Sample records for yersinia outer membrane

  1. Electrophoretic characterisation of the outer membrane proteins of Yersinia pestis isolated in north-east Brazil.

    PubMed Central

    Abath, F. G.; Almeida, A. M.; Ferreira, L. C.

    1989-01-01

    The outer membrane proteins of 38 Yersinia pestis isolates from all known plague foci of north-east Brazil were analysed by SDS-PAGE. Approximately 20 bands were consistently found in all strains analysed and 11 were selected for comparative studies. Although qualitative differences among the electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates were not observed, quantitative alterations were clearly noted for most of these proteins. No particular quantitative alteration of the electrophoretic profile of outer membrane proteins could be associated with the period of isolation and geographic origin of the isolates. The 64 kDa outer membrane protein was significantly expressed in higher amounts among Y. pestis strains isolated from a recent plague outbreak. The possible use of electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates as a tool for epidemiological studies and for the analysis of virulence determinants is discussed. Images Fig. 2 PMID:2606164

  2. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis.

    PubMed

    Chen, Yuhuang; Duan, Ran; Li, Xu; Li, Kewei; Liang, Junrong; Liu, Chang; Qiu, Haiyan; Xiao, Yuchun; Jing, Huaiqi; Wang, Xin

    2015-12-01

    The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level and at the amino acid sequence level. The identity of ompA sequences for 262 Y. pestis strains, 134 Y. pseudotuberculosis strains and 219 pathogenic Y. enterocolitica strains are 100%, 98.8% and 97.7% similar. The main pattern of OmpA of pathogenic Yersinia are 86.2% and 88.8% identical at the nucleotide and amino acid sequence levels, respectively. Immunological analysis showed the immunogenicity of each OmpA and cross-immunogenicity of OmpA for pathogenic Yersinia where OmpA may be a vaccine candidate for Y. pestis and other pathogenic Yersinia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Immunomodulatory Yersinia outer proteins (Yops)–useful tools for bacteria and humans alike

    PubMed Central

    Grabowski, Benjamin; Schmidt, M. Alexander; Rüter, Christian

    2017-01-01

    ABSTRACT Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo – independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) – with the prototype being the T3SS effector protein YopM – established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics. PMID:28296562

  4. Protective efficacy of recombinant Yersinia outer proteins against bubonic plague caused by encapsulated and nonencapsulated Yersinia pestis.

    PubMed

    Andrews, G P; Strachan, S T; Benner, G E; Sample, A K; Anderson, G W; Adamovicz, J J; Welkos, S L; Pullen, J K; Friedlander, A M

    1999-03-01

    To evaluate the role of Yersinia outer proteins (Yops) in conferring protective immunity against plague, six yop loci from Yersinia pestis were individually amplified by PCR, cloned, and expressed in Escherichia coli. The recombinant proteins were purified and injected into mice. Most Yop-vaccinated animals succumbed to infection with either wild-type encapsulated Y. pestis or a virulent, nonencapsulated isogenic variant. Vaccination with YpkA significantly prolonged mean survival time but did not increase overall survival of mice infected with the nonencapsulated strain. The only significant protection against death was observed in YopD-vaccinated mice challenged with the nonencapsulated strain.

  5. Structural Insights into Ail-Mediated Adhesion in Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J.

    2012-01-30

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin,more » and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.« less

  6. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine.

    PubMed

    Erova, Tatiana E; Rosenzweig, Jason A; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C; Kirtley, Michelle L; van Lier, Christina J; Telepnev, Maxim V; Motin, Vladimir L; Chopra, Ashok K

    2013-02-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.

  7. Evaluation of Protective Potential of Yersinia pestis Outer Membrane Protein Antigens as Possible Candidates for a New-Generation Recombinant Plague Vaccine

    PubMed Central

    Erova, Tatiana E.; Rosenzweig, Jason A.; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C.; Kirtley, Michelle L.; van Lier, Christina J.; Telepnev, Maxim V.; Motin, Vladimir L.

    2013-01-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1− strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1− mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1− CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains. PMID:23239803

  8. Acting on Actin: Rac and Rho Played by Yersinia.

    PubMed

    Aepfelbacher, Martin; Wolters, Manuel

    2017-01-01

    Pathogenic bacteria of the genus Yersinia include Y. pestis-the agent of plaque-and two enteropathogens, Y. enterocolitica, and Y. pseudotuberculosis. These pathogens have developed an array of virulence factors aimed at manipulating Rho GTP-binding proteins and the actin cytoskeleton in host cells to cross the intestinal barrier and suppress the immune system. Yersinia virulence factors include outer membrane proteins triggering cell invasion by binding to integrins, effector proteins injected into host cells to manipulate Rho protein functions and a Rho protein-activating exotoxin. Here, we present an overview of how Yersinia and host factors are integrated in a regulatory network that orchestrates the subversion of host defense.

  9. Novel colicin Fy of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import, and cell membrane pore formation.

    PubMed

    Bosák, Juraj; Laiblová, Petra; Smarda, Jan; Dedicová, Daniela; Smajs, David

    2012-04-01

    A novel colicin type, designated colicin Fy, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin Fy was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin Fy activity gene (cfyA) and the colicin Fy immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin Fy was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin Fy-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin Fy receptor molecule. Introduction of the yiuR gene into the colicin Fy-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin Fy. In contrast, the colicin Fy-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin Fy only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins Fy and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin Fy and colicin Ib producers suggest a common evolutionary origin of the colicin Fy-YiuR and colicin Ib-Cir systems.

  10. Novel Colicin FY of Yersinia frederiksenii Inhibits Pathogenic Yersinia Strains via YiuR-Mediated Reception, TonB Import, and Cell Membrane Pore Formation

    PubMed Central

    Bosák, Juraj; Laiblová, Petra; Šmarda, Jan; Dědičová, Daniela

    2012-01-01

    A novel colicin type, designated colicin FY, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin FY was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin FY activity gene (cfyA) and the colicin FY immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin FY was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin FY-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin FY receptor molecule. Introduction of the yiuR gene into the colicin FY-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin FY. In contrast, the colicin FY-resistant strain Escherichia coli TOP10F′ acquired susceptibility to colicin FY only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins FY and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin FY and colicin Ib producers suggest a common evolutionary origin of the colicin FY-YiuR and colicin Ib-Cir systems. PMID:22343298

  11. Seroepidemiological survey of pathogenic Yersinia in breeding squirrel monkeys in Japan.

    PubMed

    Iwata, Taketoshi; Une, Yumi; Lee, Ken-ichi; Nakamura, Shin-ichi; Taniguchi, Takahide; Hayashidani, Hideki

    2010-08-01

    To investigate the prevalence of antibodies to pathogenic Yersinia in breeding squirrel monkeys, the serum samples of 252 squirrel monkeys from 9 zoological gardens in Japan were tested by ELISA using plasmid-encoded Yersinia outer membrane protein (Yops) as the antigen. The cutoff value was calculated by using the serum samples of the squirrel monkeys from Suriname, where no prevalence of pathogenic Yersinia have been reported. According to the cutoff value, 164 of 252 (65.1%) squirrel monkeys were considered positive against pathogenic Yersinia. These positive monkeys belonged to 8 of the 9 zoological gardens, and the percentage of the seropositive monkeys ranged from 22.2 to 89.4%. Furthermore, in one zoological garden, the positive rate of the squirrel monkeys which were over 1 year old (95.7%) was significantly higher than those which were under 1 year old (23.3%). These results suggested that pathogenic Yersinia is highly prevalent among breeding monkeys in Japan.

  12. In situ structural analysis of the Yersinia enterocolitica injectisome

    PubMed Central

    Kudryashev, Mikhail; Stenta, Marco; Schmelz, Stefan; Amstutz, Marlise; Wiesand, Ulrich; Castaño-Díez, Daniel; Degiacomi, Matteo T; Münnich, Stefan; Bleck, Christopher KE; Kowal, Julia; Diepold, Andreas; Heinz, Dirk W; Dal Peraro, Matteo; Cornelis, Guy R; Stahlberg, Henning

    2013-01-01

    Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to inject effector proteins into eukaryotic host cells, a process called type III secretion. Here we present the first three-dimensional structure of Yersinia enterocolitica and Shigella flexneri injectisomes in situ and the first structural analysis of the Yersinia injectisome. Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length variations of 20%. The in situ structures of the Y. enterocolitica and S. flexneri injectisomes had similar dimensions and were significantly longer than the isolated structures of related injectisomes. The crystal structure of the inner membrane injectisome component YscD appeared elongated compared to a homologous protein, and molecular dynamics simulations documented its elongation elasticity. The ring-shaped secretin YscC at the outer membrane was stretched by 30–40% in situ, compared to its isolated liposome-embedded conformation. We suggest that elasticity is critical for some two-membrane spanning protein complexes to cope with variations in the intermembrane distance. DOI: http://dx.doi.org/10.7554/eLife.00792.001 PMID:23908767

  13. Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Matthew A.; Cappuccio, Jenny A.; Blanchette, Craig D.

    Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteinsmore » as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. Ultimately, these studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.« less

  14. Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles

    DOE PAGES

    Coleman, Matthew A.; Cappuccio, Jenny A.; Blanchette, Craig D.; ...

    2016-03-25

    Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteinsmore » as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. Ultimately, these studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.« less

  15. Psp Stress Response Proteins Form a Complex with Mislocalized Secretins in the Yersinia enterocolitica Cytoplasmic Membrane.

    PubMed

    Srivastava, Disha; Moumene, Amal; Flores-Kim, Josué; Darwin, Andrew J

    2017-09-12

    The bacterial phage shock protein system (Psp) is a conserved extracytoplasmic stress response that is essential for the virulence of some pathogens, including Yersinia enterocolitica It is induced by events that can compromise inner membrane (IM) integrity, including the mislocalization of outer membrane pore-forming proteins called secretins. In the absence of the Psp system, secretin mislocalization permeabilizes the IM and causes rapid cell death. The Psp proteins PspB and PspC form an integral IM complex with two independent roles. First, the PspBC complex is required to activate the Psp response in response to some inducing triggers, including a mislocalized secretin. Second, PspBC are sufficient to counteract mislocalized secretin toxicity. Remarkably, secretin mislocalization into the IM induces psp gene expression without significantly affecting the expression of any other genes. Furthermore, psp null strains are killed by mislocalized secretins, whereas no other null mutants have been found to share this specific secretin sensitivity. This suggests an exquisitely specific relationship between secretins and the Psp system, but there has been no mechanism described to explain this. In this study, we addressed this deficiency by using a coimmunoprecipitation approach to show that the Psp proteins form a specific complex with mislocalized secretins in the Y. enterocolitica IM. Importantly, analysis of different secretin mutant proteins also revealed that this interaction is absolutely dependent on a secretin adopting a multimeric state. Therefore, the Psp system has evolved with the ability to detect and detoxify dangerous secretin multimers while ignoring the presence of innocuous monomers. IMPORTANCE The phage shock protein (Psp) response has been linked to important phenotypes in diverse bacteria, including those related to antibiotic resistance, biofilm formation, and virulence. This has generated widespread interest in understanding various aspects of

  16. Yersinia pestis Ail: multiple roles of a single protein

    PubMed Central

    Kolodziejek, Anna M.; Hovde, Carolyn J.; Minnich, Scott A.

    2012-01-01

    Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen. PMID:22919692

  17. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles.

    PubMed

    Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner

    2010-10-01

    Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.

  18. Unique activity spectrum of colicin FY: all 110 characterized Yersinia enterocolitica isolates were colicin FY susceptible.

    PubMed

    Bosák, Juraj; Micenková, Lenka; Vrba, Martin; Ševčíková, Alena; Dědičová, Daniela; Garzetti, Debora; Šmajs, David

    2013-01-01

    Colicin FY is a plasmid encoded toxin that recognizes a yersinia-specific outer membrane protein (YiuR) as a receptor molecule. We have previously shown that the activity spectrum of colicin FY comprises strains of the genus Yersinia. In this study, we analyzed the activity of colicin FY against 110 Yersinia enterocolitica isolates differing in geographical origin and source. All isolates were characterized through analysis of 16S rRNA genes, serotyping, biotyping, restriction profiling of genomic DNA, detection of virulence markers and susceptibility to antibiotics. This confirmed the broad variability of the collection, in which all 110 Y. enterocolitica isolates, representing 77 various strains, were inhibited by colicin FY. Although isolates showed variable levels of susceptibility to colicin FY, it was not associated with any strain characteristic. The universal susceptibility of Y. enterocolitica strains to colicin FY together with the absence of activity towards strains outside the Yersinia genus suggests potential therapeutic applications for colicin FY.

  19. Unique Activity Spectrum of Colicin FY: All 110 Characterized Yersinia enterocolitica Isolates Were Colicin FY Susceptible

    PubMed Central

    Bosák, Juraj; Micenková, Lenka; Vrba, Martin; Ševčíková, Alena; Dědičová, Daniela; Garzetti, Debora; Šmajs, David

    2013-01-01

    Colicin FY is a plasmid encoded toxin that recognizes a yersinia-specific outer membrane protein (YiuR) as a receptor molecule. We have previously shown that the activity spectrum of colicin FY comprises strains of the genus Yersinia. In this study, we analyzed the activity of colicin FY against 110 Yersinia enterocolitica isolates differing in geographical origin and source. All isolates were characterized through analysis of 16S rRNA genes, serotyping, biotyping, restriction profiling of genomic DNA, detection of virulence markers and susceptibility to antibiotics. This confirmed the broad variability of the collection, in which all 110 Y. enterocolitica isolates, representing 77 various strains, were inhibited by colicin FY. Although isolates showed variable levels of susceptibility to colicin FY, it was not associated with any strain characteristic. The universal susceptibility of Y. enterocolitica strains to colicin FY together with the absence of activity towards strains outside the Yersinia genus suggests potential therapeutic applications for colicin FY. PMID:24339971

  20. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  1. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  2. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.

    PubMed

    Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale

    2016-12-01

    Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  4. Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein

    PubMed Central

    Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-01-01

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176

  5. Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein.

    PubMed

    Weise, Christoph F; Login, Frédéric H; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-10-21

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.

  6. Yersinia adhesin A (YadA)--beauty & beast.

    PubMed

    Mühlenkamp, Melanie; Oberhettinger, Philipp; Leo, Jack C; Linke, Dirk; Schütz, Monika S

    2015-02-01

    The trimeric autotransporter adhesin Yersinia adhesin A is the prototype of the type Vc secretion systems. It is expressed by enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis strains, but not by Yersinia pestis. A characteristic trait of YadA is its modular composition and trimeric nature. YadA consists of an N-terminal passenger domain which is exposed on the bacterial cell surface. The translocation of this passenger onto the surface is facilitated by a C-terminal β-barrel domain which concomitantly anchors YadA into the outer membrane with three YadA monomers contributing to the formation of a single β-barrel. In Y. enterocolitica, but not Y. pseudotuberculosis, YadA is a decisive virulence factor and its deletion renders the bacteria virtually avirulent in mouse models of infection. This striking importance of YadA in infection may derive from its manifold functions in host cell interaction. Presumably the most important function of YadA is that it mediates adhesion to extracellular matrix components of eukaryotic host cells. Only tight adhesion allows for the injection of "anti-host" effector proteins via a type III secretion system into the host cell cytosol. These effector proteins enable Yersinia to subvert the host immune system in order to replicate and establish infection. YadA is also essential for the survival of Y. enterocolitica upon contact with serum, an important immune-evasion mechanism called serum resistance. To this end, YadA interacts with several components of the host complement system, the first line of immune defense. This review will summarize recent findings about the structure and biogenesis of YadA and its interactions with the host complement system. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Assembly of β-barrel proteins in the mitochondrial outer membrane.

    PubMed

    Höhr, Alexandra I C; Straub, Sebastian P; Warscheid, Bettina; Becker, Thomas; Wiedemann, Nils

    2015-01-01

    Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ultrasonic isolation of the outer membrane of Escherichia coli with autodisplayed Z-domains.

    PubMed

    Bong, Ji-Hong; Yoo, Gu; Park, Min; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2014-11-01

    The outer membrane of Escherichia coli was previously isolated as a liposome-like outer membrane particle using an enzymatic treatment for lysozymes; for immunoassays, the particles were subsequently layered on solid supports via hydrophobic interactions. This work presents an enzyme-free isolation method for the E. coli outer membrane with autodisplayed Z-domains using ultrasonication. First, the properties of the outer membrane particle, such as the particle size, zeta potential, and total protein, were compared with the properties of particles obtained using the previous preparation methods. Compared with the conventional isolation method using an enzyme treatment, the ultrasonic method exhibited a higher efficiency at isolating the outer membrane and less contamination by cytosolic proteins. The isolated outer membrane particles were layered on a gold surface, and the roughness and thickness of the layered outer membrane layers were subsequently analyzed using AFM analysis. Finally, the antibody-binding activity of two outer membrane layers with autodisplayed Z-domains created from particles that were isolated using the enzymatic and ultrasonic isolation methods was measured using fluorescein-labeled antibody as a model analyte, and the activity of the outer membrane layer that was isolated from the ultrasonic method was estimated to be more than 20% higher than that from the conventional enzymatic method. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Drug discovery strategies to outer membrane targets in Gram-negative pathogens.

    PubMed

    Brown, Dean G

    2016-12-15

    This review will cover selected recent examples of drug discovery strategies which target the outer membrane (OM) of Gram-negative bacteria either by disruption of outer membrane function or by inhibition of essential gene products necessary for outer membrane assembly. Significant advances in pathway elucidation, structural biology and molecular inhibitor designs have created new opportunities for drug discovery within this target-class space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Periplasmic quality control in biogenesis of outer membrane proteins.

    PubMed

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  11. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane.

    PubMed

    Wenz, Lena-Sophie; Opaliński, Lukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-06-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane. © 2014 The Authors.

  12. A Deficiency in Arabinogalactan Biosynthesis Affects Corynebacterium glutamicum Mycolate Outer Membrane Stability▿

    PubMed Central

    Bou Raad, Roland; Méniche, Xavier; de Sousa-d'Auria, Celia; Chami, Mohamed; Salmeron, Christophe; Tropis, Marielle; Labarre, Cecile; Daffé, Mamadou; Houssin, Christine; Bayan, Nicolas

    2010-01-01

    Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal β(1 → 2)-linked Araf residues. Here we show that ΔaftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a ΔaftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the ΔaftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum. PMID:20363942

  13. Cardiolipin Synthesis and Outer Membrane Localization Are Required for Shigella flexneri Virulence.

    PubMed

    Rossi, Rachael M; Yum, Lauren; Agaisse, Hervé; Payne, Shelley M

    2017-08-29

    Cardiolipin, an anionic phospholipid that resides at the poles of the inner and outer membranes, is synthesized primarily by the putative cardiolipin synthase ClsA in Shigella flexneri An S. flexneri clsA mutant had no cardiolipin detected within its membrane, grew normally in vitro , and invaded cultured epithelial cells, but it failed to form plaques in epithelial cell monolayers, indicating that cardiolipin is required for virulence. The clsA mutant was initially motile within the host cell cytoplasm but formed filaments and lost motility during replication and failed to spread efficiently to neighboring cells. Mutation of pbgA , which encodes the transporter for cardiolipin from the inner membrane to the outer membrane, also resulted in loss of plaque formation. The S. flexneri pbgA mutant had normal levels of cardiolipin in the inner membrane, but no cardiolipin was detected in the outer membrane. The pbgA mutant invaded and replicated normally within cultured epithelial cells but failed to localize the actin polymerization protein IcsA properly on the bacterial surface and was unable to spread to neighboring cells. The clsA mutant, but not the pbgA mutant, had increased phosphatidylglycerol in the outer membrane. This appeared to compensate partially for the loss of cardiolipin in the outer membrane, allowing some IcsA localization in the outer membrane of the clsA mutant. We propose a dual function for cardiolipin in S. flexneri pathogenesis. In the inner membrane, cardiolipin is essential for proper cell division during intracellular growth. In the outer membrane, cardiolipin facilitates proper presentation of IcsA on the bacterial surface. IMPORTANCE The human pathogen Shigella flexneri causes bacterial dysentery by invading colonic epithelial cells, rapidly multiplying within their cytoplasm, and then spreading intercellularly to neighboring cells. Worldwide, Shigella spp. infect hundreds of millions of people annually, with fatality rates up to 15

  14. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    PubMed

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  15. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  16. Outer Membrane Targeting of Passenger Proteins by the Vacuolating Cytotoxin Autotransporter of Helicobacter pylori

    PubMed Central

    Fischer, Wolfgang; Buhrdorf, Renate; Gerland, Elke; Haas, Rainer

    2001-01-01

    Helicobacter pylori produces a number of proteins associated with the outer membrane, including adhesins and the vacuolating cytotoxin. These proteins are supposed to integrate into the outer membrane by β-barrel structures, characteristic of the family of autotransporter proteins. By using the SOMPES (shuttle vector-based outer membrane protein expression) system for outer membrane protein production, we were able to functionally express in H. pylori the cholera toxin B subunit genetically fused to the C-terminal VacA domain. We demonstrate that the fusion protein is translocated to the H. pylori outer membrane and that the CtxB domain is exposed on the H. pylori surface. Thus, we provide the first experimental evidence that the C-terminal β-domain of VacA can transport a foreign passenger protein to the H. pylori surface and hence acts as a functional autotransporter. PMID:11598049

  17. Biologically active ligands for yersinia outer protein H (YopH): feature based pharmacophore screening, docking and molecular dynamics studies.

    PubMed

    Tamilvanan, Thangaraju; Hopper, Waheeta

    2014-01-01

    Yersinia pestis, a Gram negative bacillus, spreads via lymphatic to lymph nodes and to all organs through the bloodstream, causing plague. Yersinia outer protein H (YopH) is one of the important effector proteins, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse sets of YopH inhibitors, which would be useful for designing of potential antitoxin. In this study, we have selected 60 biologically active inhibitors of YopH to perform Ligand based pharmacophore study to elucidate the important structural features responsible for biological activity. Pharmacophore model demonstrated the importance of two acceptors, one hydrophobic and two aromatic features toward the biological activity. Based on these features, different databases were screened to identify novel compounds and these ligands were subjected for docking, ADME properties and Binding energy prediction. Post docking validation was performed using molecular dynamics simulation for selected ligands to calculate the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF). The ligands, ASN03270114, Mol_252138, Mol_31073 and ZINC04237078 may act as inhibitors against YopH of Y. pestis.

  18. Iodination of Escherichia coli with chloramine T: selective labeling of the outer membrane lipoprotein.

    PubMed Central

    Munford, R S; Gotschlich, E C

    1977-01-01

    Iodination of Escherichia coli cells with chloramine T preferentially labels the free and murein-bound forms of the outer membrane lipoprotein. Iodination for 15 s at 15 degrees C labels the two forms of the lipoprotein almost exclusively, whereas iodination for 60 s at 25 degrees C also labels the other major outer membrane proteins. Chloramine T iodination is a rapid, simple technique for labeling the outer membrane lipoprotein. PMID:400793

  19. The membrane current of single rod outer segments.

    PubMed

    Baylor, D A; Lamb, T D; Yau, K W

    1979-03-01

    1. Outer segments of individual rods in the retina of the toad, Bufo marinus, were drawn into a glass pipette to record the membrane current. 2. Light flashes evoked transient outward currents. The peak response amplitude was related to flash intensity by a Michaelis equation with half-saturating intensity about 1 photon mum-2. 3. The saturating response amplitude ranged up to 27 pA and corresponded closely to complete suppression of the steady inward current present in darkness. 4. For a given cell the saturating response amplitude varied linearly with the length of outer segment within the pipette. This is consistent with a uniform density of light-sensitive channels and negligible gradient of membrane potential along the outer segment. 5. Responses to bright flashes never showed the relaxation from an initial peak seen previously in intracellular voltage recordings, suggesting that the conductance change responsible for the relaxation does not occur in the outer segment. 6. Responses to local illumination of only the recorded outer segment were very similar to those obtained with diffuse light at the same intensity, indicating that peripheral rods made little contribution to the responses. 7. The spectral sensitivity of 'red' rods was consistent with a retinal1-based pigment with lambda max = 498 +/- 2 nm. 8. The kinetics of the response were consistent with four stages of delay affecting action of the internal transmitter. Responses were faster at the basal end of the outer segment than at the distal tip. 9. Background light reduced the sensitivity to a superposed dim test flash and shortened the time course of the response, indicating that adapting light modifies the kinetics and gain of the transduction mechanism within the outer segment. 10. Responses to dim lights exhibited pronounced fluctuations which are attributed in the succeeding paper (Baylor, Lamb & Yau, 1979) to the quantal nature of light.

  20. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  1. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria*

    PubMed Central

    Wang, Yan; Wang, Rui; Jin, Feng; Liu, Yang; Yu, Jiayu; Fu, Xinmiao; Chang, Zengyi

    2016-01-01

    β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis. PMID:27298319

  2. The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles

    PubMed Central

    Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  3. A dominant sulfhydryl-containing protein in the outer membrane of Neisseria gonorrhoeae.

    PubMed Central

    Norrod, E P; Browne, S L; Feldweg, A; Leonard, J

    1993-01-01

    By using a method that labels sulfhydryl-containing proteins in situ, we have detected a major outer membrane protein of Neisseria gonorrhoeae at 41 kDa. A protein of this molecular mass has not previously been shown to be a major outer membrane protein in gonococci. In addition, a minor protein rich in cysteinyl residues was detected at 31.5 kDa. Images PMID:8432710

  4. Catalytically active Yersinia outer protein P induces cleavage of RIP and caspase-8 at the level of the DISC independently of death receptors in dendritic cells.

    PubMed

    Gröbner, Sabine; Adkins, Irena; Schulz, Sebastian; Richter, Kathleen; Borgmann, Stefan; Wesselborg, Sebastian; Ruckdeschel, Klaus; Micheau, Olivier; Autenrieth, Ingo B

    2007-10-01

    Yersinia outer protein P (YopP) is injected by Y. enterocolitica into host cells thereby inducing apoptotic and necrosis-like cell death in dendritic cells (DC). Here we show the pathways involved in DC death caused by the catalytic activity of YopP. Infection with Yersinia enterocolitica, translocating catalytically active YopP into DC, triggered procaspase-8 cleavage and c-FLIPL degradation. YopP-dependent caspase-8 activation was, however, not mediated by tumor necrosis factor (TNF) receptor family members since the expression of both CD95/Fas/APO-1 and TRAIL-R2 on DC was low, and DC were resistant to apoptosis induced by agonistic anti-CD95 antibodies or TNF-related apoptosis-inducing ligand (TRAIL). Moreover, DC from TNF-Rp55-/- mice were not protected against YopP-induced cell death demonstrating that TNF-R1 is also not involved in this process. Activation of caspase-8 was further investigated by coimmunoprecitation of FADD from Yersinia-infected DC. We found that both cleaved caspase-8 and receptor interacting protein 1 (RIP1) were associated with the Fas-associated death domain (FADD) indicating the formation of an atypical death-inducing signaling complex (DISC). Furthermore, degradation of RIP mediated by the Hsp90 inhibitor geldanamycin significantly impaired YopP-induced cell death. Altogether our findings indicate that Yersinia-induced DC death is independent of death domain containing receptors, but mediated by RIP and caspase-8 at the level of DISC.

  5. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, H.D.; Kromhout, J.; Schachter, J.

    1981-03-01

    Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtainedmore » after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms.« less

  6. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids

    PubMed Central

    Kim, JiHyun; Huang, Zhen; St. Clair, Johnna R.; Brown, Deborah A.; London, Erwin

    2016-01-01

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70–80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids. PMID:27872310

  7. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    PubMed

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  8. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria.

    PubMed

    Majewski, Dorothy D; Worrall, Liam J; Strynadka, Natalie Cj

    2018-03-23

    The acquisition and evolution of customized and often highly complex secretion systems allows Gram-negative bacteria to efficiently passage large macromolecules across both inner and outer membranes and, in some cases, that of the infected host. Essential to the virulence and ultimate survival of the many pathogenic species that encode them, secretion systems export a wide variety of effector proteins and DNA as well as the downstream extracellular filaments of the secretion apparatus themselves. Although these customized secretion systems differ in their cytosolic and inner membrane components, several commonly rely on the secretin family of giant pores to allow these large substrates to traverse the outer membrane. Recently, several near-atomic resolution cryo-EM secretin structures have unveiled the first insights into the unique structural motifs required for outer membrane localization, assembly, hallmark ultrastable nature, spontaneous membrane insertion, and mechanism of action-including the requisite central gating needed to prevent deleterious passage of periplasmic contents to the extracellular space. Copyright © 2018. Published by Elsevier Ltd.

  9. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.

  10. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions

    PubMed Central

    Schwechheimer, Carmen; Kuehn, Meta J.

    2017-01-01

    Outer-membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content and are commonly produced by Gram-negative bacteria. The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, enabling bacterial survival during stress conditions and regulating microbial interactions within bacterial communities. Additionally, because of this functional versatility, researchers have begun to explore OMVs as a platform for bioengineering applications. In this Review, we discuss recent advances in the study of OMVs, focusing on new insights into the mechanisms of biogenesis and the functions of these vesicles. PMID:26373371

  11. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria.

    PubMed

    Wang, Yan; Wang, Rui; Jin, Feng; Liu, Yang; Yu, Jiayu; Fu, Xinmiao; Chang, Zengyi

    2016-08-05

    β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. [In vitro function of outer membrane protease T of Escherichia coli K1 pathogenic strain].

    PubMed

    Hui, Changye; Guo, Yan; Wu, Shuchi; Peng, Liang; Cao, Hong; Huang, Shenghe

    2010-01-01

    Plasminogen activation and antimicrobial peptide hydrolysis contribute to pathogens invasion and survival in vivo. To demonstrate the expression of outer membrane protease T in E. coli K1 pathogenic strain E44, its activity of plasminogen activator and protamine hydrolysis. After Benzamidine Sepharose Fast Flow and SOURCE 30Q chromatography, we got E44 outer membrane mixed fraction, and examined its activity of plasminogen activation with chromogenic substrate S-2251 method. An ompT deletion mutant of E44 was constructed by using the suicide vector pCVD442, termed as E44ompT. We examined 0.1 mg/mL cationic antimicrobial peptide protamine susceptibility of E44, ompT mutant strain E44ompT and E44ompT harboring pUCT, which was constructed by inserting complete ompT open reading frame into pUC13. We got about 37 kDa E44 membrane extract, which could activate plasminogen, and activation was membrane extract dose dependent. This confirmed the expression of outer membrane protease T in the outer membrane of E44. E44ompT was, more susceptible to 0.1 mg/mL protamine than E44, and E440mpT was partially complemented by pUCT. Outer membrane protease T is expressed in E. coli K1 pathogenic strain E44, and can activate plasminogen and hydrolyze protamine.

  13. Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans.

    PubMed

    Clock, Sarah A; Planet, Paul J; Perez, Brenda A; Figurski, David H

    2008-02-01

    Prokaryotic secretion relies on proteins that are widely conserved, including NTPases and secretins, and on proteins that are system specific. The Tad secretion system in Aggregatibacter actinomycetemcomitans is dedicated to the assembly and export of Flp pili, which are needed for tight adherence. Consistent with predictions that RcpA forms the multimeric outer membrane secretion channel (secretin) of the Flp pilus biogenesis apparatus, we observed the RcpA protein in multimers that were stable in the presence of detergent and found that rcpA and its closely related homologs form a novel and distinct subfamily within a well-supported gene phylogeny of the entire secretin gene superfamily. We also found that rcpA-like genes were always linked to Aggregatibacter rcpB- or Caulobacter cpaD-like genes. Using antisera, we determined the localization and gross abundances of conserved (RcpA and TadC) and unique (RcpB, RcpC, and TadD) Tad proteins. The three Rcp proteins (RcpA, RcpB, and RcpC) and TadD, a putative lipoprotein, localized to the bacterial outer membrane. RcpA, RcpC, and TadD were also found in the inner membrane, while TadC localized exclusively to the inner membrane. The RcpA secretin was necessary for wild-type abundances of RcpB and RcpC, and TadC was required for normal levels of all three Rcp proteins. TadC abundance defects were observed in rcpA and rcpC mutants. TadD production was essential for wild-type RcpA and RcpB abundances, and RcpA did not multimerize or localize to the outer membrane without the expression of TadD. These data indicate that membrane proteins TadC and TadD may influence the assembly, transport, and/or function of individual outer membrane Rcp proteins.

  14. Evaluation of Psn, HmuR and a modified LcrV protein delivered to mice by live attenuated Salmonella as a vaccine against bubonic and pneumonic Yersinia pestis challenge.

    PubMed

    Branger, Christine G; Sun, Wei; Torres-Escobar, Ascención; Perry, Robert; Roland, Kenneth L; Fetherston, Jacqueline; Curtiss, Roy

    2010-12-16

    We evaluated the ability of Yersinia pestis antigens HmuR, Psn and modified forms of LcrV delivered by live attenuated Salmonella strains to stimulate a protective immune response against subcutaneous or intranasal challenge with Y. pestis CO92. LcrV196 is a previously described truncated protein that includes aa 131-326 of LcrV and LcrV5214 has been modified to replace five key amino acids required for interaction with the TLR2 receptor. Psn is the outer membrane receptor for the siderophore, yersiniabactin, and the bacteriocin, pesticin. Mice immunized with Salmonella synthesizing Psn, LcrV196 or LcrV5214 developed serum IgG responses to the respective Yersinia antigen and were protected against pneumonic challenge with Y. pestis. Immunization with Salmonella synthesizing Psn or LcrV196 was sufficient to afford nearly full protection against bubonic challenge, while immunization with the strain synthesizing LcrV5214 was not protective. Immunization with Salmonella synthesizing HmuR, an outer membrane protein involved in heme acquisition in Y. pestis, was poorly immunogenic and did not elicit a protective response against either challenge route. These findings indicate that both Psn and LcrV196 delivered by Salmonella provide protection against both bubonic and pneumonic plague. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Architectures of Lipid Transport Systems for the Bacterial Outer Membrane.

    PubMed

    Ekiert, Damian C; Bhabha, Gira; Isom, Georgia L; Greenan, Garrett; Ovchinnikov, Sergey; Henderson, Ian R; Cox, Jeffery S; Vale, Ronald D

    2017-04-06

    How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli*

    PubMed Central

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H.; Pessi, Gabriella; Eberl, Leo; Robinson, John A.

    2016-01-01

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. PMID:26627837

  17. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis

    PubMed Central

    Elgass, Kirstin D.; Gabriel, Kipros; Dougan, Gordon; Lithgow, Trevor; Heinz, Eva

    2018-01-01

    Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity. PMID:29601598

  18. On the targeting and membrane assembly of the Escherichia coli outer membrane porin, PhoE.

    PubMed

    Phoenix, D A

    1996-12-01

    Within gram-negative bacteria such as Escherichia coli, the outer membrane porins provide a relatively non-specific uptake route which is utilised by a wide range of solutes including many antibiotics. Understanding the targeting and membrane assembly of these proteins is therefore of importance and this mini review aims to discuss this process in light of present knowledge.

  19. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  20. [Occurrence of bacteria of the Yersinia genus in surface water].

    PubMed

    Krogulska, B; Maleszewska, J

    1992-01-01

    The aim of the study was determination of the frequency of occurrence of Yersinia genus bacteria in surface waters polluted to various degrees with bacteria of the coliform and of fecal coli. For detection of Yersinia rods the previously elaborated medium Endo MLCe and the membrane filter method were applied. Samples of 42 surface waters were examined, including 26 from rivers and 16 from lakes, ponds and clay-pits. On the basis of sanitary bacteriological analysis 16 surface waters were classified to class I purity, 10 to class II, the remaining ones to class III or beyond classification. Yersinia rods were detected in 15 water bodies that is 35.7% of the examined waters. A total of 27 Yersinia strains were identified with dominance of Y. intermedia (14 strains) and Y. enterocolitica (10 strains). Three strains represented by the species Yersinia frederiksenii. Most of the Y. enterocolitica strains belonged to biotype 1, the particular strains being represented by various serotypes. Hence their different origin may be concluded. The pathogenic serotypes 0:3 and 0:9 of Yersinia enterocolitica were not detected.

  1. Detection of outer membrane vesicles in Synechocystis PCC 6803

    PubMed Central

    Pardo, Yehudah A.; Florez, Catalina; Baker, Kristopher M.; Schertzer, Jeffrey W.; Mahler, Gretchen J.

    2015-01-01

    It has been well established that many species of Gram-negative bacteria release nanoscale outer membrane vesicles (OMVs) during normal growth. Furthermore, the roles of these structures in heterotrophic bacteria have been extensively characterized. However, little is known about the existence or function of OMVs in photoautotrophs. In the present study, we report for the first time the production of OMVs by the model photosynthetic organism Synechocystis sp. PCC 6803, a species of biotechnological importance. We detected extracellular proteins and lipids in cell-free supernatants derived from Synechocystis culture, yet the cytoplasmic and thylakoid membrane markers NADH oxidase and chlorophyll were absent. This indicated that the extracellular proteins and lipids derived from the outer membrane, and not from cell lysis. Furthermore, we identified spherical structures within the expected size range of OMVs in Synechocystis culture using scanning electron microscopy. Taken together, these results suggest that the repertoire of Gram-negative bacteria that are known to produce OMVs may be expanded to include Synechocystis PCC6803. Because of the considerable genetic characterization of Synechocystis in particular, our discovery has the potential to support novel biotechnological applications as well. PMID:26363014

  2. Identification of outer membrane proteins with emulsifying activity by prediction of beta-barrel regions.

    PubMed

    Walzer, Gil; Rosenberg, Eugene; Ron, Eliora Z

    2009-01-01

    Microbial bioemulsifiers are secreted by many bacteria and are important for bacterial interactions with hydrophobic substrates or nutrients and for a variety of biotechnological applications. We have recently shown that the OmpA protein in several members of the Acinetobacter family has emulsifying properties. These properties of OmpA depend on the amino acid composition of four putative extra-membrane loops, which in various strains of Acinetobacter, but not in E. coli, are highly hydrophobic. As many Acinetobacter strains can utilize hydrophobic carbon sources, such as oil, the emulsifying activity of their OmpA may be important for the utilization and uptake of hydrocarbons. We assumed that if outer membrane proteins with emulsifying activity are physiologically important, they may exist in additional oil degrading bacteria. In order to identify such proteins, it was necessary to obtain bioinformatics-based predictions for hydrophobic extra-membrane loops. Here we describe a method for using protein sequence data for predicting the hydrophobic properties of the extra-membrane loops of outer membrane proteins. The feasibility of this method is demonstrated by its use to identify a new microbial bioemulsifier - OprG - an outer membrane protein of the oil degrading Pseudomonas putida KT2440.

  3. In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli.

    PubMed

    Larsen, Ray A; Letain, Tracy E; Postle, Kathleen

    2003-07-01

    Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.

  4. Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobre, Thatyane M.; Martynowycz, Michael W.; Andreev, Konstantin

    Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, aswell as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region,butwasmore » prevented fromthis penetration intothemodified lipopolysaccharides.Results correlatewith behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.« less

  5. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains.

    PubMed

    Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred

    2014-02-01

    The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    PubMed

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  7. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    PubMed

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  8. Structural basis for maintenance of bacterial outer membrane lipid asymmetry.

    PubMed

    Abellón-Ruiz, Javier; Kaptan, Shreyas S; Baslé, Arnaud; Claudi, Beatrice; Bumann, Dirk; Kleinekathöfer, Ulrich; van den Berg, Bert

    2017-12-01

    The Gram-negative bacterial outer membrane (OM) is a unique bilayer that forms an efficient permeation barrier to protect the cell from noxious compounds 1 , 2 . The defining characteristic of the OM is lipid asymmetry, with phospholipids comprising the inner leaflet and lipopolysaccharides comprising the outer leaflet 1-3 . This asymmetry is maintained by the Mla pathway, a six-component system that is widespread in Gram-negative bacteria and is thought to mediate retrograde transport of misplaced phospholipids from the outer leaflet of the OM to the cytoplasmic membrane 4 . The OM lipoprotein MlaA performs the first step in this process via an unknown mechanism that does not require external energy input. Here we show, using X-ray crystallography, molecular dynamics simulations and in vitro and in vivo functional assays, that MlaA is a monomeric α-helical OM protein that functions as a phospholipid translocation channel, forming a ~20-Å-thick doughnut embedded in the inner leaflet of the OM with a central, amphipathic pore. This architecture prevents access of inner leaflet phospholipids to the pore, but allows outer leaflet phospholipids to bind to a pronounced ridge surrounding the channel, followed by diffusion towards the periplasmic space. Enterobacterial MlaA proteins form stable complexes with OmpF/C 5,6 , but the porins do not appear to play an active role in phospholipid transport. MlaA represents a lipid transport protein that selectively removes outer leaflet phospholipids to help maintain the essential barrier function of the bacterial OM.

  9. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    PubMed

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the

  10. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    PubMed

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion.

    PubMed

    Van Ommen Kloeke, F; Bryant, R D; Laishley, E J

    1995-12-01

    A protocol was developed whereby the outer and cytoplasmic membranes of the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) were isolated and partially characterized. The isolated outer membrane fractions from cultures grown under high (100 ppm) and low (5 ppm) Fe2+ conditions were compared by SDS-PAGE electrophoresis, and showed that several protein bands were derepressed under the low iron conditions, most notably at 50 kDa, and 77.5 kDa. Outer membrane isolated from low iron cultured cells was found to contain two proteins, 77.5 kDa and 62.5 kDa in size, that reacted with a heme-specific stain and were referred to as high molecular weight cytochromes. Studies conducted on the low iron isolated outer membrane by a phosphate/mild steel hydrogen evolution system showed that addition of the membrane fraction caused an immediate acceleration in H2 production. A new model for the anaerobic biocorrosion of mild steel is proposed.

  12. Structural insight into lipopolysaccharide transport from the Gram-negative bacterial inner membrane to the outer membrane.

    PubMed

    Dong, Haohao; Tang, Xiaodi; Zhang, Zhengyu; Dong, Changjiang

    2017-11-01

    Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans‑envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB 2 FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans‑periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae.

    PubMed

    Xie, Fang; Li, Gang; Zhang, Wanjiang; Zhang, Yanhe; Zhou, Long; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai

    2016-02-01

    The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis[W][OA

    PubMed Central

    Duncan, Owen; Taylor, Nicolas L.; Carrie, Chris; Eubel, Holger; Kubiszewski-Jakubiak, Szymon; Zhang, Botao; Narsai, Reena; Millar, A. Harvey; Whelan, James

    2011-01-01

    The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction. PMID:21896887

  15. Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane.

    PubMed

    Ang, Elisa Y M; Ng, Teng Yong; Yeo, Jingjie; Lin, Rongming; Liu, Zishun; Geethalakshmi, K R

    2018-05-23

    We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance. However, due to the increase in the membrane area with CNT size, the permeability performance is observed to reduce as the CNT size increases. Nevertheless, a comparison with nanoporous 2D membranes shows that the permeability of an outer-wall CNT slit membrane remains significantly higher for all CNT sizes considered. This indicates that precise dimensions of the CNTs are not highly crucial for achieving ultra-high permeability performance in such membranes, as long as the critical slit size is maintained. In-depth analytical studies were further conducted to correlate the influence of curvature effects due to increasing CNT size on the flow characteristcis of the outer-wall CNT membrane. These include the analysis of the measured velocity profiles, oxygen density mapping, potential of mean force profile and friction profile. The present numerical results demonstrate the superb desalination performance of the outer-wall CNT slit membrane, regardless of the size of CNTs used. In addition, an extensive analysis conducted provides detailed characterization of how the curvature affects flow across outer-wall CNTs, and can be used to guide future design and fabrication for experimental testing.

  16. Adhesive Properties of YapV and Paralogous Autotransporter Proteins of Yersinia pestis

    PubMed Central

    Nair, Manoj K. M.; De Masi, Leon; Yue, Min; Galván, Estela M.; Chen, Huaiqing; Wang, Fang

    2015-01-01

    Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs. PMID:25690102

  17. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. © 2016 Elsevier Inc. All rights reserved.

  18. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria.

    PubMed

    Gornicka, Agnieszka; Bragoszewski, Piotr; Chroscicki, Piotr; Wenz, Lena-Sophie; Schulz, Christian; Rehling, Peter; Chacinska, Agnieszka

    2014-12-15

    Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex. © 2014 Gornicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms.

    PubMed

    Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill

    2015-10-02

    In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations.

  20. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1.

    PubMed

    Yun, Sung Ho; Lee, Sang-Yeop; Choi, Chi-Won; Lee, Hayoung; Ro, Hyun-Joo; Jun, Sangmi; Kwon, Yong Min; Kwon, Kae Kyoung; Kim, Sang-Jin; Kim, Gun-Hwa; Kim, Seung Il

    2017-01-01

    Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMV Novo ) are spherical in shape, and the average diameter of OMV Novo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMV Novo . Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMV Novo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.

  1. Yersinia infection tools-characterization of structure and function of adhesins.

    PubMed

    Mikula, Kornelia M; Kolodziejczyk, Robert; Goldman, Adrian

    2012-01-01

    Among the seventeen species of the Gram-negative genus Yersinia, three have been shown to be virulent and pathogenic to humans and animals-Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. In order to be so, they are armoured with various factors that help them adhere to tissues and organelles, cross the cellular barrier and escape the immune system during host invasion. The group of proteins that mediate pathogen-host interactions constitute adhesins. Invasin, Ail, YadA, YadB, YadC, Pla, and pH 6 antigen belong to the most prominent and best-known Yersinia adhesins. They act at different times and stages of infection complementing each other by their ability to bind a variety of host molecules such as collagen, fibronectin, laminin, β1 integrins, and complement regulators. All the proteins are anchored in the bacterial outer membrane (OM), often forming rod-like or fimbrial-like structures that protrude to the extracellular milieu. Structural studies have shown that the anchor region forms a β-barrel composed of 8, 10, or 12 antiparallel β-strands. Depending on the protein, the extracellular part can be composed of several domains belonging to the immunoglobulin fold superfamily, or form a coiled-coil structure with globular head domain at the end, or just constitute several loops connecting individual β-strands in the β-barrel. Those extracellular regions define the activity of each adhesin. This review focuses on the structure and function of these important molecules, and their role in pathogenesis.

  2. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import.

    PubMed Central

    Hönlinger, A; Bömer, U; Alconada, A; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Pfanner, N

    1996-01-01

    The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase. Images PMID:8641278

  3. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.

    PubMed

    Lin, Meishan; Gessmann, Dennis; Naveed, Hammad; Liang, Jie

    2016-03-02

    Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.

  4. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver.

    PubMed

    Kędziora, Anna; Krzyżewska, Eva; Dudek, Bartłomiej; Bugla-Płoskońska, Gabriela

    2016-06-13

    The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS) are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  5. Asymmetric phospholipid: lipopolysaccharide bilayers; a Gram-negative bacterial outer membrane mimic

    PubMed Central

    Clifton, Luke A.; Skoda, Maximilian W. A.; Daulton, Emma L.; Hughes, Arwel V.; Le Brun, Anton P.; Lakey, Jeremy H.; Holt, Stephen A.

    2013-01-01

    The Gram-negative bacterial outer membrane (OM) is a complex and highly asymmetric biological barrier but the small size of bacteria has hindered advances in in vivo examination of membrane dynamics. Thus, model OMs, amenable to physical study, are important sources of data. Here, we present data from asymmetric bilayers which emulate the OM and are formed by a simple two-step approach. The bilayers were deposited on an SiO2 surface by Langmuir–Blodgett deposition of phosphatidylcholine as the inner leaflet and, via Langmuir–Schaefer deposition, an outer leaflet of either Lipid A or Escherichia coli rough lipopolysaccharides (LPS). The membranes were examined using neutron reflectometry (NR) to examine the coverage and mixing of lipids between the bilayer leaflets. NR data showed that in all cases, the initial deposition asymmetry was mostly maintained for more than 16 h. This stability enabled the sizes of the headgroups and bilayer roughness of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and Lipid A, Rc-LPS and Ra-LPS to be clearly resolved. The results show that rough LPS can be manipulated like phospholipids and used to fabricate advanced asymmetric bacterial membrane models using well-known bilayer deposition techniques. Such models will enable OM dynamics and interactions to be studied under in vivo-like conditions. PMID:24132206

  6. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  7. The Escherichia coli Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling.

    PubMed

    May, Kerrie L; Silhavy, Thomas J

    2018-03-20

    The outer membrane (OM) bilayer of Gram-negative bacteria is biologically unique in its asymmetrical organization of lipids, with an inner leaflet composed of glycerophospholipids (PLs) and a surface-exposed outer leaflet composed of lipopolysaccharide (LPS). This lipid organization is integral to the OM's barrier properties. Perturbations of the outer leaflet by antimicrobial peptides or defects in LPS biosynthesis or transport to the OM cause a compensatory flipping of PLs to the outer leaflet. As a result, lipid asymmetry is disrupted and OM integrity is compromised. Recently, we identified an Escherichia coli mutant that exhibits aberrant accumulation of surface PLs accompanied by a cellular increase in LPS production. Remarkably, the observed hyperproduction of LPS is PldA dependent. Here we provide evidence that the fatty acids generated by PldA at the OM are transported into the cytoplasm and simultaneously activated by thioesterification to coenzyme A (CoA) by FadD. The acyl-CoAs produced ultimately inhibit LpxC degradation by FtsH. The increased levels of LpxC, the enzyme that catalyzes the first committed step in LPS biosynthesis, increases the amount of LPS produced. Our data suggest that PldA acts as a sensor for lipid asymmetry in the OM. PldA protects the OM barrier by both degrading mislocalized PLs and generating lipid second messengers that enable long-distance signaling that prompts the cell to restore homeostasis at a distant organelle. IMPORTANCE The outer membrane of Gram-negative bacteria is an effective permeability barrier that protects the cell from toxic agents, including antibiotics. Barrier defects are often manifested by phospholipids present in the outer leaflet of this membrane that take up space normally occupied by lipopolysaccharide. We have discovered a signaling mechanism that operates across the entire cell envelope used by the cell to detect these outer membrane defects. A phospholipase, PldA, that functions to degrade these

  8. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    DOE PAGES

    Liu, Yimo; Wang, Zheming; Liu, Juan; ...

    2014-09-24

    The multiheme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC), and an outer membrane c-Cyt (OmcB/OmcC), respectively. Here we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pccmore » protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate, but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Finally, complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.« less

  9. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12.

    PubMed

    Murphy, C K; Klebba, P E

    1989-11-01

    A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.

  10. Preprotein transport machineries of yeast mitochondrial outer membrane are not required for Bax-induced release of intermembrane space proteins.

    PubMed

    Sanjuán Szklarz, Luiza K; Kozjak-Pavlovic, Vera; Vögtle, F-Nora; Chacinska, Agnieszka; Milenkovic, Dusanka; Vogel, Sandra; Dürr, Mark; Westermann, Benedikt; Guiard, Bernard; Martinou, Jean-Claude; Borner, Christoph; Pfanner, Nikolaus; Meisinger, Chris

    2007-04-20

    The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.

  11. Outer membrane proteins from rough strains of four Brucella species.

    PubMed Central

    Santos, J M; Verstreate, D R; Perera, V Y; Winter, A J

    1984-01-01

    Outer membrane proteins from 15 rough strains of Brucella abortus, B. ovis, B. canis, and B. melitensis were extracted with a dipolar detergent, and outer membrane proteins from selected strains were purified by anion exchange chromatography and gel filtration (Verstreate et al., Infect. Immun. 35:979-989, 1982). Outer membrane proteins produced two types of profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One type, demonstrated by B. abortus, B. ovis, and B. canis strains, contained the three predominant protein groups present in smooth B. abortus strains (Verstreate et al., Infect. Immun. 35:979-989, 1982): groups 1, 2 (porin [Douglas et al., Infect. Immun. 44:16-21]), and 3. B. melitensis strains demonstrated the second profile type, in which there was an additional band between groups 1 and 2. The relative proportion of porin was considerably lower in B. ovis, B. canis, and B. melitensis than in B. abortus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles could be used to distinguish B. abortus and B. melitensis from each other and from B. canis and B. ovis. The amino acid compositions of groups 2 and 3 from rough strains of B. abortus, B. canis, and B. melitensis were similar to those of corresponding proteins from smooth B. abortus strains. Zwittergent-soluble fractions from most rough strains contained antigen [b], which cross-reacted with group 2 from smooth B. abortus strains, and antigens [c] and [d], which cross-reacted with group 3 from smooth B. abortus strains. Antigen [a], shared by groups 2 and 3 (D. R. Verstreate and A. J. Winter, Infect. Immun. 46:182-187, 1984), was detected in most rough strains. None of these antigens were related to either rough or smooth lipopolysaccharide. Images PMID:6480106

  12. Distinct constrictive processes, separated in time and space, divide caulobacter inner and outer membranes.

    PubMed

    Judd, Ellen M; Comolli, Luis R; Chen, Joseph C; Downing, Kenneth H; Moerner, W E; McAdams, Harley H

    2005-10-01

    Cryoelectron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner membrane (IM) and then the outer membrane (OM) in a manner distinctly different from that of septum-forming bacteria. FLIP experiments had previously shown cytoplasmic compartmentalization (when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments) occurring 18 min before daughter cell separation in a 135-min cell cycle so the two constrictive processes are separated in both time and space. In the very latest stages of both IM and OM constriction, short membrane tether structures are observed. The smallest observed pre-fission tethers were 60 nm in diameter for both the inner and outer membranes. Here, we also used FLIP experiments to show that both membrane-bound and periplasmic fluorescent proteins diffuse freely through the FtsZ ring during most of the constriction procession.

  13. Phylogenetic Analysis of Mitochondrial Outer Membrane β-Barrel Channels

    PubMed Central

    Wojtkowska, Małgorzata; Jąkalski, Marcin; Pieńkowska, Joanna R.; Stobienia, Olgierd; Karachitos, Andonis; Przytycka, Teresa M.; Weiner, January; Kmita, Hanna; Makałowski, Wojciech

    2012-01-01

    Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have β-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial β-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane β-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta. PMID:22155732

  14. Yersinia infection tools—characterization of structure and function of adhesins

    PubMed Central

    Mikula, Kornelia M.; Kolodziejczyk, Robert; Goldman, Adrian

    2013-01-01

    Among the seventeen species of the Gram-negative genus Yersinia, three have been shown to be virulent and pathogenic to humans and animals—Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. In order to be so, they are armoured with various factors that help them adhere to tissues and organelles, cross the cellular barrier and escape the immune system during host invasion. The group of proteins that mediate pathogen–host interactions constitute adhesins. Invasin, Ail, YadA, YadB, YadC, Pla, and pH 6 antigen belong to the most prominent and best-known Yersinia adhesins. They act at different times and stages of infection complementing each other by their ability to bind a variety of host molecules such as collagen, fibronectin, laminin, β1 integrins, and complement regulators. All the proteins are anchored in the bacterial outer membrane (OM), often forming rod-like or fimbrial-like structures that protrude to the extracellular milieu. Structural studies have shown that the anchor region forms a β-barrel composed of 8, 10, or 12 antiparallel β-strands. Depending on the protein, the extracellular part can be composed of several domains belonging to the immunoglobulin fold superfamily, or form a coiled-coil structure with globular head domain at the end, or just constitute several loops connecting individual β-strands in the β-barrel. Those extracellular regions define the activity of each adhesin. This review focuses on the structure and function of these important molecules, and their role in pathogenesis. PMID:23316485

  15. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria

    PubMed Central

    Lee, Junho; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904

  16. DNA Adenine Methylase Is Essential for Viability and Plays a Role in the Pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae

    PubMed Central

    Julio, Steven M.; Heithoff, Douglas M.; Provenzano, Daniele; Klose, Karl E.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella strains that lack or overproduce DNA adenine methylase (Dam) elicit a protective immune response to different Salmonella species. To generate vaccines against other bacterial pathogens, the dam genes of Yersinia pseudotuberculosis and Vibrio cholerae were disrupted but found to be essential for viability. Overproduction of Dam significantly attenuated the virulence of these two pathogens, leading to, in Yersinia, the ectopic secretion of virulence proteins (Yersinia outer proteins) and a fully protective immune response in vaccinated hosts. Dysregulation of Dam activity may provide a means for the development of vaccines against varied bacterial pathogens. PMID:11705940

  17. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state.

    PubMed

    Zuber, Benoît; Chami, Mohamed; Houssin, Christine; Dubochet, Jacques; Griffiths, Gareth; Daffé, Mamadou

    2008-08-01

    The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function.

  18. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    PubMed

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L

  20. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    PubMed Central

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  1. Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage.

    PubMed

    Garmiri, Penelope; Coles, Karen E; Humphrey, Tom J; Cogan, Tristan A

    2008-04-01

    The ability to survive desiccation between hosts is often essential to the success of pathogenic bacteria. The bacterial outer membrane is both the cellular interface with hostile environments and the focus of much of the drying-induced damage. This study examined the contribution of outer membrane-associated polysaccharides to the survival of Salmonella enterica serovar Typhimurium in air-dried blood droplets following growth in high and low osmolarity medium and under conditions known to induce expression of these polysaccharides. Strains lacking the O polysaccharide (OPS) element of the outer membrane lipopolysaccharide were more sensitive to desiccation. Lipopolysaccharide core mutation further to OPS loss did not result in increased susceptibility to drying. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed lipopolysaccharide profiles that supported the hypothesis that OPS expression is required for optimal drying resistance in S. Typhimurium. The role of O antigen in Salmonella spp. in maintaining a hydrated layer around the dried cell or in slowing the rate of dehydration and rehydration is discussed.

  2. Novel Outer Membrane Protein Involved in Cellulose and Cellooligosaccharide Degradation by Cytophaga hutchinsonii

    PubMed Central

    Ji, Xiaofei; Wang, Ying; Zhang, Cong; Bai, Xinfeng; Zhang, Weican

    2014-01-01

    Cytophaga hutchinsonii is an aerobic cellulolytic soil bacterium which was reported to use a novel contact-dependent strategy to degrade cellulose. It was speculated that cellooligosaccharides were transported into the periplasm for further digestion. In this study, we reported that most of the endoglucanase and β-glucosidase activity was distributed on the cell surface of C. hutchinsonii. Cellobiose and part of the cellulose could be hydrolyzed to glucose on the cell surface. However, the cell surface cellulolytic enzymes were not sufficient for cellulose degradation by C. hutchinsonii. An outer membrane protein, CHU_1277, was disrupted by insertional mutation. Although the mutant maintained the same endoglucanase activity and most of the β-glucosidase activity, it failed to digest cellulose, and its cellooligosaccharide utilization ability was significantly reduced, suggesting that CHU_1277 was essential for cellulose degradation and played an important role in cellooligosaccharide utilization. Further study of cellobiose hydrolytic ability of the mutant on the enzymatic level showed that the β-glucosidase activity in the outer membrane of the mutant was not changed. It revealed that CHU_1277 played an important role in assisting cell surface β-glucosidase to exhibit its activity sufficiently. Studies on the outer membrane proteins involved in cellulose and cellooligosaccharide utilization could shed light on the mechanism of cellulose degradation by C. hutchinsonii. PMID:24837387

  3. Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes.

    PubMed

    Croce, Robert A; Vaddiraju, Santhisagar; Papadimitrakopoulos, Fotios; Jain, Faquir C

    2012-10-01

    The performance of implantable electrochemical glucose sensors is highly dependent on the flux-limiting (glucose, H(2)O(2), O(2)) properties of their outer membranes. A careful understanding of the diffusion profiles of the participating species throughout the sensor architecture (enzyme and membrane layer) plays a crucial role in designing a robust sensor for both in vitro and in vivo operation. This paper reports the results from the mathematical modeling of Clark's first generation amperometric glucose sensor coated with layer-by-layer assembled outer membranes in order to obtain and compare the diffusion profiles of various participating species and their effect on sensor performance. Devices coated with highly glucose permeable (HAs/Fe(3+)) membranes were compared with devices coated with PSS/PDDA membranes, which have an order of magnitude lower permeability. The simulation showed that the low glucose permeable membrane (PSS/PDDA) sensors exhibited a 27% higher amperometric response than the high glucose permeable (HAs/Fe(3+)) sensors. Upon closer inspection of H(2)O(2)diffusion profiles, this non-typical higher response from PSS/PDDA is not due to either a larger glucose flux or comparatively larger O(2) concentrations within the sensor geometry, but rather is attributed to a 48% higher H(2)O(2) concentration in the glucose oxidase enzyme layer of PSS/PDDA coated sensors as compared to HAs/Fe(3+) coated ones. These simulated results corroborate our experimental findings reported previously. The high concentration of H(2)O(2) in the PSS/PDDA coated sensors is due to the low permeability of H(2)O(2) through the PSS/PDDA membrane, which also led to an undesired increase in sensor response time. Additionally, it was found that this phenomenon occurs for all enzyme thicknesses investigated (15, 20 and 25 nm), signifying the need for a holistic approach in designing outer membranes for amperometric biosensors.

  4. The role of outer membrane in Serratia marcescens intrinsic resistance to antibiotics.

    PubMed

    Sánchez, L; Ruiz, N; Leranoz, S; Viñas, M; Puig, M

    1997-09-01

    Three different porins from Serratia marcescens were described. They were named Omp1, Omp2 and Omp3 and their molecular weights were 42, 40 and 39 kDa respectively. Omp2 and Omp3 showed osmoregulation and thermoregulation in a similar way to OmpC and OmpF of Escherichia coli. Permeability coefficients of the outer membrane of this species were calculated following the Zimmermann and Rosselet method. P values were similar to those obtained in Escherichia coli, which suggests that the chromosomal beta-lactamase would play a major role in the resistance of Serratia marcescens to beta-lactam antibiotics. Both MIC values and permeabilities were modified by salycilates and acetylsalycilate. Synergism between the outer membrane and the beta-lactamase was also evaluated. When bacteria grew in the presence of a beta-lactam in the medium, the beta-lactamase accounted for most of the resistance.

  5. Yersinia virulence factors - a sophisticated arsenal for combating host defences

    PubMed Central

    Atkinson, Steve; Williams, Paul

    2016-01-01

    The human pathogens Yersinia pseudotuberculosis and Yersinia enterocolitica cause enterocolitis, while Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen. PMID:27347390

  6. The Effects of Low-Shear Mechanical Stress on Yersinia pestis Virulence

    NASA Astrophysics Data System (ADS)

    Lawal, Abidat; Jejelowo, Olufisayo A.; Rosenzweig, Jason A.

    2010-11-01

    Manned space exploration has created a need to evaluate the effects of spacelike stress on pathogenic and opportunistic microbes astronauts could carry with them to the International Space Station and beyond. Yersinia pestis (YP) causes bubonic, septicemic, and pneumonic plague and is capable of killing infected patients within 3-7 days. In this study, low-shear modeled microgravity (LSMMG), a spacelike stress, was used to physically stress YP; and its effects on proliferation, cold growth, and type III secretion system (T3SS) function were evaluated. YP was grown to saturation in either LSMMG or normal gravity (NG) conditions prior to being used for RAW 246.7 cell infections, HeLa cell infections, and Yop secretion assays. A mutant strain of YP (ΔyopB) that lacks the ability to inject Yersinia outer membrane proteins (Yops) into the host cell was used as a negative control in cell infection experiments. Our experimental results indicate that YP cultivated under LSMMG resulted in reduced YopM production and secretion compared to its NG-grown counterpart. Similarly, NG-grown YP induced more cell rounding in HeLa cells than did the LSMMG-grown YP, which suggests that LSMMG somehow impairs T3SS optimum function. Also, LSMMG-grown YP used to infect cultured RAW 246.7 cells showed a similar pattern of dysfunction in that it proliferated less than did its NG-grown counterpart during an 8-hour infection period. This study suggests that LSMMG can attenuate bacterial virulence contrary to previously published data that have demonstrated LSMMG-induced hypervirulence of other Gram-negative enterics.

  7. The effects of low-shear mechanical stress on Yersinia pestis virulence.

    PubMed

    Lawal, Abidat; Jejelowo, Olufisayo A; Rosenzweig, Jason A

    2010-11-01

    Manned space exploration has created a need to evaluate the effects of spacelike stress on pathogenic and opportunistic microbes astronauts could carry with them to the International Space Station and beyond. Yersinia pestis (YP) causes bubonic, septicemic, and pneumonic plague and is capable of killing infected patients within 3-7 days. In this study, low-shear modeled microgravity (LSMMG), a spacelike stress, was used to physically stress YP; and its effects on proliferation, cold growth, and type III secretion system (T3SS) function were evaluated. YP was grown to saturation in either LSMMG or normal gravity (NG) conditions prior to being used for RAW 246.7 cell infections, HeLa cell infections, and Yop secretion assays. A mutant strain of YP (ΔyopB) that lacks the ability to inject Yersinia outer membrane proteins (Yops) into the host cell was used as a negative control in cell infection experiments. Our experimental results indicate that YP cultivated under LSMMG resulted in reduced YopM production and secretion compared to its NG-grown counterpart. Similarly, NG-grown YP induced more cell rounding in HeLa cells than did the LSMMG-grown YP, which suggests that LSMMG somehow impairs T3SS optimum function. Also, LSMMG-grown YP used to infect cultured RAW 246.7 cells showed a similar pattern of dysfunction in that it proliferated less than did its NG-grown counterpart during an 8-hour infection period. This study suggests that LSMMG can attenuate bacterial virulence contrary to previously published data that have demonstrated LSMMG-induced hypervirulence of other Gram-negative enterics.

  8. Haemophilus ducreyi Outer Membrane Determinants, Including DsrA, Define Two Clonal Populations

    PubMed Central

    White, Catherine Dinitra; Leduc, Isabelle; Olsen, Bonnie; Jeter, Chrystina; Harris, Chavala; Elkins, Christopher

    2005-01-01

    The Haemophilus ducreyi outer membrane component DsrA (for ducreyi serum resistance A) is necessary for complete resistance to normal human serum (NHS). When DsrA expression in 19 temporally and geographically diverse clinical isolates of H. ducreyi was examined by Western blotting, 5 of the strains expressed a different immunotype of the DsrA protein (DsrAII) than the well-characterized prototypical strain 35000HP (DsrAI). The predicted DsrA proteins expressed by the DsrAII strains were 100% identical to each other but only 48% identical to that of strain 35000HP. In addition to the DsrAII protein, class II strains also expressed variant forms of other outer membrane proteins (OMPs) including NcaA (necessary for collagen adhesion A), DltA (ducreyi lectin A), Hlp (H. ducreyi lipoprotein), major OMP, and/or OmpA2 (for OMP A2) and synthesized a distinct, faster-migrating lipooligosaccharide. Based on these data, strains expressing DsrAI were termed class I, and those expressing DsrAII were termed class II. Expression of dsrAII from strain CIP 542 ATCC in the class I dsrAI mutant FX517 (35000HP background), which does not express a DsrA protein, rendered this strain resistant to 50% NHS. This demonstrates that DsrAII protein is also critical to serum resistance. Taken together, these results indicate that there are two clonal populations of H. ducreyi. The implications of two classes of H. ducreyi strains differing in important antigenic outer membrane components are discussed. PMID:15784585

  9. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile

    DOE PAGES

    Carpenter, Timothy S.; Parkin, Jamie; Khalid, Syma

    2016-08-12

    Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups providemore » a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. Furthermore, these results provide key insights for the development of novel antibiotics that target these bacteria.« less

  10. The Free Energy of Small Solute Permeation through the Escherichia coli Outer Membrane Has a Distinctly Asymmetric Profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Timothy S.; Parkin, Jamie; Khalid, Syma

    Permeation of small molecules across cell membranes is a ubiquitous process in biology and is dependent on the principles of physical chemistry at the molecular level. Here we use atomistic molecular dynamics simulations to calculate the free energy of permeation of a range of small molecules through a model of the outer membrane of Escherichia coli, an archetypical Gram-negative bacterium. The model membrane contains lipopolysaccharide (LPS) molecules in the outer leaflet and phospholipids in the inner leaflet. Our results show that the energetic barriers to permeation through the two leaflets of the membrane are distinctly asymmetric; the LPS headgroups providemore » a less energetically favorable environment for organic compounds than do phospholipids. In summary, we provide the first reported estimates of the relative free energies associated with the different chemical environments experienced by solutes as they attempt to cross the outer membrane of a Gram-negative bacterium. Furthermore, these results provide key insights for the development of novel antibiotics that target these bacteria.« less

  11. Comparative proteome analysis reveals pathogen specific outer membrane proteins of Leptospira.

    PubMed

    Dhandapani, Gunasekaran; Sikha, Thoduvayil; Rana, Aarti; Brahma, Rahul; Akhter, Yusuf; Gopalakrishnan Madanan, Madathiparambil

    2018-04-10

    Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti-leptospiral strategies. © 2018 Wiley Periodicals, Inc.

  12. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane

    PubMed Central

    Richardson, Lynn G. L.; Paila, Yamuna D.; Siman, Steven R.; Chen, Yi; Smith, Matthew D.; Schnell, Danny J.

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus. PMID:24966864

  13. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    PubMed

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  14. An Active Site Water Network in the Plasminogen Activator Pla from Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eren, Elif; Murphy, Megan; Goguen, Jon

    2010-08-13

    The plasminogen activator Pla from Yersinia pestis is an outer membrane protease (omptin) that is important for the virulence of plague. Here, we present the high-resolution crystal structure of wild-type, enzymatically active Pla at 1.9 {angstrom}. The structure shows a water molecule located between active site residues D84 and H208, which likely corresponds to the nucleophilic water. A number of other water molecules are present in the active site, linking residues important for enzymatic activity. The R211 sidechain in loop L4 is close to the nucleophilic water and possibly involved in the stabilization of the oxyanion intermediate. Subtle conformational changesmore » of H208 result from the binding of lipopolysaccharide to the outside of the barrel, explaining the unusual dependence of omptins on lipopolysaccharide for activity. The Pla structure suggests a model for the interaction with plasminogen substrate and provides a more detailed understanding of the catalytic mechanism of omptin proteases.« less

  15. Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes

    PubMed Central

    Gillies, Laura A; Du, Han; Peters, Bjoern; Knudson, C. Michael; Newmeyer, Donald D.; Kuwana, Tomomi

    2015-01-01

    Bax induces mitochondrial outer membrane permeabilization (MOMP), a critical step in apoptosis in which proteins are released into the cytoplasm. To resolve aspects of the mechanism, we used cryo-electron microscopy (cryo-EM) to visualize Bax-induced pores in purified mitochondrial outer membranes (MOMs). We observed solitary pores that exhibited negative curvature at their edges. Over time, the pores grew to ∼100–160 nm in diameter after 60–90 min, with some pores measuring more than 300 nm. We confirmed these results using flow cytometry, which we used to monitor the release of fluorescent dextrans from isolated MOM vesicles. The dextran molecules were released gradually, in a manner constrained by pore size. However, the release rates were consistent over a range of dextran sizes (10–500 kDa). We concluded that the pores were not static but widened dramatically to release molecules of different sizes. Taken together, the data from cryo-EM and flow cytometry argue that Bax promotes MOMP by inducing the formation of large, growing pores through a mechanism involving membrane-curvature stress. PMID:25411335

  16. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32.

    PubMed

    Eshghi, Azad; Pinne, Marija; Haake, David A; Zuerner, Richard L; Frank, Ami; Cameron, Caroline E

    2012-03-01

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence.

  17. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  18. Direct Visualization of the Outer Membrane of Mycobacteria and Corynebacteria in Their Native State▿ †

    PubMed Central

    Zuber, Benoît; Chami, Mohamed; Houssin, Christine; Dubochet, Jacques; Griffiths, Gareth; Daffé, Mamadou

    2008-01-01

    The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function. PMID:18567661

  19. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria.

    PubMed

    Vassallo, Christopher N; Cao, Pengbo; Conklin, Austin; Finkelstein, Hayley; Hayes, Christopher S; Wall, Daniel

    2017-08-18

    Myxobacteria are known for complex social behaviors including outer membrane exchange (OME), in which cells exchange large amounts of outer membrane lipids and proteins upon contact. The TraA cell surface receptor selects OME partners based on a variable domain. However, traA polymorphism alone is not sufficient to precisely discriminate kin. Here, we report a novel family of OME-delivered toxins that promote kin discrimination of OME partners. These SitA lipoprotein toxins are polymorphic and widespread in myxobacteria. Each sitA is associated with a cognate sitI immunity gene, and in some cases a sitB accessory gene. Remarkably, we show that SitA is transferred serially between target cells, allowing the toxins to move cell-to-cell like an infectious agent. Consequently, SitA toxins define strong identity barriers between strains and likely contribute to population structure, maintenance of cooperation, and strain diversification. Moreover, these results highlight the diversity of systems evolved to deliver toxins between bacteria.

  20. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  1. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    PubMed Central

    2014-01-01

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959

  2. Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability

    PubMed Central

    Kowata, Hikaru; Tochigi, Saeko; Takahashi, Hideyuki

    2017-01-01

    ABSTRACT The outer membrane of heterotrophic Gram-negative bacteria plays the role of a selective permeability barrier that prevents the influx of toxic compounds while allowing the nonspecific passage of small hydrophilic nutrients through porin channels. Compared with heterotrophic Gram-negative bacteria, the outer membrane properties of cyanobacteria, which are Gram-negative photoautotrophs, are not clearly understood. In this study, using small carbohydrates, amino acids, and inorganic ions as permeation probes, we determined the outer membrane permeability of Synechocystis sp. strain PCC 6803 in intact cells and in proteoliposomes reconstituted with outer membrane proteins. The permeability of this cyanobacterium was >20-fold lower than that of Escherichia coli. The predominant outer membrane proteins Slr1841, Slr1908, and Slr0042 were not permeable to organic nutrients and allowed only the passage of inorganic ions. Only the less abundant outer membrane protein Slr1270, a homolog of the E. coli export channel TolC, was permeable to organic solutes. The activity of Slr1270 as a channel was verified in a recombinant Slr1270-producing E. coli outer membrane. The lack of putative porins and the low outer membrane permeability appear to suit the cyanobacterial autotrophic lifestyle; the highly impermeable outer membrane would be advantageous to cellular survival by protecting the cell from toxic compounds, especially when the cellular physiology is not dependent on the uptake of organic nutrients. IMPORTANCE Because the outer membrane of Gram-negative bacteria affects the flux rates for various substances into and out of the cell, its permeability is closely associated with cellular physiology. The outer membrane properties of cyanobacteria, which are photoautotrophic Gram-negative bacteria, are not clearly understood. Here, we examined the outer membrane of Synechocystis sp. strain PCC 6803. We revealed that it is relatively permeable to inorganic ions but is

  3. Cloning, Expression, and Purification of Brucella suis Outer Membrane Proteins

    DTIC Science & Technology

    2005-01-01

    13-09-20061 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cloning, expression and purification of Brucella suis outer membrane proteins 5b. GRANT NUMBER...attractive for this purpose. In this study, we cloned, expressed and purified seven predicted OMPs of Brucella suis . The recombinant proteins were...fused with 6-his and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based

  4. Bacterial Origin of a Mitochondrial Outer Membrane Protein Translocase

    PubMed Central

    Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M.; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

    2012-01-01

    Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes. PMID:22778261

  5. Analysis and Characterization of Proteins Associated with Outer Membrane Vesicles Secreted by Cronobacter spp.

    PubMed Central

    Kothary, Mahendra H.; Gopinath, Gopal R.; Gangiredla, Jayanthi; Rallabhandi, Prasad V.; Harrison, Lisa M.; Yan, Qiong Q.; Chase, Hannah R.; Lee, Boram; Park, Eunbi; Yoo, YeonJoo; Chung, Taejung; Finkelstein, Samantha B.; Negrete, Flavia J.; Patel, Isha R.; Carter, Laurenda; Sathyamoorthy, Venugopal; Fanning, Séamus; Tall, Ben D.

    2017-01-01

    Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport. PMID:28232819

  6. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins.

    PubMed

    Imai, Kenichiro; Fujita, Naoya; Gromiha, M Michael; Horton, Paul

    2011-01-28

    The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs) often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs) have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal) for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.

  7. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    PubMed Central

    2011-01-01

    Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs) often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs) have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal) for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism. PMID:21272379

  8. Yersinia pestis Yop secretion protein F: purification, characterization, and protective efficacy against bubonic plague.

    PubMed

    Swietnicki, Wieslaw; Powell, Bradford S; Goodin, Jeremy

    2005-07-01

    Yersinia pestis is a gram-negative human pathogen that uses a type III secretion system to deliver virulence factors into human hosts. The delivery is contact-dependent and it has been proposed that polymerization of Yop secretion protein F (YscF) is used to puncture mammalian cell membranes to facilitate delivery of Yersinia outer protein effectors into host cells. To evaluate the potential immunogenicity and protective efficacy of YscF against Y. pestis, we used a purified recombinant YscF protein as a potential vaccine candidate in a mouse subcutaneous infection model. YscF was expressed and purified from Escherichia coli by immobilized metal-ion affinity chromatography and protein identity was confirmed by ion trap mass spectrometry. The recombinant protein was highly alpha-helical and formed relatively stable aggregates under physiological conditions. The properties were consistent with behavior expected for the native YscF, suggesting that the antigen was properly folded. Ten mice were inoculated subcutaneously, administered booster injections after one month, and challenged with 130 LD(50) of wild type Y. pestis CO92. Six animals in the vaccinated group but none in the control group survived the challenge. The vaccinated animals produced high levels of specific antibodies against YscF as determined by Western blot. The data were statistically significant (P = 0.053 by two-tailed Fisher's test), suggesting that the YscF protein can provide a protective immune response against lethal plague challenge during subcutaneous plague infection.

  9. Membrane recycling at the infranuclear pole of the outer hair cell

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Harasztosi, Emese; Gummer, Anthony W.

    2015-12-01

    Rapid endocytic activity of outer hair cells (OHCs) in the guinea-pig cochlea has been already studied using the fluorescent membrane marker FM1-43. It was demonstrated that vesicles were endocytosed at the apical pole of OHCs and transcytosed to the basolateral membrane and through a central strand towards the nucleus. The significance of endocytic activity in the infranuclear region is still not clear. Therefore, in this study endocytic activity at the synaptic pole of OHCs was investigated. Confocal laser scanning microscopy was used to visualize dye uptake of OHCs isolated from the guinea-pig cochlea. Signal intensity changes were quantified in the apical and basal poles relative to the signal at the membrane. Data showed no significant difference in fluorescent signal intensity changes between the opposite poles of the OHC. These results suggest that endocytic activities in both the basal and the apical poles contribute equally to the membrane recycling of OHCs.

  10. Escherichia coli pleiotropic mutant that reduces amounts of several periplasmic and outer membrane proteins.

    PubMed

    Wanner, B L; Sarthy, A; Beckwith, J

    1979-10-01

    We have isolated a mutant of Escherichia coli K-12 that is reduced from 6- to 10-fold in the amount of alkaline phosphatase found in the periplasmic space. The reduced synthesis is not due to effects at the level of transcription regulation of the phoA gene, the structural gene for the enzyme. In addition, the mutation (termed perA) responsible for this phenotype results in reduced amounts of possibly six or more other periplasmic proteins and at least three outer membrane proteins. One of the outer membrane proteins affected is protein IA (D. L. Diedrich, A. O. Summers, and C. A. Schnaitman, J. Bacteriol. 131:598-607, 1977). Although other possibilities exist, one explanation for the phenotype of the perA mutation is that it affects the cell's secretory apparatus.

  11. An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export.

    PubMed

    Freudl, R; Schwarz, H; Stierhof, Y D; Gamon, K; Hindennach, I; Henning, U

    1986-08-25

    Pulse-chase experiments were performed to follow the export of the Escherichia coli outer membrane protein OmpA. Besides the pro-OmpA protein, which carries a 21-residue signal sequence, three species of ompA gene products were distinguishable. One probably represented an incomplete nascent chain, another the mature protein in the outer membrane, and the third, designated imp-OmpA (immature processed), a protein which was already processed but apparently was still associated with the plasma membrane. The pro- and imp-OmpA proteins could be characterized more fully by using a strain overproducing the ompA gene products; pro- and imp-OmpA accumulated in large amounts. It could be shown that the imp- and pro-OmpA proteins differ markedly in conformation from the OmpA protein. The imp-OmpA, but not the pro-OmpA, underwent a conformational change and gained phage receptor activity upon addition of lipopolysaccharide. Utilizing a difference in detergent solubility between the two polypeptides and employing immunoelectron microscopy, it could be demonstrated that the pro-OmpA protein accumulated in the cytoplasm while the imp-OmpA was present in the periplasmic space. The results suggest that the pro-OmpA protein, bound to the plasma membrane, is processed, and the resulting imp-OmpA, still associated with the plasma membrane, recognizes the lipid A moiety of the lipopolysaccharide. The resulting conformational change may then force the protein into the outer membrane.

  12. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  13. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGES

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  14. Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts

    PubMed Central

    Misra, Rajeev

    2012-01-01

    In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems—Gram-negative bacteria, mitochondria and chloroplasts—research on bacterial and mitochondrial systems has so far led the way in dissecting the β-barrel OMP assembly pathways. Many exciting discoveries have been made, including the identification of β-barrel OMP assembly machineries in bacteria and mitochondria, and potentially the core assembly component in chloroplasts. The atomic structures of all five components of the bacterial β-barrel assembly machinery (BAM) complex, except the β-barrel domain of the core BamA protein, have been solved. Structures reveal that these proteins contain domains/motifs known to facilitate protein-protein interactions, which are at the heart of the assembly pathways. While structural information has been valuable, most of our current understanding of the β-barrel OMP assembly pathways has come from genetic, molecular biology, and biochemical analyses. This paper provides a comparative account of the β-barrel OMP assembly pathways in Gram-negative bacteria, mitochondria, and chloroplasts. PMID:27335668

  15. Importance of Real-Time Assays To Distinguish Multidrug Efflux Pump-Inhibiting and Outer Membrane-Destabilizing Activities in Escherichia coli.

    PubMed

    Misra, Rajeev; Morrison, Keith D; Cho, Hyun Jae; Khuu, Thanh

    2015-08-01

    The constitutively expressed AcrAB multidrug efflux system of Escherichia coli shows a high degree of homology with the normally silent AcrEF system. Exposure of a strain with acrAB deleted to antibiotic selection pressure frequently leads to the insertion sequence-mediated activation of the homologous AcrEF system. In this study, we used strains constitutively expressing either AcrAB or AcrEF from their normal chromosomal locations to resolve a controversy about whether phenylalanylarginine β-naphthylamide (PAβN) inhibits the activities of AcrAB and AcrEF and/or acts synergistically with antibiotics by destabilizing the outer membrane permeability barrier. Real-time efflux assays allowed a clear distinction between the efflux pump-inhibiting activity of PAβN and the outer membrane-destabilizing action of polymyxin B nonapeptide (PMXBN). When added in equal amounts, PAβN, but not PMXBN, strongly inhibited the efflux activities of both AcrAB and AcrEF pumps. In contrast, when outer membrane destabilization was assessed by the nitrocefin hydrolysis assay, PMXBN exerted a much greater damaging effect than PAβN. Strong action of PAβN in inhibiting efflux activity compared to its weak action in destabilizing the outer membrane permeability barrier suggests that PAβN acts mainly by inhibiting efflux pumps. We concluded that at low concentrations, PAβN acts specifically as an inhibitor of both AcrAB and AcrEF efflux pumps; however, at high concentrations, PAβN in the efflux-proficient background not only inhibits efflux pump activity but also destabilizes the membrane. The effects of PAβN on membrane integrity are compounded in cells unable to extrude PAβN. The increase in multidrug-resistant bacterial pathogens at an alarming rate has accelerated the need for implementation of better antimicrobial stewardship, discovery of new antibiotics, and deeper understanding of the mechanism of drug resistance. The work carried out in this study highlights the importance

  16. Release of outer membrane vesicles from Bordetella pertussis.

    PubMed

    Hozbor, D; Rodriguez, M E; Fernández, J; Lagares, A; Guiso, N; Yantorno, O

    1999-05-01

    The aim of the study reported here was to investigate the production of Bordetella pertussis outer membrane vesicles (OMVs). Numerous vesicles released from cells grown in Stainer-Scholte liquid medium were observed. The formation of similar vesicle-like structures could also be artificially induced by sonication of concentrated bacterial suspensions. Immunoblot analysis showed that OMVs contain adenylate cyclase-hemolysin (AC-Hly), among other polypeptides, as well as the lipopolysaccharide (LPS). Experiments carried out employing purified AC-Hly and OMVs isolated from B. pertussis AC-Hly- showed that AC-Hly is an integral component of the vesicles. OMVs reported here contain several protective immunogens and might be considered a possible basic material for the development of acellular pertussis vaccines.

  17. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    PubMed

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  18. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    NASA Astrophysics Data System (ADS)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  19. Three-dimensional organization of nascent rod outer segment disk membranes.

    PubMed

    Volland, Stefanie; Hughes, Louise C; Kong, Christina; Burgess, Barry L; Linberg, Kenneth A; Luna, Gabriel; Zhou, Z Hong; Fisher, Steven K; Williams, David S

    2015-12-01

    The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of phototransductive membrane disks. The disk membranes are continually renewed, but how new disks are formed remains poorly understood. Here we used electron microscope tomography to obtain 3D visualization of the nascent disks of rod photoreceptors in three mammalian species, to gain insight into the process of disk morphogenesis. We observed that nascent disks are invariably continuous with the ciliary plasma membrane, although, owing to partial enclosure, they can appear to be internal in 2D profiles. Tomographic analyses of the basal-most region of the outer segment show changes in shape of the ciliary plasma membrane indicating an invagination, which is likely a first step in disk formation. The invagination flattens to create the proximal surface of an evaginating lamella, as well as membrane protrusions that extend between adjacent lamellae, thereby initiating a disk rim. Immediately distal to this initiation site, lamellae of increasing diameter are evident, indicating growth outward from the cilium. In agreement with a previous model, our data indicate that mature disks are formed once lamellae reach full diameter, and the growth of a rim encloses the space between adjacent surfaces of two lamellae. This study provides 3D data of nascent and mature rod photoreceptor disk membranes at unprecedented z-axis depth and resolution, and provides a basis for addressing fundamental questions, ranging from protein sorting in the photoreceptor cilium to photoreceptor electrophysiology.

  20. 2,4-Dichlorophenoxyacetic Acid Inhibits the Outer Membrane NADH Dehydrogenase of Plant Mitochondria 1

    PubMed Central

    Mannella, Carmen A.; Bonner, Walter D.

    1978-01-01

    The NADH dehydrogenase of potato (Solanum tuberosum) and mung bean (Phaseolus aureus) outer mitochondrial membranes is specifically inhibited by both 2,4-dichlorophenoxyacetic and 2,4,5-trichlorophenoxyacetic acids but not by the natural auxin indole-3-acetic acid. PMID:16660539

  1. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel.

    PubMed

    Freinkman, Elizaveta; Chng, Shu-Sin; Kahne, Daniel

    2011-02-08

    The cell surfaces of Gram-negative bacteria are composed of lipopolysaccharide (LPS). This glycolipid is found exclusively in the outer leaflet of the asymmetric outer membrane (OM), where it forms a barrier to the entry of toxic hydrophobic molecules into the cell. LPS typically contains six fatty acyl chains and up to several hundred sugar residues. It is biosynthesized in the cytosol and must then be transported across two membranes and an aqueous intermembrane space to the cell surface. These processes are required for the viability of most Gram-negative organisms. The integral membrane β-barrel LptD and the lipoprotein LptE form an essential complex in the OM, which is necessary for LPS assembly. It is not known how this complex translocates large, amphipathic LPS molecules across the OM to the outer leaflet. Here, we show that LptE resides within the LptD β-barrel both in vitro and in vivo. LptD/E associate via an extensive interface; in one specific interaction, LptE contacts a predicted extracellular loop of LptD through the lumen of the β-barrel. Disrupting this interaction site compromises the biogenesis of LptD. This unprecedented two-protein plug-and-barrel architecture suggests how LptD/E can insert LPS from the periplasm directly into the outer leaflet of the OM to establish the asymmetry of the bilayer.

  2. Molecular characterization of outer membrane vesicles released from Acinetobacter radioresistens and their potential roles in pathogenesis.

    PubMed

    Fulsundar, Shweta; Kulkarni, Heramb M; Jagannadham, Medicharla V; Nair, Rashmi; Keerthi, Sravani; Sant, Pooja; Pardesi, Karishma; Bellare, Jayesh; Chopade, Balu Ananda

    2015-01-01

    Acinetobacter radioresistens is an important member of genus Acinetobacter from a clinical point of view. In the present study, we report that a clinical isolate of A. radioresistens releases outer membrane vesicles (OMVs) under in vitro growth conditions. OMVs were released in distinctive size ranges with diameters from 10 to 150 nm as measured by the dynamic light scattering (DLS) technique. Additionally, proteins associated with or present into OMVs were identified using LC-ESI-MS/MS. A total of 71 proteins derived from cytosolic, cell membrane, periplasmic space, outer membrane (OM), extracellular and undetermined locations were found in OMVs. The initial characterization of the OMV proteome revealed a correlation of some proteins to biofilm, quorum sensing, oxidative stress tolerance, and cytotoxicity functions. Thus, the OMVs of A. radioresistens are suggested to play a role in biofilm augmentation and virulence possibly by inducing apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA.

    PubMed

    Gruss, Fabian; Hiller, Sebastian; Maier, Timm

    2015-01-01

    TamA is an Omp85 protein involved in autotransporter assembly in the outer membrane of Escherichia coli. It comprises a C-terminal 16-stranded transmembrane β-barrel as well as three periplasmic POTRA domains, and is a challenging target for structure determination. Here, we present a method for crystal structure determination of TamA, including recombinant expression in E. coli, detergent extraction, chromatographic purification, and bicelle crystallization in combination with seeding. As a result, crystals in space group P21212 are obtained, which diffract to 2.3 Å resolution. This protocol also serves as a template for structure determination of other outer membrane proteins, in particular of the Omp85 family.

  4. Increased Outer Membrane Vesicle Formation in a Helicobacter pylori tolB Mutant.

    PubMed

    Turner, Lorinda; Praszkier, Judyta; Hutton, Melanie L; Steer, David; Ramm, Georg; Kaparakis-Liaskos, Maria; Ferrero, Richard L

    2015-08-01

    Multiple studies have established the importance of the tol-pal gene cluster in bacterial cell membrane integrity and outer membrane vesicle (OMV) formation in Escherichia coli. In contrast, the functions of Tol-Pal proteins in pathogenic organisms, including those of the Epsilonproteobacteria, remain poorly if at all defined. The aim of this study was to characterize the roles of two key components of the Tol-Pal system, TolB and Pal, in OMV formation in the pathogenic bacterium, Helicobacter pylori. H. pylori ΔtolB, Δpal and ΔtolBpal mutants, as well as complemented strains, were generated and assessed for changes in morphology and OMV production by scanning electron microscopy and enzyme-linked immunoassay (ELISA), respectively. The protein content and pro-inflammatory properties of OMVs were determined by mass spectroscopy and interleukin-8 (IL-8) ELISA on culture supernatants from OMV-stimulated cells, respectively. H. pylori ΔtolB and Δpal bacteria exhibited aberrant cell morphology and/or flagella biosynthesis. Importantly, the disruption of H. pylori tolB but not pal resulted in a significant increase in OMV production. The OMVs from H. pylori ΔtolB and Δpal bacteria harbored many of the major outer membrane and virulence proteins observed in wild-type (WT) OMVs. Interestingly, ΔtolB, Δpal and ΔtolBpal OMVs induced significantly higher levels of IL-8 production by host cells, compared with WT OMVs. This work demonstrates that TolB and Pal are important for membrane integrity in H. pylori. Moreover, it shows how H. pylori tolB-pal genes may be manipulated to develop "hypervesiculating" strains for vaccine purposes. © 2015 John Wiley & Sons Ltd.

  5. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    PubMed

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Serum antibodies in mares and foals to Actinobacillus equuli whole cells, outer membrane proteins, and Aqx toxin.

    PubMed

    Holyoak, G R; Smith, C M; Boyette, R; Montelongo, M; Wray, J H; Ayalew, S; Duggan, V E; Confer, A W

    2007-08-15

    Actinobacillus equuli is carried in the alimentary tract of mares and can cause severe septicemia of neonatal foals. A hemolytic subspecies, A. equuli subsp. haemolyticus, and a non-hemolytic subspecies, A. equuli subsp. equuli, have been identified. Hemolytic strains produce the RTX toxin Aqx. The purpose of this study was to demonstrate sequentially in two sets of mare-foal pairs antibodies to A. equuli whole bacterial cells, outer membrane proteins, and recombinant Aqx and to compare the transfer of antibodies to these antigens between mares and their foals. Two mare/foal sets of sera were evaluated. Cohort A consisted of 18 mare-foal pairs obtained in the spring of 2005. Cohort B consisted of 10 mare-foal pairs obtained in the spring of 2006. For both sets, mare and foal sera were obtained immediately after foaling and prior to nursing (time 0) as well as at 12 and 24h and daily thereafter for 7 days. For Cohort B, sera were also obtained 30 days after birth. At parturition all mares had detectable antibodies to A. equuli whole cells and outer membranes; however, of those mares, two in Cohort A had undetectable antibodies to Aqx and their foals likewise had undetectable anti-Aqx antibodies. Antibodies against whole cells, outer membrane proteins, and Aqx were readily transferred from mares to foals. In most cases, there were significant correlations (p<0.05) between antibodies against whole cells, outer membrane proteins, and Aqx in mares' sera at the time of parturition and foal sera 24 after birth. Antibodies against the three antigen preparations had declined insignificantly (p>0.05) by day 30.

  7. Yersinia pestis IS1541 transposition provides for escape from plague immunity.

    PubMed

    Cornelius, Claire A; Quenee, Lauriane E; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf

    2009-05-01

    Yersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity. Here we asked whether Y. pestis generates mutations that enable bacterial escape from protective immunity and isolated a variant with an IS1541 insertion in caf1A encoding the F1 outer membrane usher. The caf1A::IS1541 insertion prevented assembly of F1 pili and provided escape from plague immunity via F1-specific antibodies without a reduction in virulence in mouse models of bubonic or pneumonic plague. F1-specific antibodies interfere with Y. pestis type III transport of effector proteins into host cells, an inhibitory effect that was overcome by the caf1A::IS1541 insertion. These findings suggest a model in which IS1541 insertion into caf1A provides for reversible changes in envelope structure, enabling Y. pestis to escape from adaptive immune responses and plague immunity.

  8. Yersinia pekkanenii sp. nov.

    PubMed

    Murros-Kontiainen, Anna; Johansson, Per; Niskanen, Taina; Fredriksson-Ahomaa, Maria; Korkeala, Hannu; Björkroth, Johanna

    2011-10-01

    The taxonomic position of three strains from water, soil and lettuce samples was studied by using a polyphasic taxonomic approach. The strains were reported to lack the virulence-encoding genes inv and virF in a previous study. Controversially, API 20 E and some other phenotypic tests suggested that the strains belong to Yersinia pseudotuberculosis, which prompted this polyphasic taxonomic study. In both the phylogenetic analyses of four housekeeping genes (glnA, gyrB, recA and HSP60) and numerical analyses of HindIII and EcoRI ribopatterns, the strains formed a separate group within the genus Yersinia. Analysis of the 16S rRNA gene sequences showed that the strains were related to Yersinia aldovae and Yersinia mollaretii, but DNA-DNA hybridization analysis differentiated them from these species. Based on the results of the phylogenetic and DNA-DNA hybridization analyses, a novel species, Yersinia pekkanenii sp. nov., is proposed. The type strain is ÅYV7.1KOH2(T) ( = DSM 22769(T)  = LMG 25369(T)).

  9. BIOCHEMICAL AND ULTRASTRUCTURAL PROPERTIES OF A MITOCHONDRIAL INNER MEMBRANE FRACTION DEFICIENT IN OUTER MEMBRANE AND MATRIX ACTIVITIES

    PubMed Central

    Chan, T. L.; Greenawalt, John W.; Pedersen, Peter L.

    1970-01-01

    Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol. PMID:4254678

  10. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serotypes.

    PubMed

    Helmuth, R; Stephan, R; Bunge, C; Hoog, B; Steinbeck, A; Bulling, E

    1985-04-01

    Antibiotic-sensitive Salmonella isolates belonging to seven common serotypes and originating from 29 different countries from all continents were investigated for their plasmid DNA content (337 isolates) and their outer membrane protein profiles (216 isolates). Of the S. typhimurium, S. enteritidis, S. dublin, and S. choleraesuis isolates, 90% or more carried a serotype-specific plasmid. The molecular sizes of the plasmids were 60 megadaltons (Md) for S. typhimurium, 37 Md for S. enteritidis, 56 Md for S. dublin, and 30 Md for S. choleraesuis. The outer membrane protein profiles were homogeneous within each of the seven serotypes, except that a minority of S. enteritidis and S. dublin strains were lacking one major outer membrane protein. Virulence studies were performed with 39 representative strains by measuring the 50% lethal doses (LD50S) after oral infection of mice. The LD50 values obtained for plasmid-positive strains of S. typhimurium, S. enteritidis, and S. dublin were up to 10(6)-fold lower than the values obtained for the plasmid-free strains of the same serotype. Only the plasmid-positive strains could invade the livers of orally infected mice, and only they were resistant to the bactericidal activity of 90% guinea pig serum. Strains of S. infantis were generally plasmid free, whereas S. panama and S. heidelberg isolates carried heterogeneous plasmid populations. The virulence properties of the latter three serotypes could not be correlated with the predominant plasmids found in these strains.

  11. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serotypes.

    PubMed Central

    Helmuth, R; Stephan, R; Bunge, C; Hoog, B; Steinbeck, A; Bulling, E

    1985-01-01

    Antibiotic-sensitive Salmonella isolates belonging to seven common serotypes and originating from 29 different countries from all continents were investigated for their plasmid DNA content (337 isolates) and their outer membrane protein profiles (216 isolates). Of the S. typhimurium, S. enteritidis, S. dublin, and S. choleraesuis isolates, 90% or more carried a serotype-specific plasmid. The molecular sizes of the plasmids were 60 megadaltons (Md) for S. typhimurium, 37 Md for S. enteritidis, 56 Md for S. dublin, and 30 Md for S. choleraesuis. The outer membrane protein profiles were homogeneous within each of the seven serotypes, except that a minority of S. enteritidis and S. dublin strains were lacking one major outer membrane protein. Virulence studies were performed with 39 representative strains by measuring the 50% lethal doses (LD50S) after oral infection of mice. The LD50 values obtained for plasmid-positive strains of S. typhimurium, S. enteritidis, and S. dublin were up to 10(6)-fold lower than the values obtained for the plasmid-free strains of the same serotype. Only the plasmid-positive strains could invade the livers of orally infected mice, and only they were resistant to the bactericidal activity of 90% guinea pig serum. Strains of S. infantis were generally plasmid free, whereas S. panama and S. heidelberg isolates carried heterogeneous plasmid populations. The virulence properties of the latter three serotypes could not be correlated with the predominant plasmids found in these strains. Images PMID:3980081

  12. Engineering multi-functional bacterial outer membrane vesicles as modular nanodevices for biosensing and bioimaging.

    PubMed

    Chen, Qi; Rozovsky, Sharon; Chen, Wilfred

    2017-07-04

    Outer membrane vesicles (OMVs) are proteoliposomes derived from the outer membrane and periplasmic space of many Gram-negative bacteria including E. coli as part of their natural growth cycle. Inspired by the natural ability of E. coli to sort proteins to both the exterior and interior of OMVs, we reported here a one-pot synthesis approach to engineer multi-functionalized OMV-based sensors for both antigen binding and signal generation. SlyB, a native lipoprotein, was used a fusion partner to package nanoluciferase (Nluc) within OMVs, while a previously developed INP-Scaf3 surface scaffold was fused to the Z-domain for antibody recruiting. The multi-functionalized OMVs were used for thrombin detection with a detection limit of 0.5 nM, comparable to other detection methods. Using the cohesin domains inserted between the Z-domain and INP, these engineered OMVs were further functionalized with a dockerin-tagged GFP for cancer cell imaging.

  13. Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells

    PubMed Central

    Hadis, Mohammed; Alderwick, Luke

    2017-01-01

    Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections. PMID:29186191

  14. The lethal cargo of Myxococcus xanthus outer membrane vesicles.

    PubMed

    Berleman, James E; Allen, Simon; Danielewicz, Megan A; Remis, Jonathan P; Gorur, Amita; Cunha, Jack; Hadi, Masood Z; Zusman, David R; Northen, Trent R; Witkowska, H Ewa; Auer, Manfred

    2014-01-01

    Myxococcus xanthus is a bacterial micro-predator known for hunting other microbes in a wolf pack-like manner. Outer membrane vesicles (OMVs) are produced in large quantities by M. xanthus and have a highly organized structure in the extracellular milieu, sometimes occurring in chains that link neighboring cells within a biofilm. OMVs may be a vehicle for mediating wolf pack activity by delivering hydrolytic enzymes and antibiotics aimed at killing prey microbes. Here, both the protein and small molecule cargo of the OMV and membrane fractions of M. xanthus were characterized and compared. Our analysis indicates a number of proteins that are OMV-specific or OMV-enriched, including several with putative hydrolytic function. Secondary metabolite profiling of OMVs identifies 16 molecules, many associated with antibiotic activities. Several hydrolytic enzyme homologs were identified, including the protein encoded by MXAN_3564 (mepA), an M36 protease homolog. Genetic disruption of mepA leads to a significant reduction in extracellular protease activity suggesting MepA is part of the long-predicted (yet to date undetermined) extracellular protease suite of M. xanthus.

  15. Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of Gram-negative Bacteria*

    PubMed Central

    Xu, Yongbin; Moeller, Arne; Jun, So-Young; Le, Minho; Yoon, Bo-Young; Kim, Jin-Sik; Lee, Kangseok; Ha, Nam-Chul

    2012-01-01

    Gram-negative bacteria are capable of expelling diverse xenobiotic substances from within the cell by use of three-component efflux pumps in which the energy-activated inner membrane transporter is connected to the outer membrane channel protein via the membrane fusion protein. In this work, we describe the crystal structure of the membrane fusion protein MexA from the Pseudomonas aeruginosa MexAB-OprM pump in the hexameric ring arrangement. Electron microscopy study on the chimeric complex of MexA and the outer membrane protein OprM reveals that MexA makes a tip-to-tip interaction with OprM, which suggests a docking model for MexA and OprM. This docking model agrees well with genetic results and depicts detailed interactions. Opening of the OprM channel is accompanied by the simultaneous exposure of a protein structure resembling a six-bladed cogwheel, which intermeshes with the complementary cogwheel structure in the MexA hexamer. Taken together, we suggest an assembly and channel opening model for the MexAB-OprM pump. This study provides a better understanding of multidrug resistance in Gram-negative bacteria. PMID:22308040

  16. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.

    PubMed

    Wang, Yan; Andole Pannuri, Archana; Ni, Dongchun; Zhou, Haizhen; Cao, Xiou; Lu, Xiaomei; Romeo, Tony; Huang, Yihua

    2016-05-06

    The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components

    PubMed Central

    Pirbadian, Sahand; Barchinger, Sarah E.; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A.; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad A.; Shi, Liang; Gorby, Yuri A.; Golbeck, John H.; El-Naggar, Mohamed Y.

    2014-01-01

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic–abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution. PMID:25143589

  18. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.

    PubMed

    Pirbadian, Sahand; Barchinger, Sarah E; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A; Reed, Samantha B; Romine, Margaret F; Saffarini, Daad A; Shi, Liang; Gorby, Yuri A; Golbeck, John H; El-Naggar, Mohamed Y

    2014-09-02

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  19. Investigating the ?Trojan Horse? Mechanism of Yersinia pestis Virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchen-Maloney, S L; Fitch, J P

    2005-02-08

    Yersinia pestis, the etiological agent of plague, is a Gram-negative, highly communicable, enteric bacterium that has been responsible for three historic plague pandemics. Currently, several thousand cases of plague are reported worldwide annually, and Y. pestis remains a considerable threat from a biodefense perspective. Y. pestis infection can manifest in three forms: bubonic, septicemic, and pneumonic plague. Of these three forms, pneumonic plague has the highest fatality rate ({approx}100% if left untreated), the shortest intervention time ({approx}24 hours), and is highly contagious. Currently, there are no rapid, widely available vaccines for plague and though plague may be treated with antibiotics,more » the emergence of both naturally occurring and potentially engineered antibiotic resistant strains makes the search for more effective therapies and vaccines for plague of pressing concern. The virulence mechanism of this deadly bacterium involves induction of a Type III secretion system, a syringe-like apparatus that facilitates the injection of virulence factors, termed Yersinia outer membrane proteins (Yops), into the host cell. These virulence factors inhibit phagocytosis and cytokine secretion, and trigger apoptosis of the host cell. Y. pestis virulence factors and the Type III secretion system are induced thermally, when the bacterium enters the mammalian host from the flea vector, and through host cell contact (or conditions of low Ca{sup 2+} in vitro). Apart from the temperature increase from 26 C to 37 C and host cell contact (or low Ca{sup 2+} conditions), other molecular mechanisms that influence virulence induction in Y. pestis are largely uncharacterized. This project focused on characterizing two novel mechanisms that regulate virulence factor induction in Y. pestis, immunoglobulin G (IgG) binding and quorum sensing, using a real-time reporter system to monitor induction of virulence. Incorporating a better understanding of the mechanisms of

  20. Effect of Leptospira interrogans outer membrane proteins LipL32 on HUVEC.

    PubMed

    Sun, Zhan; Bao, Lang; Li, DaoKun; Huang, Bi; Wu, Bingting

    2010-09-01

    Leptospira cause disease through a toxin-mediated process by inducing vascular injury, particularly a small-vessel vasculitis. Breakdown of vessel endothelial cell integrity may increase vessel permeability which is correlated with the changes of tight junction and/or apoptosis in vessel endothelial cells. The specific toxin responsible remains unidentified. In this study, we amplified outer membrane protein LipL32 from the genome of Leptospira interrogans serovar Lai, and it was subcloned in pET32a(+) vector to express thioredoxin(Trx)-LipL32 fusion protein in Escherichia coli BL21(DE3). The protein was expressed and purified, and Trx-LipL32 was administered to culture with human umbilical vein endothelial cells (HUVEC) to elucidate the role of leptospiral outer membrane proteins in vessel endothelial cell. The purified recombinant protein was capable to increase the permeability of HUVECs. And the protein was able to decrease the expression of ZO-1 and induce F-actin in HUVECs display thickening and clustering. Moreover, apoptosis of HUVEC was significantly accelerated. But the fusion partner had no effect in these regards. It is possible that LipL32 is involved in the vessel lesions. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Toward Understanding the Outer Membrane Uptake of Small Molecules by Pseudomonas aeruginosa*

    PubMed Central

    Eren, Elif; Parkin, Jamie; Adelanwa, Ayodele; Cheneke, Belete; Movileanu, Liviu; Khalid, Syma; van den Berg, Bert

    2013-01-01

    Because small molecules enter Gram-negative bacteria via outer membrane (OM) channels, understanding OM transport is essential for the rational design of improved and new antibiotics. In the human pathogen Pseudomonas aeruginosa, most small molecules are taken up by outer membrane carboxylate channel (Occ) proteins, which can be divided into two distinct subfamilies, OccD and OccK. Here we characterize substrate transport mediated by Occ proteins belonging to both subfamilies. Based on the determination of the OccK2-glucuronate co-crystal structure, we identify the channel residues that are essential for substrate transport. We further show that the pore regions of the channels are rigid in the OccK subfamily and highly dynamic in the OccD subfamily. We also demonstrate that the substrate carboxylate group interacts with central residues of the basic ladder, a row of arginine and lysine residues that leads to and away from the binding site at the channel constriction. Moreover, the importance of the basic ladder residues corresponds to their degree of conservation. Finally, we apply the generated insights by converting the archetype of the entire family, OccD1, from a basic amino acid-specific channel into a channel with a preference for negatively charged amino acids. PMID:23467408

  2. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    USDA-ARS?s Scientific Manuscript database

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  3. Dual orientation of the outer membrane lipoprotein P6 of nontypeable haemophilus influenzae.

    PubMed

    Michel, Lea Vacca; Snyder, Joy; Schmidt, Rachel; Milillo, Jennifer; Grimaldi, Kyle; Kalmeta, Breanna; Khan, M Nadeem; Sharma, Sharad; Wright, Leslie Kate; Pichichero, Michael E

    2013-07-01

    The majority of outer membrane (OM) lipoproteins in Gram-negative bacteria are tethered to the membrane via an attached lipid moiety and oriented facing in toward the periplasmic space; a few lipoproteins have been shown to be surface exposed. The outer membrane lipoprotein P6 from the Gram-negative pathogenic bacterium nontypeable Haemophilus influenzae (NTHi) is surface exposed and a leading vaccine candidate for prevention of NTHi infections. However, we recently found that P6 is not a transmembrane protein as previously thought (L. V. Michel, B. Kalmeta, M. McCreary, J. Snyder, P. Craig, M. E. Pichichero, Vaccine 29:1624-1627, 2011). Here we pursued studies to show that P6 has a dual orientation, existing infrequently as surface exposed and predominantly as internally oriented toward the periplasmic space. Flow cytometry using three monoclonal antibodies with specificity for P6 showed surface staining of whole NTHi cells. Confocal microscopy imaging confirmed that antibodies targeted surface-exposed P6 of intact NTHi cells and not internal P6 in membrane-compromised or dead cells. Western blots of two wild-type NTHi strains and a mutant NTHi strain that does not express P6 showed that P6 antibodies do not detect a promiscuous epitope on NTHi. Depletion of targets to nonlipidated P6 significantly decreased bactericidal activity of human serum. Protease digestion of surface-exposed P6 demonstrated that P6 is predominantly internally localized in a manner similar to its homologue Pal in Escherichia coli. We conclude that P6 of NTHi is likely inserted into the OM in two distinct orientations, with the predominant orientation facing in toward the periplasm.

  4. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes.

    PubMed

    Jäger, Jens; Keese, Susanne; Roessle, Manfred; Steinert, Michael; Schromm, Andra B

    2015-05-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small-angle X-ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co-incubation experiments showed a dose- and time-dependent binding of fluorophore-labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4 °C. Purified OMVs induced tumour necrosis factor-α production in human macrophages at concentrations starting at 300 ng ml(-1). Experiments on HEK293-TLR2 and TLR4/MD-2 cell lines demonstrated a dominance of TLR2-dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells. © 2014 John Wiley & Sons Ltd.

  5. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells

    PubMed Central

    Herrera-Valencia, E. E.; Rey, Alejandro D.

    2014-01-01

    Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary and (ii) the coupled capillary flow of contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equation, analytical expressions for the transfer function associated with the curvature and electrical field and for the power dissipation of elastic storage energy were found. PMID:25332388

  6. Functional characterization of ExFadLO, an outer membrane protein required for exporting oxygenated long-chain fatty acids in Pseudomonas aeruginosa.

    PubMed

    Martínez, Eriel; Estupiñán, Mónica; Pastor, F I Javier; Busquets, Montserrat; Díaz, Pilar; Manresa, Angeles

    2013-02-01

    Bacterial proteins of the FadL family have frequently been associated to the uptake of exogenous hydrophobic substrates. However, their outer membrane location and involvement in substrate uptake have been inferred mainly from sequence similarity to Escherichia coli FadL, the first well-characterized outer membrane transporters of Long-Chain Fatty Acids (LCFAs) in bacteria. Here we report the functional characterization of a Pseudomonas aeruginosa outer membrane protein (ORF PA1288) showing similarities to the members of the FadL family, for which we propose the name ExFadLO. We demonstrate herein that this protein is required to export LCFAs 10-HOME and 7,10-DiHOME, derived from a diol synthase oxygenation activity on oleic acid, from the periplasm to the extracellular medium. Accumulation of 10-HOME and 7,10-DiHOME in the extracellular medium of P. aeruginosa was abolished by a transposon insertion mutation in exFadLO (ExFadLO¯ mutant). However, intact periplasm diol synthase activity was found in this mutant, indicating that ExFadLO participates in the export of these oxygenated LCFAs across the outer membrane. The capacity of ExFadLO¯ mutant to export 10-HOME and 7,10-DiHOME was recovered after complementation with a wild-type, plasmid-expressed ExFadLO protein. A western blot assay with a variant of ExFadLO tagged with a V5 epitope confirmed the location of ExFadLO in the bacterial outer membrane under the experimental conditions tested. Our results provide the first evidence that FadL family proteins, known to be involved in the uptake of hydrophobic substrates from the extracellular environment, also function as secretion elements for metabolites of biological relevance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia.

    PubMed

    Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R

    2004-02-01

    This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial

  8. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism.

    PubMed

    Wu, Si; Ge, Xi; Lv, Zhixin; Zhi, Zeyong; Chang, Zengyi; Zhao, Xin Sheng

    2011-09-15

    The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.

  9. The periplasmic domain of Escherichia coli outer membrane protein A can undergo a localized temperature dependent structural transition.

    PubMed

    Ishida, Hiroaki; Garcia-Herrero, Alicia; Vogel, Hans J

    2014-12-01

    Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1-171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180-325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA(180-325)). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA(180-325) with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA(1-325)) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the

  10. Utilization of Nitrophenylphosphates and Oxime-Based Ligation for the Development of Nanomolar Affinity Inhibitors of the Yersinia pestis Outer Protein H (YopH) Phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahta, Medhanit; Lountos, George T.; Dyas, Beverly

    Our current study reports the first K{sub M} optimization of a library of nitrophenylphosphate-containing substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase (YopH). A high activity substrate identified by this method (K{sub M} = 80 {micro}M) was converted from a substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic acid and by attachment of an aminooxy handle for further structural optimization by oxime ligation. A cocrystal structure of this aminooxy-containing platform in complex with YopH allowed the identification of a conserved water molecule proximal to the aminooxy group that was subsequently employedmore » for the design of furanyl-based oxime derivatives. By this process, a potent (IC{sub 50} = 190 nM) and nonpromiscuous inhibitor was developed with good YopH selectivity relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y. pestis replication at a noncytotoxic concentration. The current work presents general approaches to PTP inhibitor development that may be useful beyond YopH.« less

  11. IroN, a Novel Outer Membrane Siderophore Receptor Characteristic of Salmonella enterica

    PubMed Central

    Bäumler, Andreas J.; Norris, Tracy L.; Lasco, Todd; Voigt, Wolfgang; Reissbrodt, Rolf; Rabsch, Wolfgang; Heffron, Fred

    1998-01-01

    Speciation in enterobacteria involved horizontal gene transfer. Therefore, analysis of genes acquired by horizontal transfer that are present in one species but not its close relatives is expected to give insights into how new bacterial species were formed. In this study we characterize iroN, a gene located downstream of the iroBC operon in the iroA locus of Salmonella enterica serotype Typhi. Like iroBC, the iroN gene is present in all phylogenetic lineages of S. enterica but is absent from closely related species such as Salmonella bongori or Escherichia coli. Comparison of the deduced amino acid sequence of iroN with other proteins suggested that this gene encodes an outer membrane siderophore receptor protein. Mutational analysis in S. enterica and expression in E. coli identified a 78-kDa outer membrane protein as the iroN gene product. When introduced into an E. coli fepA cir fiu aroB mutant on a cosmid, iroN mediated utilization of structurally related catecholate siderophores, including N-(2,3-dihydroxybenzoyl)-l-serine, myxochelin A, benzaldehyde-2,3-dihydroxybenzhydrazone, 2-N,6-N-bis(2,3-dihydroxybenzoyl)-l-lysine, 2-N,6-N-bis(2,3-dihydroxybenzoyl)-l-lysine amide, and enterochelin. These results suggest that the iroA locus functions in iron acquisition in S. enterica. PMID:9515912

  12. Allosteric Signaling Is Bidirectional in an Outer-Membrane Transport Protein.

    PubMed

    Sikora, Arthur; Joseph, Benesh; Matson, Morgan; Staley, Jacob R; Cafiso, David S

    2016-11-01

    In BtuB, the Escherichia coli TonB-dependent transporter for vitamin B 12 , substrate binding to the extracellular surface unfolds a conserved energy coupling motif termed the Ton box into the periplasm. This transmembrane signaling event facilitates an interaction between BtuB and the inner-membrane protein TonB. In this study, continuous-wave and pulse electron paramagnetic resonance in a native outer-membrane preparation demonstrate that signaling also occurs from the periplasmic to the extracellular surface in BtuB. The binding of a TonB fragment to the periplasmic interface alters the configuration of the second extracellular loop and partially dissociates a spin-labeled substrate analog. Moreover, mutants in the periplasmic Ton box that are transport-defective alter the binding site for vitamin B 12 in BtuB. This work demonstrates that the Ton box and the extracellular substrate binding site are allosterically coupled in BtuB, and that TonB binding may initiate a partial round of transport. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli

    PubMed Central

    Ruiz, Natividad; Gronenberg, Luisa S.; Kahne, Daniel; Silhavy, Thomas J.

    2008-01-01

    The outer membrane (OM) of most Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet. LPS, or endotoxin, is a molecule of important biological activities. In the host, LPS elicits a potent immune response, while in the bacterium, it plays a crucial role by establishing a barrier to limit entry of hydrophobic molecules. Before LPS is assembled at the OM, it must be synthesized at the inner membrane (IM) and transported across the aqueous periplasmic compartment. Much is known about the biosynthesis of LPS but, until recently, little was known about its transport and assembly. We applied a reductionist bioinformatic approach that takes advantage of the small size of the proteome of the Gram-negative endosymbiont Blochmannia floridanus to search for novel factors involved in OM biogenesis. This led to the discovery of two essential Escherichia coli IM proteins of unknown function, YjgP and YjgQ, which are required for the transport of LPS to the cell surface. We propose that these two proteins, which we have renamed LptF and LptG, respectively, are the missing transmembrane components of the ABC transporter that, together with LptB, functions to extract LPS from the IM en route to the OM. PMID:18375759

  14. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli.

    PubMed

    Ruiz, Natividad; Gronenberg, Luisa S; Kahne, Daniel; Silhavy, Thomas J

    2008-04-08

    The outer membrane (OM) of most Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet. LPS, or endotoxin, is a molecule of important biological activities. In the host, LPS elicits a potent immune response, while in the bacterium, it plays a crucial role by establishing a barrier to limit entry of hydrophobic molecules. Before LPS is assembled at the OM, it must be synthesized at the inner membrane (IM) and transported across the aqueous periplasmic compartment. Much is known about the biosynthesis of LPS but, until recently, little was known about its transport and assembly. We applied a reductionist bioinformatic approach that takes advantage of the small size of the proteome of the Gram-negative endosymbiont Blochmannia floridanus to search for novel factors involved in OM biogenesis. This led to the discovery of two essential Escherichia coli IM proteins of unknown function, YjgP and YjgQ, which are required for the transport of LPS to the cell surface. We propose that these two proteins, which we have renamed LptF and LptG, respectively, are the missing transmembrane components of the ABC transporter that, together with LptB, functions to extract LPS from the IM en route to the OM.

  15. Oral vaccination with LcrV from Yersinia pestis KIM delivered by live attenuated Salmonella enterica serovar Typhimurium elicits a protective immune response against challenge with Yersinia pseudotuberculosis and Yersinia enterocolitica.

    PubMed

    Branger, Christine G; Torres-Escobar, Ascención; Sun, Wei; Perry, Robert; Fetherston, Jacqueline; Roland, Kenneth L; Curtiss, Roy

    2009-08-27

    The use of live recombinant attenuated Salmonella vaccines (RASV) synthesizing Yersinia proteins is a promising approach for controlling infection by Yersinia species. In this study, we constructed attenuated Salmonella strains which synthesize a truncated form of LcrV, LcrV196 and evaluated the immune response and protective efficacy elicited by these strains in mice against two other major species of Yersinia: Yersinia pseudotuberculosis and Yersinia enterocolitica. Surprisingly, we found that the RASV strain alone was sufficient to afford nearly full protection against challenge with Y. pseudotuberculosis, indicating the likelihood that Salmonella produces immunogenic cross-protective antigens. In contrast, lcrV196 expression was required for protection against challenge with Y. enterocolitica strain 8081, but was not sufficient to achieve significant protection against challenge with Y. enterocolitica strain WA, which expressed a divergent form of lcrV. Nevertheless, we are encouraged by these findings to continue pursuing our long-term goal of developing a single vaccine to protect against all three human pathogenic species of Yersinia.

  16. High-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane

    PubMed Central

    Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra

    2013-01-01

    Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117

  17. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  18. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel

    PubMed Central

    Dyer, Adam; Brown, Gemma; Stejskal, Lenka; Laity, Peter R.; Bingham, Richard J.

    2015-01-01

    The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value. PMID:26181365

  19. Regulation of the Yersinia type III secretion system: traffic control

    PubMed Central

    Dewoody, Rebecca S.; Merritt, Peter M.; Marketon, Melanie M.

    2013-01-01

    Yersinia species, as well as many other Gram-negative pathogens, use a type III secretion system (T3SS) to translocate effector proteins from the bacterial cytoplasm to the host cytosol. This T3SS resembles a molecular syringe, with a needle-like shaft connected to a basal body structure, which spans the inner and outer bacterial membranes. The basal body of the injectisome shares a high degree of homology with the bacterial flagellum. Extending from the T3SS basal body is the needle, which is a polymer of a single protein, YscF. The distal end of the needle serves as a platform for the assembly of a tip complex composed of LcrV. Though never directly observed, prevailing models assume that LcrV assists in the insertion of the pore-forming proteins YopB and YopD into the host cell membrane. This completes a bridge between the bacterium and host cell to provide a continuous channel through which effectors are delivered. Significant effort has gone into understanding how the T3SS is assembled, how its substrates are recognized and how substrate delivery is controlled. Arguably the latter topic is the least understood; however, recent advances have provided new insight, and therefore, this review will focus primarily on summarizing the current state of knowledge regarding the control of substrate delivery by the T3SS. Specifically, we will discuss the roles of YopK, as well as YopN and YopE, which have long been linked to regulation of translocation. We also propose models whereby the YopK regulator communicates with the basal body of the T3SS to control translocation. PMID:23390616

  20. Characterization of the Leptospiral Outer Membrane and Description of Three Novel Leptospiral Membrane Proteins

    PubMed Central

    Haake, David A.; Matsunaga, James

    2002-01-01

    The outer membrane (OM) of the mammalian pathogen Leptospira kirschneri was isolated in the form of membrane vesicles by alkaline plasmolysis and separated from the protoplasmic cylinder by sucrose density gradient ultracentrifugation. All four components of the alkaline plasmolysis buffer, including 1.0 M NaCl, 27% sucrose (wt/vol), 2 mM EDTA, and 10 mM Tris (pH 9), were required for efficient OM release, as judged by recovery of leptospiral lipopolysaccharide. Two populations of OM vesicles (OMVs) were recovered, with peak concentrations found in the sucrose gradient at densities of 1.16 and 1.18 g/ml. Transmission electron microscopy revealed that the more buoyant OMV population was smaller (<0.1 μm in diameter) than the denser OMV population (0.2 to 0.3 μm in diameter). The densities of both populations of OMVs were distinct from that of the protoplasmic-cylinder material, which was found in the sucrose gradient at a density of 1.20 g/ml. The OMV fractions were free of protoplasmic-cylinder material, as judged by immunoblotting with antibodies to the endoflagellar sheath protein, heat shock protein GroEL, and two novel cytoplasmic membrane proteins, lipoprotein LipL31 and transmembrane protein ImpL63. The protein components of the OMVs were characterized by one- and two-dimensional immunoblotting and found to include previously described OM proteins (OMPs), including the porin OmpL1; the lipoproteins LipL32, LipL36, and LipL41; and the peripheral membrane protein P31LipL45. A number of less well-characterized OMPs were also identified, including those with molecular masses of 16, 21, 21.5, 22, 31, 36, 44, 48, 90, and 116 kDa. The 48-kDa OMP was identified as a novel OM lipoprotein designated LipL48. The use of membrane-specific markers in OM isolation techniques facilitates an accurate description of the leptospiral OM and its components. PMID:12183539

  1. Analysis of Yersinia enterocolitica Effector Translocation into Host Cells Using Beta-lactamase Effector Fusions.

    PubMed

    Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin

    2015-10-13

    Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.

  2. Distinct Structural Elements Govern the Folding, Stability, and Catalysis in the Outer Membrane Enzyme PagP.

    PubMed

    Iyer, Bharat Ramasubramanian; Mahalakshmi, Radhakrishnan

    2016-09-06

    The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix. Recent functional and structural studies have shown that these molecular factors are critical for PagP to carry out its function in the challenging environment of the bacterial outer membrane. However, the precise contributions of the N-helix to folding and stability and residues that can influence catalytic rates remain to be addressed. Here, we identify a sequence-dependent stabilizing role for the N-terminal helix of PagP in the measured thermodynamic stability of the barrel. Using chimeric barrel sequences, we show that the Escherichia coli PagP N-terminal helix confers 2-fold greater stability to the Salmonella typhimurium barrel. Further, we find that the W78F substitution in S. typhimurium causes a nearly 20-fold increase in the specific activity in vitro for the phospholipase reaction, compared to that of E. coli PagP. Here, phenylalanine serves as a key regulator of catalysis, possibly by increasing the reaction rate. Through coevolution analysis, we detect an interaction network between seemingly unrelated segments of this membrane protein. Exchanging the structural and functional features between homologous PagP enzymes from E. coli and S. typhimurium has provided us with an understanding of the molecular factors governing PagP stability and function.

  3. Effect of cultivation medium on some physicochemical parameters of outer bacterial membrane.

    PubMed

    Horská, E; Pokorný, J; Labajová, M

    1995-01-01

    The changes of surface charge and hydrophobicity of the outer bacterial membrane in relation to utilization of n-hexadecane were studied. For this spectrophotometric study adsorption of methylene blue and transport of gentian violet were used. The decrease in the negative charge of the bacterial strains Pseudomonas putida CCM 3423, P. aeruginosa, and P. fluorescens CCM 2115, depended on the type of growth medium. The decrease of surface charge was in the order: meat extract peptone broth > mineral medium with glucose > mineral medium with n-hexadecane. The highest permeability of the bacterial membrane for gentian violet was determined in the case of P. fluorescens grown in meat extract peptone broth. This effect can be explained by a greater hydrophobicity of the bacterial surface for this strain. In other strains a lower permeability was observed. P. fluorescens showed a greater adherence to hexadecane.

  4. Wzi is an outer membrane lectin that underpins group 1 capsule assembly in Escherichia coli.

    PubMed

    Bushell, Simon R; Mainprize, Iain L; Wear, Martin A; Lou, Hubing; Whitfield, Chris; Naismith, James H

    2013-05-07

    Many pathogenic bacteria encase themselves in a polysaccharide capsule that provides a barrier to the physical and immunological challenges of the host. The mechanism by which the capsule assembles around the bacterial cell is unknown. Wzi, an integral outer-membrane protein from Escherichia coli, has been implicated in the formation of group 1 capsules. The 2.6 Å resolution structure of Wzi reveals an 18-stranded β-barrel fold with a novel arrangement of long extracellular loops that blocks the extracellular entrance and a helical bundle that plugs the periplasmic end. Mutagenesis shows that specific extracellular loops are required for in vivo capsule assembly. The data show that Wzi binds the K30 carbohydrate polymer and, crucially, that mutants functionally deficient in vivo show no binding to K30 polymer in vitro. We conclude that Wzi is a novel outer-membrane lectin that assists in the formation of the bacterial capsule via direct interaction with capsular polysaccharides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Linkage between anaplasma marginale outer membrane proteins enhances immunogenicity, but is not required for protection from challenge

    USDA-ARS?s Scientific Manuscript database

    Prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective; they are difficult and expensive to isolate and standardize, and thus often impractical for development and implementation in vaccination programs. In contrast, ind...

  6. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.

    PubMed

    Rakshit, Tatini; Senapati, Subhadip; Parmar, Vipul M; Sahu, Bhubanananda; Maeda, Akiko; Park, Paul S-H

    2017-10-01

    The light-sensing rod photoreceptor cell exhibits several adaptations in response to the lighting environment. While adaptations to short-term changes in lighting conditions have been examined in depth, adaptations to long-term changes in lighting conditions are less understood. Atomic force microscopy was used to characterize the structure of rod outer segment disc membranes, the site of photon absorption by the pigment rhodopsin, to better understand how photoreceptor cells respond to long-term lighting changes. Structural properties of the disc membrane changed in response to housing mice in constant dark or light conditions and these adaptive changes required output from the phototransduction cascade initiated by rhodopsin. Among these were changes in the packing density of rhodopsin in the membrane, which was independent of rhodopsin synthesis and specifically affected scotopic visual function as assessed by electroretinography. Studies here support the concept of photostasis, which maintains optimal photoreceptor cell function with implications in retinal degenerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes.

    PubMed

    Niemann, Moritz; Harsman, Anke; Mani, Jan; Peikert, Christian D; Oeljeklaus, Silke; Warscheid, Bettina; Wagner, Richard; Schneider, André

    2017-09-12

    Mitochondrial tRNA import is widespread, but the mechanism by which tRNAs are imported remains largely unknown. The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes, and thus imports all tRNAs from the cytosol. Here we show that in T. brucei in vivo import of tRNAs requires four subunits of the mitochondrial outer membrane protein translocase but not the two receptor subunits, one of which is essential for protein import. The latter shows that it is possible to uncouple mitochondrial tRNA import from protein import. Ablation of the intermembrane space domain of the translocase subunit, archaic translocase of the outer membrane (ATOM)14, on the other hand, while not affecting the architecture of the translocase, impedes both protein and tRNA import. A protein import intermediate arrested in the translocation channel prevents both protein and tRNA import. In the presence of tRNA, blocking events of single-channel currents through the pore formed by recombinant ATOM40 were detected in electrophysiological recordings. These results indicate that both types of macromolecules use the same import channel across the outer membrane. However, while tRNA import depends on the core subunits of the protein import translocase, it does not require the protein import receptors, indicating that the two processes are not mechanistically linked.

  9. Plasmid-determined cytotoxicity in Yersinia pestis and Yersinia pseudotuberculosis.

    PubMed Central

    Goguen, J D; Walker, W S; Hatch, T P; Yother, J

    1986-01-01

    Yersinia pestis KIM5 was found to be cytotoxic for the IC21 and P388D1 mouse macrophage cell lines, as well as for resident peritoneal macrophages from C57BL/6 mice. Affected cells phagocytosed KIM5 inefficiently, became spherical, detached readily from culture dishes, and retained 51Cr poorly. The cytotoxic effect was dependent on the presence of the 75-kilobase plasmid pCD1. Because this plasmid also encodes the low calcium response (LCR), three Mu d1 insertion mutants previously shown to be LCR- and of reduced virulence in mice were examined for cytotoxicity; all were found to be atoxic. The insertions in these mutants lie within three distinct LCR loci (lcrB, C, and D). Like LCR, cytotoxicity was expressed only at 37 degrees C. Unlike LCR, it was not influenced by Ca2+ concentration, indicating that the V and W antigens are probably not involved. Yersinia pseudotuberculosis was found to have a similar plasmid-dependent cytotoxicity. Thus, biological activity observed as cytotoxicity in vitro may well be a common feature contributing to virulence of the yersiniae. Images PMID:3949380

  10. Neisseria gonorrhoeae PIII has a role on NG1873 outer membrane localization and is involved in bacterial adhesion to human cervical and urethral epithelial cells.

    PubMed

    Leuzzi, Rosanna; Nesta, Barbara; Monaci, Elisabetta; Cartocci, Elena; Serino, Laura; Soriani, Marco; Rappuoli, Rino; Pizza, Mariagrazia

    2013-11-09

    Protein PIII is one of the major outer membrane proteins of Neisseria gonorrhoeae, 95% identical to RmpM (reduction modifiable protein M) or class 4 protein of Neisseria meningitidis. RmpM is known to be a membrane protein associated by non-covalent bonds to the peptidoglycan layer and interacting with PorA/PorB porin complexes resulting in the stabilization of the bacterial membrane. The C-terminal domain of PIII (and RmpM) is highly homologous to members of the OmpA family, known to have a role in adhesion/invasion in many bacterial species. The contribution of PIII in the membrane architecture and its role in the interaction with epithelial cells has never been investigated. We generated a ΔpIII knock-out mutant strain and evaluated the effects of the loss of PIII expression on bacterial morphology and on outer membrane composition. Deletion of the pIII gene does not cause any alteration in bacterial morphology or sensitivity to detergents. Moreover, the expression profile of the main membrane proteins remains the same for the wild-type and knock-out strains, with the exception of the NG1873 which is not exported to the outer membrane and accumulates in the inner membrane in the ΔpIII knock-out mutant strain.We also show that purified PIII protein is able to bind human cervical and urethral cells and that the ΔpIII knock-out mutant strain has a lower ability to adhere to human cervical and urethral cells. Here we demonstrated that the PIII protein does not play a key structural role in the membrane organization of gonococcus and does not induce major effects on the expression of the main outer membrane proteins. However, in the PIII knock-out strain, the NG1873 protein is not localized in the outer membrane as it is in the wild-type strain suggesting a possible interaction of PIII with NG1873. The evidence that PIII binds to human epithelial cells derived from the female and male genital tract highlights a possible role of PIII in the virulence of gonococcus

  11. Immunology of Yersinia pestis Infection.

    PubMed

    Bi, Yujing

    2016-01-01

    As a pathogen of plague, Yersinia pestis caused three massive pandemics in history that killed hundreds of millions of people. Yersinia pestis is highly invasive, causing severe septicemia which, if untreated, is usually fatal to its host. To survive in the host and maintain a persistent infection, Yersinia pestis uses several stratagems to evade the innate and the adaptive immune responses. For example, infections with this organism are biphasic, involving an initial "noninflammatory" phase where bacterial replication occurs initially with little inflammation and following by extensive phagocyte influx, inflammatory cytokine production, and considerable tissue destruction, which is called "proinflammatory" phase. In contrast, the host also utilizes its immune system to eliminate the invading bacteria. Neutrophil and macrophage are the first defense against Yersinia pestis invading through phagocytosis and killing. Other innate immune cells also play different roles, such as dendritic cells which help to generate more T helper cells. After several days post infection, the adaptive immune response begins to provide organism-specific protection and has a long-lasting immunological memory. Thus, with the cooperation and collaboration of innate and acquired immunity, the bacterium may be eliminated from the host. The research of Yersinia pestis and host immune systems provides an important topic to understand pathogen-host interaction and consequently develop effective countermeasures.

  12. Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides.

    PubMed

    Narita, Shin-ichiro; Tokuda, Hajime

    2009-07-07

    Seven Lpt proteins (A through G) are thought to be involved in lipopolysaccharide transport from the inner to outer membrane of Escherichia coli. LptB belongs to the ATP-binding cassette transporter superfamily. Although the lptB gene lacks neighboring genes encoding membrane subunits, bioinformatic analyses recently indicated that two distantly located consecutive genes, lptF and lptG, could encode membrane subunits. To examine this possibility, LptB was expressed with LptF and LptG. We report here that both LptF and LptG formed a complex with LptB. Furthermore, an inner membrane protein, LptC, which had been implicated in lipopolysaccharide transport, was also included in this complex.

  13. Outer membrane vesicles as platform vaccine technology

    PubMed Central

    Stork, Michiel; van der Ley, Peter

    2015-01-01

    Abstract Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram‐negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self‐adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV‐containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV‐producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well‐defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications. PMID:26912077

  14. Purification, crystallization and characterization of the Pseudomonas outer membrane protein FapF, a functional amyloid transporter.

    PubMed

    Rouse, Sarah L; Hawthorne, Wlliam J; Lambert, Sebastian; Morgan, Marc L; Hare, Stephen A; Matthews, Stephen

    2016-12-01

    Bacteria often produce extracellular amyloid fibres via a multi-component secretion system. Aggregation-prone, unstructured subunits cross the periplasm and are secreted through the outer membrane, after which they self-assemble. Here, significant progress is presented towards solving the high-resolution crystal structure of the novel amyloid transporter FapF from Pseudomonas, which facilitates the secretion of the amyloid-forming polypeptide FapC across the bacterial outer membrane. This represents the first step towards obtaining structural insight into the products of the Pseudomonas fap operon. Initial attempts at crystallizing full-length and N-terminally truncated constructs by refolding techniques were not successful; however, after preparing FapF 106-430 from the membrane fraction, reproducible crystals were obtained using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.5 Å resolution. These crystals belonged to the monoclinic space group C121, with unit-cell parameters a = 143.4, b = 124.6, c = 80.4 Å, α = γ = 90, β = 96.32° and three monomers in the asymmetric unit. It was found that the switch to complete detergent exchange into C8E4 was crucial for forming well diffracting crystals, and it is suggested that this combined with limited proteolysis is a potentially useful protocol for membrane β-barrel protein crystallography. The three-dimensional structure of FapF will provide invaluable information on the mechanistic differences of biogenesis between the curli and Fap functional amyloid systems.

  15. ExbBD-Dependent Transport of Maltodextrins through the Novel MalA Protein across the Outer Membrane of Caulobacter crescentus

    PubMed Central

    Neugebauer, Heidi; Herrmann, Christina; Kammer, Winfried; Schwarz, Gerold; Nordheim, Alfred; Braun, Volkmar

    2005-01-01

    Analysis of the genome sequence of Caulobacter crescentus predicts 67 TonB-dependent outer membrane proteins. To demonstrate that among them are proteins that transport nutrients other than chelated Fe3+ and vitamin B12—the substrates hitherto known to be transported by TonB-dependent transporters—the outer membrane protein profile of cells grown on different substrates was determined by two-dimensional electrophoresis. Maltose induced the synthesis of a hitherto unknown 99.5-kDa protein, designated here as MalA, encoded by the cc2287 genomic locus. MalA mediated growth on maltodextrins and transported [14C]maltodextrins from [14C]maltose to [14C]maltopentaose. [14C]maltose transport showed biphasic kinetics, with a fast initial rate and a slower second rate. The initial transport had a Kd of 0.2 μM, while the second transport had a Kd of 5 μM. It is proposed that the fast rate reflects binding to MalA and the second rate reflects transport into the cells. Energy depletion of cells by 100 μM carbonyl cyanide 3-chlorophenylhydrazone abolished maltose binding and transport. Deletion of the malA gene diminished maltose transport to 1% of the wild-type malA strain and impaired transport of the larger maltodextrins. The malA mutant was unable to grow on maltodextrins larger than maltotetraose. Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [14C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose. These mutants also showed impaired growth on Fe3+-rhodotorulate as the sole iron source, which provided evidence of energy-coupled transport. Unexpectedly, a deletion mutant of a tonB homolog transported maltose at the wild-type rate and grew on all maltodextrins tested. Since Fe3+-rhodotorulate served as an iron source for the tonB mutant, an additional gene encoding a protein with a TonB function is postulated. Permeation of maltose and maltotriose through the outer membrane of

  16. Organization of K88ac-encoded polypeptides in the Escherichia coli cell envelope: use of minicells and outer membrane protein mutants for studying assembly of pili.

    PubMed

    Dougan, G; Dowd, G; Kehoe, M

    1983-01-01

    Escherichia coli K-12 minicells, harboring recombinant plasmids encoding polypeptides involved in the expression of K88ac adhesion pili on the bacterial cell surface, were labeled with [35S]methionine and fractionated by a variety of techniques. A 70,000-dalton polypeptide, the product of the K88ac adhesion cistron adhA, was primarily located in the outer membrane of minicells, although it was less clearly associated with this membrane than the classical outer membrane proteins OmpA and matrix protein. Two polypeptides of molecular weights 26,000 and 17,000 (the products of adhB and adhC, respectively) were located in significant amounts in the periplasmic space. The 29,000-dalton polypeptide was shown to be processed in E. coli minicells. The 23.500-dalton K88ac pilus subunit (the product of adhD) was detected in both inner and outer membrane fractions. E. coli mutants defective in the synthesis of murein lipoprotein or the major outer membrane polypeptide OmpA were found to express normal amounts of K88ac antigen on the cell surface, whereas expression of the K88ac antigen was greatly reduced in perA mutants. The possible functions of the adh cistron products are discussed.

  17. Utilization of Nitrophenylphosphates and Oxime-Based Ligation for the Development of Nanomolar Affinity Inhibitors of the Yersinia Pestis Outer Protein H (YopH) Phosphatase†, §, ¶

    PubMed Central

    Bahta, Medhanit; Lountos, George T.; Dyas, Beverly; Kim, Sung-Eun; Ulrich, Robert G.; Waugh, David S.; Burke, Terrence R.

    2011-01-01

    Our current study reports the first KM optimization of a library of nitrophenylphosphate-containing substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase (YopH). A high activity substrate identified by this method (KM = 80 μM was converted from a substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic acid and by attachment of an aminooxy handle for further structural optimization by oxime-ligation. A co-crystal structure of this aminooxy-containing platform in complex with YopH allowed the identification of a conserved water molecule proximal to the aminooxy group that was subsequently employed for the design of furanyl-based oxime derivatives. By this process, a potent (IC50 = 190 nM) and non-promiscuous inhibitor was developed with good YopH selectivity relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y. pestis replication at a non-cytotoxic concentration. The current work presents general approaches to PTP inhibitor development that may be useful beyond YopH. PMID:21443195

  18. The Pro-Apoptotic BH3-Only Protein Bim Interacts with Components of the Translocase of the Outer Mitochondrial Membrane (TOM)

    PubMed Central

    Frank, Daniel O.; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated. PMID:25875815

  19. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM).

    PubMed

    Frank, Daniel O; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  20. Outer Membrane Vesicles from Neisseria Meningitidis (Proteossome) Used for Nanostructured Zika Virus Vaccine Production.

    PubMed

    Martins, Paula; Machado, Daisy; Theizen, Thais Holtz; Guarnieri, João Paulo Oliveira; Bernardes, Bruno Gaia; Gomide, Gabriel Piccirillo; Corat, Marcus Alexandre Finzi; Abbehausen, Camilla; Módena, José Luiz Proença; Melo, Carlos Fernando Odir Rodrigues; Morishita, Karen Noda; Catharino, Rodrigo Ramos; Arns, Clarice Weis; Lancellotti, Marcelo

    2018-05-29

    The increase of Zika virus (ZIKV) infections in Brazil in the last two years leaves a prophylactic measures on alert for this new and emerging pathogen. Concerning of our positive experience, we developed a new prototype using Neisseria meningitidis outer membrane vesicles (OMV) on ZIKV cell growth in a fusion of OMV in the envelope of virus particles. The fusion of nanoparticles resulting from outer membrane vesicles of N. meningitidis with infected C6/36 cells line were analyzed by Nano tracking analysis (NTA), zeta potential, differential light scattering (DLS), scan and scanning transmission eletronic microscopy (SEM and STEM) and high resolution mass spectometry (HRMS) for nanostructure characterization. Also, the vaccination effects were viewed by immune response in mice protocols immunization (ELISA and inflammatory chemokines) confirmed by Zika virus soroneutralization test. The results of immunizations in mice showed that antibody production had a titer greater than 1:160 as compared to unvaccinated mice. The immune response of the adjuvant and non-adjuvant formulation activated the cellular immune response TH1 and TH2. In addition, the serum neutralization was able to prevent infection of virus particles in the glial tumor cell model (M059J). This research shows efficient strategies without recombinant technology or DNA vaccines.

  1. Metabolic Remodeling Precedes Mitochondrial Outer Membrane Permeabilization in Human Glioma Xenograft Cells

    PubMed Central

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H.; Klopfenstein, Jeffrey D.; Rao, Jasti S.

    2011-01-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch glioma cells glycolytic metabolism to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated glycolysis to OXPHOS switch. OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to change in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from glycolytic to OXPHOS pathway through an inhibitory effect on Akt, ROS induction, and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for treatment of glioma. PMID:22076676

  2. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells.

    PubMed

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H; Klopfenstein, Jeffrey D; Rao, Jasti S

    2012-02-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.

  3. Thermotropic phase transitions in model membranes of the outer skin layer based on ceramide 6

    NASA Astrophysics Data System (ADS)

    Gruzinov, A. Yu.; Kiselev, M. A.; Ermakova, E. V.; Zabelin, A. V.

    2014-01-01

    The lipid intercellular matrix stratum corneum of the outer skin layer is a multilayer membrane consisting of a complex mixture of different lipids: ceramides, fatty acids, cholesterol, and its derivatives. The basis of the multilayer membrane is the lipid bilayer, i.e., a two-dimensional liquid crystal. Currently, it is known that the main way of substance penetration through the skin is the lipid matrix. The complexity of the actual biological system does not allow reliable direct study of its properties; therefore, system modeling is often used. Phase transitions in the lipid system whose composition simulates the native lipid matrix are studied by the X-ray synchrotron radiation diffraction method.

  4. Identification and characterization of a novel outer membrane protein receptor required for hemin utilization in Vibrio vulnificus

    PubMed Central

    Datta, Shreya

    2011-01-01

    Vibrio vulnificus, the cause of septicemia and serious wound infection in humans and fishes, require iron for its pathogenesis. Hemin uptake through the outer membrane receptor, HupA, is one of its many mechanisms by which it acquires iron. We report here the identification of an additional TonB-dependent hemin receptor HvtA, that is needed in conjunction with the HupA protein for optimal hemin utilization. The HvtA protein is significantly homologous to other outer membrane hemin receptors and its expression in trans restored the uptake of hemin and hemoglobin, the latter to a weaker extent, in a mutant strain that was defective in both receptors. Quantitative RT-PCR suggested that transcription of the hvtA gene was iron regulated. The operon containing the hvtA gene is homologous to the operon in V. cholerae containing the hemin receptor gene hutR suggesting a vertical transmission of the hvtA cluster from V. cholerae to V. vulnificus. PMID:22015545

  5. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE PAGES

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; ...

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This

  6. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    ABSTRACT Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrugmore » efflux pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment

  7. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This

  8. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry

    PubMed Central

    2010-01-01

    Background Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. Results When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. Conclusion These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates. PMID:21073689

  9. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    PubMed

    Ayyadurai, Saravanan; Flaudrops, Christophe; Raoult, Didier; Drancourt, Michel

    2010-11-12

    Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates.

  10. Hierarchy of Iron Uptake Systems: Yfu and Yiu Are Functional in Yersinia pestis▿

    PubMed Central

    Kirillina, Olga; Bobrov, Alexander G.; Fetherston, Jacqueline D.; Perry, Robert D.

    2006-01-01

    In addition to the yersiniabactin (Ybt) siderophore-dependent system, two inorganic iron ABC transport systems of Yersinia pestis, Yfe and Yfu, have been characterized. Here we show that the Yfu system functions in Y. pestis: a Ybt− Yfe− Yfu− mutant exhibited a greater growth defect under iron-deficient conditions than its Ybt− Yfe− parental strain. We also demonstrate that another putative Y. pestis iron uptake system, Yiu, which potentially encodes an outer membrane receptor, YiuR, and an ABC iron transport cassette, YiuABC, is functional. The cloned yiuABC operon restored growth of an enterobactin-deficient mutant Escherichia coli strain, 1017, under iron-chelated conditions. Iron uptake by the Yiu system in Y. pestis was demonstrated only when the Ybt, Yfe, and Yfu systems were mutated. Using a yiuA::lacZ fusion, we show that the yiuABC promoter is repressed by iron through Fur. A mouse model of bubonic plague failed to show a significant role for the Yiu system in the disease process. These results demonstrate that two additional iron transporters are functional in Y. pestis and indicate that there is a hierarchy of iron transporters, with Ybt being most effective and Yiu being the least effective of those systems which have been characterized. PMID:16954402

  11. Excess plasma membrane and effects of ionic amphipaths on mechanics of outer hair cell lateral wall.

    PubMed

    Morimoto, Noriko; Raphael, Robert M; Nygren, Anders; Brownell, William E

    2002-05-01

    The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.

  12. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    PubMed

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  13. The WD40 Protein BamB Mediates Coupling of BAM Complexes into Assembly Precincts in the Bacterial Outer Membrane.

    PubMed

    Gunasinghe, Sachith D; Shiota, Takuya; Stubenrauch, Christopher J; Schulze, Keith E; Webb, Chaille T; Fulcher, Alex J; Dunstan, Rhys A; Hay, Iain D; Naderer, Thomas; Whelan, Donna R; Bell, Toby D M; Elgass, Kirstin D; Strugnell, Richard A; Lithgow, Trevor

    2018-05-29

    The β-barrel assembly machinery (BAM) complex is essential for localization of surface proteins on bacterial cells, but the mechanism by which it functions is unclear. We developed a direct stochastic optical reconstruction microscopy (dSTORM) methodology to view the BAM complex in situ. Single-cell analysis showed that discrete membrane precincts housing several BAM complexes are distributed across the E. coli surface, with a nearest neighbor distance of ∼200 nm. The auxiliary lipoprotein subunit BamB was crucial for this spatial distribution, and in situ crosslinking shows that BamB makes intimate contacts with BamA and BamB in neighboring BAM complexes within the precinct. The BAM complex precincts swell when outer membrane protein synthesis is maximal, visual proof that the precincts are active in protein assembly. This nanoscale interrogation of the BAM complex in situ suggests a model whereby bacterial outer membranes contain highly organized assembly precincts to drive integral protein assembly. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain.

    PubMed

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-10-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.

  15. Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation.

    PubMed

    Gamalier, Juliana P; Silva, Thiago P; Zarantonello, Victor; Dias, Felipe F; Melo, Rossana C N

    2017-01-01

    Secretion of membrane vesicles is an important biological process of both eukaryotic and prokaryotic cells. This process has been characterized in pathogenic bacteria, but is less clear in non-pathogenic bacteria from aquatic ecosystems. Here, we investigated, for the first time, the process of formation of outer membranes vesicles (OMVs), nanoscale vesicles extruded from the outer membrane (OM) of gram-negative bacteria, in cultures of freshwater bacteria after exposure or not to ultraviolet radiation (UVR) as an environmental stressor. Non-axenic cultures of freshwater bacteria isolated from a Brazilian aquatic ecosystem (Funil reservoir) were exposed or not to UVR (UVA+UVB) over a 3h period, during which cell density, viability and ultrastructure were analyzed. First, we showed that UVR induce bacterial death. UVR triggered significant negative effect on cell density after 3h of UVR treatment. This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe that enables the distinction of live/dead bacteria. Transmission electron microscopy (TEM) revealed changes indicative of cell death after 3h of UVR exposure, with significant increase of damaged cells compared to the control group. Second, we demonstrated that gram-negative bacteria release OMVs during normal growth and after UVR exposure. OMVs were clearly identified as round, membrane-bound vesicles budding off from the bacterial OM as isolated or clustered vesicles or free in the extracellular medium. Remarkably, quantitative TEM analyses showed that bacteria respond to UVR with increased formation of OMVs. Moreover, while OMVs numbers per intact or damaged cell did not differ in the untreated group, UVR led to a higher vesiculation by bacteria in process of death. This means that degenerating bacteria release OMVs before lysis and that this secretion might be an adaptive/protective response to rapid changes in environmental conditions such as UV radiation. Copyright

  16. BamA β16C strand and periplasmic turns are critical for outer membrane protein insertion and assembly.

    PubMed

    Gu, Yinghong; Zeng, Yi; Wang, Zhongshan; Dong, Changjiang

    2017-11-21

    Outer membrane (OM) β-barrel proteins play important roles in importing nutrients, exporting wastes and conducting signals in Gram-negative bacteria, mitochondria and chloroplasts. The outer membrane proteins (OMPs) are inserted and assembled into the OM by OMP85 family proteins. In Escherichia coli , the β-barrel assembly machinery (BAM) contains four lipoproteins such as BamB, BamC, BamD and BamE, and one OMP BamA, forming a 'top hat'-like structure. Structural and functional studies of the E. coli BAM machinery have revealed that the rotation of periplasmic ring may trigger the barrel β1C-β6C scissor-like movement that promote the unfolded OMP insertion without using ATP. Here, we report the BamA C-terminal barrel structure of Salmonella enterica Typhimurium str. LT2 and functional assays, which reveal that the BamA's C-terminal residue Trp, the β16C strand of the barrel and the periplasmic turns are critical for the functionality of BamA. These findings indicate that the unique β16C strand and the periplasmic turns of BamA are important for the outer membrane insertion and assembly. The periplasmic turns might mediate the rotation of the periplasmic ring to the scissor-like movement of BamA β1C-β6C, triggering the OMP insertion. These results are important for understanding the OMP insertion in Gram-negative bacteria, as well as in mitochondria and chloroplasts. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. The importance of the magnesium transporter MgtB for virulence of Yersinia pseudotuberculosis and Yersinia pestis.

    PubMed

    Ford, Donna C; Joshua, George W P; Wren, Brendan W; Oyston, Petra C F

    2014-12-01

    Mg(2+) has been shown to be an important signal controlling gene regulation via the PhoPQ two-component regulatory system for a range of Gram-negative bacteria, including Yersinia pestis and Yersinia pseudotuberculosis. The magnesium ion transporter MgtB is part of the complex PhoPQ regulon, being upregulated in response to low Mg(2+). Despite the presence of other Mg(2+) transport systems in Yersinia, inactivation of mgtB had a significant effect on the ability of the bacteria to scavenge this crucial ion. Whereas inactivation of PhoPQ is reported to adversely affect intracellular survival, we show that Y. pestis and Y. pseudotuberculosis ΔmgtB mutants survived equally as well as the respective parent strain within macrophages, although they were more sensitive to killing in the Galleria model of infection. Surprisingly, despite MgtB being only one member of the Mg(2+) stimulon and PhoPQ controlling the expression levels of a range of genes including mgtB, the Yersinia ΔmgtB mutants were more highly attenuated than the equivalent Yersinia ΔphoP mutants in mouse models of infection. MgtB may be a suitable target for development of novel antimicrobials, and investigation of its role may help elucidate the contribution of this component of the PhoPQ regulon to pathogenesis. © 2014 British Crown Copyright 2014/DSTL.

  18. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    PubMed Central

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  19. Overexpression of MicA induces production of OmpC-enriched outer membrane vesicles that protect against Salmonella challenge.

    PubMed

    Choi, Hyun-Il; Kim, Moonjeong; Jeon, Jinseong; Han, Jin Kwan; Kim, Kwang-Sun

    2017-08-26

    Outer membrane vesicles (OMVs) derived from bacteria are promising candidates for subunit vaccines. Stresses that modulate the composition of outer membrane proteins (OMPs) are important for OMV synthesis. Small RNAs (sRNAs) expressed in response to stress regulate OMPs, although the mechanism underlying sRNA-mediated OMV biogenesis and its utility for developing vaccine platforms remains to be elucidated. Here, we characterized the role of a sRNA, MicA, which regulates OmpA, a major OMP involved in both production of OMVs and reactive immunity against Salmonella challenge. A Salmonella strain overexpressing MicA generated more OMVs than a control strain. In addition, OmpC was the major component of MicA-derived OMV proteins. MicA-derived OMVs induced Th1- and Th17-type immune responses in vitro and reduced Salmonella-mediated lethality in a mouse model. Thus, OmpA-regulatory sRNA-derived OMVs may facilitate production of Salmonella-protective vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells.

    PubMed

    Hares, Michelle C; Hinchliffe, Stewart J; Strong, Philippa C R; Eleftherianos, Ioannis; Dowling, Andrea J; ffrench-Constant, Richard H; Waterfield, Nick

    2008-11-01

    The toxin complex (Tc) genes were first identified in the insect pathogen Photorhabdus luminescens and encode approximately 1 MDa protein complexes which are toxic to insect pests. Subsequent genome sequencing projects have revealed the presence of tc orthologues in a range of bacterial pathogens known to be associated with insects. Interestingly, members of the mammalian-pathogenic yersiniae have also been shown to encode Tc orthologues. Studies in Yersinia enterocolitica have shown that divergent tc loci either encode insect-active toxins or play a role in colonization of the gut in gastroenteritis models of rats. So far little is known about the activity of the Tc proteins in the other mammalian-pathogenic yersiniae. Here we present work to suggest that Tc proteins in Yersinia pseudotuberculosis and Yersinia pestis are not insecticidal toxins but have evolved for mammalian pathogenicity. We show that Tc is secreted by Y. pseudotuberculosis strain IP32953 during growth in media at 28 degrees C and 37 degrees C. We also demonstrate that oral toxicity of strain IP32953 to Manduca sexta larvae is not due to Tc expression and that lysates of Escherichia coli BL21 expressing the Yersinia Tc proteins are not toxic to Sf9 insect cells but are toxic to cultured mammalian cell lines. Cell lysates of E. coli BL21 expressing the Y. pseudotuberculosis Tc proteins caused actin ruffles, vacuoles and multi-nucleation in cultured human gut cells (Caco-2); similar morphology was observed after application of a lysate of E. coli BL21 expressing the Y. pestis Tc proteins to mouse fibroblast NIH3T3 cells, but not Caco-2 cells. Finally, transient expression of the individual Tc proteins in Caco-2 and NIH3T3 cell lines reproduced the actin and nuclear rearrangement observed with the topical applications. Together these results add weight to the growing hypothesis that the Tc proteins in Y. pseudotuberculosis and Y. pestis have been adapted for mammalian pathogenicity. We further

  1. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane.

    PubMed

    Bevers, Edouard M; Williamson, Patrick L

    2016-04-01

    Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS. Recently, two proteins required for such randomization have been identified: TMEM16F, a scramblase regulated by elevated intracellular Ca(2+), and XKR8, a caspase-sensitive protein required for PS exposure in apoptotic cells. Once exposed at the cell surface, PS regulates biochemical reactions involved in blood coagulation, and bone mineralization, and also regulates a variety of cell-cell interactions. Exposed on the surface of apoptotic cells, PS controls their recognition and engulfment by other cells. This process is exploited by parasites to invade their host, and in specialized form is used to maintain photoreceptors in the eye and modify synaptic connections in the brain. This review discusses what is known about the mechanism of PS exposure at the surface of the plasma membrane of cells, how actors in the extracellular milieu sense surface exposed PS, and how this recognition is translated to downstream consequences of PS exposure. Copyright © 2016 the American Physiological Society.

  2. Characterization and vaccine potential of outer membrane vesicles produced by Haemophilus parasuis

    DOE PAGES

    McCaig, William D.; Loving, Crystal L.; Hughes, Holly R.; ...

    2016-03-01

    Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structuresmore » has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Lastly, vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.« less

  3. Characterization and vaccine potential of outer membrane vesicles produced by Haemophilus parasuis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaig, William D.; Loving, Crystal L.; Hughes, Holly R.

    Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structuresmore » has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Lastly, vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.« less

  4. Molecular Chaperone Hsp70/Hsp90 Prepares the Mitochondrial Outer Membrane Translocon Receptor Tom71 for Preprotein Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingzhi; Qian, Xinguo; Hu, Junbin

    2010-11-03

    The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away,more » and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.« less

  5. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization.

    PubMed

    Roux, Kyle J; Crisp, Melissa L; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L; Burke, Brian

    2009-02-17

    Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.

  6. Yersinia adhesins: An arsenal for infection.

    PubMed

    Chauhan, Nandini; Wrobel, Agnieszka; Skurnik, Mikael; Leo, Jack C

    2016-10-01

    The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles

    PubMed Central

    Ellis, Terri N.; Kuehn, Meta J.

    2010-01-01

    Summary: Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens. PMID:20197500

  8. Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.

    The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced highmore » titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens.« less

  9. Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies

    DOE PAGES

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.; ...

    2016-06-23

    The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced highmore » titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens.« less

  10. A nonlinear cochlear model with the outer hair cell piezoelectric activity

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoai; Grosh, Karl

    2003-10-01

    In this paper we present a simple cochlear model which captures the most important aspect of nonlinearity in the cochlea-the nonlinearity caused by the piezoelectric-like activity of outer hair cells and the variable conductance of the outer hair cell stereocilia. A one-dimensional long-wave model is built to simulate the dynamic response of the fluid-loaded basilar membrane. The basilar membrane is simulated as isolated linear oscillators along the cochlear length, and its motion is coupled with the fluid pressure and the nonlinear force produced by the outer hair cells. As the basilar membrane moves, the fluid shears stereocilia, and the resulting ion flow changes the transmembrane potential of the outer hair cells and subsequently their length, leading to further movement of the basilar membrane. The piezoelectric-like activity of the outer hair cell is simulated by a current source, and stereocilia motion is modeled as a varying conductance that changes as the basilar membrane moves. A solution in the time domain will be presented. [Work supported by NIH.

  11. Deletion of degQ gene enhances outer membrane vesicle production of Shewanella oneidensis cells.

    PubMed

    Ojima, Yoshihiro; Mohanadas, Thivagaran; Kitamura, Kosei; Nunogami, Shota; Yajima, Reiki; Taya, Masahito

    2017-04-01

    Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide variety of terminal electron acceptors for anaerobic respiration. In this study, S. oneidensis degQ gene, encoding a putative periplasmic serine protease, was cloned and expressed. The activity of purified DegQ was inhibited by diisopropyl fluorophosphate, a typical serine protease-specific inhibitor, indicating that DegQ is a serine protease. In-frame deletion and subsequent complementation of the degQ were carried out to examine the effect of envelope stress on the production of outer membrane vesicles (OMVs). Analysis of periplasmic proteins from the resulting S. oneidensis strain showed that deletion of degQ induced protein accumulation and resulted in a significant decrease in protease activity within the periplasmic space. OMVs from the wild-type and mutant strains were purified and observed by transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the OMVs showed a prominent band at ~37 kDa. Nanoliquid chromatography-tandem mass spectrometry analysis identified three outer membrane porins (SO3896, SO1821, and SO3545) as dominant components of the band, suggesting that these proteins could be used as indices for comparing OMV production by S. oneidensis strains. Quantitative evaluation showed that degQ-deficient cells had a fivefold increase in OMV production compared with wild-type cells. Thus, the increased OMV production following the deletion of DegQ in S. oneidensis may be responsible for the increase in envelope stress.

  12. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.

    2017-06-30

    Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA ismore » polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.« less

  13. The nature of information, required for export and sorting, present within the outer membrane protein OmpA of Escherichia coli K-12.

    PubMed

    Freudl, R; Schwarz, H; Klose, M; Movva, N R; Henning, U

    1985-12-16

    Information, in addition to that provided by signal sequences, for translocation across the plasma membrane is thought to be present in exported proteins of Escherichia coli. Such information must also exist for the localization of such proteins. To determine the nature of this information, overlapping inframe deletions have been constructed in the ompA gene which codes for a 325-residue major outer membrane protein. In addition, one deletion, encoding only the NH2-terminal part of the protein up to residue 160, was prepared. The location of each product was determined by immunoelectron microscopy. Proteins missing residues 4-45, 43-84, 46-227, 86-227 or 160-325 of the mature protein were all efficiently translocated across the plasma membrane. The first two proteins were found in the outer membrane, the others in the periplasmic space. It has been proposed that export and sorting signals consist of relatively small amino acid sequences near the NH2 terminus of an outer membrane protein. On the basis of sequence homologies it has also been suggested that such proteins possess a common sorting signal. The locations of the partially deleted proteins described here show that a unique export signal does not exist in the OmpA protein. The proposed common sorting signal spans residues 1-14 of OmpA. Since this region is not essential for routing the protein, the existence of a common sorting signal is doubtful. It is suggested that information both for export (if existent) and localization lies within protein conformation which for the former process should be present repeatedly in the polypeptide.

  14. Prevalence, characterization, and antimicrobial resistance of Yersinia species and Yersinia enterocolitica isolated from raw milk in farm bulk tanks.

    PubMed

    Jamali, Hossein; Paydar, Mohammadjavad; Radmehr, Behrad; Ismail, Salmah

    2015-02-01

    The aims of this study were to investigate the prevalence and to characterize and determine the antibiotic resistance of Yersinia spp. isolates from raw milk. From September 2008 to August 2010, 446 raw milk samples were obtained from farm bulk milk tanks in Varamin, Iran. Yersinia spp. were detected in 29 (6.5%) samples, out of which 23 (79.3%), 5 (17.2%), and 1 (3.4%) were isolated from cow, sheep, and goat raw milk, respectively. The most common species isolated was Yersinia enterocolitica (65.5%), followed by Yersinia frederiksenii (31%), and Yersinia kristensenii (3.4%). Of the 19 Y. enterocolitica isolates, 14 (73.7%) were grouped into bioserotype 1A/O:9, 4 (21.1%) belonged to bioserotype 1B:O8, 1 (5.3%) belonged to bioserotype 4/O:3, and 1 isolate (biotype 1A) was not typable. All the isolates of biotypes 1B and 4harbored both the ystA and ail genes. However, all the isolates of biotype 1A were only positive for the ystB gene. The tested Yersinia spp. showed the highest percentages of resistance to tetracycline (48.3%), followed by ciprofloxacin and cephalothin (each 17.2%), ampicillin (13.8%), streptomycin (6.9%), and amoxicillin and nalidixic acid (each 3.4%). All of the tested isolates demonstrated significant sensitivity to gentamicin and chloramphenicol. Recovery of potentially pathogenic Y. enterocolitica from raw milk indicates high risks of yersiniosis associated with consumption of raw milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane

    PubMed Central

    Marty, Naomi J.; Teresinski, Howard J.; Hwang, Yeen Ting; Clendening, Eric A.; Gidda, Satinder K.; Sliwinska, Elwira; Zhang, Daiyuan; Miernyk, Ján A.; Brito, Glauber C.; Andrews, David W.; Dyer, John M.; Mullen, Robert T.

    2014-01-01

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X{X≠E}) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins. PMID:25237314

  16. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus.

    PubMed

    Eisenbeis, Simone; Lohmiller, Stefanie; Valdebenito, Marianne; Leicht, Stefan; Braun, Volkmar

    2008-08-01

    Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.

  17. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization

    PubMed Central

    Roux, Kyle J.; Crisp, Melissa L.; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L.; Burke, Brian

    2009-01-01

    Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin–Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1–3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning. PMID:19164528

  18. Immunogenicity of Nontypeable Haemophilus influenzae Outer Membrane Vesicles and Protective Ability in the Chinchilla Model of Otitis Media.

    PubMed

    Winter, Linda E; Barenkamp, Stephen J

    2017-10-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are enriched in several outer membrane components, including major and minor outer membrane proteins and lipooligosaccharide. We assessed the functional activity of nontypeable Haemophilus influenzae (NTHi) OMV-specific antisera and the protective ability of NTHi OMVs as vaccine antigens in the chinchilla otitis media model. OMVs were purified from three HMW1/HMW2-expressing NTHi strains, two of which were also engineered to overexpress Hia proteins. OMV-specific antisera raised in guinea pigs were assessed for their ability to mediate killing of representative NTHi in an opsonophagocytic assay. The three OMV-specific antisera mediated killing of 18 of 65, 24 of 65, and 30 of 65 unrelated HMW1/HMW2-expressing NTHi strains. Overall, they mediated killing of 39 of 65 HMW1/HMW2-expressing strains. The two Hia-expressing OMV-specific antisera mediated killing of 17 of 25 and 14 of 25 unrelated Hia-expressing NTHi strains. Overall, they mediated killing of 20 of 25 Hia-expressing strains. OMVs from prototype NTHi strain 12 were used to immunize chinchillas and the course of middle ear infection was monitored following intrabullar challenge with the homologous strain. All control animals developed culture-positive otitis media, as did two of three HMW1/HMW2-immunized animals. All OMV-immunized animals, with or without supplemental HMW1/HMW2 immunization, were completely protected against otitis media. NTHi OMVs are the first immunogens examined in this model that provided complete protection with sterile immunity after NTHi strain 12 challenge. These data suggest that NTHi OMVs hold significant potential as components of protective NTHi vaccines, possibly in combination with HMW1/HMW2 proteins. Copyright © 2017 American Society for Microbiology.

  19. Sequence of the fhuE outer-membrane receptor gene of Escherichia coli K12 and properties of mutants.

    PubMed

    Sauer, M; Hantke, K; Braun, V

    1990-03-01

    The fhuE gene of Escherichia coli codes for an outer-membrane receptor protein required for the uptake of iron(III) via coprogen, ferrioxamine B and rhodotorulic acid. The amino acid sequence, deduced from the nucleotide sequence, consisted of 729 residues. The mature form, composed of 693 residues, has a calculated molecular weight of 77,453, which agrees with the molecular weight of 76,000 determined by polyacrylamide gel electrophoresis. The FhuE protein contains four regions of homology with other TonB-dependent receptors. A valine to proline exchange in the 'TonB box' abolished transport activity. Phenotypic revertants with substitutions of arginine, glutamine, or leucine at the valine position exhibited increasing iron-coprogen transport rates. Point mutations resulting in the replacement of glycine (127) in the second homology region with either alanine, aspartate, valine, asparagine or histidine exhibited decreased transport rates (listed in descending order). A truncated FhuE protein lacking 24 amino acids at the C-terminal end was exported to the periplasm but failed to be inserted into the outer membrane.

  20. Glycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation.

    PubMed

    Martel, Cecile; Allouche, Maya; Esposti, Davide Degli; Fanelli, Elena; Boursier, Céline; Henry, Céline; Chopineau, Joel; Calamita, Giuseppe; Kroemer, Guido; Lemoine, Antoinette; Brenner, Catherine

    2013-01-01

    Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis. Copyright © 2012 American Association for the Study of Liver Diseases.

  1. Outer-membrane Transport of Aromatic Hydrocarbons as a First Step in Biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hearn,E.; Patel, D.; van den Berg, B.

    Bacterial biodegradation of hydrocarbons, an important process for environmental remediation, requires the passage of hydrophobic substrates across the cell membrane. Here, we report crystal structures of two outer membrane proteins, Pseudomonas putida TodX and Ralstonia pickettii TbuX, which have been implicated in hydrocarbon transport and are part of a subfamily of the FadL fatty acid transporter family. The structures of TodX and TbuX show significant differences with those previously determined for Escherichia coli FadL, which may provide an explanation for the substrate-specific transport of TodX and TbuX observed with in vivo transport assays. The TodX and TbuX structures revealed 14-strandedmore » {beta}-barrels with an N-terminal hatch domain blocking the barrel interior. A hydrophobic channel with bound detergent molecules extends from the extracellular surface and is contiguous with a passageway through the hatch domain, lined by both hydrophobic and polar or charged residues. The TodX and TbuX structures support a mechanism for transport of hydrophobic substrates from the extracellular environment to the periplasm via a channel through the hatch domain.« less

  2. Refolding, crystallization and preliminary X-ray crystallographic studies of the β-barrel domain of BamA, a membrane protein essential for outer membrane protein biogenesis.

    PubMed

    Ni, Dongchun; Yang, Kun; Huang, Yihua

    2014-03-01

    In Gram-negative bacteria, the assembly of outer membrane proteins (OMPs) requires a five-protein β-barrel assembly machinery (BAM) complex, of which BamA is an essential and evolutionarily conserved integral outer membrane protein. Here, the refolding, crystallization and preliminary X-ray crystallographic characterization of the β-barrel domain of BamA from Escherichia coli (EcBamA) are reported. Native and selenomethionine-substituted EcBamA proteins were crystallized at 16°C and X-ray diffraction data were collected to 2.6 and 3.7 Å resolution, respectively. The native crystals belonged to space group P21212, with unit-cell parameters a = 118.492, b = 159.883, c = 56.000 Å and two molecules in one asymmetric unit; selenomethionine-substituted protein crystals belonged to space group P4322, with unit-cell parameters a = b = 163.162, c = 46.388 Å and one molecule in one asymmetric unit. Initial phases for EcBamA β-barrel domain were obtained from a SeMet SAD data set. These preliminary X-ray crystallographic studies paved the way for further structural determination of the β-barrel domain of EcBamA.

  3. Detection of Yersinia enterocolitica in Retail Chicken Meat, Mashhad, Iran.

    PubMed

    Sirghani, Khadigeh; Zeinali, Tayebeh; Jamshidi, Abdollah

    2018-01-01

    Poultry meat is one of the most important sources of infection of Yersinia spp. for humans. The aim of the present study was to evaluate the incidence of Yersinia enterocolitica in chicken meat by using culture method on selective medium and confirmation by PCR assay. Also, biochemical methods were used for biotyping. A total of 100 chicken thigh meat samples were collected randomly from retail outlets in Mashhad, Iran. Samples were enriched in Peptone-Sorbitol-Bile (PSB) broth and then cultured on Cefsulodin-Irgasan-Novobiocin (CIN) agar containing antibiotics supplement. The DNA was extracted from suspected colonies of Yersinia spp. and then PCR test using specific primers for 16S rRNA gene of Yersinia enterocolitica was performed. In this study, 30% of chicken meat was contaminated with Yersinia spp. by culture method and 25% of chicken meat was contaminated with Yersinia enterocolitica . Biotyping of isolated colonies showed that all of the isolates belonged to biotype 1A. Culture and detection of Yersinia spp. from food samples traditionally take 4 days. Due to high accuracy and speed of PCR assay, it is a good alternative method for microbiological techniques. In conclusion, poultry meat can act as a source of Y. enterocolitica and could be considered as a public health hazard.

  4. Outer membrane vesicles shield Moraxella catarrhalis β-lactamase from neutralization by serum IgG.

    PubMed

    Schaar, Viveka; Paulsson, Magnus; Mörgelin, Matthias; Riesbeck, Kristian

    2013-03-01

    The aim of this study was to detect the presence of IgG against Moraxella catarrhalis β-lactamase in healthy adults, and to determine whether outer membrane vesicles (OMVs) could protect the enzyme from inhibition by anti-β-lactamase IgG. Transmission electron microscopy was used to detect the presence of β-lactamase in OMVs. Sera were examined by ELISA for specific IgG directed against recombinant M. catarrhalis β-lactamase in addition to the outer membrane adhesins MID/Hag, UspA1 and A2. Binding of anti-β-lactamase IgG from serum to OMVs was analysed by flow cytometry. The chromogenic substrate nitrocefin was used to quantify β-lactamase enzyme activity. The presence of β-lactamase was determined in OMVs from a 9-year-old child suffering from M. catarrhalis sinusitis. Furthermore, anti-β-lactamase IgG was detected in sera obtained from healthy adults. Out of 40 adult blood donors (aged 18-65 years) tested, 6 (15.0%) carried anti-β-lactamase IgG. No correlation between IgG titres against β-lactamase and the adhesins was found. Flow cytometry analyses revealed that anti-β-lactamase IgG from serum bound to β-lactamase-positive OMVs. By comparing the β-lactamase activity of intact OMV with OMV that were permeabilized with saponin we found that OMVs shielded active β-lactamase from the anti-β-lactamase IgG. Moraxella catarrhalis β-lactamase is found in, or associated with, OMVs, providing clinical relevance for the vesicles in the spread of antibiotic resistance. Furthermore, OMVs protect β-lactamase from specific IgG.

  5. Epoxide-mediated differential packaging of Cif and other virulence factors into outer membrane vesicles.

    PubMed

    Ballok, Alicia E; Filkins, Laura M; Bomberger, Jennifer M; Stanton, Bruce A; O'Toole, George A

    2014-10-01

    Pseudomonas aeruginosa produces outer membrane vesicles (OMVs) that contain a number of secreted bacterial proteins, including phospholipases, alkaline phosphatase, and the CFTR inhibitory factor (Cif). Previously, Cif, an epoxide hydrolase, was shown to be regulated at the transcriptional level by epoxides, which serve as ligands of the repressor, CifR. Here, we tested whether epoxides have an effect on Cif levels in OMVs. We showed that growth of P. aeruginosa in the presence of specific epoxides but not a hydrolysis product increased Cif packaging into OMVs in a CifR-independent fashion. The outer membrane protein, OprF, was also increased under these conditions, but alkaline phosphatase activity was not significantly altered. Additionally, we demonstrated that OMV shape and density were affected by epoxide treatment, with two distinct vesicle fractions present when cells were treated with epibromohydrin (EBH), a model epoxide. Vesicles isolated from the two density fractions exhibited different protein profiles in Western blotting and silver staining. We have shown that a variety of clinically or host-relevant treatments, including antibiotics, also alter the proteins packaged in OMVs. Proteomic analysis of purified OMVs followed by an analysis of transposon mutant OMVs yielded mutants with altered vesicle packaging. Finally, epithelial cell cytotoxicity was reduced in the vesicles formed in the presence of EBH, suggesting that this epoxide alters the function of the OMVs. Our data support a model whereby clinically or host-relevant signals mediate differential packaging of virulence factors in OMVs, which results in functional consequences for host-pathogen interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet.

    PubMed

    Tannert, Astrid; Kurz, Anke; Erlemann, Karl-Rudolf; Müller, Karin; Herrmann, Andreas; Schiller, Jürgen; Töpfer-Petersen, Edda; Manjunath, Puttaswamy; Müller, Peter

    2007-04-01

    The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented.

  7. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    PubMed

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  8. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy.

    PubMed

    Joseph, Benesh; Sikora, Arthur; Bordignon, Enrica; Jeschke, Gunnar; Cafiso, David S; Prisner, Thomas F

    2015-05-18

    Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    DOE PAGES

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; ...

    2015-07-24

    We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) andmore » second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.« less

  10. Poliovirus hybrids expressing neutralization epitopes from variable domains I and IV of the major outer membrane protein of Chlamydia trachomatis elicit broadly cross-reactive C. trachomatis-neutralizing antibodies.

    PubMed Central

    Murdin, A D; Su, H; Klein, M H; Caldwell, H D

    1995-01-01

    Trachoma and sexually transmitted diseases caused by Chlamydia trachomatis are major health problems worldwide. Epitopes from the variable domains of the major outer membrane protein are candidates for vaccine development. We have constructed hybrid polioviruses expressing sequences from major outer membrane protein variable domains I and IV. Antisera to the hybrids could, in combination, strongly neutralize 8 of the 12 C. trachomatis serovars most commonly associated with oculogenital infections and weakly neutralize the others. PMID:7532625

  11. Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective

    PubMed Central

    Martínez-Chavarría, Luary C.; Vadyvaloo, Viveka

    2015-01-01

    Yersinia pestis, responsible for causing fulminant plague, has evolved clonally from the enteric pathogen, Y. pseudotuberculosis, which in contrast, causes a relatively benign enteric illness. An ~97% nucleotide identity over 75% of their shared protein coding genes is maintained between these two pathogens, leaving much conjecture regarding the molecular determinants responsible for producing these vastly different disease etiologies, host preferences and transmission routes. One idea is that coordinated production of distinct factors required for host adaptation and virulence in response to specific environmental cues could contribute to the distinct pathogenicity distinguishing these two species. Small non-coding RNAs that direct posttranscriptional regulation have recently been identified as key molecules that may provide such timeous expression of appropriate disease enabling factors. Here the burgeoning field of small non-coding regulatory RNAs in Yersinia pathogenesis is reviewed from the viewpoint of adaptive colonization, virulence and divergent evolution of these pathogens. PMID:26441890

  12. Antigenic profiling of Yersinia pestis infection in the Wyoming coyote (Canis latrans)

    USGS Publications Warehouse

    Vernati, G.; Edwards, W.H.; Rocke, T.E.; Little, S.F.; Andrews, G.P.

    2011-01-01

    Although Yersinia pestis is classified as a "high-virulence" pathogen, some host species are variably susceptible to disease. Coyotes (Canis latrans) exhibit mild, if any, symptoms during infection, but antibody production occurs postinfection. This immune response has been reported to be against the F1 capsule, although little subsequent characterization has been conducted. To further define the nature of coyote humoral immunity to plague, qualitative serology was conducted to assess the antiplague antibody repertoire. Humoral responses to six plasmid-encoded Y. pestis virulence factors were first examined. Of 20 individual immune coyotes, 90% were reactive to at least one other antigen in the panel other than F1. The frequency of reactivity to low calcium response plasmid (pLcr)-encoded Yersinia protein kinase A (YpkA) and Yersinia outer protein D (YopD) was significantly greater than that previously observed in a murine model for plague. Additionally, both V antigen and plasminogen activator were reactive with over half of the serum samples tested. Reactivity to F1 was markedly less frequent in coyotes (35%). Twenty previously tested antibody-negative samples were also examined. While the majority were negative across the panel, 15% were positive for 1-3 non-F1 antigens. In vivo-induced antigen technology employed to identify novel chromosomal genes of Y. pestis that are up-regulated during infection resulted in the identification of five proteins, including a flagellar component (FliP) that was uniquely reactive with the coyote serum compared with immune serum from two other host species. Collectively, these data suggest that humoral immunity to pLcr-encoded antigens and the pesticin plasmid (pPst)-encoded Pla antigen may be relevant to plague resistance in coyotes. The serologic profile of Y. pestis chromosomal antigens up-regulated in vivo specific to C. latrans may provide insight into the differences in the pathogen-host responses during Y. pestis infection.

  13. UV-C Adaptation of Shigella: Morphological, Outer Membrane Proteins, Secreted Proteins, and Lipopolysaccharides Effects.

    PubMed

    Chourabi, Kalthoum; Campoy, Susana; Rodriguez, Jesus A; Kloula, Salma; Landoulsi, Ahmed; Chatti, Abdelwaheb

    2017-11-01

    Water UV disinfection remains extremely important, particularly in developing countries where drinking and reclaimed crop irrigation water may spread devastating infectious diseases. Enteric bacterial pathogens, among which Shigella, are possible contaminants of drinking and bathing water and foods. To study the effect of UV light on Shigella, four strains were exposed to different doses in a laboratory-made irradiation device, given that the ultraviolet radiation degree of inactivation is directly related to the UV dose applied to water. Our results showed that the UV-C rays are effective against all the tested Shigella strains. However, UV-C doses appeared as determinant factors for Shigella eradication. On the other hand, Shigella-survived strains changed their outer membrane protein profiles, secreted proteins, and lipopolysaccharides. Also, as shown by electron microscopy transmission, morphological alterations were manifested by an internal cytoplasm disorganized and membrane envelope breaks. Taken together, the focus of interest of our study is to know the adaptive mechanism of UV-C resistance of Shigella strains.

  14. An outer membrane protein (porin) as an eliciting antigen for delayed-type hypersensitivity in murine salmonellosis.

    PubMed Central

    Udhayakumar, V; Muthukkaruppan, V R

    1987-01-01

    The porin, an outer membrane protein of Salmonella typhimurium, was found to be a suitable antigen for eliciting delayed-type hypersensitivity in mouse salmonellosis. Histological examination of the reaction site revealed that the porin was superior to other antigenic preparations in eliciting a typical delayed-type hypersensitivity reaction consisting of mononuclear cell infiltration without polymorphonuclear cell contamination. This study indicates the importance of using a suitable protein antigen from S. typhi for human application. Images PMID:3028963

  15. The mitochondrial outer membrane protein hFis1 regulates mitochondrial morphology and fission through self-interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serasinghe, Madhavika N.; Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Yoon, Yisang

    2008-11-15

    Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six {alpha}-helices ({alpha}1-{alpha}6) out of which {alpha}2-{alpha}5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found thatmore » hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the {alpha}1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that {alpha}1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the {alpha}5 helix and the linker between {alpha}3 and {alpha}4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by {alpha}1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.« less

  16. A variant of arrestin-1 binds rod outer segment membranes in a light-independent manner.

    PubMed

    Uzcanga, Graciela L; Becerra, Aniuska R; Perdomo, Deisy; Bubis, José

    2011-03-15

    A 50-kDa-polypeptide band peripherally bound to retinal rod outer segment (ROS) membranes was purified by anion-exchange chromatography. When the 50-kDa protein was compared with purified arrestin-1, it was observed that: (1) both proteins comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and were recognized by either anti-50-kDa protein polyclonal antibodies or anti-arrestin-1 monoclonal antibodies; (2) protein fragments and peptide fingerprint maps obtained following limited and complete proteolysis with specific proteases were very similar for both molecules; and (3) several chromatographically-purified tryptic peptides from the 50-kDa protein possessed the same amino acid composition as tryptic peptides deduced from the reported arrestin-1 primary structure. Consequently, arrestin-1 and the purified 50-kDa protein must correspond to variants of the same molecule. However, in contrast to arrestin-1 that associated to the ROS membranes only in the presence of light and ATP, the 50-kDa protein interacted with the ROS membranes in a light-independent manner, either in the presence or absence of ATP. These results clearly established that phosphorylated and illuminated rhodopsin is not the membrane anchor for this variant of arrestin-1. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Intranasal Immunization with Nontypeable Haemophilus influenzae Outer Membrane Vesicles Induces Cross-Protective Immunity in Mice

    PubMed Central

    Roier, Sandro; Leitner, Deborah R.; Iwashkiw, Jeremy; Schild-Prüfert, Kristina; Feldman, Mario F.; Krohne, Georg; Reidl, Joachim; Schild, Stefan

    2012-01-01

    Abstract Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections. PMID:22880074

  18. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins.

    PubMed

    Heuck, Alexander; Schleiffer, Alexander; Clausen, Tim

    2011-03-11

    β-Barrel proteins are frequently found in the outer membrane of mitochondria, chloroplasts and Gram-negative bacteria. In Escherichia coli, these proteins are inserted in the outer membrane by the Bam (β-barrel assembly machinery) complex, a multiprotein machinery formed by the β-barrel protein BamA and the four peripheral membrane proteins BamB, BamC, BamD and BamE. The periplasmic part of BamA binds prefolded β-barrel proteins by a β-augmentation mechanism, thereby stabilizing the precursors prior to their membrane insertion. However, the role of the associated proteins within the Bam complex remains unknown. Here, we describe the crystal structure of BamB, a nonessential component of the Bam complex. The structure shows a typical eight-bladed β-propeller fold. Two sequence stretches of BamB were previously identified to be important for interaction with BamA. In our structure, both motifs are located in close proximity to each other and contribute to a conserved region forming a narrow groove on the top of the propeller. Moreover, crystal contacts reveal two interaction modes of how BamB might bind unfolded β-barrel proteins. In the crystal lattice, BamB binds to exposed β-strands by β-augmentation, whereas peptide stretches rich in aromatic residues can be accommodated in hydrophobic pockets located at the bottom of the propeller. Thus, BamB could simultaneously bind to BamA and prefolded β-barrel proteins, thereby enhancing the folding and membrane insertion capability of the Bam complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Outer membrane defect and stronger biofilm formation caused by inactivation of a gene encoding for heptosyltransferase I in Cronobacter sakazakii ATCC BAA-894.

    PubMed

    Wang, L; Hu, X; Tao, G; Wang, X

    2012-05-01

    To investigate the role of lipopolysaccharide (LPS) structure in the stability of outer membrane and the ability of biofilm formation in Cronobacter sakazakii. A C. sakazakii mutant strain LWW02 was constructed by inactivating the gene ESA_04107 encoding for heptosyltransferase I. LPS were purified from LWW02, and changes in their structure were confirmed by thin-layer chromatography and electrospray ionization mass spectrometry. Comparing with the wild-type strain BAA-894, slower growth, higher membrane permeability, higher surface hydrophobicity, stronger ability of autoaggregation and biofilm formation were observed for the mutant strain LWW02. The gene ESA_04107 encodes heptosyltransferase I in C. sakazakii ATCC BAA-894. The cleavage of LPS in C. sakazakii could cause its outer membrane defects and increase its ability to form biofilms. The study is important for understanding the pathogenic mechanism and efficient control of C. sakazakii. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. Transport across the outer membrane porin of mycolic acid containing actinomycetales: Nocardia farcinica.

    PubMed

    Singh, Pratik Raj; Bajaj, Harsha; Benz, Roland; Winterhalter, Mathias; Mahendran, Kozhinjampara R

    2015-02-01

    The role of the outer-membrane channel from a mycolic acid containing Gram-positive bacteria Nocardia farcinica, which forms a hydrophilic pathway across the cell wall, was characterized. Single channel electrophysiology measurements and liposome swelling assays revealed the permeation of hydrophilic solutes including sugars, amino acids and antibiotics. The cation selective N. farcinica channel exhibited strong interaction with the positively charged antibiotics; amikacin and kanamycin, and surprisingly also with the negatively charged ertapenem. Voltage dependent kinetics of amikacin and kanamycin interactions were studied to distinguish binding from translocation. Moreover, the importance of charged residues inside the channel was investigated using mutational studies that revealed rate limiting interactions during the permeation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Genetic locus (nmp-1) affecting the principal outer membrane protein of Neisseria gonorrhoeae.

    PubMed Central

    Cannon, J G; Klapper, D G; Blackman, E Y; Sparling, P F

    1980-01-01

    An increase in the apparent molecular weight of the principal outer membrane protein (POMP) of Neisseria gonorrhoeae is associated with introduction of the penB2 genetic marker, which results in low-level, relatively nonspecific antibiotic resistance. Limited proteolysis of the two forms of POMP showed that they had few if any peptides in common. The nonspecific antibiotic resistance of penB2 was separated from the change in POMP by genetic transformation and by isolation of spontaneous penB mutants that showed no change in POMP. The genetic locus involved in the change from one POMP to another, which we have designated nmp-1, is closely linked to, but not identical with, penB2. Images PMID:6782080

  2. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori

    PubMed Central

    Liechti, George; Goldberg, Joanna B.

    2012-01-01

    The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual

  3. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    USGS Publications Warehouse

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  4. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition.

    PubMed

    Petit, P X; Goubern, M; Diolez, P; Susin, S A; Zamzami, N; Kroemer, G

    1998-04-10

    Upon induction of permeability transition with different agents (Ca2+, tert-butyl hydroperoxide, atractyloside), mouse hepatocyte mitochondria manifest a disruption of outer membrane integrity leading to the release of cytochrome c and apoptosis-inducing factor (AIF), two proteins which are involved in programmed cell death (apoptosis). Chelation of Ca2+ shortly (within 2 min) after its addition to isolated mitochondria reestablished the mitochondrial transmembrane potential (deltapsi(m)), prevented induction of large amplitude swelling and release of both cytochrome c and AIF. In contrast, late Ca2+ chelation (10 min after addition of Ca2+) failed to affect these parameters. Cytochrome c appears to be released through a mechanically damaged outer mitochondrial membrane rather than via a specific release mechanism. These findings clarify the mechanisms through which irreversible permeability transition occurs with subsequent large amplitude swelling culminating in the release of intermembrane proteins from mitochondria. Moreover, they confirm the hypothesis formulated by Skulachev [FEBS Lett. 397 (1996) 7-10 and Q. Rev. Biophys. 29 (1996) 169-2021 linking permeability transition to activation of the apoptogenic catabolic enzymes.

  5. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation

    PubMed Central

    Hung, Victoria; Lam, Stephanie S; Udeshi, Namrata D; Svinkina, Tanya; Guzman, Gaelen; Mootha, Vamsi K; Carr, Steven A; Ting, Alice Y

    2017-01-01

    The cytosol-facing membranes of cellular organelles contain proteins that enable signal transduction, regulation of morphology and trafficking, protein import and export, and other specialized processes. Discovery of these proteins by traditional biochemical fractionation can be plagued with contaminants and loss of key components. Using peroxidase-mediated proximity biotinylation, we captured and identified endogenous proteins on the outer mitochondrial membrane (OMM) and endoplasmic reticulum membrane (ERM) of living human fibroblasts. The proteomes of 137 and 634 proteins, respectively, are highly specific and highlight 94 potentially novel mitochondrial or ER proteins. Dataset intersection identified protein candidates potentially localized to mitochondria-ER contact sites. We found that one candidate, the tail-anchored, PDZ-domain-containing OMM protein SYNJ2BP, dramatically increases mitochondrial contacts with rough ER when overexpressed. Immunoprecipitation-mass spectrometry identified ribosome-binding protein 1 (RRBP1) as SYNJ2BP’s ERM binding partner. Our results highlight the power of proximity biotinylation to yield insights into the molecular composition and function of intracellular membranes. DOI: http://dx.doi.org/10.7554/eLife.24463.001 PMID:28441135

  6. Role of the Yersinia pestis Ail Protein in Preventing a Protective Polymorphonuclear Leukocyte Response during Bubonic Plague▿

    PubMed Central

    Hinnebusch, B. Joseph; Jarrett, Clayton O.; Callison, Julie A.; Gardner, Donald; Buchanan, Susan K.; Plano, Gregory V.

    2011-01-01

    The ability of Yersinia pestis to forestall the mammalian innate immune response is a fundamental aspect of plague pathogenesis. In this study, we examined the effect of Ail, a 17-kDa outer membrane protein that protects Y. pestis against complement-mediated lysis, on bubonic plague pathogenesis in mice and rats. The Y. pestis ail mutant was attenuated for virulence in both rodent models. The attenuation was greater in rats than in mice, which correlates with the ability of normal rat serum, but not mouse serum, to kill ail-negative Y. pestis in vitro. Intradermal infection with the ail mutant resulted in an atypical, subacute form of bubonic plague associated with extensive recruitment of polymorphonuclear leukocytes (PMN or neutrophils) to the site of infection in the draining lymph node and the formation of large purulent abscesses that contained the bacteria. Systemic spread and mortality were greatly attenuated, however, and a productive adaptive immune response was generated after high-dose challenge, as evidenced by high serum antibody levels against Y. pestis F1 antigen. The Y. pestis Ail protein is an important bubonic plague virulence factor that inhibits the innate immune response, in particular the recruitment of a protective PMN response to the infected lymph node. PMID:21969002

  7. Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague.

    PubMed

    Hinnebusch, B Joseph; Jarrett, Clayton O; Callison, Julie A; Gardner, Donald; Buchanan, Susan K; Plano, Gregory V

    2011-12-01

    The ability of Yersinia pestis to forestall the mammalian innate immune response is a fundamental aspect of plague pathogenesis. In this study, we examined the effect of Ail, a 17-kDa outer membrane protein that protects Y. pestis against complement-mediated lysis, on bubonic plague pathogenesis in mice and rats. The Y. pestis ail mutant was attenuated for virulence in both rodent models. The attenuation was greater in rats than in mice, which correlates with the ability of normal rat serum, but not mouse serum, to kill ail-negative Y. pestis in vitro. Intradermal infection with the ail mutant resulted in an atypical, subacute form of bubonic plague associated with extensive recruitment of polymorphonuclear leukocytes (PMN or neutrophils) to the site of infection in the draining lymph node and the formation of large purulent abscesses that contained the bacteria. Systemic spread and mortality were greatly attenuated, however, and a productive adaptive immune response was generated after high-dose challenge, as evidenced by high serum antibody levels against Y. pestis F1 antigen. The Y. pestis Ail protein is an important bubonic plague virulence factor that inhibits the innate immune response, in particular the recruitment of a protective PMN response to the infected lymph node.

  8. Serological and molecular heterogeneity among Yersinia ruckeri strains isolated from farmed Atlantic salmon Salmo salar in Chile.

    PubMed

    Bastardo, A; Bohle, H; Ravelo, C; Toranzo, A E; Romalde, J L

    2011-02-22

    We investigated 11 strains of Yersinia ruckeri, the causative agent of enteric redmouth disease (ERM), that had been isolated from Atlantic salmon Salmo salar L. farmed in Chile and previously vaccinated against ERM. Phylogenetic analysis of the 16S rRNA gene sequences confirmed the identification of the salmon isolates as Y. ruckeri. A comparative analysis of the biochemical characteristics was made by means of traditional and commercial miniaturised methods. All studied isolates were motile and Tween 80 positive, and were identified as biotype 1. In addition, drug susceptibility tests determined high sensitivity to sulphamethoxazole/trimethroprim, oxytetracycline, ampicillin and enrofloxacin in all isolates. Serological assays showed the presence of O1a, O1b and O2b serotypes, with a predominance of the O1b serotype in 9 strains. Analysis of the lipopolysaccharide profiles and the correspondent immunoblot confirmed these results. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of the outer membrane proteins revealed that all Chilean strains had profiles with a molecular weight range between 34 and 55 kDa, with 3 distinct groups based on differences in the major bands. Genotyping analyses by enterobacterial repetitive intergenic consensus (ERIC-) and repetitive extragenic palindromic (REP-)PCR techniques clearly indicated intraspecific genetic diversity among Chilean Y. ruckeri strains.

  9. Evaluation of Chromogenic Medium for Selective Isolation of Yersinia.

    PubMed

    Thuan, Nguyen Khanh; Naher, Kamrun; Kubo, Ryoichi; Taniguchi, Takahide; Hayashidani, Hideki

    2016-01-01

    Cefsulodin-irgasan-novobiocin agar (CIN) has been used as a selective agar to detect Yersinia in food or human patients; however, its components can inhibit the growth of some strains of Yersinia enterocolitica serovar O3 and Y. pseudotuberculosis. Recently, a new Yersinia selective agar, CHROMagar Yersinia enterocolitica (CAYe), was developed and evaluated as a novel selective agar for pathogenic Y. enterocolitica. In this research, a total of 251Yersinia strains (176 pathogenic Y. enterocolitica, 59 Y. pseudotuberculosis, and 16 non-pathogenic Yersinia) were cultured on both CIN and CAYe for comparison. Except for 10 of 104 pathogenic Y. enterocolitica O3 strains and 59 Y. pseudotuberculosis strains, 198 Yersinia isolates grew on both media after 48 hr of incubation at 32℃. Of the 10 pathogenic Y. enterocolitica O3 which could not grow on CIN or CAYe, 9 strains could not grow on CIN with supplements and 1 strain could not grow CAYe with supplements. Of 9 strains which did not grow on CIN with supplements, 3 strains could not grow on CIN without supplements. However, 1 strain which did not grow on CAYe with supplements could grow on CAYe without supplements. All of the Y. pseudotuberculosis strains could grow on CIN with/without supplements and on CAYe without supplements. The results indicate that the inhibition of the growth of Y. enterocolitica O3 on CIN is related to the components of CIN; however, the inhibition on CAYe appears to be related to the supplements in CAYe. Therefore, CAYe may be a more useful selective medium than CIN for pathogenic Y. enterocolitica .

  10. A miniaturised semiautomated system for the identification of Yersinia species within the genus Yersinia.

    PubMed

    Neubauer, H; Molitor, M; Rahalison, L; Aleksic, S; Backes, H; Chanteau, S; Meyer, H

    2000-01-01

    Commercially available identification systems based on biochemical reactions of bacteria are not suited for typing the species of the genus Yersinia (Y.) or the biovars (BV) of the species Y. enterocolitica. This failure is caused by the limited number of biochemical reactions applied, resulting in the absence of important discriminatory key reactions. The MICRONAUT identification system (Merlin, Bornheim-Hersel) makes use of dried substrates/enzymes reactions in the wells of a 96-well microtitration plate, reading of the results by a scanner device and typing of the isolate by the calculation of probabilities according to a data base. For this study a special identification panel was designed on which 38 substrates and enzyme reactions were configurated including 20 reactions for the identification of the species of the genus and the Y. enterocolitica biovars. The database was calculated using the results obtained from a total of 250 Yersinia strains of the eleven species of the genus. Reevaluation of the results of these strains revealed an overall sensitivity of 98%, as only four strains were not identified satisfactorily. Considering also questionable results the sensitivity was still 85%. The system was also used to identify Y. pestis isolates, but in this case reading was done visually. The printouts usually cite species designation, identification quality and probabilities. The sealing of the plates in an aluminium bag guarantees long life and long lasting quality. However, an evaluation of the system with a considerable number of strains has to be done in a next step. The 'Yersinia identification set' can replace time-consuming tube testing in the future and is a big step forward towards a sensitive identification of Yersinia isolates in the routine laboratory.

  11. Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yijia; Chen, Baowei; Shi, Liang

    2011-10-14

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) atmore » its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore, carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC which is dependent on the presence of a functional type-2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 hr-1 that is insensitive to O2 concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 hr-1) that are

  12. The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery.

    PubMed

    Zufferey, Mónica; Montandon, Cyrille; Douet, Véronique; Demarsy, Emilie; Agne, Birgit; Baginsky, Sacha; Kessler, Felix

    2017-04-28

    The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis , we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro , and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery

    PubMed Central

    Zufferey, Mónica; Montandon, Cyrille; Douet, Véronique; Demarsy, Emilie; Agne, Birgit; Baginsky, Sacha; Kessler, Felix

    2017-01-01

    The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo. However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis. PMID:28283569

  14. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis

    PubMed Central

    Zimbler, Daniel L.; Eddy, Justin L.; Schroeder, Jay A.

    2015-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463

  15. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis.

    PubMed

    Zimbler, Daniel L; Eddy, Justin L; Schroeder, Jay A; Lathem, Wyndham W

    2016-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane

    PubMed Central

    2016-01-01

    Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358

  17. Monoclonal antibodies against LipL32, the major outer membrane protein of pathogenic Leptospira: production, characterization, and testing in diagnostic applications.

    PubMed

    Fernandes, Cláudia P H; Seixas, Fabiana K; Coutinho, Mariana L; Vasconcellos, Flávia A; Seyffert, Núbia; Croda, Julio; McBride, Alan J; Ko, Albert I; Dellagostin, Odir A; Aleixo, José A G

    2007-02-01

    Pathogenic serovars of Leptospira have a wide antigenic diversity attributed mainly to the lipopolysaccharide present in the outer membrane. In contrast, antigens conserved among pathogenic serovars are mainly represented by outer membrane proteins. Surface exposure of a major and highly conserved outer membrane lipoprotein (LipL32) was recently demonstrated on pathogenic Leptospira. LipL32 in its recombinant form (rLipL32) was used to immunize BALB/c mice to develop murine monoclonal antibodies (MAbs). Three MAbs against rLipL32 were produced, isotyped, and evaluated for further use in diagnostic tests of leptospirosis using different approaches. MAbs were conjugated to peroxidase and evaluated in a native protein enzyme-linked immunosorbent assay (ELISA) with intact and heat-treated leptospiral cells, conjugated to fluorescein isothiocyanate (FITC) for indirect immunofluorescence with intact and methanol fixed cells and were used for LipL32 immunoprecipitation from leptospiral cells. rLipL32 MAbs conjugated to peroxidase or used as primary antibody bound to intact and heat-treated cells in ELISA, proving that they could be used in enzyme immunoassays for detection of the native protein. In immunofluorescence assay, MAbs labeled bacterial cells either intact or methanol fixed. Two MAbs were able to immunoprecipitate the native protein from live and motile leptospiral cells and, adsorbed onto magnetic beads, captured intact bacteria from artificially contaminated human sera for detection by polymerase chain reaction (PCR) amplification. Results of this study suggest that the MAbs produced can be useful for the development of diagnostic tests based on detection of LipL32 leptospiral antigen in biological fluids.

  18. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing ofmore » these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)« less

  19. Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori.

    PubMed

    Chitcholtan, Kenny; Hampton, Mark B; Keenan, Jacqueline I

    2008-12-01

    Chronic Helicobacter pylori infection is associated with an increased risk of gastric carcinogenesis. These non-invasive bacteria colonize the gastric mucosa and constitutively shed small outer membrane vesicles (OMV). In this study, we investigated the direct effect of H.pylori OMV on cellular events associated with carcinogenesis. We observed increased micronuclei formation in AGS human gastric epithelial cells treated with OMV isolated from a toxigenic H.pylori strain (60190). This effect was absent in OMV from strain 60190v:1 that has a mutant vacA, indicating VacA-dependent micronuclei formation. VacA induces intracellular vacuolation, and reduced acridine orange staining indicated disruption in the integrity of these vacuoles. This was accompanied by an alteration in iron metabolism and glutathione (GSH) loss, suggesting a role for oxidative stress in genomic damage. Increasing intracellular GSH levels with a GSH ester abrogated the VacA-mediated increase in micronuclei formation. In conclusion, OMV-mediated delivery of VacA to the gastric epithelium may constitute a new mechanism for H.pylori-induced gastric carcinogenesis.

  20. Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of Escherichia coli K-12.

    PubMed Central

    Kawaji, H; Mizuno, T; Mizushima, S

    1979-01-01

    Supplementation of the growth medium with high concentrations of sugars or low-molecular-weight dextrans results in a drastic change in the ratio of outer membrane proteins O-8 and O-9, due to induction of O-8 synthesis and suppression of O-9 synthesis. Sugars and dextrans of molecular weights greater than 600 to 700 switched the synthesis of O-9 to that of O-8 more effectively than those of lower molecular weight, although the effect was almost the same within each of the two groups irrespective of the differences in molecular weight within the group. Proteins O-8 or O-9, or both, are responsible for the formation of pores that allow the passive diffusion of hydrophilic molecules whose molecular weights are smaller than about 600 (T. Nakae, Biochem. Biophys. Res. Commun. 71:877-884, 1976). The results indicate that substances that cannot pass through the outer membrane switch the synthesis of O-9 to that of O-8 more effectively than those that can penetrate this membrane with the aid of O-8, O-9, or both. It is suggested that the osmotic pressure exerted on the outer membrane plays an important role in the regulation of synthesis of the two proteins. PMID:391802

  1. Changes in the lipid composition of Bradyrhizobium cell envelope reveal a rapid response to water deficit involving lysophosphatidylethanolamine synthesis from phosphatidylethanolamine in outer membrane.

    PubMed

    Cesari, Adriana B; Paulucci, Natalia S; Biasutti, María A; Morales, Gustavo M; Dardanelli, Marta S

    2018-06-02

    We evaluate the behavior of the membrane of Bradyrhizobium sp. SEMIA6144 during adaptation to polyethylene glycol (PEG). A dehydrating effect on the morphology of the cell surface, as well as a fluidizing effect on the membrane was observed 10 min after PEG shock; however, the bacteria were able to restore optimal membrane fluidity. Shock for 1 h caused an increase of lysophosphatidylethanolamine in the outer membrane at the expense of phosphatidylcholine and phosphatidylethanolamine (PE), through an increase in phospholipase activity. The amount of lysophosphatidylethanolamine did not remain constant during PEG shock, but after 24 h the outer membrane was composed of large amounts of phosphatidylcholine and less amount of lysophosphatidylethanolamine similar to the control. The inner membrane composition was also modified after 1 h of shock, observing an increase of phosphatidylcholine at the expense of PE, the proportions of these phospholipids were then modified to reach 24 h of shock values similar to the control. Vesicles prepared with the lipids of cells exposed to 1 h shock presented higher rigidity compared to the control, indicating that changes in the composition of phospholipids after 1 h of shock restoring fluidity after the PEG effect and would allow cells to maintain surface morphology. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae

    PubMed Central

    Heroven, Ann Kathrin; Dersch, Petra

    2014-01-01

    Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets. PMID:25368845

  3. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles

    PubMed Central

    Alves, Nathan J.; Turner, Kendrick B.; Medintz, Igor L.; Walper, Scott A.

    2016-01-01

    Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins, and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (>100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles), and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas. PMID:27117743

  4. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division

    PubMed Central

    Gray, Andrew N; Egan, Alexander JF; van't Veer, Inge L; Verheul, Jolanda; Colavin, Alexandre; Koumoutsi, Alexandra; Biboy, Jacob; Altelaar, A F Maarten; Damen, Mirjam J; Huang, Kerwyn Casey; Simorre, Jean-Pierre; Breukink, Eefjan; den Blaauwen, Tanneke; Typas, Athanasios; Gross, Carol A; Vollmer, Waldemar

    2015-01-01

    To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division. DOI: http://dx.doi.org/10.7554/eLife.07118.001 PMID:25951518

  5. Yersinia vs. host Immunity: how a pathogen evades or triggers a protective response

    PubMed Central

    Chung, Lawton K.; Bliska, James B.

    2015-01-01

    The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. PMID:26638030

  6. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    PubMed Central

    Piek, Susannah; Kahler, Charlene M.

    2012-01-01

    The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism. PMID:23267440

  7. The Yersinia pestis Siderophore, Yersiniabactin, and the ZnuABC system both contribute to Zinc acquisition and the development of lethal septicemic plague in mice

    PubMed Central

    Bobrov, Alexander G.; Kirillina, Olga; Fetherston, Jacqueline D.; Miller, M. Clarke; Burlison, Joseph A.; Perry, Robert D.

    2014-01-01

    Summary Bacterial pathogens must overcome host sequestration of zinc (Zn2+), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn2+ by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn2+-deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn2+ acquisition. Studies with the Zn2+-dependent transcriptional reporter znuA∷lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn2+. However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, that are required for Fe3+ acquisition by Ybt, are not needed for Ybt-dependent Zn2+ uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn2+ uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicemic plague mouse model. PMID:24979062

  8. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice.

    PubMed

    Bobrov, Alexander G; Kirillina, Olga; Fetherston, Jacqueline D; Miller, M Clarke; Burlison, Joseph A; Perry, Robert D

    2014-08-01

    Bacterial pathogens must overcome host sequestration of zinc (Zn(2+) ), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn(2+) by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn(2+) -deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn(2+) acquisition. Studies with the Zn(2+) -dependent transcriptional reporter znuA::lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn(2+) . However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, which are required for Fe(3+) acquisition by Ybt, are not needed for Ybt-dependent Zn(2+) uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn(2+) uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicaemic plague mouse model. © 2014 John Wiley & Sons Ltd.

  9. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40*

    PubMed Central

    Kuszak, Adam J.; Jacobs, Daniel; Gurnev, Philip A.; Shiota, Takuya; Louis, John M.; Lithgow, Trevor; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Buchanan, Susan K.

    2015-01-01

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107

  10. Calorimetric Studies of Bovine Rod Outer Segment Disk Membranes Support a Monomeric Unit for Both Rhodopsin and Opsin

    PubMed Central

    Edrington, Thomas C.; Bennett, Michael; Albert, Arlene D.

    2008-01-01

    The photoreceptor rhodopsin is a G-protein coupled receptor that has recently been proposed to exist as a dimer or higher order oligomer, in contrast to the previously described monomer, in retinal rod outer segment disk membranes. Rhodopsin exhibits considerably greater thermal stability than opsin (the bleached form of the receptor), which is reflected in an ∼15°C difference in the thermal denaturation temperatures (Tm) of rhodopsin and opsin as measured by differential scanning calorimetry. Here we use differential scanning calorimetry to investigate the effect of partial bleaching of disk membranes on the Tm of rhodopsin and of opsin in native disk membranes, as well as in cross-linked disk membranes in which rhodopsin dimers are known to be present. The Tms of rhodopsin and opsin are expected to be perturbed if mixed oligomers are present. The Tm remained constant for rhodopsin and opsin in native disks regardless of the level of bleaching. In contrast, the Tm of cross-linked rhodopsin in disk membranes was dependent on the extent of bleaching. The energy of activation for denaturation of rhodopsin and cross-linked rhodopsin was calculated. Cross-linking rhodopsin significantly decreased the energy of activation. We conclude that in native disk membranes, rhodopsin behaves predominantly as a monomer. PMID:18586850

  11. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chain, Patrick S. G.; Carniel, E.; Larimer, Frank W

    2004-09-01

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here, we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons with available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveal 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, to our knowledge, represent the only new genetic material in Y. pestis acquired since themore » the divergence from Y. pseudotuberculosis. In contrast, 149 other pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive insertion sequence-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of preexisting gene expression pathways, appear to be more important than acquisition of genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.« less

  12. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  13. Yersinia versus host immunity: how a pathogen evades or triggers a protective response.

    PubMed

    Chung, Lawton K; Bliska, James B

    2016-02-01

    The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly.

    PubMed

    Soltes, Garner R; Martin, Nicholas R; Park, Eunhae; Sutterlin, Holly A; Silhavy, Thomas J

    2017-10-15

    Outer membrane protein (OMP) biogenesis in Escherichia coli is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process. IMPORTANCE OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics

  15. Outer Membrane Vesicles Derived from Salmonella Enteritidis Protect against the Virulent Wild-Type Strain Infection in a Mouse Model.

    PubMed

    Liu, Qiong; Yi, Jie; Liang, Kang; Zhang, Xiangmin; Liu, Qing

    2017-08-28

    Foodborne contamination and salmonellosis caused by Salmonella Enteritidis ( S . Enteritidis) are a significant threat to human health and poultry enterprises. Outer membrane vesicles (OMVs), which are naturally secreted by gram-negative bacteria, could be a good vaccine option because they have many biologically active substances, including lipopolysaccharides (LPS), outer membrane proteins (OMPs), and phospholipids, as well as periplasmic components. In the present study, we purified OMVs derived from S . Enteritidis and analyzed their characteristics through silver staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis. In total, 108 proteins were identified in S . Enteritidis OMVs through liquid chromatography tandem mass spectrometry analysis, and OMPs, periplasmic proteins, and extracellular proteins (49.9% of total proteins) were found to be enriched in the OMVs compared with bacterial cells. Furthermore, native OMVs used in immunizations by either the intranasal route or the intraperitoneal route could elicit significant humoral and mucosal immune responses and provide strong protective efficiency against a lethal dose (~100-fold LD 50 ) of the wild-type S . Enteritidis infection. These results indicated that S . Enteritidis OMVs might be an ideal vaccine strategy for preventing S . Enteritidis diseases.

  16. YopJ-Induced Caspase-1 Activation in Yersinia-Infected Macrophages: Independent of Apoptosis, Linked to Necrosis, Dispensable for Innate Host Defense

    PubMed Central

    Zheng, Ying; Lilo, Sarit; Mena, Patricio; Bliska, James B.

    2012-01-01

    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJKIM) strains have high cytotoxic activity. In addition, YopJKIM-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJKIM-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJKIM-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJKIM. Wild-type and congenic

  17. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense.

    PubMed

    Zheng, Ying; Lilo, Sarit; Mena, Patricio; Bliska, James B

    2012-01-01

    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJ(KIM)) strains have high cytotoxic activity. In addition, YopJ(KIM)-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJ(KIM)-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJ(KIM)-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJ(KIM). Wild-type and

  18. Suppression of the lethal effect of acidic-phospholipid deficiency by defective formation of the major outer membrane lipoprotein in Escherichia coli.

    PubMed Central

    Asai, Y; Katayose, Y; Hikita, C; Ohta, A; Shibuya, I

    1989-01-01

    The Escherichia coli pgsA3 allele encoding a defective phosphatidylglycerophosphate synthase is lethal for all but certain strains. Genetic analysis of such strains has revealed that the lethal effect is fully suppressed by the lack of the major outer membrane lipoprotein that consumes phosphatidylglycerol for its maturation. Images PMID:2556377

  19. Membrane Composition Tunes the Outer Hair Cell Motor

    NASA Astrophysics Data System (ADS)

    Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.

    2009-02-01

    Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.

  20. Yersinia type III effectors perturb host innate immune responses

    PubMed Central

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  1. Environmental Regulation of Yersinia Pathophysiology

    PubMed Central

    Chen, Shiyun; Thompson, Karl M.; Francis, Matthew S.

    2016-01-01

    Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia. PMID:26973818

  2. Identification of a cell epitope that is globally conserved among outer membrane proteins (OMPs) OMP7, OMP8, and OMP9 of anaplasma marginale strains and with OMP7 from the A. marginale subsp. centrale vaccine strain

    USDA-ARS?s Scientific Manuscript database

    Within the protective outer membrane fraction of Anaplasma marginale, several vaccine candidates have emerged, including a family of outer membrane proteins (OMPs) 7-9, which share sequence identity with each other and with the single protein OMP7 in the vaccine strain A. marginale subsp. centrale. ...

  3. [Comparison of efficacy of tests for differentiation of typical and atypical strains of Yersinia pestis and Yersinia pseudotuberculosis].

    PubMed

    Arsen'eva, T E; Lebedeva, S A; Trukhachev, A L; Vasil'eva, E A; Ivanova, V S; Bozhko, N V

    2010-01-01

    To characterize species specificity of officially recommended tests for differentiation of Yersiniapestis and Yersinia pseudotuberculosis and propose additional tests allowing for more accurate identification. Natural, laboratory and typical strains oftwo Yersinia species were studied using microbiological, molecular and biochemical methods. For PCR species-specific primers complementary to certain fragments of chromosomal DNA of each species as well as to several plasmid genes of Y. pestis were used. It was shown that such attributes of Y. pestis as form of colonies, fermentation ofrhamnose, melibiose and urea, susceptibility to diagnostic phages, nutritional requirements could be lost in pestis bacterial species or detected in pseudotuberculosis species. Such attribute as mobility as well as positive result of CoA-reaction on fraction V antigen are more reliable. Guaranteed differentiation of typical and changed according to differential tests strains is provided only by PCR-analysis with primers vlml2for/ISrev216 and JS respectively, which are homologous to certain chromosome fragments of one of two Yersinia species.

  4. Independent evolution of functionally exchangeable mitochondrial outer membrane import complexes

    PubMed Central

    Dimmer, Kai S

    2018-01-01

    Assembly and/or insertion of a subset of mitochondrial outer membrane (MOM) proteins, including subunits of the main MOM translocase, require the fungi-specific Mim1/Mim2 complex. So far it was unclear which proteins accomplish this task in other eukaryotes. Here, we show by reciprocal complementation that the MOM protein pATOM36 of trypanosomes is a functional analogue of yeast Mim1/Mim2 complex, even though these proteins show neither sequence nor topological similarity. Expression of pATOM36 rescues almost all growth, mitochondrial biogenesis, and morphology defects in yeast cells lacking Mim1 and/or Mim2. Conversely, co-expression of Mim1 and Mim2 restores the assembly and/or insertion defects of MOM proteins in trypanosomes ablated for pATOM36. Mim1/Mim2 and pATOM36 form native-like complexes when heterologously expressed, indicating that additional proteins are not part of these structures. Our findings indicate that Mim1/Mim2 and pATOM36 are the products of convergent evolution and arose only after the ancestors of fungi and trypanosomatids diverged. PMID:29923829

  5. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution.

    PubMed

    McNally, Alan; Thomson, Nicholas R; Reuter, Sandra; Wren, Brendan W

    2016-03-01

    Pathogenic species in the Yersinia genus have historically been targets for research aimed at understanding how bacteria evolve into mammalian pathogens. The advent of large-scale population genomic studies has greatly accelerated the progress in this field, and Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica have once again acted as model organisms to help shape our understanding of the evolutionary processes involved in pathogenesis. In this Review, we highlight the gene gain, gene loss and genome rearrangement events that have been identified by genomic studies in pathogenic Yersinia species, and we discuss how these findings are changing our understanding of pathogen evolution. Finally, as these traits are also found in the genomes of other species in the Enterobacteriaceae, we suggest that they provide a blueprint for the evolution of enteropathogenic bacteria.

  6. Immunosuppressive Yersinia Effector YopM Binds DEAD Box Helicase DDX3 to Control Ribosomal S6 Kinase in the Nucleus of Host Cells.

    PubMed

    Berneking, Laura; Schnapp, Marie; Rumm, Andreas; Trasak, Claudia; Ruckdeschel, Klaus; Alawi, Malik; Grundhoff, Adam; Kikhney, Alexey G; Koch-Nolte, Friedrich; Buck, Friedrich; Perbandt, Markus; Betzel, Christian; Svergun, Dmitri I; Hentschke, Moritz; Aepfelbacher, Martin

    2016-06-01

    Yersinia outer protein M (YopM) is a crucial immunosuppressive effector of the plaque agent Yersinia pestis and other pathogenic Yersinia species. YopM enters the nucleus of host cells but neither the mechanisms governing its nucleocytoplasmic shuttling nor its intranuclear activities are known. Here we identify the DEAD-box helicase 3 (DDX3) as a novel interaction partner of Y. enterocolitica YopM and present the three-dimensional structure of a YopM:DDX3 complex. Knockdown of DDX3 or inhibition of the exportin chromosomal maintenance 1 (CRM1) increased the nuclear level of YopM suggesting that YopM exploits DDX3 to exit the nucleus via the CRM1 export pathway. Increased nuclear YopM levels caused enhanced phosphorylation of Ribosomal S6 Kinase 1 (RSK1) in the nucleus. In Y. enterocolitica infected primary human macrophages YopM increased the level of Interleukin-10 (IL-10) mRNA and this effect required interaction of YopM with RSK and was enhanced by blocking YopM's nuclear export. We propose that the DDX3/CRM1 mediated nucleocytoplasmic shuttling of YopM determines the extent of phosphorylation of RSK in the nucleus to control transcription of immunosuppressive cytokines.

  7. Calcium and magnesium fluxes across the plasma membrane of the toad rod outer segment.

    PubMed Central

    Nakatani, K; Yau, K W

    1988-01-01

    1. Membrane current was recorded from an isolated, dark-adapted toad rod by sucking either its inner segment or outer segment into a tight-fitting glass pipette containing Ringer solution. The remainder of the cell was exposed to bath solution which could be changed rapidly. 2. In normal Ringer solution the current response of a cell to a saturating flash or step of light showed a small secondary rise at its initial peak. The profile of this secondary rise (i.e. amplitude and time course) was independent of both the intensity and the duration of illumination once the light response had reached a plateau level. 3. This secondary rise disappeared when external Na+ around the outer segment was replaced by Li+ or guanidinium, suggesting that it represented an electrogenic Na+-dependent Ca2+ efflux which was declining after the onset of light. 4. This Na+-Ca2+ exchange activity showed a roughly exponential decline, with a time constant of about 0.5 s. Exponential extrapolation of the exchange current to the time at half-height of the light response gave an initial amplitude of about 2 pA. Using La3+ as a blocker, we did not detect any steady exchange current after the initial exponential decline. 5. An intense flash superposed on a just-saturating steady background light failed to produce any incremental exchange current transient. 6. Our interpretation of the above results is that in darkness there are counterbalancing levels of Ca2+ influx (through the light-sensitive conductance) and efflux (through the Na+-Ca2+ exchange) across the plasma membrane of the rod outer segment. The exchange current transient at the onset of light merely represents the unidirectional Ca2+ efflux which becomes revealed as a result of the stoppage of the Ca2+ influx, rather than a de novo Ca2+ efflux triggered by light. 7. Consistent with this interpretation, a test light delivered soon after a saturating, conditioning light elicited little exchange current, which then gradually recovered

  8. Characterization of outer membranes isolated from Treponema pallidum, the syphilis spirochete.

    PubMed

    Radolf, J D; Robinson, E J; Bourell, K W; Akins, D R; Porcella, S F; Weigel, L M; Jones, J D; Norgard, M V

    1995-11-01

    Previous freeze-fracture electron microscopy (EM) studies have shown that the outer membrane (OM) of Treponema pallidum contains sparse transmembrane proteins. One strategy for molecular characterization of these rare OM proteins involves isolation of T. pallidum OMs. Here we describe a simple and extremely gentle method for OM isolation based upon isopycnic sucrose density gradient ultracentrifugation of treponemes following plasmolysis in 20% sucrose. Evidence that T. pallidum OMs were isolated included (i) the extremely low protein/lipid ratio of the putative OM fraction, (ii) a paucity of antigenic and/or biochemical markers for periplasmic, cytoplasmic membrane, and cytosolic compartments, and (iii) freeze-fracture EM demonstrating that the putative OMs contained intramembranous particles highly similar in size and density to those in native T. pallidum OMs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the OMs contained a relatively small number of treponemal proteins, including several which did not appear to correspond to previously characterized T. pallidum antigens. Interestingly, these candidate rare OM proteins reacted poorly with syphilitic sera as determined by both conventional immunoblotting and enhanced chemiluminescence. Compared with whole cells, T. pallidum OMs were deficient in cardiolipin, the major lipoidal antigen reactive with antibodies in syphilitic sera. Also noteworthy was that other lipoidal constituents of OMs, including the recently discovered glycolipids, did not react with human syphilitic sera. These latter observations suggest that the poor antigenicity of virulent T. pallidum is a function of both the lipid composition and the low protein content of its OM.

  9. Selective isolation of Yersinia pestis from plague-infected fleas

    PubMed Central

    Sarovich, Derek S.; Colman, Rebecca E.; Price, Erin P.; Chung, Wai Kwan; Lee, Judy; Schupp, James M.; Alexander, James; Keim, Paul; Wagner., David M.

    2010-01-01

    We evaluated Yersinia CIN agar for the isolation of Yersinia pestis from infected fleas. CIN media is effective for the differentiation of Y. pestis from flea commensal flora and is sufficiently inhibitory to other bacteria that typically outcompete Y. pestis after 48 hours of growth using less selective media. PMID:20385178

  10. Insights into the genome evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, B; Stoutland, P; Derbise, A

    2004-01-24

    Yersinia pestis, the causative agent of plague, is a highly uniform clone that diverged recently from the enteric pathogen Yersinia pseudotuberculosis. Despite their close genetic relationship, they differ radically in their pathogenicity and transmission. Here we report the complete genomic sequence of Y. pseudotuberculosis IP32953 and its use for detailed genome comparisons to available Y. pestis sequences. Analyses of identified differences across a panel of Yersinia isolates from around the world reveals 32 Y. pestis chromosomal genes that, together with the two Y. pestis-specific plasmids, represent the only new genetic material in Y. pestis acquired since the divergence from Y.more » pseudotuberculosis. In contrast, 149 new pseudogenes (doubling the previous estimate) and 317 genes absent from Y. pestis were detected, indicating that as many as 13% of Y. pseudotuberculosis genes no longer function in Y. pestis. Extensive IS-mediated genome rearrangements and reductive evolution through massive gene loss, resulting in elimination and modification of pre-existing gene expression pathways appear to be more important than acquisition of new genes in the evolution of Y. pestis. These results provide a sobering example of how a highly virulent epidemic clone can suddenly emerge from a less virulent, closely related progenitor.« less

  11. Caspase-12 and the inflammatory response to Yersinia pestis.

    PubMed

    Ferwerda, Bart; McCall, Matthew B B; de Vries, Maaike C; Hopman, Joost; Maiga, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Daou, Modibo; de Jong, Dirk; Joosten, Leo A B; Tissingh, Rudi A; Reubsaet, Frans A G; Sauerwein, Robert; van der Meer, Jos W M; van der Ven, André J A M; Netea, Mihai G

    2009-09-01

    Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia and a significant proportion of individuals from African populations. In African-Americans, it has been shown that caspase-12 inhibits the pro-inflammatory cytokine production. We assessed whether similar mechanisms are present in African individuals, and whether evolutionary pressures due to plague may have led to the present caspase-12 genotype population frequencies. No difference in cytokine induction through the caspase-1 and/or NOD2/RIP2 pathways was observed in two independent African populations, among individuals with either an intact or absent caspase-12. In addition, stimulations with Yersinia pestis and two other species of Yersinia were preformed to investigate whether caspase-12 modulates the inflammatory reaction induced by Yersinia. We found that caspase-12 did not modulate cytokine production induced by Yersinia spp. Our experiments demonstrate for the first time the involvement of the NOD2/RIP2 pathway for recognition of Yersinia. However, caspase-12 does not modulate innate host defense against Y. pestis and alternative explanations for the geographical distribution of caspase-12 should be sought.

  12. Can direct extracellular electron transfer occur in the absence of outer membrane cytochromes in Desulfovibrio vulgaris?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, Dwayne A; Zane, Mr. Grant M.; Auer, Dr. Manfred

    2010-01-01

    Extracellular electron transfer has been investigated over several decades via forms of soluble electron transfer proteins that are exported for extracellular reoxidation. More recently, several organisms have been shown to reduce extracellular metals via the direct transfer of electron through appendages; also known as nanowires. They have been reported most predominantly in Shewanella and Geobacter. While the relevancy and composition of these structures in each genus has been debated, both possess outer membrane cytochrome complexes that could theoretically come into direct contact with solid phase oxidized metals. Members of the genus Desulfovibrio apparently have no such cytochromes although similar appendagesmore » are present, are electrically conductive, and are different from flagella. Upon U(VI)-reduction, the structures in Desulfovibrio become coated with U(IV). Deletion of flagellar genes did not alter soluble or amorphous Fe(III) or U(VI) reduction, or appendage appearance. Removal of the chromosomal pilA gene hampered amorphous Fe(III)-reduction by ca. 25%, but cells lacking the native plasmid, pDV1, reduced soluble Fe(III) and U(VI) at ca. 50% of the wild type rate while amorphous Fe(III)-reduction slowed to ca. 20% of the wild type rate. Appendages were present in all deletions as well as pDV1, except pilA. Gene complementation restored all activities and morphologies to wild type levels. This suggests that pilA encodes the structural component, whereas genes within pDV1 may provide the reactive members. How such appendages function without outer membrane cytochromes is under investigation.« less

  13. Genotypic and phenotypic virulence characteristics and antimicrobial resistance of Yersinia spp. isolated from meat and milk products.

    PubMed

    Özdemir, Fatma; Arslan, Seza

    2015-06-01

    A total of 300 food samples including 180 milk and 120 meat products have been examined for the presence of Yersinia spp. using the ISO 10273 and the cold enrichment method. The overall prevalence of Yersinia spp. was 84 (28%). Yersinia enterocolitica was isolated from 18 (6%) of the 300 samples. The other Yersinia species were detected in the samples Yersinia rohdei 15 (5%), Yersinia intermedia 14 (4.7%), Yersinia pseudotuberculosis 12 (4%), Yersinia ruckeri 12 (4%), Yersinia mollaretii 5 (1.7%), Yersinia bercovieri 4 (1.3%), and atypical Yersinia spp. 4 (1.3%). The conventionally identified Y. enterocolitica strains were also confirmed by the 16S rRNA gene sequencing. All Y. enterocolitica strains biotyped as 1A had negative results in the phenotypic virulence tests. The 84 Yersinia strains were also examined genotypically for the presence of virulence genes. None of the Y. enterocolitica and other Yersinia strains contained the ail, ystA, yadA, and virF except only 1 Y. intermedia and 2 Y. enterocolitica strains that were found to be positive for ystB. Antimicrobial resistance of 84 Yersinia to 16 antimicrobial agents was determined by the disk diffusion method. All strains were sensitive to tobramycine and imipenem while resistant to clindamycin. Although 84.5% of the strains were resistant to at least 3 or more antimicrobial agents, 64.3% of them were resistant to 4 or more antimicrobial agents. © 2015 Institute of Food Technologists®

  14. Yersinia species in the dunnock (Prunella modularis) in sub-alpine habitats of the Western Carpathians.

    PubMed

    Kisková, Jana; Hrehová, Zuzana; Janiga, Marián; Lukán, Martin; Haas, Martina; Jurcovicová, Martina

    2011-01-01

    The study presents the prevalence of Yersinia species in dunnok Prunella modularis from the sub-alpine zone of the Western Carpathians. Bacteria were detected from cloacal and pharyngeal swabs from 97 specimens using PCR assay. Yersinia enterocolitica showed the highest prevalence (47.4%) from among the determined Yersinia species. Yersinia species (except Y frederiksenii) were detected more frequently in pharyngeal than cloacal samples. The highest prevalence of yersiniosis was detected in April (Yersinia spp. - 80%, Y. enterocolitica - 70%). No statistically differences were observed in the prevalence of Yersinia spp. between males and females and between juveniles and adult birds. Bacterial contamination did not affect body weight or tarsus length.

  15. The elusive activity of the Yersinia protein kinase A kinase domain is revealed.

    PubMed

    Laskowski-Arce, Michelle A; Orth, Kim

    2007-10-01

    Yersinia spp. pathogens use their type III secretion system to translocate effectors that manipulate host signaling pathways during infection. Although molecular targets for five of the six known Yersinia effectors are known, the target for the serine/threonine kinase domain of Yersinia protein kinase A (YpkA) has remained elusive. Recently, Navarro et al. (2007) demonstrated that YpkA phosphorylates Galphaq, and inhibits Galphaq-mediated signaling. Inhibition by YpkA could contribute to one of the most documented symptoms of Yersinia pestis infection, extensive bleeding.

  16. Negative Charge Neutralization in the Loops and Turns of Outer Membrane Phospholipase A Impacts Folding Hysteresis at Neutral pH.

    PubMed

    McDonald, Sarah K; Fleming, Karen G

    2016-11-08

    Hysteresis in equilibrium protein folding titrations is an experimental barrier that must be overcome to extract meaningful thermodynamic quantities. Traditional approaches to solving this problem involve testing a spectrum of solution conditions to find ones that achieve path independence. Through this procedure, a specific pH of 3.8 was required to achieve path independence for the water-to-bilayer equilibrium folding of outer membrane protein OmpLA. We hypothesized that the neutralization of negatively charged side chains (Asp and Glu) at pH 3.8 could be the physical basis for path-independent folding at this pH. To test this idea, we engineered variants of OmpLA with Asp → Asn and Glu → Gln mutations to neutralize the negative charges within various regions of the protein and tested for reversible folding at neutral pH. Although not fully resolved, our results show that these mutations in the periplasmic turns and extracellular loops are responsible for 60% of the hysteresis in wild-type folding. Overall, our study suggests that negative charges impact the folding hysteresis in outer membrane proteins and their neutralization may aid in protein engineering applications.

  17. Deuterium Labeling Together with Contrast Variation Small-angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins

    PubMed Central

    Zaccai, Nathan R.; Sandlin, Clifford W.; Hoopes, James T.; Curtis, Joseph E.; Fleming, Patrick J.; Fleming, Karen G.; Krueger, Susan

    2016-01-01

    In gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archeal prefoldins and the mitochondrial Tim chaperones, that is α-helical ‘tentacles’ extend from a β-strand ‘body’ to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis and structure modeling. PMID:26791979

  18. [Advance on genome research of Yersinia pestis bacteriophage].

    PubMed

    Tan, H L; Wang, P; Li, W

    2017-04-10

    Completion of the genome sequences on Yersinia pestis bacteriophage offered unprecedented opportunity for researchers to carry out related genomic studies. This review was based on the genomic sequences and provided a genomic perspective in describing the essential features of genome on Yersinia pestis bacteriophage. Based on the comparative genomics, genetic evolutionary relationship was discussed. Description of functions from the gene prediction and protein annotation provided evidence for further related studies.

  19. Cag3 Is a Novel Essential Component of the Helicobacter pylori Cag Type IV Secretion System Outer Membrane Subcomplex ▿ †

    PubMed Central

    Pinto-Santini, Delia M.; Salama, Nina R.

    2009-01-01

    Helicobacter pylori strains harboring the cag pathogenicity island (PAI) have been associated with more severe gastric disease in infected humans. The cag PAI encodes a type IV secretion (T4S) system required for CagA translocation into host cells as well as induction of proinflammatory cytokines, such as interleukin-8 (IL-8). cag PAI genes sharing sequence similarity with T4S components from other bacteria are essential for Cag T4S function. Other cag PAI-encoded genes are also essential for Cag T4S, but lack of sequence-based or structural similarity with genes in existing databases has precluded a functional assignment for the encoded proteins. We have studied the role of one such protein, Cag3 (HP0522), in Cag T4S and determined Cag3 subcellular localization and protein interactions. Cag3 is membrane associated and copurifies with predicted inner and outer membrane Cag T4S components that are essential for Cag T4S as well as putative accessory factors. Coimmunoprecipitation and cross-linking experiments revealed specific interactions with HpVirB7 and CagM, suggesting Cag3 is a new component of the Cag T4S outer membrane subcomplex. Finally, lack of Cag3 lowers HpVirB7 steady-state levels, further indicating Cag3 makes a subcomplex with this protein. PMID:19801411

  20. Outer membrane cytochromes/flavin interactions in Shewanella spp.—A molecular perspective

    DOE PAGES

    Babanova, Sofia; Matanovic, Ivana; Cornejo, Jose; ...

    2017-05-31

    Extracellular electron transfer (EET) is intrinsically associated with the core phenomena of energy harvesting/energy conversion in natural ecosystems and biotechnology applications. But, the mechanisms associated with EET are complex and involve molecular interactions that take place at the “bionano interface” where biotic/abiotic interactions are usually explored. Our work provides molecular perspective on the electron transfer mechanism(s) employed by Shewanella oneidensis MR-1. Molecular docking simulations were used to explain the interfacial relationships between two outer-membrane cytochromes (OMC) OmcA and MtrC and riboflavin (RF) and flavin mononucleotide (FMN), respectively. OMC-flavin interactions were analyzed by studying the electrostatic potential, the hydrophilic/hydrophobic surface properties,more » and the van der Waals surface of the OMC proteins. As a result, it was proposed that the interactions between flavins and OMCs are based on geometrical recognition event. The possible docking positions of RF and FMN to OmcA and MtrC were also shown.« less

  1. The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome.

    PubMed

    Chung, Lawton K; Park, Yong Hwan; Zheng, Yueting; Brodsky, Igor E; Hearing, Patrick; Kastner, Daniel L; Chae, Jae Jin; Bliska, James B

    2016-09-14

    Pathogenic Yersinia, including Y. pestis, the agent of plague in humans, and Y. pseudotuberculosis, the related enteric pathogen, deliver virulence effectors into host cells via a prototypical type III secretion system to promote pathogenesis. These effectors, termed Yersinia outer proteins (Yops), modulate multiple host signaling responses. Studies in Y. pestis and Y. pseudotuberculosis have shown that YopM suppresses infection-induced inflammasome activation; however, the underlying molecular mechanism is largely unknown. Here we show that YopM specifically restricts the pyrin inflammasome, which is triggered by the RhoA-inactivating enzymatic activities of YopE and YopT, in Y. pseudotuberculosis-infected macrophages. The attenuation of a yopM mutant is fully reversed in pyrin knockout mice, demonstrating that YopM inhibits pyrin to promote virulence. Mechanistically, YopM recruits and activates the host kinases PRK1 and PRK2 to negatively regulate pyrin by phosphorylation. These results show how a virulence factor can hijack host kinases to inhibit effector-triggered pyrin inflammasome activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Structural engineering of a phage lysin that targets Gram-negative pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukacik, Petra; Barnard, Travis J.; Keller, Paul W.

    Bacterial pathogens are becoming increasingly resistant to antibiotics. As an alternative therapeutic strategy, phage therapy reagents containing purified viral lysins have been developed against Gram-positive organisms but not against Gram-negative organisms due to the inability of these types of drugs to cross the bacterial outer membrane. We solved the crystal structures of a Yersinia pestis outer membrane transporter called FyuA and a bacterial toxin called pesticin that targets this transporter. FyuA is a {beta}-barrel membrane protein belonging to the family of TonB dependent transporters, whereas pesticin is a soluble protein with two domains, one that binds to FyuA and anothermore » that is structurally similar to phage T4 lysozyme. The structure of pesticin allowed us to design a phage therapy reagent comprised of the FyuA binding domain of pesticin fused to the N-terminus of T4 lysozyme. This hybrid toxin kills specific Yersinia and pathogenic E. coli strains and, importantly, can evade the pesticin immunity protein (Pim) giving it a distinct advantage over pesticin. Furthermore, because FyuA is required for virulence and is more common in pathogenic bacteria, the hybrid toxin also has the advantage of targeting primarily disease-causing bacteria rather than indiscriminately eliminating natural gut flora.« less

  3. Phytochemicals prevent mitochondrial membrane permeabilization and protect SH-SY5Y cells against apoptosis induced by PK11195, a ligand for outer membrane translocator protein.

    PubMed

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2017-01-01

    Epidemiological studies present the beneficial effects of dietary habits on prevention of aging-associated decline of brain function. Phytochemicals, the second metabolites of food, protect neuronal cells from cell death in cellular models of neurodegenerative disorders, and the neuroprotective activity has been ascribed to the anti-oxidant and anti-inflammatory functions. In this paper, the cellular mechanism of neuroprotection by phytochemicals was investigated, using the cellular model of mitochondrial apoptosis induced by PK11195, a ligand of outer membrane translocator protein, in SH-SY5Y cells. PK11195 induced mitochondrial membrane permeabilization with rapid transit production of superoxide (superoxide flashes) and calcium release from mitochondria, and activated apoptosis signal pathway. Study on the structure-activity relationship of astaxanthin, ferulic acid derivatives, and sesame lignans revealed that these phytochemicals inhibited mitochondrial membrane permeabilization and protected cells from apoptosis. Ferulic acid derivatives and sesame lignans inhibited or enhanced the mitochondrial pore formation and cell death by PK11195 according to their amphiphilic properties, not directly depending on the antioxidant activity. Regulation of pore formation at mitochondrial membrane is discussed as a novel mechanism behind neuroprotective activity of phytochemicals in aging and age-associated neurodegenerative disorders, and also behind dual functions of phytochemicals in neuronal and cancer cells.

  4. Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland.

    PubMed

    Salem, M; Virtanen, S; Korkeala, H; Skurnik, M

    2015-03-01

    Bacteriophages infect bacteria, and they are present everywhere in the world including the intestinal tracts of animals. Yersiniosis is a common foodborne infection caused by Yersinia enterocolitica and Yersinia pseudotuberculosis. As these bacteria are frequently isolated from pigs, we wanted to know whether Yersinia-specific bacteriophages are also present in the pig stools and, if so, whether there is a positive or negative association between the prevalence of the Yersinia phages and the pathogenic Yersinia in the stool samples. Altogether 793 pig stool samples collected between November 2010 and March 2012 from 14 Finnish pig farms were screened for the presence of bacteriophages able to infect Y. enterocolitica serotype O:3, O:5,27 or O:9 strains, or Y. pseudotuberculosis serotype O:1a, O:1b or O:3 strains. Yersinia phages were isolated from 90 samples from eight farms. Yersinia enterocolitica O:3 was infected by 59 phages, 28 phages infected serotypes O:3 and O:5,27, and eight phages infected serotypes O:3, O:5,27 and O:9, and Y. pseudotuberculosis O:1a by eight phages. Many phages originating from pigs in the same farm were identical based on their restriction enzyme digestion patterns; 20 clearly different phages were selected for further characterization. Host ranges of these phages were tested with 94 Yersinia strains. Six of the phages infected eight strains, 13 phages infected three strains, and one phage infected only one strain, indicating that the phages had a relatively narrow host range. There was a clear association between the presence of the host bacteria and specific phages in the stools. The isolated bacteriophages may have potential as biocontrol agents for yersiniosis in both humans and pigs in future, and as alternatives or in addition to antibiotics. To our knowledge, this is the first reported isolation of Yersinia-specific phages from pig stool samples. © 2014 The Society for Applied Microbiology.

  5. Host cell interactions of outer membrane vesicle-associated virulence factors of Enterohemorrhagic Escherichia coli O157: intracellular delivery, trafficking and mechanisms of cell injury

    USDA-ARS?s Scientific Manuscript database

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, confocal laser...

  6. Outer-membrane translocation of bulky small molecules by passive diffusion

    PubMed Central

    van den Berg, Bert; Prathyusha Bhamidimarri, Satya; Dahyabhai Prajapati, Jigneshkumar; Kleinekathöfer, Ulrich; Winterhalter, Mathias

    2015-01-01

    The outer membrane (OM) of gram-negative bacteria forms a protective layer around the cell that serves as a permeability barrier to prevent unrestricted access of noxious substances. The permeability barrier of the OM results partly from the limited pore diameters of OM diffusion channels. As a consequence, there is an “OM size-exclusion limit,” and the uptake of bulky molecules with molecular masses of more than ∼600 Da is thought to be mediated by TonB-dependent, active transporters. Intriguingly, the OM protein CymA from Klebsiella oxytoca does not depend on TonB but nevertheless mediates efficient OM passage of cyclodextrins with diameters of up to ∼15 Å. Here we show, by using X-ray crystallography, molecular dynamics simulations, and single-channel electrophysiology, that CymA forms a monomeric 14-stranded β-barrel with a large pore that is occluded on the periplasmic side by the N-terminal 15 residues of the protein. Representing a previously unidentified paradigm in OM transport, CymA mediates the passive diffusion of bulky molecules via an elegant transport mechanism in which a mobile element formed by the N terminus acts as a ligand-expelled gate to preserve the permeability barrier of the OM. PMID:26015567

  7. The Virulence Plasmid of Yersinia, an Antihost Genome

    PubMed Central

    Cornelis, Guy R.; Boland, Anne; Boyd, Aoife P.; Geuijen, Cecile; Iriarte, Maite; Neyt, Cécile; Sory, Marie-Paule; Stainier, Isabelle

    1998-01-01

    The 70-kb virulence plasmid enables Yersinia spp. (Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica) to survive and multiply in the lymphoid tissues of their host. It encodes the Yop virulon, an integrated system allowing extracellular bacteria to disarm the cells involved in the immune response, to disrupt their communications, or even to induce their apoptosis by the injection of bacterial effector proteins. This system consists of the Yop proteins and their dedicated type III secretion apparatus, called Ysc. The Ysc apparatus is composed of some 25 proteins including a secretin. Most of the Yops fall into two groups. Some of them are the intracellular effectors (YopE, YopH, YpkA/YopO, YopP/YopJ, YopM, and YopT), while the others (YopB, YopD, and LcrV) form the translocation apparatus that is deployed at the bacterial surface to deliver the effectors into the eukaryotic cells, across their plasma membrane. Yop secretion is triggered by contact with eukaryotic cells and controlled by proteins of the virulon including YopN, TyeA, and LcrG, which are thought to form a plug complex closing the bacterial secretion channel. The proper operation of the system also requires small individual chaperones, called the Syc proteins, in the bacterial cytosol. Transcription of the genes is controlled both by temperature and by the activity of the secretion apparatus. The virulence plasmid of Y. enterocolitica and Y. pseudotuberculosis also encodes the adhesin YadA. The virulence plasmid contains some evolutionary remnants including, in Y. enterocolitica, an operon encoding resistance to arsenic compounds. PMID:9841674

  8. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris

    PubMed Central

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-01-01

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens. PMID:28198457

  9. Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space.

    PubMed

    Glynn, Jonathan M; Froehlich, John E; Osteryoung, Katherine W

    2008-09-01

    Chloroplasts arose from a free-living cyanobacterial endosymbiont and divide by binary fission. Division involves the assembly and constriction of the endosymbiont-derived, tubulin-like FtsZ ring on the stromal surface of the inner envelope membrane and the host-derived, dynamin-like ARC5 ring on the cytosolic surface of the outer envelope membrane. Despite the identification of many proteins required for plastid division, the factors coordinating the internal and external division machineries are unknown. Here, we provide evidence that this coordination is mediated in Arabidopsis thaliana by an interaction between ARC6, an FtsZ assembly factor spanning the inner envelope membrane, and PDV2, an ARC5 recruitment factor spanning the outer envelope membrane. ARC6 and PDV2 interact via their C-terminal domains in the intermembrane space, consistent with their in vivo topologies. ARC6 acts upstream of PDV2 to localize PDV2 (and hence ARC5) to the division site. We present a model whereby ARC6 relays information on stromal FtsZ ring positioning through PDV2 to the chloroplast surface to specify the site of ARC5 recruitment. Because orthologs of ARC6 occur in land plants, green algae, and cyanobacteria but PDV2 occurs only in land plants, the connection between ARC6 and PDV2 represents the evolution of a plant-specific adaptation to coordinate the assembly and activity of the endosymbiont- and host-derived plastid division components.

  10. Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant.

    PubMed

    Alves, Nathan J; Turner, Kendrick B; DiVito, Kyle A; Daniele, Michael A; Walper, Scott A

    To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function. Published by Elsevier Masson SAS.

  11. Outer nuclear membrane protein Kuduk modulates the LINC complex and nuclear envelope architecture

    PubMed Central

    Ding, Zhao-Ying; Huang, Yu-Cheng; Lee, Myong-Chol; Tseng, Min-Jen; Chi, Ya-Hui

    2017-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes spanning the nuclear envelope (NE) contribute to nucleocytoskeletal force transduction. A few NE proteins have been found to regulate the LINC complex. In this study, we identify one, Kuduk (Kud), which can reside at the outer nuclear membrane and is required for the development of Drosophila melanogaster ovarian follicles and NE morphology of myonuclei. Kud associates with LINC complex components in an evolutionarily conserved manner. Loss of Kud increases the level but impairs functioning of the LINC complex. Overexpression of Kud suppresses NE targeting of cytoskeleton-free LINC complexes. Thus, Kud acts as a quality control mechanism for LINC-mediated nucleocytoskeletal connections. Genetic data indicate that Kud also functions independently of the LINC complex. Overexpression of the human orthologue TMEM258 in Drosophila proved functional conservation. These findings expand our understanding of the regulation of LINC complexes and NE architecture. PMID:28716842

  12. Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain.

    PubMed

    Dave, Mabel N; Silva, Juan E; Eliçabe, Ricardo J; Jeréz, María B; Filippa, Verónica P; Gorlino, Carolina V; Autenrieth, Stella; Autenrieth, Ingo B; Di Genaro, María S

    2016-11-01

    Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster.

    PubMed

    Wiley, Sandra E; Paddock, Mark L; Abresch, Edward C; Gross, Larry; van der Geer, Peter; Nechushtai, Rachel; Murphy, Anne N; Jennings, Patricia A; Dixon, Jack E

    2007-08-17

    The outer mitochondrial membrane protein mitoNEET was discovered as a binding target of pioglitazone, an insulin-sensitizing drug of the thiazolidinedione class used to treat type 2 diabetes (Colca, J. R., McDonald, W. G., Waldon, D. J., Leone, J. W., Lull, J. M., Bannow, C. A., Lund, E. T., and Mathews, W. R. (2004) Am. J. Physiol. 286, E252-E260). We have shown that mitoNEET is a member of a small family of proteins containing a 39-amino-acid CDGSH domain. Although the CDGSH domain is annotated as a zinc finger motif, mitoNEET was shown to contain iron (Wiley, S. E., Murphy, A. N., Ross, S. A., van der Geer, P., and Dixon, J. E. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 5318-5323). Optical and electron paramagnetic resonance spectroscopy showed that it contained a redox-active pH-labile Fe-S cluster. Mass spectrometry showed the loss of 2Fe and 2S upon cofactor extrusion. Spectroscopic studies of recombinant proteins showed that the 2Fe-2S cluster was coordinated by Cys-3 and His-1. The His ligand was shown to be involved in the observed pH lability of the cluster, indicating that loss of this ligand via protonation triggered release of the cluster. mitoNEET is the first identified 2Fe-2S-containing protein located in the outer mitochondrial membrane. Based on the biophysical data and domain fusion analysis, mitoNEET may function in Fe-S cluster shuttling and/or in redox reactions.

  14. Vanadium(V) Reduction by Shewanella oneidensis MR-1 Requires Menaquinone and Cytochromes from the Cytoplasmic and Outer Membranes

    PubMed Central

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2004-01-01

    The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species. PMID:15006760

  15. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins.

    PubMed

    Zaccai, Nathan R; Sandlin, Clifford W; Hoopes, James T; Curtis, Joseph E; Fleming, Patrick J; Fleming, Karen G; Krueger, Susan

    2016-01-01

    In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling. © 2016 Elsevier Inc. All rights reserved.

  16. Canis lupus familiaris involved in the transmission of pathogenic Yersinia spp. in China.

    PubMed

    Wang, Xin; Liang, Junrong; Xi, Jinxiao; Yang, Jinchuan; Wang, Mingliu; Tian, Kecheng; Li, Jicheng; Qiu, Haiyan; Xiao, Yuchun; Duan, Ran; Yang, Haoshu; Li, Kewei; Cui, Zhigang; Qi, Meiying; Jing, Huaiqi

    2014-08-06

    To investigate canines carrying pathogens associated with human illness, we studied their roles in transmitting and maintaining pathogenic Yersinia spp. We examined different ecological landscapes in China for the distribution of pathogenic Yersinia spp. in Canis lupus familiaris, the domestic dog. The highest number of pathogenic Yersinia enterocolitica was shown from the tonsils (6.30%), followed by rectal swabs (3.63%) and feces (1.23%). Strains isolated from plague free areas for C. lupus familiaris, local pig and diarrhea patients shared the same pulsed-field gel electrophoresis (PFGE) pattern, indicating they may be from the same clone and the close transmission source of pathogenic Y. enterocolitica infections in these areas. Among 226 dogs serum samples collected from natural plague areas of Yersinia pestis in Gansu and Qinghai Provinces, 49 were positive for F1 antibody, while the serum samples collected from plague free areas were all negative, suggested a potential public health risk following exposure to dogs. No Y. enterocolitica or Yersinia pseudotuberculosis was isolated from canine rectal swabs in natural plague areas. Therefore, pathogenic Yersinia spp. may be regionally distributed in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV)

    PubMed Central

    Holst, Johan; Oster, Philipp; Arnold, Richard; Tatley, Michael V.; Næss, Lisbeth M.; Aaberge, Ingeborg S.; Galloway, Yvonne; McNicholas, Anne; O’Hallahan, Jane; Rosenqvist, Einar; Black, Steven

    2013-01-01

    The utility of wild-type outer membrane vesicle (wtOMV) vaccines against serogroup B (MenB) meningococcal disease has been explored since the 1970s. Public health interventions in Cuba, Norway and New Zealand have demonstrated that these protein-based vaccines can prevent MenB disease. Data from large clinical studies and retrospective statistical analyses in New Zealand give effectiveness estimates of at least 70%. A consistent pattern of moderately reactogenic and safe vaccines has been seen with the use of approximately 60 million doses of three different wtOMV vaccine formulations. The key limitation of conventional wtOMV vaccines is their lack of broad protective activity against the large diversity of MenB strains circulating globally. The public health intervention in New Zealand (between 2004–2008) when MeNZB was used to control a clonal MenB epidemic, provided a number of new insights regarding international and public-private collaboration, vaccine safety surveillance, vaccine effectiveness estimates and communication to the public. The experience with wtOMV vaccines also provide important information for the next generation of MenB vaccines designed to give more comprehensive protection against multiple strains. PMID:23857274

  18. The Iron-Responsive Fur/RyhB Regulatory Cascade Modulates the Shigella Outer Membrane Protease IcsP ▿ †

    PubMed Central

    Africa, Lia A. A.; Murphy, Erin R.; Egan, Nicholas R.; Wigley, Amanda F.; Wing, Helen J.

    2011-01-01

    Actin-based motility is central to the pathogenicity of the intracellular bacterial pathogen Shigella. Two Shigella outer membrane proteins, IcsA and IcsP, are required for efficient actin-based motility in the host cell cytoplasm, and the genes encoding both proteins are carried on the large virulence plasmid. IcsA triggers actin polymerization on the surface of the bacterium, leading to the formation of an actin tail that allows both intra- and intercellular spread. IcsP, an outer membrane protease, modulates the amount and distribution of the IcsA protein on the bacterial surface through proteolytic cleavage of IcsA. Transcription of icsP is increased in the presence of VirB, a DNA-binding protein that positively regulates many genes carried on the large virulence plasmid. In Shigella dysenteriae, the small regulatory RNA RyhB, which is a member of the iron-responsive Fur regulon, suppresses several virulence-associated phenotypes by downregulating levels of virB in response to iron limitation. Here we show that the Fur/RyhB regulatory pathway downregulates IcsP levels in response to low iron concentrations in Shigella flexneri and that this occurs at the level of transcription through the RyhB-dependent regulation of VirB. These observations demonstrate that in Shigella species the Fur/RyhB regulatory pathway provides a mechanism to finely tune the expression of icsP in response to the low concentrations of free iron predicted to be encountered within colonic epithelial cells. PMID:21859852

  19. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection

    NASA Astrophysics Data System (ADS)

    Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing

    2016-11-01

    Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.

  20. Differential distribution of proteins and lipids in detergent-resistant and detergent-soluble domains in rod outer segment plasma membranes and disks.

    PubMed

    Elliott, Michael H; Nash, Zack A; Takemori, Nobuaki; Fliesler, Steven J; McClellan, Mark E; Naash, Muna I

    2008-01-01

    Membrane heterogeneity plays a significant role in regulating signal transduction and other cellular activities. We examined the protein and lipid components associated with the detergent-resistant membrane (DRM) fractions from retinal rod outer segment (ROS) disk and plasma membrane-enriched preparations. Proteomics and correlative western blot analysis revealed the presence of alpha and beta subunits of the rod cGMP-gated ion channel and glucose transporter type 1, among other proteins. The glucose transporter was present exclusively in ROS plasma membrane (not disks) and was highly enriched in DRMs, as was the cGMP-gated channel beta-subunit. In contrast, the majority of rod opsin and ATP-binding cassette transporter A4 was localized to detergent-soluble domains in disks. As expected, the cholesterol : fatty acid mole ratio was higher in DRMs than in the corresponding parent membranes (disk and plasma membranes, respectively) and was also higher in disks compared to plasma membranes. Furthermore, the ratio of saturated : polyunsaturated fatty acids was also higher in DRMs compared to their respective parent membranes (disk and plasma membranes). These results confirm that DRMs prepared from both disks and plasma membranes are enriched in cholesterol and in saturated fatty acids compared to their parent membranes. The dominant fatty acids in DRMs were 16 : 0 and 18 : 0; 22 : 6n3 and 18 : 1 levels were threefold higher and twofold lower, respectively, in disk-derived DRMs compared to plasma membrane-derived DRMs. We estimate, based on fatty acid recovery that DRMs account for only approximately 8% of disks and approximately 12% of ROS plasma membrane.

  1. Microgravity Effects on Yersinia Pestis Virulence

    NASA Astrophysics Data System (ADS)

    Lawal, A.; Abogunde, O.; Jejelowo, O.; Rosenzweig, J.-A.

    2010-04-01

    Microgravity effects on Yersinia pestis proliferation, cold growth, and type three secretion system function were evaluated in macrophage cell infections, HeLa cell infections, and cold growth plate assays.

  2. Molecular recognition in myxobacterial outer membrane exchange: functional, social and evolutionary implications.

    PubMed

    Wall, Daniel

    2014-01-01

    Through cooperative interactions, bacteria can build multicellular communities. To ensure that productive interactions occur, bacteria must recognize their neighbours and respond accordingly. Molecular recognition between cells is thus a fundamental behaviour, and in bacteria important discoveries have been made. This MicroReview focuses on a recently described recognition system in myxobacteria that is governed by a polymorphic cell surface receptor called TraA. TraA regulates outer membrane exchange (OME), whereby myxobacterial cells transiently fuse their OMs to efficiently transfer proteins and lipids between cells. Unlike other transport systems, OME is rather indiscriminate in what OM goods are transferred. In contrast, the recognition of partnering cells is discriminatory and only occurs between cells that bear identical or closely related TraA proteins. Therefore TraA functions in kin recognition and, in turn, OME helps regulate social interactions between myxobacteria. Here, I discuss and speculate on the social and evolutionary implications of OME and suggest it helps to guide their transition from free-living cells into coherent and functional populations. © 2013 John Wiley & Sons Ltd.

  3. Fast and Sensitive Detection of Enteropathogenic Yersinia by Immunoassays

    PubMed Central

    Laporte, Jérôme; Savin, Cyril; Lamourette, Patricia; Devilliers, Karine; Volland, Hervé; Carniel, Elisabeth; Créminon, Christophe

    2014-01-01

    Yersinia enterocolitica and Yersinia pseudotuberculosis, the two Yersinia species that are enteropathogenic for humans, are distributed worldwide and frequently cause diarrhea in inhabitants of temperate and cold countries. Y. enterocolitica is a major cause of foodborne disease resulting from consumption of contaminated pork meat and is further associated with substantial economic cost. However, investigation of enteropathogenic Yersinia species is infrequently performed routinely in clinical laboratories because of their specific growth characteristics, which make difficult their isolation from stool samples. Moreover, current isolation procedures are time-consuming and expensive, thus leading to underestimates of the incidence of enteric yersiniosis, inappropriate prescriptions of antibiotic treatments, and unnecessary appendectomies. The main objective of the study was to develop fast, sensitive, specific, and easy-to-use immunoassays, useful for both human and veterinary diagnosis. Monoclonal antibodies (MAbs) directed against Y. enterocolitica bioserotypes 2/O:9 and 4/O:3 and Y. pseudotuberculosis serotypes I and III were produced. Pairs of MAbs were selected by testing their specificity and affinity for enteropathogenic Yersinia and other commonly found enterobacteria. Pairs of MAbs were selected to develop highly sensitive enzyme immunoassays (EIAs) and lateral flow immunoassays (LFIs or dipsticks) convenient for the purpose of rapid diagnosis. The limit of detection of the EIAs ranged from 3.2 × 103 CFU/ml to 8.8 × 104 CFU/ml for pathogenic serotypes I and III of Y. pseudotuberculosis and pathogenic bioserotypes 2/O:9 and 4/O:3 of Y. enterocolitica and for the LFIs ranged from 105 CFU/ml to 106 CFU/ml. A similar limit of detection was observed for artificially contaminated human feces. PMID:25355759

  4. Outer membrane vesicles extracted from Neisseria meningitidis serogroup X for prevention of meningococcal disease in Africa.

    PubMed

    Acevedo, Reinaldo; Zayas, Caridad; Norheim, Gunnstein; Fernández, Sonsire; Cedré, Barbara; Aranguren, Yisabel; Cuello, Maribel; Rodriguez, Yaimara; González, Humberto; Mandiarote, Aleida; Pérez, Marylin; Hernández, Maritza; Hernández-Cedeño, Mabel; González, Domingo; Brorson, Sverre-Henning; Rosenqvist, Einar; Naess, Lisbeth; Tunheim, Gro; Cardoso, Daniel; García, Luis

    2017-07-01

    Meningococcal disease is caused mainly by serogroups A, B, C, Y, W of N. meningitidis. However, numerous cases of meningitis caused by serogroup X N. meningitidis (MenX) have recently been reported in several African countries. Currently, there are no licensed vaccines against this pathogen and most of the MenX cases have been caused by meningococci from clonal complex (c.c) 181. Detergent extracted meningococcal outer membrane vesicle (dOMV) vaccines have previously shown to be safe and effective against epidemics of serogroup B meningococcal disease in all age groups. The aim of this work is therefore to obtain, characterize and evaluate the vaccine potential of dOMVs derived from a MenX strain (OMVx). Three experimental lots of OMVx were prepared by deoxycholate extraction from the MenX strain BF 2/97. Size and morphology of the vesicles was determined by Dynamic Light Scattering and electron microscopy, whereas the antigenic composition was characterized by gel electrophoresis and immunoblotting. OMVx were thereafter adsorbed to aluminium hydroxide (OMVx/AL) and two doses of OMVx were administered s.c. to groups of Balb/c mice three weeks apart. The immunogenicity and functional antibody activities in sera were evaluated by ELISA (anti-OMVx specific IgG responses) and serum bactericidal activity (SBA) assay. The size range of OMVx was shown to be between 90 and 120nm, whereas some of the antigens detected were the outer membrane proteins PorA, OpcA and RmpM. The OMVx/AL elicited high anti-OMVx antibody responses with bactericidal activity and no bactericidal activity was observed in the control group of no immunised mice. The results demonstrate that OMVx are immunogenic and could form part of a future vaccine to prevent the majority of meningococcal disease in the African meningitis belt. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride.

    PubMed

    Tattawasart, U; Maillard, J Y; Furr, J R; Russell, A D

    2000-11-01

    Changes in outer membrane proteins (OMP) and lipopolysaccharide (LPS) in cells of strains of Pseudomonas stutzeri sensitive and resistant to chlorhexidine diacetate (CHA) or cetylpyridinium chloride (CPC) have been examined. Four of five CHA-resistant strains had alterations in OMP profiles, including the expression of two additional protein bands. All the CPC-resistant strains had altered OMP profiles but the changes varied from strain to strain. Loss of the fastest-migrating bands was observed in the LPS from CHX-resistant strains. In strain JM 302R with high-level CHX resistance (minimal inhibitory concentration 100 mg/l as opposed to 2.5 mg/l in the parent-strain, JM 302), all the fast-migrating bands were lost and the strain showed 'cross-resistance' to polymyxin, gentamicin and ethylenediamine tetraacetic acid. It is however, possible that the altered LPS patterns reflect a response to alterations in other components rather than being directly associated per se with the enhanced resistance.

  6. Biochemical and functional characterization of the periplasmic domain of the outer membrane protein A from enterohemorrhagic Escherichia coli.

    PubMed

    Wang, Haiguang; Li, Qian; Fang, Yao; Yu, Shu; Tang, Bin; Na, Li; Yu, Bo; Zou, Quanming; Mao, Xuhu; Gu, Jiang

    2016-01-01

    Outer membrane protein A (OmpA) plays multiple roles in the physiology and pathogenesis of the zoonotic pathogen enterohemorrhagic Escherichia coli (EHEC). The N-terminus of OmpA forms a transmembrane domain (OmpA™), and the roles of this domain in bacterial pathogenesis have been well studied. However, how its C-terminal domain (OmpAper), which is located at the periplasmic space in the bacterial membrane, contributes to virulence remains unclear. Herein, we report that OmpAper forms a dimer and binds to peptidoglycan in vitro. Furthermore, OmpAper is responsible for bacterial resistance to acidic conditions, high osmotic pressure and high SDS environments. In addition, OmpAper contributes to the adhesion of bacteria to HeLa cells in vitro and ex vivo. These results provide an additional understanding of the role of OmpA in EHEC physiology and pathogenesis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Low prevalence of human enteropathogenic Yersinia spp. in brown rats (Rattus norvegicus) in Flanders.

    PubMed

    Rouffaer, Lieze Oscar; Baert, Kristof; Van den Abeele, Anne-Marie; Cox, Ivo; Vanantwerpen, Gerty; De Zutter, Lieven; Strubbe, Diederik; Vranckx, Katleen; Lens, Luc; Haesebrouck, Freddy; Delmée, Michel; Pasmans, Frank; Martel, An

    2017-01-01

    Brown rats (Rattus norvegicus) have been identified as potential carriers of Yersinia enterocolitica and Y. pseudotuberculosis, the etiological agents of yersiniosis, the third most reported bacterial zoonosis in Europe. Enteropathogenic Yersinia spp. are most often isolated from rats during yersiniosis cases in animals and humans, and from rats inhabiting farms and slaughterhouses. Information is however lacking regarding the extent to which rats act as carriers of these Yersinia spp.. In 2013, 1088 brown rats across Flanders, Belgium, were tested for the presence of Yersinia species by isolation method. Identification was performed using MALDI-TOF MS, PCR on chromosomal- and plasmid-borne virulence genes, biotyping and serotyping. Yersinia spp. were isolated from 38.4% of the rats. Of these, 53.4% were designated Y. enterocolitica, 0.7% Y. pseudotuberculosis and 49.0% other Yersinia species. Two Y. enterocolitica possessing the virF-, ail- and ystA-gene were isolated. Additionally, the ystB-gene was identified in 94.1% of the other Y. enterocolitica isolates, suggestive for biotype 1A. Three of these latter isolates simultaneously possessed the ail-virulence gene. Significantly more Y. enterocolitica were isolated during winter and spring compared to summer. Based on our findings we can conclude that brown rats are frequent carriers for various Yersinia spp., including Y. pseudotuberculosis and (human pathogenic) Y. enterocolitica which are more often isolated during winter and spring.

  8. Low prevalence of human enteropathogenic Yersinia spp. in brown rats (Rattus norvegicus) in Flanders

    PubMed Central

    Rouffaer, Lieze Oscar; Baert, Kristof; Van den Abeele, Anne-Marie; Cox, Ivo; Vanantwerpen, Gerty; De Zutter, Lieven; Strubbe, Diederik; Vranckx, Katleen; Lens, Luc; Haesebrouck, Freddy; Delmée, Michel; Pasmans, Frank; Martel, An

    2017-01-01

    Brown rats (Rattus norvegicus) have been identified as potential carriers of Yersinia enterocolitica and Y. pseudotuberculosis, the etiological agents of yersiniosis, the third most reported bacterial zoonosis in Europe. Enteropathogenic Yersinia spp. are most often isolated from rats during yersiniosis cases in animals and humans, and from rats inhabiting farms and slaughterhouses. Information is however lacking regarding the extent to which rats act as carriers of these Yersinia spp.. In 2013, 1088 brown rats across Flanders, Belgium, were tested for the presence of Yersinia species by isolation method. Identification was performed using MALDI-TOF MS, PCR on chromosomal- and plasmid-borne virulence genes, biotyping and serotyping. Yersinia spp. were isolated from 38.4% of the rats. Of these, 53.4% were designated Y. enterocolitica, 0.7% Y. pseudotuberculosis and 49.0% other Yersinia species. Two Y. enterocolitica possessing the virF-, ail- and ystA-gene were isolated. Additionally, the ystB-gene was identified in 94.1% of the other Y. enterocolitica isolates, suggestive for biotype 1A. Three of these latter isolates simultaneously possessed the ail-virulence gene. Significantly more Y. enterocolitica were isolated during winter and spring compared to summer. Based on our findings we can conclude that brown rats are frequent carriers for various Yersinia spp., including Y. pseudotuberculosis and (human pathogenic) Y. enterocolitica which are more often isolated during winter and spring. PMID:28403184

  9. Role of Tim50 in the Transfer of Precursor Proteins from the Outer to the Inner Membrane of Mitochondria

    PubMed Central

    Sichting, Martin; Popov-Čeleketić, Dušan; Mapa, Koyeli; Gevorkyan-Airapetov, Lada; Zohary, Keren; Hell, Kai; Azem, Abdussalam

    2009-01-01

    Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23. PMID:19144822

  10. Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria.

    PubMed

    Mokranjac, Dejana; Sichting, Martin; Popov-Celeketić, Dusan; Mapa, Koyeli; Gevorkyan-Airapetov, Lada; Zohary, Keren; Hell, Kai; Azem, Abdussalam; Neupert, Walter

    2009-03-01

    Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23.

  11. Nucleotide sequences specific to Yersinia pestis and methods for the detection of Yersinia pestis

    DOEpatents

    McCready, Paula M [Tracy, CA; Radnedge, Lyndsay [San Mateo, CA; Andersen, Gary L [Berkeley, CA; Ott, Linda L [Livermore, CA; Slezak, Thomas R [Livermore, CA; Kuczmarski, Thomas A [Livermore, CA; Motin, Vladinir L [League City, TX

    2009-02-24

    Nucleotide sequences specific to Yersinia pestis that serve as markers or signatures for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  12. Single-channel measurements of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli

    PubMed Central

    Giri, Janhavi; Tang, John M.; Wirth, Christophe; Peneff, Caroline M.

    2012-01-01

    NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM KCl to 3 M KCl), (2) anion over cation selectivity (Vreversal = +16 mV in 250 mM KCl || 1 M KCl), and (3) two forms of voltage-dependent gating (channel closures above ±200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 μM to 100 mM in 250 mM KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM to 5 mM in 250 mM KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar–KCl bridges. A suitable baseline solution for NanC is 250 mM KCl adjusted to pH 7.0 without buffer. PMID:22246445

  13. Parallel independent evolution of pathogenicity within the genus Yersinia

    PubMed Central

    Reuter, Sandra; Connor, Thomas R.; Barquist, Lars; Walker, Danielle; Feltwell, Theresa; Harris, Simon R.; Fookes, Maria; Hall, Miquette E.; Petty, Nicola K.; Fuchs, Thilo M.; Corander, Jukka; Dufour, Muriel; Ringwood, Tamara; Savin, Cyril; Bouchier, Christiane; Martin, Liliane; Miettinen, Minna; Shubin, Mikhail; Riehm, Julia M.; Laukkanen-Ninios, Riikka; Sihvonen, Leila M.; Siitonen, Anja; Skurnik, Mikael; Falcão, Juliana Pfrimer; Fukushima, Hiroshi; Scholz, Holger C.; Prentice, Michael B.; Wren, Brendan W.; Parkhill, Julian; Carniel, Elisabeth; Achtman, Mark; McNally, Alan; Thomson, Nicholas R.

    2014-01-01

    The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens. PMID:24753568

  14. In silico local structure approach: a case study on outer membrane proteins.

    PubMed

    Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude

    2008-04-01

    The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. (c) 2007 Wiley-Liss, Inc.

  15. Identification and strain differentiation of Vibrio cholerae by using polyclonal antibodies against outer membrane proteins.

    PubMed

    Martínez-Govea, A; Ambrosio, J; Gutiérrez-Cogco, L; Flisser, A

    2001-07-01

    Cholera is caused only by O1 and O139 Vibrio cholerae strains. For diagnosis, 3 working days are needed for bacterial isolation from human feces and for biochemical characterization. Here we describe the purification of bacterial outer membrane proteins (OMP) from V. cholerae O1 Ogawa, O1 Inaba, and O139 strains, as well as the production of specific antisera and their use for fecal Vibrio antigen detection. Anti-OMP antisera showed very high reactivity and specificity by enzyme-linked immunosorbent assay (ELISA) and dot-ELISA. An inmunodiagnostic assay for V. cholerae detection was developed; this assay avoids preenrichment and costly equipment and can be used for epidemiological surveillance and clinical diagnosis of cases, considering that prompt and specific identification of bacteria is mandatory in cholera.

  16. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.

    PubMed

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-11-13

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.

  17. Comparison of the effects of selected chalcones, dihydrochalcones and some cyclic flavonoids on mitochondrial outer membrane determined by fluorescence spectroscopy.

    PubMed

    Tomecková, Vladimíra; Guzy, Juraj; Kusnír, Jaroslav; Fodor, Krisztina; Mareková, Mária; Chavková, Zenóbia; Perjési, Pál

    2006-11-30

    The effect on mitochondrial outer membrane of 4-hydroxychalcone (1), the cyclic chalcone analogues E-2-(4'-hydroxybenzylidene)-1-indanone (2a) and E-2-(4'-hydroxybenzylidene)-1-tetralone (2b), the dihydrochalcones phloretin (3a) and phloridzin (3b), the flavanones naringenin (4a) and naringin (4b), and the flavonol quercetin (5) was investigated by fluorescence spectroscopy. Excitation and emission fluorescence spectra of each flavonoid and synthetic analogue were recorded in respiration medium containing 1 mM succinate. Initial interaction of the compounds with the outer mitochondrial membrane was investigated by recording their fluorescence polarization in the presence of rat liver mitochondria. Most of the compounds displayed an elevated fluorescence polarization on mixing with mitochondria at the zero time point. During the investigated 20 min period the initial fluorescence polarization values remained constant (1, 2a), or a gradual depression of the measured polarization values could be observed (2b, 3a, 4b, 5). In the case of naringenin (4a), however, similar to the previously investigated seven-membered cyclic chalcone analogue E-2-(4 -methoxybenzylidene)-1-benzosuberone, a slight, continuous increase of fluorescence polarization could be detected during the 20 min experiment. Phloridzin (3b) showed an increased fluorescence polarization in first 10 min, which was slightly depressed by the 20 min time point.

  18. Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago

    PubMed Central

    Rasmussen, Simon; Allentoft, Morten Erik; Nielsen, Kasper; Orlando, Ludovic; Sikora, Martin; Sjögren, Karl-Göran; Pedersen, Anders Gorm; Schubert, Mikkel; Van Dam, Alex; Kapel, Christian Moliin Outzen; Nielsen, Henrik Bjørn; Brunak, Søren; Avetisyan, Pavel; Epimakhov, Andrey; Khalyapin, Mikhail Viktorovich; Gnuni, Artak; Kriiska, Aivar; Lasak, Irena; Metspalu, Mait; Moiseyev, Vyacheslav; Gromov, Andrei; Pokutta, Dalia; Saag, Lehti; Varul, Liivi; Yepiskoposyan, Levon; Sicheritz-Pontén, Thomas; Foley, Robert A.; Lahr, Marta Mirazón; Nielsen, Rasmus; Kristiansen, Kristian; Willerslev, Eske

    2015-01-01

    Summary The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics. PMID:26496604

  19. Transcriptome Changes Associated with Anaerobic Growth in Yersinia intermedia (ATCC29909)

    PubMed Central

    Kiley, Patricia J.; Glasner, Jeremy D.; Perna, Nicole T.

    2013-01-01

    Background The yersiniae (Enterobacteriaceae) occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. Methodology/Principal Findings Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. Conclusions/Significance This is the first transcriptome analysis of a non-pathogenic Yersinia spp. and one of few elucidating the global response to oxygen limitation for any of the yersiniae. Thus this study

  20. Transcriptome changes associated with anaerobic growth in Yersinia intermedia (ATCC29909).

    PubMed

    Babujee, Lavanya; Balakrishnan, Venkatesh; Kiley, Patricia J; Glasner, Jeremy D; Perna, Nicole T

    2013-01-01

    The yersiniae (Enterobacteriaceae) occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. This is the first transcriptome analysis of a non-pathogenic Yersinia spp. and one of few elucidating the global response to oxygen limitation for any of the yersiniae. Thus this study lays the foundation for further experimental characterization of

  1. Serum antibodies to outer membrane proteins (OMPs) of Moraxella (Branhamella) catarrhalis in patients with bronchiectasis: identification of OMP B1 as an important antigen.

    PubMed Central

    Sethi, S; Hill, S L; Murphy, T F

    1995-01-01

    Moraxella (Branhamella) catarrhalis is a common cause of lower respiratory tract infections in adults and of otitis media in children. Little is known about the human immune response to this bacterium. In this study, immunoblot assays were performed to detect serum immunoglobulin G antibodies directed at purified outer membrane of M. catarrhalis. Twelve serum samples, two each from six patients with bronchiectasis who were persistently colonized with this organism, were tested with their homologous M. catarrhalis sputum isolates. In all the sera, the most prominent and consistent antibody response was to a minor 84-kDa outer membrane protein, OMP B1. Immunoblot adsorption assays show that these antibodies recognize surface exposed epitopes on OMP B1. Further analysis of human serum antibodies eluted from the surface of intact bacterial cells shows that these surface-exposed epitopes on OMP B1 are heterogeneous among strains of M. catarrhalis. OMP B1 is therefore an important OMP antigen on the surface of M. catarrhalis for the human immune response to infection by this bacterium. PMID:7890418

  2. Regulatory principles governing Salmonella and Yersinia virulence

    PubMed Central

    Erhardt, Marc; Dersch, Petra

    2015-01-01

    Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process. PMID:26441883

  3. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins.

    PubMed

    Sundara Baalaji, N; Mathew, M K; Krishnaswamy, S

    2006-10-01

    The immunodominant trimeric beta-barrel outer membrane protein OmpC from Salmonella typhi, the causative agent of typhoid, has been functionally characterized here. The activity in the vesicle environment was studied in vitro using OmpC reconstituted into proteoliposomes. Passage of polysaccharides and polyethyleneglycols through OmpC has been examined to determine the permeability properties. The relative rate of neutral solute flux yields a radius of 1.1 nm for the S. typhi OmpC pore. This is almost double the pore size of Escherichia coli. This provides an example of large pore size present in the porins that form trimers as in the general bacterial porin family. The method used in this study provides a good membrane model for functional studies of porins.

  4. High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis.

    PubMed

    Willcocks, Samuel J; Stabler, Richard A; Atkins, Helen S; Oyston, Petra F; Wren, Brendan W

    2018-05-31

    Yersinia pseudotuberculosis is a zoonotic pathogen, causing mild gastrointestinal infection in humans. From this comparatively benign pathogenic species emerged the highly virulent plague bacillus, Yersinia pestis, which has experienced significant genetic divergence in a relatively short time span. Much of our knowledge of Yersinia spp. evolution stems from genomic comparison and gene expression studies. Here we apply transposon-directed insertion site sequencing (TraDIS) to describe the essential gene set of Y. pseudotuberculosis IP32953 in optimised in vitro growth conditions, and contrast these with the published essential genes of Y. pestis. The essential genes of an organism are the core genetic elements required for basic survival processes in a given growth condition, and are therefore attractive targets for antimicrobials. One such gene we identified is yptb3665, which encodes a peptide deformylase, and here we report for the first time, the sensitivity of Y. pseudotuberculosis to actinonin, a deformylase inhibitor. Comparison of the essential genes of Y. pseudotuberculosis with those of Y. pestis revealed the genes whose importance are shared by both species, as well as genes that were differentially required for growth. In particular, we find that the two species uniquely rely upon different iron acquisition and respiratory metabolic pathways under similar in vitro conditions. The discovery of uniquely essential genes between the closely related Yersinia spp. represent some of the fundamental, species-defining points of divergence that arose during the evolution of Y. pestis from its ancestor. Furthermore, the shared essential genes represent ideal candidates for the development of novel antimicrobials against both species.

  5. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Linxiao; Valentine, Jenny L.; Huang, Chung-Jr

    The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. In this paper, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Usingmore » this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS–specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Finally, given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.« less

  6. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies

    DOE PAGES

    Chen, Linxiao; Valentine, Jenny L.; Huang, Chung-Jr; ...

    2016-06-06

    The O-antigen polysaccharide (O-PS) component of lipopolysaccharides on the surface of gram-negative bacteria is both a virulence factor and a B-cell antigen. Antibodies elicited by O-PS often confer protection against infection; therefore, O-PS glycoconjugate vaccines have proven useful against a number of different pathogenic bacteria. However, conventional methods for natural extraction or chemical synthesis of O-PS are technically demanding, inefficient, and expensive. In this paper, we describe an alternative methodology for producing glycoconjugate vaccines whereby recombinant O-PS biosynthesis is coordinated with vesiculation in laboratory strains of Escherichia coli to yield glycosylated outer membrane vesicles (glycOMVs) decorated with pathogen-mimetic glycotopes. Usingmore » this approach, glycOMVs corresponding to eight different pathogenic bacteria were generated. For example, expression of a 17-kb O-PS gene cluster from the highly virulent Francisella tularensis subsp. tularensis (type A) strain Schu S4 in hypervesiculating E. coli cells yielded glycOMVs that displayed F. tularensis O-PS. Immunization of BALB/c mice with glycOMVs elicited significant titers of O-PS–specific serum IgG antibodies as well as vaginal and bronchoalveolar IgA antibodies. Importantly, glycOMVs significantly prolonged survival upon subsequent challenge with F. tularensis Schu S4 and provided complete protection against challenge with two different F. tularensis subsp. holarctica (type B) live vaccine strains, thereby demonstrating the vaccine potential of glycOMVs. Finally, given the ease with which recombinant glycotopes can be expressed on OMVs, the strategy described here could be readily adapted for developing vaccines against many other bacterial pathogens.« less

  7. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago.

    PubMed

    Rasmussen, Simon; Allentoft, Morten Erik; Nielsen, Kasper; Orlando, Ludovic; Sikora, Martin; Sjögren, Karl-Göran; Pedersen, Anders Gorm; Schubert, Mikkel; Van Dam, Alex; Kapel, Christian Moliin Outzen; Nielsen, Henrik Bjørn; Brunak, Søren; Avetisyan, Pavel; Epimakhov, Andrey; Khalyapin, Mikhail Viktorovich; Gnuni, Artak; Kriiska, Aivar; Lasak, Irena; Metspalu, Mait; Moiseyev, Vyacheslav; Gromov, Andrei; Pokutta, Dalia; Saag, Lehti; Varul, Liivi; Yepiskoposyan, Levon; Sicheritz-Pontén, Thomas; Foley, Robert A; Lahr, Marta Mirazón; Nielsen, Rasmus; Kristiansen, Kristian; Willerslev, Eske

    2015-10-22

    The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Role of the Omp25/Omp31 Family in Outer Membrane Properties and Virulence of Brucella ovis▿

    PubMed Central

    Caro-Hernández, Paola; Fernández-Lago, Luis; de Miguel, María-Jesús; Martín-Martín, Ana I.; Cloeckaert, Axel; Grilló, María-Jesús; Vizcaíno, Nieves

    2007-01-01

    The genes coding for the five outer membrane proteins (OMPs) of the Omp25/Omp31 family expected to be located in the outer membrane (OM) of rough virulent Brucella ovis PA were inactivated to evaluate their role in virulence and OM properties. The OM properties of the mutant strains and of the mutants complemented with the corresponding wild-type genes were analyzed, in comparison with the parental strain and rough B. abortus RB51, in several tests: (i) binding of anti-Omp25 and anti-Omp31 monoclonal antibodies, (ii) autoagglutination of bacterial suspensions, and (iii) assessment of susceptibility to polymyxin B, sodium deoxycholate, hydrogen peroxide, and nonimmune ram serum. A tight balance of the members of the Omp25/Omp31 family was seen to be essential for the stability of the B. ovis OM, and important differences between the OMs of B. ovis PA and B. abortus RB51 rough strains were observed. Regarding virulence, the absence of Omp25d and Omp22 from the OM of B. ovis PA led to a drastic reduction in spleen colonization in mice. While the greater susceptibility of the Δomp22 mutant to nonimmune serum and its difficulty in surviving in the stationary phase might be on the basis of its dramatic attenuation, no defects in the OM able to explain the attenuation of the Δomp25d mutant were found, especially considering that the fully virulent Δomp25c mutant displayed more important OM defects. Accordingly, Omp25d, and perhaps Omp22, could be directly involved in the penetration and/or survival of B. ovis inside host cells. This aspect, together with the role of Omp25d and Omp22 in the virulence both of B. ovis in rams and of other Brucella species, should be thoroughly evaluated in future studies. PMID:17562767

  9. The Major Outer Membrane Protein MopB Is Required for Twitching Movement and Affects Biofilm Formation and Virulence in Two Xylella fastidiosa strains.

    PubMed

    Chen, Hongyu; Kandel, Prem P; Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo

    2017-11-01

    MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a β-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.

  10. Photoreceptor Outer Segment on Internal Limiting Membrane after Macular Hole Surgery: Implications for Pathogenesis.

    PubMed

    Grinton, Michael E; Sandinha, Maria T; Steel, David H W

    2015-01-01

    This report presents a case, which highlights key principles in the pathophysiology of macular holes. It has been hypothesized that anteroposterior (AP) and tangential vitreous traction on the fovea are the primary underlying factors causing macular holes [Nischal and Pearson; in Kanski and Bowling: Clinical Ophthalmology: A Systemic Approach, 2011, pp 629-631]. Spectral domain optical coherence tomography (OCT) has subsequently corroborated this theory in part but shown that AP vitreofoveal traction is the more common scenario [Steel and Lotery: Eye 2013;27:1-21]. This study was conducted as a single case report. A 63-year old female presented to her optician with blurred and distorted vision in her left eye. OCT showed a macular hole with a minimum linear diameter of 370 µm, with persistent broad vitreofoveal attachment on both sides of the hole edges. The patient underwent combined left phacoemulsification and pars plana vitrectomy, internal limiting membrane (ILM) peel and gas injection. The ILM was examined by electron microscopy and showed the presence of a cone outer segment on the retinal side. Post-operative OCT at 11 weeks showed a closed hole with recovery of the foveal contour and good vision. Our case shows the presence of a photoreceptor outer segment on the retinal side of the ILM and reinforces the importance of tangential traction in the development of some macula holes. The case highlights the theory of transmission of inner retinal forces to the photoreceptors via Müller cells and how a full thickness macular hole defect can occur in the absence of AP vitreomacular traction.

  11. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    PubMed

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  12. The isolation of Yersinia sp. from feral and farmed deer faeces.

    PubMed

    Henderson, T G

    1984-06-01

    Faecal samples from clinically normal farmed red deer, wapiti, fallow deer; and feral red deer and white tail deer were examined for members of the genus Yersinia. From 922 samples 176 strains of Y.enterocolitica, 56 strains of Y.frederiksenii, 29 strains of Y.kristensenii, eight strains of Y.intermedia, and seven strains of Y.pseudotuberculosis were isolated. High isolation rates of Yersinia sp. were recorded from some farms. Two herds had isolation rates of 33.3% and 36.8%. Sixteen strains of Yersinia sp. in addition to strains of Y.psuedotuberculosis were found to be Hela cell invasive. The majority of these strains were confined to a single herd and represented Y.enterocolitica biotypes I, II and III, Y.intermedia, Y. fredericksenii, and Y.kristensenii.

  13. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.

  14. The interaction between Pseudomonas aeruginosa cells and cationic PC:Chol:DOTAP liposomal vesicles versus outer-membrane structure and envelope properties of bacterial cell.

    PubMed

    Drulis-Kawa, Zuzanna; Dorotkiewicz-Jach, Agata; Gubernator, Jerzy; Gula, Grzegorz; Bocer, Tomasz; Doroszkiewicz, Wlodzimierz

    2009-02-09

    The interactions between cationic liposomal formulations (PC:Chol:DOTAP 3:4:3) and 23 Pseudomonas aeruginosa strains were tested. The study was undertaken because different antimicrobial results had been obtained by the authors for Pseudomonas aeruginosa strains and liposomal antibiotics (Drulis-Kawa, Z., Gubernator, J., Dorotkiewicz-Jach, A., Doroszkiewicz, W., Kozubek, A., 2006. The comparison of in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell. Mol. Biol. Lett., 11, 360-375; Drulis-Kawa, Z., Gubernator, J., Dorotkiewicz-Jach, A., Doroszkiewicz W., Kozubek, A., 2006. In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains. Int. J. Pharm., 315, 59-66). The experiments evaluate the roles of the bacterial outer-membrane structure, especially outer-membrane proteins and LPS, and envelope properties (hydrophobicity and electrostatic potential) in the interactions/fusion process between cells and lipid vesicles. The interactions were examined by fluorescent microscopy using PE-rhodamine-labelled liposomes. Some of the strains exhibited red-light emission (fusion with vesicles or vesicles surrounding the cell) and some showed negative reaction (no red-light emission). The main aim of the study was to determine what kinds of bacterial structure or envelope properties have a major influence on the fusion process. Negatively charged cells and hydrophobic properties promote interaction with cationic lipid vesicles, but no specific correlation was noted for the tested strains. A similar situation concerned LPS structure, where parent strains and their mutants possessing identical ladder-like band patterns in SDS-PAGE analysis exhibited totally different results with fluorescent microscopy. Outer-membrane protein analysis showed that an 18-kDA protein occurred in the isolates showing fusion with rhodamine-labelled vesicles and, conversely, strains lacking the 18-kDA protein exhibited no positive

  15. The Outer Membrane Protein A (OmpA) of Y. pestis promotes intracellular survival and virulence in mice

    PubMed Central

    Bartra, Sara Schesser; Gong, Xin; Lorica, Cherish D.; Jain, Chaitanya; Nair, Manoj K. M.; Schifferli, Dieter; Qian, Lianfen; Li, Zhongwei; Plano, Gregory V.; Schesser, Kurt

    2011-01-01

    The plague bacterium Yersinia pestis has a number of well-described strategies to protect itself from both host cells and soluble factors. In an effort to identify additional anti-host factors, we employed a transposon site hybridization (TraSH)-based approach to screen 105 Y. pestis mutants in an in vitro infection system. In addition to loci encoding various components of the well-characterized type III secretion system (T3SS), our screen unambiguously identified ompA as a pro-survival gene. We go on to show that an engineered Y. pestis ΔompA strain, as well as a ΔompA strain of the closely related pathogen Y. pseudotuberculosis, have fully functioning T3SSs but are specifically defective in surviving within macrophages. Additionally, the Y. pestis ΔompA strain was outcompeted by the wild-type strain in a mouse co-infection assay. Unlike in other bacterial pathogens in which OmpA can promote adherence, invasion, or serum resistance, the OmpA of Y. pestis is restricted to enhancing intracellular survival. Our data show that OmpA of the pathogenic Yersinia is a virulence factor on par with the T3SS. PMID:22023991

  16. Dual effect of local anesthetics on the function of excitable rod outer segment disk membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashimo, T.; Abe, K.; Yoshiya, I.

    1986-04-01

    The effects of local anesthetics and a divalent cation, Ca2+, on the function of rhodopsin were estimated from the measurements of light-induced proton uptake. The light-induced proton uptake by rhodopsin in the rod outer segment disk membrane was enhanced at lower pH (4) but depressed at higher pHs (6 to 8) by the tertiary amine local anesthetics lidocaine, bupivacaine, tetracaine, and dibucaine. The order of local anesthetic-induced depression of the proton uptake followed that of their clinical anesthetic potencies. The depression of the proton uptake versus the concentration of the uncharged form of local anesthetic nearly describes the same curvemore » for small and large dose of added anesthetic. Furthermore, a neutral local anesthetic, benzocaine, depressed the proton uptake at all pHs between 4 and 7. These results indicate that the depression of the proton uptake is due to the effect of only the uncharged form. It is hypothesized that the uncharged form of local anesthetics interacts hydrophobically with the rhodopsin in the disk membrane. The dual effect of local anesthetics on the proton uptake, on the other hand, suggests that the activation of the function of rhodopsin may be caused by the charged form. There was no significant change in the light-induced proton uptake by rhodopsin when 1 mM of Ca2+ was introduced into the disk membrane at varying pHs in the absence or presence of local anesthetics. This fact indicates that Ca2+ ion does not influence the diprotonating process of metarhodopsin; neither does it interfere with the local anesthetic-induced changes in the rhodopsin molecule.« less

  17. OpnS, an outer membrane porin of Xenorhabdus nematophila, confers a competitive advantage for growth in the insect host.

    PubMed

    van der Hoeven, Ransome; Forst, Steven

    2009-09-01

    The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded beta-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the DeltaopnS strain. Coinjection of the wild-type and DeltaopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or DeltaopnS strain were colonized by the wild-type strain. In addition, the DeltaopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The DeltaopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.

  18. Photoreceptor change and visual outcome after idiopathic epiretinal membrane removal with or without additional internal limiting membrane peeling.

    PubMed

    Ahn, Seong Joon; Ahn, Jeeyun; Woo, Se Joon; Park, Kyu Hyung

    2014-01-01

    To compare the postoperative photoreceptor status and visual outcome after epiretinal membrane removal with or without additional internal limiting membrane (ILM) peeling. Medical records of 40 eyes from 37 patients undergoing epiretinal membrane removal with residual ILM peeling (additional ILM peeling group) and 69 eyes from 65 patients undergoing epiretinal membrane removal without additional ILM peeling (no additional peeling group) were reviewed. The length of defects in cone outer segment tips, inner segment/outer segment junction, and external limiting membrane line were measured using spectral domain optical coherence tomography images of the fovea before and at 1, 3, 6, and 12 months after the surgery. Cone outer segment tips and inner segment/outer segment junction line defects were most severe at postoperative 1 month and gradually restored at 12 months postoperatively. The cone outer segment tips line defect in the additional ILM peeling group was significantly greater than that in the no additional peeling group at postoperative 1 month (P = 0.006), and best-corrected visual acuity was significantly worse in the former group at the same month (P = 0.001). There was no significant difference in the defect size and best-corrected visual acuity at subsequent visits and recurrence rates between the two groups. Patients who received epiretinal membrane surgery without additional ILM peeling showed better visual and anatomical outcome than those with additional ILM peeling at postoperative 1 month. However, surgical outcomes were comparable between the two groups, thereafter. In terms of visual outcome and photoreceptor integrity, additional ILM peeling may not be an essential procedure.

  19. Prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia species isolates in ducks and geese.

    PubMed

    Jamali, Hossein; Radmehr, Behrad; Ismail, Salmah

    2014-04-01

    The aims of this study were to determine the prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia spp. isolated from duck and goose intestinal contents. A total of 471 samples, including 291 duck and 180 goose intestinal contents, were purchased from wet markets between November 2008 and July 2010. Listeria, Salmonella, and Yersinia spp. were isolated from 58 (12.3%), 107 (22.7%), and 80 (17%) of the samples, respectively. It was concluded that Listeria ivanovii, Salmonella Thompson, and Yersinia enterocolitica were the predominant serovars among Listeria, Salmonella, and Yersinia spp., respectively. Moreover, resistance to tetracycline was common in Listeria (48.3%) and Salmonella spp. (63.6%), whereas 51.3% of the Yersinia spp. isolates were resistant to cephalothin. Therefore, continued surveillance of the prevalence of the pathogens and also of emerging antibiotic resistance is needed to render possible the recognition of foods that may represent risks and also ensure the effective treatment of listeriosis, salmonellosis, and yersiniosis.

  20. A mutli-omic systems approach to elucidating Yersinia virulence mechanisms

    PubMed Central

    Ansong, Charles; Schrimpe-Rutledge, Alexandra C.; Mitchell, Hugh; Chauhan, Sadhana; Jones, Marcus B.; Kim, Young-Mo; McAteer, Kathleen; Deatherage Kaiser, Brooke L.; Dubois, Jennifer L.; Brewer, Heather M.; Frank, Bryan C.; McDermott, Jason E.; Metz, Thomas O.; Peterson, Scott N.; Smith, Richard D.; Motin, Vladimir L.; Adkins, Joshua N.

    2012-01-01

    The underlying mechanisms that lead to dramatic differences between closely related pathogens are not always readily apparent. For example, the genomes of Yersinia pestis (YP) the causative agent of plague with a high mortality rate and Yersinia pseudotuberculosis (YPT) an enteric pathogen with a modest mortality rate are highly similar with some species specific differences; however the molecular causes of their distinct clinical outcomes remain poorly understood. In this study, a temporal multi-omic analysis of YP and YPT at physiologically relevant temperatures was performed to gain insights into how an acute and highly lethal bacterial pathogen, YP, differs from its less virulent progenitor, YPT. This analysis revealed higher gene and protein expression levels of conserved major virulence factors in YP relative to YPT, including the Yop virulon and the pH6 antigen. This suggests that adaptation in the regulatory architecture, in addition to the presence of unique genetic material, may contribute to the increased pathogenenicity of YP relative to YPT. Additionally, global transcriptome and proteome responses of YP and YPT revealed conserved post-transcriptional control of metabolism and the translational machinery including the modulation of glutamate levels in Yersiniae. Finally, the omics data was coupled with a computational network analysis, allowing an efficient prediction of novel Yersinia virulence factors based on gene and protein expression patterns. PMID:23147219

  1. Oral vaccination against plague using Yersinia pseudotuberculosis.

    PubMed

    Demeure, Christian E; Derbise, Anne; Carniel, Elisabeth

    2017-04-01

    Yersinia pestis, the agent of plague, is among the deadliest bacterial pathogens affecting humans, and is a potential biological weapon. Because antibiotic resistant strains of Yersinia pestis have been observed or could be engineered for evil use, vaccination against plague might become the only means to reduce mortality. Although plague is re-emerging in many countries, a vaccine with worldwide license is currently lacking. The vaccine strategy described here is based on an oral vaccination with an attenuated strain of Yersinia pseudotuberculosis. Indeed, this species is genetically almost identical to Y. pestis, but has a much lower pathogenicity and a higher genomic stability. Gradual modifications of the wild-type Yersinia pseudotuberculosis strain IP32953 were performed to generate a safe and immunogenic vaccine. Genes coding for three essential virulence factors were deleted from this strain. To increase cross-species immunogenicity, an F1-encapsulated Y. pseudotuberculosis strain was then generated. For this, the Y. pestis caf operon, which encodes F1, was inserted first on a plasmid, and subsequently into the chromosome. The successive steps achieved to reach maximal vaccine potential are described, and how each step affected bacterial virulence and the development of a protective immune response is discussed. The final version of the vaccine, named VTnF1, provides a highly efficient and long-lasting protection against both bubonic and pneumonic plague after a single oral vaccine dose. Since a Y. pestis strain deprived of F1 exist or could be engineered, we also analyzed the protection conferred by the vaccine against such strain and found that it also confers full protection against the two forms of plague. Thus, the properties of VTnF1 makes it one of the most efficient candidate vaccine for mass vaccination in tropical endemic areas as well as for populations exposed to bioterrorism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.

    PubMed

    Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin

    2011-03-04

    In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.

  3. Yersinia YopP-induced apoptotic cell death in murine dendritic cells is partially independent from action of caspases and exhibits necrosis-like features.

    PubMed

    Gröbner, Sabine; Autenrieth, Stella E; Soldanova, Irena; Gunst, Dani S J; Schaller, Martin; Bohn, Erwin; Müller, Steffen; Leverkus, Martin; Wesselborg, Sebastian; Autenrieth, Ingo B; Borgmann, Stefan

    2006-11-01

    Yersinia outer protein P (YopP) is a virulence factor of Yersinia enterocolitica that is injected into the cytosol of host cells where it targets MAP kinase kinases (MKKs) and inhibitor of kappaB kinase (IKK)-beta resulting in inhibition of cytokine production as well as induction of apoptosis in murine macrophages and dendritic cells (DC). Here we show that DC death was only partially prevented by the broad spectrum caspase inhibitor zVAD-fmk, indicating simultaneous caspase-dependent and caspase-independent mechanisms of cell death induction by YopP. Microscopic analyses and measurement of cell size demonstrated necrosis-like morphology of caspase-independent cell death. Application of zVAD-fmk prevented cleavage of procaspases and Bid, decrease of the inner transmembrane mitochondrial potential DeltaPsi(m) and mitochondrial release of cytochrome c. From these data we conclude that YopP-induced activation of the mitochondrial death pathway is mediated upstream via caspases. In conclusion, our results suggest that YopP simultaneously induces caspase-dependent apoptotic and caspase-independent necrosis-like death in DC. However, it has to be resolved if necrosis-like DC death occurs independently from apoptotic events or as an apoptotic epiphenomenon.

  4. Adhesins of human pathogens from the genus Yersinia.

    PubMed

    Leo, Jack C; Skurnik, Mikael

    2011-01-01

    Bacteria of the Gram-negative genus Yersinia are environmentally ubiquitous. Three species are of medical importance: the intestinal pathogens Y. enterocolitica and Y. pseudotuberculosis, and the plague bacillus Y. pestis. The two former species, spread by contaminated food or water, cause a range of gastrointestinal symptoms and, rarely, sepsis. On occasion, the primary infection is followed by autoimmune sequelae such as reactive arthritis. Plague is a systemic disease with high mortality. It is a zoonosis spread by fleas, or more rarely by droplets from individuals suffering from pneumonic plague. Y. pestis is one of the most virulent of bacteria, and recent findings of antibiotic-resistant strains together with its potential use as a bioweapon have increased interest in the species. In addition to being significant pathogens in their own right, the yersiniae have been used as model systems for a number of aspects of pathogenicity. This chapter reviews the molecular mechanisms of adhesion in yersiniae. The enteropathogenic species share three adhesins: invasin, YadA and Ail. Invasin is the first adhesin required for enteric infection; it binds to β(1) integrins on microfold cells in the distal ileum, leading to the ingestion of the bacteria and allows them to cross the intestinal epithelium. YadA is the major adhesin in host tissues. It is a multifunctional protein, conferring adherence to cells and extracellular matrix components, serum and phagocytosis resistance, and the ability to autoagglutinate. Ail has a minor role in adhesion and serum resistance. Y. pestis lacks both invasin and YadA, but expresses several other adhesins. These include the pH 6 antigen and autotransporter adhesins. Also the plasminogen activator of Y. pestis can mediate adherence to host cells. Although the adhesins of the pathogenic yersiniae have been studied extensively, their exact roles in the biology of infection remain elusive.

  5. Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation and detachment during respiration on hematite

    USDA-ARS?s Scientific Manuscript database

    The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to an...

  6. Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    PubMed Central

    Stenkova, Anna M.; Isaeva, Marina P.; Shubin, Felix N.; Rasskazov, Valeri A.; Rakin, Alexander V.

    2011-01-01

    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species. PMID:21655186

  7. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    PubMed

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  8. Extra-mitochondrial aerobic metabolism in retinal rod outer segments: new perspectives in retinopathies.

    PubMed

    Panfoli, I; Calzia, D; Ravera, S; Morelli, A M; Traverso, C E

    2012-04-01

    Vertebrate retinal rods are photoreceptors for dim-light vision. They display extreme sensitivity to light thanks to a specialized subcellular organelle, the rod outer segment. This is filled with a stack of membranous disks, expressing the proteins involved in visual transduction, a very energy demanding process. Our previous proteomic and biochemical studies have shed new light on the chemical energy processes that supply ATP to the outer segment, suggesting the presence of an extra-mitochondrial aerobic metabolism in rod outer segment, devoid of mitochondria, which would account for a quantitatively adequate ATP supply for phototransduction. Here the functional presence of an oxidative phosphorylation in the rod outer limb is examined for its relationship to many physiological and pathological data on the rod outer segment. We hypothesize that the rod outer limb is at risk of oxidative stress, in any case of impairment in the respiratory chain functioning, or of blood supply. In fact, the electron transfer chain is a major source of reactive O(2) species, known to produce severe alteration to the membrane lipids, especially those of the outer segment that are rich in polyunsaturated fatty acids. We propose that the disk membrane may become the target of reactive oxygen species that may be released by the electron transport chain under pathologic conditions. For example, during aging reactive oxygen species production increases, while cellular antioxidant capacity decreases. Also the apoptosis of the rod observed after exposure to bright or continuous illumination can be explained considering that an overfunctioning of phototransduction may damage the disk membrane to a point at which cytochrome c escapes from the intradiskal space, where it is presently supposed to be, activating a putative caspase 9 and the apoptosome. A pathogenic mechanism for many inherited and acquired retinal degenerations, representing a major problem in clinical ophthalmology, is

  9. Rapid and efficient differentiation of Yersinia species using high-resolution melting analysis.

    PubMed

    Souza, Roberto A; Frazão, Miliane R; Almeida, Alzira M P; Falcão, Juliana P

    2015-08-01

    The primary goal of clinical microbiology is the accurate identification of the causative agent of the disease. Here, we describe a method for differentiation between Yersinia species using PCR-HRMA. The results revealed species-specific melting profiles. The herein developed assay can be used as an effective method to differentiate Yersinia species. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Superresolution Imaging Identifies That Conventional Trafficking Pathways Are Not Essential for Endoplasmic Reticulum to Outer Mitochondrial Membrane Protein Transport.

    PubMed

    Salka, Kyle; Bhuvanendran, Shivaprasad; Wilson, Kassandra; Bozidis, Petros; Mehta, Mansi; Rainey, Kristin; Sesaki, Hiromi; Patterson, George H; Jaiswal, Jyoti K; Colberg-Poley, Anamaris M

    2017-02-02

    Most nuclear-encoded mitochondrial proteins traffic from the cytosol to mitochondria. Some of these proteins localize at mitochondria-associated membranes (MAM), where mitochondria are closely apposed with the endoplasmic reticulum (ER). We have previously shown that the human cytomegalovirus signal-anchored protein known as viral mitochondria-localized inhibitor of apoptosis (vMIA) traffics from the ER to mitochondria and clusters at the outer mitochondrial membrane (OMM). Here, we have examined the host pathways by which vMIA traffics from the ER to mitochondria and clusters at the OMM. By disruption of phosphofurin acidic cluster sorting protein 2 (PACS-2), mitofusins (Mfn1/2), and dynamin related protein 1 (Drp1), we find these conventional pathways for ER to the mitochondria trafficking are dispensable for vMIA trafficking to OMM. Instead, mutations in vMIA that change its hydrophobicity alter its trafficking to mitochondria. Superresolution imaging showed that PACS-2- and Mfn-mediated membrane apposition or hydrophobic interactions alter vMIA's ability to organize in nanoscale clusters at the OMM. This shows that signal-anchored MAM proteins can make use of hydrophobic interactions independently of conventional ER-mitochondria pathways to traffic from the ER to mitochondria. Further, vMIA hydrophobic interactions and ER-mitochondria contacts facilitate proper organization of vMIA on the OMM.

  11. Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*

    PubMed Central

    Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.

    2011-01-01

    In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982

  12. Immunopotentiation of outer membrane protein through anti-idiotype Pasteurella multocida vaccine in rabbits.

    PubMed

    Arif, Javid; Rahman, Sajjad-Ur; Arshad, Muhammad; Akhtar, Pervez

    2013-11-01

    Pasteurella multocida was isolated from cattle affected with haemorrhagic septicaemia and characterized on the basis of morphological, cultural and biochemical tests. Bacterial outer membrane proteins (OMPs) were extracted with 1% Sarkosyl method. P. multocida anti-idiotype vaccine prepared from OMPs (21.3 mg per 100 ml), was evaluated and compared with bacterin supplemented with 10% OMPs and plain alum-adsorbed bacterin in rabbit models. It was observed that OMPs-anti-idiotype vaccine induced high levels of antibody titres (geomean titres -GMT) detected using indirect haemagglutination (IHA) test. The OMPs anti-idiotype antibody titres of 168.9 GMT were obtained to 42.2 GMT in OMPs supplemented bacterin on 21 days post vaccination, while the plain bacterin had the least titre of 27.9 GMT. The OMPs-anti-idiotype vaccine provoked better immunogenic response in terms of highest GMT titres and long lasting effect in rabbits and 100% protection against the challenge with homologous strain of P. multocida,while 88% protection was obtained in rabbits, given OMPs supplemented bacterin. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  13. Yersinia-flea interactions and the evolution of the arthropod-borne transmission route of plague

    PubMed Central

    Chouikha, Iman; Hinnebusch, B. Joseph

    2012-01-01

    Yersinia pestis, the causative agent of plague, is unique among the enteric group of Gram-negative bacteria in relying on a blood-feeding insect for transmission. The Yersinia-flea interactions that enable plague transmission cycles have had profound historical consequences as manifested by human plague pandemics. The arthropod-borne transmission route was a radical ecologic change from the food- and water-borne transmission route of Yersinia pseudotuberculosis, from which Y. pestis diverged only within the last 20,000 years. Thus, the interactions of Y. pestis with its flea vector that lead to colonization and successful transmission are the result of a recent evolutionary adaptation that required relatively few genetic changes. These changes from the Y. pseudotuberculosis progenitor included loss of insecticidal activity, increased resistance to antibacterial factors in the flea midgut, and extending Yersinia biofilm-forming ability to the flea host environment. PMID:22406208

  14. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    PubMed

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  15. Evaluation of a real-time polymerase chain reaction assay of the outer membrane protein P2 gene for the detection of Haemophilus parasuis in clinical samples.

    PubMed

    McDowall, Rebeccah; Slavic, Durda; MacInnes, Janet I; Cai, Hugh Y

    2014-04-01

    A real-time polymerase chain reaction (PCR) assay of the outer membrane protein (OMP) P2 gene was developed and used to test 97 putative Haemophilus parasuis pure cultures and 175 clinical tissue samples. With standard culture isolation as the gold standard, the diagnostic sensitivity and specificity of the PCR assay were determined to be 83% and 80%, respectively.

  16. Contribution of trimeric autotransporter C-terminal domains of oligomeric coiled-coil adhesin (Oca) family members YadA, UspA1, EibA, and Hia to translocation of the YadA passenger domain and virulence of Yersinia enterocolitica.

    PubMed

    Ackermann, Nikolaus; Tiller, Maximilian; Anding, Gisela; Roggenkamp, Andreas; Heesemann, Jürgen

    2008-07-01

    The Oca family is a novel class of autotransporter-adhesins with highest structural similarity in their C-terminal transmembrane region, which supposedly builds a beta-barrel pore in the outer membrane (OM). The prototype of the Oca family is YadA, an adhesin of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA forms a homotrimeric lollipop-like structure on the bacterial surface. The C-terminal regions of three YadA monomers form a barrel in the OM and translocate the trimeric N-terminal passenger domain, consisting of stalk, neck, and head region to the exterior. To elucidate the structural and functional role of the C-terminal translocator domain (TLD) and to assess its promiscuous capability with respect to transport of related passenger domains, we constructed chimeric YadA proteins, which consist of the N-terminal YadA passenger domain and C-terminal TLDs of Oca family members UspA1 (Moraxella catarrhalis), EibA (Escherichia coli), and Hia (Haemophilus influenzae). These constructs were expressed in Y. enterocolitica and compared for OM localization, surface exposure, oligomerization, adhesion properties, serum resistance, and mouse virulence. We demonstrate that all chimeric YadA proteins translocated the YadA passenger domain across the OM. Y. enterocolitica strains producing YadA chimeras or wild-type YadA showed comparable binding to collagen and epithelial cells. However, strains producing YadA chimeras were attenuated in serum resistance and mouse virulence. These results demonstrate for the first time that TLDs of Oca proteins of different origin are efficient translocators of the YadA passenger domain and that the cognate TLD of YadA is essential for bacterial survival in human serum and mouse virulence.

  17. Isolation of Yersinia from raw meat (pork and chicken) and precooked meat (porcine tongues and sausages) collected from commercial establishments in Mexico City.

    PubMed

    Ramírez, E I; Vázquez-Salinas, C; Rodas-Suárez, O R; Pedroche, F F

    2000-04-01

    A total of 160 meat product samples were collected from commercial outlets in Mexico City to investigate the presence of different species of Yersinia by the 4 degrees C enrichment method after 1, 3, 5, and 7 days of incubation using alkaline treatment and isolating in cefsulodin-Irgasan-novobiocin and MacConkey agars with Tween 80. Overall, Yersinia spp. were isolated from 27% of the samples analyzed, whereas 40% of the raw and only 13% of the precooked samples were contaminated. Although 2,970 colonies showed Yersinia characteristics, only 706 (24%) actually corresponded to this genus: 49% were Yersinia enterocolitica, 25% Yersinia kristensenii, 15% Yersinia intermedia, 9% Yersinia frederiksenii, and 2% Yersinia aldovae; 10% corresponded to biotype 2, 2% to biotype 3, and 4% to biotype 4. The presence of Yersinia in raw and cooked meat products represents a health risk for consumers in Mexico, where further clinical studies are needed to assess the epidemiological importance of this pathogen.

  18. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jingquan; Rouse, Sarah L.; Li, Dianfan

    2014-08-01

    Crystal structures of the β-barrel porin AlgE reveal a mechanism whereby alginate is exported from P. aeruginosa for biofilm formation. The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common β-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gatemore » (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE.« less

  19. Differences in the protein composition of bovine retinal rod outer segment disk and plasma membranes isolated by a ricin-gold-dextran density perturbation method

    PubMed Central

    1987-01-01

    The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes. PMID:2447095

  20. Differentiation of Yersinia enterocolitica biotype 1A from pathogenic Yersinia enterocolitica biotypes by detection of β-glucosidase activity: comparison of two chromogenic culture media and Vitek2.

    PubMed

    Karhukorpi, Jari; Päivänurmi, Marjut

    2014-01-01

    Aesculin hydrolysis (ESC) is one of the key reactions in differentiating pathogenic Yersinia enterocolitica biotypes 1B, 2, 3, 4 and 5 from the less-pathogenic biotype 1A. Because the ESC reaction is caused by β-glucosidase (βGLU) activity of the bacteria, we studied whether two commonly used methods (BBL CHROMagar Orientation and Vitek2 Gram-negative identification card) could be used in assessing βGLU activity of 74 Yersinia strains. Both methods were sensitive (100 % and 97 %) and specific (100 % and 100 %) in differentiating βGLU-positive YE BT1A from βGLU-negative Y. enterocolitica biotypes. For a subset of strains (n = 69), a new selective CHROMagar Yersinia showed excellent agreement with the strains' βGLU activity. Thus all the methods evaluated in this study may be used to differentiate between YE BT1A and other Y. enterocolitica biotypes.

  1. Galectin-1-Driven Tolerogenic Programs Aggravate Yersinia enterocolitica Infection by Repressing Antibacterial Immunity.

    PubMed

    Davicino, Roberto C; Méndez-Huergo, Santiago P; Eliçabe, Ricardo J; Stupirski, Juan C; Autenrieth, Ingo; Di Genaro, María S; Rabinovich, Gabriel A

    2017-08-15

    Yersinia enterocolitica is an enteropathogenic bacterium that causes gastrointestinal disorders, as well as extraintestinal manifestations. To subvert the host's immune response, Y. enterocolitica uses a type III secretion system consisting of an injectisome and effector proteins, called Yersinia outer proteins (Yops), that modulate activation, signaling, and survival of immune cells. In this article, we show that galectin-1 (Gal-1), an immunoregulatory lectin widely expressed in mucosal tissues, contributes to Y. enterocolitica pathogenicity by undermining protective antibacterial responses. We found higher expression of Gal-1 in the spleen and Peyer's patches of mice infected orogastrically with Y. enterocolitica serotype O:8 compared with noninfected hosts. This effect was prevented when mice were infected with Y. enterocolitica lacking YopP or YopH, two critical effectors involved in bacterial immune evasion. Consistent with a regulatory role for this lectin during Y. enterocolitica pathogenesis, mice lacking Gal-1 showed increased weight and survival, lower bacterial load, and attenuated intestinal pathology compared with wild-type mice. These protective effects involved modulation of NF-κB activation, TNF production, and NO synthesis in mucosal tissue and macrophages, as well as systemic dysregulation of IL-17 and IFN-γ responses. In vivo neutralization of these proinflammatory cytokines impaired bacterial clearance and eliminated host protection conferred by Gal-1 deficiency. Finally, supplementation of recombinant Gal-1 in mice lacking Gal-1 or treatment of wild-type mice with a neutralizing anti-Gal-1 mAb confirmed the immune inhibitory role of this endogenous lectin during Y. enterocolitica infection. Thus, targeting Gal-1-glycan interactions may contribute to reinforce antibacterial responses by reprogramming innate and adaptive immune mechanisms. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes.

    PubMed

    Albert, A D; Watts, A; Spooner, P; Groebner, G; Young, J; Yeagle, P L

    1997-08-14

    Structural information on mammalian integral membrane proteins is scarce. As part of work on an alternative approach to the structure of bovine rhodopsin, a method was devised to obtain an intramolecular distance between two specific sites on rhodopsin while in the rod outer segment disk membrane. In this report, the distance between the rhodopsin kinase phosphorylation site(s) on the carboxyl terminal and the top of the third transmembrane helix was measured on native rhodopsin. Rhodopsin was labeled with a nuclear spin label (31P) by limited phosphorylation with rhodopsin kinase. Major phosphorylation occurs at serines 343 and 338 on the carboxyl terminal. The phosphorylated rhodopsin was then specifically labeled on cysteine 140 with an electron spin label. Magic angle spinning 31P-nuclear magnetic resonance revealed the resonance arising from the phosphorylated protein. The enhancement of the transverse relaxation of this resonance by the paramagnetic spin label was observed. The strength of this perturbation was used to determine the through-space distance between the phosphorylation site(s) and the spin label position. A distance of 18 +/- 3 A was obtained.

  3. The Klebsiella pneumoniae YfgL (BamB) lipoprotein contributes to outer membrane protein biogenesis, type-1 fimbriae expression, anti-phagocytosis, and in vivo virulence

    PubMed Central

    Hsieh, Pei-Fang; Hsu, Chun-Ru; Chen, Chun-Tang; Lin, Tzu-Lung; Wang, Jin-Town

    2016-01-01

    ABSTRACT Klebsiella pneumoniae is an opportunistic pathogen that causes several kinds of infections, including pneumonia, bacteremia, urinary tract infection and community-acquired pyogenic liver abscess (PLA). Adhesion is the critical first step in the infection process. Our previous work demonstrated that the transcellular translocation is exploited by K. pneumoniae strains to migrate from the gut flora into other tissues, resulting in systemic infections. However, the initial stages of K. pneumoniae infection remain unclear. In this study, we demonstrated that a K. pneumoniae strain deleted for yfgL (bamB) exhibited reduced adherence to and invasion of host cells; changed biogenesis of major β-barrel outer membrane proteins; decreased transcriptional expression of type-1 fimbriae; and increased susceptibility to vancomycin and erythromycin. The yfgL deletion mutant also had reduced ability to against neutrophil phagocytosis; exhibited decreased induction of host IL-6 production; and was profoundly attenuated for virulence in a K. pneumoniae model of bacteremia. Thus, the K. pneumoniae YfgL lipoprotein mediates in outer membrane proteins biogenesis and is crucial for anti-phagocytosis and survival in vivo. These data provide a new insight for K. pneumoniae attachment and such knowledge could facilitate preventive therapies or alternative therapies against K. pneumoniae. PMID:27029012

  4. Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes.

    PubMed

    Barker, Robert D; McKinley, Laura E; Titmuss, Simon

    2016-01-01

    The principles of neutron reflectivity and its application as a tool to provide structural information at the (sub-) molecular unit length scale from models for bacterial membranes are described. The model membranes can take the form of a monolayer for a single leaflet spread at the air/water interface, or bilayers of increasing complexity at the solid/liquid interface. Solid-supported bilayers constrain the bilayer to 2D but can be used to characterize interactions with antimicrobial peptides and benchmark high throughput lab-based techniques. Floating bilayers allow for membrane fluctuations, making the phase behaviour more representative of native membranes. Bilayers of varying levels of compositional accuracy can now be constructed, facilitating studies with aims that range from characterizing the fundamental physical interactions, through to the characterization of accurate mimetics for the inner and outer membranes of Gram-negative bacteria. Studies of the interactions of antimicrobial peptides with monolayer and bilayer models for the inner and outer membranes have revealed information about the molecular control of the outer membrane permeability, and the mode of interaction of antimicrobials with both inner and outer membranes.

  5. Evaluation of a real-time polymerase chain reaction assay of the outer membrane protein P2 gene for the detection of Haemophilus parasuis in clinical samples

    PubMed Central

    McDowall, Rebeccah; Slavic, Durda; MacInnes, Janet I.; Cai, Hugh Y.

    2014-01-01

    A real-time polymerase chain reaction (PCR) assay of the outer membrane protein (OMP) P2 gene was developed and used to test 97 putative Haemophilus parasuis pure cultures and 175 clinical tissue samples. With standard culture isolation as the gold standard, the diagnostic sensitivity and specificity of the PCR assay were determined to be 83% and 80%, respectively. PMID:24688178

  6. Production of Recombinant Injectosome and Outer Membrane Proteins from Yersinia Pestis KIM5

    DTIC Science & Technology

    2009-06-01

    Overview ........................................................................ 45 20. Test Ammonium Sulfate Precipitation Overview...52 24. LcrV and YscF Test Expressions .................................................................. 53...coli modify the proteins’ primary structure post - translationally? 1.5 Significance of Results The study of VHH as immunotherapeutics for combating

  7. A lower size limit exists for export of fragments of an outer membrane protein (OmpA) of Escherichia coli K-12.

    PubMed

    Freudl, R; Schwarz, H; Degen, M; Henning, U

    1989-02-20

    The ompA gene codes for a 346 residue precursor of a 325 residue protein of the outer membrane of Escherichia coli K-12. Internally and/or COOH-terminally deleted genes were constructed that encode 123, 116, 88, 72 or 68 residue precursors. The former three were processed and localized to the periplasmic space; the latter two were not processed and remained cytosolic. These data suggest that the signal sequence has to interact with a component of the export apparatus (the Sec pathway) before translation is finished. Comparison of these results with others obtained for prokaryotic and eukaryotic systems shows that: (1) a very similar lower size limit exists for membrane translocation of the 147 residue chicken prelysozyme or the 229 residue bovine preprolactin; (2) precursors smaller than those reported here can be translocated in both systems; (3) the latter translocation, in contrast to, for example, the ompA gene products, does not depend on the cellular export machinery but most likely requires folding of the precursors into an export-competent conformation. In general, at least two quite different, not necessarily mutually exclusive, mechanisms for translocation of a protein across or assembly into a membrane appear to exist.

  8. Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing

    PubMed Central

    Laukkanen-Ninios, Riikka; Didelot, Xavier; Jolley, Keith A.; Morelli, Giovanna; Sangal, Vartul; Kristo, Paula; Imori, Priscilla F. M.; Fukushima, Hiroshi; Siitonen, Anja; Tseneva, Galina; Voskressenskaya, Ekaterina; Falcao, Juliana P.; Korkeala, Hannu; Maiden, Martin C. J.; Mazzoni, Camila; Carniel, Elisabeth; Skurnik, Mikael; Achtman, Mark

    2014-01-01

    Summary Multilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y. pseudotuberculosis sensu stricto (s.s.), Yersinia pestis and Yersinia similis] and a fourth population, which we refer to as the Korean group, which may be in the process of speciation. We detected clear signs of recombination within Y. pseudotuberculosis s.s. as well as imports from Y. similis and the Korean group. The sources of genetic diversification within Y. pseudotuberculosis s.s. were approximately equally divided between recombination and mutation, whereas recombination has not yet been demonstrated in Y. pestis, which is also much more genetically monomorphic than is Y. pseudotuberculosis s.s. Most Y. pseudotuberculosis s.s. belong to a diffuse group of sequence types lacking clear population structure, although this species contains a melibiose-negative clade that is present globally in domesticated animals. Yersinia similis corresponds to the previously identified Y. pseudotuberculosis genetic type G4, which is probably not pathogenic because it lacks the virulence factors that are typical for Y. pseudotuberculosis s.s. In contrast, Y. pseudotuberculosis s.s., the Korean group and Y. pestis can all cause disease in humans. PMID:21951486

  9. Cloning of the Pseudomonas aeruginosa outer membrane porin protein P gene: evidence for a linked region of DNA homology.

    PubMed Central

    Siehnel, R J; Worobec, E A; Hancock, R E

    1988-01-01

    The gene encoding the outer membrane phosphate-selective porin protein P from Pseudomonas aeruginosa was cloned into Escherichia coli. The protein product was expressed and transported to the outer membrane of an E. coli phoE mutant and assembled into functional trimers. Expression of a product of the correct molecular weight was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, using polyclonal antibodies to protein P monomer and trimer forms. Protein P trimers were partially purified from the E. coli clone and shown to form channels with the same conductance as those formed by protein P from P. aeruginosa. The location and orientation of the protein P-encoding (oprP) gene on the cloned DNA was identified by three methods: (i) mapping the insertion point of transposon Tn501 in a previously isolated P. aeruginosa protein P-deficient mutant; (ii) hybridization of restriction fragments from the cloned DNA to an oligonucleotide pool synthesized on the basis of the amino-terminal protein sequence of protein P; and (iii) fusion of a PstI fragment of the cloned DNA to the amino terminus of the beta-galactosidase gene of pUC8, producing a fusion protein that contained protein P-antigenic epitopes. Structural analysis of the cloned DNA and P. aeruginosa chromosomal DNA revealed the presence of two adjacent PstI fragments which cross-hybridized, suggesting a possible gene duplication. The P-related (PR) region hybridized to the oligonucleotide pool described above. When the PstI fragment which contained the PR region was fused to the beta-galactosidase gene of pUC8, a fusion protein was produced which reacted with a protein P-specific antiserum. However, the restriction endonuclease patterns of the PR region and the oprP gene differed significantly beyond the amino-terminal one-third of the two genes. Images PMID:2834340

  10. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    PubMed Central

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  11. Flagellar regulation in Yersinia ruckeri during infection

    USDA-ARS?s Scientific Manuscript database

    The gram-negative Enterobacterium Yersinia ruckeri is the etiologic agent of enteric redmouth disease (ERM), a septicemia affecting primarily farmed rainbow trout (Oncorhynchus mykiss, Walbaum). Over the past decade, there has been an increase in the prevalence of non-motile variants of Y. ruckeri a...

  12. Structure of a pectin methylesterase from Yersinia enterocolitica.

    PubMed

    Boraston, Alisdair B; Abbott, D Wade

    2012-02-01

    Pectin methylesterases (PMEs) are family 8 carbohydrate esterases (CE8s) which remove the methyl group from methylesterified galacturonic acid (GalA) residues within pectin. Although the role of pectinases such as PMEs within dedicated phytopathogens has been well established, the significance of homologous enzymes found within the genomes of human enteropathogens remains to be determined. Presented here is the low-resolution (3.5 Å) structure of the CE8 from Yersinia enterocolitica (YeCE8). The high degree of structural conservation in the topology of the active-site cleft and catalytic apparatus that is shared with a characterized PME from a bacterial phytopathogen (i) indicates that YeCE8 is active on methylated pectin and (ii) highlights a more prominent role for pectin utilization in Yersinia than in other enteropathogenic species.

  13. Biogenesis of a Mitochondrial Outer Membrane Protein in Trypanosoma brucei: TARGETING SIGNAL AND DEPENDENCE ON A UNIQUE BIOGENESIS FACTOR.

    PubMed

    Bruggisser, Julia; Käser, Sandro; Mani, Jan; Schneider, André

    2017-02-24

    The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei , is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Role of membrane contact sites in protein import into mitochondria

    PubMed Central

    Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus

    2015-01-01

    Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture. PMID:25514890

  15. OpnS, an Outer Membrane Porin of Xenorhabdus nematophila, Confers a Competitive Advantage for Growth in the Insect Host▿ †

    PubMed Central

    van der Hoeven, Ransome; Forst, Steven

    2009-01-01

    The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded β-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the ΔopnS strain. Coinjection of the wild-type and ΔopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or ΔopnS strain were colonized by the wild-type strain. In addition, the ΔopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The ΔopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment. PMID:19465651

  16. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystalmore » structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.« less

  17. Crystal structure of the Yersinia type III secretion protein YscE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Jason; Austin, Brian P.; Waugh, David S.

    2010-12-06

    The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.

  18. Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli.

    PubMed

    Sperandeo, Paola; Cescutti, Rachele; Villa, Riccardo; Di Benedetto, Cristiano; Candia, Daniela; Dehò, Gianni; Polissi, Alessandra

    2007-01-01

    The outer membrane (OM) of gram-negative bacteria is an asymmetric lipid bilayer that protects the cell from toxic molecules. Lipopolysaccharide (LPS) is an essential component of the OM in most gram-negative bacteria, and its structure and biosynthesis are well known. Nevertheless, the mechanisms of transport and assembly of this molecule in the OM are poorly understood. To date, the only proteins implicated in LPS transport are MsbA, responsible for LPS flipping across the inner membrane, and the Imp/RlpB complex, involved in LPS targeting to the OM. Here, we present evidence that two Escherichia coli essential genes, yhbN and yhbG, now renamed lptA and lptB, respectively, participate in LPS biogenesis. We show that mutants depleted of LptA and/or LptB not only produce an anomalous LPS form, but also are defective in LPS transport to the OM and accumulate de novo-synthesized LPS in a novel membrane fraction of intermediate density between the inner membrane (IM) and the OM. In addition, we show that LptA is located in the periplasm and that expression of the lptA-lptB operon is controlled by the extracytoplasmic sigma factor RpoE. Based on these data, we propose that LptA and LptB are implicated in the transport of LPS from the IM to the OM of E. coli.

  19. Characterization of lptA and lptB, Two Essential Genes Implicated in Lipopolysaccharide Transport to the Outer Membrane of Escherichia coli▿

    PubMed Central

    Sperandeo, Paola; Cescutti, Rachele; Villa, Riccardo; Di Benedetto, Cristiano; Candia, Daniela; Dehò, Gianni; Polissi, Alessandra

    2007-01-01

    The outer membrane (OM) of gram-negative bacteria is an asymmetric lipid bilayer that protects the cell from toxic molecules. Lipopolysaccharide (LPS) is an essential component of the OM in most gram-negative bacteria, and its structure and biosynthesis are well known. Nevertheless, the mechanisms of transport and assembly of this molecule in the OM are poorly understood. To date, the only proteins implicated in LPS transport are MsbA, responsible for LPS flipping across the inner membrane, and the Imp/RlpB complex, involved in LPS targeting to the OM. Here, we present evidence that two Escherichia coli essential genes, yhbN and yhbG, now renamed lptA and lptB, respectively, participate in LPS biogenesis. We show that mutants depleted of LptA and/or LptB not only produce an anomalous LPS form, but also are defective in LPS transport to the OM and accumulate de novo-synthesized LPS in a novel membrane fraction of intermediate density between the inner membrane (IM) and the OM. In addition, we show that LptA is located in the periplasm and that expression of the lptA-lptB operon is controlled by the extracytoplasmic σ factor RpoE. Based on these data, we propose that LptA and LptB are implicated in the transport of LPS from the IM to the OM of E. coli. PMID:17056748

  20. Effects of urbanization on host-pathogen interactions, using Yersinia in house sparrows as a model

    PubMed Central

    Strubbe, Diederik; Teyssier, Aimeric; Salleh Hudin, Noraine; Van den Abeele, Anne-Marie; Cox, Ivo; Haesendonck, Roel; Delmée, Michel; Haesebrouck, Freddy; Pasmans, Frank; Lens, Luc; Martel, An

    2017-01-01

    Urbanization strongly affects biodiversity, altering natural communities and often leading to a reduced species richness. Yet, despite its increasingly recognized importance, how urbanization impacts on the health of individual animals, wildlife populations and on disease ecology remains poorly understood. To test whether, and how, urbanization-driven ecosystem alterations influence pathogen dynamics and avian health, we use house sparrows (Passer domesticus) and Yersinia spp. (pathogenic for passerines) as a case study. Sparrows are granivorous urban exploiters, whose western European populations have declined over the past decades, especially in highly urbanized areas. We sampled 329 house sparrows originating from 36 populations along an urbanization gradient across Flanders (Belgium), and used isolation combined with ‘matrix-assisted laser desorption ionization- time of flight mass spectrometry’ (MALDI-TOF MS) and PCR methods for detecting the presence of different Yersinia species. Yersinia spp. were recovered from 57.43% of the sampled house sparrows, of which 4.06%, 53.30% and 69.54% were identified as Y. pseudotuberculosis, Y. enterocolitica and other Yersinia species, respectively. Presence of Yersinia was related to the degree of urbanization, average daily temperatures and the community of granivorous birds present at sparrow capture locations. Body condition of suburban house sparrows was found to be higher compared to urban and rural house sparrows, but no relationships between sparrows’ body condition and presence of Yersinia spp. were found. We conclude that two determinants of pathogen infection dynamics, body condition and pathogen occurrence, vary along an urbanization gradient, potentially mediating the impact of urbanization on avian health. PMID:29281672

  1. Effects of urbanization on host-pathogen interactions, using Yersinia in house sparrows as a model.

    PubMed

    Rouffaer, Lieze Oscar; Strubbe, Diederik; Teyssier, Aimeric; Salleh Hudin, Noraine; Van den Abeele, Anne-Marie; Cox, Ivo; Haesendonck, Roel; Delmée, Michel; Haesebrouck, Freddy; Pasmans, Frank; Lens, Luc; Martel, An

    2017-01-01

    Urbanization strongly affects biodiversity, altering natural communities and often leading to a reduced species richness. Yet, despite its increasingly recognized importance, how urbanization impacts on the health of individual animals, wildlife populations and on disease ecology remains poorly understood. To test whether, and how, urbanization-driven ecosystem alterations influence pathogen dynamics and avian health, we use house sparrows (Passer domesticus) and Yersinia spp. (pathogenic for passerines) as a case study. Sparrows are granivorous urban exploiters, whose western European populations have declined over the past decades, especially in highly urbanized areas. We sampled 329 house sparrows originating from 36 populations along an urbanization gradient across Flanders (Belgium), and used isolation combined with 'matrix-assisted laser desorption ionization- time of flight mass spectrometry' (MALDI-TOF MS) and PCR methods for detecting the presence of different Yersinia species. Yersinia spp. were recovered from 57.43% of the sampled house sparrows, of which 4.06%, 53.30% and 69.54% were identified as Y. pseudotuberculosis, Y. enterocolitica and other Yersinia species, respectively. Presence of Yersinia was related to the degree of urbanization, average daily temperatures and the community of granivorous birds present at sparrow capture locations. Body condition of suburban house sparrows was found to be higher compared to urban and rural house sparrows, but no relationships between sparrows' body condition and presence of Yersinia spp. were found. We conclude that two determinants of pathogen infection dynamics, body condition and pathogen occurrence, vary along an urbanization gradient, potentially mediating the impact of urbanization on avian health.

  2. Genome Wide Search for Biomarkers to Diagnose Yersinia Infections.

    PubMed

    Kalia, Vipin Chandra; Kumar, Prasun

    2015-12-01

    Bacterial identification on the basis of the highly conserved 16S rRNA (rrs) gene is limited by its presence in multiple copies and a very high level of similarity among them. The need is to look for other genes with unique characteristics to be used as biomarkers. Fifty-one sequenced genomes belonging to 10 different Yersinia species were used for searching genes common to all the genomes. Out of 304 common genes, 34 genes of sizes varying from 0.11 to 4.42 kb, were selected and subjected to in silico digestion with 10 different Restriction endonucleases (RE) (4-6 base cutters). Yersinia species have 6-7 copies of rrs per genome, which are difficult to distinguish by multiple sequence alignments or their RE digestion patterns. However, certain unique combinations of other common gene sequences-carB, fadJ, gluM, gltX, ileS, malE, nusA, ribD, and rlmL and their RE digestion patterns can be used as markers for identifying 21 strains belonging to 10 Yersinia species: Y. aldovae, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. pestis, Y. pseudotuberculosis, Y. rohdei, Y. ruckeri, and Y. similis. This approach can be applied for rapid diagnostic applications.

  3. Surface-exposed and antigenically conserved determinants of outer membrane proteins of Branhamella catarrhalis.

    PubMed Central

    Murphy, T F; Bartos, L C

    1989-01-01

    The outer membrane proteins (OMPs) of Branhamella catarrhalis were studied in an effort to identify surface-exposed determinants that are conserved among strains of the bacterium. Aliquots of polyclonal antiserum were absorbed individually by strains of B. catarrhalis. The absorbed antisera were tested in comparison with unabsorbed antiserum in an immunoblot assay against OMPs of the homologous strain. The absence of a band recognized by antibodies in the absorbed antiserum compared with the unabsorbed antiserum indicated that surface-exposed determinants of the absorbing strain cross-reacted with determinants on the homologous strain. Two antisera were absorbed individually by 20 strains of B. catarrhalis, and the absorbed sera were studied in this way in immunoblot assays. OMP E (molecular weight, ca. 56,000) expresses surface-exposed determinants that are shared among 17 of the 20 strains studied. Antibodies to OMP G (molecular weight, 28,000) were absorbed from both antisera by 14 of the 20 strains. These studies demonstrate that OMP E and OMP G express determinants that are exposed on the surface of the intact bacterium. Furthermore, these determinants are antigenically conserved among a majority of strains of B. catarrhalis. On the basis of these observations, OMPs E and G should be considered when bacterial antigens are evaluated as potential vaccine candidates. Images PMID:2476393

  4. Yersinia ruckeri Isolates Recovered from Diseased Atlantic Salmon (Salmo salar) in Scotland Are More Diverse than Those from Rainbow Trout (Oncorhynchus mykiss) and Represent Distinct Subpopulations

    PubMed Central

    Ormsby, Michael J.; Caws, Thomas; Burchmore, Richard; Wallis, Tim; Verner-Jeffreys, David W.

    2016-01-01

    ABSTRACT Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa. These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland. IMPORTANCE Vaccination plays an important role in protecting Atlantic salmon against the bacterial pathogen Yersinia ruckeri, but, in recent years, there has been an increasing incidence of vaccine breakdown in salmon. This is largely because current vaccines are aimed at

  5. Yersinia ruckeri Isolates Recovered from Diseased Atlantic Salmon (Salmo salar) in Scotland Are More Diverse than Those from Rainbow Trout (Oncorhynchus mykiss) and Represent Distinct Subpopulations.

    PubMed

    Ormsby, Michael J; Caws, Thomas; Burchmore, Richard; Wallis, Tim; Verner-Jeffreys, David W; Davies, Robert L

    2016-10-01

    Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland. Vaccination plays an important role in protecting Atlantic salmon against the bacterial pathogen Yersinia ruckeri, but, in recent years, there has been an increasing incidence of vaccine breakdown in salmon. This is largely because current vaccines are aimed at rainbow trout and are

  6. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein.

    PubMed Central

    Bradford, P A; Urban, C; Mariano, N; Projan, S J; Rahal, J J; Bush, K

    1997-01-01

    Six Escherichia coli and 12 Klebsiella pneumoniae isolates from a single hospital expressed a common beta-lactamase with a pI of approximately 9.0 and were resistant to cefoxitin and cefotetan (MIC ranges, 64 to > 128 and 16 to > 128 micrograms/ml, respectively). Seventeen of the 18 strains produced multiple beta-lactamases. Most significantly, three K. pneumoniae strains were also resistant to imipenem (MICs, 8 to 32 micrograms/ml). Spectrophotometric beta-lactamase assays with purified enzyme indicated hydrolysis of cephamycins, in addition to cephaloridine and benzylpenicillin. The 4ene encoding the pI 9.0 beta-lactamase (designated ACT-1 for AmpC type) was cloned and sequenced, which revealed an ampC-type beta-lactamase gene that originated from Enterobacter cloacae and that had 86% sequence homology to the P99 beta-lactamase and 94% homology to the partial sequence of MIR-1. Southern blotting revealed that the gene encoding ACT-1 was on a large plasmid in some of the K. pneumoniae strains as well as on the chromosomes of all of the strains, suggesting that the gene is located on an easily mobilized element. Outer membrane protein profiles of the K. pneumoniae strains revealed that the three imipenem-resistant strains were lacking a major outer membrane protein of approximately 42 kDa which was present in the imipenem-susceptible strains. ACT-1 is the first plasmid-mediated AmpC-type beta-lactamase derived from Enterobacter which has been completely sequenced. This work demonstrates that in addition to resistance to cephamycins, imipenem resistance can occur in K. pneumoniae when a high level of the ACT-1 beta-lactamase is produced in combination with the loss of a major outer membrane protein. PMID:9055993

  7. Thirty-Two Complete Genome Assemblies of Nine Yersinia Species, Including Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica

    DOE PAGES

    Johnson, Shannon L.; Daligault, Hajnalka E.; Davenport, Karen W.; ...

    2015-04-30

    The genus Yersinia includes three human pathogens, of which Yersinia pestis is responsible for >2,000 illnesses each year. To aid in the development of detection assays as well as aid further phylogenetic elucidation, we sequenced and assembled the complete genomes of 32 strains (across 9 Yersinia species).

  8. Molecular analysis of interactions between dendrimers and asymmetric membranes at different transport stages.

    PubMed

    He, XiaoCong; Qu, ZhiGuo; Xu, Feng; Lin, Min; Wang, JiuLing; Shi, XingHua; Lu, TianJian

    2014-01-07

    Studying dendrimer-biomembrane interactions is important for understanding drug and gene delivery. In this study, coarse-grained molecular dynamics simulations were performed to investigate the behaviors of polyamidoamine (PAMAM) dendrimers (G4 and G5) as they interacted with asymmetric membranes from different sides of the bilayer, thus mimicking different dendrimer transport stages. The G4 dendrimer could insert into the membrane during an equilibrated state, and the G5 dendrimer could induce pore formation in the membrane when the dendrimers interacted with the outer side (outer interactions) of an asymmetric membrane [with 10% dipalmitoyl phosphatidylserine (DPPS) in the inner leaflet of the membrane]. During the interaction with the inner side of the asymmetric membrane (inner interactions), the G4 and G5 dendrimers only adsorbed onto the membrane. As the membrane asymmetry increased (e.g., increased DPPS percentage in the inner leaflet of the membrane), the G4 and G5 dendrimers penetrated deeper into the membrane during the outer interactions and the G4 and G5 dendrimers were adsorbed more tightly onto the membrane for the inner interactions. When the DPPS content reached 50%, the G4 dendrimer could completely penetrate through the membrane from the outer side to the inner side. Our study provides molecular understanding and reference information about different dendrimer transport stages during drug and gene delivery.

  9. Crystallization and preliminary X-ray diffraction analysis of ScrY, a specific bacterial outer membrane porin.

    PubMed

    Forst, D; Schülein, K; Wacker, T; Diederichs, K; Kreutz, W; Benz, R; Welte, W

    1993-01-05

    The sucrose-specific outer membrane porin ScrY of Salmonella typhimurium was isolated from Escherichia coli K-12 strain KS 26 containing the plasmid pPSO112. The protein was purified to homogeneity by differential extraction of the cell envelope in the presence of the detergents sodium dodecyl sulfate and lauryl (dimethyl)-amine oxide (LDAO). The porin had apparent molecular weights of 58 kDa and 120 kDa for the monomer and for the trimer, respectively, on SDS/PAGE. The purified trimers were crystallized using poly(ethylene glycol) 2000 and the detergents octylglucoside (OG) and hexyl-(dimethyl)-amine oxide (C6DAO). X-ray diffraction of the crystals showed reflections to 2.3 A. The space group of the crystals was R3 and the lattice constants of the hexagonal axes were a = b = 112.85 A and c = 149.9 A. The crystal volume per unit of protein molecular weight was 3.47 A3/Da.

  10. VDAC electronics: 3. VDAC-Creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria.

    PubMed

    Lemeshko, Victor V

    2016-07-01

    Mitochondrial energy in cardiac cells has been reported to be channeled into the cytosol through the intermembrane contact sites formed by the adenine nucleotide translocator, creatine kinase and VDAC. Computational analysis performed in this study showed a high probability of the outer membrane potential (OMP) generation coupled to such a mechanism of energy channeling in respiring mitochondria. OMPs, positive inside, calculated at elevated concentrations of creatine are high enough to restrict ATP release from mitochondria, to significantly decrease the apparent K(m,ADP) for state 3 respiration and to maintain low concentrations of Ca(2+) in the mitochondrial intermembrane space. An inhibition by creatine of Ca(2+)-induced swelling of isolated mitochondria and other protective effects of creatine reported in the literature might be explained by generated positive OMP. We suggest that VDAC-creatine kinase-dependent generation of OMP represents a novel physiological factor controlling metabolic state of mitochondria, cell energy channeling and resistance to death. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X.

    PubMed

    Meng, Xianrong; Liu, Xueling; Zhang, Liyuan; Hou, Bo; Li, Binyou; Tan, Chen; Li, Zili; Zhou, Rui; Li, Shaowen

    2016-09-01

    Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to the virulence in various bacterial species. But, their role in virulence of extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be determined. This study evaluates the role of OmpX in ExPEC virulence in vitro and in vivo using a clinical strain PPECC42 of porcine origin. The ompX deletion mutant exhibited increased swimming motility and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the wild-type strain. A mild increase in LD50 and distinct decrease in bacterial load in such organs as heart, liver, spleen, lung and kidney were observed in mice infected with the ompX mutant. Complementation of the complete ompX gene in trans restored the virulence of mutant strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC virulence, but may be not an indispensable virulence determinant.

  12. Structure of a pectin methylesterase from Yersinia enterocolitica

    PubMed Central

    Boraston, Alisdair B.; Abbott, D. Wade

    2012-01-01

    Pectin methylesterases (PMEs) are family 8 carbohydrate esterases (CE8s) which remove the methyl group from methylesterified galacturonic acid (GalA) residues within pectin. Although the role of pectinases such as PMEs within dedicated phytopathogens has been well established, the significance of homologous enzymes found within the genomes of human enteropathogens remains to be determined. Presented here is the low-resolution (3.5 Å) structure of the CE8 from Yersinia enterocolitica (YeCE8). The high degree of structural conservation in the topology of the active-site cleft and catalytic apparatus that is shared with a characterized PME from a bacterial phytopathogen (i) indicates that YeCE8 is active on methylated pectin and (ii) highlights a more prominent role for pectin utilization in Yersinia than in other enteropathogenic species. PMID:22297983

  13. Proteomic Characterization of Host Response to Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chromy, B; Perkins, J; Heidbrink, J

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct formore » the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.« less

  14. A Bottom-Up Proteomic Approach to Identify Substrate Specificity of Outer-Membrane Protease OmpT.

    PubMed

    Wood, Sarah E; Sinsinbar, Gaurav; Gudlur, Sushanth; Nallani, Madhavan; Huang, Che-Fan; Liedberg, Bo; Mrksich, Milan

    2017-12-22

    Identifying peptide substrates that are efficiently cleaved by proteases gives insights into substrate recognition and specificity, guides development of inhibitors, and improves assay sensitivity. Peptide arrays and SAMDI mass spectrometry were used to identify a tetrapeptide substrate exhibiting high activity for the bacterial outer-membrane protease (OmpT). Analysis of protease activity for the preferred residues at the cleavage site (P1, P1') and nearest-neighbor positions (P2, P2') and their positional interdependence revealed FRRV as the optimal peptide with the highest OmpT activity. Substituting FRRV into a fragment of LL37, a natural substrate of OmpT, led to a greater than 400-fold improvement in OmpT catalytic efficiency, with a k cat /K m value of 6.1×10 6  L mol -1  s -1 . Wild-type and mutant OmpT displayed significant differences in their substrate specificities, demonstrating that even modest mutants may not be suitable substitutes for the native enzyme. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition

    PubMed Central

    Lin, Jinshui; Zhang, Weipeng; Cheng, Juanli; Yang, Xu; Zhu, Kaixiang; Wang, Yao; Wei, Gehong; Qian, Pei-Yuan; Luo, Zhao-Qing; Shen, Xihui

    2017-01-01

    Iron sequestration by host proteins contributes to the defence against bacterial pathogens, which need iron for their metabolism and virulence. A Pseudomonas aeruginosa mutant lacking all three known iron acquisition systems retains the ability to grow in media containing iron chelators, suggesting the presence of additional pathways involved in iron uptake. Here we screen P. aeruginosa mutants defective in growth in iron-depleted media and find that gene PA2374, proximal to the type VI secretion system H3 (H3-T6SS), functions synergistically with known iron acquisition systems. PA2374 (which we have renamed TseF) appears to be secreted by H3-T6SS and is incorporated into outer membrane vesicles (OMVs) by directly interacting with the iron-binding Pseudomonas quinolone signal (PQS), a cell–cell signalling compound. TseF facilitates the delivery of OMV-associated iron to bacterial cells by engaging the Fe(III)-pyochelin receptor FptA and the porin OprF. Our results reveal links between type VI secretion, cell–cell signalling and classic siderophore receptors for iron acquisition in P. aeruginosa. PMID:28348410

  16. Evaluation of DNA colony hybridization and other techniques for detection of virulence in Yersinia species.

    PubMed Central

    Robins-Browne, R M; Miliotis, M D; Cianciosi, S; Miller, V L; Falkow, S; Morris, J G

    1989-01-01

    The virulence of yersiniae varies according to (i) species and biotype and (ii) possession of a 67- to 72-kilobase virulence plasmid. Y. pestis, Y. pseudotuberculosis, and biotypes 1B, 2, 3, 4, and 5 of Y. enterocolitica are inherently virulent but express full virulence only when in possession of a virulence plasmid. Other Yersinia species and biotypes 1A and 3B of Y. enterocolitica are seldom implicated in disease. In this study, we prepared DNA probes from eight nonoverlapping regions of the virulence plasmid of a strain of Y. enterocolitica and from the inv and ail chromosomal loci responsible for the invasive capacity of Y. enterocolitica and Y. pseudotuberculosis. The probes were used in colony hybridization experiments to investigate 156 yersiniae of various species and biotypes and of differing virulence. Probes prepared from the inv gene of Y. pseudotuberculosis hybridized with Y. pseudotuberculosis and Y. pestis only, whereas an analogous probe prepared from Y. enterocolitica hybridized with all species and biotypes of yersiniae (but not with other bacteria) regardless of virulence or potential virulence. Probes prepared from the ail region of Y. enterocolitica reacted almost exclusively with Y. enterocolitica strains of pathogenic biotypes. Probes prepared from the virulence plasmid of a serogroup O:8, biotype 1B isolate of Y. enterocolitica identified virulent yersiniae in all species with a high degree of sensitivity and specificity. These probes did not react with yersiniae of avirulent biotypes or species. Of the other assays of virulence evaluated (calcium dependence, binding of crystal violet, and pyrazinamidase activity), binding of crystal violet provided a simple means for identifying plasmid-bearing strains. Images PMID:2723033

  17. Yersinia Type III Secretion System Master Regulator LcrF

    PubMed Central

    Schwiesow, Leah; Lam, Hanh

    2015-01-01

    Many Gram-negative pathogens express a type III secretion (T3SS) system to enable growth and survival within a host. The three human-pathogenic Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, encode the Ysc T3SS, whose expression is controlled by an AraC-like master regulator called LcrF. In this review, we discuss LcrF structure and function as well as the environmental cues and pathways known to regulate LcrF expression. Similarities and differences in binding motifs and modes of action between LcrF and the Pseudomonas aeruginosa homolog ExsA are summarized. In addition, we present a new bioinformatics analysis that identifies putative LcrF binding sites within Yersinia target gene promoters. PMID:26644429

  18. Proteolytic processing of the Yersinia pestis YapG autotransporter by the omptin protease Pla and the contribution of YapG to murine plague pathogenesis

    PubMed Central

    Lane, M. Chelsea; Lenz, Jonathan D.

    2013-01-01

    Autotransporter protein secretion represents one of the simplest forms of secretion across Gram-negative bacterial membranes. Once secreted, autotransporter proteins either remain tethered to the bacterial surface or are released following proteolytic cleavage. Autotransporters possess a diverse array of virulence-associated functions such as motility, cytotoxicity, adherence and autoaggregation. To better understand the role of autotransporters in disease, our research focused on the autotransporters of Yersinia pestis, the aetiological agent of plague. Y. pestis strain CO92 has nine functional conventional autotransporters, referred to as Yaps for Yersinia autotransporter proteins. Three Yaps have been directly implicated in virulence using established mouse models of plague infection (YapE, YapJ and YapK). Whilst previous studies from our laboratory have shown that most of the CO92 Yaps are cell associated, YapE and YapG are processed and released by the omptin protease Pla. In this study, we identified the Pla cleavage sites in YapG that result in many released forms of YapG in Y. pestis, but not in the evolutionarily related gastrointestinal pathogen, Yersinia pseudotuberculosis, which lacks Pla. Furthermore, we showed that YapG does not contribute to Y. pestis virulence in established mouse models of bubonic and pneumonic infection. As Y. pestis has a complex life cycle involving a wide range of mammalian hosts and a flea vector for transmission, it remains to be elucidated whether YapG has a measurable role in any other stage of plague disease. PMID:23657527

  19. A genetic screen in Myxococcus xanthus identifies mutants that uncouple outer membrane exchange from a downstream cellular response.

    PubMed

    Dey, Arup; Wall, Daniel

    2014-12-01

    Upon physical contact with sibling cells, myxobacteria transiently fuse their outer membranes (OMs) and exchange OM proteins and lipids. From previous work, TraA and TraB were identified to be essential factors for OM exchange (OME) in donor and recipient cells. To define the genetic complexity of OME, we carried out a comprehensive forward genetic screen. The screen was based on the observation that Myxococcus xanthus nonmotile cells, by a Tra-dependent mechanism, block swarm expansion of motile cells when mixed. Thus, mutants defective in OME or a downstream responsive pathway were readily identified as escape flares from mixed inocula seeded on agar. This screen was surprisingly powerful, as we found >50 mutants defective in OME. Importantly, all of the mutations mapped to the traAB operon, suggesting that there may be few, if any, proteins besides TraA and TraB directly required for OME. We also found a second and phenotypically different class of mutants that exhibited wild-type OME but were defective in a responsive pathway. This pathway is postulated to control inner membrane homeostasis by covalently attaching amino acids to phospholipids. The identified proteins are homologous to the Staphylococcus aureus MprF protein, which is involved in membrane adaptation and antibiotic resistance. Interestingly, we also found that a small number of nonmotile cells were sufficient to block the swarming behavior of a large gliding-proficient population. This result suggests that an OME-derived signal could be amplified from a few nonmotile producers to act on many responder cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Evaluation of a modified Cefsulodin-Irgasan-Novobiocin agar for isolation of Yersinia spp.

    PubMed

    Tan, Lai Kuan; Ooi, Peck Toung; Carniel, Elisabeth; Thong, Kwai Lin

    2014-01-01

    Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (10(4) cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.

  1. Structural analysis and cross-protective efficacy of recombinant 87 kDa outer membrane protein (Omp87) of Pasteurella multocida serogroup B:2.

    PubMed

    Kumar, Abhinendra; Yogisharadhya, Revanaiah; Ramakrishnan, Muthannan A; Viswas, K N; Shivachandra, Sathish B

    2013-12-01

    Pasteurella multocida serogroup B:2, a causative agent of haemorrhagic septicaemia (HS) in cattle and buffalo especially in tropical regions of Asian and African countries, is known to possess several outer membrane proteins (OMPs) as immunogenic antigens. In the present study, omp87 gene encoding for 87 kDa OMP (Omp87) protein of P. multocida serogroup B:2 strain P52, has been amplified (∼2304 bp), cloned in to pET32a vector and over-expressed in recombinant Escherichia coli as fusion protein. The recombinant Omp87 protein (∼102 kDa) including N-terminus hexa-histidine tag was purified under denaturing condition. Immunization of mice with rOmp87 resulted in increased antigen specific IgG titres in serum and provided protection of 66.6 and 83.3% following homologous (B:2) and heterologous (A:1) challenge, respectively. A homology model of Omp87 revealed the presence of two distinct domains; N-terminal domain with four POTRA repeats in the periplasmic space and a pore forming C-terminal β-barrel domain (β1- β16) in the outer membrane of P. multocida, which belong to Omp85-TpsB transporter superfamily of OMPs. The study indicated the potential possibilities to use rOmp87 protein along with suitable adjuvant in developing subunit vaccine for haemorrhagic septicaemia and pasteurellosis in livestock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Biophysical characterization of the outer membrane polysaccharide export protein and the polysaccharide co-polymerase protein from Xanthomonas campestris.

    PubMed

    Bianco, M I; Jacobs, M; Salinas, S R; Salvay, A G; Ielmini, M V; Ielpi, L

    2014-09-01

    This study investigated the structural and biophysical characteristics of GumB and GumC, two Xanthomonas campestris membrane proteins that are involved in xanthan biosynthesis. Xanthan is an exopolysaccharide that is thought to be a virulence factor that contributes to bacterial in planta growth. It also is one of the most important industrial biopolymers. The first steps of xanthan biosynthesis are well understood, but the polymerization and export mechanisms remain unclear. For this reason, the key proteins must be characterized to better understand these processes. Here we characterized, by biochemical and biophysical techniques, GumB, the outer membrane polysaccharide export protein, and GumC, the polysaccharide co-polymerase protein of the xanthan biosynthesis system. Our results suggested that recombinant GumB is a tetrameric protein in solution. On the other hand, we observed that both native and recombinant GumC present oligomeric conformation consistent with dimers and higher-order oligomers. The transmembrane segments of GumC are required for GumC expression and/or stability. These initial results provide a starting point for additional studies that will clarify the roles of GumB and GumC in the xanthan polymerization and export processes and further elucidate their functions and mechanisms of action. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. On Membrane Motor Activity and Chloride Flux in the Outer Hair Cell: Lessons Learned from the Environmental Toxin Tributyltin

    PubMed Central

    Song, Lei; Seeger, Achim; Santos-Sacchi, Joseph

    2005-01-01

    The outer hair cell (OHC) underlies mammalian cochlea amplification, and its lateral membrane motor, prestin, which drives the cell's mechanical activity, is modulated by intracellular chloride ions. We have previously described a native nonselective conductance (GmetL) that influences OHC motor activity via Cl flux across the lateral membrane. Here we further investigate this conductance and use the environmental toxin tributyltin (TBT) to better understand Cl-prestin interactions. Capitalizing on measures of prestin-derived nonlinear capacitance to gauge Cl flux across the lateral membrane, we show that the Cl ionophore TBT, which affects neither the motor nor GmetL directly, is capable of augmenting the native flux of Cl in OHCs. These observations were confirmed using the chloride-sensitive dye MQAE. Furthermore, the compound's potent ability, at nanomolar concentrations, to equilibrate intra- and extracellular Cl concentrations is shown to surpass the effectiveness of GmetL in promoting Cl flux, and secure a quantitative analysis of Cl-prestin interactions in intact OHCs. Using malate as an anion replacement, we quantify chloride effects on the nonlinear charge density and operating voltage range of prestin. Our data additionally suggest that ototoxic effects of organotins can derive from their disruption of OHC Cl homeostasis, ultimately interfering with anionic modulation of the mammalian cochlear amplifier. Notably, this observation identifies a new environmental threat for marine mammals by TBT, which is known to accumulate in the food chain. PMID:15596517

  4. Molecular basis for photoreceptor outer segment architecture

    PubMed Central

    Goldberg, Andrew F. X.; Moritz, Orson L.; Williams, David S.

    2016-01-01

    To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ~10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained. PMID:27260426

  5. B Cell Activation by Outer Membrane Vesicles—A Novel Virulence Mechanism

    PubMed Central

    Perez Vidakovics, Maria Laura A.; Jendholm, Johan; Mörgelin, Matthias; Månsson, Anne; Larsson, Christer; Cardell, Lars-Olaf; Riesbeck, Kristian

    2010-01-01

    Secretion of outer membrane vesicles (OMV) is an intriguing phenomenon of Gram-negative bacteria and has been suggested to play a role as virulence factors. The respiratory pathogens Moraxella catarrhalis reside in tonsils adjacent to B cells, and we have previously shown that M. catarrhalis induce a T cell independent B cell response by the immunoglobulin (Ig) D-binding superantigen MID. Here we demonstrate that Moraxella are endocytosed and killed by human tonsillar B cells, whereas OMV have the potential to interact and activate B cells leading to bacterial rescue. The B cell response induced by OMV begins with IgD B cell receptor (BCR) clustering and Ca2+ mobilization followed by BCR internalization. In addition to IgD BCR, TLR9 and TLR2 were found to colocalize in lipid raft motifs after exposure to OMV. Two components of the OMV, i.e., MID and unmethylated CpG-DNA motifs, were found to be critical for B cell activation. OMV containing MID bound to and activated tonsillar CD19+ IgD+ lymphocytes resulting in IL-6 and IgM production in addition to increased surface marker density (HLA-DR, CD45, CD64, and CD86), whereas MID-deficient OMV failed to induce B cell activation. DNA associated with OMV induced full B cell activation by signaling through TLR9. Importantly, this concept was verified in vivo, as OMV equipped with MID and DNA were found in a 9-year old patient suffering from Moraxella sinusitis. In conclusion, Moraxella avoid direct interaction with host B cells by redirecting the adaptive humoral immune response using its superantigen-bearing OMV as decoys. PMID:20090836

  6. Plague and other human infections caused by Yersinia species.

    PubMed

    Putzker, M; Sauer, H; Sobe, D

    2001-01-01

    With an estimated 100 million victims, pandemically and epidemically occurring plague has been looked upon as a classical scourge of mankind during the last two millenia. Without treatment at least 50% of the affected individuals die from infection with Yersinia pestis, a bacterium belonging to the family of Enterobacteriaceae. The disease takes a fulminant course. After an incubation period of 2-6 days, bubonic plague primarily attacks one group of lymph nodes. The onset of pulmonic plague, transmitted by droplet infection, takes place within several hours and causes bronchopneumonia. Early recognition facilitates a promising antibiotic therapy with tetracycline, streptomycin or chloramphenicol. Human beings acquire the bacteria through bites of fleas from domestic rats in densely populated cities of countries with low hygienic standards, or sporadically in the open country from infected wild rodents. Laboratory procedure includes microscopy supplemented by immunofluorescence and cultivation of the bacterium from clinical material. Direct serology and PCR result in a fast detection of specific antigens or nucleotide sequences. Determination of serum antibodies is principally used for epidemiological investigation. Today, physicians in the civilized western world lack experience for the recognition of plague, and analytical techniques for diagnosis are only available in some specialized laboratories. Yersiniosis becomes primarily manifest as gastroenteritis caused by Yersinia enterocolitica or as pseudoappendicitis caused by Yersinia pseudotuberculosis and requires antibiotics only in severe septic cases. Different extraintestinal symptoms may be observed in dependence on the patient's HLA type and gender. The ubiquitous germ is mainly transmitted by the fecal-oral route via infected domestic or farm animals and contaminated food. The relevant virulence factors are encoded on a 70 kB plasmid common to all Yersinia species and strains that are human pathogens. The

  7. Yersinia enterocolitica-Induced Interleukin-8 Secretion by Human Intestinal Epithelial Cells Depends on Cell Differentiation

    PubMed Central

    Schulte, Ralf; Autenrieth, Ingo B.

    1998-01-01

    In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416

  8. Disseminated Yersinia pseudotuberculosis infection in a paca (Cuniculus paca).

    PubMed

    Fogelson, Susan B; Yau, Wilson; Rissi, Daniel R

    2015-03-01

    A 2-yr-old paca (Cuniculus paca) was presented for necropsy with a history of sudden death. GrosS examination revealed multifocal, transmural, well-demarcated, white, soft nodules scattered along the length of the small intestine. The liver also had similar nodules associated with the capsular and cut surface. Histologic evaluation of several organs, including the intestine, liver, lung, kidney, adrenal gland, and lymph nodes, was consistent with disseminated yersiniosis. In addition, aerobic bacterial culture of liver and lung tissue yielded heavy growth of Yersinia pseudotuberculosis. Yersinia pseudotuberculosis is a Gram-negative, enteric pathogen that can cause disease in a variety of terrestrial species including humans. Although systemic infection has been observed in rodent species, to our knowledge this is the first report of disseminated Y pseudotuberculosis in a paca.

  9. Freeze-fracture studies of photoreceptor membranes: new observations bearing upon the distribution of cholesterol

    PubMed Central

    1983-01-01

    We performed electron microscopy of replicas from freeze-fractured retinas exposed during or after fixation to the cholesterol-binding antibiotic, filipin. We observed characteristic filipin-induced perturbations throughout the disk and plasma membranes of retinal rod outer segments of various species. It is evident that a prolonged exposure to filipin in fixative enhances rather than reduces presumptive cholesterol detection in the vertebrate photoreceptor cell. In agreement with the pattern seen in our previous study (Andrews, L.D., and A. I. Cohen, 1979, J. Cell Biol., 81:215-228), filipin- binding in membranes exhibiting particle-free patches seemed largely confined to these patches. Favorably fractured photoreceptors exhibited marked filipin-binding in apical inner segment plasma membrane topologically confluent with and proximate to the outer segment plasma membrane, which was comparatively free of filipin binding. A possible boundary between these differing membrane domains was suggested in a number of replicas exhibiting lower filipin binding to the apical plasma membrane of the inner segment in the area surrounding the cilium. This area contains a structure (Andrews, L. D., 1982, Freeze- fracture studies of vertebrate photoreceptors, In Structure of the Eye, J. G. Hollyfield and E. Acosta Vidrio, editors, Elsevier/North-Holland, New York, 11-23) that resembles the active zones of the nerve terminals for the frog neuromuscular junction. These observations lead us to hypothesize that these structures may function to direct vesicle fusion to occur near them, in a domain of membrane more closely resembling outer than inner segment plasma membrane. The above evidence supports the views that (a) all disk membranes contain cholesterol, but the particle-free patches present in some disks trap cholesterol from contiguous particulate membrane regions; (b) contiguous inner and outer segment membranes may greatly differ in cholesterol content; and (c) the suggested

  10. Comparative proteomic analysis of outer membrane protein 43 (omp43)-deficient Bartonella henselae.

    PubMed

    Kang, Jun-Gu; Lee, Hee-Woo; Ko, Sungjin; Chae, Joon-Seok

    2018-01-31

    Outer membrane proteins (OMPs) of Gram-negative bacteria constitute the first line of defense protecting cells against environmental stresses including chemical, biophysical, and biological attacks. Although the 43-kDa OMP (OMP43) is major porin protein among Bartonella henselae -derived OMPs, its function remains unreported. In this study, OMP43-deficient mutant B. henselae (Δomp43) was generated to investigate OMP43 function. Interestingly, Δ omp 43 exhibited weaker proliferative ability than that of wild-type (WT) B. henselae . To study the differences in proteomic expression between WT and Δ omp 43, two-dimensional gel electrophoresis-based proteomic analysis was performed. Based on Clusters of Orthologus Groups functional assignments, 12 proteins were associated with metabolism, 7 proteins associated with information storage and processing, and 3 proteins associated with cellular processing and signaling. By semi-quantitative reverse transcriptase polymerase chain reaction, increases in tld D, efp, ntr X, pdh A, pur B, and ATPA mRNA expression and decreases in Rho and yfe A mRNA expression were confirmed in Δ omp 43. In conclusion, this is the first report showing that a loss of OMP43 expression in B. henselae leads to retarded proliferation. Furthermore, our proteomic data provide useful information for the further investigation of mechanisms related to the growth of B. henselae.

  11. A Shigella flexneri Virulence Plasmid Encoded Factor Controls Production of Outer Membrane Vesicles

    PubMed Central

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R.

    2014-01-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  12. Characterization of outer membrane vesicles from a neonatal meningitic strain of Cronobacter sakazakii.

    PubMed

    Alzahrani, Hayat; Winter, Jody; Boocock, David; De Girolamo, Luigi; Forsythe, Stephen J

    2015-06-01

    Cronobacter sakazakii is associated with severe and often fatal cases of infant meningitis and necrotizing enterocolitis. The form of meningitis differs from that due to Neisseria meningitidis and Streptococcus spp., in that it is highly invasive and destructive towards human brain cells. However, there is relatively little understanding of the cytopathogenic interaction of C. sakazakii with host cells which results in stimulation of an inflammatory immune response. The production of Cronobacter outer membrane vesicles (OMV) and their potential pathogenic functions have not yet been elucidated. This study is the first to show that C. sakazakii produce OMV, which may play a role in the activation of cytopathogenic and host cell responses on human intestinal epithelial cells. Cronobacter sakazakii strain 767 was used which had been isolated from a fatal outbreak of neonatal meningitis and necrotizing enterocolitis. Cronobacter sakazakii OMV were internalized by Caco-2 cells, increased cell proliferation and stimulated the host's innate proinflammatory response without inducing overt toxicity. A total of 18 OMV-associated proteins were identified by mass spectrometry and their potential pathogenicity roles were evaluated. Collectively, these data indicate that C. sakazakii OMV could play a role in pathogenesis by delivering bacterial toxins into host epithelial cells, driving proliferative and proinflammatory responses. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Outer Membrane Vesicle Vaccines from Biosafe Surrogates Prevent Acute Lethal Glanders in Mice

    PubMed Central

    Khan, Mohammad S. R.; Chirakul, Sunisa; Schweizer, Herbert P.; Tuanyok, Apichai

    2018-01-01

    Burkholderia mallei is a host-adapted Gram-negative mammalian pathogen that causes the severe disease glanders. Glanders can manifest as a rapid acute progression or a chronic debilitating syndrome primarily affecting solipeds and humans in close association with infected animals. In USA, B. mallei is classified as one of the most important bacterial biothreat agents. Presently, there is no licensed glanders vaccine available for humans or animals. In this work, outer membrane vesicles (OMVs) were isolated from three attenuated biosafe bacterial strains, Burkholderia pseudomallei Bp82, B. thailandensis E555, and B. thailandensis TxDOH and used to vaccinate mice. B. thailandensis OMVs induced significantly higher antibody responses that were investigated. B. mallei specific serum antibody responses were of higher magnitude in mice vaccinated with B. thailandensis OMVs compared to levels in mice vaccinated with B. pseudomallei OMVs. OMVs derived from biosafe strains protected mice from acute lethal glanders with vesicles from the two B. thailandensis strains affording significant protection (>90%) up to 35 days post-infection with some up to 60 days. Organ loads from 35-day survivors indicated bacteria colonization of the lungs, liver, and spleen while those from 60 days had high CFUs in the spleens. The highest antibody producing vaccine (B. thailandensis E555 OMVs) also protected C57BL/6 mice from acute inhalational glanders with evidence of full protection. PMID:29320408

  14. Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process.

    PubMed

    Santos, Sílvia; Arauz, Luciana Juncioni de; Baruque-Ramos, Júlia; Lebrun, Ivo; Carneiro, Sylvia Mendes; Barreto, Sandra Alves; Schenkman, Rocilda Perazzini Furtado

    2012-09-14

    Serogroup B outer membrane vesicles (OMV) with iron regulated proteins (IRP) from Neisseria meningitidis constitute the antigen for the vaccine against the disease caused by this bacterium. Aiming to enhance final OMV concentration, seven batch experiments were carried out under four different conditions: (i) with original Catlin medium; (ii) with original Catlin medium and lactate and amino acids pulse at the 6th cultivation hour; (iii) with Catlin medium with double initial concentrations of lactate and amino acids and (iv) Catlin medium without glycerol and with double initial concentrations of lactate and amino acids. The cultivation experiments were carried out in a 7-L bioreactor under the following conditions: 36°C, 0.5atm, overlay air 1L/min, agitation: 250-850 rpm, and O(2) control at 10%, 20 h. After lactate and amino acids exhaustion, cell growth reached stationary phase and a significant release increase of OMV was observed. According to the Luedeking & Piret model, OMV liberation is non-growth associated. Glycerol was not consumed during cultivation. The maximum OMV concentration value attained was 162 mg/L with correspondent productivity of 8.1mg/(Lh) employing Catlin medium with double initial concentrations of lactate and amino acids. The obtained OMV satisfied constitution and protein pattern criteria and were suitable for vaccine production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Prestin modulates mechanics and electromechanical force of the plasma membrane.

    PubMed

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A; Brownell, William E; Anvari, Bahman

    2007-07-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane.

  16. Behavior of Avirulent Yersinia pestis in Liquid Whole Egg as Affected by Antimicrobials and Thermal Pasteurization

    USDA-ARS?s Scientific Manuscript database

    Yersinia spp. is a psychrotrophic bacterium that can grow at temperatures as low as minus two degrees Celsius, and is known to contaminate shell eggs in the United States and shell eggs and liquid egg in South America. A study was performed to determine the thermal sensitivity of avirulent Yersinia...

  17. Protective capacity of antibodies to outer-membrane components of Escherichia coli in a systemic mouse peritonitis model.

    PubMed

    Vuopio-Varkila, J; Karvonen, M; Saxén, H

    1988-02-01

    Antibody-mediated protection was studied in an experimental murine model of peritonitis-septicaemia with Escherichia coli O18:K1. Protection from lethal intraperitoneal challenge was achieved by passive immunisation with horse anti-K1 capsular antiserum (H46) or rabbit antiserum to the homologous O18 antigen. The maximum increase in LD50 achieved with anti-K1 and anti-O18 antibodies was 10- and 5-fold, respectively. The protective capacity of the anti-O serum was found to be in the IgG fraction. Rabbits were also immunised with various semi-purified or purified outer-membrane-protein preparations (porins and OmpA protein) from rough E. coli or Salmonella strains or with whole E. coli J5 bacteria. Although this immunisation resulted in high antibody titres to homologous and, to a lesser extent, also to heterologous antigens, none of the antisera protected against challenge with the capsulate E. coli O18:K1 bacteria.

  18. The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis

    PubMed Central

    Oleastro, Mónica; Ménard, Armelle

    2013-01-01

    Helicobacter pylori is one of the most successful human pathogens, which colonizes the mucus layer of the gastric epithelium of more than 50% of the world’s population. This curved, microaerophilic, Gram-negative bacterium induces a chronic active gastritis, often asymptomatic, in all infected individuals. In some cases, this gastritis evolves to more severe diseases such as peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori has developed a unique set of factors, actively supporting its successful survival and persistence in its natural hostile ecological niche, the human stomach, throughout the individual’s life, unless treated. In the human stomach, the vast majority of H. pylori cells are motile in the mucus layer lining, but a small percentage adheres to the epithelial cell surfaces. Adherence to the gastric epithelium is important for the ability of H. pylori to cause disease because this intimate attachment facilitates: (1) colonization and persistence, by preventing the bacteria from being eliminated from the stomach, by mucus turnover and gastric peristalsis; (2) evasion from the human immune system and (3) efficient delivery of proteins into the gastric cell, such as the CagA oncoprotein. Therefore, bacteria with better adherence properties colonize the host at higher densities. H. pylori is one of the most genetically diverse bacterial species known and is equipped with an extraordinarily large set of outer membrane proteins, whose role in the infection and persistence process will be discussed in this review, as well as the different receptor structures that have been so far described for mucosal adherence. PMID:24833057

  19. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa.

    PubMed

    Park, Kyong-Su; Lee, Jaewook; Jang, Su Chul; Kim, Sae Rom; Jang, Myoung Ho; Lötvall, Jan; Kim, Yoon-Keun; Gho, Yong Song

    2013-10-01

    Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.

  20. Colistin resistance associated with outer membrane protein change in Klebsiella pneumoniae and Enterobacter asburiae.

    PubMed

    Kádár, Béla; Kocsis, Béla; Tóth, Ákos; Kristóf, Katalin; Felső, Péter; Kocsis, Béla; Böddi, Katalin; Szabó, Dóra

    2017-06-01

    In this study, outer membrane proteins (OMPs) of colistin-resistant Klebsiella pneumoniae and Enterobacter asburiae were analyzed. One colistin-susceptible and three colistin-resistant K. pneumoniae sequence type 258 strains as well as one colistin-susceptible E. asburiae and its colistin-heteroresistant counterpart strain were involved in the study. OMP analysis of each strain was performed by microchip method. Matrix-assisted laser desorption ionization time of flight/mass spectrometry (MALDI-TOF/MS) investigation was carried out after separation of OMPs by two-dimensional gel electrophoresis and in-gel digestion. The MALDI-TOF/MS analysis of OMPs in the colistin-susceptible K. pneumoniae found 16 kDa proteins belonging to the LysM domain/BON superfamily, as well as DNA starvation proteins, whereas OmpX and OmpW were detected in the colistin-resistant counterpart strains. OmpC and OmpW were detected in the colistin-susceptible E. asburiae, whereas OmpA and OmpX were identified in the colistin-resistant counterpart. This study demonstrated that OMP differences were between colistin-susceptible and -resistant counterpart strains. The altered Gram-negative cell wall may contribute to acquired colistin resistance in Enterobacteriaceae.

  1. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes

    PubMed Central

    Hoogerheide, David P.; Noskov, Sergei Y.; Jacobs, Daniel; Bergdoll, Lucie; Silin, Vitalii; Worcester, David L.; Abramson, Jeff; Nanda, Hirsh; Rostovtseva, Tatiana K.; Bezrukov, Sergey M.

    2017-01-01

    Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques—surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations—suggest that α-tubulin’s amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic “mitochondrial” membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents. PMID:28420794

  2. Half-of-the-sites reactivity of outer-membrane phospholipase A against an active-site-directed inhibitor.

    PubMed

    Ubarretxena-Belandia, I; Cox, R C; Dijkman, R; Egmond, M R; Verheij, H M; Dekker, N

    1999-03-01

    The reaction of a novel active-site-directed phospholipase A1 inhibitor with the outer-membrane phospholipase A (OMPLA) was investigated. The inhibitor 1-p-nitrophenyl-octylphosphonate-2-tridecylcarbamoyl-3-et hanesulfonyl -amino-3-deoxy-sn-glycerol irreversibly inactivated OMPLA. The inhibition reaction did not require the cofactor calcium or an unprotonated active-site His142. The inhibition of the enzyme solubilized in hexadecylphosphocholine micelles was characterized by a rapid (t1/2 = 20 min) and complete loss of enzymatic activity, concurrent with the covalent modification of 50% of the active-site serines, as judged from the amount of p-nitrophenolate (PNP) released. Modification of the remaining 50% occurred at a much lower rate, indicative of half-of-the-sites reactivity against the inhibitor of this dimeric enzyme. Inhibition of monomeric OMPLA solubilized in hexadecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate resulted in an equimolar monophasic release of PNP, concurrent with the loss of enzymatic activity (t1/2 = 14 min). The half-of-the-sites reactivity is discussed in view of the dimeric nature of this enzyme.

  3. Molecular cloning, sequencing, and expression of the outer membrane protein P2 gene of Haemophilus parasuis.

    PubMed

    Li, Peng; Bai, Juan; Li, Jun-xing; Zhang, Guo-long; Song, Yan-hua; Li, Yu-feng; Wang, Xian-wei; Jiang, Ping

    2012-10-01

    Haemophilus parasuis is the etiological agent of Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis in young pigs. But it is difficult to develop universal serological diagnostic tools and effective vaccines against this disease because of the serovar diversity of the isolates. In this study, enterobacterial repetitive intergenic consensus-polymerase chain reaction, were performed to investigate the gene profile of 111 isolates of H. parasuis from China. And a specific common gene of H. parasuis was cloned and identified as the outer-membrane protein (OMP) P2 gene. Sequencing results of OMP P2 genes of 22 isolates showed that they had high homology and could be divided into 2 genetic types. Moreover, the OMPP2 protein was expressed in Escherichia coli expressing system. And the purified recombinant protein provided partial protection against H. parasuis infection in mice. It suggested the OMP P2 was an immunogenic protein and had great potential to serve as a vaccine and diagnostic antigen. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juan; Pearce, Carolyn I.; Shi, Liang

    The cycling of iron at the Earth’s near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studiesmore » using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the

  5. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Pearce, Carolyn I.; Shi, Liang; Wang, Zheming; Shi, Zhi; Arenholz, Elke; Rosso, Kevin M.

    2016-11-01

    The cycling of iron at the Earth's near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studies using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger

  6. Immunochemical and biological characterization of outer membrane proteins of Porphyromonas endodontalis.

    PubMed Central

    Ogawa, T; Kuribayashi, S; Shimauchi, H; Toda, T; Hamada, S

    1992-01-01

    Outer membrane proteins (OMP) of Porphyromonas endodontalis HG 370 (ATCC 35406) were prepared from the cell envelope fraction of the organisms. The cell envelope that had been obtained by sonication of the whole cells was extracted in 2% lithium dodecyl sulfate and then successively chromatographed with Sephacryl S-200 HR and DEAE-Sepharose Fast Flow. Two OMP fractions, OMP-I and OMP-II, were obtained, and their immunochemical properties and induction of specific antibodies were examined. The OMP-I preparation consisted of a major protein with an apparent molecular mass of 31 kDa and other moderate to minor proteins of 40.3, 51.4, 67, and 71.6 kDa, while the OMP-II preparation contained 14-, 15.5-, 27-, and 44-kDa proteins as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis. OMP-I was found to form hydrophilic diffusion pores by incorporation into artificial liposomes composed of egg yolk phosphatidylcholine and dicetylphosphate, indicating that OMP-I exhibited significant porin activity. However, the liposomes containing heat-denatured OMP-I were scarcely active. Spontaneous and antigen-specific immunoglobulin M (IgM)-, IgG-, and IgA-secreting spot-forming cells (SFC) enzymatically dissociated into single-cell suspensions from chronically inflamed periapical tissues and were enumerated by enzyme-linked immunospot assay. In patients with radicular cysts or dental granulomas, the major isotype of spontaneous SFC was IgG. In radicular cysts, the OMP-II-specific IgG SFC represented 0.13% of the total IgG SFC, while the antigen-specific IgA or IgM SFC was not observed. It was also found that none of these mononuclear cells produced antibodies specific for OMP-I or lipopolysaccharide of P. endodontalis. Images PMID:1328059

  7. Membrane Electromechanics at Hair-Cell Synapses

    NASA Astrophysics Data System (ADS)

    Brownell, W. E.; Farrell, B.; Raphael, R. M.

    2003-02-01

    Both outer hair cell electromotility and neurotransmission at the inner hair cell synapse are rapid mechanical events that are synchronized to the hair-cell receptor potential. We analyze whether the forces and potentials resulting from membrane flexoelectricity could affect synaptic vesicle fusion. The results suggest that the coupling of membrane curvature with membrane potential is of sufficient magnitude to influence neurotransmitter release.

  8. Phylogeographic separation and formation of sexually discrete lineages in a global population of Yersinia pseudotuberculosis

    PubMed Central

    Seecharran, Tristan; Kalin-Manttari, Laura; Koskela, Katja; Nikkari, Simo; Dickins, Benjamin; Corander, Jukka; Skurnik, Mikael

    2017-01-01

    Yersinia pseudotuberculosis is a Gram-negative intestinal pathogen of humans and has been responsible for several nationwide gastrointestinal outbreaks. Large-scale population genomic studies have been performed on the other human pathogenic species of the genus Yersinia, Yersinia pestis and Yersinia enterocolitica allowing a high-resolution understanding of the ecology, evolution and dissemination of these pathogens. However, to date no purpose-designed large-scale global population genomic analysis of Y. pseudotuberculosis has been performed. Here we present analyses of the genomes of 134 strains of Y. pseudotuberculosis isolated from around the world, from multiple ecosystems since the 1960s. Our data display a phylogeographic split within the population, with an Asian ancestry and subsequent dispersal of successful clonal lineages into Europe and the rest of the world. These lineages can be differentiated by CRISPR cluster arrays, and we show that the lineages are limited with respect to inter-lineage genetic exchange. This restriction of genetic exchange maintains the discrete lineage structure in the population despite co-existence of lineages for thousands of years in multiple countries. Our data highlights how CRISPR can be informative of the evolutionary trajectory of bacterial lineages, and merits further study across bacteria. PMID:29177091

  9. Effect of serotonin on the expression of antigens and DNA levels in Yersinia pestis cells with different plasmid content

    NASA Astrophysics Data System (ADS)

    Klueva, Svetlana N.; Korsukov, Vladimir N.; Schukovskaya, Tatyana N.; Kravtsov, Alexander L.

    2004-08-01

    Using flow cytometry (FCM) the influence of exogenous serotonin on culture growth, DNA content and fluorescence intensity of cells binding FITC-labelled plague polyclonal immunoglobulins was studied in Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-), Yersinia pestis KM 216 (pFra-, pCad-, pPst+). The results have been obtained by FCM showed serotonin accelerated Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-) culture growth during cultivation in Hottinger broth pH 7.2 at 28°C at concentration of 10-5 M. The presence of 10-5 M serotonin in nutrient broth could modulate DNA content in 37°C growing population of plague microbe independently of their plasmid content. Serotonin have been an impact on the distribution pattern of the cells according to their phenotypical characteristics, which was reflected in the levels of population heterogeneity in the intensity of specific immunofluorescence determined by FMC.

  10. BamA POTRA Domain Interacts with a Native Lipid Membrane Surface.

    PubMed

    Fleming, Patrick J; Patel, Dhilon S; Wu, Emilia L; Qi, Yifei; Yeom, Min Sun; Sousa, Marcelo Carlos; Fleming, Karen G; Im, Wonpil

    2016-06-21

    The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly β-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein β-barrel assembly machine (BAM) catalyzes the insertion and folding of the β-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane β-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate β-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane β-barrel proteins. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Prestin Modulates Mechanics and Electromechanical Force of the Plasma Membrane

    PubMed Central

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A.; Brownell, William E.; Anvari, Bahman

    2007-01-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane. PMID:17468166

  12. Salmonella, Shigella, and Yersinia

    PubMed Central

    Dekker, John; Frank, Karen

    2015-01-01

    Synopsis Salmonella, Shigella, and Yersinia cause a well-characterized spectrum of disease in humans, ranging from asymptomatic carriage to hemorrhagic colitis and fatal typhoidal fever. These pathogens are responsible for millions of cases of food-borne illness in the U.S. each year, with substantial costs measured in hospitalizations and lost productivity. In the developing world, illness caused by these pathogens is not only more prevalent, but is also associated with a greater case-fatality rate. Classical methods for identification rely on selective media and serology, but newer methods based on mass spectrometry and PCR show great promise for routine clinical testing. PMID:26004640

  13. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis

    PubMed Central

    Quintard, Kévin; Dewitte, Amélie; Reboul, Angéline; Madec, Edwige; Bontemps-Gallo, Sébastien; Dondeyne, Jacqueline; Marceau, Michaël; Simonet, Michel

    2015-01-01

    The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary. PMID:26150539

  14. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response.

    PubMed

    Derbise, Anne; Pierre, François; Merchez, Maud; Pradel, Elizabeth; Laouami, Sabrina; Ricard, Isabelle; Sirard, Jean-Claude; Fritz, Jill; Lemaître, Nadine; Akinbi, Henry; Boneca, Ivo G; Sebbane, Florent

    2013-05-15

    Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.

  15. Association between microbiological and serological prevalence of human pathogenic Yersinia spp. in pigs and pig batches.

    PubMed

    Vanantwerpen, Gerty; Berkvens, Dirk; De Zutter, Lieven; Houf, Kurt

    2015-07-09

    Pigs are the main reservoir of human pathogenic Y. enterocolitica, and the microbiological and serological prevalence of this pathogen differs between pig farms. The infection status of pig batches at moment of slaughter is unknown while it is a possibility to classify batches. A relation between the presence of human pathogenic Yersinia spp. and the presence of antibodies could help to predict the infection of the pigs prior to slaughter. Pigs from 100 different batches were sampled. Tonsils and pieces of diaphragm were collected from 7047 pigs (on average 70 pigs per batch). The tonsils were analyzed using a direct plating method and the meat juice collected from the pieces of diaphragm was analyzed by Enzyme Linked ImmunoSorbent Assay. The microbiological and serological results were compared using a mixed-effects logistic regression at pig and batch level. Yersinia spp. were found in 2031 (28.8%) pigs, antibodies were present in 4692 (66.6%) pigs. According to the logistic regression, there was no relation at pig level between the presence of Yersinia spp. in tonsils and the presence of antibodies. Contrarily, at batch level, a mean activity value of 37 Optical Density (OD)% indicated a Yersinia spp. positive farm and the microbiological prevalence in pig batches could be estimated before shipment to the slaughterhouse. This offers the opportunity to classify batches based on their potential risk to contaminate carcasses with human pathogenic Yersinia spp. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Two passive mechanical conditions modulate power generation by the outer hair cells

    PubMed Central

    Gracewski, Sheryl M.

    2017-01-01

    In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has been considered to be proportional to the basilar membrane displacement or velocity. An underlying assumption was that organ of Corti mechanics are governed by rigid body kinematics. However, recent progress in vibration measurement techniques reveals that organ of Corti mechanics are too complicated to be fully represented with rigid body kinematics. In this study, two components of the active feedback are considered explicitly—organ of Corti mechanics, and outer hair cell electro-mechanics. Physiological properties for the outer hair cells were incorporated, such as the active force gain, mechano-transduction properties, and membrane RC time constant. Instead of a kinematical model, a fully deformable 3D finite element model was used. We show that the organ of Corti mechanics dictate the longitudinal trend of cochlear amplification. Specifically, our results suggest that two mechanical conditions are responsible for location-dependent cochlear amplification. First, the phase of the outer hair cell’s somatic force with respect to its elongation rate varies along the cochlear length. Second, the local stiffness of the organ of Corti complex felt by individual outer hair cells varies along the cochlear length. We describe how these two mechanical conditions result in greater amplification toward the base of the cochlea. PMID:28880884

  17. Detection of pathogenic Yersinia enterocolitica in pet Djungarian hamsters in Japan

    PubMed Central

    KAMEYAMA, Mitsuhiro; YABATA, Junko; OBANE, Noriko; OTSUKA, Hitoshi; NOMURA, Yasuharu

    2016-01-01

    The prevalence of Yersinia enterocolitica (Y. enterocolitica) and Yersinia pseudotuberculosis was examined in 151 pet animals including 108 rodents, 39 rabbits and four sugar gliders from 13 pet stores in the Yamaguchi Prefecture, Japan. Y. enterocolitica serogroup O:3 biotype 3 negative for the Voges-Proskauer reaction (O:3/3 variant VP-) was isolated from five Djungarian hamsters (Phodopus sungorus) raised at the same pet store. These pathogenic Y. enterocolitica isolates carried the virulence genes, yadA, ail and virF, and were shown to be clonal by pulsed-field gel electrophoresis with NotI digestion. This is a first report of pathogenic Y. enterocolitica O:3/3 variant VP- in pet Djungarian hamsters in Japan. PMID:27396397

  18. Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF.

    PubMed Central

    Hoe, N P; Minion, F C; Goguen, J D

    1992-01-01

    In Escherichia coli, a yopE::lacZ fusion was found to be regulated by temperature in the presence of the cloned BamHI G fragment of Yersinia pestis plasmid pCD1, which contains the lcrF locus. Increasing the copy number of lcrF relative to that of the yopE reporter had a negligible effect on the induction ratio (26 versus 37 degrees C) but caused large reductions in the absolute levels of yopE transcription. We localized the lcrF gene by monitoring the induction phenotype of BamHI G deletion derivatives. Sequencing revealed an open reading frame capable of encoding a protein of 30.8 kDa. A protein product of this size was detected in a T7 expression system, and LcrF-dependent yopE-specific DNA binding activity was observed. As expected, LcrF exhibited 98% homology to VirF of Yersinia enterocolitica and significant homology to the carboxy termini of other members of the AraC family of transcriptional regulatory proteins. These proteins could be divided into two classes according to function: those regulating operons involved in catabolism of carbon and energy sources and those involved in regulating virulence genes. lcrF::lacZ transcriptional fusions were constructed and analyzed in Y. pestis and E. coli. The activity of the fusions was not affected by the native pCD1 virulence plasmid, an intact lcrF gene, or temperature. Thus, induction of lcrF transcription is not essential for temperature-dependent activation of yopE transcription. A portion of LcrF was found associated with the membrane fraction in E. coli; however, pulse-chase experiments indicated that this result is an artifact of fractionation. Images PMID:1624422

  19. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence

    PubMed Central

    Wu, Xiaojun; Ren, Guoping; Gunning, William T.; Weaver, David A.; Kalinoski, Andrea L.; Khuder, Sadik A.; Huntley, Jason F.

    2016-01-01

    Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs) are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survival and OMPs often play important roles in metal uptake. Previous studies identified three F. tularensis OMPs that play roles in iron acquisition. In this study, we examined two previously uncharacterized proteins, FTT0267 (named fmvA, for Francisella metal and virulence) and FTT0602c (fmvB), which are homologs of the previously studied F. tularensis iron acquisition genes and are predicted OMPs. To study the potential roles of FmvA and FmvB in metal acquisition and virulence, we first examined fmvA and fmvB expression following pulmonary infection of mice, finding that fmvB was upregulated up to 5-fold during F. tularensis infection of mice. Despite sequence homology to previously-characterized iron-acquisition genes, FmvA and FmvB do not appear to be involved iron uptake, as neither fmvA nor fmvB were upregulated in iron-limiting media and neither ΔfmvA nor ΔfmvB exhibited growth defects in iron limitation. However, when other metals were examined in this study, magnesium-limitation significantly induced fmvB expression, ΔfmvB was found to express significantly higher levels of lipopolysaccharide (LPS) in magnesium-limiting medium, and increased numbers of surface protrusions were observed on ΔfmvB in magnesium-limiting medium, compared to wild-type F. tularensis grown in magnesium-limiting medium. RNA sequencing analysis of ΔfmvB revealed the potential mechanism for increased LPS expression, as LPS synthesis genes kdtA and wbtA were significantly upregulated in ΔfmvB, compared with wild-type F. tularensis. To provide further evidence for the potential role of FmvB in

  20. Facilitative glucose transporter Glut1 is actively excluded from rod outer segments.

    PubMed

    Gospe, Sidney M; Baker, Sheila A; Arshavsky, Vadim Y

    2010-11-01

    Photoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.

  1. Na+/H+ antiport is essential for Yersinia pestis virulence.

    PubMed

    Minato, Yusuke; Ghosh, Amit; Faulkner, Wyatt J; Lind, Erin J; Schesser Bartra, Sara; Plano, Gregory V; Jarrett, Clayton O; Hinnebusch, B Joseph; Winogrodzki, Judith; Dibrov, Pavel; Häse, Claudia C

    2013-09-01

    Na(+)/H(+) antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na(+)/H(+) antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na(+)/H(+) antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na(+) levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na(+)/H(+) antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens.

  2. Yersinia enterocolitica YopT and Clostridium difficile Toxin B Induce Expression of GILZ in Epithelial Cells

    PubMed Central

    Köberle, Martin; Göppel, David; Grandl, Tanja; Gaentzsch, Peer; Manncke, Birgit; Berchtold, Susanne; Müller, Steffen; Lüscher, Bernhard; Asselin-Labat, Marie-Liesse; Pallardy, Marc; Sorg, Isabel; Langer, Simon; Barth, Holger; Zumbihl, Robert; Autenrieth, Ingo B.; Bohn, Erwin

    2012-01-01

    Glucocorticoid induced-leucine zipper (GILZ) has been shown to be induced in cells by different stimuli such as glucocorticoids, IL-10 or deprivation of IL-2. GILZ has anti-inflammatory properties and may be involved in signalling modulating apoptosis. Herein we demonstrate that wildtype Yersinia enterocolitica which carry the pYV plasmid upregulated GILZ mRNA levels and protein expression in epithelial cells. Infection of HeLa cells with different Yersinia mutant strains revealed that the protease activity of YopT, which cleaves the membrane-bound form of Rho GTPases was sufficient to induce GILZ expression. Similarly, Clostridium difficile toxin B, another bacterial inhibitor of Rho GTPases induced GILZ expression. YopT and toxin B both increased transcriptional activity of the GILZ promoter in HeLa cells. GILZ expression could not be linked to the inactivation of an individual Rho GTPase by these toxins. However, forced expression of RhoA and RhoB decreased basal GILZ promoter activity. Furthermore, MAPK activation proved necessary for profound GILZ induction by toxin B. Promoter studies and gel shift analyses defined binding of upstream stimulatory factor (USF) 1 and 2 to a canonical c-Myc binding site (E-box) in the GILZ promoter as a crucial step of its trans-activation. In addition we could show that USF-1 and USF-2 are essential for basal as well as toxin B induced GILZ expression. These findings define a novel way of GILZ promoter trans-activation mediated by bacterial toxins and differentiate it from those mediated by dexamethasone or deprivation of IL-2. PMID:22792400

  3. Yersinia pestis targets neutrophils via complement receptor 3

    PubMed Central

    Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.

    2015-01-01

    Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083

  4. Identification and Characterization of Outer Membrane Vesicle-Associated Proteins in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Bai, Jaewoo; Kim, Seul I; Ryu, Sangryeol

    2014-01-01

    Salmonella enterica serovar Typhimurium is a primary cause of enteric diseases and has acquired a variety of virulence factors during its evolution into a pathogen. Secreted virulence factors interact with commensal flora and host cells and enable Salmonella to survive and thrive in hostile environments. Outer membrane vesicles (OMVs) released from many Gram-negative bacteria function as a mechanism for the secretion of complex mixtures, including virulence factors. We performed a proteomic analysis of OMVs that were isolated under standard laboratory and acidic minimal medium conditions and identified 14 OMV-associated proteins that were observed in the OMV fraction isolated only under the acidic minimal medium conditions, which reproduced the nutrient-deficient intracellular milieu. The inferred roles of these 14 proteins were diverse, including transporter, enzyme, and transcriptional regulator. The absence of these proteins influenced Salmonella survival inside murine macrophages. Eleven of these proteins were predicted to possess secretion signal sequences at their N termini, and three (HupA, GlnH, and PhoN) of the proteins were found to be translocated into the cytoplasm of host cells. The comparative proteomic profiling of OMVs performed in this study revealed different protein compositions in the OMVs isolated under the two different conditions, which indicates that the OMV cargo depends on the growth conditions and provides a deeper insight into how Salmonella utilizes OMVs to adapt to environmental changes. PMID:24935973

  5. Immunogenicity of a meningococcal native outer membrane vesicle vaccine with attenuated endotoxin and over-expressed factor H binding protein in infant rhesus monkeys

    PubMed Central

    Koeberling, Oliver; Seubert, Anja; Santos, George; Colaprico, Annalisa; Ugozzoli, Mildred; Donnelly, John; Granoff, Dan M.

    2011-01-01

    We previously investigated immunogenicity of meningococcal native outer membrane vesicle (NOMV) vaccines prepared from recombinant strains with attenuated endotoxin (ΔLpxL1) and over-expressed factor H binding protein (fHbp) in a mouse model. The vaccines elicited broad serum bactericidal antibody responses. While human toll-like receptor 4 (TLR-4) is mainly stimulated by wildtype meningococcal endotoxin, mouse TLR-4 is stimulated by both the wildtype and mutant endotoxin. An adjuvant effect in mice of the mutant endotoxin would be expected to be much less in humans, and may have contributed to the broad mouse bactericidal responses. Here we show that as previously reported for humans, rhesus primate peripheral blood mononuclear cells incubated with a NOMV vaccine from ΔLpxL1 recombinant strains had lower proinflammatory cytokine responses than with a control wildtype NOMV vaccine. The cytokine responses to the mutant vaccine were similar to those elicited by a detergent-treated, wildtype outer membrane vesicle vaccine that had been safely administered to humans. Monkeys (N=4) were immunized beginning at ages 2 to 3 months with three doses of a NOMV vaccine prepared from ΔLpxL1 recombinant strains with over-expressed fHbp in the variant 1 and 2 groups. The mutant NOMV vaccine elicited serum bactericidal titers ≥1:4 against all 10 genetically diverse strains tested, including 9 with heterologous PorA to those in the vaccine. Negative-control animals had serum bactericidal titers <1:4. Thus, the mutant NOMV vaccine elicited broadly protective serum antibodies in a non-human infant primate model that is more relevant for predicting human antibody responses than mice. PMID:21571025

  6. Bacteriophages of Yersinia pestis.

    PubMed

    Zhao, Xiangna; Skurnik, Mikael

    2016-01-01

    Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

  7. Protein profiles of hatchery egg shell membrane

    USDA-ARS?s Scientific Manuscript database

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  8. The Fusobacterium nucleatum Outer Membrane Protein RadD Is an Arginine-Inhibitable Adhesin Required for Inter-Species Adherence and the Structured Architecture of Multi-Species Biofilm

    PubMed Central

    Kaplan, Christopher W.; Lux, Renate; Haake, Susan Kinder; Shi, Wenyuan

    2009-01-01

    Summary A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central “bridging organisms” in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum. Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive “early oral colonizers”. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation. PMID:19007407

  9. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis.

    PubMed

    Pouillot, Flavie; Fayolle, Corinne; Carniel, Elisabeth

    2008-10-01

    The transformation of the enteropathogenic bacterium Yersinia pseudotuberculosis into the plague bacillus, Yersinia pestis, has been accompanied by extensive genetic loss. This study focused on chromosomal regions conserved in Y. pseudotuberculosis and lost during its transformation into Y. pestis. An extensive PCR screening of 78 strains of the two species identified five regions (R1 to R5) and four open reading frames (ORFs; orf1 to orf4) that were conserved in Y. pseudotuberculosis and absent from Y. pestis. Their conservation in Y. pseudotuberculosis suggests a positive selective pressure and a role during the life cycle of this species. Attempts to delete two ORFs (orf3 and orf4) from the chromosome of strain IP32953 were unsuccessful, indicating that they are essential for its viability. The seven remaining loci were individually deleted from the IP32953 chromosome, and the ability of each mutant to grow in vitro and to kill mice upon intragastric infection was evaluated. Four loci (orf1, R2, R4, and R5) were not required for optimal growth or virulence of Y. pseudotuberculosis. In contrast, orf2, encoding a putative pseudouridylate synthase involved in RNA stability, was necessary for the optimal growth of IP32953 at 37 degrees C in a chemically defined medium (M63S). Deletion of R1, a region predicted to encode the methionine salvage pathway, altered the mutant pathogenicity, suggesting that the availability of free methionine is severely restricted in vivo. R3, a region composed mostly of genes of unknown functions, was necessary for both optimal growth of Y. pseudotuberculosis at 37 degrees C in M63S and for virulence. Therefore, despite their loss in Y. pestis, five of the nine Y. pseudotuberculosis-specific chromosomal loci studied play a role in the survival, growth, or virulence of this species.

  10. Functional advantages conferred by extracellular prokaryotic membrane vesicles.

    PubMed

    Manning, Andrew J; Kuehn, Meta J

    2013-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane-derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials and ridding the cell of toxic envelope proteins. Here, we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane-bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world. Copyright © 2013 S. Karger AG, Basel.

  11. Purification and characterization of Yersinia enterocolitica and Yersinia pestis LcrV-cholera toxin A(2)/B chimeras.

    PubMed

    Tinker, Juliette K; Davis, Chadwick T; Arlian, Britni M

    2010-11-01

    Yersinia pestis is a virulent human pathogen and potential biological weapon. Despite a long history of research on this organism, there is no licensed vaccine to protect against pneumonic forms of Y. pestis disease. In the present study, plasmids were constructed to express cholera toxin A(2)/B chimeric molecules containing the LcrV protective antigen from Yersinia enterocolitica and Y. pestis. These chimeras were expressed and purified to high yields from the supernatant of transformed Escherichia coli. Western and GM(1) ELISA assays were used to characterize the composition, receptor-binding and relative stability of the LcrV-CTA(2)/B chimera in comparison to cholera toxin. In addition, we investigated the ability of the Y. pestis LcrV-CTA(2)/B chimera to bind to and internalize into cultured epithelial cells and macrophages by confocal microscopy. These studies indicate that the uptake and trafficking of the LcrV antigen from the chimera is comparable to the trafficking of native toxin. Together these findings report that stable, receptor-binding, non-toxic LcrV-cholera toxin A(2)/B chimeras can be expressed at high levels in E. coli and purified from the supernatant. In addition, the internalization of antigen in vitro reported here supports the development of these molecules as novel mucosal vaccine candidates. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Differential impact of lipopolysaccharide defects caused by loss of RfaH in Yersinia pseudotuberculosis and Yersinia pestis.

    PubMed

    Hoffman, Jared M; Sullivan, Shea; Wu, Erin; Wilson, Eric; Erickson, David L

    2017-09-07

    RfaH enhances transcription of a select group of operons controlling bacterial surface features such as lipopolysaccharide (LPS). Previous studies have suggested that rfaH may be required for Yersinia pseudotuberculosis resistance to antimicrobial chemokines and survival during mouse infections. In order to further investigate the role of RfaH in LPS synthesis, resistance to host defense peptides, and virulence of Yersinia, we constructed ΔrfaH mutants of Y. pseudotuberculosis IP32953 and Y. pestis KIM6+. Loss of rfaH affected LPS synthesis in both species, resulting in a shorter core oligosaccharide. Susceptibility to polymyxin and the antimicrobial chemokine CCL28 was increased by loss of rfaH in Y. pseudotuberculosis but not in Y. pestis. Transcription of genes in the ddhD-wzz O-antigen gene cluster, but not core oligosaccharide genes, was reduced in ΔrfaH mutants. In addition, mutants with disruptions in specific ddhD-wzz O-antigen cluster genes produced LPS that was indistinguishable from the ΔrfaH mutant. This suggests that both Y. pseudotuberculosis and Y. pestis produce an oligosaccharide core with a single O-antigen unit attached in an RfaH-dependent fashion. Despite enhanced sensitivity to host defense peptides, the Y. pseudotuberculosis ΔrfaH strain was not attenuated in mice, suggesting that rfaH is not required for acute infection.

  13. Co-autodisplay of Z-domains and bovine caseins on the outer membrane of E. coli.

    PubMed

    Yoo, Gu; Saenger, Thorsten; Bong, Ji-Hong; Jose, Joachim; Kang, Min-Jung; Pyun, Jae-Chul

    2015-12-01

    In this work, two proteins, Z-domains and bovine casein, were auto-displayed on the outer membrane of the same Escherichia coli cells by co-transformation of two different auto-display vectors. On the basis of SDS-PAGE densitometry, Z-domains and bovine casein were expressed at 3.12 × 10⁵ and 1.55 × 10⁵ proteins/E. coli cell, respectively. The co-auto-displayed Z-domains had antibody-binding activity and the bovine casein had adhesive properties. E. coli with co-auto-displayed proteins were analyzed by fluorescence assisted cell sorting (FACS). E. coli with co-auto-displayed Z-domains and bovine casein aggregated due to hydrophobic interaction. For application to immunoassays, the Z-domain activity was estimated after (1) immobilizing the E. coli and (2) forming an OM layer. E. coli with co-auto-displayed two proteins that were immobilized on a polystyrene microplate had the same antibody-binding activity as did E. coli with auto-displayed Z-domains only. The OM layer from the co-transformed E. coli had Z-domains and bovine casein expressed at a 1:2 ratio from antibody-binding activity measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii

    PubMed Central

    Siroy, Axel; Molle, Virginie; Lemaître-Guillier, Christelle; Vallenet, David; Pestel-Caron, Martine; Cozzone, Alain J.; Jouenne, Thierry; Dé, Emmanuelle

    2005-01-01

    It has been recently shown that resistance to both imipenem and meropenem in multidrug-resistant clinical strains of Acinetobacter baumannii is associated with the loss of a heat-modifiable 25/29-kDa outer membrane protein, called CarO. This study aimed to investigate the channel-forming properties of CarO. Mass spectrometry analyses of this protein band detected another 25-kDa protein (called Omp25), together with CarO. Both proteins presented similar physicochemical parameters (Mw and pI). We overproduced and purified the two polypeptides as His-tagged recombinant proteins. Circular dichroism analyses demonstrated that the secondary structure of these proteins was mainly a β-strand conformation with spectra typical of porins. We studied the channel-forming properties of proteins by reconstitution into artificial lipid bilayers. In these conditions, CarO induced ion channels with a conductance value of 110 pS in 1 M KCl, whereas the Omp25 protein did not form any channels, despite its suggested porin function. The pores formed by CarO showed a slight cationic selectivity and no voltage closure. No specific imipenem binding site was found in CarO, and this protein would rather form unspecific monomeric channels. PMID:16304148

  15. An Outer Membrane Protein Involved in the Uptake of Glucose Is Essential for Cytophaga hutchinsonii Cellulose Utilization

    PubMed Central

    Zhou, Hong; Wang, Xia; Yang, Tengteng; Zhang, Weixin; Chen, Guanjun

    2016-01-01

    Cytophaga hutchinsonii specializes in cellulose digestion by employing a collection of novel cell-associated proteins. Here, we identified a novel gene locus, CHU_1276, that is essential for C. hutchinsonii cellulose utilization. Disruption of CHU_1276 in C. hutchinsonii resulted in complete deficiency in cellulose degradation, as well as compromised assimilation of cellobiose or glucose at a low concentration. Further analysis showed that CHU_1276 was an outer membrane protein that could be induced by cellulose and low concentrations of glucose. Transcriptional profiling revealed that CHU_1276 exerted a profound effect on the genome-wide response to both glucose and Avicel and that the mutant lacking CHU_1276 displayed expression profiles very different from those of the wild-type strain under different culture conditions. Specifically, comparison of their transcriptional responses to cellulose led to the identification of a gene set potentially regulated by CHU_1276. These results suggest that CHU_1276 plays an essential role in cellulose utilization, probably by coordinating the extracellular hydrolysis of cellulose substrate with the intracellular uptake of the hydrolysis product in C. hutchinsonii. PMID:26773084

  16. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana.

    PubMed

    Kelly, Amélie A; Kalisch, Barbara; Hölzl, Georg; Schulze, Sandra; Thiele, Juliane; Melzer, Michael; Roston, Rebecca L; Benning, Christoph; Dörmann, Peter

    2016-09-20

    Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusion proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes.

  17. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery.

    PubMed

    Schauer, Kristine; Gouget, Barbara; Carrière, Marie; Labigne, Agnès; de Reuse, Hilde

    2007-02-01

    Nickel is a cofactor for various microbial enzymes, yet as a trace element, its scavenging is challenging. In the case of the pathogen Helicobacter pylori, nickel is essential for the survival in the human stomach, because it is the cofactor of the important virulence factor urease. While nickel transport across the cytoplasmic membrane is accomplished by the nickel permease NixA, the mechanism by which nickel traverses the outer membrane (OM) of this Gram-negative bacterium is unknown. Import of iron-siderophores and cobalamin through the bacterial OM is carried out by specific receptors energized by the TonB/ExbB/ExbD machinery. In this study, we show for the first time that H. pylori utilizes TonB/ExbB/ExbD for nickel uptake in addition to iron acquisition. We have identified the nickel-regulated protein FrpB4, homologous to TonB-dependent proteins, as an OM receptor involved in nickel uptake. We demonstrate that ExbB/ExbD/TonB and FrpB4 deficient bacteria are unable to efficiently scavenge nickel at low pH. This condition mimics those encountered by H. pylori during stomach colonization, under which nickel supply and full urease activity are essential to combat acidity. We anticipate that this nickel scavenging system is not restricted to H. pylori, but will be represented more largely among Gram-negative bacteria.

  18. Polyester polymer alloy as a high-performance membrane.

    PubMed

    Igoshi, Tadaaki; Tomisawa, Narumi; Hori, Yoshinori; Jinbo, Yoichi

    2011-01-01

    Polyester polymer alloy (PEPA) membrane is developed as a synthetic polymermembrane. It consists of two polymers - polyethersulfone (PES) and polyarylate (PAR).The pore size in membrane can be controlled by a blend ratio of PES and PAR. One unique characteristic is that PEPA membrane has three layers of a skin layer on the inner surface, a porous layer in the membrane, and a skin layer on the outer surface, respectively. The permeability of water and substances is controlled by the skin layer on the inner surface. PEPA membrane dialyzer can be adequately considered as a high-performance dialyzer. Furthermore, the skin layer on the outer surface can block endotoxin from the dialysis fluid side. PEPA membrane can therefore be used as an endotoxin-retentive filter. The other unique characteristic is that each amount of albumin loss or β2-microglobulin removal can be controlled by an additive amount of polyvinylpyrrolidone. This means that the PEPA dialyzer can be clinically used to meet the conditions of the patient. Copyright © 2011 S. Karger AG, Basel.

  19. Bayesian Estimation of the True Prevalence and of the Diagnostic Test Sensitivity and Specificity of Enteropathogenic Yersinia in Finnish Pig Serum Samples.

    PubMed

    Vilar, M J; Ranta, J; Virtanen, S; Korkeala, H

    2015-01-01

    Bayesian analysis was used to estimate the pig's and herd's true prevalence of enteropathogenic Yersinia in serum samples collected from Finnish pig farms. The sensitivity and specificity of the diagnostic test were also estimated for the commercially available ELISA which is used for antibody detection against enteropathogenic Yersinia. The Bayesian analysis was performed in two steps; the first step estimated the prior true prevalence of enteropathogenic Yersinia with data obtained from a systematic review of the literature. In the second step, data of the apparent prevalence (cross-sectional study data), prior true prevalence (first step), and estimated sensitivity and specificity of the diagnostic methods were used for building the Bayesian model. The true prevalence of Yersinia in slaughter-age pigs was 67.5% (95% PI 63.2-70.9). The true prevalence of Yersinia in sows was 74.0% (95% PI 57.3-82.4). The estimates of sensitivity and specificity values of the ELISA were 79.5% and 96.9%.

  20. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.