type III ribulose bisphosphate carboxylase/oxygenase used for carbon dioxide fixation or adenosine monophosphate salvage. No evidence for the oxidation of ammonia was obtained from de novo sequence assemblies. Our results show that thermoacidophilic Thaumarchaeota from oxic iron mats and hypoxic sulfur sediments exhibit different respiratory machinery depending on the presence of oxygen versus sulfide, represent deeply rooted lineages within the phylum Thaumarchaeota and are endemic to numerous sites in YNP. PMID:24196321

  17. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    USGS Publications Warehouse

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-01-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  18. Investigation of Earthquake and Geyser Events in the Upper Geyser Basin of Yellowstone National Park from a Nodal Array

    NASA Astrophysics Data System (ADS)

    Garcia, S.; Karplus, M. S.; Farrell, J.; Lin, F. C.; Smith, R. B.

    2017-12-01

    A large seismic nodal array incorporating 133 three-component, 5-Hz geophones deployed for two weeks in early November 2015 in the Upper Geyser Basin recorded earthquake and hydrothermal activity. The University of Utah, the University of Texas at El Paso, and Yellowstone National Park collaborated to deploy Fairfield Nodal ZLand 3-C geophones concentrically centered around the Old Faithful Geyser with an average station spacing of 50 m and an aperture of 1 km. The array provided a unique dataset to investigate wave propagation through various fractures and active geysers in a hydrothermal field located over the Yellowstone hotspot. The complicated sub-surface features associated with the hydrothermal field appear to impact earthquake wave propagation in the Upper Geyser Basin and to generate seismic signals. Previous work using ambient noise cross-correlation has found an intricately fractured sub-surface that provides pathways for water beneath parts of the Upper Geyser Basin that likely feed Old Faithful and other nearby geysers and hot springs. For this study, we used the data to create visualizations of local earthquake, teleseismic earthquake, and hydrothermal events as they propagate through the array. These ground motion visualizations allow observation of wave propagation through the geyser field, which may indicate the presence of anomalous structure impacting seismic velocities and attenuation. Three teleseismic events were observed in the data, two 6.9MW earthquakes that occurred off the coast of Coquimbo, Colombia 9,000km from the array and one 6.5MW near the Aleutian Islands 4,500km from the array. All three teleseismic events observed in the data exhibited strong direct P-wave arrivals and several additional phases. One local earthquake event (2.5ML) 100km from the Upper Geyser Basin was also well-recorded by the array. Time-domain spectrograms show the dominant frequencies present in the recordings of these events. The two 6.9MW earthquakes in Chile

  19. Potential application of radiogenic isotopes and geophysical methods to understand the hydrothermal dystem of the Upper Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Paces, James B.; Long, Andrew J.; Koth, Karl R.

    2015-01-01

    Numerous geochemical and geophysical studies have been conducted at Yellowstone National Park to better understand the hydrogeologic processes supporting the thermal features of the Park. This report provides the first 87Sr/86Sr and 234U/238U data for thermal water from the Upper Geyser Basin (UGB) intended to evaluate whether heavy radiogenic isotopes might provide insight to sources of groundwater supply and how they interact over time and space. In addition, this report summarizes previous geophysical studies made at Yellowstone National Park and provides suggestions for applying non-invasive ground and airborne studies to better understand groundwater flow in the subsurface of the UGB. Multiple samples from Old Faithful, Aurum, Grand, Oblong, and Daisy geysers characterized previously for major-ion concentrations and isotopes of water (δ2H, δ18O, and 3H) were analyzed for Sr and U isotopes. Concentrations of dissolved Sr and U are low (4.3–128 ng g-1 Sr and 0.026–0.0008 ng g-1 U); consequently only 87Sr/86Sr data are reported for most samples. Values of 87Sr/86Sr for most geysers remained uniform between April and September 2007, but show large increases in all five geysers between late October 2007 and early April, 2008. By late summer of 2008, 87Sr/86Sr values returned to values similar to those observed a year earlier. Similar patterns are not present in major-ion data measured on the same samples. Furthermore, large geochemical differences documented between geysers are not observed in 87Sr/86Sr data, although smaller differences between sites may be present. Sr-isotope data are consistent with a stratified hydrologic system where water erupted in spring and summer of 2007 and summer of 2008 equilibrated with local intracaldera rhyolite flows at shallower depths. Water erupted between October 2007 and April 2008 includes greater amounts of groundwater that circulated deep enough to acquire a radiogenic 87Sr/86Sr, most likely from Archean basement

  20. Sensitivity of Alpine and Subalpine Lakes to Atmospheric Deposition in Grand Teton National Park and Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Campbell, D. H.; Williams, M. W.

    2004-12-01

    Acidification of high-elevation lakes in the Western United States is of concern because of the storage and release of pollutants in snowmelt runoff combined with steep topography, granitic bedrock, and limited soils and biota. Land use managers have limited resources for sampling and thus need direction on how best to design monitoring programs. We evaluated the sensitivity of 400 lakes in Grand Teton (GRTE) and Yellowstone (YELL) National Parks to acidification from atmospheric deposition of nitrogen and sulfur based on statistical relations between acid-neutralizing capacity (ANC) concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. ANC concentrations that were measured at 52 lakes in GRTE and 23 lakes in YELL during synoptic surveys were used to calibrate the statistical models. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen (N) deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare (ha) in GRTE (n=106) and YELL (n=294). For GRTE, 36 percent of lakes had a greater than 60-percent probability of having ANC concentrations less than 100 microequivalents per liter, and 14 percent of lakes had a greater than 80-percent probability of having ANC concentrations less than 100 microequivalents per liter. The elevation of the lake outlet and the area of the basin with northeast aspects were determined to be statistically significant and were used as the explanatory variables in the multivariate logistic regression model. For YELL, results indicated that 13 percent of lakes had a greater than 60-percent probability of having ANC concentrations less

  1. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park.

    PubMed

    Hamilton-Brehm, Scott D; Mosher, Jennifer J; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2010-02-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).

  2. Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    King, Jonathan M.; Hurwitz, Shaul; Lowenstern, Jacob B.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2016-01-01

    A multireaction chemical equilibria geothermometry (MEG) model applicable to high-temperature geothermal systems has been developed over the past three decades. Given sufficient data, this model provides more constraint on calculated reservoir temperatures than classical chemical geothermometers that are based on either the concentration of silica (SiO2), or the ratios of cation concentrations. A set of 23 chemical analyses from Ojo Caliente Spring and 22 analyses from other thermal features in the Lower Geyser Basin of Yellowstone National Park are used to examine the sensitivity of calculated reservoir temperatures using the GeoT MEG code (Spycher et al. 2013, 2014) to quantify the effects of solute concentrations, degassing, and mineral assemblages on calculated reservoir temperatures. Results of our analysis demonstrate that the MEG model can resolve reservoir temperatures within approximately ±15°C, and that natural variation in fluid compositions represents a greater source of variance in calculated reservoir temperatures than variations caused by analytical uncertainty (assuming ~5% for major elements). The analysis also suggests that MEG calculations are particularly sensitive to variations in silica concentration, the concentrations of the redox species Fe(II) and H2S, and that the parameters defining steam separation and CO2 degassing from the liquid may be adequately determined by numerical optimization. Results from this study can provide guidance for future applications of MEG models, and thus provide more reliable information on geothermal energy resources during exploration.

  3. A 2650-year-long record of environmental change from northern Yellowstone National Park based on a comparison of multiple proxy data

    USGS Publications Warehouse

    Whitlock, C.; Dean, W.; Rosenbaum, J.; Stevens, L.; Fritz, S.; Bracht, B.; Power, M.

    2008-01-01

    Geochemical, stable-isotope, pollen, charcoal, and diatom records were analyzed at high-resolution in cores obtained from Crevice Lake, a varved-sediment lake in northern Yellowstone National Park. The objective was to reconstruct the ecohydrologic, vegetation, and fire history of the watershed for the last 2650 years to better understand past climate variations at the forest-steppe transition. The data suggest a period of limited bottom-water anoxia, relatively wet winters, and cool springs and summers from 2650 to 2100 cal yr BP (700-150 BC). Dry warm conditions occurred between 2100 and 850-800 cal yr BP (150 BC and AD 1100-1150), when the lake was anoxic, winter precipitation was low, and summer stratification was protracted. The data are consistent with overall warmer/drier conditions during the Medieval Climate Anomaly, although they suggest a shift towards wetter winters within that period. The period from 850 to 800 cal yr BP (AD 1100-1150) to 250 cal yr BP (AD 1700) was characterized by greater water-column mixing and cooler spring/summer conditions than before. In addition, fire activity shifted towards infrequent large events and pollen production was low. From 250 to 150 cal yr BP (AD 1700-1800), winter precipitation was moderate compared to previous conditions, and the lake was again stratified, suggesting warm summers. Between 150 and 42 cal yr BP (AD 1800-1908), winter precipitation increased and spring and summer conditions became moderate. Metal pollution, probably from regional mining operations, is evident in the 1870s. Large fires occurred between ca. 1800-1880, but in general the forests were more closed than before. The Crevice Lake record suggests that the last 150 years of Yellowstone's environmental history were characterized by intermediate conditions when compared with the previous 2500 years. ?? 2007 Elsevier Ltd and INQUA.

  4. Amphibian mortality events and ranavirus outbreaks in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Patla, Debra A.; St-Hilaire, Sophia; Rayburn, Andrew P.; Hossack, Blake R.; Peterson, Charles R.

    2016-01-01

    Mortality events in wild amphibians go largely undocumented, and where events are detected, the numbers of dead amphibians observed are probably a small fraction of actual mortality (Green and Sherman 2001; Skerratt et al. 2007). Incidental observations from field surveys can, despite limitations, provide valuable information on the presence, host species, and spatial distribution of diseases. Here we summarize amphibian mortality events and diagnoses recorded from 2000 to 2014 in three management areas: Yellowstone National Park; Grand Teton National Park (including John D. Rockefeller, Jr. Memorial Parkway); and the National Elk Refuge, which together span a large portion of protected areas within the Greater Yellowstone Ecosystem (GYE; Noss et al. 2002). Our combined amphibian monitoring projects (e.g., Gould et al. 2012) surveyed an average of 240 wetlands per year over the 15 years. Field crews recorded amphibian mortalities during visual encounter and dip-netting surveys and collected moribund and dead specimens for diagnostic examinations. Amphibian and fish research projects during these years contributed additional mortality observations, specimens, and diagnoses.

  5. What is “natural”? : Yellowstone elk population - A case study

    USGS Publications Warehouse

    Keigley, R.B.; Wagner, Frederic H.

    2000-01-01

    Ecology analyzes the structure and function of ecosystems at all points along the continuum of human disturbance, from so-called pristine forests to urban backyards. Undisturbed systems provide reference points at one end of the spectrum, and nature reserves and parks are highly valued because they can provide unique examples of such ecosystems. Unfortunately the concept of “natural” or pristine is not that easy to define. Indeed, although ecologists have considered pre-Columbian, western-hemisphere ecosystems to have been largely unaltered by human action, and have termed their state “natural” or “pristine,” evidence from archaeology challenges this view. U.S. and Canadian national parks are charged with preserving the “natural,” and thus need to be able to understand and manage for the “natural.” A pivotal “natural” question in Yellowstone National Park management is the size of the northern-range, wintering elk population at Park establishment in 1872, argued both to have been small and large. Integrating and quantifying several sources of evidence provides a consistent picture of a low population (ca. 5,000–6,000), largely migrating out of the northern range in winter, with little vegetation impact. If we accept this conclusion about what is natural for the Yellowstone ecosystem, then it dramatically alters how we view management alternatives for the Park, which currently supports a northern wintering herd of up to ˜ 25,000 elk.

  6. 77 FR 74027 - Winter Use Plan, Final Environmental Impact Statement Amended Record of Decision, Yellowstone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ..., Yellowstone National Park. SUMMARY: Pursuant to Sec. 102(2)(C) of the National Environmental Policy Act of... Wyoming. On December 3, 2012, the Regional Director, Intermountain Region, approved the Amended Record of... online at http://parkplanning.nps.gov/yell . Dated: December 2, 2012. John Wessels, Regional Director...

  7. Fueling a Crisis: Public Argument and the 1988 Yellowstone Fire Debate.

    ERIC Educational Resources Information Center

    Hardy-Short, Dayle; Short, C. Brant

    Debate surrounding the 1988 Yellowstone National Park fires provides material for a case study into the relationship between a crisis and public argument. Studies like this reflect the importance of a recent trend in higher education, namely, the analysis of environmental issues from different academic perspectives. In this case, analysis of…

  8. Special Area Management Plan (SAMP) Upper Yellowstone River, Montana: Environmental Assessment, FONSI, and Selected Alternative

    DTIC Science & Technology

    2011-04-01

    Mitigation Procedure NEPA National Environmental Policy Act NHPA National Historic Preservation Act NRCS Natural Resources Conservation Service NWP...United States Geological Service, Biological Research Division USFWS US Fish and Wildlife Service YNP Yellowstone National Park 4 5 Finding of No...Significant Impact In accordance with the National Environmental Policy Act and its implementing regulations, the attached environmental assessment (EA

  9. Pregnancy rates in central Yellowstone bison

    USGS Publications Warehouse

    Gogan, Peter J.; Russell, Robin E.; Olexa, Edward M.; Podruzny, Kevin M.

    2013-01-01

    Plains bison (Bison b. bison) centered on Yellowstone National Park are chronically infected with brucellosis (Brucella abortus) and culled along the park boundaries to reduce the probability of disease transmission to domestic livestock. We evaluated the relationship between pregnancy rates and age, dressed carcass weight, and serological status for brucellosis among bison culled from the central Yellowstone subpopulation during the winters of 1996–1997, 2001–2002, and 2002–2003. A model with only dressed carcass weight was the best predictor of pregnancy status for all ages with the odds of pregnancy increasing by 1.03 (95% CI = 1.02–1.04) for every 1-kg increase in weight. We found no effect of age or the serological status for brucellosis on pregnancy rates across age classes; however, we did find a positive association between age and pregnancy rates for bison ≥2 years old. Bison ≥2 years old had an overall pregnancy rate of 65% with markedly different rates in alternate ages for animals between 3 and 7 years old. Pregnancy rates were 0.50 (95% CI = 0.31–0.69) for brucellosis positive and 0.57 (95% CI = 0.34–0.78) for brucellosis negative 2- and 3-year-olds and 0.74 (95% CI = 0.60–0.85) in brucellosis positive and 0.69 (95% CI = 0.49–0.85) in brucellosis negative bison ≥4 years old. Only 1 of 21 bison <2 years old was pregnant. Our findings are important to accurately predict the effects of brucellosis on Yellowstone bison population dynamics. We review our results relative to other studies of Yellowstone bison that concluded serological status for brucellosis influences pregnancy rates.

  10. An REU Project on the Precambrian Rocks of Yellowstone National Park: Some lessons learned

    NASA Astrophysics Data System (ADS)

    Henry, D.; Mogk, D. W.; Mueller, P. A.; Foster, D. A.

    2014-12-01

    An NSF-funded REU project (2011-2013), based in Yellowstone National Park (YNP), was designed to characterize the geology, geochemistry and geochronology of Precambrian rocks in northern YNP. Over two field seasons two cadres of 12 students (12 women and 12 men) were chosen from small-to-large state universities and private colleges. REU students participated in three major activities constituting a complete research experience: Field studies involved geologic mapping and sampling of Precambrian basement; formulation of testable research questions by smaller working groups; and mapping and sampling projects to address research questions; Analytical studies, sample preparation immediately followed field work with petrographic analysis at students' home institutions and a week-long visit to analytical laboratories to conduct follow-up studies by small research groups during the academic year (Univ. Florida - geochemistry and geochronology; Univ. Minnesota - EMPA analysis); Communicating results, each working group submitted an abstract and collectively presented 13 posters at the 2011 and 2012 GSA Rocky Mountain sectional meetings. We used directed discovery to engage students in a community of practice in the field and found that a long apprenticeship (2-3 weeks) is optimal for novice-master interactions in exploring natural setting. Initial group hikes were used to normalize methods and language of the discipline. Students developed a sense of ownership of the overall project and assumed personal responsibility for directed research projects. Training was provided to: guide students in selection and appropriate use of tools; develop sampling strategies; discuss communal ethics, values, and expectations; develop efficient work habits; stimulate independent thinking; and engage decision-making. It was important to scaffold the field experience to students' level of development to lead to mastery. Analytical activities were designed from rock to analysis so that each

  11. Geochemical Constraints on the Distribution and Function of Thermoproteales Populations in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Jay, Z.; Rusch, D.; Romine, M.; Beam, J.; Inskeep, W.

    2014-12-01

    Metagenome surveys in Yellowstone National Park (YNP) indicate that members of the order Thermoproteales (phylum Crenarchaeota) are abundant in high-temperature (> 70 °C) geothermal systems. The goals of this study were to compare Thermoproteales sequences from different geothermal environments across YNP, and determine the variation in metabolic potential associated with their distribution. Thermoproteales sequence assemblies (> 0.5 Mbases) were curated from 10 habitats ranging in pH from 3 - 9 (with or without dissolved sulfide). The distribution of specific Thermoproteales is constrained by pH: Vulcanisaeta-like sequences are the most abundant Thermoproteales at pH < 6, Caldivirga-like sequences more important from pH 4 - 6, and Thermoproteus-like sequences abundant from ~ pH 5 - 7, and at pH > 7, Pyrobaculum­-like sequences are nearly the only Thermoproteales present. Thermoproteales populations are generally found in hypoxic systems where reduced forms of S and As often limit concentrations of dissolved oxygen. These environmental conditions are correlated with the presence or absence of system-defined respiratory complexes including different terminal oxidases (e.g., aa3 or bd), numerous DMSO-molybdopterins, and dissimilatory sulfate reductases. Metabolic reconstruction of different genera revealed similar pathways for the degradation of carbohydrates, amino acids, and lipids across sites. Only the Thermoproteus and Pyrobaculum populations contained the three marker genes for the dicarboxylate/4-hyhdroxybutyrate cycle, which is responsible for the fixation of inorganic carbon. Most Thermoproteales populations have the metabolic capacity to synthesize their requirements for vitamins, cofactors, amino acids, and/or nucleotides. Our results indicate that Thermoproteales populations are important members of high-temperature microbial communities across a wide pH range, are responsible for the degradation of organic carbon, and may also serve as a source of

  12. Geology and Thermal History of Mammoth Hot Springs, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.

    1978-01-01

    Mammoth Hot Springs, located about 8 km inside the north entrance to Yellowstone National Park, consists of nearly 100 hot springs scattered over a score of steplike travertine terraces. The travertine deposits range in age from late Pleistocene to the present. Sporadic records of hot-spring activity suggest that most of the current major springs have been intermittently active since at least 1871. Water moving along the Norris-Mammoth fault zone is heated by partly molten magma and enriched in calcium and bicarbonate. Upon reaching Mammoth this thermal water (temperature about 73?C) moves up through the old terrace deposits along preexisting vertical linear planes of weakness. As the water reaches the surface, pressure is released, carbon dioxide escapes as a gas, and bicarbonate in the water is partitioned into more carbon dioxide and carbonate; the carbonate then combines with calcium to precipitate calcium carbonate, forming travertine. The travertine usually precipitates rapidly from solution and is lightweight and porous; however, dense travertine, such as is found in core from the 113-m research drill hole Y-10 located on one of the upper terraces, forms beneath the surface by deposition in the pore spaces of older deposits. The terraces abound with unusual hot-spring deposits such as terracettes, cones, and fissure ridges. Semicircular ledges (ranging in width from about 0.3 m to as much as 2.5 m), called terracettes, formed by deposition of travertine around slowly rising pools. Complex steplike arrangements of terracettes have developed along runoff channels of some hot springs. A few hot springs have deposited cone-shaped mounds, most of which reach heights of 1-2 m before becoming dormant. However, one long-inactive cone named Liberty Cap attained a height of about 14 m. Fissure ridges are linear mounds of travertine deposited from numerous hot-spring vents along a medial fracture zone. The ridges range in height from about 1 to 6 m and in length from a

  13. Characterization of organic matter in lake sediments from Minnesota and Yellowstone National Park

    USGS Publications Warehouse

    Dean, Walter E.

    2006-01-01

    Samples of sediment from lakes in Minnesota and Yellowstone National Park (YNP) were analyzed for organic carbon (OC), hydrogen richness by Rock-Eval pyrolysis, and stable carbon- and nitrogen-isotope composition of bulk organic matter. Values of delta 13C of lake plankton tend to be around -28 to -32 parts per thousand (0/00). Organic matter with values of delta 13C in the high negative 20s overlap with those of organic matter derived from C3 higher terrestrial plants but are at least 10 0/00 more depleted in 13C than organic matter derived from C4 terrestrial plants. If the organic matter is produced mainly by photosynthetic plankton and is not oxidized in the water column, there may be a negative correlation between H-richness (Rock-Eval pyrolysis H-index) and delta 13C, with more H-rich, algal organic matter having lower values of delta 13C. However, if aquatic organic matter is oxidized in the water column, or if the organic matter is a mixture of terrestrial and aquatic organic matter, then there may be no correlation between H-richness and carbon-isotopic composition. Values of delta 13C lower than about -28 0/00 probably indicate a contribution of bacterial biomass produced in the hypolimnion by chemoautotrophy or methanotrophy. In highly eutrophic lakes in which large amounts of 13C-depleted organic matter is continually removed from the epilimnion by photosynthesis throughout the growing season, the entire carbon reservoir in the epilimnion may become severely 13C-enriched so that 13C-enriched photosynthetic organic matter may overprint 13C-depleted chemosynthetic bacterial organic matter produced in the hypolimnon. Most processes involved with the nitrogen cycle in lakes, such as production of ammonia and nitrate, tend to produce 15N-enriched values of delta 15N. Most Minnesota lake sediments are 15N-enriched. However, some of the more OC-rich sediments have delta 15N values close to zero (delta 15N of air), suggesting that organic matter production is

  14. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation

    USGS Publications Warehouse

    Deng, Y.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2011-01-01

    Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1–10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006–2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3–30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F−, and major complexes (HF(aq)0">HF(aq)0, AlF2+, AlF2+">AlF2+and AlF30">AlF30) account for more than 95% of total fluoride. Occasionally, some complex species like AlF4-">AlF4-, FeF2+, FeF2+">FeF2+, MgF+ and BF2(OH)2-">BF2(OH)2- may comprise 1–10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.

  15. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  16. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a newmore » phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.« less

  17. National Parks

    Treesearch

    Jill S. Baron; Craig D. Allen; Erica Fleishman; Lance Gunderson; Don McKenzie; Laura Meyerson; Jill Oropeza; Nate Stephenson

    2008-01-01

    Covering about 4% of the United States, the 338,000 km2 of protected areas in the National Park System contain representative landscapes of all of the nation's biomes and ecosystems. The U.S. National Park Service Organic Act established the National Park System in 1916 "to conserve the scenery and the natural and historic objects and...

  18. Insights into Near-Surface Structural Control of Hydrothermal Fluid Movement at Rabbit Creek Thermal Area, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Carr, B.; Elliot, M.; Sims, K. W. W.

    2017-12-01

    Recent geophysical imaging efforts at Yellowstone National Park have generated questions about the geologic controls of hydrothermal fluid movement within the parks thermal areas. Currently, faults and lava flow contacts are assumed to be the primary permeability pathways for deeper fluid migration to the surface. Although intuition dictates that these structures are responsible, few studies have definitively shown that this is true. Earlier geophysical imaging efforts of phase separation in Norris Geyser Basin have shown strong evidence for fractures and faulting conducting hydrothermal waters. However, no geologically mapped faults are at the surface to confirm these interpretations. Therefore, during the summer of 2017, UW surface geophysical data acquisition focused on understanding the geologic controls for a thermal area within the well-mapped Rabbit Creek Fault Zone (RCFZ). The RCFZ strikes N-S along the eastern edge of Midway Geyser Basin (i.e. the western edge of the Mallard Lake Dome) about 2.8 Km SE of Grand Prismatic spring. The section of the fault zone within the Rabbit Creek thermal area is exposed on the eastern valley wall and dips steeply to the west. Regardless at our site, this puts the two of the plateau rhyolites (i.e. the Biscuit Basin Flow and Mallard Lake flow) next to each other ( 100 m apart) with a small amount of overlying alluvial, glacial and hydrothermal deposits covering the actual fault trace. Interestingly, at least two mapped reverse faults from the Mallard Lake Dome trend NW-SE into the site and are interpreted to intersect to the RCFZ. At RCFZ, DC resistivity and seismic refraction profiling combined with Self-Potential, Magnetics, and Transient Electromagnetic soundings were acquired to provide images and in situ geophysical properties. These data highlight the variable fracturing and surface expressions of the hydrothermal fluids associated with the RCFZ and the NW trending fault zone associated with the Mallard Lake Dome

  19. Willow on Yellowstone's northern range: evidence for a trophic cascade?

    PubMed

    Beyer, Hawthorne L; Merrill, Evelyn H; Varley, Nathan; Boyce, Mark S

    2007-09-01

    Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995-1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year's ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone's northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park.

  20. Consequences of fire on aquatic nitrate and phosphate dynamics in Yellowstone National Park

    Treesearch

    James A. Brass; Vincent G. Ambrosia; Philip J. Riggan; Paul D. Sebesta

    1996-01-01

    Airborne remotely sensed data were collected and analyzed during and following the 1988 Greater Yellowstone Ecosystem (GYE) fires in order to characterize the fire front movements, burn intensities and various vegetative components of selected watersheds. Remotely sensed data were used to categorize the burn intensities as: severely burned, moderately burned, mixed...

  1. Water-chemistry and on-site sulfur-speciation data for selected springs in Yellowstone National Park, Wyoming, 1994-1995

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; Cunningham, Kirk M.; Schoonen, Martin A.; Xu, Yong; DeMonge, Jennifer M.

    1998-01-01

    Forty-two water analyses are reported for samples collected at 8 hot springs and their overflow drainages, two geysers, and two ambient-temperature acid streams in Yellowstone National Park during 1994-95. These water samples were collected and analyzed as part of the initial research investigations on sulfur redox speciation in the hot springs of Yellowstone and to document chemical changes in overflows that affect major ions, redox species, and trace elements. The sulfur redox speciation research is a collaboration between the State University of New York (SUNY) at Stony Brook and the U.S. Geological Survey (USGS). Four hot springs, Ojo Caliente, Azure, Frying Pan, and Angel Terrace, were studied in detail. Analyses were performed adjacent to the sampling site or in an on-site mobile lab truck constructed by the USGS, or later in a USGS laboratory. Water temperature, specific conductance, pH, Eh, D.O., and dissolved H2S were determined adjacent to the sample source at the time of sampling. Alkalinity and F- were determined on-site on the day of sample collection. Thiosulfate and polythionates were determined as soon as possible (minutes to hours later) by ion chromatography (IC). Other major anions (Cl-, SO4 2-, Br-) also were determined on-site by IC within two days of sample collection. Ammonium, Fe(II), and Fe(total) were determined on-site by ultraviolet/visible spectrophotometry within two days of sample collection. Later in the USGS laboratory, densities were determined. Concentrations of Ca, Mg, Li, Na, and K were determined by flame atomic absorption and emission (Na, K) spectrometry. Concentrations of Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Mg, Mn, Na, Ni, Pb, Si, Sr, V, and Zn were determined by inductively-coupled plasma optical emission spectrometry. Trace concentrations of Al and Mg were determined by Zeeman-corrected graphite furnace atomic absorption spectrometry. Three important conclusions from the sampling and analyses are: (1

  2. 76 FR 39048 - Special Regulations; Areas of the National Park System, Yellowstone National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ..., natural soundscapes, visitor use and experience, and visitor accessibility. Impacts associated with each... oversnow vehicles on the park's soundscapes. NPS Approved Snowmobiles and Snowcoaches The Superintendent..., air quality, natural soundscapes, and visitor and employee safety, the NPS is proposing to continue...

  3. Foraging and feeding ecology of the gray wolf (Canis lupus): lessons from Yellowstone National Park, Wyoming, USA.

    PubMed

    Stahler, Daniel R; Smith, Douglas W; Guernsey, Debra S

    2006-07-01

    The foraging and feeding ecology of gray wolves is an essential component to understanding the role that top carnivores play in shaping the structure and function of terrestrial ecosystems. In Yellowstone National Park (YNP), predation studies on a highly visible, reintroduced population of wolves are increasing our understanding of this aspect of wolf ecology. Wolves in YNP feed primarily on elk, despite the presence of other ungulate species. Patterns of prey selection and kill rates in winter have varied seasonally each year from 1995 to 2004 and changed in recent years as the wolf population has become established. Wolves select elk based on their vulnerability as a result of age, sex, and season and therefore kill primarily calves, old cows, and bulls that have been weakened by winter. Summer scat analysis reveals an increased variety in diet compared with observed winter diets, including other ungulate species, rodents, and vegetation. Wolves in YNP hunt in packs and, upon a successful kill, share in the evisceration and consumption of highly nutritious organs first, followed by major muscle tissue, and eventually bone and hide. Wolves are adapted to a feast-or-famine foraging pattern, and YNP packs typically kill and consume an elk every 2-3 d. However, wolves in YNP have gone without fresh meat for several weeks by scavenging off old carcasses that consist mostly of bone and hide. As patterns of wolf density, prey density, weather, and vulnerability of prey change, in comparison with the conditions of the study period described here, we predict that there will also be significant changes in wolf predation patterns and feeding behavior.

  4. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.

    2010-01-01

    The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.

  5. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    PubMed Central

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-01-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as ‘Geoarchaeota' or ‘novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today. PMID:23151644

  6. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park.

    PubMed

    Moran, James J; Whitmore, Laura M; Isern, Nancy G; Romine, Margaret F; Riha, Krystin M; Inskeep, William P; Kreuzer, Helen W

    2016-05-01

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  7. Utilizing Structure-from-Motion Photogrammetry with Airborne Visual and Thermal Images to Monitor Thermal Areas in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; Vaughan, R. G.

    2017-12-01

    The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial

  8. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data

    USGS Publications Warehouse

    Wright, C.; Gallant, Alisa L.

    2007-01-01

    The U.S. Fish and Wildlife Service uses the term palustrine wetland to describe vegetated wetlands traditionally identified as marsh, bog, fen, swamp, or wet meadow. Landsat TM imagery was combined with image texture and ancillary environmental data to model probabilities of palustrine wetland occurrence in Yellowstone National Park using classification trees. Model training and test locations were identified from National Wetlands Inventory maps, and classification trees were built for seven years spanning a range of annual precipitation. At a coarse level, palustrine wetland was separated from upland. At a finer level, five palustrine wetland types were discriminated: aquatic bed (PAB), emergent (PEM), forested (PFO), scrub–shrub (PSS), and unconsolidated shore (PUS). TM-derived variables alone were relatively accurate at separating wetland from upland, but model error rates dropped incrementally as image texture, DEM-derived terrain variables, and other ancillary GIS layers were added. For classification trees making use of all available predictors, average overall test error rates were 7.8% for palustrine wetland/upland models and 17.0% for palustrine wetland type models, with consistent accuracies across years. However, models were prone to wetland over-prediction. While the predominant PEM class was classified with omission and commission error rates less than 14%, we had difficulty identifying the PAB and PSS classes. Ancillary vegetation information greatly improved PSS classification and moderately improved PFO discrimination. Association with geothermal areas distinguished PUS wetlands. Wetland over-prediction was exacerbated by class imbalance in likely combination with spatial and spectral limitations of the TM sensor. Wetland probability surfaces may be more informative than hard classification, and appear to respond to climate-driven wetland variability. The developed method is portable, relatively easy to implement, and should be applicable in

  9. 77 FR 73919 - Special Regulations; Areas of the National Park System, Yellowstone National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... would be a zero net change between the past three years and the actions being implemented under this... to those in effect for the past three years. (5) Many persons planning to visit the park have already.... The rule retains, for one additional year, the regulation and management framework that have been in...

  10. 77 FR 53908 - Winter Use Plan, Supplemental Draft Environmental Impact Statement, Yellowstone National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... whether to use their daily allocation of transportation events for snowmobiles or snowcoaches, but no more than 50 daily transportation events could come from snowmobiles. OSV use would continue to be 100..., Associate Director, Natural Resource Stewardship and Science National Park Service. [FR Doc. 2012-21829...

  11. Pyrobaculum Yellowstonensis Strain WP30 Respires On Elemental Sulfur And/or Arsenate in Circumneutral Sulfidic Sediments of Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay, Z.; Beam, Jake; Dohnalkova, Alice

    Thermoproteales populations (phylum Crenarchaeota) are abundant in high-25 temperature (>70° C) environments of Yellowstone National Park (YNP) and are important in mediating biogeochemical cycles of sulfur, arsenic and carbon. The objectives of this study were to determine specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph’s Coat Hot Spring [JCHS]; 80 °C; pH 6.1), and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoheterotroph that utilizes organic carbon as a source of carbon and electrons and requires elemental sulfur and/or arsenic as electron acceptors. Growthmore » in the presence of elemental sulfur and arsenate resulted in the production of thioarsenates and polysulfides relative to sterile controls. The complete genome of this organism was sequenced (1.99 Mb, 58 % G+C) and revealed numerous metabolic pathways for the degradation of carbohydrates, amino acids and lipids, multiple dimethylsulfoxide molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, and pathways for the de novo synthesis of nearly all required cofactors and metabolites. Comparative genomics of P. yellowstonensis versus assembled metagenome sequence from JCHS showed that this organisms is highly-related (~95% average nucleotide identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide importanat information towards understanding the distribution and function of these populations in YNP.« less

  12. Feasibility of quarantine procedures for bison (Bison bison) calves from Yellowstone National Park for conservation of brucellosis-free bison.

    PubMed

    Ryan Clarke, P; Frey, Rebecca K; Rhyan, Jack C; McCollum, Matt P; Nol, Pauline; Aune, Keith

    2014-03-01

    OBJECTIVE--To determine the feasibility of qualifying individuals or groups of Yellowstone National Park bison as free from brucellosis. DESIGN--Cohort study. SAMPLE--Serum, blood, and various samples from live bison and tissues taken at necropsy from 214 bison over 7 years. PROCEDURES--Blood was collected from bison every 30 to 45 days for serologic tests and microbiological culture of blood for Brucella abortus. Seropositive bison were euthanized until all remaining bison had 2 consecutive negative test results. Half the seronegative bison were randomly euthanized, and tissues were collected for bacteriologic culture. The remaining seronegative bison were bred, and blood was tested at least twice per year. Cow-calf pairs were sampled immediately after calving and 6 months after calving for evidence of B abortus. RESULTS--Post-enrollment serial testing for B abortus antibodies revealed no bison that seroconverted after 205 days (first cohort) and 180 days (second cohort). During initial serial testing, 85% of bison seroconverted within 120 days after removal from the infected population. Brucella abortus was not cultured from any euthanized seronegative bison (0/88). After parturition, no cows or calves had a positive test result for B abortus antibodies, nor was B abortus cultured from any samples. CONCLUSIONS AND CLINICAL RELEVANCE--Results suggested it is feasible to qualify brucellosis-free bison from an infected herd following quarantine procedures as published in the USDA APHIS brucellosis eradication uniform methods and rules. Latent infection was not detected in this sample of bison when applying the USDA APHIS quarantine protocol.

  13. Estimating occupancy in large landscapes: Evaluation of amphibian monitoring in the Greater Yellowstone Ecosystem

    Treesearch

    William R. Gould; Debra A. Patla; Rob Daley; Paul Stephen Corn; Blake R. Hossack; Robert Bennetts; Charles R. Peterson

    2012-01-01

    Monitoring of natural resources is crucial to ecosystem conservation, and yet it can pose many challenges. Annual surveys for amphibian breeding occupancy were conducted in Yellowstone and Grand Teton National Parks over a 4-year period (2006-2009) at two scales: catchments (portions of watersheds) and individual wetland sites. Catchments were selected in a stratified...

  14. The Distribution, Diversity, and Geobiology of Thermoproteales Populations in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Jay, Z.; Beam, J.; Bailey, C.; Dohnalkova, A.; Planer-Friedrich, B.; Romine, M.; Inskeep, W. P.

    2012-12-01

    The order Thermoproteales (phylum Crenarchaeota) consists of thermophilic, rod-shaped organisms that are found globally in geothermal habitats ranging in pH from ~3-9. Nearly all isolated Thermoproteales couple the respiration of inorganic sulfur species (e.g. elemental sulfur, thiosulfate, sulfate) to the oxidation of hydrogen or complex organic carbon. Prior 16S rRNA and metagenome analysis revealed four prominent Thermoproteales-like populations in hypoxic, sulfidic hot springs In Yellowstone National Park (YNP), WY, USA (Monarch Geyser [80° C, pH 4], Cistern Spring [76° C, pH 5] and Joseph's Coat Hot Spring [JCHS; 80° C, pH 6]). The objectives of this study were to 1) characterize and compare the indigenous Thermoproteales-like de novo assemblies identified from metagenomic sequence data available for geothermal systems across YNP, 2) determine the metabolic potential of the Thermoproteales-like populations and evaluate their role in the geochemical cycling of organic and inorganic constituents, and 3) contrast both the sequenced genome and growth physiology of the first Thermoproteales isolated from YNP ("Pyrobaculum yellowstonensis" strain WP30), to the indigenous Thermoproteales-like de novo assemblies. Sequences related to either Caldivirga or Vulcanisaeta spp. (Type I Thermoproteales) were identified in both aerobic and anaerobic habitats ranging in pH ~3 - 6. Thermoproteus or Pyrobaculum spp. (Type-II Thermoproteales) were identified in anoxic habitats, but were constrained to pH values >4. Annotation of the de novo assemblies indicate that both Type-I and Type-II Thermoproteales populations are primarily heterotrophic, although key proteins of the autotrophic dicarboxylate/4-hydroxybutyrate cycle were also identified. Caldivirga/Vulcanisaeta-like populations appear to respire on elemental sulfur, sulfate, or molecular oxygen, while the Thermoproteus/Pyrobaculum-like population may also oxidize hydrogen and respire on elemental sulfur, thiosulfate

  15. Geochemistry of High Temperature Vent Fluids in Yellowstone Lake: Dissolved Carbon and Sulfur Concentrations and Isotopic Data

    NASA Astrophysics Data System (ADS)

    Cino, C.; Seyfried, W. E., Jr.; Tan, C.; Fu, Q.

    2017-12-01

    Yellowstone National Park is a dynamic environment home to an array of geysers, hot springs, and hydrothermal vents fueled by the underlying continental magmatic intrusion. Yellowstone Lake vent fluids accounts for approximately 10% of the total geothermal flux for all of Yellowstone National Park. Though studying this remote hydrothermal system poses severe challenges, it provides an excellent natural laboratory to research hydrothermal fluids that undergo higher pressure and temperature conditions in an environment largely shielded from atmospheric oxygen. The location of these vents also provides chemistry that is characteristic of fluids deeper in the Yellowstone hydrothermal system. In August 2016, hydrothermal fluids were collected from the Stevenson Island vents in collaboration with the Hydrothermal Dynamics of Yellowstone Lake (HD-YLAKE) project using novel sampling techniques and monitoring instrumentation. The newly built ROV Yogi was deployed to reach the vents in-situ with temperatures in excess of 151oC at 100-120 m depth, equipped with a 12-cylinder isobaric sampler to collect the hydrothermal fluids. Results from geochemical analyses indicate the fluids are rich in gases such as CO2, CH4, and H2S, with sample concentrations of approximately 12 mM, 161 μm, and 2.1 mM respectively. However, lake water mixing with the hydrothermal endmember fluid likely diluted these concentrations in the collected samples. Isotopic analyses indicate CO2 has a δ13C of -6 indicating magmatic origins, however the CH4 resulted in a δ13C of -65 which is in the biological range. This biogenic signature is likely due to the pyrolysis of immature organic matter in the lake bottom sediment, since the high temperatures measured for the fluids would not allow the presence of methanogens. H2S concentrations have not been previously measured for the hydrothermal fluids in Yellowstone Lake, and our vent fluid samples indicate significantly higher H2S concentrations than reported

  16. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilatedmore » by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.« less

  17. Wildfire risk to residential structures in the Island Park Sustainable Fire Community: Caribou-Targhee National Forest

    Treesearch

    Don Helmbrecht; Julie Gilbertson-Day; Joe H. Scott; LaWen Hollingsworth

    2016-01-01

    The Island Park Sustainable Fire Community (IPSFC) Project is a collaborative working group of citizens, businesses, non-profit organizations, and local, state, and federal government agencies (www.islandparkfirecommunity.com) working to create fire-resilient ecosystems in and around the human communities of West Yellowstone, Montana and Island Park, Idaho....

  18. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem

    PubMed Central

    Spear, John R.; Walker, Jeffrey J.; McCollom, Thomas M.; Pace, Norman R.

    2005-01-01

    The geochemical energy budgets for high-temperature microbial ecosystems such as occur at Yellowstone National Park have been unclear. To address the relative contributions of different geochemistries to the energy demands of these ecosystems, we draw together three lines of inference. We studied the phylogenetic compositions of high-temperature (>70°C) communities in Yellowstone hot springs with distinct chemistries, conducted parallel chemical analyses, and carried out thermodynamic modeling. Results of extensive molecular analyses, taken with previous results, show that most microbial biomass in these systems, as reflected by rRNA gene abundance, is comprised of organisms of the kinds that derive energy for primary productivity from the oxidation of molecular hydrogen, H2. The apparent dominance by H2-metabolizing organisms indicates that H2 is the main source of energy for primary production in the Yellowstone high-temperature ecosystem. Hydrogen concentrations in the hot springs were measured and found to range up to >300 nM, consistent with this hypothesis. Thermodynamic modeling with environmental concentrations of potential energy sources also is consistent with the proposed microaerophilic, hydrogen-based energy economy for this geothermal ecosystem, even in the presence of high concentrations of sulfide. PMID:15671178

  19. The natural food habits of grizzly bears in Yellowstone National Park, 1973-74

    USGS Publications Warehouse

    Mealey, Stephen Patrick

    1980-01-01

     The natural food habits of grizzly bears (Ursus arctos horribilis Ord) in Yellowstone National Park were investigated in 1973-74 to identify the grizzly's energy sources and trophic level(s), nutrient use, and distribution. Food consumption was determined by scat analysis and field observations. Food quality and digestibility were estimated by chemical analysis. Grizzlies were distributed in 3 distinctive feeding economies: valley/plateau, a grass/rodent economy where grizzlies were intensive diggers; mountain, primarily a grass/springbeauty/root economy where grizzlies were casual diggers; and lake, primarily a fish/grass economy where grizzlies were fishers. The economies occured in areas with fertile soils; distribution of bears within each was related to the occurrence of succulent plants. The feeding cycle in the valley/plateau and mountain economies followed plant phenology. Grizzlies fed primarily on meat before green-up and on succulent herbs afterwards; meat, corms, berries, and nuts became important during the postgrowing season. Succulent grasses and sedges with an importance value percentage of 78.5 were the most important food items consumed. Protein from animal tissue was more digestible than protein from plant tissue. Storage fats were more digestible than structural fats. Food energy and digestibility were directly related. Five principle nutrient materials (listed with their percentage digestibilities) contributed to total energy intake: protein from succulent herbs, 42.8; protein and fat from animal material, 78.1; fat and protein from pine nuts, 73.6; starch, 78.8; and sugar from berries and fruits, digestibility undetermined. Protein from succulent herbs, with a nutritive value percentage of 77.3, was the grizzlies' primary energy source. Because succulent, preflowering herbs had higher protein levels than dry, mature herbs, grizzly use of succulent herbs guaranteed them the highest source of herbaceous protein. Low protein digestibility of

  20. Paleo-environmental Perspectives on Climate-change Monitoring in the National Parks of the Northern U.S. Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Gray, S. T.; Graumlich, L. J.; Pederson, G. T.; Fagre, D. B.; Betancourt, J. L.; Norris, J. R.; Jackson, S. T.

    2004-12-01

    In the face of growing visitation, encroaching development and a changing climate, the United States National Park Service has initiated a nationwide program to inventory and monitor the resources it protects. The foundation for this initiative lies in the development of baseline or reference datasets for physical and biological systems within each park unit. In a series of paleo-proxy studies from the Greater Yellowstone and Glacier National Park regions, we demonstrate that most instrumental and observational records are too short to capture a significant portion of the climatic and ecological variability that might be expected in the parks of the northern U.S. Rockies. Networks of tree-ring based temperature and precipitation reconstructions spanning the last ~1,000 yr demonstrate that the climates of these regions are not stationary. These climates are instead characterized by strong regime-like behavior over decadal to multidecadal timescales. Complimentary studies of past plant-community and landscape dynamics show how such lower-frequency variability can have a profound impact on vital park resources and amenities. In the eastern Yellowstone region, for example, persistent (20-30 yr) wet/cool periods in the 19th and early 20th centuries led to widespread recruitment of woody plants, and the legacy of these recruitment events still persists in the structure of many woodlands and forests. Studies of fossil packrat middens also suggest that at least some recent woody-plant encroachment and densification- a major management concern in the region- is related to plant late-Holocene plant migration dynamics and population processes rather than changing climate and land-use. Though the timing and effects of such events may differ, similar ecological responses to decadal/multidecadal climate variability are seen in the Glacier National Park region. In combination these studies serve to emphasize the need for careful selection of reference periods and baseline

  1. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.

    2014-01-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  2. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters

    USGS Publications Warehouse

    Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.

    1998-01-01

    Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.

  3. Effects of litter addition on ectomycorrhizal associates of a lodgepole pine (Pinus contorta) stand in Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Cullings, Kenneth W.; New, Michael H.; Makhija, Shilpa; Parker, V. Thomas

    2003-01-01

    Increasing soil nutrients through litter manipulation, pollution, or fertilization can adversely affect ectomycorrhizal (EM) communities by inhibiting fungal growth. In this study, we used molecular genetic methods to determine the effects of litter addition on the EM community of a Pinus contorta stand in Yellowstone National Park that regenerated after a stand-replacing fire. Two controls were used; in unmodified control plots nothing was added to the soil, and in perlite plots perlite, a chemically neutral substance, was added to maintain soil moisture and temperature at levels similar to those under litter. We found that (i) species richness did not change significantly following perlite addition (2.6 +/- 0.3 species/core in control plots, compared with 2.3 +/- 0.3 species/core in perlite plots) but decreased significantly (P < 0.05) following litter addition (1.8 +/- 0.3 species/core); (ii) EM infection was not affected by the addition of perlite but increased significantly (P < 0.001) in response to litter addition, and the increase occurred only in the upper soil layer, directly adjacent to the added litter; and (iii) Suillus granulatus, Wilcoxina mikolae, and agaricoid DD were the dominant organisms in controls, but the levels of W. mikolae and agaricoid DD decreased significantly in response to both perlite and litter addition. The relative levels of S. granulatus and a fourth fungus, Cortinariaceae species 2, increased significantly (P < 0.01 and P < 0.05, respectively) following litter addition. Thus, litter addition resulted in some negative effects that may be attributable to moisture-temperature relationships rather than to the increased nutrients associated with litter. Some species respond positively to litter addition, indicating that there are differences in their physiologies. Hence, changes in the EM community induced by litter accumulation also may affect ecosystem function.

  4. Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park

    PubMed Central

    Jay, Z. J.; Beam, J. P.; Dohnalkova, A.; Lohmayer, R.; Bodle, B.; Planer-Friedrich, B.; Romine, M.

    2015-01-01

    Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP. PMID:26092468

  5. Predation risk, elk, and aspen: tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystem.

    PubMed

    Winnie, John A

    2012-12-01

    Aspen in the Greater Yellowstone Ecosystem are hypothesized to be recovering from decades of heavy browsing by elk due to a behaviorally mediated trophic cascade (BMTC). Several authors have suggested that wolves interact with certain terrain features, creating places of high predation risk at fine spatial scales, and that elk avoid these places, which creates refugia for plants. This hypothesized BMTC could release aspen from elk browsing pressure, leading to a patchy recovery in places of high risk. I tested whether four specific, hypothesized fine-scale risk factors are correlated with changes in current elk browsing pressure on aspen, or with aspen recruitment since wolf reintroduction, in the Daly Creek drainage in Yellowstone National Park, and near two aspen enclosures outside of the park boundary. Aspen were not responding to hypothesized fine-scale risk factors in ways consistent with the current BMTC hypothesis.

  6. Targeted Metagenomic Survey of the Fe-Cycling Microbial Community at Chocolate Pots Hot Springs, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Fortney, N. W.; He, S.; Kulkarni, A.; Friedrich, M. W.; Boyd, E. S.; Roden, E. E.

    2016-12-01

    Chocolate Pots hot springs (CP) is a circumneutral pH, Fe-rich geothermal feature located in Yellowstone National Park. Fe-based metabolic processes are deeply rooted in the tree of life and studying environments like CP are important for us to study to gain insight into ancient Earth ecosystems. Recently identified features on Mars are indicative of near-surface hydrothermal environments and studies of modern Earth systems like CP allow us a glimpse into how life may have potentially arisen on other rocky worlds. Previous enrichment culture studies of the microbial community present at CP identified close relatives of dissimilatory Fe-reducing bacteria (DIRB), including Geobacter metallireducens and Melioribacter roseus. However, the question still remains as to the composition and activity of the microbial community in situ. Here we used 13C stable isotope probing to gain an understanding of the Fe cycling microbial community at CP. Fe-Si oxide sediments collected from near the hot spring vent were incubated under in situ conditions and amended with 13C-acetate or -bicarbonate to target DIRB and Fe-oxidizing bacteria, respectively. 16S rRNA gene amplicon libraries along with shotgun metagenomic libraries were obtained from both sets of incubations. Differential read coverage mapping of metagenomic reads identified a set of taxonomic bins that showed a response to the incubation treatments. We searched the Fe-reducing incubation bins for homologues of genes involved in known extracellular electron transfer (EET) systems such as Pcc and MtrAB, as well as putative porins proximal to multiheme cytochrome c genes. We also searched bins from the Fe-oxidizing incubations for these EET systems in addition to homologues of the outer membrane cytochrome c Cyc2. The Fe-oxidizing bins were also examined for genes encoding RuBisCo to identify potential chemolithoautotrophs. Our targeted metagenomic analysis will identify which organisms are likely to be part of an active Fe

  7. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    USGS Publications Warehouse

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  8. Migration of northern yellowstone elk: Implications of spatial structuring

    USGS Publications Warehouse

    White, P.J.; Proffitt, K.M.; Mech, L.D.; Evans, S.B.; Cunningham, J.A.; Hamlin, K.L.

    2010-01-01

    Migration can enhance survival and recruitment of mammals by increasing access to higher-quality forage or reducing predation risk, or both. We used telemetry locations collected from 140 adult female elk during 20002003 and 20072008 to identify factors influencing the migration of northern Yellowstone elk. Elk wintered in 2 semidistinct herd segments and migrated 10140 km to at least 12 summer areas in Yellowstone National Park (YNP) and nearby areas of Montana. Spring migrations were delayed after winters with increased snow pack, with earlier migration in years with earlier vegetation green-up. Elk wintering at lower elevations outside YNP migrated an average of 13 days earlier than elk at higher elevations. The timing of autumn migrations varied annually, but elk left their summer ranges at about the same time regardless of elevation, wolf numbers, or distance to their wintering areas. Elk monitored for multiple years typically returned to the same summer (96 fidelity, n 52) and winter (61 fidelity, n 41) ranges. Elk that wintered at lower elevations in or near the northwestern portion of the park tended to summer in the western part of YNP (56), and elk that wintered at higher elevations spent summer primarily in the eastern and northern parts of the park (82). Elk did not grossly modify their migration timing, routes, or use areas after wolf restoration. Elk mortality was low during summer and migration (8 of 225 elk-summers). However, spatial segregation and differential mortality and recruitment between herd segments on the northern winter range apparently contributed to a higher proportion of the elk population wintering outside the northwestern portion of YNP and summering in the western portion of the park. This change could shift wolf spatial dynamics more outside YNP and increase the risk of transmission of brucellosis from elk to cattle north of the park. ?? 2010 American Society of Mammalogists.

  9. 78 FR 63069 - Special Regulations; Areas of the National Park System; Yellowstone National Park; Winter Use

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... soundscapes, visitor use and experience, and park operations. Impacts associated with each of the alternatives..., soundscapes, and health and safety, were used in formulating the alternatives in the Plan/SEIS. Applies the... To mitigate impacts to wildlife, air quality, natural soundscapes, and visitor and employee safety...

  10. Disturbance, A Mechanism for Increased Microbial Diversity in a Yellowstone National Park Hot Spring Mixing Zone

    NASA Astrophysics Data System (ADS)

    Howells, A. E.; Oiler, J.; Fecteau, K.; Boyd, E. S.; Shock, E.

    2014-12-01

    The parameters influencing species diversity in natural ecosystems are difficult to assess due to the long and experimentally prohibitive timescales needed to develop causative relationships among measurements. Ecological diversity-disturbance models suggest that disturbance is a mechanism for increased species diversity, allowing for coexistence of species at an intermediate level of disturbance. Observing this mechanism often requires long timescales, such as the succession of a forest after a fire. In this study we evaluated the effect of mixing of two end member hydrothermal fluids on the diversity and structure of a microbial community where disturbance occurs on small temporal and spatial scales. Outflow channels from two hot springs of differing geochemical composition in Yellowstone National Park, one pH 3.3 and 36 °C and the other pH 7.6 and 61 °C flow together to create a mixing zone on the order of a few meters. Geochemical measurements were made at both in-coming streams and at a site of complete mixing downstream of the mixing zone, at pH 6.5 and 46 °C. Compositions were estimated across the mixing zone at 1 cm intervals using microsensor temperature and conductivity measurements and a mixing model. Qualitatively, there are four distinct ecotones existing over ranges in temperature and pH across the mixing zone. Community analysis of the 16S rRNA genes of these ecotones show a peak in diversity at maximal mixing. Principle component analysis of community 16S rRNA genes reflects coexistence of species with communities at maximal mixing plotting intermediate to communities at distal ends of the mixing zone. These spatial biological and geochemical observations suggest that the mixing zone is a dynamic ecosystem where geochemistry and biological diversity are governed by changes in the flow rate and geochemical composition of the two hot spring sources. In ecology, understanding how environmental disruption increases species diversity is a foundation

  11. Correlation of gold in siliceous sinters with 3He 4He in hot spring waters of Yellowstone National Park

    USGS Publications Warehouse

    Fournier, R.O.; Kennedy, B.M.; Aoki, M.; Thompson, J.M.

    1994-01-01

    Opaline sinter samples collected at Yellowstone National Park (YNP) were analyzed for gold by neutron activation and for other trace elements by the inductively coupled plasma optical emission spectroscopy (ICP-OES) method. No correlation was found between Au and As, Sb, or total Fe in the sinters, although the sample containing the highest Au also contains the highest Sb. There also was no correlation of Au in the sinter with the H2S concentration in the discharged hot spring water or with the estimated temperature of last equilibration of the water with the surrounding rock. The Au in rhyolitic tuffs and lavas at YNP found within the Yellowstone caldera show the same range in Au as do those outside the caldera, while thermal waters from within this caldera all have been found to contain relatively low dissolved Au and to deposit sinters that contain relatively little Au. Therefore, it is not likely that variations in Au concentrations among these sinters simply reflect differences in leachable Au in the rocks through which the hydrothermal fluids have passed. Rather, variations in [H2S], the concentration of total dissolved sulfide, that result from different physical and chemical processes that occur in different parts of the hydrothermal system appear to exert the main control on the abundance of Au in these sinters. Hydrothermal fluids at YNP convect upward through a series of successively shallower and cooler reservoirs where water-rock chemical and isotopic reactions occur in response to changing temperature and pressure. In some parts of the system the fluids undergo decompressional boiling, and in other parts they cool conductively without boiling. Mixing of ascending water from deep in the system with shallow groundwaters is common. All three processes generally result in a decrease in [H2S] and destabilize dissolved gold bisulfide complexes in reservoir waters in the YNP system. Thus, different reservoirs in rocks of similar composition and at similar

  12. Environmental Conditions Constrain the Distribution and Diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Wang, Y.; Boyd, E.; Crane, S.; Lu-Irving, P.; Krabbenhoft, D.; King, S.; Dighton, J.; Geesey, G.; Barkay, T.

    2011-01-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient. ?? 2011 Springer Science+Business Media, LLC.

  13. Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    PubMed

    Wang, Yanping; Boyd, Eric; Crane, Sharron; Lu-Irving, Patricia; Krabbenhoft, David; King, Susan; Dighton, John; Geesey, Gill; Barkay, Tamar

    2011-11-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient.

  14. Volcano and Earthquake Monitoring Plan for the Yellowstone Volcano Observatory, 2006-2015

    USGS Publications Warehouse

    ,

    2006-01-01

    To provide Yellowstone National Park (YNP) and its surrounding communities with a modern, comprehensive system for volcano and earthquake monitoring, the Yellowstone Volcano Observatory (YVO) has developed a monitoring plan for the period 2006-2015. Such a plan is needed so that YVO can provide timely information during seismic, volcanic, and hydrothermal crises and can anticipate hazardous events before they occur. The monitoring network will also provide high-quality data for scientific study and interpretation of one of the largest active volcanic systems in the world. Among the needs of the observatory are to upgrade its seismograph network to modern standards and to add five new seismograph stations in areas of the park that currently lack adequate station density. In cooperation with the National Science Foundation (NSF) and its Plate Boundary Observatory Program (PBO), YVO seeks to install five borehole strainmeters and two tiltmeters to measure crustal movements. The boreholes would be located in developed areas close to existing infrastructure and away from sensitive geothermal features. In conjunction with the park's geothermal monitoring program, installation of new stream gages, and gas-measuring instruments will allow YVO to compare geophysical phenomena, such as earthquakes and ground motions, to hydrothermal events, such as anomalous water and gas discharge. In addition, YVO seeks to characterize the behavior of geyser basins, both to detect any precursors to hydrothermal explosions and to monitor earthquakes related to fluid movements that are difficult to detect with the current monitoring system. Finally, a monitoring network consists not solely of instruments, but requires also a secure system for real-time transmission of data. The current telemetry system is vulnerable to failures that could jeopardize data transmission out of Yellowstone. Future advances in monitoring technologies must be accompanied by improvements in the infrastructure for

  15. Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA

    USGS Publications Warehouse

    Whitlock, Cathy; Dean, Walter E.; Fritz, Sherilyn C.; Stevens, Lora R.; Stone, Jeffery R.; Power, Mitchell J.; Rosenbaum, Joseph R.; Pierce, Kenneth L.; Bracht-Flyr, Brandi B.

    2012-01-01

    A 9400-yr-old record from Crevice Lake, a semi-closed alkaline lake in northern Yellowstone National Park, was analyzed for pollen, charcoal, geochemistry, mineralogy, diatoms, and stable isotopes to develop a nuanced understanding of Holocene environmental history in a region of northern Rocky Mountains that receives both summer and winter precipitation. The limited surface area, conical bathymetry, and deep water (> 31 m) of Crevice Lake create oxygen-deficient conditions in the hypolimnion and preserve annually laminated sediment (varves) for much of the record. Pollen data indicate that the watershed supported a closed Pinus-dominated forest and low fire frequency prior to 8200 cal yr BP, followed by open parkland until 2600 cal yr BP, and open mixed-conifer forest thereafter. Fire activity shifted from infrequent stand-replacing fires initially to frequent surface fires in the middle Holocene and stand-replacing events in recent centuries. Low values of δ18O suggest high winter precipitation in the early Holocene, followed by steadily drier conditions after 8500 cal yr BP. Carbonate-rich sediments before 5000 cal yr BP imply warmer summer conditions than after 5000 cal yr BP. High values of molybdenum (Mo), uranium (U), and sulfur (S) indicate anoxic bottom-waters before 8000 cal yr BP, between 4400 and 3900 cal yr BP, and after 2400 cal yr BP. The diatom record indicates extensive water-column mixing in spring and early summer through much of the Holocene, but a period between 2200 and 800 cal yr BP had strong summer stratification, phosphate limitation, and oxygen-deficient bottom waters. Together, the proxy data suggest wet winters, protracted springs, and warm effectively wet summers in the early Holocene and less snowpack, cool springs, warm dry summers in the middle Holocene. In the late Holocene, the region and lake experienced extreme changes in winter, spring, and summer conditions, with particularly short springs and dry summers and winters during

  16. Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Loiacono, Sara T; Meyer-Dombard, D'Arcy R; Havig, Jeff R; Poret-Peterson, Amisha T; Hartnett, Hilairy E; Shock, Everett L

    2012-05-01

    Genes encoding nitrogenase (nifH) were amplified from sediment and photosynthetic mat samples collected in the outflow channel of Mound Spring, an alkaline thermal feature in Yellowstone National Park. Results indicate the genetic capacity for nitrogen fixation over the entire range of temperatures sampled (57.2°C to 80.2°C). Amplification of environmental nifH transcripts revealed in situ expression of nifH genes at temperatures up to 72.7°C. However, we were unable to amplify transcripts of nifH at the higher-temperature locations (> 72.7°C). These results indicate that microbes at the highest temperature sites contain the genetic capacity to fix nitrogen, yet either do not express nifH or do so only transiently. Field measurements of nitrate and ammonium show fixed nitrogen limitation as temperature decreases along the outflow channel, suggesting nifH expression in response to the downstream decrease in bioavailable nitrogen. Nitrogen stable isotope values of Mound Spring sediment communities further support geochemical and genetic data. DNA and cDNA nifH amplicons form several unique phylogenetic clades, some of which appear to represent novel nifH sequences in both photosynthetic and chemosynthetic microbial communities. This is the first report of in situ nifH expression in strictly chemosynthetic zones of terrestrial (non-marine) hydrothermal systems, and sets a new upper temperature limit (72.7°C) for nitrogen fixation in alkaline, terrestrial hydrothermal environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park.

    PubMed

    Jay, Z J; Beam, J P; Dohnalkova, A; Lohmayer, R; Bodle, B; Planer-Friedrich, B; Romine, M; Inskeep, W P

    2015-09-01

    Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Surface Orientation Affects the Direction of Cone Growth by Leptolyngbya sp. Strain C1, a Likely Architect of Coniform Structures Octopus Spring (Yellowstone National Park)

    PubMed Central

    Reyes, Kristina; Gonzalez, Nicolas I.; Stewart, Joshua; Ospino, Frank; Nguyen, Dickie; Cho, David T.; Ghahremani, Nahal; Spear, John R.

    2013-01-01

    Laminated, microbially produced stromatolites within the rock record provide some of the earliest evidence for life on Earth. The chemical, physical, and biological factors that lead to the initiation of these organosedimentary structures and shape their morphology are unclear. Modern coniform structures with morphological features similar to stromatolites are found on the surface of cyanobacterial/microbial mats. They display a vertical element of growth, can have lamination, can be lithified, and observably grow with time. To begin to understand the microbial processes and interactions required for cone formation, we determined the phylogenetic composition of the microbial community of a coniform structure from a cyanobacterial mat at Octopus Spring, Yellowstone National Park, and reconstituted coniform structures in vitro. The 16S rRNA clone library from the coniform structure was dominated by Leptolyngbya sp. Other cyanobacteria and heterotrophic bacteria were present in much lower abundance. The same Leptolyngbya sp. identified in the clone library was also enriched in the laboratory and could produce cones in vitro. When coniform structures were cultivated in the laboratory, the initial incubation conditions were found to influence coniform morphology. In addition, both the angle of illumination and the orientation of the surface affected the angle of cone formation demonstrating how external factors can influence coniform, and likely, stromatolite morphology. PMID:23241986

  19. Predominant Acidilobus-Like Populations from Geothermal Environments in Yellowstone National Park Exhibit Similar Metabolic Potential in Different Hypoxic Microbial Communities

    PubMed Central

    Jay, Z. J.; Rusch, D. B.; Tringe, S. G.; Bailey, C.; Jennings, R. M.

    2014-01-01

    High-temperature (>70°C) ecosystems in Yellowstone National Park (YNP) provide an unparalleled opportunity to study chemotrophic archaea and their role in microbial community structure and function under highly constrained geochemical conditions. Acidilobus spp. (order Desulfurococcales) comprise one of the dominant phylotypes in hypoxic geothermal sulfur sediment and Fe(III)-oxide environments along with members of the Thermoproteales and Sulfolobales. Consequently, the primary goals of the current study were to analyze and compare replicate de novo sequence assemblies of Acidilobus-like populations from four different mildly acidic (pH 3.3 to 6.1) high-temperature (72°C to 82°C) environments and to identify metabolic pathways and/or protein-encoding genes that provide a detailed foundation of the potential functional role of these populations in situ. De novo assemblies of the highly similar Acidilobus-like populations (>99% 16S rRNA gene identity) represent near-complete consensus genomes based on an inventory of single-copy genes, deduced metabolic potential, and assembly statistics generated across sites. Functional analysis of coding sequences and confirmation of gene transcription by Acidilobus-like populations provide evidence that they are primarily chemoorganoheterotrophs, generating acetyl coenzyme A (acetyl-CoA) via the degradation of carbohydrates, lipids, and proteins, and auxotrophic with respect to several external vitamins, cofactors, and metabolites. No obvious pathways or protein-encoding genes responsible for the dissimilatory reduction of sulfur were identified. The presence of a formate dehydrogenase (Fdh) and other protein-encoding genes involved in mixed-acid fermentation supports the hypothesis that Acidilobus spp. function as degraders of complex organic constituents in high-temperature, mildly acidic, hypoxic geothermal systems. PMID:24162572

  20. Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure

    USGS Publications Warehouse

    ,; Foley, Duncan; Fournier, Robert O.; Heasler, Henry P.; Hinckley, Bern; Ingebritsen, Steven E.; Lowenstern, Jacob B.; Susong, David D.

    2014-01-01

    There are many documented examples at YNP and elsewhere where human infrastructure and natural thermal features have negatively affected each other. Unless action is taken, human conflicts with the Old Faithful hydrothermal system are likely to increase over the coming years. This is partly because of the increase in park visitation over the past decades, but also because the interval between eruptions of Old Faithful has increased, lengthening the time spent (and services needed) for each visitor at Old Faithful. To avoid an increase in visitor impacts, the National Park Service should consider 2 alternate strategies to accommodate people, vehicles, and services in the Upper Geyser Basin, such as shuttle services from staging (parking and dining) areas with little or no recent hydrothermal activity. We further suggest that YNP consider a zone system to guide maintenance and development of infrastructure in the immediate Old Faithful area. A “red” zone includes hydrothermally active land where new development is discouraged and existing infrastructure is modified with great care. An outer “green” zone represents areas where cooler temperatures and less hydrothermal flow are thought to exist, and where development and maintenance could proceed as occurs elsewhere in the park. An intermediate “yellow” zone would require preliminary assessment of subsurface temperatures and gas concentrations to assess suitability for infrastructure development. The panel recommends that YNP management follow the lead of the National Park System Advisory Board Science Committee (2012) by applying the “precautionary principle” when making decisions regarding the interaction of hydrothermal phenomena and park infrastructure in the Old Faithful area and other thermal areas within YNP.

  1. Redwood National Park

    NASA Image and Video Library

    2017-12-08

    In 1968, after state parks had already been established in northern California, the U.S. Congress established Redwood National Park. This new park supplemented protected lands in the region, and in 1994, state and federal authorities agreed to jointly manage the area’s public lands. On February 6, 2003, the Enhanced Thamatic Mapper Plus on NASA’s Landsat 7 satellite captured this true-color image of the southern end of Redwood National Park - a thin coastal corridor connects the northern and southern ends of the park system. Along the coast, sandy beaches appear off-white, and sediments form swirls of pale blue in the darker blue sea. Inland, the park is dominated by green vegetation, with isolated patches of gray-beige rock. This image of the Redwood National Park includes two stands of trees: Lady Bird Johnson Grove and Tall Trees Grove. The first grove was dedicated to the former first lady by President Richard Nixon in August 1969. The second grove became the focus of efforts to protect the surrounding area from logging. Two waterways appear in this image: Redwood Creek and Klamath River. The more conspicuous Klamath River flows through the park system’s midsection (north of the area pictured here). Redwood Creek flows through the southern portion of the park system. Both waterways have carved gorges through the mountainous landscape. Redwood National and State Parks occupy an area considered to be the most seismically active in the United States. The frequent seismic activity has led to shifting waterways, landslides, and rapid erosion along the coastline. Read more: go.nasa.gov/2bRlryv Credit: NASA/Landsat7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter

  2. 78 FR 51207 - Kobuk Valley National Park Subsistence Resource Commission (SRC) and the Denali National Park SRC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA-KOVA-DTS-13608; PPAKAKROR4; PPMPRLE1Y.LS0000] Kobuk Valley National Park Subsistence Resource Commission (SRC) and the Denali National Park SRC; Meetings AGENCY: National Park Service, Interior. ACTION: Meeting notice. SUMMARY: As...

  3. Glacial and Quaternary geology of the northern Yellowstone area, Montana and Wyoming

    USGS Publications Warehouse

    Pierce, Kenneth L.; Licciardi, Joseph M.; Krause, Teresa R.; Whitlock, Cathy

    2014-01-01

    This field guide focuses on the glacial geology and paleoecology beginning in the Paradise Valley and progressing southward into northern Yellowstone National Park. During the last (Pinedale) glaciation, the northern Yellowstone outlet glacier flowed out of Yellowstone Park and down the Yellowstone River Valley into the Paradise Valley. The field trip will traverse the following Pinedale glacial sequence: (1) deposition of the Eightmile terminal moraines and outwash 16.5 ± 1.4 10Be ka in the Paradise Valley; (2) glacial recession of ~8 km and deposition of the Chico moraines and outwash 16.1 ± 1.7 10Be ka; (3) glacial recession of 45 km to near the northern Yellowstone boundary and moraine deposition during the Deckard Flats readjustment 14.2 ± 1.2 10Be ka; and (4) glacial recession of ~37 km and deposition of the Junction Butte moraines 15.2 ± 1.3 10Be ka (this age is a little too old based on the stratigraphic sequence). Yellowstone's northern range of sagebrush-grasslands and bison, elk, wolf, and bear inhabitants is founded on glacial moraines, sub-glacial till, and outwash deposited during the last glaciation. Floods released from glacially dammed lakes and a landslide-dammed lake punctuate this record. The glacial geologic reconstruction was evaluated by calculation of basal shear stress, and yielded the following values for flow pattern in plan view: strongly converging—1.21 ± 0.12 bars (n = 15); nearly uniform—1.04 ± 0.16 bars (n = 11); and strongly diverging—0.84 ± 0.14 bars (n = 16). Reconstructed mass balance yielded accumulation and ablation each of ~3 km3/yr, with glacial movement near the equilibrium line altitude dominated by basal sliding. Pollen and charcoal records from three lakes in northern Yellowstone provide information on the postglacial vegetation and fire history. Following glacial retreat, sparsely vegetated landscapes were colonized first by spruce parkland and then by closed subalpine forests. Regional fire activity

  4. Acadia National Park

    NASA Image and Video Library

    2017-12-08

    Acadia National Park is one of the most visited parks in America, drawing more than 2.5 million visitors per year to the craggy, jagged coast of Maine. The park is celebrating its 100th anniversary in 2016. On September 6, 2015, the Operational Land Imager (OLI) on the Landsat 8 satellite acquired these images of Acadia National Park and its surroundings. Mountains and hills roll right up to the Atlantic Ocean in this rocky landscape carved by glaciers at the end of the last Ice Age. Since the beginning of the 20th Century, the park has been pieced together by donations and acquisitions of once-private lands, and it is still growing. Of the park’s 47,000 acres, more than 12,000 are privately owned lands under conservation agreements, while the rest is held by the National Park Service. Mount Desert Island is the focal point of the park, which also includes lands around a former naval base (Schoodic Peninsula), Isle au Haut, and several smaller islands. Read more: go.nasa.gov/2adyd8J Credit: NASA/Landsat8 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. 75 FR 3488 - Acadia National Park; Bar Harbor, ME; Acadia National Park Advisory Commission; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... DEPARTMENT OF THE INTERIOR National Park Service Acadia National Park; Bar Harbor, ME; Acadia National Park Advisory Commission; Notice of Meeting Notice is hereby given in accordance with the Federal..., Acadia National Park, P.O. Box 177, Bar Harbor, Maine 04609, tel: (207) 288-3338. Dated: January 7, 2010...

  6. Physical Drivers Vs. Effects of the Wolf-Elk Trophic Cascade on Fluvial Channel Planform, Olympic National Park, Washington

    NASA Astrophysics Data System (ADS)

    East, A. E.; Jenkins, K. J.; Happe, P. J.; Bountry, J.; Beechie, T. J.; Mastin, M. C.; Sankey, J. B.; Randle, T. J.

    2016-12-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history; all four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, shown, for example, by the response of the Elwha River to a landslide. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. These rivers demonstrate rapid transmission of climatic signals through relatively short sediment-routing systems that lack substantial buffering by sediment storage. We infer no correspondence between channel evolution and elk abundance, suggesting that in this system effects of the wolf-driven trophic cascade are subsidiary to physical controls on channel morphology. Our examinations of stage-discharge history, historical maps, photographs, and descriptions, and empirical geomorphic thresholds do not support a previous conceptual model that these rivers underwent a fundamental geomorphic transition (widening, and a shift from single-thread to braided) resulting from large elk populations in the early 20th century. These findings differ from previous interpretations of Olympic National Park river dynamics, and also contrast with previous findings in Yellowstone National Park, where legacy effects of abundant elk nearly a century ago apparently still affect

  7. Small Scale Biodiversity of an Alkaline Hot Spring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Walther, K.; Oiler, J.; Meyer-Dombard, D. R.

    2012-12-01

    To date, many phylogenetic diversity studies have been conducted in Yellowstone National Park (YNP) [1-7] focusing on the amplification of the 16S rRNA gene and "metagenomic" datasets. However, few reports focus on diversity at small scales. Here, we report on a small scale biodiversity study of sediment and biofilm communities within a confined area of a YNP hot spring, compare and contrast these communities to other sediment and biofilm communities from previous studies [1-7], and with other sediment and biofilm communities in the same system. Sediment and biofilm samples were collected, using a 30 x 50 cm sampling grid divided in 5 x 5 cm squares, which was placed in the outflow channel of "Bat Pool", an alkaline (pH 7.9) hot spring in YNP. Accompanying geochemical data included a full range of spectrophotometry measurements along with major ions, trace elements, and DIC/DOC. In addition, in situ temperature and conductivity arrays were placed within the grid location. The temperature array closest to the source varied between 83-88°C, while the temperature array 40 cm downstream varied between ~83.5-86.5°C. The two conductivity arrays yielded measurements of 5632 μS and 5710 μS showing little variation within the sampling area. Within the grid space, DO ranged from 0.5-1.33 mg/L, with relatively similar, but slightly lower values down the outflow channel. Sulfide values within the grid ranged from 1020-1671 μg/L, while sulfide values outside of the grid region fluctuated, but generally followed the trend of decreasing from source down the outflow. Despite the relative heterogeneity of chemical and physical parameters in the grid space, there was biological diversity in sediments and biofilms at the 5 cm scale. Small scale biodiversity was analyzed by selecting a representative number of samples from within the grid. DNA was extracted and variable regions V3 and V6 (Archaea and Bacteria, respectively) were sequenced with 454 pyrosequencing. The datasets

  8. 36 CFR 7.45 - Everglades National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Everglades National Park. 7.45 Section 7.45 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.45 Everglades National Park. (a) Information...

  9. 36 CFR 7.44 - Canyonlands National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Canyonlands National Park. 7.44 Section 7.44 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.44 Canyonlands National Park. (a) Motorized...

  10. 36 CFR 7.44 - Canyonlands National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Canyonlands National Park. 7.44 Section 7.44 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.44 Canyonlands National Park. (a) Motorized...

  11. 36 CFR 7.44 - Canyonlands National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Canyonlands National Park. 7.44 Section 7.44 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.44 Canyonlands National Park. (a) Motorized...

  12. 36 CFR 7.44 - Canyonlands National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Canyonlands National Park. 7.44 Section 7.44 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.44 Canyonlands National Park. (a) Motorized...

  13. 36 CFR 7.44 - Canyonlands National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Canyonlands National Park. 7.44 Section 7.44 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.44 Canyonlands National Park. (a) Motorized...

  14. 36 CFR 7.45 - Everglades National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Everglades National Park. 7.45 Section 7.45 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.45 Everglades National Park. (a) Information...

  15. 36 CFR 7.45 - Everglades National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Everglades National Park. 7.45 Section 7.45 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.45 Everglades National Park. (a) Information...

  16. Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park.

    PubMed

    Kozubal, M; Macur, R E; Korf, S; Taylor, W P; Ackerman, G G; Nagy, A; Inskeep, W P

    2008-02-01

    Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75 degrees C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65 degrees C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80 degrees C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and

  17. Microbial Lipid and C Isotopic Biosignatures of a Unique Community at Grand Prismatic Spring, Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Parenteau, Mary; Farmer, Jack

    2012-01-01

    The microbial communities found in modern hot springs are considered analogs to ones that may have existed in hydrothermal systems on the early Earth and possibly Mars. Our goal was to characterize the microbial biosignatures and to assess the preservation of organic matter in the silica-depositing Grand Prismatic Spring in Yellowstone National Park. This study combines 16S rRNA surveys, lipid biomarkers, and C isotopes to query, "Who's there and what are they doing?" On the edge of the approximately 90 m diameter blue vent pool (56.1 C, pH 8.5), a floating green streamer community grew over a benthic pink community. The membrane lipids in the green streamers and pink mat were composed of unusual ester-linked fatty acids, indicating the presence of novel bacterial groups. In particular, we discovered a series of 2-methyl and 2,X-dimethyl phospholipid fatty acids (C18-22). We are attempting to use the 16S rRNA surveys to link these compounds to source organisms. Wax esters, biomarkers for Chloroflexi, were present in both communities, but displayed different profiles. A higher proportion of branched wax esters were found in the green streamers, and were associated with a relatively high concentration of long-chain di- and trienes (C29-31). This suggests that Chloroflexus primarily grew in the green streamers, while a pink mat of Roseiflexus grew on the sinter substrate underneath. Cyanobacterial alkanes were found in the green streamers (n-C17, 7-, 6- and 5-monomethyl-C17, 7,11-dimethyl-C17, n-C19, n-C19:1). We also detected a series of monoalkylglycerylethers and geologically relevant hopanoids in both communities. Carbon isotope analyses indicated that Chloroflexus was growing photoheterotrophically using cyanobacterial photosynthate. Roseiflexus also traditionally grows photoheterotrophically, but the C isotopic signatures of the lipids in the pink mat were approximately 10 %0 lighter than the cyanobacterial and Chloroflexus lipids, indicating a potentially novel

  18. 36 CFR 7.33 - Voyageurs National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Voyageurs National Park. 7.33 Section 7.33 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.33 Voyageurs National Park. (a) Fishing. Unless otherwise...

  19. 36 CFR 7.56 - Acadia National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Acadia National Park. 7.56 Section 7.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.56 Acadia National Park. (a) Designated Snowmobile Routes...

  20. 36 CFR 7.10 - Zion National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Zion National Park. 7.10 Section 7.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.10 Zion National Park. (a) Vehicle convoy requirements. (1...

  1. 36 CFR 7.11 - Saguaro National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Saguaro National Park. 7.11 Section 7.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.11 Saguaro National Park. (a) Bicycling. (1) The following...

  2. 36 CFR 7.23 - Badlands National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Badlands National Park. 7.23 Section 7.23 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.23 Badlands National Park. (a) Commercial vehicles. (1...

  3. 36 CFR 7.10 - Zion National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Zion National Park. 7.10 Section 7.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.10 Zion National Park. (a) Vehicle convoy requirements. (1...

  4. 36 CFR 7.23 - Badlands National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Badlands National Park. 7.23 Section 7.23 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.23 Badlands National Park. (a) Commercial vehicles. (1...

  5. 36 CFR 7.10 - Zion National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Zion National Park. 7.10 Section 7.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.10 Zion National Park. (a) Vehicle convoy requirements. (1...

  6. 36 CFR 7.33 - Voyageurs National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Voyageurs National Park. 7.33 Section 7.33 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.33 Voyageurs National Park. (a) Fishing. Unless otherwise...

  7. 36 CFR 7.10 - Zion National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Zion National Park. 7.10 Section 7.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.10 Zion National Park. (a) Vehicle convoy requirements. (1...

  8. 36 CFR 7.56 - Acadia National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Acadia National Park. 7.56 Section 7.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.56 Acadia National Park. (a) Designated Snowmobile Routes...

  9. 36 CFR 7.56 - Acadia National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Acadia National Park. 7.56 Section 7.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.56 Acadia National Park. (a) Designated Snowmobile Routes...

  10. 36 CFR 7.33 - Voyageurs National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Voyageurs National Park. 7.33 Section 7.33 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.33 Voyageurs National Park. (a) Fishing. Unless otherwise...

  11. 36 CFR 7.23 - Badlands National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Badlands National Park. 7.23 Section 7.23 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.23 Badlands National Park. (a) Commercial vehicles. (1...

  12. 36 CFR 7.23 - Badlands National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Badlands National Park. 7.23 Section 7.23 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.23 Badlands National Park. (a) Commercial vehicles. (1...

  13. 36 CFR 7.56 - Acadia National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Acadia National Park. 7.56 Section 7.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.56 Acadia National Park. (a) Designated Snowmobile Routes...

  14. 36 CFR 7.11 - Saguaro National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Saguaro National Park. 7.11 Section 7.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.11 Saguaro National Park. (a) Bicycling. (1) The following...

  15. 36 CFR 7.33 - Voyageurs National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Voyageurs National Park. 7.33 Section 7.33 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.33 Voyageurs National Park. (a) Fishing. Unless otherwise...

  16. 36 CFR 7.23 - Badlands National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Badlands National Park. 7.23 Section 7.23 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.23 Badlands National Park. (a) Commercial vehicles. (1...

  17. 36 CFR 7.56 - Acadia National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Acadia National Park. 7.56 Section 7.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.56 Acadia National Park. (a) Designated Snowmobile Routes...

  18. 36 CFR 7.11 - Saguaro National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Saguaro National Park. 7.11 Section 7.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.11 Saguaro National Park. (a) Bicycles. That portion of the...

  19. 36 CFR 7.11 - Saguaro National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Saguaro National Park. 7.11 Section 7.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.11 Saguaro National Park. (a) Bicycles. That portion of the...

  20. 36 CFR 7.11 - Saguaro National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Saguaro National Park. 7.11 Section 7.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.11 Saguaro National Park. (a) Bicycles. That portion of the...

  1. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park.

    PubMed

    Metz, Matthew C; Smith, Douglas W; Vucetich, John A; Stahler, Daniel R; Peterson, Rolf O

    2012-05-01

    1. For large predators living in seasonal environments, patterns of predation are likely to vary among seasons because of related changes in prey vulnerability. Variation in prey vulnerability underlies the influence of predators on prey populations and the response of predators to seasonal variation in rates of biomass acquisition. Despite its importance, seasonal variation in predation is poorly understood. 2. We assessed seasonal variation in prey composition and kill rate for wolves Canis lupus living on the Northern Range (NR) of Yellowstone National Park. Our assessment was based on data collected over 14 winters (1995-2009) and five spring-summers between 2004 and 2009. 3. The species composition of wolf-killed prey and the age and sex composition of wolf-killed elk Cervus elaphus (the primary prey for NR wolves) varied among seasons. 4. One's understanding of predation depends critically on the metric used to quantify kill rate. For example, kill rate was greatest in summer when quantified as the number of ungulates acquired per wolf per day, and least during summer when kill rate was quantified as the biomass acquired per wolf per day. This finding contradicts previous research that suggests that rates of biomass acquisition for large terrestrial carnivores tend not to vary among seasons. 5. Kill rates were not well correlated among seasons. For example, knowing that early-winter kill rate is higher than average (compared with other early winters) provides little basis for anticipating whether kill rates a few months later during late winter will be higher or lower than average (compared with other late winters). This observation indicates how observing, for example, higher-than-average kill rates throughout any particular season is an unreliable basis for inferring that the year-round average kill rate would be higher than average. 6. Our work shows how a large carnivore living in a seasonal environment displays marked seasonal variation in

  2. Molecular Signatures of Microbial Metabolism in an Actively Growing, Silicified, Microbial Structure from Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Creveling, J.; Hilburn, I.; Karlsson, E.; Pepe-Ranney, C.; Spear, J.; Dawson, S.; Geobio2008, I.

    2008-12-01

    Silicified structures that exhibit a putative biologic component in their formation permeate the rock record as stromatolites. We have studied a silicified microbial structure from a hot spring in Yellowstone National Park using phenotypic, phylogenetic, and metagenomic analyses to determine microbial carbon metabolic pathways and the phylogenetic affiliations of microbes present in this unique structure. In this multi-faceted approach, dominant physiologies, specifically with regards to anaerobic and aerobic metabolisms, were inferred from 16S rRNA gene sequences and 454 sequencing data from bulk DNA samples of the structure. Carbon utilization as indicated by ECO Biolog plates showed abundant heterotrophy and heterotrophic diversity throughout the microbial structure. Microbes within the structure are able to utilize all tested sources of carbohydrates, lipids/fatty acids, and protein/amino acids as carbon sources. ECO plate testing of the hot spring water yielded considerable less carbohydrate consumption (only 4 out of 13 tested carbohydrates) and similar lipids/fatty acids and protein/amino acids consumption (2 out of 3 and 5 out of 5 tested sources respectively). Full length 16S rRNA gene sequences and metagenomic 454 pyrosequencing of community DNA showed limited diversity among primary producers. From the 16S data, the majority of the autotrophs are inferred to utilize the Calvin cycle for CO2 fixation, followed by 3-hydroxypropionate/4- hydroxybutyrate CO2 fixation. However, an analysis of the metagenomic data compared to the KEGG database does not show genes directly involved with Calvin cycle carbon fixation. Further BLAST searches of our data failed to find significant matches within our 6514 metagenomic sequences to known RuBisCo sequences taken from the NCBI database. This is likely due to a far under-sampled dataset of metagenomic sequences, and the low number (958) that had matches to the KEGG pathways database. Anaerobic versus aerobic physiology

  3. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  4. Effects of elevated CO{sub 2} on plant-grazer interactions: The importance of urine-hits and simulated grazing on the response of a C{sub 3} grass from Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilsey, B.J.; Coleman, J.S.; McNaughton, S.J.

    1995-06-01

    Although grazing mammals are an important component of most grassland ecosystems, previous research on plant responses to elevated CO{sub 2} has rarely considered their effects. In a growth chamber experiment, we tested whether regrowth following simulated grazing was affected by elevated CO{sub 2} and urine hits (40 g/m{sup 2} urea N) in the C{sub 3} grass, Stipa occidentalis, which is common in Yellowstone National Park. Plant response (end of experiment biomass and productivity [biomass + clippings]) to elevated CO{sub 2} depended on whether plants received urine-hits and were clipped: plants only had increased growth in response to CO{sub 2} enrichmentmore » if they had received urea and were not clipped. Plants that received the entire grazing treatment (urea and clipping) had biomass and productivity values that were similar to controls. Thus, grazing mammals will tend to dampen the predicted CO{sub 2} effect in grasslands by significantly lowering increases in plant growth response to elevated CO{sub 2} levels.« less

  5. Complete genome sequence of Geobacillus strain Y4.1MC1, a novel CO-utilizing Geobacillus thermoglucosidasius strain isolated from Bath Hot Spring in Yellowstone National Park

    DOE PAGES

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren John; ...

    2015-02-10

    Geobacillus thermoglucosidasius Y4.1MC1 was isolated from a boiling spring in the lower geyser basin of Yellowstone National Park. We present this species is of interest because of its metabolic versatility. The genome consists of one circular chromosome of 3,840,330 bp and a circular plasmid of 71,617 bp with an average GC content of 44.01%. The genome is available in the GenBank database (NC_014650.1 and NC_014651.1). In addition to the expected metabolic pathways for sugars and amino acids, the Y4.1MC1 genome codes for two separate carbon monoxide utilization pathways, an aerobic oxidation pathway and an anaerobic reductive acetyl CoA (Wood-Ljungdahl) pathway.more » This is the first report of a nonanaerobic organism with the Wood-Ljungdahl pathway. Also, this anaerobic pathway permits the strain to utilize H 2 and fix CO 2 present in the hot spring environment. Y4.1MC1 and its related species may play a significant role in carbon capture and sequestration in thermophilic ecosystems and may open up new routes to produce biofuels and chemicals from CO, H 2, and CO 2.« less

  6. Complete genome sequence of Geobacillus strain Y4.1MC1, a novel CO-utilizing Geobacillus thermoglucosidasius strain isolated from Bath Hot Spring in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren John

    Geobacillus thermoglucosidasius Y4.1MC1 was isolated from a boiling spring in the lower geyser basin of Yellowstone National Park. We present this species is of interest because of its metabolic versatility. The genome consists of one circular chromosome of 3,840,330 bp and a circular plasmid of 71,617 bp with an average GC content of 44.01%. The genome is available in the GenBank database (NC_014650.1 and NC_014651.1). In addition to the expected metabolic pathways for sugars and amino acids, the Y4.1MC1 genome codes for two separate carbon monoxide utilization pathways, an aerobic oxidation pathway and an anaerobic reductive acetyl CoA (Wood-Ljungdahl) pathway.more » This is the first report of a nonanaerobic organism with the Wood-Ljungdahl pathway. Also, this anaerobic pathway permits the strain to utilize H 2 and fix CO 2 present in the hot spring environment. Y4.1MC1 and its related species may play a significant role in carbon capture and sequestration in thermophilic ecosystems and may open up new routes to produce biofuels and chemicals from CO, H 2, and CO 2.« less

  7. Biscayne National Park

    NASA Image and Video Library

    2017-12-08

    On February 25, 2016, the Operational Land Imager (OLI) on the Landsat 8 satellite acquired this natural-color image of Biscayne National Park. The park encompasses the northernmost Florida Keys, starting from Miami to just north of Key Largo. The keys run like a spine through the center of the park, with Biscayne Bay to the west and the Atlantic Ocean to the east. The water-covered areas span more than 660 square kilometers (250 square miles) of the park, making it the largest marine park in the U.S. National Park System. Biscayne protects the longest stretch of mangrove forest on the U.S. East Coast, and one of the most extensive stretches of coral reef in the world. Read more: go.nasa.gov/1SWs1a3 Credit: NASA/Landsat8 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. 77 FR 75254 - List of Units of the National Park System Exempt From the Provisions of the National Parks Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... Park Service List of Units of the National Park System Exempt From the Provisions of the National Parks Air Tour Management Act AGENCIES: Federal Aviation Administration, Transportation; National Park Service, Interior. ACTION: List of Exempt Parks. SUMMARY: The National Parks Air Tour Management Act...

  9. IS ISLAND PARK A HOT DRY ROCK SYSTEM?

    USGS Publications Warehouse

    Hoover, D.B.; Pierce, Herbert A.; Long, C.L.

    1985-01-01

    The Island Park-Yellowstone National Park region comprises a complex caldera system which has formed over the last 2 m. y. The caldera system has been estimated to contain 50% of the total thermal energy remaining in all young igneous systems in the United States. As the result of a reexamination of the data and recent electrical work in the area, the authors now postulate that much of the area where the first- and second-stage calderas developed is underlain by a solidified but still hot pluton. They postulate that the pluton represents a significant hot-dry-rock resource for the United States.

  10. Hydrology of Park County, Wyoming, exclusive of Yellowstone National Park

    USGS Publications Warehouse

    Lowry, M.E.; Smalley, M.L.; Mora, K.L.; Stockdale, R.G.; Martin, M.W.

    1993-01-01

    The climate of Park County, Wyoming, ranges from desert to alpine tundra. Average annual precipitation ranges from 6 to 40 inches. Ground water is present throughout most of the county, but supplies adequate for stock or domestic use are not readily available in areas of greatest need. The chemical quality of most of the water sampled was of suitable quality for livestock, but most of the water was not suitable for drinking, and the water from bedrock aquifers generally was not suitable for irrigation. Unconsolidated deposits are a principal source of ground water in the county. However, ground water is found in deposits topographically higher than stream level only where surface water has been applied for irrigation; those unconsolidated deposits beneath areas that are not irrigated, such as Polecat Bench, are dry. The conversion of irrigated land to urban development poses problems in some areas because yields of water-supply wells will be adversely affected by reduced recharge. The trend toward urban development also increases the risk of contamination of the ground water by septic tanks, petroleum products, and toxic and hazardous wastes. Perennial streams originate in the mountains and in areas where drainage from irrigated land is adequate to sustain flow. The average annual runoff from streams originating in the mountains is as large as 598 acre-feet per square mile, and the average annual runoff from streams originating in badlands and plains is as low as 14.8 acre-feet per square mile.

  11. Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park

    PubMed Central

    Hamamura, Natsuko; Olson, Sarah H.; Ward, David M.; Inskeep, William P.

    2005-01-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the α-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils. PMID:16204508

  12. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park.

    PubMed

    Hamamura, Natsuko; Olson, Sarah H; Ward, David M; Inskeep, William P

    2005-10-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the alpha-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils.

  13. Snowmelt hydrograph interpretation: Revealing watershed scale hydrologic characteristics of the Yellowstone volcanic plateau

    USGS Publications Warehouse

    Payton, Gardner W.; Susong, D.D.; Kip, Solomon D.; Heasler, H.

    2010-01-01

    Snowmelt hydrograph analysis and groundwater age dates of cool water springs on the Yellowstone volcanic plateau provide evidence of high volumes of groundwater circulation in watersheds comprised of quaternary Yellowstone volcanics. Ratios of maximum to minimum mean daily discharge and average recession indices are calculated for watersheds within and surrounding the Yellowstone volcanic plateau. A model for snowmelt recession is used to separate groundwater discharge from overland runoff, and compare groundwater systems. Hydrograph signal interpretation is corroborated with chlorofluorocarbon (CFC) and tritium concentrations in cool water springs on the Yellowstone volcanic plateau. Hydrograph parameters show a spatial pattern correlated with watershed geology. Watersheds comprised dominantly of quaternary Yellowstone volcanics are characterized by slow streamflow recession, low maximum to minimum flow ratios. Cool springs sampled within the Park contain CFC's and tritium and have apparent CFC age dates that range from about 50 years to modern. Watersheds comprised of quaternary Yellowstone volcanics have a large volume of active groundwater circulation. A large, advecting groundwater field would be the dominant mechanism for mass and energy transport in the shallow crust of the Yellowstone volcanic plateau, and thus control the Yellowstone hydrothermal system. ?? 2009 Elsevier B.V.

  14. Water-Chemistry and On-Site Sulfur-Speciation Data for Selected Springs in Yellowstone National Park, Wyoming, 1996-1998

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Schoonen, Martin A.A.; Xu, Yong

    2001-01-01

    Fifty-eight water analyses are reported for samples collected from 19 hot springs and their overflow drainages and one ambient-temperature acid stream in Yellowstone National Park (YNP) during 1996-98. These water samples were collected and analyzed as part of research investigations on microbially mediated sulfur oxidation in stream waters and sulfur redox speciation in hot springs in YNP and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. The research on sulfur redox speciation in hot springs is a collaboration with the State University of New York at Stony Brook, Northern Arizona University, and the U.S. Geological Survey (USGS). One ambient-temperature acidic stream system, Alluvium Creek and its tributaries in Brimstone Basin, was studied in detail. Analyses were performed adjacent to the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability and preservability of the constituent. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity and F were determined within a few days of sample collection by titration and by ion-selective electrode, respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by ion chromatography (IC). Concentrations of Cl, SO4, and Br were determined by IC within a few days of sample collection. Concentrations of Fe(II) and Fe(total) were determined by ultraviolet/visible spectrophotometry within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li, Na, and K were determined by flame atomic absorption (Li) and emission (Na, K) spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), Mg, Mn, Ni, Pb, Si, Sr, V, and Zn were determined by inductively-coupled plasma optical emission spectrometry. Trace

  15. Big Bend National Park

    NASA Image and Video Library

    2017-12-08

    Alternately known as a geologist’s paradise and a geologist’s nightmare, Big Bend National Park in southwestern Texas offers a multitude of rock formations. Sparse vegetation makes finding and observing the rocks easy, but they document a complicated geologic history extending back 500 million years. On May 10, 2002, the Enhanced Thematic Mapper Plus on NASA’s Landsat 7 satellite captured this natural-color image of Big Bend National Park. A black line delineates the park perimeter. The arid landscape appears in muted earth tones, some of the darkest hues associated with volcanic structures, especially the Rosillos and Chisos Mountains. Despite its bone-dry appearance, Big Bend National Park is home to some 1,200 plant species, and hosts more kinds of cacti, birds, and bats than any other U.S. national park. Read more: go.nasa.gov/2bzGaZU Credit: NASA/Landsat7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  17. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  18. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  19. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  20. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  1. 36 CFR 7.47 - Carlsbad Caverns National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Carlsbad Caverns National Park. 7.47 Section 7.47 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.47 Carlsbad Caverns National Park. (a...

  2. 36 CFR 7.47 - Carlsbad Caverns National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Carlsbad Caverns National Park. 7.47 Section 7.47 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.47 Carlsbad Caverns National Park. (a...

  3. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  4. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  5. 36 CFR 7.47 - Carlsbad Caverns National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Carlsbad Caverns National Park. 7.47 Section 7.47 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.47 Carlsbad Caverns National Park. (a...

  6. 36 CFR 7.47 - Carlsbad Caverns National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Carlsbad Caverns National Park. 7.47 Section 7.47 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.47 Carlsbad Caverns National Park. (a...

  7. 36 CFR 7.47 - Carlsbad Caverns National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Carlsbad Caverns National Park. 7.47 Section 7.47 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.47 Carlsbad Caverns National Park. (a...

  8. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  9. 36 CFR 7.54 - Theodore Roosevelt National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Theodore Roosevelt National Park. 7.54 Section 7.54 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.54 Theodore Roosevelt National Park. (a...

  10. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  11. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  12. 36 CFR 7.54 - Theodore Roosevelt National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Theodore Roosevelt National Park. 7.54 Section 7.54 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.54 Theodore Roosevelt National Park. (a...

  13. 36 CFR 7.54 - Theodore Roosevelt National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Theodore Roosevelt National Park. 7.54 Section 7.54 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.54 Theodore Roosevelt National Park. (a...

  14. 36 CFR 7.54 - Theodore Roosevelt National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Theodore Roosevelt National Park. 7.54 Section 7.54 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.54 Theodore Roosevelt National Park. (a...

  15. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  16. 36 CFR 7.54 - Theodore Roosevelt National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Theodore Roosevelt National Park. 7.54 Section 7.54 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.54 Theodore Roosevelt National Park. (a...

  17. 36 CFR 7.84 - Channel Islands National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Channel Islands National Park. 7.84 Section 7.84 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.84 Channel Islands National Park. (a...

  18. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  19. 36 CFR 7.74 - Virgin Islands National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Virgin Islands National Park. 7.74 Section 7.74 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.74 Virgin Islands National Park. (a...

  20. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  1. 36 CFR 7.84 - Channel Islands National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Channel Islands National Park. 7.84 Section 7.84 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.84 Channel Islands National Park. (a...

  2. 36 CFR 7.74 - Virgin Islands National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Virgin Islands National Park. 7.74 Section 7.74 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.74 Virgin Islands National Park. (a...

  3. 36 CFR 7.93 - Guadalupe Mountains National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Guadalupe Mountains National Park. 7.93 Section 7.93 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.93 Guadalupe Mountains National Park...

  4. 36 CFR 7.84 - Channel Islands National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Channel Islands National Park. 7.84 Section 7.84 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.84 Channel Islands National Park. (a...

  5. 36 CFR 7.74 - Virgin Islands National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Virgin Islands National Park. 7.74 Section 7.74 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.74 Virgin Islands National Park. (a...

  6. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  7. Monitoring Greater Yellowstone Ecosystem wetlands: Can long-term monitoring help us understand their future?

    USGS Publications Warehouse

    Ray, Andrew M.; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra; Thoma, David; Al-Chokhachy, Robert K.; Litt, Andrea R.

    2015-01-01

    In the Greater Yellowstone Ecosystem (GYE), changes in the drying cycles of wetlands have been documented. Wetlands are areas where the water table is at or near the land surface and standing shallow water is present for much or all of the growing season. We discuss how monitoring data can be used to document variation in annual flooding and drying patterns of wetlands monitored across Yellowstone and Grand Teton national parks, investigate how these patterns are related to a changing climate, and explore how drying of wetlands may impact amphibians. The documented declines of some amphibian species are of growing concern to scientists and land managers alike, in part because disappearances have occurred in some of the most protected places. These disappearances are a recognized component of what is being described as Earth’s sixth mass extinction.

  8. 36 CFR 7.39 - Mesa Verde National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Mesa Verde National Park. 7.39 Section 7.39 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.39 Mesa Verde National Park. (a) Visiting of...

  9. 36 CFR 7.38 - Isle Royale National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Isle Royale National Park. 7.38 Section 7.38 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.38 Isle Royale National Park. (a) Aircraft...

  10. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial...

  11. 36 CFR 7.39 - Mesa Verde National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Mesa Verde National Park. 7.39 Section 7.39 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.39 Mesa Verde National Park. (a) Visiting of...

  12. 36 CFR 7.39 - Mesa Verde National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Mesa Verde National Park. 7.39 Section 7.39 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.39 Mesa Verde National Park. (a) Visiting of...

  13. 36 CFR 7.22 - Grand Teton National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Grand Teton National Park. 7.22 Section 7.22 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.22 Grand Teton National Park. (a) Aircraft...

  14. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial...

  15. 36 CFR 7.22 - Grand Teton National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Grand Teton National Park. 7.22 Section 7.22 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.22 Grand Teton National Park. (a) Aircraft...

  16. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  17. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hot Springs National Park. 7.18 Section 7.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial...

  18. 36 CFR 7.22 - Grand Teton National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Grand Teton National Park. 7.22 Section 7.22 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.22 Grand Teton National Park. (a) Aircraft...

  19. 36 CFR 7.38 - Isle Royale National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Isle Royale National Park. 7.38 Section 7.38 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.38 Isle Royale National Park. (a) Aircraft...

  20. 36 CFR 7.38 - Isle Royale National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Isle Royale National Park. 7.38 Section 7.38 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.38 Isle Royale National Park. (a) Aircraft...

  1. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial...

  2. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Hot Springs National Park. 7.18 Section 7.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial...

  3. 36 CFR 7.38 - Isle Royale National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Isle Royale National Park. 7.38 Section 7.38 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.38 Isle Royale National Park. (a) Aircraft...

  4. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  5. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial...

  6. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  7. 36 CFR 7.39 - Mesa Verde National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Mesa Verde National Park. 7.39 Section 7.39 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.39 Mesa Verde National Park. (a) Visiting of...

  8. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Hot Springs National Park. 7.18 Section 7.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial...

  9. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  10. 36 CFR 7.38 - Isle Royale National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Isle Royale National Park. 7.38 Section 7.38 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.38 Isle Royale National Park. (a) Aircraft...

  11. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Hot Springs National Park. 7.18 Section 7.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial...

  12. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Hot Springs National Park. 7.18 Section 7.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial...

  13. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  14. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  15. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  16. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  17. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  18. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  19. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 1999-2000

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were

  20. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.

    2003-01-01

    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  1. Olympic National Park

    NASA Image and Video Library

    2017-12-08

    It has to be one of America’s most diverse national park landscapes. If you walked from west to east across Olympic National Park, you would start at the rocky Pacific shoreline, move into rare temperate rainforests and lush river valleys, ascend glaciers and rugged mountain peaks, and then descend into a comparatively dry rain shadow and alpine forest. From the beach to the top of Mount Olympus, you would rise 7,980 feet (2430 meters) above sea level. Situated on the Olympic Peninsula in northwestern Washington, these lands were first set aside as a national monument in 1909 by Theodore Roosevelt. Twenty-nine years later, his cousin Franklin officially established Olympic National Park. International institutions have also made a case for treasuring this land, as the area was declared an International Biosphere Reserve in 1976 and a World Heritage Site in 1981. The park encompasses nearly 923,000 acres of wild lands, including 60 named glaciers, 73 miles of coast, and 3,000 miles of rivers and streams. Read more: go.nasa.gov/2bRmzSJ Credit: NASA/Landsat8 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Inskeep, William P.; Macur, Richard E.; Harrison, Gregory; Bostick, Benjamin C.; Fendorf, Scott

    2004-08-01

    Acid-sulfate-chloride (pH˜3) geothermal springs in Yellowstone National Park (YNP) often contain Fe(II), As(III), and S(-II) at discharge, providing several electron donors for chemolithotrophic metabolism. The microbial populations inhabiting these environments are inextricably linked with geochemical processes controlling the behavior of As and Fe. Consequently, the objectives of the current study were to (i) characterize Fe-rich microbial mats of an ASC thermal spring, (ii) evaluate the composition and structure of As-rich hydrous ferric oxides (HFO) associated with these mats, and (iii) identify microorganisms that are potentially responsible for mat formation via the oxidation of Fe(II) and or As(III). Aqueous and solid phase mat samples obtained from a spring in Norris Basin, YNP (YNP Thermal Inventory NHSP35) were analyzed using a complement of chemical, microscopic and spectroscopic techniques. In addition, molecular analysis (16S rDNA) was used to identify potentially dominant microbial populations within different mat locations. The biomineralization of As-rich HFO occurs in the presence of nearly equimolar aqueous As(III) and As(V) (˜12 μM), and ˜ 48 μM Fe(II), forming sheaths external to microbial cell walls. These solid phases were found to be poorly ordered nanocrystalline HFO containing mole ratios of As(V):Fe(III) of 0.62 ± 0.02. The bonding environment of As(V) and Fe(III) is consistent with adsorption of arsenate on edge and corner positions of Fe(III)-OH octahedra. Numerous archaeal and bacterial sequences were identified (with no closely related cultured relatives), along with several 16S sequences that are closely related to Acidimicrobium, Thiomonas, Metallosphaera and Marinithermus isolates. Several of these cultured relatives have been implicated in Fe(II) and or As(III) oxidation in other low pH, high Fe, and high As environments (e.g. acid-mine drainage). The unique composition and morphologies of the biomineralized phases may be

  3. Teacher's Guide to Independence National Historical Park.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Philadelphia, PA. Independence National Historical Park.

    Independence National Historical Park, located in Philadelphia, Pennsylvania, is operated by the National Park Service. The park was authorized by an Act of Congress on June 28, 1948, and formally established on July 4, 1956. The mission of Independence National Historical Park is to preserve its stories, buildings, and artifacts as a source of…

  4. 36 CFR 7.39 - Mesa Verde National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mesa Verde National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.39 Mesa Verde National Park. (a) Visiting of... the admission of commercial automobiles and buses to Mesa Verde National Park, contained in § 5.4 of...

  5. Parks, Place and Pedagogy - Education Partnerships with the National Park Service

    NASA Astrophysics Data System (ADS)

    Vye, E. C.; Rose, W. I.; Nash, B.; Klawiter, M.; Huntoon, J. E.; Engelmann, C. A.; Gochis, E. E.; MiTEP

    2011-12-01

    The Michigan Teaching Excellence Program (MITEP) is a multi-year program of teacher leadership development that empowers science teachers in Grand Rapids, Kalamazoo, and Jackson to lead their schools and districts through the process of improving science teaching and learning. A component of this program is facilitated through partnership between academia, K-12 educators, and the National Park Service (NPS) that aims to develop place-based education strategies that improve diversity and Earth Science literacy. This tangible education method draws upon both the sense of place that National Parks offer and the art of interpretation employed by the park service. Combined, these deepen cognitive process and provide a more diverse reflection of what place means and the processes behind shaping what we see. Our partnerships present participants the opportunity to intern in a Midwest national park for 3-8 weeks during their third year in the program. In summer 2011, eleven teachers from the Grand Rapids school district participated in this innovative way of learning and teaching Earth Science. One goal was to develop geological interpretive materials desired and needed for the parks. Secondly, and important to place-based educational methodologies, these deliverables will be used as a way of bringing the parks to urban classrooms. Participants lived in the parks and worked directly with both national park and Michigan Tech staff to create lesson plans, podcasts, media clips, video, and photographic documentation of their experiences. These lesson plans will be hosted in the Views of the National Park website in an effort to provide innovative teaching resources nationally for teachers or free-choice learners wishing to access information on Midwest national parks. To the benefit of park staff, working with teachers from urban areas offered an opportunity for park staff to access diverse learners in urban settings unable to visit the park. The foundation has been laid for

  6. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Christiansen, Robert L.

    2001-01-01

    This region of Yellowstone National Park has been the active focus of one of the Earth's largest magmatic systems for more than 2 million years. The resulting volcanism has been characterized by the eruption of voluminous rhyolites and subordinate basalts but virtually no lavas of intermediate composition. The magmatic system at depth remains active and drives the massive hydrothermal circulation for which the park is widely known. Studies of the volcanic field using geologic mapping and petrology have defined three major cycles of rhyolitic volcanism, each climaxed by the eruption of a rhyolitic ash-flow sheet having a volume of hundreds of thousands of cubic kilometers. The field also has been analyzed in terms of its magmatic and tectonic evolution, including its regional relation to the Snake River plain and to basin-range tectonic extension.

  7. 36 CFR 7.14 - Great Smoky Mountains National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Park. 7.14 Section 7.14 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.14 Great Smoky Mountains National Park. (a) Fishing—(1) License. A person fishing within the park must have in possession the proper...

  8. 36 CFR 7.14 - Great Smoky Mountains National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Park. 7.14 Section 7.14 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.14 Great Smoky Mountains National Park. (a) Fishing—(1) License. A person fishing within the park must have in possession the proper...

  9. 36 CFR 7.14 - Great Smoky Mountains National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Park. 7.14 Section 7.14 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.14 Great Smoky Mountains National Park. (a) Fishing—(1) License. A person fishing within the park must have in possession the proper...

  10. 36 CFR 7.14 - Great Smoky Mountains National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Park. 7.14 Section 7.14 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.14 Great Smoky Mountains National Park. (a) Fishing—(1) License. A person fishing within the park must have in possession the proper...

  11. Gap Analysis of Benthic Mapping at Three National Parks: Assateague Island National Seashore, Channel Islands National Park, and Sleeping Bear Dunes National Lakeshore

    USGS Publications Warehouse

    Rose, Kathryn V.; Nayegandhi, Amar; Moses, Christopher S.; Beavers, Rebecca; Lavoie, Dawn; Brock, John C.

    2012-01-01

    The National Park Service (NPS) Inventory and Monitoring (I&M) Program initiated a benthic habitat mapping program in ocean and coastal parks in 2008-2009 in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. With more than 80 ocean and Great Lakes parks encompassing approximately 2.5 million acres of submerged territory and approximately 12,000 miles of coastline (Curdts, 2011), this Servicewide Benthic Mapping Program (SBMP) is essential. This report presents an initial gap analysis of three pilot parks under the SBMP: Assateague Island National Seashore (ASIS), Channel Islands National Park (CHIS), and Sleeping Bear Dunes National Lakeshore (SLBE) (fig. 1). The recommended SBMP protocols include servicewide standards (for example, gap analysis, minimum accuracy, final products) as well as standards that can be adapted to fit network and park unit needs (for example, minimum mapping unit, mapping priorities). The SBMP requires the inventory and mapping of critical components of coastal and marine ecosystems: bathymetry, geoforms, surface geology, and biotic cover. In order for a park unit benthic inventory to be considered complete, maps of bathymetry and other key components must be combined into a final report (Moses and others, 2010). By this standard, none of the three pilot parks are mapped (inventoried) to completion with respect to submerged resources. After compiling the existing benthic datasets for these parks, this report has concluded that CHIS, with 49 percent of its submerged area mapped, has the most complete benthic inventory of the three. The ASIS submerged inventory is 41 percent complete, and SLBE is 17.5 percent complete.

  12. Canyonlands National Park, UT, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-014 (22 June 1973) --- Desert and mountain scenery along the Utah/Colorado border are displayed in this scene of the Canyonlands National Park, UT (39.0N, 110.0W). The park occupies the near center of the image, displaying spectacular incised meanders and the bulls-eye structure of Upheaval Dome (a salt dome). The Green River and the Colorado River flow southward to join (off scene) before flowing through the Grand Canyon National Park. Photo credit: NASA

  13. Lake Generated Microseisms at Yellowstone Lake as a Record of Ice Phenology

    NASA Astrophysics Data System (ADS)

    Mohd Mokhdhari, A. A.; Koper, K. D.; Burlacu, R.

    2017-12-01

    It has recently been shown that wave action in lakes produces microseisms, which generate noise peaks in the period range of 0.8-1.2 s as recorded by nearby seismic stations. Such noise peaks have been observed at seven seismic stations (H17A, LKWY, B208, B944, YTP, YLA, and YLT) located within 2 km of the Yellowstone Lake shoreline. Initial work using 2016 data shows that the variations in the microseism signals at Yellowstone Lake correspond with the freezing and thawing of lake ice: the seismic noise occurs more frequently in the spring, summer, and fall, and less commonly in the winter. If this can be confirmed, then lake-generated microseisms could provide a consistent measure of the freezing and melting dates of high-latitude lakes in remote areas. The seismic data would then be useful in assessing the effects of climate change on the ice phenology of those lakes. In this work, we analyze continuous seismic data recorded by the seven seismic stations around Yellowstone Lake for the years of 1995 to 2016. We generate probability distribution functions of power spectral density for each station to observe the broad elevation of energy near a period of 1 s. The time dependence of this 1-s seismic noise energy is analyzed by extracting the power spectral density at 1 s from every processed hour. The seismic observations are compared to direct measurements of the dates of ice-out and freeze-up as reported by rangers at Yellowstone National Park. We examine how accurate the seismic data are in recording the freezing and melting of Yellowstone Lake, and how the accuracy changes as a function of the number of stations used. We also examine how sensitive the results are to the particular range of periods that are analyzed.

  14. Paleomagnetic results from Tertiary volcanic strata and intrusions, Absaroka Volcanic Supergroup, Yellowstone National Park and vicinity: Contributions to the North American apparent polar wander path

    USGS Publications Warehouse

    Harlan, S.S.; Morgan, L.A.

    2010-01-01

    We report paleomagnetic and rock magnetic data from volcanic, volcaniclastic, and intrusive rocks of the 55-44Ma Absaroka Volcanic Supergroup (AVS) exposed along the northeastern margin of Yellowstone National Park and adjacent areas. Demagnetization behavior and rock magnetic experiments indicate that the remanence in most samples is carried by low-Ti titanomagnetite, although high-coercivity phases are present in oxidized basalt flows. Paleomagnetic demagnetization and rock magnetic characteristics, the presence of normal and reverse polarity sites, consistency with previous results, and positive conglomerate tests suggest that the observed remanences are primary thermoremanent magnetizations of Eocene age (c. 50Ma). An in situ grand-mean for 22 individual site- or cooling-unit means from this study that yield acceptable data combined with published data from Independence volcano yields a declination of 347.6?? and inclination of 59.2?? (k=21.8, ??95=6.8??) and a positive reversal test. Averaging 21 virtual geomagnetic poles (VGPs) that are well-grouped yields a mean at 137.1??E, 82.5??N (K=17.6, A95=7.8??), similar to results previously obtained from published studies from the AVS. Combining the VGPs from our study with published data yields a combined AVS pole at 146.3??E, 83.1??N (K=13.5, A95=6.2??, N=42 VGPs). Both poles are indistinguishable from c. 50Ma cratonic and synthetic reference poles for North America, and demonstrate the relative stability of this part of the Cordillera with respect to the craton. ?? 2009 Elsevier B.V.

  15. Ecological planning proposal for Kruger National Park

    NASA Astrophysics Data System (ADS)

    van Riet, W. F.; Cooks, J.

    1990-05-01

    This article discusses an application of the ecological planning model proposed by Van Riet and Cooks. The various steps outlined in this model have been applied to Kruger National Park in South Africa. The natural features of Kruger National Park, which form the basis of such an ecological planning exercise and from which the various land use categories, values, and zoning classes can be determined, are discussed in detail. The suitability of each of the various features is analyzed and a final zoning proposal for Kruger National Park is suggested. Furthermore a method for selecting a site for a new camp is illustrated by referring to the site for the new Mopane rest camp which is now under construction in the Kruger National Park. The conclusion is reached that the proposed ecological planning model can be used successfully in planning conservation areas such as Kruger National Park and for the selection of the most desirable sites for the establishment of new rest camps. Its suitability as a practical model in such planning exercises is proven by the fact that the siting proposals of two new camps based on this model have been accepted by the National Parks Board, the controlling body of Kruger National Park.

  16. Disparity of Chlorine to Fluorine Concentration Ratios Between Thermal Waters and Rocks of Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    McConville, E. G.; Szymanski, M. E.; Hurwitz, S.; Lowenstern, J. B.; Hayden, L. A.

    2016-12-01

    Low chlorine to fluorine concentration ratios (Cl/F) of 0.5 by weight are observed in Yellowstone rhyolites within glass inclusions and erupted rhyolitic glass. In contrast, Yellowstone thermal waters have Cl/F of >10 and Cl/F of waters at Norris Geyser Basin can exceed 100. Similar Cl/F have been observed in other volcanic hydrothermal systems (e.g., Lassen, Long Valley Caldera). The goal of this study is to identify fluorine-bearing minerals that could remove a substantial amount of F from the hydrothermal fluids within the Yellowstone caldera and in the Norris Geyser Basin near the northern margin of the caldera. We used a scanning electron microscope (SEM) to study thin sections from core samples obtained during research drilling by the USGS in the 1960s. The Y-2 well (Lower Geyser Basin) penetrated mostly Plateau Rhyolites ( 0.15 Ma) and Y-7 and Y-8 wells (Upper Geyser Basin) penetrated glacial sandstones and conglomerates, underlain by the Biscuit Basin flow ( 0.5 Ma). The thin sections from Y-12 in the Norris Geyser Basin are all from the Lava Creek Tuff. Fluorine-bearing minerals are found in all drill cores. Fluorite is present in Y-2 at a depth of 153 m, in Y-7 at 65m, and in Y-12 at 276 m. Fluoroapatite first appears in the Biscuit Basin flow at 60 m in Y-7 and 59 m in Y-8. Rare earth fluorocarbonates, such as bastnaesite (Ce,La,Y)CO3F and/or parisite Ca(Ce,La)2(CO3)3F2, are predominantly found in Y-12 at depths >276 m. Our estimated abundances of these fluorine-bearing minerals are at least 2 orders of magnitude less than required to substantially affect the Cl/F ratio in thermal waters. Fluorine-bearing minerals may be more abundant at greater depth. Another possible explanation is that the fluorite is too fine-grained to be identified by SEM. Finally, the high Cl/F in thermal waters could be explained by the ascent of Cl-rich fluid from a cooling magma body or from older crustal rocks that underlie the caldera.

  17. Genetic status and conservation of Westslope Cutthroat Trout in Glacier National Park

    USGS Publications Warehouse

    Muhlfeld, Clint C.; D'Angelo, Vincent S.; Downs, Christopher C.; Powell, John D.; Amish, Stephen J.; Luikart, Gordon; Kovach, Ryan; Boyer, Matthew; Kalinowski, Steven T.

    2016-01-01

    Invasive hybridization is one of the greatest threats to the persistence of Westslope Cutthroat Trout Oncorhynchus clarkii lewisi. Large protected areas, where nonhybridized populations are interconnected and express historical life history and genetic diversity, provide some of the last ecological and evolutionary strongholds for conserving this species. Here, we describe the genetic status and distribution of Westslope Cutthroat Trout throughout Glacier National Park, Montana. Admixture between Westslope Cutthroat Trout and introduced Rainbow Trout O. mykiss and Yellowstone Cutthroat Trout O. clarkii bouvieri was estimated by genotyping 1,622 fish collected at 115 sites distributed throughout the Columbia, Missouri, and South Saskatchewan River drainages. Currently, Westslope Cutthroat Trout occupy an estimated 1,465 km of stream habitat and 45 lakes (9,218 ha) in Glacier National Park. There was no evidence of introgression in samples from 32 sites along 587 km of stream length (40% of the stream kilometers currently occupied) and 17 lakes (2,555 ha; 46% of the lake area currently occupied). However, nearly all (97%) of the streams and lakes that were occupied by nonhybridized populations occurred in the Columbia River basin. Based on genetic status (nonnative genetic admixture ≤ 10%), 36 Westslope Cutthroat Trout populations occupying 821 km of stream and 5,482 ha of lakes were identified as “conservation populations.” Most of the conservation populations (N = 27; 736 km of stream habitat) occurred in the Columbia River basin, whereas only a few geographically restricted populations were found in the South Saskatchewan River (N = 7; 55 km) and Missouri River (N = 2; 30 km) basins. Westslope Cutthroat Trout appear to be at imminent risk of genomic extinction in the South Saskatchewan and Missouri River basins, whereas populations in the Columbia River basin are widely distributed and conservation efforts are actively addressing threats from

  18. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  19. Crustal Deformation in the Eastern Snake River Plain and Yellowstone Plateau Observed by SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Aly, M. H.; Hughes, S. S.; Rodgers, D. W.; Glenn, N. F.; Thackray, G. D.

    2007-12-01

    The Snake River Plain-Yellowstone tectono-volcanic province was created when North America migrated over a fixed hotspot in the mantle. Synthetic Aperture Radar Interferometry (InSAR) has been applied in this study to address the recent tectono-volcanic activity in the Eastern Snake River Plain (ESRP) and the southwestern part of Yellowstone Plateau. InSAR results show that crustal deformation across the tectono-volcanic province is episodic. An episode of uplift (about 1 cm/yr) along the ESRP axial volcanic zone, directly southwest of Island Park, has been detected from a time-series of independent differential interferograms created for the 1993-2000 period. Episodes of subsidence (1 cm/yr) during 1997-2000 and uplift (3 cm/yr) during 2004-2006 have been also detected in the active Yellowstone caldera, just northeast of Island Park. The detected interferometric signals indicate that deformation across the axial volcanic zone near Island Park is inversely linked to deformation in the active Yellowstone caldera. One explanation is that the inverse motions reflect a flexure response of the ESRP crust to magma chamber activity beneath the active caldera, although other interpretations are possible. The time-series of differential interferograms shows that no regional deformation has occurred across the central part of ESRP during the periods of observations, but local surface displacements of 1-3 cm magnitude have been detected in the adjacent Basin-Range province. Differential surface movements of varying rates have been also detected along Centennial, Madison, and Hebgen faults between 1993 and 2006.

  20. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park

    PubMed Central

    2013-01-01

    Background A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. Results The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. Conclusions Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. Reviewers This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia PMID:23607440

  1. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA: I. Low-flow discharge and major solute chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Holloway, JoAnn M.

    2010-01-01

    The Gibbon River in Yellowstone National Park (YNP) is an important natural resource and habitat for fisheries and wildlife. However, the Gibbon River differs from most other mountain rivers because its chemistry is affected by several geothermal sources including Norris Geyser Basin, Chocolate Pots, Gibbon Geyser Basin, Beryl Spring, and Terrace Spring. Norris Geyser Basin is one of the most dynamic geothermal areas in YNP, and the water discharging from Norris is much more acidic (pH 3) than other geothermal basins in the upper-Madison drainage (Gibbon and Firehole Rivers). Water samples and discharge data were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006. Surface inflows from Norris Geyser Basin were sampled to identify point sources and to quantify solute loading to the Gibbon River. The source and fate of the major solutes (Ca, Mg, Na, K, SiO2, Cl, F, HCO3, SO4, NO3, and NH4) in the Gibbon River were determined in this study and these results may provide an important link in understanding the health of the ecosystem and the behavior of many trace solutes. Norris Geyser Basin is the primary source of Na, K, Cl, SO4, and N loads (35–58%) in the Gibbon River. The largest source of HCO3 and F is in the lower Gibbon River reach. Most of the Ca and Mg originate in the Gibbon River upstream from Norris Geyser Basin. All the major solutes behave conservatively except for NH4, which decreased substantially downstream from Gibbon Geyser Basin, and SiO2, small amounts of which precipitated on mixing of thermal drainage with the river. As much as 9–14% of the river discharge at the gage is from thermal flows during this period.

  2. Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

    PubMed Central

    Kozubal, Mark A.; Macur, Richard E.; Jay, Zackary J.; Beam, Jacob P.; Malfatti, Stephanie A.; Tringe, Susannah G.; Kocar, Benjamin D.; Borch, Thomas; Inskeep, William P.

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65–70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  3. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.

    PubMed

    Podar, Mircea; Makarova, Kira S; Graham, David E; Wolf, Yuri I; Koonin, Eugene V; Reysenbach, Anna-Louise

    2013-04-22

    A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia.

  4. 36 CFR 1253.2 - National Archives at College Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false National Archives at College Park. 1253.2 Section 1253.2 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... College Park. (a) The National Archives at College Park is located at 8601 Adelphi Road, College Park, MD...

  5. Research Spotlight: Extraordinary uplift of Yellowstone caldera

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-02-01

    In Yellowstone National Park, located in Wyoming, Montana, and Idaho, the Yellow­stone caldera, which extends about 40 kilometers by 60 kilometers, began in 2004 a period of accelerated uplift, with rates of uplift as high as 7 centimeters per year. From 2006 to 2009 the uplift rate slowed. Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) ground deformation measurements described by Chang et al. show that in the northern caldera, uplift decreased from 7 centimeters per year in 2006 to 5 in 2008 and 2 in 2009. In the southwestern portion of the caldera, uplift decreased from 4 centimeters per year in 2006 to 2 in 2008 and 0.5 in 2009, demonstrating a spatial pattern of ground motion decrease from southwest to northeast along the caldera. (”Geophysical Research Letters, doi:10.1029/2010GL045451, 2010)

  6. America's National Parks 3d (1)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 1)   ...         Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle ...

  7. America's National Parks 3d (3)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 3)   ... for larger version   Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle ...

  8. America's National Parks 3d (4)

    Atmospheric Science Data Center

    2017-04-11

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 4)   ...         Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle ...

  9. Gray Wolves as Climate Change Buffers in Yellowstone

    PubMed Central

    Getz, Wayne M

    2005-01-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change. PMID:15757363

  10. Gray wolves as climate change buffers in Yellowstone.

    PubMed

    Wilmers, Christopher C; Getz, Wayne M

    2005-04-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  11. Short papers of the Fourth International Conference, Geochronology, Cosmochronology, Isotope Geology, 1978

    USGS Publications Warehouse

    Zartman, Robert E.

    1978-01-01

    Tritium content of both hot and cold waters in Yellowstone National Park was used to infer something of the ground-water system feeding hot springs and geysers. Curves in three figures show: (1) Tritium content of water leaving piston flow and well mixed ground-water systems in Yellowstone Park; (2) tritium in precipitation, mixed reservoirs, and cold waters of Yellowstone Park, and (3) tritium in mixed reservoirs and hot waters of Yellowstone Park. (Woodard-USGS)

  12. Climate Change in Voyageurs National Park

    NASA Astrophysics Data System (ADS)

    Seeley, M. W.

    2011-12-01

    Voyageurs National Park was created in 1975. This beautifully forested and lake-dominated landscape shared between Minnesota and Canada has few roads and must be seen by water. The islands and Kabetogama Peninsula are part of the Canadian Shield, some of the oldest exposed rock in the world. Voyageurs National Park boasts many unique landscape and climatic attributes, and like most mid-latitude regions of the northern hemisphere climate change is in play there. The statistical signals of change in the climate record are evident from both temperature and precipitation measurements. The history of these measurements goes back over 100 years. Additionally, studies and measurements of the lakes and general ecosystem already show some consequences of these climate changes. Mean temperature measurements are generally warmer than they once were, most notably in the winter season. Minimum temperatures have changed more than maximum temperatures. Precipitation has trended upward, but has also changed in character with greater frequency and contribution from thunderstorm rainfalls across the park. In addition variability in annual precipitation has become more amplified, as the disparity between wet and dry years has grown wider. Some changes are already in evidence in terms of bird migration patterns, earlier lake ice-out dates, warmer water temperatures with more algal blooms, decline in lake clarity, and somewhat longer frost-free seasons. Climate change will continue to have impacts on Voyageurs National Park, and likely other national parks across the nation. Furthermore scientists may find that the study, presentation, and discussion about climate impacts on our national parks is a particularly engaging way to educate citizens and improve climate literacy as we contemplate what adaptation and mitigation policies should be enacted to preserve the quality of our national parks for future generations.

  13. Acadia National Park ITS field operational test : parking report

    DOT National Transportation Integrated Search

    2003-04-01

    An important goal of the Field Operational Test of ITS at Acadia National Park is to reduce vehicle congestion in the Park. Reduced congestion will have the added benefits of increased mobility of visitors and residents, aesthetic and environmental b...

  14. America's National Parks 3d (2)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 2)   ...           Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle ...

  15. 75 FR 52969 - National Park System Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... DEPARTMENT OF THE INTERIOR National Park Service National Park System Advisory Board; Meeting AGENCY: National Park Service, Interior. ACTION: Notice of meeting. SUMMARY: Notice is hereby given in accordance with the Federal Advisory Committee Act, 5 U.S.C. Appendix, that the National Park System Advisory...

  16. Regional Assessment of the Relationship Between Landscape Attributes and Water Quality in Five National Parks of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Williams, M. W.; Campbell, D. H.

    2005-12-01

    Atmospheric deposition of pollutants threatens pristine environments around the world. However, scientifically-based decisions regarding management of these environments has been confounded by spatial variability of atmospheric deposition, particularly across regional scales at which resource management is typically considered. A statistically based methodology coupled within GIS is presented that builds on small alpine lake and sub-alpine catchments scale to identify deposition-sensitive lakes across larger watershed and regional scales. The sensitivity of 874 alpine and subalpine lakes to acidification from atmospheric deposition of nitrogen and sulfur was estimated using statistical models relating water quality and landscape attributes in Glacier National Park, Yellowstone National Park, Grand Teton National Park, Rocky Mountain National Park and Great Sand Dunes National Park and Preserve. Water-quality data measured during synoptic lake surveys were used to calibrate statistical models of lake sensitivity. In the case of nitrogen deposition, water quality data were supplemented with dual isotopic measurements of d15N and d18O of nitrate. Landscape attributes for the lake basins were derived from GIS including the following explanatory variables; topography (basin slope, basin aspect, basin elevation), bedrock type, vegetation type, and soil type. Using multivariate logistic regression analysis, probability estimates were developed for acid-neutralizing capacity, nitrate, sulfate and DOC concentrations, and lakes with a high probability of being sensitive to atmospheric deposition were identified. Water-quality data collected at 60 lakes during fall 2004 were used to validate statistical models. Relationships between landscape attributes and water quality vary by constituent, due to spatial variability in landscape attributes and spatial variation in the atmospheric deposition of pollutants within and among the five National Parks. Predictive ability, model

  17. Alternative Fuels Data Center: Clean Cities Helps the National Mall Cut

    Science.gov Websites

    Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a Yellowstone National Park Commits to Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia

  18. Exploring National Parks & Monuments: Students Can Discover National Monuments, National Parks & Natural Wonders

    ERIC Educational Resources Information Center

    Curriculum Review, 2009

    2009-01-01

    This article presents an interview with Cynthia Light Brown, author of "Discover National Monuments, National Parks: Natural Wonders," a book that introduces readers ages 8-12 to the history and science behind some of the amazing natural sites in the United States. In this interview, Cynthia Light Brown describes how she became interested in…

  19. Carnivore re-colonisation: Reality, possibility and a non-equilibrium century for grizzly bears in the southern Yellowstone ecosystem

    USGS Publications Warehouse

    Pyare, Sanjay; Cain, S.; Moody, D.; Schwartz, C.; Berger, J.

    2004-01-01

    Most large native carnivores have experienced range contractions due to conflicts with humans, although neither rates of spatial collapse nor expansion have been well characterised. In North America, the grizzly bear (Ursus arctos) once ranged from Mexico northward to Alaska, however its range in the continental USA has been reduced by 95-98%. Under the U. S. Endangered Species Act, the Yellowstone grizzly bear population has re-colonised habitats outside Yellowstone National Park. We analysed historical and current records, including data on radio-collared bears, (1) to evaluate changes in grizzly bear distribution in the southern Greater Yellowstone Ecosystem (GYE) over a 100-year period, (2) to utilise historical rates of re-colonisation to project future expansion trends and (3) to evaluate the reality of future expansion based on human limitations and land use. Analysis of distribution in 20-year increments reflects range reduction from south to north (1900-1940) and expansion to the south (1940-2000). Expansion was exponential and the area occupied by grizzly bears doubled approximately every 20 years. A complementary analysis of bear occurrence in Grand Teton National Park also suggests an unprecedented period of rapid expansion during the last 20-30 years. The grizzly bear population currently has re-occupied about 50% of the southern GYE. Based on assumptions of continued protection and ecological stasis, our model suggests total occupancy in 25 years. Alternatively, extrapolation of linear expansion rates from the period prior to protection suggests total occupancy could take > 100 years. Analyses of historical trends can be useful as a restoration tool because they enable a framework and timeline to be constructed to pre-emptively address the social challenges affecting future carnivore recovery. ?? 2004 The Zoological Society of London.

  20. Isle Royale National Park transportation study

    DOT National Transportation Integrated Search

    2015-04-02

    Isle Royale National Park is a remote archipelago located in western Lake Superior, fourteen miles from the closest mainland and 60 : miles from the parks headquarters in Houghton, MI. While visitors treasure the parks pristine environment and sol...

  1. Fire, red squirrels, whitebark pine, and Yellowstone grizzly bears

    USGS Publications Warehouse

    Podruzny, Shannon; Reinhart, Daniel P.; Mattson, David J.

    1999-01-01

    Whitebark pine (Pinus albicaulis) habitats are important to Yellowstone grizzly bears (Ursus arctos) as refugia and sources of food. Ecological relationships between whitebark pine, red squirrels (Tamiasciurus hudsonicus), and grizzly bear use of pine seeds on Mt. Washburn in Yellowstone National Park, Wyoming, were examined during 1984-86. Following large-scale fires in 1988, we repeated the study in 1995-97 to examine the effects of fire on availability of whitebark pine seed in red squirrel middens and on bear use of middens. Half of the total length of the original line transects burned. We found no red squirrel middens in burned areas. Post-fire linear-abundance (no./km) of active squirrel middens that were pooled from burned and unburned areas decreased 27% compared to pre-fire abundance, but increased in unburned portions of some habitat types. Mean size of active middens decreased 54% post-fire. Use of pine seeds by bears (linear abundance of excavated middens) in pooled burned and unburned habitats decreased by 64%, likely due to the combined effects of reduced midden availability and smaller midden size. We discourage any further large-scale losses of seed producing trees from management-prescribed fires or timber harvesting until the effects of fire on ecological relationships in the whitebark pine zone are better understood.

  2. 36 CFR 7.8 - Sequoia and Kings Canyon National Parks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Parks. 7.8 Section 7.8 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.8 Sequoia and Kings Canyon National Parks. (a) Dogs and cats. Dogs and cats are prohibited on any park land or trail except within one...

  3. 36 CFR 7.8 - Sequoia and Kings Canyon National Parks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Parks. 7.8 Section 7.8 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.8 Sequoia and Kings Canyon National Parks. (a) Dogs and cats. Dogs and cats are prohibited on any park land or trail except within one...

  4. 36 CFR 7.8 - Sequoia and Kings Canyon National Parks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Parks. 7.8 Section 7.8 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.8 Sequoia and Kings Canyon National Parks. (a) Dogs and cats. Dogs and cats are prohibited on any park land or trail except within one...

  5. 36 CFR 7.8 - Sequoia and Kings Canyon National Parks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Parks. 7.8 Section 7.8 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.8 Sequoia and Kings Canyon National Parks. (a) Dogs and cats. Dogs and cats are prohibited on any park land or trail except within one...

  6. 36 CFR 7.8 - Sequoia and Kings Canyon National Parks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Parks. 7.8 Section 7.8 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.8 Sequoia and Kings Canyon National Parks. (a) Dogs and cats. Dogs and cats are prohibited on any park land or trail except within one...

  7. 36 CFR 14.10 - Areas of National Park System.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Areas of National Park System. 14.10 Section 14.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.10 Areas of National Park System. (a) The Act of March 3...

  8. 36 CFR 14.10 - Areas of National Park System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Areas of National Park System. 14.10 Section 14.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.10 Areas of National Park System. (a) The Act of March 3...

  9. 36 CFR 14.10 - Areas of National Park System.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Areas of National Park System. 14.10 Section 14.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.10 Areas of National Park System. (a) The Act of March 3...

  10. 36 CFR 14.10 - Areas of National Park System.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Areas of National Park System. 14.10 Section 14.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.10 Areas of National Park System. (a) The Act of March 3...

  11. 36 CFR 14.10 - Areas of National Park System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Areas of National Park System. 14.10 Section 14.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Nature of Interest § 14.10 Areas of National Park System. (a) The Act of March 3...

  12. Wheeling and Dealing in the National Parks

    ERIC Educational Resources Information Center

    Howe, Sydney

    1973-01-01

    Motor vehicles and commercialism have generated serious problems within the national park system. A Conservation Foundation suggests new directions in management for the National Park Service. (Editors)

  13. USA: Glacier National Park, Biosphere Reserve and GLORIA Site

    USGS Publications Warehouse

    Fagre, Daniel B.; Lee, Cathy; Schaaf, Thomas; Simmonds, Paul

    2004-01-01

    The area now managed as Glacier National Park was first set aside as a Forest Reserve in 1897 and then designated as a national park in 1910, six years before a national park service was created to oversee the growing number of parks that the US Congress was establishing. Waterton National Park was created by Canada immediately north of the US–Canada border during the same period. In 1932, a joint lobbying effort by private citizens and groups convinced both the United States and Canada to establish the world’s first trans-boundary park to explicitly underscore and symbolize the neighbourly relationship between these two countries. This became the world’s first ‘peace’ park and was named Waterton–Glacier International Peace Park. The combined park is managed collaboratively on many issues but each national park is separately funded and operates under different national statutes and laws. It was, however, jointly named a Biosphere Reserve in 1976 and a World Heritage Site in 1995. There have been recent efforts to significantly increase the size of Waterton National Park by adding publicly owned forests on the western side of the continental divide in British Columbia, Canada. For the purposes of this chapter, I will emphasize the US portion of the Waterton-Glacier International Peace Park and refer to it as the Glacier Mountain Biosphere Reserve (MBR).

  14. Defoliation effects on the ectomycorrhizal community of a mixed Pinus contorta/Picea engelmannii stand in Yellowstone Park.

    PubMed

    Cullings, Kenneth W; Vogler, Detlev R; Parker, V Thomas; Makhija, Shilpa

    2001-05-01

    Molecular genetic methods were used to determine whether artificial defoliation affects ectomycorrhizal (EM) colonization, EM fungal species richness, and species composition in a mixed Pinus contorta (lodgepole pine)/Picea engelmannii (Engelmann spruce) forest in Yellowstone National Park, Wyoming. All lodgepole pines in three replicate plots were defoliated 50%, while Engelmann spruce were left untreated. This was done to determine how defoliation of one conifer species would affect EM mutualisms of both treated and neighboring, untreated conifers. The results indicated no significant effect on either EM colonization (142.0 EM tips/core in control plots and 142.4 in treatment plots) or species richness (5.0 species/core in controls and 4.5 in treatments). However, the relative abundance of EM of the two tree species shifted from a ratio of approximately 6:1 without treatment (lodgepole EM:spruce EM), to a near 1:1 ratio post-treatment. This shift may be responsible for maintaining total EM colonization and species richness following defoliation. In addition, EM species composition changed significantly post-defoliation; the system dominant, an Inocybe species, was rare in defoliation plots, while Agaricoid and Suilloid species that were rare in controls were dominant in treatments. Furthermore, species of EM fungi associating with both lodgepole pine and Engelmann spruce were affected, which indicates that changing the photosynthetic capacity of one species can affect mycorrhizal associations of neighboring non-defoliated trees.

  15. Welcome to the Manhattan Project National Historical Park!

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    2017-01-01

    The making of the Manhattan Project National Historical Park took more than five times longer than the Manhattan Project itself. The first efforts to preserve some of the Manhattan Project properties at Los Alamos began in 1999. Fifteen years later, Congress enacted legislation to create a Manhattan Project National Historical Park in late 2014. This session will recount the how the park came into being and what to expect when you visit the park at Los Alamos, NM, Oak Ridge, TN, and Hanford, WA. Welcome to the Manhattan Project National Historical Park!

  16. Delineating Spatial Patterns in the Yellowstone Hydrothermal System using Geothermometry

    NASA Astrophysics Data System (ADS)

    King, J.; Hurwitz, S.; Lowenstern, J. B.

    2015-12-01

    Yellowstone National Park is unmatched with regard to its quantity of active hydrothermal features. Origins of thermal waters in its geyser basins have been traced to mixing of a deep parent water with meteoric waters in shallow local reservoirs (Fournier, 1989). A mineral-solution equilibrium model was developed to calculate water-rock chemical re-equilibration temperatures in these shallow reservoirs. We use the GeoT program, which uses water composition data as input to calculate saturation indices of selected minerals; the "best-clustering" minerals are then statistically determined to infer reservoir temperatures (Spycher et al., 2013). We develop the method using water composition data from Heart Lake Geyser Basin (HLGB), for which both chemical and isotopic geothermometers predict a reservoir water temperature of 205°C ± 10°C (Lowenstern et al., 2012), and minerals found in drill cores in Yellowstone's geyser basins. We test the model for sensitivity to major element composition, pH, Total Inorganic Carbon (TIC) and selected minerals to optimize model parameters. Calculated temperatures are most accurate at pH values below 9.0, and closely match the equilibrium saturation indices of quartz, stilbite, microcline, and albite. The model is optimized with a TIC concentration that is consistent with the mass of diffuse CO2 flux in HLGB (Lowenstern et al., 2012). We then use water compositions from other thermal basins in Yellowstone in search of spatial variations in reservoir temperatures. We then compare the calculated temperatures with various SiO2 and cation geothermometers.

  17. The First National Study of Neighborhood Parks

    PubMed Central

    Cohen, Deborah A.; Han, Bing; Nagel, Catherine; Harnik, Peter; McKenzie, Thomas L.; Evenson, Kelly R.; Marsh, Terry; Williamson, Stephanie; Vaughan, Christine; Katta, Sweatha

    2016-01-01

    Introduction An extensive infrastructure of neighborhood parks supports leisure time physical activity in most U.S. cities; yet, most Americans do not meet national guidelines for physical activity. Neighborhood parks have never been assessed nationally to identify their role in physical activity. Methods Using a stratified multistage sampling strategy, a representative sample of 174 neighborhood parks in 25 major cities (population >100,000) across the U.S. was selected. Park use, park-based physical activity, and park conditions were observed during a typical week using systematic direct observation during spring/summer of 2014. Park administrators were interviewed to assess policies and practices. Data were analyzed in 2014–2015 using repeated-measure negative binomial regressions to estimate weekly park use and park-based physical activity. Results Nationwide, the average neighborhood park of 8.8 acres averaged 23 users/hour or an estimated 1,533 person hours of weekly use. Walking loops and gymnasia each generated 221 hours/week of moderate to vigorous physical activity. Seniors represented 4% of park users, but 20% of the general population. Parks were used less in low-income than in high-income neighborhoods, largely explained by fewer supervised activities and marketing/outreach efforts. Programming and marketing were associated with 37% and 63% more hours of moderate to vigorous physical activity/week in parks, respectively. Conclusions The findings establish national benchmarks for park use, which can guide future park investments and management practices to improve population health. Offering more programming, using marketing tools like banners and posters, and installing facilities like walking loops may help currently underutilized parks increase population physical activity. PMID:27209496

  18. Herpetofaunal inventories of the National Parks of South Florida and the Caribbean: Volume I. Everglades National Park

    USGS Publications Warehouse

    Rice, Kenneth G.; Waddle, J. Hardin; Crockett, Marquette E.; Jeffery, Brian M.; Percival, H. Frankin

    2004-01-01

    Amphibian declines and extinctions have been documented around the world, often in protected natural areas. Concern for this alarming trend has prompted the U.S. Geological Survey and the National Park Service to document all species of amphibians that occur within U.S. National Parks and to search for any signs that amphibians may be declining. This study, an inventory of amphibian species in Everglades National Park, was conducted during 2000 to 2003. The goals of the project were to create a georeferenced inventory of amphibian species, use new analytical techniques to estimate proportion of sites occupied by each species, look for any signs of amphibian decline (missing species, disease, die-offs, etc.), and to establish a protocol that could be used for future monitoring efforts. Several sampling methods were used to accomplish all of these goals. Visual encounter surveys and anuran vocalization surveys were conducted in all habitats throughout the park to estimate the proportion of sites or proportion of area occupied (PAO) by each amphibian species in each habitat. Opportunistic collections, as well as some drift fence and aquatic funnel trap data were used to augment the visual encounter methods for highly aquatic or cryptic species. A total of 562 visits to 118 sites were conducted for standard sampling alone, and 1788 individual amphibians and 413 reptiles were encountered. Data analysis was done in program PRESENCE to provide PAO estimates for each of the anuran species. All but one of the amphibian species thought to occur in Everglades National Park was detected during this project. That species, the Everglades dwarf siren (Pseudobranchus axanthus belli), is especially cryptic and probably geographically limited in its range in Everglades National Park. The other three species of salamanders and all of the anurans in the park were sampled adequately using standard herpetological sampling methods. PAO estimates were produced for each species of anuran

  19. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2003-2005

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.

    2008-01-01

    Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved

  20. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2006-2008

    USGS Publications Warehouse

    Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk

    2010-01-01

    Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the

  1. 36 CFR 6.8 - National Park Service solid waste responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false National Park Service solid waste responsibilities. 6.8 Section 6.8 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National...

  2. 36 CFR 6.8 - National Park Service solid waste responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false National Park Service solid waste responsibilities. 6.8 Section 6.8 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National...

  3. 36 CFR 6.8 - National Park Service solid waste responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false National Park Service solid waste responsibilities. 6.8 Section 6.8 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National...

  4. Marine Debris Composition on Remote Alaskan National Park Shores

    NASA Astrophysics Data System (ADS)

    Pister, B.; Kunisch, E.; Polasek, L.; Bering, J.; Kim, S.; Neitlich, P.; Nicolato, K.

    2016-02-01

    Marine debris is a pervasive problem along coastlines around the world. The National Park Service manages approximately 3500 miles of shoreline in Alaska's national park units combined. Most of these shores are remote, difficult and expensive to access. In 2011 the Tohoku earthquake hit Japan and generated a devastating tsunami that washed an estimated 150 million tons of debris out to sea. Much of the debris washed ashore in Alaska. The tsunami brought new attention to the long standing problem of marine debris. In 2015 the National Park Service mounted a two pronged effort to remove as much debris as possible from the shores of five park units in Alaska, and initiate education programs about the issue. Almost 11,000 kg of debris were removed from the shores of: Wrangell-St. Elias National Park, Kenai Fjords National Park, Katmai National Park, Bering Land Bridge National Preserve and Cape Krusenstern National Monument. Approximately 58% of the debris was plastic. Although much of the debris resembled items expected as a result of the tsunami, a great percentage of the debris was clearly from other sources, such as fishing and shipping. Preliminary analysis suggests that debris composition varied significantly between parks, possibly from locally-derived sources. This can influence how the National Park Service creates educational outreach programs that focus on marine debris prevention exercises.

  5. The Golden Gate National Parks Phytophthora response plan

    Treesearch

    Alisa Shor; John Doyle; Sharon Farrell; Alison Forrestel; Christa Conforti; Lew Stringer; Terri Thomas; Laura Lee Sims

    2017-01-01

    In partnership with the California Native Nursery Network, the three agencies of the Golden Gate National Parks (National Park Service, Golden Gate National Parks Conservancy, and Presidio Trust) hosted the Symposium, “Responding to an Expanding Threat: Exotic Phytophthora Species in Native Plant Nurseries, Restoration Plantings, and Wildlands” in...

  6. 75 FR 4417 - Wind Cave National Park, Custer County, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF THE INTERIOR Wind Cave National Park, Custer County, SD AGENCY: National Park... Final Environmental Impact Statement, Wind Cave National Park, Custer County, South Dakota. SUMMARY... Management Plan and Final Environmental Impact Statement (Plan), Wind Cave National Park, Custer County...

  7. Wild pig populations in the National Parks

    NASA Astrophysics Data System (ADS)

    Singer, Francis J.

    1981-05-01

    Populations of introduced European wild boar, feral pigs, and combinations of both types (all Sus scrola L.) inhabit thirteen areas in the National Park Service system. All parks have relatively stable populations, with the exception of Great Smoky Mountains National Park, which reported a rapidly expanding wild boar population. Suspected and documented impacts were apparently related to pig densities and sensitivity of the ecosystem; the three largest units with dense wild pig populations reported the most damage. Overall, wild pigs are a relatively minor problem for the Park Service; however, problems are severe in at least three parks, and there is potential for invasion of wild boars into several additional parks in the Appalachian Mountains. More specific information is needed on numbers of wild pigs and their impacts in the various parks.

  8. Everglades National Park Including Biscayne National Park. Activity Book.

    ERIC Educational Resources Information Center

    Ruehrwein, Dick

    Intended to help elementary school children learn about the resources of the Everglades and Biscayne National Parks, this activity book includes information, puzzles, games, and quizzes. The booklet deals with concepts related to: (1) the seasons; (2) fire ecology; (3) water; (4) fish; (5) mammals; (6) mosquitos; (7) birds; (8) venomous snakes;…

  9. Mercury in the National Parks: Current Status and Effects

    NASA Astrophysics Data System (ADS)

    Flanagan, C.; Blett, T. F.; Morris, K.

    2012-12-01

    Mercury is a globally distributed contaminant that can harm human and wildlife health, and threaten resources the National Park Service (NPS) is charged with protecting. Due in part to emissions and long-range transport from coal burning power plants, even remote national park environments receive mercury deposition from the atmosphere. Given the concern regarding mercury, there are and have been many mercury monitoring initiatives in national parks to determine the risk from mercury contamination. This includes the study of litter fall at Acadia National Park (Maine), snow at Mount Rainier National Park (Washington), heron eggs at Indiana Dunes National Lakeshore (Indiana), bat hair at Mammoth Cave National Park (Kentucky), and panthers at Everglades National Park (Florida). Wet deposition is also measured at 16 national parks as part of the National Atmospheric Deposition Network / Mercury Deposition Network. Results from these studies indicate that mercury deposition is increasing or is elevated in many national parks, and fish and other biota have been found to contain levels of mercury above toxicity thresholds for impacts to both humans and wildlife. Current research coordinated by the NPS Air Resources Division (ARD) in Denver, Colorado, on the effects of mercury includes broad-scale assessments of mercury in fish, dragonfly larvae, and songbirds across 30+ national parks. Fish provide the trophic link to human and wildlife health, dragonfly larvae can describe fine-scale differences in mercury levels, and songbirds shed light on the risk to terrestrial ecosystems. External project partners include the U.S. Geological Survey, University of Maine, and the Biodiversity Research Institute. In addition, the dragonfly project engages citizen scientists in the collection of dragonfly larvae, supporting the NPS Centennial Initiative by connecting people to parks and advancing the educational mission, and increasing public awareness about mercury impacts. Much of

  10. 76 FR 70483 - Gettysburg National Military Park Advisory Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... DEPARTMENT OF THE INTERIOR National Park Service [4400-SZM] Gettysburg National Military Park... notice sets forth the dates of April 19, 2012 and September 6, 2012 of the Gettysburg National Military... Gettysburg National Military Park Museum and Visitor Center, 1195 Baltimore Pike, Gettysburg, Pennsylvania...

  11. Modeling survival: application of the Andersen-Gill model to Yellowstone grizzly bears

    USGS Publications Warehouse

    Johnson, Christopher J.; Boyce, Mark S.; Schwartz, Charles C.; Haroldson, Mark A.

    2004-01-01

     Wildlife ecologists often use the Kaplan-Meier procedure or Cox proportional hazards model to estimate survival rates, distributions, and magnitude of risk factors. The Andersen-Gill formulation (A-G) of the Cox proportional hazards model has seen limited application to mark-resight data but has a number of advantages, including the ability to accommodate left-censored data, time-varying covariates, multiple events, and discontinuous intervals of risks. We introduce the A-G model including structure of data, interpretation of results, and assessment of assumptions. We then apply the model to 22 years of radiotelemetry data for grizzly bears (Ursus arctos) of the Greater Yellowstone Grizzly Bear Recovery Zone in Montana, Idaho, and Wyoming, USA. We used Akaike's Information Criterion (AICc) and multi-model inference to assess a number of potentially useful predictive models relative to explanatory covariates for demography, human disturbance, and habitat. Using the most parsimonious models, we generated risk ratios, hypothetical survival curves, and a map of the spatial distribution of high-risk areas across the recovery zone. Our results were in agreement with past studies of mortality factors for Yellowstone grizzly bears. Holding other covariates constant, mortality was highest for bears that were subjected to repeated management actions and inhabited areas with high road densities outside Yellowstone National Park. Hazard models developed with covariates descriptive of foraging habitats were not the most parsimonious, but they suggested that high-elevation areas offered lower risks of mortality when compared to agricultural areas.

  12. Suicides in national parks--United States, 2003-2009.

    PubMed

    2010-12-03

    In 2007, the year for which the most recent national data on fatalities are available, 34,598 suicides occurred in the United States (rate: 11.3 per 100,000 population); 79% were among males. In 2009, an estimated 374,486 visits to hospital emergency departments occurred for self-inflicted injury, of which approximately 262,000 (70%) could be attributed to suicidal behavior. The majority (58%) were among females. Most suicides (77%) occur in the home, but many occur in public places, including national parks. In addition to the loss of life, suicides consume park resources and staff time and can traumatize witnesses. To describe the characteristics of and trends in suicides in national parks, CDC and the National Park Service (NPS) analyzed reports of suicide events (suicides and attempted suicides) occurring in the parks during 2003-2009. During this 7-year span, 84 national parks reported 286 suicide events, an average of 41 events per year. Of the 286 events, 68% were fatal. The two most commonly used methods were firearms and falls. Consistent with national patterns, 83% of suicides were among males. A comprehensive, multicomponent approach is recommended to prevent suicide events, including enhanced training for park employees, site-specific barriers, and collaboration with communities.

  13. From confrontation to conservation: the Banff National Park experience

    Treesearch

    Douglas W. Hodgins; Jeffrey E. Green; Gail Harrison; Jillian Roulet

    2000-01-01

    Banff National Park, the flagship of the Canadian national park system, has become the focus of debate over park use versus protected area conservation. In response to the debate, the Minister of Canadian Heritage commissioned an independent review. The resulting Banff-Bow Valley Study report and Banff National Park Management Plan are landmark documents. The work was...

  14. 77 FR 9852 - Special Regulations; Areas of the National Park System, Cape Cod National Seashore

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... DEPARTMENT OF THE INTERIOR National Park Service 36 CFR Part 7 RIN 1024-AD88 Special Regulations; Areas of the National Park System, Cape Cod National Seashore AGENCY: National Park Service, Interior. ACTION: Final rule. SUMMARY: The National Park Service is amending special regulations for Cape Cod...

  15. 78 FR 44596 - Minor Boundary Revision at Yosemite National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-YOSE-13178; PS.SPWLA0028.00.1] Minor Boundary Revision at Yosemite National Park AGENCY: National Park Service, Interior. ACTION: Notification of Boundary Revision. SUMMARY: The boundary of Yosemite National Park is modified to include 80 acres...

  16. Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes.

    PubMed

    Creel, Scott; Spong, Goran; Sands, Jennifer L; Rotella, Jay; Zeigle, Janet; Joe, Lawrence; Murphy, Kerry M; Smith, Douglas

    2003-07-01

    Determining population sizes can be difficult, but is essential for conservation. By counting distinct microsatellite genotypes, DNA from noninvasive samples (hair, faeces) allows estimation of population size. Problems arise because genotypes from noninvasive samples are error-prone, but genotyping errors can be reduced by multiple polymerase chain reaction (PCR). For faecal genotypes from wolves in Yellowstone National Park, error rates varied substantially among samples, often above the 'worst-case threshold' suggested by simulation. Consequently, a substantial proportion of multilocus genotypes held one or more errors, despite multiple PCR. These genotyping errors created several genotypes per individual and caused overestimation (up to 5.5-fold) of population size. We propose a 'matching approach' to eliminate this overestimation bias.

  17. Restoration of fire in National Parks

    Treesearch

    David J. Parsons; Stephen J. Botti

    1996-01-01

    Over the past century, policies related to the management of fire in U.S. National Parks have evolved fiom efforts to eliminate all fire to recognition of the importance of restoring and maintaining fire as a natural ecological process. Prior to their formal designation by Congress, most National Parks had experienced thousands of years of periodic fire. Long-term...

  18. A Full Snow Season in Yellowstone: A Database of Restored Aqua Band 6

    NASA Technical Reports Server (NTRS)

    Gladkova, Irina; Grossberg, Michael; Bonev, George; Romanov, Peter; Riggs, George; Hall, Dorothy

    2013-01-01

    The algorithms for estimating snow extent for the Moderate Resolution Imaging Spectroradiometer (MODIS) optimally use the 1.6- m channel which is unavailable for MODIS on Aqua due to detector damage. As a test bed to demonstrate that Aqua band 6 can be restored, we chose the area surrounding Yellowstone and Grand Teton national parks. In such rugged and difficult-to-access terrain, satellite images are particularly important for providing an estimation of snow-cover extent. For the full 2010-2011 snow season covering the Yellowstone region, we have used quantitative image restoration to create a database of restored Aqua band 6. The database includes restored radiances, normalized vegetation index, normalized snow index, thermal data, and band-6-based snow-map products. The restored Aqua-band-6 data have also been regridded and combined with Terra data to produce a snow-cover map that utilizes both Terra and Aqua snow maps. Using this database, we show that the restored Aqua-band-6-based snow-cover extent has a comparable performance with respect to ground stations to the one based on Terra. The result of a restored band 6 from Aqua is that we have an additional band-6 image of the Yellowstone region each day. This image can be used to mitigate cloud occlusion, using the same algorithms used for band 6 on Terra. We show an application of this database of restored band-6 images to illustrate the value of creating a cloud gap filling using the National Aeronautics and Space Administration s operational cloud masks and data from both Aqua and Terra.

  19. Recreational injuries in Washington state national parks.

    PubMed

    Stephens, Bradford D; Diekema, Douglas S; Klein, Eileen J

    2005-01-01

    The objectives of this study were to identify the number and types of recreational injuries sustained by visitors to Mount Rainier National Park and Olympic National Park in Washington State and to compare the nature of injuries sustained by children compared with adults. We retrospectively reviewed case incident reports obtained by rangers in Mount Rainer National Park and Olympic National Park between 1997 and 2001. Data collected included victim age, gender, date of injury, activity preinjury, type of injury, and mechanism of injury. There were 535 cases of recreational wilderness injuries (including 19 total deaths), yielding a rate of 22.4 injuries per million visits. The mean age of injury victims was 34 years. Males were more likely to sustain injury than were females (59% vs 41%). Most injuries occurred during summer months between noon and 6:00 PM, and 90% occurred during daylight hours. The most common preinjury activities included hiking (55%), winter sports (15%), and mountaineering (12%), and the most common types of injuries included sprains, strains and soft tissue injuries (28%), fractures or dislocations (26%), and lacerations (15%). A total of 121 (23%) of the injuries occurred in children (<18 years of age). There were 19 deaths in the 2 national parks (18 men, 1 woman); all victims were adults. Hiking (58%) and mountaineering (26%) were the most common activities at the time of death. Mechanism of death included falls (37%), medical (eg, myocardial infarction) (21%), drowning (5%), and suicide (5%). The most common type of injury was soft tissue injury, and injuries occurred most commonly while hiking, during daylight hours, and in the summer. Preinjury activities and types of injuries were different in children compared with adults. Knowledge of how and when injuries occur in national parks can assist in determining what resources are needed to help provide a safer environment for park visitors. This study may also aid prevention strategies in

  20. Inventory of Anchialine Pools in Hawaii's National Parks

    USGS Publications Warehouse

    Foote, David

    2005-01-01

    BACKGROUND Anchialine (?near the sea?) pools are rare and localized brackish waters along coastal lava flows that exhibit tidal fluctuations without a surface connection with the ocean (Fig. 1). In Hawai`i, these pools were frequently excavated or otherwise modified by Hawaiians to serve as sources of drinking water, baths and fish ponds. National Parks in Hawai`i possess the full spectrum of pool types, from walled fish ponds to undisturbed pools in collapsed lava tubes, cracks and caves. Pools contain relatively rare and unique fauna threatened primarily by invasive species and habitat loss. In collaboration with the National Park Service?s Inventory and Monitoring Program, the U.S. Geological Survey?s Pacific Island Ecosystems Research Center undertook inventories of these unique ecosystems in two National Parks on the island of Hawai`i: Hawai`i Volcanoes National Park and Kaloko-Honokohau National Historical Park.