Characterising variation in wheat traits under hostile soil conditions in India
Khokhar, Jaswant S.; Sareen, Sindhu; Tyagi, Bhudeva S.; Singh, Gyanendra; Chowdhury, Apurba K.; Dhar, Tapamay; Singh, Vinod; King, Ian P.; Young, Scott D.
2017-01-01
Intensive crop breeding has increased wheat yields and production in India. Wheat improvement in India typically involves selecting yield and component traits under non-hostile soil conditions at regional scales. The aim of this study is to quantify G*E interactions on yield and component traits to further explore site-specific trait selection for hostile soils. Field experiments were conducted at six sites (pH range 4.5–9.5) in 2013–14 and 2014–15, in three agro-climatic regions of India. At each site, yield and component traits were measured on 36 genotypes, representing elite varieties from a wide genetic background developed for different regions. Mean grain yields ranged from 1.0 to 5.5 t ha-1 at hostile and non-hostile sites, respectively. Site (E) had the largest effect on yield and component traits, however, interactions between genotype and site (G*E) affected most traits to a greater extent than genotype alone. Within each agro-climatic region, yield and component traits correlated positively between hostile and non-hostile sites. However, some genotypes performed better under hostile soils, with site-specific relationships between yield and component traits, which supports the value of ongoing site-specific selection activities. PMID:28604800
Heterosis and correlation in interspecific and intraspecific hybrids of cotton.
Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A
2016-06-24
Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.
Togashi, K; Hagiya, K; Osawa, T; Nakanishi, T; Yamazaki, T; Nagamine, Y; Lin, C Y; Matsumoto, S; Aihara, M; Hayasaka, K
2012-08-01
We first sought to clarify the effects of discounted rate, survival rate, and lactation persistency as a component trait of the selection index on net merit, defined as the first five lactation milks and herd life (HL) weighted by 1 and 0.389 (currently used in Japan), respectively, in units of genetic standard deviation. Survival rate increased the relative economic importance of later lactation traits and the first five lactation milk yields during the first 120 months from the start of the breeding scheme. In contrast, reliabilities of the estimated breeding value (EBV) in later lactation traits are lower than those of earlier lactation traits. We then sought to clarify the effects of applying single nucleotide polymorphism (SNP) on net merit to improve the reliability of EBV of later lactation traits to maximize their increased economic importance due to increase in survival rate. Net merit, selection accuracy, and HL increased by adding lactation persistency to the selection index whose component traits were only milk yields. Lactation persistency of the second and (especially) third parities contributed to increasing HL while maintaining the first five lactation milk yields compared with the selection index whose only component traits were milk yields. A selection index comprising the first three lactation milk yields and persistency accounted for 99.4% of net merit derived from a selection index whose components were identical to those for net merit. We consider that the selection index comprising the first three lactation milk yields and persistency is a practical method for increasing lifetime milk yield in the absence of data regarding HL. Applying SNP to the second- and third-lactation traits and HL increased net merit and HL by maximizing the increased economic importance of later lactation traits, reducing the effect of first-lactation milk yield on HL (genetic correlation (rG) = -0.006), and by augmenting the effects of the second- and third-lactation milk yields on HL (rG = 0.118 and 0.257, respectively).
Genetic parameters and path analysis in cowpea genotypes grown in the Cerrado/Pantanal ecotone.
Lopes, K V; Teodoro, P E; Silva, F A; Silva, M T; Fernandes, R L; Rodrigues, T C; Faria, T C; Corrêa, A M
2017-05-18
Estimating genetic parameters in plant breeding allows us to know the population potential for selecting and designing strategies that can maximize the achievement of superior genotypes. The objective of this study was to evaluate the genetic potential of a population of 20 cowpea genotypes by estimating genetic parameters and path analysis among the traits to guide the selection strategies. The trial was conducted in randomized block design with four replications. Its morphophysiological components, components of green grain production and dry grain yield were estimated from genetic use and correlations between the traits. Phenotypic correlations were deployed through path analysis into direct and indirect effects of morphophysiological traits and yield components on dry grain yield. There were significant differences (P < 0.01) between the genotypes for most the traits, indicating the presence of genetic variability in the population and the possibility of practicing selection. The population presents the potential for future genetic breeding studies and is highly promising for the selection of traits dry grain yield, the number of grains per pod, and hundred grains mass. A number of grains per green pod is the main determinant trait of dry grain yield that is also influenced by the cultivar cycle and that the selection for the dry grain yield can be made indirectly by selecting the green pod mass and green pod length.
Identifying seedling root architectural traits associated with yield and yield components in wheat.
Xie, Quan; Fernando, Kurukulasuriya M C; Mayes, Sean; Sparkes, Debbie L
2017-05-01
Plant roots growing underground are critical for soil resource acquisition, anchorage and plant-environment interactions. In wheat ( Triticum aestivum ), however, the target root traits to improve yield potential still remain largely unknown. This study aimed to identify traits of seedling root system architecture (RSA) associated with yield and yield components in 226 recombinant inbred lines (RILs) derived from a cross between the bread wheat Triticum aestivum 'Forno' (small, wide root system) and spelt Triticum spelta 'Oberkulmer' (large, narrow root system). A 'pouch and wick' high-throughput phenotyping pipeline was used to determine the RSA traits of 13-day-old RIL seedlings. Two field experiments and one glasshouse experiment were carried out to investigate the yield, yield components and phenology, followed by identification of quantitative trait loci (QTLs). There was substantial variation in RSA traits between genotypes. Seminal root number and total root length were both positively associated with grains m -2 , grains per spike, above-ground biomass m -2 and grain yield. More seminal roots and longer total root length were also associated with delayed maturity and extended grain filling, likely to be a consequence of more grains being defined before anthesis. Additionally, the maximum width of the root system displayed positive relationships with spikes m -2 , grains m -2 and grain yield. Ten RILs selected for the longest total roots exhibited the same effects on yield and phenology as described above, compared with the ten lines with the shortest total roots. Genetic analysis revealed 38 QTLs for the RSA, and QTL coincidence between the root and yield traits was frequently observed, indicating tightly linked genes or pleiotropy, which concurs with the results of phenotypic correlation analysis. Based on the results from the Forno × Oberkulmer population, it is proposed that vigorous early root growth, particularly more seminal roots and longer total root length, is important to improve yield potential, and should be incorporated into wheat ideotypes in breeding. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Thomson, M J; Tai, T H; McClung, A M; Lai, X-H; Hinga, M E; Lobos, K B; Xu, Y; Martinez, C P; McCouch, S R
2003-08-01
An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.
Laidig, Friedrich; Piepho, Hans-Peter; Rentel, Dirk; Drobek, Thomas; Meyer, Uwe; Huesken, Alexandra
2017-05-01
Grain yield of hybrid varieties and population varieties in official German variety trials increased by 23.3 and 18.1%, respectively, over the last 26 years. On-farm gain in grain yield (18.9%) was comparable to that of population varieties in variety trials, yet at a level considerably lower than in variety trials. Rye quality is subject to large year-to-year fluctuation. Increase in grain yield and decline of protein concentration did not negatively influence quality traits. Performance progress of grain and quality traits of 78 winter rye varieties tested in official German trials to assess the value for cultivation and use (VCU) were evaluated during 1989 and 2014. We dissected progress into a genetic and a non-genetic component for hybrid and population varieties by applying mixed models, including regression components to model trends. VCU trial results were compared with grain yield and quality data from a national harvest survey (on-farm data). Yield gain for hybrid varieties was 23.3% (18.9 dt ha -1 ) and for population varieties 18.1% (13.0 dt ha -1 ) relative to 1989. On-farm yield progress of 18.9% (8.7 dt ha -1 ) was considerably lagging behind VCU trials, and mean yield levels were substantially lower than in field trials. Most of the yield progress was generated by genetic improvement. For hybrid varieties, ear density was the determining yield component, whereas for population varieties, it was thousand grain mass. Results for VCU trials showed no statistically significant gains or losses in rye quality traits. For on-farm data, we found a positive but non-significant gain in falling number and amylogram viscosity and temperature. Variation of grain and quality traits was strongly influenced by environments, whereas genotypic variation was less than 19% of total variation. Grain yield was strongly negatively associated with protein concentration, yet was weakly to moderately positively associated with quality traits. In general, our results from VCU trials and on-farm data indicated that increasing grain yield and decreasing protein concentration did not negatively affect rye quality traits.
Using normalized difference vegetation index (NDVI) to estimate sugarcane yield and yield components
USDA-ARS?s Scientific Manuscript database
Sugarcane (Saccharum spp.) yield and yield components are important traits for growers and scientists to evaluate and select cultivars. Collection of these yield data would be labor intensive and time consuming in the early selection stages of sugarcane breeding cultivar development programs with a ...
Robust LOD scores for variance component-based linkage analysis.
Blangero, J; Williams, J T; Almasy, L
2000-01-01
The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.
Phenotypic and genetic structure of traits delineating personality disorder.
Livesley, W J; Jang, K L; Vernon, P A
1998-10-01
The evidence suggests that personality traits are hierarchically organized with more specific or lower-order traits combining to form more generalized higher-order traits. Agreement exists across studies regarding the lower-order traits that delineate personality disorder but not the higher-order traits. This study seeks to identify the higher-order structure of personality disorder by examining the phenotypic and genetic structures underlying lower-order traits. Eighteen lower-order traits were assessed using the Dimensional Assessment of Personality Disorder-Basic Questionnaire in samples of 656 personality disordered patients, 939 general population subjects, and a volunteer sample of 686 twin pairs. Principal components analysis yielded 4 components, labeled Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity, that were similar across the 3 samples. Multivariate genetic analyses also yielded 4 genetic and environmental factors that were remarkably similar to the phenotypic factors. Analysis of the residual heritability of the lower-order traits when the effects of the higher-order factors were removed revealed a substantial residual heritable component for 12 of the 18 traits. The results support the following conclusions. First, the stable structure of traits across clinical and nonclinical samples is consistent with dimensional representations of personality disorders. Second, the higher-order traits of personality disorder strongly resemble dimensions of normal personality. This implies that a dimensional classification should be compatible with normative personality. Third, the residual heritability of the lower-order traits suggests that the personality phenotypes are based on a large number of specific genetic components.
González-Ribot, Gerlitt; Opazo, Marcela; Silva, Paola; Acevedo, Edmundo
2017-01-01
Yield under water stress (YS) is used as the main criterion in the selection of wheat varieties for dry Mediterranean environments. It has been proposed that selection of genotypes using YS assisted by morphological and physiological traits associated with YS is more efficient in selecting high yielding genotypes for dry environments. A study was carried out at the Antumapu Experiment Station of the University of Chile, located in Santiago, Chile (33° 40′S and 70° 38′ W). The objective was to evaluate the extent to which morpho physiological traits could explain YS. For this purpose, grain yield and yield components of 185 durum wheat genotypes from ICARDA (International Center for Agricultural Research in the Dry Areas) and INIA (Chilean National Institute for Agricultural Research) were evaluated along with seed size and weight, days to heading (DH), glaucousness (GLAU), plant height (PH) and 13C discrimination (Δ). The design was an α-lattice with two replications, the genotypes were grown in two different water conditions (high and low irrigation) during two seasons (2011-2012/2012-2013). Grain weight (GW) was the only yield component with high H associated with YS, but it was not associated with yield under high irrigation (YI). The combination of YI with DH+GLAU+PH+Δ+GW obtained in LI environments explained a greater fraction of YS (38%) across years; these traits had lower genotype x environment interaction than YS, they also explained a higher proportion of yield under drought than YI. None of the traits studied could replace YS in selections for grain yield. It is concluded that these traits could aid in the selection of durum wheat subject to water stress, particularly in early generations. PMID:29104578
Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.
Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143
Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo
2013-01-01
Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793
Yu, Jiwen; Zhang, Ke; Li, Shuaiyang; Yu, Shuxun; Zhai, Honghong; Wu, Man; Li, Xingli; Fan, Shuli; Song, Meizhen; Yang, Daigang; Li, Yunhai; Zhang, Jinfa
2013-01-01
Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.
Haile-Mariam, M; Pryce, J E
2017-05-01
Lactose is a major component of milk (typically around 5% of composition) that is not usually directly considered in national genetic improvement programs of dairy cattle. Daily test-day lactose yields and percentage data from pasture-based seasonal calving herds in Australia were analyzed to assess if lactose content can be used for predicting fitness traits and if an additional benefit is achieved by including lactose yield in selecting for milk yield traits. Data on lactose percentage collected from 2007 to 2014, from about 600 herds, were used to estimated genetic parameters for lactose percentage and lactose yield and correlations with other milk yield traits, somatic cell count (SCC), calving interval (CIV), and survival. Daily test-day data were analyzed using bivariate random regression models. In addition, multi-trait models were also performed mainly to assess the value of lactose to predict fitness traits. The heritability of lactose percentage (0.25 to 0.37) was higher than lactose yield (0.11 to 0.20) in the first parity. Genetically, the correlation of lactose percentage with protein percentage varied from 0.3 at the beginning of lactation to -0.24 at the end of the lactation in the first parity. Similar patterns in genetic correlations were also observed in the second and third parity. At all levels (i.e., genetic, permanent environmental, and residual), the correlation between milk yield and lactose yield was close to 1. The genetic and permanent environmental correlations between lactose percentage and SCC were stronger in the second and third parity and toward the end of the lactation (-0.35 to -0.50) when SCC levels are at their maximum. The genetic correlation between lactose percentage in the first 120 d and CIV (-0.23) was similar to correlation of CIV with protein percentage (-0.28), another component trait with the potential to predict fertility. Furthermore, the correlations of estimated breeding values of lactose percentage and estimated breeding values of traits such as survival, fertility, SCC, and angularity suggest that the value of lactose percentage as a predictor of fitness traits is weak. The results also suggest that including lactose yield as a trait into the breeding objective is of limited value due to the high positive genetic correlation between lactose yield and protein yield, the trait highly emphasized in Australia. However, recording lactose percentage as part of the routine milk recording system will enable the Australian dairy industry to respond quickly to any future changes and market signals. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Grieder, Christoph; Dhillon, Baldev S; Schipprack, Wolfgang; Melchinger, Albrecht E
2012-04-01
Biofuels have gained importance recently and the use of maize biomass as substrate in biogas plants for production of methane has increased tremendously in Germany. The objectives of our research were to (1) estimate variance components and heritability for different traits relevant to biogas production in testcrosses (TCs) of maize, (2) study correlations among traits, and (3) discuss strategies to breed maize as a substrate for biogas fermenters. We evaluated 570 TCs of 285 diverse dent maize lines crossed with two flint single-cross testers in six environments. Data were recorded on agronomic and quality traits, including dry matter yield (DMY), methane fermentation yield (MFY), and methane yield (MY), the product of DMY and MFY, as the main target trait. Estimates of variance components showed general combining ability (GCA) to be the major source of variation. Estimates of heritability exceeded 0.67 for all traits and were even much greater in most instances. Methane yield was perfectly correlated with DMY but not with MFY, indicating that variation in MY is primarily determined by DMY. Further, DMY had a larger heritability and coefficient of genetic variation than MFY. Hence, for improving MY, selection should primarily focus on DMY rather than MFY. Further, maize breeding for biogas production may diverge from that for forage production because in the former case, quality traits seem to be of much lower importance.
Definition of architectural ideotypes for good yield capacity in Coffea canephora.
Cilas, Christian; Bar-Hen, Avner; Montagnon, Christophe; Godin, Christophe
2006-03-01
Yield capacity is a target trait for selection of agronomically desirable lines; it is preferred to simple yields recorded over different harvests. Yield capacity is derived using certain architectural parameters used to measure the components of yield capacity. Observation protocols for describing architecture and yield capacity were applied to six clones of coffee trees (Coffea canephora) in a comparative trial. The observations were used to establish architectural databases, which were explored using AMAPmod, a software dedicated to the analyses of plant architecture data. The traits extracted from the database were used to identify architectural parameters for predicting the yield of the plant material studied. Architectural traits are highly heritable and some display strong genetic correlations with cumulated yield. In particular, the proportion of fruiting nodes at plagiotropic level 15 counting from the top of the tree proved to be a good predictor of yield over two fruiting cycles.
Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny
Mendes-Moreira, Pedro; Alves, Mara L.; Satovic, Zlatko; dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E.; Hallauer, Arnel R.; Vaz Patto, Maria Carlota
2015-01-01
Maize ear fasciation Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Material and Methods Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Results and Discussion Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Conclusions Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning. PMID:25923975
Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny.
Mendes-Moreira, Pedro; Alves, Mara L; Satovic, Zlatko; Dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E; Hallauer, Arnel R; Vaz Patto, Maria Carlota
2015-01-01
Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.
Debebe, Abel; Singh, Harijat; Tefera, Hailu
2014-01-01
This experiment was conducted at Debre Zeit and Akaki during 2004-2005 cropping season on F2-derived F4 bulk families of three crosses, viz, DZ-01-974 x DZ-01-2786, DZ-01-974 x DZ-Cr-37 and Alba x Kaye Murri. To estimate the correlations and path coefficients between yield and yield components, 63 F4 families were taken randomly from each of the three crosses. The 189 F4 families, five parents and two checks were space planted following in 14 x 14 simple lattice design. Study of associations among traits indicated that yield was positively associated with shoot biomass, harvest index, lodging index and panicle kernel weight at phenotypic level at Debre Zeit. At Akaki, yield had significant positive correlation with shoot biomass, harvest index, plant height, panicle length and panicle weight. At genotypic level, grain yield per plot exhibited positive association with harvest index, shoot biomass, lodging index and panicle kernel weight at Debre Zeit. By contrast, days to heading, days to maturity, plant height and panicle length showed negative association with yield. At Akaki, kernel yield per plot was positively correlated at genotypic level with all the traits considered where lodging index had the highest correlation followed by shoot biomass, panicle kernel weight and harvest index. Path coefficient analysis at both phenotypic and genotypic levels for both the locations suggested those shoot biomass and harvest indexes are the two important yield determining traits. These two traits might be useful in indirect selection for yield improvement in the material generated from the three crosses under consideration.
Stay-green traits to improve wheat adaptation in well-watered and water-limited environments
Christopher, John.T.; Christopher, Mandy J.; Borrell, Andrew K.; Fletcher, Susan; Chenu, Karine
2016-01-01
A stay-green phenotype enables crops to retain green leaves longer after anthesis compared with senescent types, potentially improving yield. Measuring the normalized difference vegetative index (NDVI) during the whole senescence period allows quantification of component stay-green traits contributing to a stay-green phenotype. These objective and standardized traits can be compared across genotypes and environments. Traits examined include maximum NDVI near anthesis (Nmax), senescence rate (SR), a trait integrating senescence (SGint), plus time from anthesis to onset (OnS), mid-point (MidS), and near completion (EndS) of senescence. The correlation between stay-green traits and yield was studied in eight contrasting environments ranging from well watered to severely water limited. Environments were each classified into one of the four major drought environment types (ETs) previously identified for the Australian wheat cropping system. SGint, OnS, and MidS tended to have higher values in higher yielding environments for a given genotype, as well as for higher yielding genotypes within a given environment. Correlation between specific stay-green traits and yield varied with ET. In the studied population, SGint, OnS, and MidS strongly correlated with yield in three of the four ETs which included well-watered environments (0.43–0.86), but less so in environments with only moderate water-stress after anthesis (−0.03 to 0.31). In contrast, Nmax was most highly correlated with yield under moderate post-anthesis water stress (0.31–0.43). Selection for particular stay-green traits, combinations of traits, and/or molecular markers associated with the traits could enhance genetic progress toward stay-green wheats with higher, more stable yield in both well-watered and water-limited conditions. PMID:27443279
Ahmad, Faiz; Hanafi, Mohamed Musa; Hakim, Md Abdul; Rafii, Mohd Y.; Arolu, Ibrahim Wasiu; Akmar Abdullah, Siti Nor
2015-01-01
Coloured rice genotypes have greater nutritious value and consumer demand for these varieties is now greater than ever. The documentation of these genotypes is important for the improvement of the rice plant. In this study, 42 coloured rice genotypes were selected for determination of their genetic divergence using 25 simple sequence repeat (SSR) primers and 15 agro-morphological traits. Twenty-one out of the 25 SSR primers showed distinct, reproducible polymorphism. A dendrogram constructed using the SSR primers clustered the 42 coloured rice genotypes into 7 groups. Further, principle component analysis showed 75.28% of total variations were explained by the first—three components. All agro-morphological traits showed significant difference at the (p≤0.05) and (p≤0.01) levels. From the dendrogram constructed using the agro-morphological traits, all the genotypes were clustered into four distinct groups. Pearson’s correlation coefficient showed that among the 15 agro-morphological traits, the yield contributing factor had positive correlation with the number of tillers, number of panicles, and panicle length. The heritability of the 15 traits ranged from 17.68 to 99.69%. Yield per plant and harvest index showed the highest value for both heritability and genetic advance. The information on the molecular and agro-morphological traits can be used in rice breeding programmes to improve nutritional value and produce higher yields. PMID:26393807
Cecchinato, A; Albera, A; Cipolat-Gotet, C; Ferragina, A; Bittante, G
2015-07-01
Cheese yield is the most important technological parameter in the dairy industry in many countries. The aim of this study was to infer (co)variance components for cheese yields (CY) and nutrient recoveries in curd (REC) predicted using Fourier-transform infrared (FTIR) spectroscopy of samples collected during milk recording on Holstein, Brown Swiss, and Simmental dairy cows. A total of 311,354 FTIR spectra representing the test-day records of 29,208 dairy cows (Holstein, Brown Swiss, and Simmental) from 654 herds, collected over a 3-yr period, were available for the study. The traits of interest for each cow consisted of 3 cheese yield traits (%CY: fresh curd, curd total solids, and curd water as a percent of the weight of the processed milk), 4 curd nutrient recovery traits (REC: fat, protein, total solids, and the energy of the curd as a percent of the same nutrient in the processed milk), and 3 daily cheese production traits (daily fresh curd, total solids, and the water of the curd per cow). Calibration equations (freely available upon request to the corresponding author) were used to predict individual test-day observations for these traits. The (co)variance components were estimated for the CY, REC, milk production, and milk composition traits via a set of 4-trait analyses within each breed. All analyses were performed using REML and linear animal models. The heritabilities of the %CY were always higher for Holstein and Brown Swiss cows (0.22 to 0.33) compared with Simmental cows (0.14 to 0.18). In general, the fresh cheese yield (%CYCURD) showed genetic variation and heritability estimates that were slightly higher than those of its components, %CYSOLIDS and %CYWATER. The parameter RECPROTEIN was the most heritable trait in all the 3 breeds, with values ranging from 0.32 to 0.41. Our estimation of the genetic relationships of the CY and REC with milk production and composition revealed that the current selection strategies used in dairy cattle are expected to exert only limited effects on the REC traits. Instead, breeders may be able to exploit genetic variations in the %CY, particularly RECFAT and RECPROTEIN. This last component is not explained by the milk protein content, suggesting that its direct selection could be beneficial for cheese production aptitude. Collectively, our findings indicate that breeding strategies aimed at enhancing CY and REC could be easily and rapidly implemented for dairy cattle populations in which FTIR spectra are routinely acquired from individual milk samples. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fine phenotyping of pod and seed traits in Arachis germplasm accessions using digital image analysis
USDA-ARS?s Scientific Manuscript database
Reliable and objective phenotyping of peanut pod and seed traits is important for cultivar selection and genetic mapping of yield components. To develop useful and efficient methods to quantitatively define peanut pod and seed traits, a group of peanut germplasm with high levels of phenotypic varia...
Wang, Hongqiu; Zhang, Xiangge; Yang, Huili; Liu, Xiaoyang; Li, Huimin; Yuan, Liang; Li, Weihua; Fu, Zhiyuan; Tang, Jihua; Kang, Dingming
2016-01-01
Heterosis has widely been used to increase grain yield and quality. In this study, the genetic basis of heterosis on grain yield and its main components in maize were examined over 2 years in two locations in two test populations constructed from a set of 184 chromosome segment substitution lines (CSSLs) and two inbred lines (Zheng58 and Xun9058). Of the 169 heterotic loci (HL) associated with grain yield and its five components identified in CSSL × Zheng58 and CSSL × Xun9058 test populations, only 25 HL were detected in both populations. The comparison of quantitative trait loci (QTLs) detected in the CSSL population with HL detected in the two test populations revealed that only 15.46% and 17.35% of the HL in the given populations respectively, shared the same chromosomal regions as that of the corresponding QTLs and showed dominant effects as well as pleiotropism with additive and dominant effects. In addition, most of the HL (74.23% and 74.49%) had overdominant effects. These results suggest that overdominance is the main contributor to the effects of heterosis on grain yield and its components in maize, and different HL are associated with heterosis for different traits in different hybrids. PMID:27917917
We are making inroads on health and fitness traits
USDA-ARS?s Scientific Manuscript database
Dairy producers have used genetic selection to make dramatic improvements in milk and components yields over the past 50 years. Production traits are easy to measure, have relatively high heritabilities, and are directly tied to the financial success of the farm enterprise. The increasing importance...
USDA-ARS?s Scientific Manuscript database
Alleles from wild progenitors of crops can be a source of transgressive variation in modern cultivars. Introgressions from the Oryza rufipogon donor (IRGC104591) in an O. sativa tropical japonica cultivar (Jefferson) were shown to confer a yield advantage in multi-location field trials. Yield loci...
Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C
2014-02-28
Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.
Exploiting induced variation to dissect quantitative traits in barley.
Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie
2010-04-01
The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.
Balakrishnan, Divya; Subrahmanyam, Desiraju; Badri, Jyothi; Raju, Addanki Krishnam; Rao, Yadavalli Venkateswara; Beerelli, Kavitha; Mesapogu, Sukumar; Surapaneni, Malathi; Ponnuswamy, Revathi; Padmavathi, G.; Babu, V. Ravindra; Neelamraju, Sarla
2016-01-01
Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions. PMID:27807437
Sun, Chuanyu; VanRaden, Paul M.; Cole, John B.; O'Connell, Jeffrey R.
2014-01-01
Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield. PMID:25084281
The effects of heat stress in Italian Holstein dairy cattle.
Bernabucci, U; Biffani, S; Buggiotti, L; Vitali, A; Lacetera, N; Nardone, A
2014-01-01
The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were calculated for each cow and bull (traditional EBV, traditional EBV estimated with the inclusion of THI covariate effect, and heat tolerance EBV) and the rankings of EBV for 283 bulls born after 1985 with at least 50 daughters were compared. When THI was included in the model, the ranking for 17 and 32 bulls changed for milk yield and protein percentage, respectively. The heat tolerance genetic component is not negligible, suggesting that heat tolerance selection should be included in the selection objectives. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.).
Fu, Qiang; Zhang, Peijiang; Tan, Lubin; Zhu, Zuofeng; Ma, Dan; Fu, Yongcai; Zhan, Xinchun; Cai, Hongwei; Sun, Chuanqing
2010-02-01
Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two generations (BC(4)F(2) and BC(4)F(4)), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both generations. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The Rice Diversity Panel 1 (RDP1) was developed for genome-wide association (GWA) mapping to explore the five diverse rice (Oryza sativa) subpopulations (indica, aus, aromatic, temperate japonica and tropical japonica). RDP1 was evaluated for over 30 agronomic and morphological traits, most of whic...
USDA-ARS?s Scientific Manuscript database
Common bean (Phaseolus vulgaris L.) is the most important food legume crop in Africa and Latin America where rainfall pattern is unpredictable. The objectives were to identify better yielding common bean lines with good canning quality under drought, and to identify traits that could be used as sele...
Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K
2013-01-01
We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.
NASA Astrophysics Data System (ADS)
Farshadfar, M.; Farshadfar, E.
The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.
Li, Y L; Niu, S Z; Dong, Y B; Cui, D Q; Wang, Y Z; Liu, Y Y; Wei, M G
2007-06-01
Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F(2:3) lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F(2:3) population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.
Septiningsih, E M; Prasetiyono, J; Lubis, E; Tai, T H; Tjubaryat, T; Moeljopawiro, S; McCouch, S R
2003-11-01
A BC(2)F(2) population developed from an interspecific cross between Oryza sativa (cv IR64) and O. rufipogon (IRGC 105491) was used in an advanced backcross QTL analysis to identify and introduce agronomically useful genes from this wild relative into the cultivated gene pool. The objectives of this study were: (1) to identify putative yield and yield component QTLs that can be useful to improve the elite cultivar IR64; (2) to compare the QTLs within this study with previously reported QTLs in rice as the basis for identifying QTLs that are stable across different environments and genetic backgrounds; and (3) to compare the identified QTLs with previously reported QTLs from maize to examine the degree of QTL conservation across the grass family. Two hundred eighty-five families were evaluated in two field environments in Indonesia, with two replications each, for 12 agronomic traits. A total of 165 markers consisting of 131 SSRs and 34 RFLPs were used to construct the genetic linkage map. By employing interval mapping and composite interval mapping, 42 QTLs were identified. Despite its inferior performance, 33% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield and yield components in the IR64 background. Twenty-two QTLs (53.4%) were located in similar regions as previously reported rice QTLs, suggesting the existence of stable QTLs across genetic backgrounds and environments. Twenty QTLs (47.6%) were exclusively detected in this study, uncovering potentially novel alleles from the wild, some of which might improve the performance of the tropical indica variety IR64. Additionally, several QTLs for plant height, grain weight, and flowering time detected in this study corresponded to homeologous regions in maize containing previously detected maize QTLs for these traits.
Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.
2017-01-01
To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807
Stacked -gene hybrids were not found to be superior to glyphosate resistant or Non-GMO corn hybrids
USDA-ARS?s Scientific Manuscript database
Seed costs of modern corn hybrids genetically modified with multiple traits for insect and herbicide resistance “stacked-gene” are in excess of $100.00 US per acre. Yields and net returns per acre along with yield component data were determined for ten hybrids, four stacked-gene, four glyphosate re...
Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q
2017-03-22
Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.
Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud
2017-10-01
Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Trait variation and genetic diversity in a banana genomic selection training population
Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim
2017-01-01
Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31–35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents. PMID:28586365
Trait variation and genetic diversity in a banana genomic selection training population.
Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim; Doležel, Jaroslav
2017-01-01
Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents.
Messina, Carlos D; Podlich, Dean; Dong, Zhanshan; Samples, Mitch; Cooper, Mark
2011-01-01
The effectiveness of breeding strategies to increase drought resistance in crops could be increased further if some of the complexities in gene-to-phenotype (G → P) relations associated with epistasis, pleiotropy, and genotype-by-environment interactions could be captured in realistic G → P models, and represented in a quantitative manner useful for selection. This paper outlines a promising methodology. First, the concept of landscapes was extended from the study of fitness landscapes used in evolutionary genetics to the characterization of yield-trait-performance landscapes for agricultural environments and applications in plant breeding. Second, the E(NK) model of trait genetic architecture was extended to incorporate biophysical, physiological, and statistical components. Third, a graphical representation is proposed to visualize the yield-trait performance landscape concept for use in selection decisions. The methodology was demonstrated at a particular stage of a maize breeding programme with the objective of improving the drought tolerance of maize hybrids for the US Western Corn-Belt. The application of the framework to the genetic improvement of drought tolerance in maize supported selection of Doubled Haploid (DH) lines with improved levels of drought tolerance based on physiological genetic knowledge, prediction of test-cross yield within the target population of environments, and their predicted potential to sustain further genetic progress with additional cycles of selection. The existence of rugged yield-performance landscapes with multiple peaks and intervening valleys of lower performance, as shown in this study, supports the proposition that phenotyping strategies, and the directions emphasized in genomic selection can be improved by creating knowledge of the topology of yield-trait performance landscapes.
2018-01-01
Objective The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. Conclusion These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins. PMID:28823122
Ben Zaabza, Hafedh; Ben Gara, Abderrahmen; Rekik, Boulbaba
2018-05-01
The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.
Agudelo-Gómez, Divier; Pineda-Sierra, Sebastian; Cerón-Muñoz, Mario Fernando
2015-01-01
Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits. PMID:26230093
Sulima, Paweł; Przyborowski, Jerzy A.; Kuszewska, Anna; Załuski, Dariusz; Jędryczka, Małgorzata; Irzykowski, Witold
2017-01-01
The biomass of Salix viminalis is the most highly valued source of green energy, followed by S. schwerinii, S. dasyclados and other species. Significant variability in productivity and leaf rust resistance are noted both within and among willow species, which creates new opportunities for improving willow yield parameters through selection of desirable recombinants supported with molecular markers. The aim of this study was to identify quantitative trait loci (QTLs) linked with biomass yield-related traits and the resistance/susceptibility of Salix mapping population to leaf rust. The experimental material comprised a mapping population developed based on S. viminalis × S. schwerinii hybrids. Phenotyping was performed on plants grown in a field experiment that had a balanced incomplete block design with 10 replications. Based on a genetic map, 11 QTLs were identified for plant height, 9 for shoot diameter, 3 for number of shoots and 11 for resistance/susceptibility to leaf rust. The QTLs identified in our study explained 3%–16% of variability in the analyzed traits. Our findings make significant contributions to the development of willow breeding programs and research into shrubby willow crops grown for energy. PMID:28327519
Nilforooshan, M A; Jakobsen, J H; Fikse, W F; Berglund, B; Jorjani, H
2014-06-01
The aim of this study was to investigate the effect of including milk yield data in the international genetic evaluation of female fertility traits to reduce or eliminate a possible bias because of across-country selection for milk yield. Data included two female fertility traits from Great Britain, Italy and the Netherlands, together with milk yield data from the same countries and from the United States, because the genetic trends in other countries may be influenced by selection decisions on bulls in the United States. Potentially, female fertility data had been corrected nationally for within-country selection and management biases for milk yield. Using a multiple-trait multiple across-country evaluation (MT-MACE) for the analysis of female fertility traits with milk yield, across-country selection patterns both for female fertility and milk yield can be considered simultaneously. Four analyses were performed; one single-trait multiple across-country evaluation analysis including only milk yield data, one MT-MACE analysis including only female fertility traits, and one MT-MACE analysis including both female fertility and milk yield traits. An additional MT-MACE analysis was performed including both female fertility and milk yield traits, but excluding the United States. By including milk yield traits to the analysis, female fertility reliabilities increased, but not for all bulls in all the countries by trait combinations. The presence of milk yield traits in the analysis did not considerably change the genetic correlations, genetic trends or bull rankings of female fertility traits. Even though the predicted genetic merits of female fertility traits hardly changed by including milk yield traits to the analysis, the change was not equally distributed to the whole data. The number of bulls in common between the two sets of Top 100 bulls for each trait in the two analyses of female fertility traits, with and without the four milk yield traits and their rank correlations were low, not necessarily because of the absence of the US milk yield data. The joint international genetic evaluation of female fertility traits with milk yield is recommended to make use of information on several female fertility traits from different countries simultaneously, to consider selection decisions for milk yield in the genetic evaluation of female fertility traits for obtaining more accurate estimating breeding values (EBV) and to acquire female fertility EBV for bulls evaluated for milk yield, but not for female fertility.
Direct multitrait selection realizes the highest genetic response for ratio traits.
Zetouni, L; Henryon, M; Kargo, M; Lassen, J
2017-05-01
For a number of traits the phenotype considered to be the goal trait is a combination of 2 or more traits, like methane (CH) emission (CH/kg of milk). Direct selection on CH4 emission defined as a ratio is problematic, because it is uncertain whether the improvement comes from an improvement in milk yield, a decrease in CH emission or both. The goal was to test different strategies on selecting for 2 antagonistic traits- improving milk yield while decreasing methane emissions. The hypothesis was that to maximize genetic gain for a ratio trait, the best approach is to select directly for the component traits rather than using a ratio trait or a trait where 1 trait is corrected for the other as the selection criteria. Stochastic simulation was used to mimic a dairy cattle population. Three scenarios were tested, which differed in selection criteria but all selecting for increased milk yield: 1) selection based on a multitrait approach using the correlation structure between the 2 traits, 2) the ratio of methane to milk and 3) gross methane phenotypically corrected for milk. Four correlation sets were tested in all scenarios, to access robustness of the results. An average genetic gain of 66 kg of milk per yr was obtained in all scenarios, but scenario 1 had the best response for decreased methane emissions, with a genetic gain of 24.8 l/yr, while scenarios 2 and 3 had genetic gains of 27.1 and 27.3 kg/yr. The results found were persistent across correlation sets. These results confirm the hypothesis that to obtain the highest genetic gain a multitrait selection is a better approach than selecting for the ratio directly. The results are exemplified for a methane and milk scenario but can be generalized to other situations where combined traits need to be improved.
Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua
2018-03-01
A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.
Borquis, Rusbel Raul Aspilcueta; Neto, Francisco Ribeiro de Araujo; Baldi, Fernando; Hurtado-Lugo, Naudin; de Camargo, Gregório M F; Muñoz-Berrocal, Milthon; Tonhati, Humberto
2013-09-01
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; ...
2017-02-21
In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanger, Paul; Klassen, Stephen; Mojica, Julius P.
In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less
Zong, Guo; Wang, Ahong; Wang, Lu; Liang, Guohua; Gu, Minghong; Sang, Tao; Han, Bin
2012-07-20
1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding. Copyright © 2012. Published by Elsevier Ltd.
Bahrami, R Nikkhah; Khodadadi, M; Pirivatlo, S Piry; Hassanpanah, D
2009-03-15
This experiment carried out to evaluate the effects of planting methods (seed sowing and transplanting) and head pruning (no pruning, pruning after 12th node and pruning after 16th node) on yield and yield components such as number of branches (sub-branches) per plant, fruits per plant, growth, fruit size, weight of fresh fruit, weight of seeds per fruit, number of seeds per fruit and seed yield of medicinal pumpkin. The experiment was carried out based of factorial experiment with Randomized Completely Blocks Design (RCBD) by three replications in Ardabil Agricultural and Natural Resources Researches Station at 2007. Seedlings were grown in heated greenhouse. When the climatic condition became suitable and seedlings were at the four leaves stage, both seeds and seedlings were planted at the same time in the farm. Maintenance operations were done during the growth season. Head pruning treatments were done the forecast time. The results showed that the planting methods had significant effect on the number of ripen fruits per plant, fruits diameter, weight of seeds per fruit, weight of 1000 seeds and seed yield and had no significant effect on the other traits. Also the results indicated that head pruning treatments had significant effects on the number of branches per plant, growth and seed yield and no significant on the other traits. In this experiment the most seed yield (997.8 kg ha(-1)) obtained from transplanting method with head pruning after 12th node and the least seed yield obtained from control.
Oliveira, Tássia Boeno de; Azevedo Peixoto, Leonardo de; Teodoro, Paulo Eduardo; Alvarenga, Amauri Alves de; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability.
de Oliveira, Tássia Boeno; Teodoro, Paulo Eduardo; de Alvarenga, Amauri Alves; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability. PMID:29438380
Roy, J K; Lakshmikumaran, M S; Balyan, H S; Gupta, P K
2004-02-01
Data on AFLP (eight primer pairs) and 14 phenotypic traits, collected on 55 elite and exotic bread wheat genotypes, were utilized for estimations of genetic diversity. We earlier used these 55 genotypes for a similar study using SSRs and SAMPL. As many as 615 scorable AFLP bands visualized included 287 (46.6%) polymorphic bands. The phenotypic traits included yield and its component traits, as well as physiomorphological traits like flag leaf area. Dendrograms were prepared using cluster analysis based on Jaccard's similarity coefficients in case of AFLP and on squared Euclidean distances in case of phenotypic traits. PCA was conducted using AFLP data and a PCA plot was prepared, which was compared with clustering patterns in two dendrograms, one each for AFLP and phenotypic traits. The results were also compared with published results that included studies conducted elsewhere using entirely different wheat germplasm and our own SSR and SAMPL studies based on the same 55 genotypes used in the present study. It was shown that molecular markers are superior to phenotypic traits and that AFLP and SAMPL are superior to other molecular markers for estimation of genetic diversity. On the basis of AFLP analysis and keeping in view the yield performance and stability, a pair of genotypes (E3876 and E677) was recommended for hybridization in order to develop superior cultivars.
Sartori, Cristina; Mazza, Serena; Guzzo, Nadia; Mantovani, Roberto
2015-08-01
In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade-offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity-conception interval). Fighting ability also showed low but positive genetic correlations with "masculine" morphological traits, and negative correlations with "feminine" traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of "masculinization" counteracting the official selection for milk yield. Similar evolutionary trade-off between success in competition and fitness components may be present in various species experiencing female competition. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
DuVal, Ashley; Gezan, Salvador A.; Mustiga, Guiliana; Stack, Conrad; Marelli, Jean-Philippe; Chaparro, José; Livingstone, Donald; Royaert, Stefan; Motamayor, Juan C.
2017-01-01
Breeding programs of cacao (Theobroma cacao L.) trees share the many challenges of breeding long-living perennial crops, and genetic progress is further constrained by both the limited understanding of the inheritance of complex traits and the prevalence of technical issues, such as mislabeled individuals (off-types). To better understand the genetic architecture of cacao, in this study, 13 years of phenotypic data collected from four progeny trials in Bahia, Brazil were analyzed jointly in a multisite analysis. Three separate analyses (multisite, single site with and without off-types) were performed to estimate genetic parameters from statistical models fitted on nine important agronomic traits (yield, seed index, pod index, % healthy pods, % pods infected with witches broom, % of pods other loss, vegetative brooms, diameter, and tree height). Genetic parameters were estimated along with variance components and heritabilities from the multisite analysis, and a trial was fingerprinted with low-density SNP markers to determine the impact of off-types on estimations. Heritabilities ranged from 0.37 to 0.64 for yield and its components and from 0.03 to 0.16 for disease resistance traits. A weighted index was used to make selections for clonal evaluation, and breeding values estimated for the parental selection and estimation of genetic gain. The impact of off-types to breeding progress in cacao was assessed for the first time. Even when present at <5% of the total population, off-types altered selections by 48%, and impacted heritability estimations for all nine of the traits analyzed, including a 41% difference in estimated heritability for yield. These results show that in a mixed model analysis, even a low level of pedigree error can significantly alter estimations of genetic parameters and selections in a breeding program. PMID:29250097
Evaluating physiological responses of plants to salinity stress
Negrão, S.; Schmöckel, S. M.; Tester, M.
2017-01-01
Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments. PMID:27707746
Rönnegård, L; Felleki, M; Fikse, W F; Mulder, H A; Strandberg, E
2013-04-01
Trait uniformity, or micro-environmental sensitivity, may be studied through individual differences in residual variance. These differences appear to be heritable, and the need exists, therefore, to fit models to predict breeding values explaining differences in residual variance. The aim of this paper is to estimate breeding values for micro-environmental sensitivity (vEBV) in milk yield and somatic cell score, and their associated variance components, on a large dairy cattle data set having more than 1.6 million records. Estimation of variance components, ordinary breeding values, and vEBV was performed using standard variance component estimation software (ASReml), applying the methodology for double hierarchical generalized linear models. Estimation using ASReml took less than 7 d on a Linux server. The genetic standard deviations for residual variance were 0.21 and 0.22 for somatic cell score and milk yield, respectively, which indicate moderate genetic variance for residual variance and imply that a standard deviation change in vEBV for one of these traits would alter the residual variance by 20%. This study shows that estimation of variance components, estimated breeding values and vEBV, is feasible for large dairy cattle data sets using standard variance component estimation software. The possibility to select for uniformity in Holstein dairy cattle based on these estimates is discussed. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Meditation States and Traits: EEG, ERP, and Neuroimaging Studies
ERIC Educational Resources Information Center
Cahn, B. Rael; Polich, John
2006-01-01
Neuroelectric and imaging studies of meditation are reviewed. Electroencephalographic measures indicate an overall slowing subsequent to meditation, with theta and alpha activation related to proficiency of practice. Sensory evoked potential assessment of concentrative meditation yields amplitude and latency changes for some components and…
Genetic parameters for milk urea concentration and milk traits in Polish Holstein-Friesian cows.
Rzewuska, Katarzyna; Strabel, Tomasz
2013-11-01
Milk urea concentration (MU) used by dairy producers for management purposes can be affected by selection for milk traits. To assess this problem, genetic parameters for MU in Polish Holstein-Friesian cattle were estimated for the first three lactations. The genetic correlation of MU with milk production traits, lactose percentage, fat to protein ratio (FPR) and somatic cell score (SCS) were computed with two 5-trait random regression test-day models, separately for each lactation. Data used for estimation (159,044 daily observations) came from 50 randomly sampled herds. (Co)variance components were estimated with the Bayesian Gibbs sampling method. The coefficient of variation for MU in all three parities was high (40-41 %). Average daily heritabilities of MU were 0.22 for the first parity and 0.21 for the second and third lactations. Average genetic correlations for different days in milk in the first three lactations between MU and other traits varied. They were small and negative for protein percentage (from -0.24 to -0.11) and for SCS (from -0.14 to -0.09). The weakest genetic correlation between MU and fat percentage, and between MU and lactose percentage were observed (from -0.10 to 0.10). Negative average genetic correlation with the fat to protein ratio was observed only in the first lactation (-0.14). Genetic correlations with yield traits were positive and ranged from low to moderate for protein (from 0.09 to 0.33), fat (from 0.16 to 0.35) and milk yield (from 0.20 to 0.42). These results suggest that the selection on yield traits and SCS tends to increase MU slightly.
Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.
Hayes, B J; Donoghue, K A; Reich, C M; Mason, B A; Bird-Gardiner, T; Herd, R M; Arthur, P F
2016-03-01
Enteric methane emissions from beef cattle are a significant component of total greenhouse gas emissions from agriculture. The variation between beef cattle in methane emissions is partly genetic, whether measured as methane production, methane yield (methane production/DMI), or residual methane production (observed methane production - expected methane production), with heritabilities ranging from 0.19 to 0.29. This suggests methane emissions could be reduced by selection. Given the high cost of measuring methane production from individual beef cattle, genomic selection is the most feasible approach to achieve this reduction in emissions. We derived genomic EBV (GEBV) for methane traits from a reference set of 747 Angus animals phenotyped for methane traits and genotyped for 630,000 SNP. The accuracy of GEBV was tested in a validation set of 273 Angus animals phenotyped for the same traits. Accuracies of GEBV ranged from 0.29 ± 0.06 for methane yield and 0.35 ± 0.06 for residual methane production. Selection on GEBV using the genomic prediction equations derived here could reduce emissions for Angus cattle by roughly 5% over 10 yr.
Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P
2017-01-01
Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Lalusin, Antonio; Borromeo, Teresita; Gregorio, Glenn; Hernandez, Jose; Virk, Parminder; Collard, Bertrand; McCouch, Susan R.
2015-01-01
Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models. PMID:25785447
del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A.; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L.
2016-01-01
Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ13C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha−1 under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ13C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470
Del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L
2016-01-01
Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.
Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L.
Gaikwad, Kiran B; Singh, Naveen; Bhatia, Dharminder; Kaur, Rupinder; Bains, Navtej S; Bharaj, Tajinder S; Singh, Kuldeep
2014-01-01
Utilization of "hidden genes" from wild species has emerged as a novel option for enrichment of genetic diversity for productivity traits. In rice we have generated more than 2000 lines having introgression from 'A' genome-donor wild species of rice in the genetic background of popular varieties PR114 and Pusa44 were developed. Out of these, based on agronomic acceptability, 318 lines were used for developing rice hybrids to assess the effect of introgressions in heterozygous state. These introgression lines and their recurrent parents, possessing fertility restoration ability for wild abortive (WA) cytoplasm, were crossed with cytoplasmic male sterile (CMS) line PMS17A to develop hybrids. Hybrids developed from recurrent parents were used as checks to compare the performance of 318 hybrids developed by hybridizing alien introgression lines with PMS17A. Seventeen hybrids expressed a significant increase in yield and its component traits over check hybrids. These 17 hybrids were re-evaluated in large-size replicated plots. Of these, four hybrids, viz., ILH299, ILH326, ILH867 and ILH901, having introgressions from O. rufipogon and two hybrids (ILH921 and ILH951) having introgressions from O. nivara showed significant heterosis over parental introgression line, recurrent parents and check hybrids for grain yield-related traits. Alien introgressions were detected in the lines taken as male parents for developing six superior hybrids, using a set of 100 polymorphic simple sequence repeat (SSR) markers. Percent introgression showed a range of 2.24 from in O. nivara to 7.66 from O. rufipogon. The introgressed regions and their putative association with yield components in hybrids is reported and discussed.
Zhang, Junli; Gizaw, Shiferaw Abate; Bossolini, Eligio; Hegarty, Joshua; Howell, Tyson; Carter, Arron H; Akhunov, Eduard; Dubcovsky, Jorge
2018-05-16
Chromosome regions affecting grain yield, grain yield components and plant water status were identified and validated in fall-sown spring wheats grown under full and limited irrigation. Increases in wheat production are required to feed a growing human population. To understand the genetic basis of grain yield in fall-sown spring wheats, we performed a genome-wide association study (GWAS) including 262 photoperiod-insensitive spring wheat accessions grown under full and limited irrigation treatments. Analysis of molecular variance showed that 4.1% of the total variation in the panel was partitioned among accessions originally developed under fall-sowing or spring-sowing conditions, 11.7% among breeding programs within sowing times and 84.2% among accessions within breeding programs. We first identified QTL for grain yield, yield components and plant water status that were significant in at least three environments in the GWAS, and then selected those that were also significant in at least two environments in a panel of eight biparental mapping populations. We identified and validated 14 QTL for grain yield, 15 for number of spikelets per spike, one for kernel number per spike, 11 for kernel weight and 9 for water status, which were not associated with differences in plant height or heading date. We detected significant correlations among traits and colocated QTL that were consistent with those correlations. Among those, grain yield and plant water status were negatively correlated in all environments, and six QTL for these traits were colocated or tightly linked (< 1 cM). QTL identified and validated in this study provide useful information for the improvement of fall-sown spring wheats under full and limited irrigation.
Wade, Len J.; Bartolome, Violeta; Mauleon, Ramil; Vasant, Vivek Deshmuck; Prabakar, Sumeet Mankar; Chelliah, Muthukumar; Kameoka, Emi; Nagendra, K.; Reddy, K. R. Kamalnath; Varma, C. Mohan Kumar; Patil, Kalmeshwar Gouda; Shrestha, Roshi; Al-Shugeairy, Zaniab; Al-Ogaidi, Faez; Munasinghe, Mayuri; Gowda, Veeresh; Semon, Mande; Suralta, Roel R.; Shenoy, Vinay; Vadez, Vincent; Serraj, Rachid; Shashidhar, H. E.; Yamauchi, Akira; Babu, Ranganathan Chandra; Price, Adam; McNally, Kenneth L.; Henry, Amelia
2015-01-01
The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions. PMID:25909711
Bittante, G; Ferragina, A; Cipolat-Gotet, C; Cecchinato, A
2014-10-01
Cheese yield is an important technological trait in the dairy industry. The aim of this study was to infer the genetic parameters of some cheese yield-related traits predicted using Fourier-transform infrared (FTIR) spectral analysis and compare the results with those obtained using an individual model cheese-producing procedure. A total of 1,264 model cheeses were produced using 1,500-mL milk samples collected from individual Brown Swiss cows, and individual measurements were taken for 10 traits: 3 cheese yield traits (fresh curd, curd total solids, and curd water as a percent of the weight of the processed milk), 4 milk nutrient recovery traits (fat, protein, total solids, and energy of the curd as a percent of the same nutrient in the processed milk), and 3 daily cheese production traits per cow (fresh curd, total solids, and water weight of the curd). Each unprocessed milk sample was analyzed using a MilkoScan FT6000 (Foss, Hillerød, Denmark) over the spectral range, from 5,000 to 900 wavenumber × cm(-1). The FTIR spectrum-based prediction models for the previously mentioned traits were developed using modified partial least-square regression. Cross-validation of the whole data set yielded coefficients of determination between the predicted and measured values in cross-validation of 0.65 to 0.95 for all traits, except for the recovery of fat (0.41). A 3-fold external validation was also used, in which the available data were partitioned into 2 subsets: a training set (one-third of the herds) and a testing set (two-thirds). The training set was used to develop calibration equations, whereas the testing subsets were used for external validation of the calibration equations and to estimate the heritabilities and genetic correlations of the measured and FTIR-predicted phenotypes. The coefficients of determination between the predicted and measured values in cross-validation results obtained from the training sets were very similar to those obtained from the whole data set, but the coefficient of determination of validation values for the external validation sets were much lower for all traits (0.30 to 0.73), and particularly for fat recovery (0.05 to 0.18), for the training sets compared with the full data set. For each testing subset, the (co)variance components for the measured and FTIR-predicted phenotypes were estimated using bivariate Bayesian analyses and linear models. The intraherd heritabilities for the predicted traits obtained from our internal cross-validation using the whole data set ranged from 0.085 for daily yield of curd solids to 0.576 for protein recovery, and were similar to those obtained from the measured traits (0.079 to 0.586, respectively). The heritabilities estimated from the testing data set used for external validation were more variable but similar (on average) to the corresponding values obtained from the whole data set. Moreover, the genetic correlations between the predicted and measured traits were high in general (0.791 to 0.996), and they were always higher than the corresponding phenotypic correlations (0.383 to 0.995), especially for the external validation subset. In conclusion, we herein report that application of the cross-validation technique to the whole data set tended to overestimate the predictive ability of FTIR spectra, give more precise phenotypic predictions than the calibrations obtained using smaller data sets, and yield genetic correlations similar to those obtained from the measured traits. Collectively, our findings indicate that FTIR predictions have the potential to be used as indicator traits for the rapid and inexpensive selection of dairy populations for improvement of cheese yield, milk nutrient recovery in curd, and daily cheese production per cow. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang
2018-03-12
Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.
Tharanya, Murugesan; Kholova, Jana; Sivasakthi, Kaliamoorthy; Seghal, Deepmala; Hash, Charles Tom; Raj, Basker; Srivastava, Rakesh Kumar; Baddam, Rekha; Thirunalasundari, Thiyagarajan; Yadav, Rattan; Vadez, Vincent
2018-04-21
Four genetic regions associated with water use traits, measured at different levels of plant organization, and with agronomic traits were identified within a previously reported region for terminal water deficit adaptation on linkage group 2. Close linkages between these traits showed the value of phenotyping both for agronomic and secondary traits to better understand plant productive processes. Water saving traits are critical for water stress adaptation of pearl millet, whereas maximizing water use is key to the absence of stress. This research aimed at demonstrating the close relationship between traits measured at different levels of plant organization, some putatively involved in water stress adaptation, and those responsible for agronomic performance. A fine-mapping population of pearl millet, segregating for a previously identified quantitative trait locus (QTL) for adaptation to terminal drought stress on LG02, was phenotyped for traits at different levels of plant organization in different experimental environments (pot culture, high-throughput phenotyping platform, lysimeters, and field). The linkages among traits across the experimental systems were analysed using principal component analysis and QTL co-localization approach. Four regions within the LG02-QTL were found and revealed substantial co-mapping of water use and agronomic traits. These regions, identified across experimental systems, provided genetic evidence of the tight linkages between traits phenotyped at a lower level of plant organization and agronomic traits assessed in the field, therefore deepening our understanding of complex traits and then benefiting both geneticists and breeders. In short: (1) under no/mild stress conditions, increasing biomass and tiller production increased water use and eventually yield; (2) under severe stress conditions, water savings at vegetative stage, from lower plant vigour and fewer tillers in that population, led to more water available during grain filling, expression of stay-green phenotypes, and higher yield.
Genetics of heat tolerance for milk yield and quality in Holsteins.
Santana, M L; Bignardi, A B; Pereira, R J; Stefani, G; El Faro, L
2017-01-01
Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature-humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (-0.22 to -0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality traits. Selection for higher MY, F% or P% may result in a poor response of the animals to heat stress, as a genetic antagonism was observed between the general production level and specific ability to respond to heat stress for these traits. Genetic trends confirm the adverse responses in the genetic components of heat stress over the years for milk production and quality. Consequently, the selection of Holstein cattle raised in modified environments in both tropical and sub-tropical regions should take into consideration the genetic variation in heat stress.
Zanga, Daniela; Capell, Teresa; Slafer, Gustavo A.; Christou, Paul; Savin, Roxana
2016-01-01
High-carotenoid corn (Carolight®) has been developed as a vehicle to deliver pro-vitamin A in the diet and thus address vitamin A deficiency in at-risk populations in developing countries. Like any other novel crop, the performance of Carolight® must be tested in different environments to ensure that optimal yields and productivity are maintained, particularly in this case to ensure that the engineered metabolic pathway does not attract a yield penalty. Here we compared the performance of Carolight® with its near isogenic white corn inbred parental line under greenhouse and field conditions, and monitored the stability of the introduced trait. We found that Carolight® was indistinguishable from its near isogenic line in terms of agronomic performance, particularly grain yield and its main components. We also established experimentally that the functionality of the introduced trait was indistinguishable when plants were grown in a controlled environment or in the field. Such thorough characterization under different agronomic conditions is rarely performed even for first-generation traits such as herbicide tolerance and pest resistance, and certainly not for complex second-generation traits such as the metabolic remodeling in the Carolight® variety. Our results therefore indicate that Carolight® can now be incorporated into breeding lines to generate hybrids with locally adapted varieties for further product development and assessment. PMID:27922071
Zanga, Daniela; Capell, Teresa; Slafer, Gustavo A; Christou, Paul; Savin, Roxana
2016-12-06
High-carotenoid corn (Carolight®) has been developed as a vehicle to deliver pro-vitamin A in the diet and thus address vitamin A deficiency in at-risk populations in developing countries. Like any other novel crop, the performance of Carolight® must be tested in different environments to ensure that optimal yields and productivity are maintained, particularly in this case to ensure that the engineered metabolic pathway does not attract a yield penalty. Here we compared the performance of Carolight® with its near isogenic white corn inbred parental line under greenhouse and field conditions, and monitored the stability of the introduced trait. We found that Carolight® was indistinguishable from its near isogenic line in terms of agronomic performance, particularly grain yield and its main components. We also established experimentally that the functionality of the introduced trait was indistinguishable when plants were grown in a controlled environment or in the field. Such thorough characterization under different agronomic conditions is rarely performed even for first-generation traits such as herbicide tolerance and pest resistance, and certainly not for complex second-generation traits such as the metabolic remodeling in the Carolight® variety. Our results therefore indicate that Carolight® can now be incorporated into breeding lines to generate hybrids with locally adapted varieties for further product development and assessment.
USDA-ARS?s Scientific Manuscript database
Chlorophyll is one of the major components of chloroplasts and a better understanding of the genetic basis of chlorophyll in soybean [Glycine max (L.) Merr.] might contribute to improving photosynthetic capacity and yield in regions with adverse environmental conditions. A collection of 332 diverse ...
Irano, Natalia; Bignardi, Annaiza Braga; El Faro, Lenira; Santana, Mário Luiz; Cardoso, Vera Lúcia; Albuquerque, Lucia Galvão
2014-03-01
The objective of this study was to estimate genetic parameters for milk yield, stayability, and the occurrence of clinical mastitis in Holstein cows, as well as studying the genetic relationship between them, in order to provide subsidies for the genetic evaluation of these traits. Records from 5,090 Holstein cows with calving varying from 1991 to 2010, were used in the analysis. Two standard multivariate analyses were carried out, one containing the trait of accumulated 305-day milk yields in the first lactation (MY1), stayability (STAY) until the third lactation, and clinical mastitis (CM), as well as the other traits, considering accumulated 305-day milk yields (Y305), STAY, and CM, including the first three lactations as repeated measures for Y305 and CM. The covariance components were obtained by a Bayesian approach. The heritability estimates obtained by multivariate analysis with MY1 were 0.19, 0.28, and 0.13 for MY1, STAY, and CM, respectively, whereas using the multivariate analysis with the Y305, the estimates were 0.19, 0.31, and 0.14, respectively. The genetic correlations between MY1 and STAY, MY1 and CM, and STAY and CM, respectively, were 0.38, 0.12, and -0.49. The genetic correlations between Y305 and STAY, Y305 and CM, and STAY and CM, respectively, were 0.66, -0.25, and -0.52.
Li, Xingli; Pei, Wenfeng
2016-01-01
Upland cotton (Gossypium hirstum L.), which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs) in Upland cotton with G. barbadense germplasm integration has not been well addressed. This study involved six ILs developed from an interspecific crossing and backcrossing between Upland cotton and G. barbadense and represented one of the first studies to investigate breeding potentials of a set of ILs using a full diallel analysis. High mid-parent heterosis was detected in several hybrids between ILs and a commercial cultivar, which also out-yielded the high-yielding cultivar parent in F1, F2 and F3 generations. A further analysis indicated that general ability (GCA) variance was predominant for all the traits, while specific combining ability (SCA) variance was either non-existent or much lower than GCA. The estimated GCA effects and predicted additive effects for parents in each trait were positively correlated (at P<0.01). Furthermore, GCA and additive effects for each trait were also positively correlated among generations (at P<0.05), suggesting that F2 and F3 generations can be used as a proxy to F1 in analyzing combining abilities and estimating genetic parameters. In addition, differences between reciprocal crosses in F1 and F2 were not significant for yield, yield components and fiber quality traits. But maternal effects appeared to be present for seed oil and protein contents in F3. This study identified introgression lines as good general combiners for yield and fiber quality improvement and hybrids with high heterotic vigor in yield, and therefore provided useful information for further utilization of introgression lines in cotton breeding. PMID:26730964
Zhang, Jinfa; Wu, Man; Yu, Jiwen; Li, Xingli; Pei, Wenfeng
2016-01-01
Upland cotton (Gossypium hirstum L.), which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs) in Upland cotton with G. barbadense germplasm integration has not been well addressed. This study involved six ILs developed from an interspecific crossing and backcrossing between Upland cotton and G. barbadense and represented one of the first studies to investigate breeding potentials of a set of ILs using a full diallel analysis. High mid-parent heterosis was detected in several hybrids between ILs and a commercial cultivar, which also out-yielded the high-yielding cultivar parent in F1, F2 and F3 generations. A further analysis indicated that general ability (GCA) variance was predominant for all the traits, while specific combining ability (SCA) variance was either non-existent or much lower than GCA. The estimated GCA effects and predicted additive effects for parents in each trait were positively correlated (at P<0.01). Furthermore, GCA and additive effects for each trait were also positively correlated among generations (at P<0.05), suggesting that F2 and F3 generations can be used as a proxy to F1 in analyzing combining abilities and estimating genetic parameters. In addition, differences between reciprocal crosses in F1 and F2 were not significant for yield, yield components and fiber quality traits. But maternal effects appeared to be present for seed oil and protein contents in F3. This study identified introgression lines as good general combiners for yield and fiber quality improvement and hybrids with high heterotic vigor in yield, and therefore provided useful information for further utilization of introgression lines in cotton breeding.
USDA-ARS?s Scientific Manuscript database
Plant, ear and kernel traits directly or indirectly associated with grain yield in corn (Zea mays) were suggested as "secondary" traits to select for larger grain yield, especially in open-pollinated corn varieties (OPVs) and their hybrids (OPVhs). Thirty-four secondary traits, besides grain yield, ...
Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso
2016-10-01
Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals which control leaf growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Shukla, Sudhir; Bhargava, Atul; Chatterjee, Avijeet; Pandey, Avinash Chandra; Mishra, Brij K
2010-01-15
Assessment of genetic diversity in a crop-breeding programme helps in the identification of diverse parental combinations to create segregating progenies with maximum genetic variability and facilitates introgression of desirable genes from diverse germplasm into the available genetic base. In the present study, 39 strains of vegetable amaranth (Amaranthus tricolor) were evaluated for eight morphological and seven quality traits for two test seasons to study the extent of genetic divergence among the strains. Multivariate analysis showed that the first four principal components contributed 67.55% of the variability. Cluster analysis grouped the strains into six clusters that displayed a wide range of diversity for most of the traits. Cluster analysis has proved to be an effective method in grouping strains that may facilitate effective management and utilisation in crop-breeding programmes. The diverse strains falling in different clusters were identified, which can be utilised in different hybridisation programmes to develop high-foliage-yielding varieties rich in nutritional components. Copyright (c) 2009 Society of Chemical Industry.
Assanga, Silvano O; Fuentealba, Maria; Zhang, Guorong; Tan, ChorTee; Dhakal, Smit; Rudd, Jackie C; Ibrahim, Amir M H; Xue, Qingwu; Haley, Scott; Chen, Jianli; Chao, Shiaoman; Baker, Jason; Jessup, Kirk; Liu, Shuyu
2017-01-01
Stable quantitative trait loci (QTL) are important for deployment in marker assisted selection in wheat (Triticum aestivum L.) and other crops. We reported QTL discovery in wheat using a population of 217 recombinant inbred lines and multiple statistical approach including multi-environment, multi-trait and epistatic interactions analysis. We detected nine consistent QTL linked to different traits on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B and 7A. Grain yield QTL were detected on chromosomes 2B.1 and 5B across three or four models of GenStat, MapQTL, and QTLNetwork while the QTL on chromosomes 5A.1, 6A.2, and 7A.1 were only significant with yield from one or two models. The phenotypic variation explained (PVE) by the QTL on 2B.1 ranged from 3.3-25.1% based on single and multi-environment models in GenStat and was pleiotropic or co-located with maturity (days to heading) and yield related traits (test weight, thousand kernel weight, harvest index). The QTL on 5B at 211 cM had PVE range of 1.8-9.3% and had no significant pleiotropic effects. Other consistent QTL detected in this study were linked to yield related traits and agronomic traits. The QTL on 1A was consistent for the number of spikes m-2 across environments and all the four analysis models with a PVE range of 5.8-8.6%. QTL for kernels spike-1 were found in chromosomes 1A, 2A.1, 2B.1, 6A.2, and 7A.1 with PVE ranged from 5.6-12.8% while QTL for thousand kernel weight were located on chromosomes 1A, 2B.1, 5A.1, 6A.2, 6B.1 and 7A.1 with PVEranged from 2.7-19.5%. Among the consistent QTL, five QTL had significant epistatic interactions (additive × additive) at least for one trait and none revealed significant additive × additive × environment interactions. Comparative analysis revealed that the region within the confidence interval of the QTL on 5B from 211.4-244.2 cM is also linked to genes for aspartate-semialdehyde dehydrogenase, splicing regulatory glutamine/lysine-rich protein 1 isoform X1, and UDP-glucose 6-dehydrogenase 1-like isoform X1. The stable QTL could be important for further validation, high throughput SNP development, and marker-assisted selection (MAS) in wheat.
Kelm, S C; Freeman, A E
2000-12-01
Measurement of direct and correlated responses to single-trait selection for milk yield was the major objective of regional project NC-2. The NC-2 Technical Committee included representatives from Alaska, Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska, South Dakota, Wisconsin, and the USDA. All representatives, except Illinois, Kansas and Nebraska, maintained a selection line formed by using AI sires selected for high estimated transmitting abilities for milk and a second line that served as some type of a control. Stations varied in criteria for selection of bulls for control lines. Farms were managed similarly, including feeding and management of selection and control lines as one herd, random mating within line, and restricted culling policies. Selection for milk yield effectively increased milk production. All selection lines increased milk and net income per lactation more than control lines. Realized gains matched or exceeded gains expected from estimates of breeding values. Yields of milk components increased, but component percentages decreased appreciably for selection lines. Reproduction of nulliparous animals was not affected, but days open for lactating selection cows increased in some of the individual projects. Selected cows tended to have larger health costs, specifically for mammary treatment. Udder and conformation traits did not deteriorate for selection lines, although control lines with selection of sires on genetic evaluations for type received higher type scores. There should be few reservations about undesirable responses correlated with selection for milk yield.
Efe, Lale; Killi, Fatih; Mustafayev, Sefer A
2009-10-15
In the study carried out in 2002-2003 in the East Mediterranean region of Turkey (in Kahramanmaras Province), four different naturally coloured cotton (Gossypium hirsutum L.) (dark brown, light brown, cream and green) lines from Azerbaijan and two white linted cotton varieties (Maras-92 and Sayar-314 (G. hirsutum L.)) of the region were used as material. The aim of this study was to determine seed cotton yield and yield components and major lint quality traits of investigated coloured cotton lines comprising white linted local standard cotton varieties. Field trials were established in randomized block design with four blocks. According to two year's results, it was determined that naturally coloured cottons were found similar to both white linted standard cotton varieties for sympodia number and seed cotton yield. For boll number per plant, except green cotton line all coloured cotton lines were similar to standard varieties or even some of them were better than standards. For ginning outturn, dark brown, cream and green cotton lines were found statistically similar to standard Maras-92. But all naturally coloured cotton lines had lower seed cotton weight per boll and generally lower fiber quality than white linted standard varieties. For fiber length and fiber strength cream cotton line was the best coloured cotton. And for fiber fineness only green cotton line was better than both standards. It can be said that naturally coloured cotton lines need to be improved especially for fiber quality characters in the East Mediterranean region of Turkey.
Petridis, Antonios; van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan; Graham, Julie; Hancock, Robert D
2018-05-25
Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments.
van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan
2018-01-01
Abstract Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments. PMID:29590429
Qin, Hongde; Chen, Min; Yi, Xianda; Bie, Shu; Zhang, Cheng; Zhang, Youchang; Lan, Jiayang; Meng, Yanyan; Yuan, Youlu; Jiao, Chunhai
2015-01-01
Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1-2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.
Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index.
Dao, Abdalla; Sanou, Jacob; V S Traore, Edgar; Gracen, Vernon; Danquah, Eric Y
2017-01-01
In drought-prone environments, direct selection for yield is not adequate because of the variable environment and genotype x environment interaction. Therefore, the use of secondary traits in addition to yield has been suggested. The relative usefulness of secondary traits as indirect selection criteria for maize grain yield is determined by the magnitudes of their genetic variance, heritability and genetic correlation with the grain yield. Forty eight testcross hybrids derived from lines with different genetic background and geographical origins plus 7 checks were evaluated in both well-watered and water-stressed conditions over two years for grain yield and secondary traits to determine the most appropriate secondary traits and select drought tolerant hybrids. Study found that broad-sense heritability of grain yield and Ear Per Plant (EPP) increased under drought stress. Ear aspect (EASP) and ear height (EHT) had larger correlation coefficients and direct effect on grain yield but in opposite direction, negative and positive respectively. Traits like, EPP, Tassel Size (TS) and Plant Recovery (PR) contributed to increase yield via EASP by a large negative indirect effect. Under drought stress, EHT had positive and high direct effect and negative indirect effect via plant height on grain yield indicating that the ratio between ear and plant heights (R-EPH) was associated to grain yield. Path coefficient analysis showed that traits EPP, TS, PR, EASP, R-EPH were important secondary traits in the present experiment. These traits were used in a selection index to classify hybrids according to their performance under drought. The selection procedure included also a Relative Decrease in Yield (RDY) index. Some secondary traits reported as significant selection criteria for selection under drought stress were not finally established in the present study. This is because the relationship between grain and secondary traits can be affected by various factors including germplasm, environment and applied statistical analysis. Therefore, different traits and selection procedure should be applied in the selection process of drought tolerant genotypes for diverse genetic materials and growing conditions.
Genome-wide association mapping of quantitative traits in a breeding population of sugarcane.
Racedo, Josefina; Gutiérrez, Lucía; Perera, María Francisca; Ostengo, Santiago; Pardo, Esteban Mariano; Cuenya, María Inés; Welin, Bjorn; Castagnaro, Atilio Pedro
2016-06-24
Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as random covariates may prove to be highly successful. Moreover, sequences of DArT marker associated with the traits of interest were aligned in chromosomal regions where sorghum QTLs has previously been reported. This approach could be a valuable tool to assist the improvement of sugarcane and better supply sugarcane demand that has been projected for the upcoming decades.
Genetic gains from selection for fiber traits in Gossypium hirsutum L.
de Faria, G M P; Sanchez, C F B; de Carvalho, L P; da Silva Oliveira, M; Cruz, C D
2016-11-21
Brazil is among the five largest producers of cotton in the world, cultivating the species Gossypium hirsutum L. r. latifolium Hutch. The cultivars should have good fiber quality as well as yield. Genetic improvement of fiber traits requires the study of the genetic structure of the populations under improvement, leading to the identification of promising parent plants. To this end, it is important to acquire some information, such as estimates of genetic variance components and heritability coefficients, which will support the appropriate choice of the breeding strategy to be employed as well as enable the estimation of gains from selection. This study aimed to evaluate some agronomic characteristics, such as fiber quality and yield, estimating genetic parameters for the purpose of predicting earnings. Twelve cultivars of cotton, including four male progenitors (CNPA 01-42, BRS Verde, Glandless, and Okra leaf) and eight female progenitors (Delta opal, CNPA 7H, Aroeira, Antares, Sucupira, Facual, Precoce 3, and CNPA 8H), were used in performing crosses according to design I, proposed by Comstock and Robinson (1948). The experimental design was a randomized block with four replications. We observed genetic variability among all traits as well as higher efficiency of selection for the gains related to traits. Our results showed that the combined selection presented the highest genetic gains for all traits. For fiber length, the female/male selection and the combined selection resulted in the highest genetic gain.
USDA-ARS?s Scientific Manuscript database
Cotton production is an essential component of the economy of Pakistan, and continuing to improve the yield and fiber quality of this crop will ensure the future stability of this industry. Combining ability describes the performance of genotypes when they are crossed together, and it is a common me...
USDA-ARS?s Scientific Manuscript database
Cacao (Theobroma cacao) has great potential as a component of a small tropical farming system. It adapts to a wide range of soils of climatic conditions, grows well under minimum tillage, adapts to temporary intercropping, has the potential of being sold in local and export markets and the pods are ...
Jamrozik, J; Schaeffer, L R
2012-02-01
Test-day (TD) records of milk, fat-to-protein ratio (F:P) and somatic cell score (SCS) of first-lactation Canadian Holstein cows were analysed by a three-trait finite mixture random regression model, with the purpose of revealing hidden structures in the data owing to putative, sub-clinical mastitis. Different distributions of the data were allowed in 30 intervals of days in milk (DIM), covering the lactation from 5 to 305 days. Bayesian analysis with Gibbs sampling was used for model inferences. Estimated proportion of TD records originated from cows infected with mastitis was 0.66 in DIM from 5 to 15 and averaged 0.2 in the remaining part of lactation. Data from healthy and mastitic cows exhibited markedly different distributions, with respect to both average value and the variance, across all parts of lactation. Heterogeneity of distributions for infected cows was also apparent in different DIM intervals. Cows with mastitis were characterized by smaller milk yield (down to -5 kg) and larger F:P (up to 0.13) and SCS (up to 1.3) compared with healthy contemporaries. Differences in averages between healthy and infected cows for F:P were the most profound at the beginning of lactation, when a dairy cow suffers the strongest energy deficit and is therefore more prone to mammary infection. Residual variances for data from infected cows were substantially larger than for the other mixture components. Fat-to-protein ratio had a significant genetic component, with estimates of heritability that were larger or comparable with milk yield, and was not strongly correlated with milk and SCS on both genetic and environmental scales. Daily milk, F:P and SCS are easily available from milk-recording data for most breeding schemes in dairy cattle. Fat-to-protein ratio can potentially be a valuable addition to SCS and milk yield as an indicator trait for selection against mastitis. © 2011 Blackwell Verlag GmbH.
QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.
Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin
2016-01-01
The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.
Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.
Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A
2012-10-04
We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.
Röder, Marion S.; van Eeuwijk, Fred
2014-01-01
Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping, which involves micro-malting experiments. Although there is abundant historical information available for different cultivars in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal components scores obtained from marker information. We detected 140 marker-trait associations. Some of these associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when designing strategies for multiple trait improvements. PMID:25372869
Reynolds, Matthew; Langridge, Peter
2016-06-01
Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.
Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A
2015-02-01
The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components. © 2014 Commonwealth of Australia. Global Change Biology © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianping; Sandhu, Hardev
1) The success in crop improvement programs depends largely on the extent of genetic variability available. Germplasm collections assembles all the available genetic resources and are critical for long-term crop improvement. This world sugarcane germplasm collection contains enormous genetic variability for various morphological traits, biomass yield components, adaptation and many quality traits, prospectively imbeds a large number of valuable alleles for biofuel traits such as high biomass yield, quantity and quality of lignocelluloses, stress tolerance, and nutrient use efficiency. The germplasm collection is of little value unless it is characterized and utilized for crop improvement. In this project, we phenotypicallymore » and genotypically characterized the sugarcane world germplasm collection (The results were published in two papers already and another two papers are to be published). This data will be made available for public to refer to for germplasm unitization specifically in the sugarcane and energy cane breeding programs. In addition, we are identifying the alleles contributing to the biomass traits in sugarcane germplasm. This part of project is very challenging due to the large genome and highly polyploid level of this crop. We firstly established a high throughput sugarcane genotyping pipeline in the genome and bioinformatics era (a paper is published in 2016). We identified and modified a software for genome-wide association analysis of polyploid species. The results of the alleles associated to the biomass traits will be published soon, which will help the scientific community understand the genetic makeup of the biomass components of sugarcane. Molecular breeders can develop markers for marker assisted selection of biomass traits improvement. Further, the development and release of new energy cane cultivars through this project not only improved genetic diversity but also improved dry biomass yields and resistance to diseases. These new cultivars were tested on marginal soils in Florida and showed very promising yield potential that is important for the successful use of energy cane as a dedicated feedstock for lignocellulosic ethanol production. 2) Multiple techniques at different project progress stages were utilized. For example, for the whole world germplasm accession genotyping, a cheap widely used SSR marker genotyping platform was utilized due to the large number of samples (over thousand). But the throughput of this technique is low in generating data points. However, the purpose the genotyping is to form a core collection for further high throughput genotyping. Thus the results from the SSR genotyping was quite good enough to generated the core collection. To genotype the few hundred core collection accessions, an target enrichment sequencing technology was used, which is not only high throughput in generating large number of genotyping data, but also has the candidate genes targeted to genotyping. The data generated would be sufficient in identifying the alleles contributing to the traits of interests. All the techniques used in this project are effective though extensive time was invested specifically for establish the pipeline in the experimental design, data analysis, and different approach comparison. 3) the research can benefit to the public in polyploid genotyping and new and cost efficient genotyping platform development« less
Toffanin, V; Penasa, M; McParland, S; Berry, D P; Cassandro, M; De Marchi, M
2015-05-01
The aim of the present study was to estimate genetic parameters for calcium (Ca), phosphorus (P) and titratable acidity (TA) in bovine milk predicted by mid-IR spectroscopy (MIRS). Data consisted of 2458 Italian Holstein-Friesian cows sampled once in 220 farms. Information per sample on protein and fat percentage, pH and somatic cell count, as well as test-day milk yield, was also available. (Co)variance components were estimated using univariate and bivariate animal linear mixed models. Fixed effects considered in the analyses were herd of sampling, parity, lactation stage and a two-way interaction between parity and lactation stage; an additive genetic and residual term were included in the models as random effects. Estimates of heritability for Ca, P and TA were 0.10, 0.12 and 0.26, respectively. Positive moderate to strong phenotypic correlations (0.33 to 0.82) existed between Ca, P and TA, whereas phenotypic weak to moderate correlations (0.00 to 0.45) existed between these traits with both milk quality and yield. Moderate to strong genetic correlations (0.28 to 0.92) existed between Ca, P and TA, and between these predicted traits with both fat and protein percentage (0.35 to 0.91). The existence of heritable genetic variation for Ca, P and TA, coupled with the potential to predict these components for routine cow milk testing, imply that genetic gain in these traits is indeed possible.
Biscarini, Filippo; Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella
2016-01-01
In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions. In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7) and for plant height on chromosome 6 (FDR = 0.011). We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.
[Ecological adaptability evaluation of peanut cultivars based on biomass and nutrient accumulation].
Wang, Xue; Cui, Shao-xiong; Sun, Zhi-mei; Mu, Guo-jun; Cui, Shun-li; Wang, Peng-chao; Liu, Li-feng
2015-07-01
To identify the good peanut cultivars with the properties of high yield, high nutrient use efficiency and wide adaptability, 19 selected peanut cultivars were planted in the low champaign area and piedmont plain area of Hebei Province. By using principal component analysis, the adaptability of these 19 cultivars was evaluated for different ecological regions through comparing their 16 main traits including biomass and nutrient parameters. According to the critical value of principal component (>1.0), the 16 biomass and nutrient characteristics were integrated into 4 principal components which accounted for 85% of the original information. The results indicated that there were obvious differences in yield and nutrient use efficiency for the peanut cultivars in different ecological regions. The 19 peanut cultivars were classified into 2 groups according to their ecological adaptability, and the cultivars from the group with wide adaptability could further be divided into 3 categories according to their yield and nutrient use efficiency. Among these cultivars, Yuhua 9719, Jihua 0212-4, Weihua 10, Yuhua 15, Puhua 28 and Jihua 10 were selected as the better peanut cultivars with the properties of high yield, high nutrient use efficiency and wide adaptability.
Harvesting the Pea Genome: Association Mapping of the Pisum Single Plant Plus Collection
USDA-ARS?s Scientific Manuscript database
Yield per se is a difficult trait to improve due to the quantitative nature and low heritability of this trait. Nevertheless, yield is the most important trait for crop improvement. Development of higher yielding pea cultivars will depend on harvesting allelic diversity harbored in ex situ germpla...
Petrini, J; Iung, L H S; Rodriguez, M A P; Salvian, M; Pértille, F; Rovadoscki, G A; Cassoli, L D; Coutinho, L L; Machado, P F; Wiggans, G R; Mourão, G B
2016-10-01
Information about genetic parameters is essential for selection decisions and genetic evaluation. These estimates are population specific; however, there are few studies with dairy cattle populations reared under tropical and sub-tropical conditions. Thus, the aim was to obtain estimates of heritability and genetic correlations for milk yield and quality traits using pedigree and genomic information from a Holstein population maintained in a tropical environment. Phenotypic records (n = 36 457) of 4203 cows as well as the genotypes for 57 368 single nucleotide polymorphisms from 755 of these cows were used. Covariance components were estimated using the restricted maximum likelihood method under a mixed animal model, considering a pedigree-based relationship matrix or a combined pedigree-genomic matrix. High heritabilities (around 0.30) were estimated for lactose and protein content in milk whereas moderate values (between 0.19 and 0.26) were obtained for percentages of fat, saturated fatty acids and palmitic acid in milk. Genetic correlations ranging from -0.38 to -0.13 were determined between milk yield and composition traits. The smaller estimates compared to other similar studies can be due to poor environmental conditions, which may reduce genetic variability. These results highlight the importance in using genetic parameters estimated in the population under evaluation for selection decisions. © 2016 Blackwell Verlag GmbH.
Haile-Mariam, M; Pryce, J E
2015-10-01
When using historical data, it is often assumed that the genetic correlation of the same trait recorded at different time points is reasonably close to 1. However, selection and possible changes in trait definitions means that this may not necessarily be the case. Regularly monitoring genetic parameters over time is important, as changes could reduce the accuracy of genetic evaluations. About 20 yr (1993 to 2012) of data on milk yield as well as functional and type traits from Australian Holstein dairy cattle were analyzed to assess changes in genetic correlations within and among traits over time by considering 2 traits at a time using linear random regression (RR) and multitrait (MT) models. Both residual and genetic variances for milk yield traits and calving interval (CI) increased over time, with the highest increase observed for protein yield. For most type traits some fluctuations over time were noted in both the residual and additive genetic variances. Genetic correlations among survival (i.e., from first to second lactation), milk yield traits, CI, and some type traits varied over time. The genetic correlation of the same trait (e.g., protein yield, fat yield, and some type traits) measured in different years was also less than 1.0 (0.1-0.9), which is likely to be due to selection or changes in trait definitions. Estimates of parameters from the RR model were generally similar to those from MT models that considered the same trait recorded in different year groups as different traits. However, in the case of survival and CI (i.e., lowly heritable traits), the genetic correlations over time obtained from the MT model were lower (0.21 to 0.75) than those from the RR models (0.9-1.0). Genetic correlations of survival with milk, fat, and protein yields declined from ~0.4 to 0.5 at the beginning of the study period (1993/94) to zero or negative at the end (2009/10), whereas the correlation between CI and milk yield became more unfavorable and increased from 0.3 to 0.5 over the same time period. The same pattern was observed for the genetic correlation between survival and CI, which also became more unfavorable over time and increased from 0.67 to 0.87 in absolute value. The genetic correlations of survival with type traits, such as angularity and body depth, decreased from near zero to negative (-0.3 to -0.4). But genetic correlations between pin set and survival showed less variation (0.2-0.3) over time. Similarly the genetic correlation of CI with body depth and angularity became more antagonistic over time. Over time the importance of traits such as milk yield and overall type as criteria for culling decreased, whereas the importance of fertility and possible disease incidence increased, implying that there has been a switch from voluntary to involuntary reasons dominating culling decisions. Changes in genetic correlations of the same trait and among traits over time have important implications on the accuracy of prediction of traits, such as survival and CI, which often rely on other traits as predictors and ultimately on the accuracy of genetic evaluations (traditional and genomic), and also the prediction of response to selection. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress
Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila
2017-01-01
Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association (r2 = 0.3–0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association (P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H9 will help us to identify significant loci and alleles that made H9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions. PMID:28878785
Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress.
Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila
2017-01-01
Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H 9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association ( r 2 = 0.3-0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association ( P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H 9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H 9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H 9 will help us to identify significant loci and alleles that made H 9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions.
Contribution of morphoagronomic traits to grain yield and earliness in grain sorghum.
da Silva, K J; Teodoro, P E; de Menezes, C B; Júlio, M P M; de Souza, V F; da Silva, M J; Pimentel, L D; Borém, A
2017-05-04
Given the importance of selecting lines to obtain hybrids, we aimed to verify the relationship between morphological traits that can be used as the criteria for the selection of sorghum lines with high grain yield and earliness. A total of 18 traits were evaluated in 160 sorghum elite lines, in an incomplete block design with two replicates. A correlation network was used to graphically express the estimates of phenotypic and genotypic correlations between the traits. Two path analyses were processed, the first considering grain yield and the second considering flowering as the principle dependent variable. In general, most of the variation in the grain yield and flowering of sorghum lines was explained by the traits evaluated. Selecting sorghum lines with greater width of the third leaf blade from flag leaf, panicle weight, and panicle harvest index might lead to increased grain yield, and selecting sorghum genotypes with higher plant height might lead to reduced earliness and increased grain yield. Thus, the results suggest the establishment of selection indices aiming at simultaneously increasing the grain yield and earliness in sorghum genotypes.
USDA-ARS?s Scientific Manuscript database
100-seed weight is a critical component for soybean quality and yield. The objective of the present study was to identify quantitative trait loci (QTLs) for 100-seed weight using 169 recombinant inbred lines (RILs) derived from the cross of Williams 82 x PI 366121. The parental lines and RILs were g...
Samireddypalle, Anandan; Boukar, Ousmane; Grings, Elaine; Fatokun, Christian A.; Kodukula, Prasad; Devulapalli, Ravi; Okike, Iheanacho; Blümmel, Michael
2017-01-01
Cowpea is an important legume crop in Africa, valued highly for its grain and also haulms, which are a tradable commodity in fodder markets. Fodder market surveys in Northern Nigeria showed that groundnut haulms were priced higher than cowpea haulms, probably because of their superior nutritive value. The economic value of haulms has prompted cowpea breeders and livestock nutritionists to explore haulm fodder traits as additional selection and breeding criteria. Fifty cowpea genotypes cultivated across five locations in Nigeria in 2013 and 2014 were evaluated for food fodder traits. Significant (P < 0.05) genotypic dependent variations were observed in yields (kg/ha) of grains (537–1082) and haulms (1173–3368), though significant (P < 0.05) effects of location and year were observed. Grain and fodder yield had a tendency to be positively correlated (r = 0.26, P = 0.07). Haulms were analyzed for nitrogen (N), fiber fractions, in vitro digestibility, and metabolizable energy content. Highly significant variations were observed in all genotypic and livestock nutrition traits, although location and year had significant effects. Trade-offs between grain yield and haulm fodder quality traits were largely absent and haulm acid detergent lignin and grain yield were even inversely correlated (r = -0.28, P = 0.05), that is high grain yielders had decreased haulm lignin. However, haulm N and grain yield also tended to be negatively associated (r = -0.26, P = 0.07). Haulm fodder quality traits and haulm yield were mostly positively correlated (P < 0.05). Broad sense heritabilities for grain and fodder yield were 0.50 and 0.29, respectively, while heritability for haulm fodder quality traits ranged from 0.61 to 0.67, providing opportunities for concomitant increase in grain yield and haulm fodder quality traits. Selection of the 10 highest ranking genotypes for grain yield, haulm yield, haulm N, and haulm in vitro organic matter digestibility showed selection groups overlapping, suggesting that multi-trait selection is feasible. Economical evaluation showed that choice of primary traits is context specific, highlighting the need for identifying and targeting appropriate genotypes to fit different production systems. Considering haulm quantity and quality as traits of economic value can increase overall plant value in mixed crop-livestock systems. PMID:28197154
Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E
2017-07-01
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.
Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.; ...
2018-02-03
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less
Garcia, André Luiz Seccatto; de Oliveira, Carlos Antonio Lopes; Karim, Hanner Mahmud; Sary, César; Todesco, Humberto; Ribeiro, Ricardo Pereira
2017-11-01
Improvement of fillet traits and flesh quality attributes are of great interest in farmed tilapia and other aquaculture species. The main objective of this study was to estimate genetic parameters for fillet traits (fillet weight and fillet yield) and the fat content of fillets from 1136 males combined with 2585 data records on growth traits (body weight at 290 days, weight at slaughter, and daily weight gain) of 1485 males and 1100 females from a third generation of the Aquaamerica tilapia strain. Different models were tested for each trait, and the best models were used to estimate genetic parameters for the fat content, fillet, and growth traits. Genetic and phenotypic correlations were estimated using two-trait animal models. The heritability estimates were moderate for the fat content of fillets and fillet yield (0.2-0.32) and slightly higher for body weight at slaughter (0.41). The genetic correlation between fillet yield and fat was significant (0.6), but the genetic correlations were not significant between body weight and fillet yield, body weight and fat content, daily weight gain and fillet yield, and daily weight gain and fat content (- 0.032, - 0.1, - 0.09, and - 0.4, respectively). Based on the genetic correlation estimates, it is unlikely that changes in fillet yield and fat content will occur when using growth performance as a selection criterion, but indirect changes may be expected in fat content if selecting for higher fillet yield.
Diouf, Isidore A.; Derivot, Laurent; Bitton, Frédérique; Pascual, Laura; Causse, Mathilde
2018-01-01
Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs. drought condition and the other in control vs. salt condition. Overall 250 individual lines from the MAGIC population—derived from eight parental lines covering a large diversity in cultivated tomato—were used to identify QTL in both experiments for fruit quality and yield component traits (fruit weight, number of fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a vegetative trait, leaf length. All the traits showed a large genotype variation (33–86% of total phenotypic variation) in both experiments and high heritability whatever the year or treatment. Significant genotype × treatment interactions were detected for five of the seven traits over the 2 years of experiments. QTL were mapped using 1,345 SNP markers. A total of 54 QTL were found among which 15 revealed genotype × environment interactions and 65% (35 QTL) were treatment specific. Confidence intervals of the QTL were projected on the genome physical map and allowed identifying regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied a strategy for candidate gene detection based on the high resolution mapping offered by the MAGIC population, the allelic effect of each parental line at the QTL and the sequence information of the eight parental lines. PMID:29559986
The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease.
Astle, William J; Elding, Heather; Jiang, Tao; Allen, Dave; Ruklisa, Dace; Mann, Alice L; Mead, Daniel; Bouman, Heleen; Riveros-Mckay, Fernando; Kostadima, Myrto A; Lambourne, John J; Sivapalaratnam, Suthesh; Downes, Kate; Kundu, Kousik; Bomba, Lorenzo; Berentsen, Kim; Bradley, John R; Daugherty, Louise C; Delaneau, Olivier; Freson, Kathleen; Garner, Stephen F; Grassi, Luigi; Guerrero, Jose; Haimel, Matthias; Janssen-Megens, Eva M; Kaan, Anita; Kamat, Mihir; Kim, Bowon; Mandoli, Amit; Marchini, Jonathan; Martens, Joost H A; Meacham, Stuart; Megy, Karyn; O'Connell, Jared; Petersen, Romina; Sharifi, Nilofar; Sheard, Simon M; Staley, James R; Tuna, Salih; van der Ent, Martijn; Walter, Klaudia; Wang, Shuang-Yin; Wheeler, Eleanor; Wilder, Steven P; Iotchkova, Valentina; Moore, Carmel; Sambrook, Jennifer; Stunnenberg, Hendrik G; Di Angelantonio, Emanuele; Kaptoge, Stephen; Kuijpers, Taco W; Carrillo-de-Santa-Pau, Enrique; Juan, David; Rico, Daniel; Valencia, Alfonso; Chen, Lu; Ge, Bing; Vasquez, Louella; Kwan, Tony; Garrido-Martín, Diego; Watt, Stephen; Yang, Ying; Guigo, Roderic; Beck, Stephan; Paul, Dirk S; Pastinen, Tomi; Bujold, David; Bourque, Guillaume; Frontini, Mattia; Danesh, John; Roberts, David J; Ouwehand, Willem H; Butterworth, Adam S; Soranzo, Nicole
2016-11-17
Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal. Copyright © 2016 Elsevier Inc. All rights reserved.
Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana
2013-02-01
Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.
Saowaphak, P; Duangjinda, M; Plaengkaeo, S; Suwannasing, R; Boonkum, W
2017-06-29
In this study, we estimated the genetic parameters and identified the putative quantitative trait loci (QTL) associated with the length of productive life (LPL), days open (DO), and 305-day milk yield for the first lactation (FM305) of crossbred Holstein dairy cattle. Data comprising 4,739 records collected between 1986 and 2004 were used to estimate the variance-covariance components using the multiple-trait animal linear mixed models based on the average information restricted maximum likelihood (AI-REML) algorithm. Thirty-six animals were genotyped using the Illumina BovineSNP50 Bead Chip [>50,000 single nucleotide polymorphisms (SNPs)] to identify the putative QTL in a genome-wide association study. The heritability of the production trait FM305 was 0.25 and that of the functional traits, LPL and DO, was low (0.10 and 0.06, respectively). The genetic correlation estimates demonstrated favorable negative correlations between LPL and DO (-0.02). However, we observed a favorable positive correlation between FM305 and LPL (0.43) and an unfavorable positive correlation between FM305 and DO (0.1). The GWAS results indicated that 23 QTLs on bovine chromosomes 1, 4, 5, 8, 15, 26, and X were associated with the traits of interest, and the putative QTL regions were identified within seven genes (SYT1, DOCK11, KLHL13, IL13RA1, PRKG1, GNA14, and LRRC4C). In conclusion, the heritability estimates of the LPL and DO were low. Therefore, the approach of multiple-trait selection indexes should be applied, and the QTL identified here should be considered for use in marker-assisted selection in the future.
van Binsbergen, R; Veerkamp, R F; Calus, M P L
2012-04-01
The correlated responses between traits may differ depending on the makeup of genetic covariances, and may differ from the predictions of polygenic covariances. Therefore, the objective of the present study was to investigate the makeup of the genetic covariances between the well-studied traits: milk yield, fat yield, protein yield, and their percentages in more detail. Phenotypic records of 1,737 heifers of research farms in 4 different countries were used after homogenizing and adjusting for management effects. All cows had a genotype for 37,590 single nucleotide polymorphisms (SNP). A bayesian stochastic search variable selection model was used to estimate the SNP effects for each trait. About 0.5 to 1.0% of the SNP had a significant effect on 1 or more traits; however, the SNP without a significant effect explained most of the genetic variances and covariances of the traits. Single nucleotide polymorphism correlations differed from the polygenic correlations, but only 10 regions were found with an effect on multiple traits; in 1 of these regions the DGAT1 gene was previously reported with an effect on multiple traits. This region explained up to 41% of the variances of 4 traits and explained a major part of the correlation between fat yield and fat percentage and contributes to asymmetry in correlated response between fat yield and fat percentage. Overall, for the traits in this study, the infinitesimal model is expected to be sufficient for the estimation of the variances and covariances. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fraga, Angelina Bossi; de Lima Silva, Fabiane; Hongyu, Kuang; Da Silva Santos, Darlim; Murphy, Thomas Wayne; Lopes, Fernando Brito
2016-03-01
The objective of this research was to try to unveil the relationship between production traits and genotypic proportions of crossbred dairy cattle using principal component analysis (PCA) and cluster analysis. The herd consists of crossbred animals of Holstein (H) and Zebu (Z) (Gir and Guzerat) in different genotypic proportions; the composition of which varies from 12.5 to 100.0 % of the genetic group H. For this study, 834 milk production records from 257 cows from the years 1997 to 2014 were analyzed. The animals were all managed at a farm located in northeastern Brazil. The variables in the PCA were total milk yield per lactation (MY), milk yield adjusted to 305 days (MY305), lactation length (LL), and proportion of H and Z breeding. This analysis reduced the size of the sample space from the original five variables to two principal components (PCs) that together explained 89.4 % of the total variation. MY, MY305, LL, and genotypic proportion of H all contributed positively to PC1. The genotypic proportion of Z contributed negatively, which established a contrast between H and Z. Further cluster analysis identified two distinct groups when considering production performance and genotype of the animals. The high-performance group was predominantly Holstein breeding, while the lower performing group consisted mostly of Zebu. Under the environmental and management conditions in which this research was conducted, the best performances for the traits considered were achieved from cows whose genotypic proportion was between 38.0 and 94.0 % Holstein breeding.
Li, Xiujin; Lund, Mogens Sandø; Janss, Luc; Wang, Chonglong; Ding, Xiangdong; Zhang, Qin; Su, Guosheng
2017-03-15
With the development of SNP chips, SNP information provides an efficient approach to further disentangle different patterns of genomic variances and covariances across the genome for traits of interest. Due to the interaction between genotype and environment as well as possible differences in genetic background, it is reasonable to treat the performances of a biological trait in different populations as different but genetic correlated traits. In the present study, we performed an investigation on the patterns of region-specific genomic variances, covariances and correlations between Chinese and Nordic Holstein populations for three milk production traits. Variances and covariances between Chinese and Nordic Holstein populations were estimated for genomic regions at three different levels of genome region (all SNP as one region, each chromosome as one region and every 100 SNP as one region) using a novel multi-trait random regression model which uses latent variables to model heterogeneous variance and covariance. In the scenario of the whole genome as one region, the genomic variances, covariances and correlations obtained from the new multi-trait Bayesian method were comparable to those obtained from a multi-trait GBLUP for all the three milk production traits. In the scenario of each chromosome as one region, BTA 14 and BTA 5 accounted for very large genomic variance, covariance and correlation for milk yield and fat yield, whereas no specific chromosome showed very large genomic variance, covariance and correlation for protein yield. In the scenario of every 100 SNP as one region, most regions explained <0.50% of genomic variance and covariance for milk yield and fat yield, and explained <0.30% for protein yield, while some regions could present large variance and covariance. Although overall correlations between two populations for the three traits were positive and high, a few regions still showed weakly positive or highly negative genomic correlations for milk yield and fat yield. The new multi-trait Bayesian method using latent variables to model heterogeneous variance and covariance could work well for estimating the genomic variances and covariances for all genome regions simultaneously. Those estimated genomic parameters could be useful to improve the genomic prediction accuracy for Chinese and Nordic Holstein populations using a joint reference data in the future.
Benlhabib, Ouafae; Boujartani, Noura; Maughan, Peter J.; Jacobsen, Sven E.; Jellen, Eric N.
2016-01-01
Quinoa (Chenopodium quinoa) is a seed crop of the Andean highlands and Araucanian coastal regions of South America that has recently expanded in use and production beyond its native range. This is largely due to its superb nutritional value, consisting of protein that is rich in essential amino acids along with vitamins and minerals. Quinoa also presents a remarkable degree of tolerance to saline conditions, drought, and frost. The present study involved 72 F2:6 recombinant-inbred lines and parents developed through hybridization between highland (0654) and coastal (NL-6) germplasm groups. The purpose was to characterize the quinoa germplasm developed, to assess the discriminating potential of 21 agro-morpho-phenological traits, and to evaluate the extent of genetic variability recovered through selfing. A vast amount of genetic variation was detected among the 72 lines evaluated for quantitative and qualitative traits. Impressive transgressive segregation was measured for seed yield (22.42 g/plant), while plant height and maturity had higher heritabilities (73 and 89%, respectively). Other notable characters segregating in the population included panicle and stem color, panicle form, and resistance to downy mildew. In the Principal Component analysis, the first axis explained 74% of the total variation and was correlated to plant height, panicle size, stem diameter, biomass, mildew reaction, maturation, and seed yield; those traits are relevant discriminatory characters. Yield correlated positively with panicle length and biomass. Unweighted Pair Group Method with Arithmetic Mean-based cluster analysis identified three groups: one consisting of late, mildew-resistant, high-yielding lines; one having semi-late lines with intermediate yield and mildew susceptibility; and a third cluster consisting of early to semi-late accessions with low yield and mildew susceptibility. This study highlighted the extended diversity regenerated among the 72 accessions and helped to identify potentially adapted quinoa genotypes for production in the Moroccan coastal environment. PMID:27582753
Turuspekov, Yerlan; Baibulatova, Aida; Yermekbayev, Kanat; Tokhetova, Laura; Chudinov, Vladimir; Sereda, Grigoriy; Ganal, Martin; Griffiths, Simon; Abugalieva, Saule
2017-11-14
Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS. Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits. Field evaluation of foreign germplasm revealed its poor yield performance in Northern Kazakhstan, which is the main wheat growing region in the country. However, it was found that EU and CIMMYT germplasm has high breeding potential to improve yield performance in Central and Southern regions. The use of Principal Coordinate analysis clearly separated the panel into three distinct groups according to their breeding origin. GWAS based on use of the TASSEL 5.0 package allowed the identification of 114 MTAs for twelve agronomic traits. The study identifies a network of key genes for improvement of yield productivity in wheat growing regions of Kazakhstan.
Robson, Paul R H; Farrar, Kerrie; Gay, Alan P; Jensen, Elaine F; Clifton-Brown, John C; Donnison, Iain S
2013-05-01
Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed.
Robson, Paul R.H.; Farrar, Kerrie; Gay, Alan P.; Jensen, Elaine F.; Clifton-Brown, John C.; Donnison, Iain S.
2013-01-01
Energy crops can provide a sustainable source of power and fuels, and mitigate the negative effects of CO2 emissions associated with fossil fuel use. Miscanthus is a perennial C4 energy crop capable of producing large biomass yields whilst requiring low levels of input. Miscanthus is largely unimproved and therefore there could be significant opportunities to increase yield. Further increases in yield will improve the economics, energy balance, and carbon mitigation of the crop, as well as reducing land-take. One strategy to increase yield in Miscanthus is to maximize the light captured through an extension of canopy duration. In this study, canopy duration was compared among a diverse collection of 244 Miscanthus genotypes. Canopy duration was determined by calculating the number of days between canopy establishment and senescence. Yield was positively correlated with canopy duration. Earlier establishment and later senescence were also both separately correlated with higher yield. However, although genotypes with short canopy durations were low yielding, not all genotypes with long canopy durations were high yielding. Differences of yield between genotypes with long canopy durations were associated with variation in stem and leaf traits. Different methodologies to assess canopy duration traits were investigated, including visual assessment, image analysis, light interception, and different trait thresholds. The highest correlation coefficients were associated with later assessments of traits and the use of quantum sensors for canopy establishment. A model for trait optimization to enable yield improvement in Miscanthus and other bioenergy crops is discussed. PMID:23599277
Estimation of Relative Economic Weights of Hanwoo Carcass Traits Based on Carcass Market Price
Choy, Yun Ho; Park, Byoung Ho; Choi, Tae Jung; Choi, Jae Gwan; Cho, Kwang Hyun; Lee, Seung Soo; Choi, You Lim; Koh, Kyung Chul; Kim, Hyo Sun
2012-01-01
The objective of this study was to estimate economic weights of Hanwoo carcass traits that can be used to build economic selection indexes for selection of seedstocks. Data from carcass measures for determining beef yield and quality grades were collected and provided by the Korean Institute for Animal Products Quality Evaluation (KAPE). Out of 1,556,971 records, 476,430 records collected from 13 abattoirs from 2008 to 2010 after deletion of outlying observations were used to estimate relative economic weights of bid price per kg carcass weight on cold carcass weight (CW), eye muscle area (EMA), backfat thickness (BF) and marbling score (MS) and the phenotypic relationships among component traits. Price of carcass tended to increase linearly as yield grades or quality grades, in marginal or in combination, increased. Partial regression coefficients for MS, EMA, BF, and for CW in original scales were +948.5 won/score, +27.3 won/cm2, −95.2 won/mm and +7.3 won/kg when all three sex categories were taken into account. Among four grade determining traits, relative economic weight of MS was the greatest. Variations in partial regression coefficients by sex categories were great but the trends in relative weights for each carcass measures were similar. Relative economic weights of four traits in integer values when standardized measures were fit into covariance model were +4:+1:−1:+1 for MS:EMA:BF:CW. Further research is required to account for the cost of production per unit carcass weight or per unit production under different economic situations. PMID:25049531
Genetic Characterization of Dog Personality Traits.
Ilska, Joanna; Haskell, Marie J; Blott, Sarah C; Sánchez-Molano, Enrique; Polgar, Zita; Lofgren, Sarah E; Clements, Dylan N; Wiener, Pamela
2017-06-01
The genetic architecture of behavioral traits in dogs is of great interest to owners, breeders, and professionals involved in animal welfare, as well as to scientists studying the genetics of animal (including human) behavior. The genetic component of dog behavior is supported by between-breed differences and some evidence of within-breed variation. However, it is a challenge to gather sufficiently large datasets to dissect the genetic basis of complex traits such as behavior, which are both time-consuming and logistically difficult to measure, and known to be influenced by nongenetic factors. In this study, we exploited the knowledge that owners have of their dogs to generate a large dataset of personality traits in Labrador Retrievers. While accounting for key environmental factors, we demonstrate that genetic variance can be detected for dog personality traits assessed using questionnaire data. We identified substantial genetic variance for several traits, including fetching tendency and fear of loud noises, while other traits revealed negligibly small heritabilities. Genetic correlations were also estimated between traits; however, due to fairly large SEs, only a handful of trait pairs yielded statistically significant estimates. Genomic analyses indicated that these traits are mainly polygenic, such that individual genomic regions have small effects, and suggested chromosomal associations for six of the traits. The polygenic nature of these traits is consistent with previous behavioral genetics studies in other species, for example in mouse, and confirms that large datasets are required to quantify the genetic variance and to identify the individual genes that influence behavioral traits. Copyright © 2017 by the Genetics Society of America.
Fadil, Mouhcine; Farah, Abdellah; Ihssane, Bouchaib; Haloui, Taoufik; Lebrazi, Sara; Zghari, Badreddine; Rachiq, Saâd
2016-01-01
To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.
Belay, T K; Svendsen, M; Kowalski, Z M; Ådnøy, T
2017-08-01
The aim of this study was to estimate genetic parameters for blood β-hydroxybutyrate (BHB) predicted from milk spectra and for clinical ketosis (KET), and to examine genetic association of blood BHB with KET and milk production traits (milk, fat, protein, and lactose yields, and milk fat, protein, and lactose contents). Data on milk traits, KET, and milk spectra were obtained from the Norwegian Dairy Herd Recording System with legal permission from TINE SA (Ås, Norway), the Norwegian Dairy Association that manages the central database. Data recorded up to 120 d after calving were considered. Blood BHB was predicted from milk spectra using a calibration model developed based on milk spectra and blood BHB measured in Polish dairy cows. The predicted blood BHB was grouped based on days in milk into 4 groups and each group was considered as a trait. The milk components for test-day milk samples were obtained by Fourier transform mid-infrared spectrometer with previously developed calibration equations from Foss (Hillerød, Denmark). Veterinarian-recorded KET data within 15 d before calving to 120 d after calving were used. Data were analyzed using univariate or bivariate linear animal models. Heritability estimates for predicted blood BHB at different stages of lactation were moderate, ranging from 0.250 to 0.365. Heritability estimate for KET from univariate analysis was 0.078, and the corresponding average estimate from bivariate analysis with BHB or milk production traits was 0.002. Genetic correlations between BHB traits were higher for adjacent lactation intervals and decreased as intervals were further apart. Predicted blood BHB at first test day was moderately genetically correlated with KET (0.469) and milk traits (ranged from -0.367 with protein content to 0.277 with milk yield), except for milk fat content from across lactation stages that had near zero genetic correlation with BHB (0.033). These genetic correlations indicate that a lower BHB is genetically associated with higher milk protein and lactose contents, but with lower yields of milk, fat, protein, and lactose, and with lower frequency of KET. Estimates of genetic correlation of KET with milk production traits were from -0.333 (with protein content) to 0.178 (with milk yield). Blood BHB can routinely be predicted from milk spectra analyzed from test-day milk samples, and thereby provides a practical alternative for selecting cows with lower susceptibility to ketosis, even though the correlations are moderate. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Spectral reflectance indices as a selection criterion for yield improvement in wheat
NASA Astrophysics Data System (ADS)
Babar, Md. Ali
2005-11-01
Scope and methods of study. Yield in wheat ( Triticum aestivum L.) is a complex trait and influenced by many environmental factors, and yield improvement is a daunting task for wheat breeders. Spectral reflectance indices (SRIs) have been used to study different physiological traits in wheat. SRIs have the potential to differentiate genotypes for grain yield. SRIs strongly associated with grain yield can be used to achieve effective genetic gain in wheat under different environments. Three experiments (15 adapted genotypes, 25 and 36 random sister lines derived from two different crosses) under irrigated conditions, and three experiments (each with 30 advanced genotypes) under water-limited conditions were conducted in three successive years in Northwest Mexico at the CIMMYT (International Maize and wheat Improvement Center) experimental station. SRIs and different agronomic data were collected for three years, and biomass was harvested for two years. Phenotypic and genetic correlations between SRIs and grain yield, between SRIs and biomass, realized and broad sense heritability, direct and correlated selection responses for grain yield, and SRIs were calculated. Findings and conclusion. Seven SRIs were calculated, and three near infrared based indices (WI, NWI-1 and NWI-2) showed higher level of genetic and phenotypic correlations with grain yield, yield components and biomass than other SRIs (PRI, RNDVI, GNDVI, and SR) under both irrigated and water limiting environments. Moderate to high realized and broad sense heritability, and selection response were demonstrated by the three NIR based indices. High efficiency of correlated response for yield estimation was demonstrated by the three NIR based indices. The ratio between the correlated response to grain yield based on the three NIR based indices and direct selection response for grain yield was very close to one. The NIR based indices showed very high accuracy in selecting superior genotypes for grain yield under both well-watered and water-limited conditions. These results demonstrated that effective genetic gain in grain yield improvement can be achieved by making selections with the three NIR based indices.
USDA-ARS?s Scientific Manuscript database
Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and mo...
Modeling heat stress effect on Holstein cows under hot and dry conditions: selection tools.
Carabaño, M J; Bachagha, K; Ramón, M; Díaz, C
2014-12-01
Data from milk recording of Holstein-Friesian cows together with weather information from 2 regions in Southern Spain were used to define the models that can better describe heat stress response for production traits and somatic cell score (SCS). Two sets of analyses were performed, one aimed at defining the population phenotypic response and the other at studying the genetic components. The first involved 2,514,762 test-day records from up to 5 lactations of 128,112 cows. Two models, one fitting a comfort threshold for temperature and a slope of decay after the threshold, and the other a cubic Legendre polynomial (LP) model were tested. Average (TAVE) and maximum daily temperatures were alternatively considered as covariates. The LP model using TAVE as covariate showed the best goodness of fit for all traits. Estimated rates of decay from this model for production at 25 and 34°C were 36 and 170, 3.8 and 3.0, and 3.9 and 8.2g/d per degree Celsius for milk, fat, and protein yield, respectively. In the second set of analyses, a sample of 280,958 test-day records from first lactations of 29,114 cows was used. Random regression models including quadratic or cubic LP regressions (TEM_) on TAVE or a fixed threshold and an unknown slope (DUMMY), including or not cubic regressions on days in milk (DIM3_), were tested. For milk and SCS, the best models were the DIM3_ models. In contrast, for fat and protein yield, the best model was TEM3. The DIM3DUMMY models showed similar performance to DIM3TEM3. The estimated genetic correlations between the same trait under cold and hot temperatures (ρ) indicated the existence of a large genotype by environment interaction for fat (ρ=0.53 for model TEM3) and protein yield (ρ around 0.6 for DIM3TEM3) and for SCS (ρ=0.64 for model DIM3TEM3), and a small genotype by environment interaction for milk (ρ over 0.8). The eigendecomposition of the additive genetic covariance matrix from model TEM3 showed the existence of a dominant component, a constant term that is not affected by temperature, representing from 64% of the variation for SCS to 91% of the variation for milk. The second component, showing a flat pattern at intermediate temperatures and increasing or decreasing slopes for the extremes, gathered 15, 11, and 24% of the variation for fat and protein yield and SCS, respectively. This component could be further evaluated as a selection criterion for heat tolerance independently of the production level. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chen, Yongsheng; Zein, Imad; Brenner, Everton Alen; Andersen, Jeppe Reitan; Landbeck, Mathias; Ouzunova, Milena; Lübberstedt, Thomas
2010-01-15
Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area.
2010-01-01
Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. Results In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Conclusion Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. PMID:20078869
Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J
2017-06-15
Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Parkash, Chander; Kumar, Sandeep; Singh, Rajender; Kumar, Ajay; Kumar, Satish; Dey, Shyam Sundar; Bhatia, Reeta; Kumar, Raj
2018-01-01
A comprehensive study on characterization and genetic diversity analysis was carried out in 16 'Ogura'-based 'CMS' lines of cabbage using 14 agro-morphological traits and 29 SSR markers. Agro-morphological characterization depicted considerable variations for different horticultural traits studied. The genotype, ZHA-2, performed better for most of the economically important quantitative traits. Further, gross head weight (0.76), head length (0.60) and head width (0.83) revealed significant positive correlation with net head weight. Dendrogram based on 10 quantitative traits exhibited considerable diversity among different CMS lines and principle component analysis (PCA) indicated that net and gross head weight, and head length and width are the main components of divergence between 16 CMS lines of cabbage. In molecular study, a total of 58 alleles were amplified by 29 SSR primers, averaging to 2.0 alleles in each locus. High mean values of Shannon's Information index (0.62), expected (0.45) and observed (0.32) heterozygosity and polymorphic information content (0.35) depicted substantial polymorphism. Dendrogram based on Jaccard's similarity coefficient constructed two major groups and eight sub-groups, which revealed substantial diversity among different CMS lines. In overall, based on agro-morphological and molecular studies genotype RRMA, ZHA-2 and RCA were found most divergent. Hence, they have immense potential in future breeding programs for the high-yielding hybrid development in cabbage.
Environmental and genetic factors affecting milk yield and quality in three Italian sheep breeds.
Selvaggi, Maria; D'Alessandro, Angela Gabriella; Dario, Cataldo
2017-02-01
The aims of the study described in the Research Communication were to determine the level of influence of some environmental factors on milk yield and quality traits, including lactose, and lactation length in ewes belonging to three different Italian breeds and to estimate the heritability for the same traits. A total of 2138 lactation records obtained from 535 ewes belonging to three different Italian breeds (Comisana, Leccese, and Sarda) were used. Breed significantly affected all of the considered traits. Moreover, year of lambing affected milk yield and lactation length without influence on milk quality traits. Parity affected significantly only the milk yield, whereas type of birth showed its effect on milk yield, fat, protein, and lactose yield. On the whole, the presently reported heritability estimates are within the range of those already obtained in other dairy breeds by other authors, with values for lactation length being very low in all the investigated populations. Considering the heritability estimates for lactose content and yield, to the best of our knowledge, there is a lack of information on these parameters in ovine species and this is the first report on heritability of lactose content and yield in dairy sheep breeds. Our results suggest that genetic variability for milk traits other than lactation length is adequate for selection indicating a good response to selection in these breeds.
NASA Astrophysics Data System (ADS)
Naito, Hiroki; Ogawa, Satoshi; Valencia, Milton Orlando; Mohri, Hiroki; Urano, Yutaka; Hosoi, Fumiki; Shimizu, Yo; Chavez, Alba Lucia; Ishitani, Manabu; Selvaraj, Michael Gomez; Omasa, Kenji
2017-03-01
Application of field based high-throughput phenotyping (FB-HTP) methods for monitoring plant performance in real field conditions has a high potential to accelerate the breeding process. In this paper, we discuss the use of a simple tower based remote sensing platform using modified single-lens reflex cameras for phenotyping yield traits in rice under different nitrogen (N) treatments over three years. This tower based phenotyping platform has the advantages of simplicity, ease and stability in terms of introduction, maintenance and continual operation under field conditions. Out of six phenological stages of rice analyzed, the flowering stage was the most useful in the estimation of yield performance under field conditions. We found a high correlation between several vegetation indices (simple ratio (SR), normalized difference vegetation index (NDVI), transformed vegetation index (TVI), corrected transformed vegetation index (CTVI), soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI)) and multiple yield traits (panicle number, grain weight and shoot biomass) across a three trials. Among all of the indices studied, SR exhibited the best performance in regards to the estimation of grain weight (R2 = 0.80). Under our tower-based field phenotyping system (TBFPS), we identified quantitative trait loci (QTL) for yield related traits using a mapping population of chromosome segment substitution lines (CSSLs) and a single nucleotide polymorphism data set. Our findings suggest the TBFPS can be useful for the estimation of yield performance during early crop development. This can be a major opportunity for rice breeders whom desire high throughput phenotypic selection for yield performance traits.
Genomic architecture of heterosis for yield traits in rice.
Huang, Xuehui; Yang, Shihua; Gong, Junyi; Zhao, Qiang; Feng, Qi; Zhan, Qilin; Zhao, Yan; Li, Wenjun; Cheng, Benyi; Xia, Junhui; Chen, Neng; Huang, Tao; Zhang, Lei; Fan, Danlin; Chen, Jiaying; Zhou, Congcong; Lu, Yiqi; Weng, Qijun; Han, Bin
2016-09-29
Increasing grain yield is a long-term goal in crop breeding to meet the demand for global food security. Heterosis, when a hybrid shows higher performance for a trait than both parents, offers an important strategy for crop breeding. To examine the genetic basis of heterosis for yield in rice, here we generate, sequence and record the phenotypes of 10,074 F 2 lines from 17 representative hybrid rice crosses. We classify modern hybrid rice varieties into three groups, representing different hybrid breeding systems. Although we do not find any heterosis-associated loci shared across all lines, within each group, a small number of genomic loci from female parents explain a large proportion of the yield advantage of hybrids over their male parents. For some of these loci, we find support for partial dominance of heterozygous locus for yield-related traits and better-parent heterosis for overall performance when all of the grain-yield traits are considered together. These results inform on the genomic architecture of heterosis and rice hybrid breeding.
Carthy, T R; Ryan, D P; Fitzgerald, A M; Evans, R D; Berry, D P
2016-02-01
The objective of the study was to estimate the genetic relationships between detailed reproductive traits derived from ultrasound examination of the reproductive tract and a range of performance traits in Holstein-Friesian dairy cows. The performance traits investigated included calving performance, milk production, somatic cell score (i.e., logarithm transformation of somatic cell count), carcass traits, and body-related linear type traits. Detailed reproductive traits included (1) resumed cyclicity at the time of examination, (2) multiple ovulations, (3) early ovulation, (4) heat detection, (5) ovarian cystic structures, (6) embryo loss, and (7) uterine score, measured on a 1 (little or no fluid with normal tone) to 4 (large quantity of fluid with a flaccid tone) scale, based on the tone of the uterine wall and the quantity of fluid present in the uterus. (Co)variance components were estimated using a repeatability animal linear mixed model. Genetic merit for greater milk, fat, and protein yield was associated with a reduced ability to resume cyclicity postpartum (genetic correlations ranged from -0.25 to -0.15). Higher genetic merit for milk yield was also associated with a greater genetic susceptibility to multiple ovulations. Genetic predisposition to elevated somatic cell score was associated with a decreased likelihood of cyclicity postpartum (genetic correlation of -0.32) and a greater risk of both multiple ovulations (genetic correlation of 0.25) and embryo loss (genetic correlation of 0.32). Greater body condition score was genetically associated with an increased likelihood of resumption of cyclicity postpartum (genetic correlation of 0.52). Genetically heavier, fatter carcasses with better conformation were also associated with an increased likelihood of resumed cyclicity by the time of examination (genetic correlations ranged from 0.24 to 0.41). Genetically heavier carcasses were associated with an inferior uterine score as well as a greater predisposition to embryo loss. Despite the overall antagonistic relationship between reproductive performance and both milk and carcass traits, not all detailed aspects of reproduction performance exhibited an antagonistic relationship. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
He, Huiying; Yang, Rui; Li, Yajun; Ma, Aisheng; Cao, Lanqin; Wu, Xiaoming; Chen, Biyun; Tian, Hui; Gao, Yajun
2017-01-01
Oilseed rape (Brassica napus) characteristically has high N uptake efficiency and low N utilization efficiency (NUtE, seed yield/shoot N accumulation). Determining the NUtE phenotype of various genotypes in different growth conditions is a way of finding target traits to improve oilseed rape NUtE. The aim of this study was to compare oilseed rape genotypes grown on contrasting N supply rates in pot and field experiments to investigate the genotypic variations of NUtE and to identify indicators of N efficient genotypes. For 50 oilseed rape genotypes, NUtE, dry matter and N partitioning, morphological characteristics, and the yield components were investigated under high and low N supplies in a greenhouse pot experiment and a field trial. Although the genotype rankings of NUtE were different between the pot experiment and the field trial, some genotypes performed consistently in both two environments. N-responder, N-nonresponder, N-efficient and N-inefficient genotypes were identified from these genotypes with consistent NUtE. The correlations between the pot experiment and the field trial in NUtE were only 0.34 at high N supplies and no significant correlations were found at low N supplies. However, Pearson coefficient correlation (r) and principal component analysis showed NUtE had similar genetic correlations with other traits across the pot and field experiment. Among the yield components, only seeds per silique showed strong and positive correlations with NUtE under varying N supply in both experiments (r = 0.47**; 0.49**; 0.47**; 0.54**). At high and low N supply, NUtE was positively correlated with seed yield (r = 0.45**; 0.53**; 0.39**; 0.87**), nitrogen harvest index (NHI, r = 0.68**; 0.82**; 0.99**; 0.89**), and harvest index (HI, r = 0.79**; 0.83**; 0.90**; 0.78**) and negatively correlated with biomass distribution to stem and leaf (r = −0.34**; −0.45**; −0.37**; 0.62**), all aboveground plant section N concentration (r from −0.30* to −0.80**), N distribution to the vegetative parts (silique husk, stem and leaf) (r from −0.40** to −0.83**). N-efficient (N-responder) genotypes produced more seeds per silique and had significantly higher NHI and HI than did N-inefficient (N-nonresponder) genotypes. In conclusion, across the pot and field experiments, the 50 genotypes had similar underlying traits correlated with NUtE and seeds per silique may be a good indicator of NUtE. PMID:29163565
USDA-ARS?s Scientific Manuscript database
Genetic merits in first vs. later parity with correlations <1 were compared to official repeatability models using 88 million lactation records of 34 million cows for yield traits and fewer records for somatic cell score (SCS) and 2 cow fertility traits. Estimated genetic correlations of first with ...
McLaren, A; Mucha, S; Mrode, R; Coffey, M; Conington, J
2016-07-01
Conformation traits are of interest to many dairy goat breeders not only as descriptive traits in their own right, but also because of their influence on production, longevity, and profitability. If these traits are to be considered for inclusion in future dairy goat breeding programs, relationships between them and production traits such as milk yield must be considered. With the increased use of regression models to estimate genetic parameters, an opportunity now exists to investigate correlations between conformation traits and milk yield throughout lactation in more detail. The aims of this study were therefore to (1) estimate genetic parameters for conformation traits in a population of crossbred dairy goats, (2) estimate correlations between all conformation traits, and (3) assess the relationship between conformation traits and milk yield throughout lactation. No information on milk composition was available. Data were collected from goats based on 2 commercial goat farms during August and September in 2013 and 2014. Ten conformation traits, relating to udder, teat, leg, and feet characteristics, were scored on a linear scale (1-9). The overall data set comprised data available for 4,229 goats, all in their first lactation. The population of goats used in the study was created using random crossings between 3 breeds: British Alpine, Saanen, and Toggenburg. In each generation, the best performing animals were selected for breeding, leading to the formation of a synthetic breed. The pedigree file used in the analyses contained sire and dam information for a total of 30,139 individuals. The models fitted relevant fixed and random effects. Heritability estimates for the conformation traits were low to moderate, ranging from 0.02 to 0.38. A range of positive and negative phenotypic and genetic correlations between the traits were observed, with the highest correlations found between udder depth and udder attachment (0.78), teat angle and teat placement (0.70), and back legs and back feet (0.64). The genetic correlations estimated between conformation traits and milk yield across the first lactation demonstrated changes during this period. The majority of correlations estimated between milk yield and the udder and teat traits were negative. Therefore, future breeding programs would benefit from including these traits to ensure that selection for increased productivity is not accompanied by any unwanted change in functional fitness. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Li, Dayong; Huang, Zhiyuan; Song, Shuhui; Xin, Yeyun; Mao, Donghai; Lv, Qiming; Zhou, Ming; Tian, Dongmei; Tang, Mingfeng; Wu, Qi; Liu, Xue; Chen, Tingting; Song, Xianwei; Fu, Xiqin; Zhao, Bingran; Liang, Chengzhi; Li, Aihong; Liu, Guozhen; Li, Shigui; Hu, Songnian; Cao, Xiaofeng; Yu, Jun; Yuan, Longping; Chen, Caiyan; Zhu, Lihuang
2016-01-01
Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world’s food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed. PMID:27663737
Genetic analysis of traits affecting the success of embryo transfer in dairy cattle.
König, S; Bosselmann, F; von Borstel, U U; Simianer, H
2007-08-01
The primary aim of this study was to estimate variance components for traits related to embryo transfer (ET) by applying generalized linear mixed models (GLMM) for different distributions of traits (normal, binomial, and Poisson) in a synergistic context. Synergistic models were originally developed for traits affected by several genotypes, denoted as maternal, paternal, and direct effects. In the case of ET, the number of flushed ova (FO) only depends on a donor's maternal genetic effect, whereas paternal fertility must be considered for other embryo survival traits, such as the number of transferable embryos (TE), the number of degenerated embryos (DE), the number of unfertilized oocytes (UO), and the percentage of transferable embryos (PTE). Data for these traits were obtained from 4,196 flushes of 2,489 Holstein cows within 4 regions of northwest Germany from January 1998 through October 2004. Estimates of maternal heritability were 0.231 for FO, 0.096 for TE, 0.021 for DE, 0.135 for UO, and 0.099 for PTE, whereas the relative genetic impact of the paternal component was near zero. Estimates of the genetic correlations between the maternal and the paternal component were slightly negative, indicating a genetic antagonism. For the analysis of pregnancy after ET, 8,239 transfers to 6,819 different Holstein-Friesian recipients were considered by applying threshold methodology. The direct heritability for pregnancy in the recipient after ET was 0.056. The relative genetic impact of maternal and paternal components on pregnancy of recipients describing a donor's and a sire's ability to produce viable embryos was below 1%. The genetic correlations of the direct effect of the recipient with the sire of embryos (paternal effect) and the donor cow (maternal effect) for pregnancy after ET were -0.32 and -0.14, respectively. With the exception of FO and PTE (-0.17), estimates of genetic correlations among traits for the maternal site were distinctly positive, especially between FO and TE (0.74). Based on this high genetic correlation and due to the higher heritability for FO, indirect selection on FO will increase selection response in TE by about 22% compared with direct selection on TE. The negative genetic correlation of -0.27 between TE and lactation milk yield indicates the need for development of an index for bull dams in multiple ovulation and embryo transfer (MOET) breeding schemes combining production as well as traits related to ET.
Cannell, R C; Tatum, J D; Belk, K E; Wise, J W; Clayton, R P; Smith, G C
1999-11-01
An improved ability to quantify differences in the fabrication yields of beef carcasses would facilitate the application of value-based marketing. This study was conducted to evaluate the ability of the Dual-Component Australian VIASCAN to 1) predict fabricated beef subprimal yields as a percentage of carcass weight at each of three fat-trim levels and 2) augment USDA yield grading, thereby improving accuracy of grade placement. Steer and heifer carcasses (n = 240) were evaluated using VIASCAN, as well as by USDA expert and online graders, before fabrication of carcasses to each of three fat-trim levels. Expert yield grade (YG), online YG, VIASCAN estimates, and VIASCAN estimated ribeye area used to augment actual and expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, and hot carcass weight), respectively, 1) accounted for 51, 37, 46, and 55% of the variation in fabricated yields of commodity-trimmed subprimals, 2) accounted for 74, 54, 66, and 75% of the variation in fabricated yields of closely trimmed subprimals, and 3) accounted for 74, 54, 71, and 75% of the variation in fabricated yields of very closely trimmed subprimals. The VIASCAN system predicted fabrication yields more accurately than current online yield grading and, when certain VIASCAN-measured traits were combined with some USDA yield grade factors in an augmentation system, the accuracy of cutability prediction was improved, at packing plant line speeds, to a level matching that of expert graders applying grades at a comfortable rate.
Proposal of a super trait for the optimum selection of popcorn progenies based on path analysis.
do Amaral Júnior, A T; Dos Santos, A; Gerhardt, I F S; Kurosawa, R N F; Moreira, N F; Pereira, M G; de A Gravina, G; de L Silva, F H
2016-12-19
A challenge faced by popcorn breeding programs is the existence of a negative correlation between the two main traits, popping expansion and yield, which hinders simultaneous gains. The objective of this study was to investigate the use of a new variable or super trait, which favors the reliable selection of superior progenies. The super trait 'expanded popcorn volume per hectare' was introduced in the evaluation of 200 full-sib families of the eighth recurrent intrapopulation selection cycle, which were arranged in randomized blocks with three replicates in two environments. Although the inability to obtain simultaneous gains through selection via popping expansion or yield was confirmed, the super trait was positively associated with both yield and popping expansion, allowing simultaneous gains via indirect selection using 'expanded popcorn volume per hectare' as the main trait. This approach is recommended because this super trait can be used in breeding programs to optimize selective gains for the crop.
Ayalew, Wondossen; Aliy, Mohammed; Negussie, Enyew
2017-11-01
This study estimated the genetic parameters for productive and reproductive traits. The data included production and reproduction records of animals that have calved between 1979 and 2013. The genetic parameters were estimated using multivariate mixed models (DMU) package, fitting univariate and multivariate mixed models with average information restricted maximum likelihood algorithm. The estimates of heritability for milk production traits from the first three lactation records were 0.03±0.03 for lactation length (LL), 0.17±0.04 for lactation milk yield (LMY), and 0.15±0.04 for 305 days milk yield (305-d MY). For reproductive traits the heritability estimates were, 0.09±0.03 for days open (DO), 0.11±0.04 for calving interval (CI), and 0.47±0.06 for age at first calving (AFC). The repeatability estimates for production traits were 0.12±0.02, for LL, 0.39±0.02 for LMY, and 0.25±0.02 for 305-d MY. For reproductive traits the estimates of repeatability were 0.19±0.02 for DO, and to 0.23±0.02 for CI. The phenotypic correlations between production and reproduction traits ranged from 0.08±0.04 for LL and AFC to 0.42±0.02 for LL and DO. The genetic correlation among production traits were generally high (>0.7) and between reproductive traits the estimates ranged from 0.06±0.13 for AFC and DO to 0.99±0.01 between CI and DO. Genetic correlations of productive traits with reproductive traits were ranged from -0.02 to 0.99. The high heritability estimates observed for AFC indicated that reasonable genetic improvement for this trait might be possible through selection. The h2 and r estimates for reproductive traits were slightly different from single versus multi-trait analyses of reproductive traits with production traits. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended.
Ellner, Stephen P; Geber, Monica A; Hairston, Nelson G
2011-06-01
Rapid contemporary evolution due to natural selection is common in the wild, but it remains uncertain whether its effects are an essential component of community and ecosystem structure and function. Previously we showed how to partition change in a population, community or ecosystem property into contributions from environmental and trait change, when trait change is entirely caused by evolution (Hairston et al. 2005). However, when substantial non-heritable trait change occurs (e.g. due to phenotypic plasticity or change in population structure) that approach can mis-estimate both contributions. Here, we demonstrate how to disentangle ecological impacts of evolution vs. non-heritable trait change by combining our previous approach with the Price Equation. This yields a three-way partitioning into effects of evolution, non-heritable phenotypic change and environment. We extend the approach to cases where ecological consequences of trait change are mediated through interspecific interactions. We analyse empirical examples involving fish, birds and zooplankton, finding that the proportional contribution of rapid evolution varies widely (even among different ecological properties affected by the same trait), and that rapid evolution can be important when it acts to oppose and mitigate phenotypic effects of environmental change. Paradoxically, rapid evolution may be most important when it is least evident. © 2011 Blackwell Publishing Ltd/CNRS.
2017-01-01
Induced mutagenesis was employed to create genetic variation in the lentil cultivars for yield improvement. The assessments were made on genetic variability, character association, and genetic divergence among the twelve mutagenized populations and one parent population of each of the two lentil cultivars, developed by single and combination treatments with gamma rays and hydrazine hydrates. Analysis of variance revealed significant inter-population differences for the observed quantitative phenotypic traits. The sample mean of six treatment populations in each of the cultivar exhibited highly superior quantitative phenotypic traits compared to their parent cultivars. The higher values of heritability and genetic advance with a high genotypic coefficient of variation for most of the yield attributing traits confirmed the possibilities of lentil yield improvement through phenotypic selection. The number of pods and seeds per plant appeared to be priority traits in selection for higher yield due to their strong direct association with yield. The cluster analysis divided the total populations into three divergent groups in each lentil cultivar with parent genotypes in an independent group showing the high efficacy of the mutagens. Considering the highest contribution of yield trait to the genetic divergence among the clustered population, it was confirmed that the mutagenic treatments created a wide heritable variation for the trait in the mutant populations. The selection of high yielding mutants from the mutant populations of DPL 62 (100 Gy) and Pant L 406 (100Gy + 0.1% HZ) in the subsequent generation is expected to give elite lentil cultivars. Also, hybridization between members of the divergent group would produce diverse segregants for crop improvement. Apart from this, the induced mutations at loci controlling economically important traits in the selected high yielding mutants have successfully contributed in diversifying the accessible lentil genetic base and will definitely be of immense value to the future lentil breeding programmes in India. PMID:28922405
Gong, Xue; McDonald, Glenn
2017-09-01
Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.
Ain, Qurat-ul; Rasheed, Awais; Anwar, Alia; Mahmood, Tariq; Imtiaz, Muhammad; Mahmood, Tariq; Xia, Xianchun; He, Zhonghu; Quraishi, Umar M.
2015-01-01
Genome-wide association studies (GWAS) were undertaken to identify SNP markers associated with yield and yield-related traits in 123 Pakistani historical wheat cultivars evaluated during 2011–2014 seasons under rainfed field conditions. The population was genotyped by using high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay, and finally 14,960 high quality SNPs were used in GWAS. Population structure examined using 1000 unlinked markers identified seven subpopulations (K = 7) that were representative of different breeding programs in Pakistan, in addition to local landraces. Forty four stable marker-trait associations (MTAs) with -log p > 4 were identified for nine yield-related traits. Nine multi-trait MTAs were found on chromosomes 1AL, 1BS, 2AL, 2BS, 2BL, 4BL, 5BL, 6AL, and 6BL, and those on 5BL and 6AL were stable across two seasons. Gene annotation and syntey identified that 14 trait-associated SNPs were linked to genes having significant importance in plant development. Favorable alleles for days to heading (DH), plant height (PH), thousand grain weight (TGW), and grain yield (GY) showed minor additive effects and their frequencies were slightly higher in cultivars released after 2000. However, no selection pressure on any favorable allele was identified. These genomic regions identified have historically contributed to achieve yield gains from 2.63 million tons in 1947 to 25.7 million tons in 2015. Future breeding strategies can be devised to initiate marker assisted breeding to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield. Additionally, in silico identification of 454-contigs corresponding to MTAs will facilitate fine mapping and subsequent cloning of candidate genes and functional marker development. PMID:26442056
Bignardi, A B; El Faro, L; Torres Júnior, R A A; Cardoso, V L; Machado, P F; Albuquerque, L G
2011-10-31
We analyzed 152,145 test-day records from 7317 first lactations of Holstein cows recorded from 1995 to 2003. Our objective was to model variations in test-day milk yield during the first lactation of Holstein cows by random regression model (RRM), using various functions in order to obtain adequate and parsimonious models for the estimation of genetic parameters. Test-day milk yields were grouped into weekly classes of days in milk, ranging from 1 to 44 weeks. The contemporary groups were defined as herd-test-day. The analyses were performed using a single-trait RRM, including the direct additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. The mean trend of milk yield was modeled with a fourth-order orthogonal Legendre polynomial. The additive genetic and permanent environmental covariance functions were estimated by random regression on two parametric functions, Ali and Schaeffer and Wilmink, and on B-spline functions of days in milk. The covariance components and the genetic parameters were estimated by the restricted maximum likelihood method. Results from RRM parametric and B-spline functions were compared to RRM on Legendre polynomials and with a multi-trait analysis, using the same data set. Heritability estimates presented similar trends during mid-lactation (13 to 31 weeks) and between week 37 and the end of lactation, for all RRM. Heritabilities obtained by multi-trait analysis were of a lower magnitude than those estimated by RRM. The RRMs with a higher number of parameters were more useful to describe the genetic variation of test-day milk yield throughout the lactation. RRM using B-spline and Legendre polynomials as base functions appears to be the most adequate to describe the covariance structure of the data.
Alvares, R C; Silva, F C; Melo, L C; Melo, P G S; Pereira, H S
2016-11-21
Slow seed coat darkening is desirable in common bean cultivars and genetic parameters are important to define breeding strategies. The aims of this study were to estimate genetic parameters for plant architecture, grain yield, grain size, and seed-coat darkening in common bean; identify any genetic association among these traits; and select lines that associate desirable phenotypes for these traits. Three experiments were set up in the winter 2012 growing season, in Santo Antônio de Goiás and Brasília, Brazil, including 220 lines obtained from four segregating populations and five parents. A triple lattice 15 x 15 experimental design was used. The traits evaluated were plant architecture, grain yield, grain size, and seed-coat darkening. Analyses of variance were carried out and genetic parameters such as heritability, gain expected from selection, and correlations, were estimated. For selection of superior lines, a "weight-free and parameter-free" index was used. The estimates of genetic variance, heritability, and gain expected from selection were high, indicating good possibility for success in selection of the four traits. The genotype x environment interaction was proportionally more important for yield than for the other traits. There was no strong genetic correlation observed among the four traits, which indicates the possibility of selection of superior lines with many traits. Considering simultaneous selection, it was not possible to join high genetic gains for the four traits. Forty-four lines that combined high yield, more upright plant architecture, slow darkening grains, and commercial grade size were selected.
Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi
2016-01-01
Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362
Nunes, Beatriz do Nascimento; Ramos, Salvador Boccaletti; Savegnago, Rodrigo Pelicioni; Ledur, Mônica Corrêa; Nones, Kátia; Klein, Claudete Hara; Munari, Danísio Prado
2011-01-01
The objective of this study was to estimate genetic and phenotypic correlations of body weight at 6 weeks of age (BW6), as well as final carcass yield, and moisture, protein, fat and ash contents, using data from 3,422 F2 chickens originated from reciprocal cross between a broiler and a layer line. Variance components were estimated by the REML method, using animal models for evaluating random additive genetic and fixed contemporary group (sex, hatch and genetic group) effects. The heritability estimates (h2) for BW6, carcass yield and percentage of carcass moisture were 0.31 ± 0.07, 0.20 ± 0.05 and 0.33 ± 0.07, respectively. The h2 for the percentages of protein, fat and ash on a dry matter basis were 0.48 ± 0.09, 0.55 ± 0.10 and 0.36 ± 0.08, respectively. BW6 had a positive genetic correlation with fat percentage in the carcass, but a negative one with protein and ash contents. Carcass yield, thus, appears to have only low genetic association with carcass composition traits. The genetic correlations observed between traits, measured on a dry matter basis, indicated that selection for carcass protein content may favor higher ash content and a lower percentage of carcass fat. PMID:21931515
Amiri, Reza; Sasani, Shahryar; Jalali-Honarmand, Saeid; Rasaei, Ali; Seifolahpour, Behnaz; Bahraminejad, Sohbat
2018-02-01
Genetic variation among 78 irrigated bread wheat genotypes was studied for their nutritional value and baking quality traits as well as some agronomic traits. The experiment was conducted in a randomized complete block design with three replicates under normal and terminal drought stress conditions in Kermanshah, Iran during 2012-2013 cropping season. The results of combined ANOVA indicated highly significant genotypic differences for all traits. All studied traits except grain yield, hectoliter weight and grain fiber content were significantly affected by genotype × environment interaction. Drought stress reduced grain yield, thousand kernel weight, gluten index, grain starch content and hectoliter weight and slightly promoted grain protein and fiber contents, falling number, total gluten and ratio of wet gluten to grain protein content. Grain yield by 31.66% and falling number by 9.20% attained the highest decrease and increase due to drought stress. There were negative and significant correlations among grain yield with grain protein and fiber contents under both conditions. Results of cluster analysis showed that newer genotypes had more grain yield and gluten index than older ones, but instead, they had the lower grain protein and fiber contents. It is thought that wheat breeders have bred cultivars with high grain yield, low protein content, and improved bread-making attributes during last seven decades. While older genotypes indicated significantly higher protein contents, and some of them had higher gluten index. We concluded from this study that it is imperative for breeders to pay more attention to improve qualitative traits coordinated to grain yield.
Manzanilla Pech, C I V; Veerkamp, R F; Calus, M P L; Zom, R; van Knegsel, A; Pryce, J E; De Haas, Y
2014-09-01
Breeding values for dry matter intake (DMI) are important to optimize dairy cattle breeding goals for feed efficiency. However, generally, only small data sets are available for feed intake, due to the cost and difficulty of measuring DMI, which makes understanding the genetic associations between traits across lactation difficult, let alone the possibility for selection of breeding animals. However, estimating national breeding values through cheaper and more easily measured correlated traits, such as milk yield and liveweight (LW), could be a first step to predict DMI. Combining DMI data across historical nutritional experiments might help to expand the data sets. Therefore, the objective was to estimate genetic parameters for DMI, fat- and protein-corrected milk (FPCM) yield, and LW across the entire first lactation using a relatively large data set combining experimental data across the Netherlands. A total of 30,483 weekly records for DMI, 49,977 for FPCM yield, and 31,956 for LW were available from 2,283 Dutch Holstein-Friesian first-parity cows between 1990 and 2011. Heritabilities, covariance components, and genetic correlations were estimated using a multivariate random regression model. The model included an effect for year-season of calving, and polynomials for age of cow at calving and days in milk (DIM). The random effects were experimental treatment, year-month of measurement, and the additive genetic, permanent environmental, and residual term. Additive genetic and permanent environmental effects were modeled using a third-order orthogonal polynomial. Estimated heritabilities ranged from 0.21 to 0.40 for DMI, from 0.20 to 0.43 for FPCM yield, and from 0.25 to 0.48 for LW across DIM. Genetic correlations between DMI at different DIM were relatively low during early and late lactation, compared with mid lactation. The genetic correlations between DMI and FPCM yield varied across DIM. This correlation was negative (up to -0.5) between FPCM yield in early lactation and DMI across the entire lactation, but highly positive (above 0.8) when both traits were in mid lactation. The correlation between DMI and LW was 0.6 during early lactation, but decreased to 0.4 during mid lactation. The highest correlations between FPCM yield and LW (0.3-0.5) were estimated during mid lactation. However, the genetic correlations between DMI and either FPCM yield or LW were not symmetric across DIM, and differed depending on which trait was measured first. The results of our study are useful to understand the genetic relationship of DMI, FPCM yield, and LW on specific days across lactation. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pandey, Manish K.; Upadhyaya, Hari D.; Rathore, Abhishek; Vadez, Vincent; Sheshshayee, M. S.; Sriswathi, Manda; Govil, Mansee; Kumar, Ashish; Gowda, M. V. C.; Sharma, Shivali; Hamidou, Falalou; Kumar, V. Anil; Khera, Pawan; Bhat, Ramesh S.; Khan, Aamir W.; Singh, Sube; Li, Hongjie; Monyo, Emmanuel; Nadaf, H. L.; Mukri, Ganapati; Jackson, Scott A.; Guo, Baozhu; Liang, Xuanqiang; Varshney, Rajeev K.
2014-01-01
Peanut is an important and nutritious agricultural commodity and a livelihood of many small-holder farmers in the semi-arid tropics (SAT) of world which are facing serious production threats. Integration of genomics tools with on-going genetic improvement approaches is expected to facilitate accelerated development of improved cultivars. Therefore, high-resolution genotyping and multiple season phenotyping data for 50 important agronomic, disease and quality traits were generated on the ‘reference set’ of peanut. This study reports comprehensive analyses of allelic diversity, population structure, linkage disequilibrium (LD) decay and marker-trait association (MTA) in peanut. Distinctness of all the genotypes can be established by using either an unique allele detected by a single SSR or a combination of unique alleles by two or more than two SSR markers. As expected, DArT features (2.0 alleles/locus, 0.125 PIC) showed lower allele frequency and polymorphic information content (PIC) than SSRs (22.21 alleles /locus, 0.715 PIC). Both marker types clearly differentiated the genotypes of diploids from tetraploids. Multi-allelic SSRs identified three sub-groups (K = 3) while the LD simulation trend line based on squared-allele frequency correlations (r2) predicted LD decay of 15–20 cM in peanut genome. Detailed analysis identified a total of 524 highly significant MTAs (pvalue >2.1×10–6) with wide phenotypic variance (PV) range (5.81–90.09%) for 36 traits. These MTAs after validation may be deployed in improving biotic resistance, oil/ seed/ nutritional quality, drought tolerance related traits, and yield/ yield components. PMID:25140620
Zhu, Dan; Zhou, Gang; Xu, Caiguo; Zhang, Qifa
2016-02-20
Utilization of heterosis has greatly contributed to rice productivity in China and many Asian countries. Superior hybrids usually show heterosis at two stages: canopy development at vegetative stage and panicle development at reproductive stage resulting in heterosis in yield. Although the genetic basis of heterosis in rice has been extensively investigated, all the previous studies focused on yield traits at maturity stage. In this study, we analyzed the genetic basis of heterosis at seedling stage making use of an "immortalized F2" population composed of 105 hybrids produced by intercrossing recombinant inbred lines (RILs) from a cross between Zhenshan 97 and Minghui 63, the parents of Shanyou 63, which is an elite hybrid widely grown in China. Eight seedling traits, seedling height, tiller number, leaf number, root number, maximum root length, root dry weight, shoot dry weight and total dry weight, were investigated using hydroponic culture. We analyzed single-locus and digenic genetic effects at the whole genome level using an ultrahigh-density SNP bin map obtained by population re-sequencing. The analysis revealed large numbers of heterotic effects for seedling traits including dominance, overdominance and digenic dominance (epistasis) in both positive and negative directions. Overdominance effects were prevalent for all the traits, and digenic dominance effects also accounted for a large portion of the genetic effects. The results suggested that cumulative small advantages of the single-locus effects and two-locus interactions, most of which could not be detected statistically, could explain the genetic basis of seedling heterosis of the F1 hybrid. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Dadousis, C; Cipolat-Gotet, C; Bittante, G; Cecchinato, A
2018-02-01
We studied the genetics of cheese-related latent variables (factors; Fs) for application in dairy cattle breeding. In total, 26 traits, recorded in 1264 Brown Swiss cows, were analyzed through multivariate factor analysis (MFA). Traits analyzed were descriptors of milk quality and yield (including protein fractions) and measures of coagulation, curd firmness (CF), cheese yields (%CY) and nutrient recoveries in the curd (REC). A total of 10 Fs (mutual orthogonal with a varimax rotation) were obtained. To assess the practical use of the Fs into breeding, we inferred their genetic parameters using single and bivariate animal models under a Bayesian framework. Heritability estimates (intra-herd) varied between 0.11 and 0.72 (F3: Yield and F7: κ-β-CN, respectively). The Fs underlined basic characteristics of the cheese-making process, milk components and udder health, while retaining 74% of the original variability. The first two Fs were indicators of the CY percentage (F1: %CY) and the CF process (F2: CF t ), and presented similar heritability estimates: 0.268 and 0.295, respectively. The third factor was associated with the yield of milk and solids (F3: Yield) characterized by a low heritability (0.108) and the fourth with the cheese nitrogen (N) (F4: Cheese N) that conversely appeared to be characterized by a high heritability (0.618). Three Fs were associated with the proportion of the basic milk caseins on total milk protein (F5: as1-β-CN, F7: κ-β-CN, F8: as2-CN), also highly heritable (0.565, 0.723 and 0.397, respectively) and 1 factor with the phosphorylated form of the as1-CN (F9: as1-CN-Ph; 0.318). Moreover, 1 factor was linked to the whey protein α-LA (F10: α-LA; 0.147). An indicator factor of a cow's udder health (F6: Udder health) was also obtained and showed a moderate heritability (0.204). Although the Fs were phenotypically uncorrelated, considerable additive genetic correlations existed among them, with highest values observed between F10: α-LA and F6: Udder health (-0.67) as well as between F9: as1-CN-Ph and F3: Yield (-0.60). Our results show the usefulness of MFA in dairy cattle breeding. The ability to replace a large number of variables with a few latent indicators of the same biological meaning marks MFA as a valuable tool for developing breeding strategies to improve cow's cheese-related traits.
Root Traits Enhancing Rice Grain Yield under Alternate Wetting and Drying Condition
Sandhu, Nitika; Subedi, Sushil R.; Yadaw, Ram B.; Chaudhary, Bedanand; Prasai, Hari; Iftekharuddaula, Khandakar; Thanak, Tho; Thun, Vathany; Battan, Khushi R.; Ram, Mangat; Venkateshwarlu, Challa; Lopena, Vitaliano; Pablico, Paquito; Maturan, Paul C.; Cruz, Ma. Teresa Sta.; Raman, K. Anitha; Collard, Bertrand; Kumar, Arvind
2017-01-01
Reducing water requirements and lowering environmental footprints require attention to minimize risks to food security. The present study was conducted with the aim to identify appropriate root traits enhancing rice grain yield under alternate wetting and drying conditions (AWD) and identify stable, high-yielding genotypes better suited to the AWD across variable ecosystems. Advanced breeding lines, popular rice varieties and drought-tolerant lines were evaluated in a series of 23 experiments conducted in the Philippines, India, Bangladesh, Nepal and Cambodia in 2015 and 2016. A large variation in grain yield under AWD conditions enabled the selection of high-yielding and stable genotypes across locations, seasons and years. Water savings of 5.7–23.4% were achieved without significant yield penalty across different ecosystems. The mean grain yield of genotypes across locations ranged from 3.5 to 5.6 t/ha and the mean environment grain yields ranged from 3.7 (Cambodia) to 6.6 (India) t/ha. The best-fitting Finlay-Wilkinson regression model identified eight stable genotypes with mean grain yield of more than 5.0 t/ha across locations. Multidimensional preference analysis represented the strong association of root traits (nodal root number, root dry weight at 22 and 30 days after transplanting) with grain yield. The genotype IR14L253 outperformed in terms of root traits and high mean grain yield across seasons and six locations. The 1.0 t/ha yield advantage of IR14L253 over the popular cultivar IR64 under AWD shall encourage farmers to cultivate IR14L253 and also adopt AWD. The results suggest an important role of root architectural traits in term of more number of nodal roots and root dry weight at 10–20 cm depth on 22–30 days after transplanting (DAT) in providing yield stability and preventing yield reduction under AWD compared to continuous flooded conditions. Genotypes possessing increased number of nodal roots provided higher yield over IR64 as well as no yield reduction under AWD compared to flooded irrigation. The identification of appropriate root architecture traits at specific depth and specific growth stage shall help breeding programs develop better rice varieties for AWD conditions. PMID:29163604
Eaglen, S A E; Coffey, M P; Woolliams, J A; Wall, E
2013-06-01
As the emphasis in cattle breeding is shifting from traits that increase income toward traits that reduce costs, national breeding indices are expanding to include functional traits such as calving ease (CE). However, one issue is the lack of knowledge of genetic relationships between CE and other dairy traits. The same can be said about gestation length (GL), a potential novel selection trait with considerable heritabilities and possible genetic relationships with the calving process. This study aimed to estimate the genetic relationships between CE, GL, and other dairy traits of interest using a national data set of 31,053 primiparous cow performance records, as well as to separate direct and maternal genetic effects. Chosen dairy traits included fertility (calving interval, days to first service, nonreturn rate after 56 d, number of inseminations per conception), milk production (milk yield at d 110 in milk, accumulated 305-d milk yield, accumulated 305-d fat yield, accumulated 305-d protein yield), type (udder depth, chest width, rump width, rump angle, mammary composition, stature, body depth), and lifespan traits (functional days of productive life). To allow the separation of direct and maternal genetic effects, a random sire of the calf effect was included in the multi-trait linear trivariate sire models fitted using ASReml. Significant results showed that easily born individuals were genetically prone to high milk yield and reduced fertility in first lactation. Difficult calving primiparous cows were likely associated with being high-producing, wide and deep animals, with a reduced ability to subsequently conceive. Individuals that were born relatively early were associated with good genetic merit for milk production. Finally, individuals carrying their offspring longer were genetically associated with being wide and large animals that were themselves born relatively early. The study shows that it is feasible and valuable to separate direct and maternal effects when estimating genetic correlations between calving and other dairy traits. Furthermore, gestation length is best used as an indicator trait for lowly heritable calving traits, rather than as a novel selection trait. As estimated direct and maternal genetic correlations differ, we can conclude that genetic relationships between CE, GL, and traits of interest are present, but caution is required if these traits are implemented in national breeding indices. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chen, Lin; An, Yixin; Li, Yong-xiang; Li, Chunhui; Shi, Yunsu; Song, Yanchun; Zhang, Dengfeng; Wang, Tianyu; Li, Yu
2017-01-01
Maize grain yield and related traits are complex and are controlled by a large number of genes of small effect or quantitative trait loci (QTL). Over the years, a large number of yield-related QTLs have been identified in maize and deposited in public databases. However, integrating and re-analyzing these data and mining candidate loci for yield-related traits has become a major issue in maize. In this study, we collected information on QTLs conferring maize yield-related traits from 33 published studies. Then, 999 of these QTLs were iteratively projected and subjected to meta-analysis to obtain metaQTLs (MQTLs). A total of 76 MQTLs were found across the maize genome. Based on a comparative genomics strategy, several maize orthologs of rice yield-related genes were identified in these MQTL regions. Furthermore, three potential candidate genes (Gene ID: GRMZM2G359974, GRMZM2G301884, and GRMZM2G083894) associated with kernel size and weight within three MQTL regions were identified using regional association mapping, based on the results of the meta-analysis. This strategy, combining MQTL analysis and regional association mapping, is helpful for functional marker development and rapid identification of candidate genes or loci. PMID:29312420
Genomic selection across multiple breeding cycles in applied bread wheat breeding.
Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann
2016-06-01
We evaluated genomic selection across five breeding cycles of bread wheat breeding. Bias of within-cycle cross-validation and methods for improving the prediction accuracy were assessed. The prospect of genomic selection has been frequently shown by cross-validation studies using the same genetic material across multiple environments, but studies investigating genomic selection across multiple breeding cycles in applied bread wheat breeding are lacking. We estimated the prediction accuracy of grain yield, protein content and protein yield of 659 inbred lines across five independent breeding cycles and assessed the bias of within-cycle cross-validation. We investigated the influence of outliers on the prediction accuracy and predicted protein yield by its components traits. A high average heritability was estimated for protein content, followed by grain yield and protein yield. The bias of the prediction accuracy using populations from individual cycles using fivefold cross-validation was accordingly substantial for protein yield (17-712 %) and less pronounced for protein content (8-86 %). Cross-validation using the cycles as folds aimed to avoid this bias and reached a maximum prediction accuracy of [Formula: see text] = 0.51 for protein content, [Formula: see text] = 0.38 for grain yield and [Formula: see text] = 0.16 for protein yield. Dropping outlier cycles increased the prediction accuracy of grain yield to [Formula: see text] = 0.41 as estimated by cross-validation, while dropping outlier environments did not have a significant effect on the prediction accuracy. Independent validation suggests, on the other hand, that careful consideration is necessary before an outlier correction is undertaken, which removes lines from the training population. Predicting protein yield by multiplying genomic estimated breeding values of grain yield and protein content raised the prediction accuracy to [Formula: see text] = 0.19 for this derived trait.
Jiang, Jicai; Shen, Botong; O'Connell, Jeffrey R; VanRaden, Paul M; Cole, John B; Ma, Li
2017-05-30
Although genome-wide association and genomic selection studies have primarily focused on additive effects, dominance and imprinting effects play an important role in mammalian biology and development. The degree to which these non-additive genetic effects contribute to phenotypic variation and whether QTL acting in a non-additive manner can be detected in genetic association studies remain controversial. To empirically answer these questions, we analyzed a large cattle dataset that consisted of 42,701 genotyped Holstein cows with genotyped parents and phenotypic records for eight production and reproduction traits. SNP genotypes were phased in pedigree to determine the parent-of-origin of alleles, and a three-component GREML was applied to obtain variance decomposition for additive, dominance, and imprinting effects. The results showed a significant non-zero contribution from dominance to production traits but not to reproduction traits. Imprinting effects significantly contributed to both production and reproduction traits. Interestingly, imprinting effects contributed more to reproduction traits than to production traits. Using GWAS and imputation-based fine-mapping analyses, we identified and validated a dominance association signal with milk yield near RUNX2, a candidate gene that has been associated with milk production in mice. When adding non-additive effects into the prediction models, however, we observed little or no increase in prediction accuracy for the eight traits analyzed. Collectively, our results suggested that non-additive effects contributed a non-negligible amount (more for reproduction traits) to the total genetic variance of complex traits in cattle, and detection of QTLs with non-additive effect is possible in GWAS using a large dataset.
Li, Fengmei; Xie, Jianyin; Zhu, Xiaoyang; Wang, Xueqiang; Zhao, Yan; Ma, Xiaoqian; Zhang, Zhanying; Rashid, Muhammad A R; Zhang, Zhifang; Zhi, Linran; Zhang, Shuyang; Li, Jinjie; Li, Zichao; Zhang, Hongliang
2018-01-01
Avoidance of disadvantageous genetic correlations among growth duration and yield traits is critical in developing crop varieties that efficiently use light and energy resources and produce high yields. To understand the genetic basis underlying the correlations among heading date and three major yield traits in rice, we investigated the four traits in a diverse and representative core collection of 266 cultivated rice accessions in both long-day and short-day environments, and conducted the genome-wide association study using 4.6 million single nucleotide polymorphisms (SNPs). There were clear positive correlation between heading date and grain number per panicle, and negative correlation between grain number per panicle and panicle number, as well as different degrees of correlations among other traits in different subspecies and environments. We detected 47 pleiotropic genes in 15 pleiotropic quantitative trait loci (pQTLs), 18 pleiotropic genes containing 37 pleiotropic SNPs in 8 pQTLs, 27 pQTLs with r 2 of linkage disequilibrium higher than 0.2, and 39 pairs of interactive genes from 8 metabolic pathways that may contribute to the above phenotypic correlations, but these genetic bases were different for correlations among different traits. Distributions of haplotypes revealed that selection for pleiotropic genes or interactive genes controlling different traits focused on genotypes with weak effect or on those balancing two traits that maximized production but sometimes their utilization strategies depend on the traits and environment. Detection of pQTLs and interactive genes and associated molecular markers will provide an ability to overcome disadvantageous correlations and to utilize the advantageous correlations among traits through marker-assisted selection in breeding.
Aliloo, Hassan; Pryce, Jennie E; González-Recio, Oscar; Cocks, Benjamin G; Hayes, Ben J
2016-02-01
Dominance effects may contribute to genetic variation of complex traits in dairy cattle, especially for traits closely related to fitness such as fertility. However, traditional genetic evaluations generally ignore dominance effects and consider additive genetic effects only. Availability of dense single nucleotide polymorphisms (SNPs) panels provides the opportunity to investigate the role of dominance in quantitative variation of complex traits at both the SNP and animal levels. Including dominance effects in the genomic evaluation of animals could also help to increase the accuracy of prediction of future phenotypes. In this study, we estimated additive and dominance variance components for fertility and milk production traits of genotyped Holstein and Jersey cows in Australia. The predictive abilities of a model that accounts for additive effects only (additive), and a model that accounts for both additive and dominance effects (additive + dominance) were compared in a fivefold cross-validation. Estimates of the proportion of dominance variation relative to phenotypic variation that is captured by SNPs, for production traits, were up to 3.8 and 7.1 % in Holstein and Jersey cows, respectively, whereas, for fertility, they were equal to 1.2 % in Holstein and very close to zero in Jersey cows. We found that including dominance in the model was not consistently advantageous. Based on maximum likelihood ratio tests, the additive + dominance model fitted the data better than the additive model, for milk, fat and protein yields in both breeds. However, regarding the prediction of phenotypes assessed with fivefold cross-validation, including dominance effects in the model improved accuracy only for fat yield in Holstein cows. Regression coefficients of phenotypes on genetic values and mean squared errors of predictions showed that the predictive ability of the additive + dominance model was superior to that of the additive model for some of the traits. In both breeds, dominance effects were significant (P < 0.01) for all milk production traits but not for fertility. Accuracy of prediction of phenotypes was slightly increased by including dominance effects in the genomic evaluation model. Thus, it can help to better identify highly performing individuals and be useful for culling decisions.
Ďurkovič, Jaroslav; Čaňová, Ingrid; Lagaňa, Rastislav; Kučerová, Veronika; Moravčík, Michal; Priwitzer, Tibor; Urban, Josef; Dvořák, Miloň; Krajňáková, Jana
2013-01-01
Background and Aims Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids ‘Groeneveld’ and ‘Dodoens’ which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Methods Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of ‘Groeneveld’ and ‘Dodoens’ grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. Key Results ‘Dodoens’ had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. ‘Groeneveld’ had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Conclusions Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of ‘Dodoens’ were unaffected by the DED fungus. ‘Dodoens’ proved to be a valuable elm germplasm for further breeding strategies. PMID:23264236
Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
Jiang, Yu; Li, Changying; Paterson, Andrew H; Sun, Shangpeng; Xu, Rui; Robertson, Jon
2017-01-01
Plant canopy structure can strongly affect crop functions such as yield and stress tolerance, and canopy size is an important aspect of canopy structure. Manual assessment of canopy size is laborious and imprecise, and cannot measure multi-dimensional traits such as projected leaf area and canopy volume. Field-based high throughput phenotyping systems with imaging capabilities can rapidly acquire data about plants in field conditions, making it possible to quantify and monitor plant canopy development. The goal of this study was to develop a 3D imaging approach to quantitatively analyze cotton canopy development in field conditions. A cotton field was planted with 128 plots, including four genotypes of 32 plots each. The field was scanned by GPhenoVision (a customized field-based high throughput phenotyping system) to acquire color and depth images with GPS information in 2016 covering two growth stages: canopy development, and flowering and boll development. A data processing pipeline was developed, consisting of three steps: plot point cloud reconstruction, plant canopy segmentation, and trait extraction. Plot point clouds were reconstructed using color and depth images with GPS information. In colorized point clouds, vegetation was segmented from the background using an excess-green (ExG) color filter, and cotton canopies were further separated from weeds based on height, size, and position information. Static morphological traits were extracted on each day, including univariate traits (maximum and mean canopy height and width, projected canopy area, and concave and convex volumes) and a multivariate trait (cumulative height profile). Growth rates were calculated for univariate static traits, quantifying canopy growth and development. Linear regressions were performed between the traits and fiber yield to identify the best traits and measurement time for yield prediction. The results showed that fiber yield was correlated with static traits after the canopy development stage ( R 2 = 0.35-0.71) and growth rates in early canopy development stages ( R 2 = 0.29-0.52). Multi-dimensional traits (e.g., projected canopy area and volume) outperformed one-dimensional traits, and the multivariate trait (cumulative height profile) outperformed univariate traits. The proposed approach would be useful for identification of quantitative trait loci (QTLs) controlling canopy size in genetics/genomics studies or for fiber yield prediction in breeding programs and production environments.
Ademe, Mulugeta Seyoum; He, Shoupu; Pan, Zhaoe; Sun, Junling; Wang, Qinglian; Qin, Hongde; Liu, Jinhai; Liu, Hui; Yang, Jun; Xu, Dongyong; Yang, Jinlong; Ma, Zhiying; Zhang, Jinbiao; Li, Zhikun; Cai, Zhongmin; Zhang, Xuelin; Zhang, Xin; Huang, Aifen; Yi, Xianda; Zhou, Guanyin; Li, Lin; Zhu, Haiyong; Pang, Baoyin; Wang, Liru; Jia, Yinhua; Du, Xiongming
2017-12-01
Fiber yield and quality are the most important traits for Upland cotton (Gossypium hirsutum L.). Identifying high yield and good fiber quality genes are the prime concern of researchers in cotton breeding. Association mapping offers an alternative and powerful method for detecting those complex agronomic traits. In this study, 198 simple sequence repeats (SSRs) were used to screen markers associated with fiber yield and quality traits with 302 elite Upland cotton accessions that were evaluated in 12 locations representing the Yellow River and Yangtze River cotton growing regions of China. Three subpopulations were found after the estimation of population structure. The pair-wise kinship values varied from 0 to 0.867. Only 1.59% of the total marker locus pairs showed significant linkage disequilibrium (LD, p < 0.001). The genome-wide LD decayed within the genetic distance of ~30 to 32 cM at r 2 = 0.1, and decreased to ~1 to 2 cM at r 2 = 0.2, indicating the potential for association mapping. Analysis based on a mixed linear model detected 57 significant (p < 0.01) marker-trait associations, including seven associations for fiber length, ten for fiber micronaire, nine for fiber strength, eight for fiber elongation, five for fiber uniformity index, five for fiber uniformity ratio, six for boll weight and seven for lint percent, for a total of 35 SSR markers, of which 11 markers were associated with more than one trait. Among marker-trait associations, 24 associations coincided with the previously reported quantitative trait loci (QTLs), the remainder were newly identified QTLs/genes. The QTLs identified in this study will potentially facilitate improvement of fiber yield and quality in the future cotton molecular breeding programs.
2010-01-01
The objective of the present study was to estimate genetic parameters for test-day milk, fat and protein yields and 305-day-yields in Murrah buffaloes. 4,757 complete lactations of Murrah buffaloes were analyzed. Co-variance components were estimated by the restricted maximum likelihood method. The models included additive direct genetic and permanent environmental effects as random effects, and the fixed effects of contemporary group, milking number and age of the cow at calving as linear and quadratic covariables. Contemporary groups were defined by herd-year-month of test for test-day yields and by herd-year-season of calving for 305-day yields. The heritability estimates obtained by two-trait analysis ranged from 0.15 to 0.24 for milk, 0.16 to 0.23 for protein and 0.13 to 0.22 for fat, yields. Genetic and phenotypic correlations were all positive. The observed population additive genetic variation indicated that selection might be an effective tool in changing population means in milk, fat and protein yields. PMID:21637608
Takagishi, Yukihiro; Sakata, Masatsugu; Kitamura, Toshinori
2011-09-01
This longitudinal study was undertaken to clarify the relationships among self-esteem, interpersonal dependency, and depression, focusing on a trait and state component of interpersonal dependency and depression. In a sample of 466 working people, self-esteem, interpersonal dependency, job stressor, and depression were assessed at 2 points of time. A structural equation model (SEM) was created to differentiate the trait component of interpersonal dependency, depression and the state component of interpersonal dependency, depression. The model revealed that self-esteem influenced trait interpersonal dependency and trait depression but not state interpersonal dependency or depression. Setting a latent variable as a trait component to differentiate trait and state in interpersonal dependency and depression in SEM was found to be effective both statistically and clinically. © 2011 Wiley Periodicals, Inc.
Farfan, Ivan D. Barrero; De La Fuente, Gerald N.; Murray, Seth C.; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L.; Kolomiets, Mike
2015-01-01
The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370
Canaza-Cayo, A W; Silva, M V G B; Cobuci, J A; Martins, M F; Lopes, P S
2016-04-04
The objective of this study was to evaluate the effects of inclusion or non-inclusion of short lactations and cow (CGG) and/or dam (DGG) genetic group on the genetic evaluation of 305-day milk yield (MY305), age at first calving (AFC), and first calving interval (FCI) of Girolando cows. Covariance components were estimated by the restricted maximum likelihood method in an animal model of single trait analyses. The heritability estimates for MY305, AFC, and FCI ranged from 0.23 to 0.29, 0.40 to 0.44, and 0.13 to 0.14, respectively, when short lactations were not included, and from 0.23 to 0.28, 0.39 to 0.43, and 0.13 to 0.14, respectively, when short lactations were included. The inclusion of short lactations caused little variation in the variance components and heritability estimates of traits, but their non-inclusion resulted in the re-ranking of animals. Models with CGG or DGG fixed effects had higher heritability estimates for all traits compared with models that consider these two effects simultaneously. We recommend using the model with fixed effects of CGG and inclusion of short lactations for the genetic evaluation of Girolando cattle.
Azevedo, Gabriel C; Cheavegatti-Gianotto, Adriana; Negri, Bárbara F; Hufnagel, Bárbara; E Silva, Luciano da Costa; Magalhaes, Jurandir V; Garcia, Antonio Augusto F; Lana, Ubiraci G P; de Sousa, Sylvia M; Guimaraes, Claudia T
2015-07-07
Modifications in root morphology are important strategies to maximize soil exploitation under phosphorus starvation in plants. Here, we used two multiple interval models to map QTLs related to root traits, biomass accumulation and P content in a maize RIL population cultivated in nutrient solution. In addition, we searched for putative maize homologs to PSTOL1, a gene responsible to enhance early root growth, P uptake and grain yield in rice and sorghum. Based on path analysis, root surface area was the root morphology component that most strongly contributed to total dry weight and to P content in maize seedling under low-P availability. Multiple interval mapping models for single (MIM) and multiple traits (MT-MIM) were combined and revealed 13 genomic regions significantly associated with the target traits in a complementary way. The phenotypic variances explained by all QTLs and their epistatic interactions using MT-MIM (23.4 to 35.5 %) were higher than in previous studies, and presented superior statistical power. Some of these QTLs were coincident with QTLs for root morphology traits and grain yield previously mapped, whereas others harbored ZmPSTOL candidate genes, which shared more than 55 % of amino acid sequence identity and a conserved serine/threonine kinase domain with OsPSTOL1. Additionally, four ZmPSTOL candidate genes co-localized with QTLs for root morphology, biomass accumulation and/or P content were preferentially expressed in roots of the parental lines that contributed the alleles enhancing the respective phenotypes. QTL mapping strategies adopted in this study revealed complementary results for single and multiple traits with high accuracy. Some QTLs, mainly the ones that were also associated with yield performance in other studies, can be good targets for marker-assisted selection to improve P-use efficiency in maize. Based on the co-localization with QTLs, the protein domain conservation and the coincidence of gene expression, we selected novel maize genes as putative homologs to PSTOL1 that will require further validation studies.
Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows.
Wang, Haifei; Jiang, Li; Wang, Wenwen; Zhang, Shengli; Yin, Zongjun; Zhang, Qin; Liu, Jian-Feng
2014-11-25
The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3'UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P < 0.05). Our study shows evidence of significant associations between SNPs within the HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle.
González-Recio, O; Haile-Mariam, M; Pryce, J E
2016-01-01
The objectives of this study were (1) to propose changing the selection criteria trait for evaluating fertility in Australia from calving interval to conception rate at d 42 after the beginning of the mating season and (2) to use type traits as early fertility predictors, to increase the reliability of estimated breeding values for fertility. The breeding goal in Australia is conception within 6 wk of the start of the mating season. Currently, the Australian model to predict fertility breeding values (expressed as a linear transformation of calving interval) is a multitrait model that includes calving interval (CVI), lactation length (LL), calving to first service (CFS), first nonreturn rate (FNRR), and conception rate. However, CVI has a lower genetic correlation with the breeding goal (conception within 6 wk of the start of the mating season) than conception rate. Milk yield, type, and fertility data from 164,318 cow sired by 4,766 bulls were used. Principal component analysis and genetic correlation estimates between type and fertility traits were used to select type traits that could subsequently be used in a multitrait analysis. Angularity, foot angle, and pin set were chosen as type traits to include in an index with the traits that are included in the multitrait fertility model: CVI, LL, CFS, FNRR, and conception rate at d 42 (CR42). An index with these 8 traits is expected to achieve an average bull first proof reliability of 0.60 on the breeding objective (conception within 6 wk of the start of the mating season) compared with reliabilities of 0.39 and 0.45 for CR42 only or the current 5-trait Australian model. Subsequently, we used the first eigenvector of a principal component analysis with udder texture, bone quality, angularity, and body condition score to calculate an energy status indicator trait. The inclusion of the energy status indicator trait composite in a multitrait index with CVI, LL, CFS, FNRR, and CR42 achieved a 12-point increase in fertility breeding value reliability (i.e., increased by 30%; up to 0.72 points of reliability), whereas a lower increase in reliability (4 points, i.e., increased by 10%) was obtained by including angularity, foot angle, and pin set in the index. In situations when a limited number of daughters have been phenotyped for CR42, including type data for sires increased reliabilities compared with when type data were omitted. However, sires with more than 80 daughters with CR42 records achieved reliability estimates close to 80% on average, and there did not appear to be a benefit from having daughters with type records. The cost of phenotyping to obtain such reliabilities (assuming a cost of AU$14 per cow with type data and AU$5 per cow with pregnancy diagnosed) is lower if more pregnancy data are collected in preference to type data. That is, efforts to increase the reliability of fertility EBV are most cost effective when directed at obtaining a larger number of pregnancy tests. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mapping QTLs for grain yield components in wheat under heat stress.
Bhusal, Nabin; Sarial, Ashok Kumar; Sharma, Pradeep; Sareen, Sindhu
2017-01-01
The current perspective of increasing global temperature makes heat stress as a major threat to wheat production worldwide. In order to identify quantitative trait loci (QTLs) associated with heat tolerance, 251 recombinant inbred lines (RILs) derived from a cross between HD2808 (heat tolerant) and HUW510 (heat susceptible) were evaluated under timely sown (normal) and late sown (heat stress) conditions for two consecutive crop seasons; 2013-14 and 2014-15. Grain yield (GY) and its components namely, grain weight/spike (GWS), grain number/spike (GNS), thousand grain weight (TGW), grain filling rate (GFR) and grain filling duration (GFD) were recorded for both conditions and years. The data collected for both timely and late sown conditions and heat susceptibility index (HSI) of these traits were used as phenotypic data for QTL identification. The frequency distribution of HSI for all the studied traits was continuous during both the years and also included transgressive segregants. Composite interval mapping identified total 24 QTLs viz., 9 (timely sown traits), 6 (late sown traits) and 9 (HSI of traits) mapped on linkage groups 2A, 2B, and 6D during both the crop seasons 2013-14 and 2014-15. The QTLs were detected for GWS (6), GNS (6), GFR (4), TGW (3), GY (3) and GFD (2). The LOD score of identified QTLs varied from 3.03 (Qtgns.iiwbr-6D) to 21.01 (Qhsitgw.iiwbr-2A) during 2014-15, explaining 11.2 and 30.6% phenotypic variance, respectively. Maximum no of QTLs were detected in chromosome 2A followed by 6D and 2B. All the QTL detected under late sown and HSI traits were identified on chromosome 2A except for QTLs associated with GFD. Fifteen out of 17 QTL detected on chromosome 2A were clustered within the marker interval between gwm448 and wmc296 and showed tight linkage with gwm122 and these were localized in 49-52 cM region of Somers consensus map of chromosome 2A i.e. within 18-59.56 cM region of chromosome 2A where no QTL related to heat stress were reported earlier. Besides, three consistent QTLs, Qgws.iiwbr-2A, Qgns.iiwbr-2A and Qgns.iiwbr-2A were also detected in all the environments in this region. The nearest QTL detected in earlier studies, QFv/Fm.cgb-2A was approximately 6cM below the presently identified QTLs region, respectively Additionally, QTLs for physiological and phenological traits and plant height under late sown and HSI of these traits were also detected on chromosome 2A. QTL for HSI of plant height and physiological maturity were located in the same genomic region of chromosome 2Awhereas QTLs for physiological and phonological traits under late sown were located 8cM and 33.5 cM below the genomic location associated with grain traits, respectively in consensus map of Somers. This QTL hot-spot region with consistent QTLs could be used to improve heat tolerance after validation.
ERIC Educational Resources Information Center
Da Silva, Helena Sofia Pereira
2009-01-01
Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…
Palomeque, Laura; Liu, Li-Jun; Li, Wenbin; Hedges, Bradley R; Cober, Elroy R; Smid, Mathew P; Lukens, Lewis; Rajcan, Istvan
2010-03-01
The value of quantitative trait loci (QTL) is dependent on the strength of association with the traits of interest, allelic diversity at the QTL and the effect of the genetic background on the expression of the QTL. A number of recent studies have identified QTL associated with traits of interest that appear to be independent of the environment but dependent on the genetic background in which they are found. Therefore, the objective of this study was to validate universal and/or mega-environment-specific seed yield QTL that have been previously reported in an independent recombinant inbred line (RIL) population derived from the cross between an elite Chinese and Canadian parent. The population was evaluated at two field environments in China and in five environments in Canada in 2005 and 2006. Of the seven markers linked to seed yield QTL reported by our group in a previous study, four were polymorphic between the two parents. No association between seed yield and QTL was observed. The result could imply that seed yield QTL were either not stable in this particular genetic background or harboured different alleles than the ones in the original mapping population. QTL(U) Satt162 was associated with several agronomic traits of which lodging was validated. Both the non-adapted and adapted parent contributed favourable alleles to the progeny. Therefore, plant introductions have been validated as a source of favourable alleles that could increase the genetic variability of the soybean germplasm pool and lead to further improvements in seed yield and other agronomic traits.
Iso-Touru, T; Sahana, G; Guldbrandtsen, B; Lund, M S; Vilkki, J
2016-03-22
The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields. Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26 were associated with fat yield. Regions on chromosomes 5, 14, 16, 19, 20 and 25 were associated with milk yield and chromosomes 5, 14 and 25 had regions associated with protein yield. Significantly associated variations were found in 227 genes for fat yield, 72 genes for milk yield and 30 genes for protein yield. Ingenuity Pathway Analysis was used to identify networks connecting these genes displaying significant hits. When compared to previously mapped genomic regions associated with fertility, significantly associated variations were found in 5 genes common for fat yield and fertility, thus linking these two traits via biological networks. This is the first time when whole genome sequence data is utilized to study genomic regions affecting milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative traits in detail but still cannot unambiguously reveal which of the associated variations is causative. Linkage disequilibrium creates difficulties to pinpoint the causative genes and variations. One solution to overcome these difficulties is the identification of the functional gene networks and pathways to reveal important interacting genes as candidates for the observed effects. This information on target genomic regions may be exploited to improve genomic prediction.
Genetic parameters for milk production traits and breeding goals for Gir dairy cattle in Brazil.
Prata, M A; Faro, L E; Moreira, H L; Verneque, R S; Vercesi Filho, A E; Peixoto, M G C D; Cardoso, V L
2015-10-19
To implement an animal breeding program, it is important to define the production circumstances of the animals of interest to determine which traits of economic interest will be selected for the breeding goal. The present study defined breeding goals and proposed selection indices for milk production and quality traits of Gir dairy cattle. First, a bioeconomic model was developed to calculate economic values. The genetic and phenotypic parameters were estimated based on records from 22,468 first-lactation Gir dairy cows and their crosses for which calving occurred between 1970 and 2011. Statistical analyses were carried out for the animal model, with multitrait analyses using the restricted maximum likelihood method. Two situations were created in the present study to define the breeding goals: 1) including only milk yield in the breeding goal (HGL1) and 2) including fat and protein in addition to the milk yield (HGL2). The heritability estimates for milk, protein, and fat production were 0.33 ± 0.02, 0.26 ± 0.02, and 0.24 ± 0.02, respectively. All phenotypic and genetic correlations were highly positive. The economic values for milk, fat, and protein were US$0.18, US$0.27, and US$7.04, respectively. The expected economic responses for HGL2 and for HGL1 were US$126.30 and US$79.82, respectively. These results indicate that milk component traits should be included in a selection index to rank animals evaluated in the National Gir Dairy Breeding Program developed in Brazil.
Abbott, Jessica M; Grosberg, Richard K; Williams, Susan L; Stachowicz, John J
2017-12-01
Genetic diversity within key species can play an important role in the functioning of entire communities. However, the extent to which different dimensions of diversity (e.g., the number of genotypes vs. the extent of genetic differentiation among those genotypes) best predicts functioning is unknown and may yield clues into the different mechanisms underlying diversity effects. We explicitly test the relative influence of genotypic richness and genetic relatedness on eelgrass productivity, biomass, and the diversity of associated invertebrate grazers in a factorial field experiment using the seagrass species, Zostera marina (eelgrass). Genotypic richness had the strongest effect on eelgrass biomass accumulation, such that plots with more genotypes at the end of the experiment attained a higher biomass. Genotypic diversity (richness + evenness) was a stronger predictor of biomass than richness alone, and both genotype richness and diversity were positively correlated with trait diversity. The relatedness of genotypes in a plot reduced eelgrass biomass independently of richness. Plots containing eelgrass with greater trait diversity also had a higher abundance of invertebrate grazers, while the diversity and relatedness of eelgrass genotypes had little effect on invertebrate abundance or richness. Our work extends previous findings by explicitly relating genotypic diversity to trait diversity, thus mechanistically connecting genotypic diversity to plot-level yields. We also show that other dimensions of diversity, namely relatedness, influence eelgrass performance independent of trait differentiation. Ultimately, richness and relatedness captured fundamentally different components of intraspecific variation and should be treated as complementary rather than competing dimensions of biodiversity affecting ecosystem functioning. © 2017 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busov, Victor
Adoption of biofuels as economically and environmentally viable alternative to fossil fuels would require development of specialized bioenergy varieties. A major goal in the breeding of such varieties is the improvement of lignocellulosic biomass yield and quality. These are complex traits and understanding the underpinning molecular mechanism can assist and accelerate their improvement. This is particularly important for tree bioenergy crops like poplars (species and hybrids from the genus Populus), for which breeding progress is extremely slow due to long generation cycles. A variety of approaches have been already undertaken to better understand the molecular bases of biomass yield andmore » quality in poplar. An obvious void in these undertakings has been the application of mutagenesis. Mutagenesis has been instrumental in the discovery and characterization of many plant traits including such that affect biomass yield and quality. In this proposal we use activation tagging to discover genes that can significantly affect biomass associated traits directly in poplar, a premier bioenergy crop. We screened a population of 5,000 independent poplar activation tagging lines under greenhouse conditions for a battery of biomass yield traits. These same plants were then analyzed for changes in wood chemistry using pyMBMS. As a result of these screens we have identified nearly 800 mutants, which are significantly (P<0.05) different when compared to wild type. Of these majority (~700) are affected in one of ten different biomass yield traits and 100 in biomass quality traits (e.g., lignin, S/G ration and C6/C5 sugars). We successfully recovered the position of the tag in approximately 130 lines, showed activation in nearly half of them and performed recapitulation experiments with 20 genes prioritized by the significance of the phenotype. Recapitulation experiments are still ongoing for many of the genes but the results are encouraging. For example, we have shown successful recapitulation for a fascilin-like gene that when overexpressed increase many biomass-yield associated traits. Genes discovered through activation tagging showed polymorphisms in P. trichocarpa association mapping population linked to the traits modified by the activation tagging. This suggests that putative alleles that are associated with improvement of the trait o interest can be discovered and used in marker associated selection. This will significantly simplify and accelerate the breeding efforts.« less
Onion Hybrid Seed Production: Relation with Nectar Composition and Flower Traits.
Soto, Veronica C; Caselles, Cristian A; Silva, Maria F; Galmarini, Claudio R
2018-05-28
Onion (Allium cepa L.) is one of the main vegetable crops. Pollinators are required for onion seed production, being honeybees the most used. Around the world, two types of onion varieties are grown: open pollinated (OP) and hybrids. Hybrids offer numerous advantages to growers, but usually have lower seed yields than OP cultivars, which in many cases compromise the success of new hybrids. As pollination is critical for seed set, understanding the role of floral rewards and attractants to pollinator species is the key to improve crop seed yield. In this study, the correlation of nectar-analyzed compounds, floral traits, and seed yield under open field conditions in two experimental sites was determined. Nectar composition was described through the analysis of sugars, phenol, and alkaloid compounds. Length and width of the style and tepals of the flowers were measured to describe floral traits. Floral and nectar traits showed differences among the studied lines. For nectar traits, we found a significant influence of the environment where plants were cultivated. Nonetheless, flower traits were not influenced by the experimental sites. The OP and the male-sterile lines (MSLs) showed differences in nectar chemical composition and floral traits. In addition, there were differences between and within MSLs, some of which were correlated with seed yield, bringing the opportunity to select the most productive MSL, using simple determinations of morphological characters like the length of the style or tepals size.
Using Y-Chromosomal Haplogroups in Genetic Association Studies and Suggested Implications.
Erzurumluoglu, A Mesut; Baird, Denis; Richardson, Tom G; Timpson, Nicholas J; Rodriguez, Santiago
2018-01-22
Y-chromosomal (Y-DNA) haplogroups are more widely used in population genetics than in genetic epidemiology, although associations between Y-DNA haplogroups and several traits, including cardiometabolic traits, have been reported. In apparently homogeneous populations defined by principal component analyses, there is still Y-DNA haplogroup variation which will result from population history. Therefore, hidden stratification and/or differential phenotypic effects by Y-DNA haplogroups could exist. To test this, we hypothesised that stratifying individuals according to their Y-DNA haplogroups before testing for associations between autosomal single nucleotide polymorphisms (SNPs) and phenotypes will yield difference in association. For proof of concept, we derived Y-DNA haplogroups from 6537 males from two epidemiological cohorts, Avon Longitudinal Study of Parents and Children (ALSPAC) ( n = 5080; 816 Y-DNA SNPs) and the 1958 Birth Cohort ( n = 1457; 1849 Y-DNA SNPs), and studied the robust associations between 32 SNPs and body mass index (BMI), including SNPs in or near Fat Mass and Obesity-associated protein ( FTO ) which yield the strongest effects. Overall, no association was replicated in both cohorts when Y-DNA haplogroups were considered and this suggests that, for BMI at least, there is little evidence of differences in phenotype or SNP association by Y-DNA structure. Further studies using other traits, phenome-wide association studies (PheWAS), other haplogroups and/or autosomal SNPs are required to test the generalisability and utility of this approach.
Bai, Xufeng; Zhao, Hu; Huang, Yong; Xie, Weibo; Han, Zhongmin; Zhang, Bo; Guo, Zilong; Yang, Lin; Dong, Haijiao; Xue, Weiya; Li, Guangwei; Hu, Gang; Hu, Yong; Xing, Yongzhong
2016-07-01
Panicle architecture determines the number of spikelets per panicle (SPP) and is highly associated with grain yield in rice ( L.). Understanding the genetic basis of panicle architecture is important for improving the yield of rice grain. In this study, we dissected panicle architecture traits into eight components, which were phenotyped from a germplasm collection of 529 cultivars. Multiple regression analysis revealed that the number of secondary branch (NSB) was the major factor that contributed to SPP. Genome-wide association analysis was performed independently for the eight particle architecture traits observed in the and rice subpopulations compared with the whole rice population. In total, 30 loci were associated with these traits. Of these, 13 loci were closely linked to known panicle architecture genes, and 17 novel loci were repeatedly identified in different environments. An association signal cluster was identified for NSB and number of spikelets per secondary branch (NSSB) in the region of 31.6 to 31.7 Mb on chromosome 4. In addition to the common associations detected in both and subpopulations, many associated loci were unique to one subpopulation. For example, and were specifically associated with panicle length (PL) in and rice, respectively. Moreover, the -mediated flowering genes and were associated with the formation of panicle architecture in rice. These results suggest that different gene networks regulate panicle architecture in and rice. Copyright © 2016 Crop Science Society of America.
Stocco, G; Cipolat-Gotet, C; Gasparotto, V; Cecchinato, A; Bittante, G
2018-02-01
Little is known about cheese-making efficiency at the individual cow level, so our objective was to study the effects of herd productivity, individual herd within productivity class and breed of cow within herd by producing, then analyzing, 508 model cheeses from the milk of 508 cows of six different breeds reared in 41 multi-breed herds classified into two productivity classes (high v. low). For each cow we obtained six milk composition traits; four milk nutrient (fat, protein, solids and energy) recovery traits (REC) in curd; three actual % cheese yield traits (%CY); two theoretical %CYs (fresh cheese and cheese solids) calculated from milk composition; two overall cheese-making efficiencies (% ratio of actual to theoretical %CYs); daily milk yield (dMY); and three actual daily cheese yield traits (dCY). The aforementioned phenotypes were analyzed using a mixed model which included the fixed effects of herd productivity, parity, days in milk (DIM) and breed; the random effects were the water bath, vat, herd and residual. Cows reared in high-productivity herds yielded more milk with higher nutrient contents and more cheese per day, had greater theoretical %CY, and lower cheese-making efficiency than low-productivity herds, but there were no differences between them in terms of REC traits. Individual herd within productivity class was an intermediate source of total variation in REC, %CY and efficiency traits (10.0% to 17.2%), and a major source of variation in milk yield and dCY traits (43.1% to 46.3%). Parity of cows was an important source of variation for productivity traits, whereas DIM affected almost all traits. Breed within herd greatly affected all traits. Holsteins produced more milk, but Brown Swiss cows produced milk with higher actual and theoretical %CYs and cheese-making efficiency, so that the two large-framed breeds had the same dCY. Compared with the two large-framed breeds, the small Jersey cows produced much less milk, but with greater actual and theoretical %CYs, similar efficiencies and a slightly lower dCY. Compared with the average of the specialized dairy breeds, the three dual-purpose breeds (Simmental and the local Rendena and Alpine Grey) had, on average, similar dMY, lower actual and theoretical %CY, similar fat and protein REC, and slightly greater cheese-making efficiency.
Campos, Rafael Viegas; Cobuci, Jaime Araujo; Kern, Elisandra Lurdes; Costa, Cláudio Napolis; McManus, Concepta Margaret
2015-04-01
The objective of this study was to estimate genetic and phenotypic parameters for linear type traits, as well as milk yield (MY), fat yield (FY) and protein yield (PY) in 18,831 Holstein cows reared in 495 herds in Brazil. Restricted maximum likelihood with a bivariate model was used for estimation genetic parameters, including fixed effects of herd-year of classification, period of classification, classifier and stage of lactation for linear type traits and herd-year of calving, season of calving and lactation order effects for production traits. The age of cow at calving was fitted as a covariate (with linear and quadratic terms), common to both models. Heritability estimates varied from 0.09 to 0.38 for linear type traits and from 0.17 to 0.24 for production traits, indicating sufficient genetic variability to achieve genetic gain through selection. In general, estimates of genetic correlations between type and production traits were low, except for udder texture and angularity that showed positive genetic correlations (>0.29) with MY, FY, and PY. Udder depth had the highest negative genetic correlation (-0.30) with production traits. Selection for final score, commonly used by farmers as a practical selection tool to improve type traits, does not lead to significant improvements in production traits, thus the use of selection indices that consider both sets of traits (production and type) seems to be the most adequate to carry out genetic selection of animals in the Brazilian herd.
Campos, Rafael Viegas; Cobuci, Jaime Araujo; Kern, Elisandra Lurdes; Costa, Cláudio Napolis; McManus, Concepta Margaret
2015-01-01
The objective of this study was to estimate genetic and phenotypic parameters for linear type traits, as well as milk yield (MY), fat yield (FY) and protein yield (PY) in 18,831 Holstein cows reared in 495 herds in Brazil. Restricted maximum likelihood with a bivariate model was used for estimation genetic parameters, including fixed effects of herd-year of classification, period of classification, classifier and stage of lactation for linear type traits and herd-year of calving, season of calving and lactation order effects for production traits. The age of cow at calving was fitted as a covariate (with linear and quadratic terms), common to both models. Heritability estimates varied from 0.09 to 0.38 for linear type traits and from 0.17 to 0.24 for production traits, indicating sufficient genetic variability to achieve genetic gain through selection. In general, estimates of genetic correlations between type and production traits were low, except for udder texture and angularity that showed positive genetic correlations (>0.29) with MY, FY, and PY. Udder depth had the highest negative genetic correlation (−0.30) with production traits. Selection for final score, commonly used by farmers as a practical selection tool to improve type traits, does not lead to significant improvements in production traits, thus the use of selection indices that consider both sets of traits (production and type) seems to be the most adequate to carry out genetic selection of animals in the Brazilian herd. PMID:25656190
Ferragina, A.; de los Campos, G.; Vazquez, A. I.; Cecchinato, A.; Bittante, G.
2017-01-01
The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict “difficult-to-predict” dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm−1 were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R2 value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R2 (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R2 of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations. PMID:26387015
Yeaman, Grant R; Paul, Sudakshina; Nahirna, Iryna; Wang, Yongcheng; Deffenbaugh, Andrew E; Liu, Zi Lucy; Glenn, Kevin C
2016-06-22
In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.
Bekele, Berhanu D; Naveen, G K; Rakhi, S; Shashidhar, H E
2013-12-01
The objectives of the present study were to evaluate genetic variability parameters, correlations that exist for grain Zn concentration and yield related traits and identification of SSR markers linked to these traits in rice. One hundred seventy six Recombinant Inbred Lines (RILs) of Azucena X Moromutant were grown at University of Agricultural Sciences, Bangalore in augmented experimental design during wet seasons of 2010 and 2011. The study revealed significant genetic variability for all the traits. Grain yield per plant and grain zinc concentration showed higher phenotypic and genotypic co-efficient of variation. Significant positive correlation was observed for grain yield per plant with number of productive tillers per plant (r = 0.5) and number of tillers per plant (r = 0.4). Grain zinc concentration showed negative correlation with grain yield per plant (r = - 0.27). The path-coefficient analysis indicated the positive direct effect of number of productive tillers per plant on grain yield per plant (0.514). Grain zinc concentration showed negative direct effect on grain yield per plant (-0.186). Single-marker analysis using 26 SSR markers on RILs mapping population showed that RM212, RM263, RM6832, RM152, RM21, RM234 and RM3331 had association with grain zinc concentration and other yield related traits. But validation of these markers on fifty two rice genotypes showed that only three markers RM263, RM152 and RM21 had association with grain zinc concentration. Therefore, the genetic information generated and molecular markers identified from this study could be used for zinc biofortification programmes in rice.
Fang, Xiaomei; Dong, Kongjun; Wang, Xiaoqin; Liu, Tianpeng; He, Jihong; Ren, Ruiyu; Zhang, Lei; Liu, Rui; Liu, Xueying; Li, Man; Huang, Mengzhu; Zhang, Zhengsheng; Yang, Tianyu
2016-05-04
Foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China, has been adopted as a model crop for studying C-4 photosynthesis, stress biology and biofuel traits. Construction of a high density genetic map and identification of stable quantitative trait loci (QTL) lay the foundation for marker-assisted selection for agronomic traits and yield improvement. A total of 10598 SSR markers were developed according to the reference genome sequence of foxtail millet cultivar 'Yugu1'. A total of 1013 SSR markers showing polymorphism between Yugu1 and Longgu7 were used to genotype 167 individuals from a Yugu1 × Longgu7 F2 population, and a high density genetic map was constructed. The genetic map contained 1035 loci and spanned 1318.8 cM with an average distance of 1.27 cM between adjacent markers. Based on agronomic and yield traits identified in 2 years, 29 QTL were identified for 11 traits with combined analysis and single environment analysis. These QTL explained from 7.0 to 14.3 % of phenotypic variation. Favorable QTL alleles for peduncle length originated from Longgu7 whereas favorable alleles for the other traits originated from Yugu1 except for qLMS6.1. New SSR markers, a high density genetic map and QTL identified for agronomic and yield traits lay the ground work for functional gene mapping, map-based cloning and marker-assisted selection in foxtail millet.
Maphosa, Lance; Kovalchuk, Alex
2017-01-01
Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat (Triticum aestivum) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. PMID:28546436
Chenu, Karine; Chapman, Scott C; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L
2009-12-01
Under drought, substantial genotype-environment (G x E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this "gene-to-phenotype" gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G x E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such "leafy" genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G x E interactions for complex traits such as drought tolerance.
Rapp, M; Lein, V; Lacoudre, F; Lafferty, J; Müller, E; Vida, G; Bozhanova, V; Ibraliu, A; Thorwarth, P; Piepho, H P; Leiser, W L; Würschum, T; Longin, C F H
2018-06-01
Simultaneous improvement of protein content and grain yield by index selection is possible but its efficiency largely depends on the weighting of the single traits. The genetic architecture of these indices is similar to that of the primary traits. Grain yield and protein content are of major importance in durum wheat breeding, but their negative correlation has hampered their simultaneous improvement. To account for this in wheat breeding, the grain protein deviation (GPD) and the protein yield were proposed as targets for selection. The aim of this work was to investigate the potential of different indices to simultaneously improve grain yield and protein content in durum wheat and to evaluate their genetic architecture towards genomics-assisted breeding. To this end, we investigated two different durum wheat panels comprising 159 and 189 genotypes, which were tested in multiple field locations across Europe and genotyped by a genotyping-by-sequencing approach. The phenotypic analyses revealed significant genetic variances for all traits and heritabilities of the phenotypic indices that were in a similar range as those of grain yield and protein content. The GPD showed a high and positive correlation with protein content, whereas protein yield was highly and positively correlated with grain yield. Thus, selecting for a high GPD would mainly increase the protein content whereas a selection based on protein yield would mainly improve grain yield, but a combination of both indices allows to balance this selection. The genome-wide association mapping revealed a complex genetic architecture for all traits with most QTL having small effects and being detected only in one germplasm set, thus limiting the potential of marker-assisted selection for trait improvement. By contrast, genome-wide prediction appeared promising but its performance strongly depends on the relatedness between training and prediction sets.
Li, Faji; Wen, Weie; He, Zhonghu; Liu, Jindong; Jin, Hui; Cao, Shuanghe; Geng, Hongwei; Yan, Jun; Zhang, Pingzhi; Wan, Yingxiu; Xia, Xianchun
2018-06-01
We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay. Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai × Shi 4185 (D × S), Gaocheng 8901 × Zhoumai 16 (G × Z) and Linmai 2 × Zhong 892 (L × Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5-32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.
A Calculus for Boxes and Traits in a Java-Like Setting
NASA Astrophysics Data System (ADS)
Bettini, Lorenzo; Damiani, Ferruccio; de Luca, Marco; Geilmann, Kathrin; Schäfer, Jan
The box model is a component model for the object-oriented paradigm, that defines components (the boxes) with clear encapsulation boundaries. Having well-defined boundaries is crucial in component-based software development, because it enables to argue about the interference and interaction between a component and its context. In general, boxes contain several objects and inner boxes, of which some are local to the box and cannot be accessed from other boxes and some can be accessible by other boxes. A trait is a set of methods divorced from any class hierarchy. Traits can be composed together to form classes or other traits. We present a calculus for boxes and traits. Traits are units of fine-grained reuse, whereas boxes can be seen as units of coarse-grained reuse. The calculus is equipped with an ownership type system and allows us to combine coarse- and fine-grained reuse of code by maintaining encapsulation of components.
Valluru, Ravi; Reynolds, Matthew P; Salse, Jerome
2014-07-01
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Murphy, T W; Berger, Y M; Holman, P W; Baldin, M; Burgett, R L; Thomas, D L
2017-10-01
For the past 2 decades, the Spooner Agriculture Research Station (ARS) of the University of Wisconsin-Madison operated the only dairy sheep research flock in North America. The objectives of the present study were to 1) obtain estimates of genetic parameters for lactation and reproductive traits in dairy ewes, 2) estimate the amount of genetic change in these traits over time, and 3) quantify the level of inbreeding in this flock over the last 20 yr. Multiple-trait repeatability models (MTRM) were used to analyze ewe traits through their first 6 parities. The first MTRM jointly analyzed milk (180-d-adjusted milk yield [180d MY]), fat (180-d-adjusted fat yield [180d FY]), and protein (180-d-adjusted protein yield [180d PY]) yields adjusted to 180 d of lactation; number of lambs born per ewe lambing (NLB); and lactation average test-day somatic cell score (LSCS). A second MTRM analyzed 180d MY, NLB, LSCS, and percentage milk fat (%F) and percentage milk protein (%P). The 3 yield traits were moderately heritable (0.26 to 0.32) and strongly genetically correlated (0.91 to 0.96). Percentage milk fat and %P were highly heritable (0.53 and 0.61, respectively) and moderately genetically correlated (0.61). Milk yield adjusted to 180 d was negatively genetically correlated with %F and %P (-0.31 and -0.34, respectively). Ewe prolificacy was not significantly ( > 0.67) genetically correlated with yield traits, %P, or LSCS but lowly negatively correlated with %F (-0.26). Lactation somatic cell score was unfavorably genetically correlated with yield traits (0.28 to 0.39) but not significantly ( > 0.09) correlated with %F, %P, and NLB. Within-trait multiple-trait models through the first 4 parities revealed that 180d MY, 180d FY, 180d PY, %F, and %P were strongly genetically correlated across parity (0.67 to 1.00). However, the genetic correlations across parity for NLB and LSCS were somewhat lower (0.51 to 0.96). Regressing predicted breeding values for 180d MY, without and with the addition of breed effects, on ewe year of birth revealed a positive genetic gain of 2.30 and 6.24 kg/yr, respectively, over the past 20 yr in this flock. Inbreeding coefficients of ewes with an extended pedigree ranged from 0.0 to 0.29, with an average of 0.07. To optimize genetic gains and avoid excessive inbreeding, the development of a national genetic improvement program should be a top priority for the growing dairy sheep industry.
Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan
2013-06-01
Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.
ERIC Educational Resources Information Center
Liu, David; Gelman, Susan A.; Wellman, Henry M.
2007-01-01
Trait attribution is central to people's naive theories of people and their actions. Previous developmental research indicates that young children are poor at predicting behaviors from past trait-relevant behaviors. We propose that the cognitive process of behavior-to-behavior predictions consists of two component processes: (1) behavior-to-trait…
Kandler, Christian; Riemann, Rainer; Angleitner, Alois; Spinath, Frank M; Borkenau, Peter; Penke, Lars
2016-08-01
This multitrait multimethod twin study examined the structure and sources of individual differences in creativity. According to different theoretical and metrological perspectives, as well as suggestions based on previous research, we expected 2 aspects of individual differences, which can be described as perceived creativity and creative test performance. We hypothesized that perceived creativity, reflecting typical creative thinking and behavior, should be linked to specific personality traits, whereas test creativity, reflecting maximum task-related creative performance, should show specific associations with cognitive abilities. Moreover, we tested whether genetic variance in intelligence and personality traits account for the genetic component of creativity. Multiple-rater and multimethod data (self- and peer reports, observer ratings, and test scores) from 2 German twin studies-the Bielefeld Longitudinal Study of Adult Twins and the German Observational Study of Adult Twins-were analyzed. Confirmatory factor analyses yielded the expected 2 correlated aspects of creativity. Perceived creativity showed links to openness to experience and extraversion, whereas tested figural creativity was associated with intelligence and also with openness. Multivariate behavioral genetic analyses indicated that the heritability of tested figural creativity could be accounted for by the genetic component of intelligence and openness, whereas a substantial genetic component in perceived creativity could not be explained. A primary source of individual differences in creativity was due to environmental influences, even after controlling for random error and method variance. The findings are discussed in terms of the multifaceted nature and construct validity of creativity as an individual characteristic. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Factor regression for interpreting genotype-environment interaction in bread-wheat trials.
Baril, C P
1992-05-01
The French INRA wheat (Triticum aestivum L. em Thell.) breeding program is based on multilocation trials to produce high-yielding, adapted lines for a wide range of environments. Differential genotypic responses to variable environment conditions limit the accuracy of yield estimations. Factor regression was used to partition the genotype-environment (GE) interaction into four biologically interpretable terms. Yield data were analyzed from 34 wheat genotypes grown in four environments using 12 auxiliary agronomic traits as genotypic and environmental covariates. Most of the GE interaction (91%) was explained by the combination of only three traits: 1,000-kernel weight, lodging susceptibility and spike length. These traits are easily measured in breeding programs, therefore factor regression model can provide a convenient and useful prediction method of yield.
Impact of production strategies and animal performance on economic values of dairy sheep traits.
Krupová, Z; Wolfová, M; Krupa, E; Oravcová, M; Daňo, J; Huba, J; Polák, P
2012-03-01
The objective of this study was to carry out a sensitivity analysis on the impact of various production strategies and performance levels on the relative economic values (REVs) of traits in dairy sheep. A bio-economic model implemented in the program package ECOWEIGHT was used to simulate the profit function for a semi-extensive production system with the Slovak multi-purpose breed Improved Valachian and to calculate the REV of 14 production and functional traits. The following production strategies were analysed: differing proportions of milk processed to cheese, customary weaning and early weaning of lambs with immediate sale or sale after artificial rearing, seasonal lambing in winter and aseasonal lambing in autumn. Results of the sensitivity analysis are presented in detail for the four economically most important traits: 150 days milk yield, conception rate of ewes, litter size and ewe productive lifetime. Impacts of the differences in the mean value of each of these four traits on REVs of all other traits were also examined. Simulated changes in the production circumstances had a higher impact on the REV for milk yield than on REVs of the other traits investigated. The proportion of milk processed to cheese, weaning management strategy for lambs and level of milk yield were the main factors influencing the REV of milk yield. The REVs for conception rate of ewes were highly sensitive to the current mean level of the trait. The REV of ewe productive lifetime was most sensitive to variation in ewe conception rate, and the REV of litter size was most affected by weaning strategy for lambs. On the basis of the results of sensitivity analyses, it is recommended that economic values of traits for the overall breeding objective for dairy sheep be calculated as the weighted average of the economic values obtained for the most common production strategies of Slovak dairy sheep farms and that economic values be adjusted after substantial changes in performance levels of the traits.
Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.
Sarlak, S; Aghaalikhani, M; Zand, B
2008-09-01
In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p < 0.01). Therefore, the mixing ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.
First impressions: gait cues drive reliable trait judgements.
Thoresen, John C; Vuong, Quoc C; Atkinson, Anthony P
2012-09-01
Personality trait attribution can underpin important social decisions and yet requires little effort; even a brief exposure to a photograph can generate lasting impressions. Body movement is a channel readily available to observers and allows judgements to be made when facial and body appearances are less visible; e.g., from great distances. Across three studies, we assessed the reliability of trait judgements of point-light walkers and identified motion-related visual cues driving observers' judgements. The findings confirm that observers make reliable, albeit inaccurate, trait judgements, and these were linked to a small number of motion components derived from a Principal Component Analysis of the motion data. Parametric manipulation of the motion components linearly affected trait ratings, providing strong evidence that the visual cues captured by these components drive observers' trait judgements. Subsequent analyses suggest that reliability of trait ratings was driven by impressions of emotion, attractiveness and masculinity. Copyright © 2012 Elsevier B.V. All rights reserved.
Laidig, Friedrich; Piepho, Hans-Peter; Rentel, Dirk; Drobek, Thomas; Meyer, Uwe; Huesken, Alexandra
2017-01-01
Over the last 32 years, a large gain in grain yield (24 %) was achieved in official German variety trials, and despite considerable loss in protein concentration (-7.9 %), winter wheat baking quality was partially improved over the last 32 years. On-farm gain in grain yield (32 %) exceeded gain in trials, but at yield level about 25 dt ha -1 lower. Breeding progress was very successfully transferred into both progress in grain yield and on-farm baking quality. Long-term gains in grain yield and baking quality of 316 winter wheat varieties from German official trials were evaluated. We dissected progress into a genetic and a non-genetic part to quantify the contribution of genetic improvement. We further investigated the influence of genotype and environment on total variation by estimating variance components. We also estimated genetic and phenotypic correlation between quality traits. For trial data, we found a large gain in grain yield (24%), but a strong decline in protein concentration (-8.0%) and loaf volume (-8.5%) relative to 1983. Improvement of baking quality could be achieved for falling number (5.8%), sedimentation value (7.9%), hardness (13.4%), water absorption (1.2%) and milling yield (2.4%). Grain yield, falling number and protein concentration were highly influenced by environment, whereas for sedimentation value, hardness, water absorption and loaf volume genotypes accounted for more than 60% of total variation. Strong to very strong relations exist among protein concentration, sedimentation value, and loaf volume. On-farm yields were obtained from national statistics, and grain quality data from samples collected by national harvest survey. These on-farm data were compared with trial results. On-farm gain in grain yield was 31.6%, but at a mean level about 25 dt ha -1 lower. Improvement of on-farm quality exceeded trial results considerably. A shift to varieties with improved baking quality can be considered as the main reason for this remarkable improvement of on-farm baking quality.
Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor
Mohammed, Riyazaddin; Are, Ashok K.; Bhavanasi, Ramaiah; Munghate, Rajendra S.; Kavi Kishor, Polavarapu B.; Sharma, Hari C.
2015-01-01
The productivity in sorghum is low, owing to various biotic and abiotic constraints. Combining insect resistance with desirable agronomic and morphological traits is important to increase sorghum productivity. Therefore, it is important to understand the variability for various agronomic traits, their heritabilities and nature of gene action to develop appropriate strategies for crop improvement. Therefore, a full diallel set of 10 parents and their 90 crosses including reciprocals were evaluated in replicated trials during the 2013–14 rainy and postrainy seasons. The crosses between the parents with early- and late-flowering flowered early, indicating dominance of earliness for anthesis in the test material used. Association between the shoot fly resistance, morphological, and agronomic traits suggested complex interactions between shoot fly resistance and morphological traits. Significance of the mean sum of squares for GCA (general combining ability) and SCA (specific combining ability) of all the studied traits suggested the importance of both additive and non-additive components in inheritance of these traits. The GCA/SCA, and the predictability ratios indicated predominance of additive gene effects for majority of the traits studied. High broad-sense and narrow-sense heritability estimates were observed for most of the morphological and agronomic traits. The significance of reciprocal combining ability effects for days to 50% flowering, plant height and 100 seed weight, suggested maternal effects for inheritance of these traits. Plant height and grain yield across seasons, days to 50% flowering, inflorescence exsertion, and panicle shape in the postrainy season showed greater specific combining ability variance, indicating the predominance of non-additive type of gene action/epistatic interactions in controlling the expression of these traits. Additive gene action in the rainy season, and dominance in the postrainy season for days to 50% flowering and plant height suggested G X E interactions for these traits. PMID:26579183
Moore, K L; Mrode, R; Coffey, M P
2017-10-01
Visual Image analysis (VIA) of carcass traits provides the opportunity to estimate carcass primal cut yields on large numbers of slaughter animals. This allows carcases to be better differentiated and farmers to be paid based on the primal cut yields. It also creates more accurate genetic selection due to high volumes of data which enables breeders to breed cattle that better meet the abattoir specifications and market requirements. In order to implement genetic evaluations for VIA primal cut yields, genetic parameters must first be estimated and that was the aim of this study. Slaughter records from the UK prime slaughter population for VIA carcass traits was available from two processing plants. After edits, there were 17 765 VIA carcass records for six primal cut traits, carcass weight as well as the EUROP conformation and fat class grades. Heritability estimates after traits were adjusted for age ranged from 0.32 (0.03) for EUROP fat to 0.46 (0.03) for VIA Topside primal cut yield. Adjusting the VIA primal cut yields for carcass weight reduced the heritability estimates, with estimates of primal cut yields ranging from 0.23 (0.03) for Fillet to 0.29 (0.03) for Knuckle. Genetic correlations between VIA primal cut yields adjusted for carcass weight were very strong, ranging from 0.40 (0.06) between Fillet and Striploin to 0.92 (0.02) between Topside and Silverside. EUROP conformation was also positively correlated with the VIA primal cuts with genetic correlation estimates ranging from 0.59 to 0.84, whereas EUROP fat was estimated to have moderate negative correlations with primal cut yields, estimates ranged from -0.11 to -0.46. Based on these genetic parameter estimates, genetic evaluation of VIA primal cut yields can be undertaken to allow the UK beef industry to select carcases that better meet abattoir specification and market requirements.
Brinton, Jemima; Simmonds, James; Minter, Francesca; Leverington-Waite, Michelle; Snape, John; Uauy, Cristobal
2017-08-01
Crop yields must increase to address food insecurity. Grain weight, determined by grain length and width, is an important yield component, but our understanding of the underlying genes and mechanisms is limited. We used genetic mapping and near isogenic lines (NILs) to identify, validate and fine-map a major quantitative trait locus (QTL) on wheat chromosome 5A associated with grain weight. Detailed phenotypic characterisation of developing and mature grains from the NILs was performed. We identified a stable and robust QTL associated with a 6.9% increase in grain weight. The positive interval leads to 4.0% longer grains, with differences first visible 12 d after fertilization. This grain length effect was fine-mapped to a 4.3 cM interval. The locus also has a pleiotropic effect on grain width (1.5%) during late grain development that determines the relative magnitude of the grain weight increase. Positive NILs have increased maternal pericarp cell length, an effect which is independent of absolute grain length. These results provide direct genetic evidence that pericarp cell length affects final grain size and weight in polyploid wheat. We propose that combining genes that control distinct biological mechanisms, such as cell expansion and proliferation, will enhance crop yields. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Ferragina, A; Cipolat-Gotet, C; Cecchinato, A; Bittante, G
2013-01-01
Cheese yield is an important technological trait in the dairy industry in many countries. The aim of this study was to evaluate the effectiveness of Fourier-transform infrared (FTIR) spectral analysis of fresh unprocessed milk samples for predicting cheese yield and nutrient recovery traits. A total of 1,264 model cheeses were obtained from 1,500-mL milk samples collected from individual Brown Swiss cows. Individual measurements of 7 new cheese yield-related traits were obtained from the laboratory cheese-making procedure, including the fresh cheese yield, total solid cheese yield, and the water retained in curd, all as a percentage of the processed milk, and nutrient recovery (fat, protein, total solids, and energy) in the curd as a percentage of the same nutrient contained in the milk. All individual milk samples were analyzed using a MilkoScan FT6000 over the spectral range from 5,000 to 900 wavenumber × cm(-1). Two spectral acquisitions were carried out for each sample and the results were averaged before data analysis. Different chemometric models were fitted and compared with the aim of improving the accuracy of the calibration equations for predicting these traits. The most accurate predictions were obtained for total solid cheese yield and fresh cheese yield, which exhibited coefficients of determination between the predicted and measured values in cross-validation (1-VR) of 0.95 and 0.83, respectively. A less favorable result was obtained for water retained in curd (1-VR=0.65). Promising results were obtained for recovered protein (1-VR=0.81), total solids (1-VR=0.86), and energy (1-VR=0.76), whereas recovered fat exhibited a low accuracy (1-VR=0.41). As FTIR spectroscopy is a rapid, cheap, high-throughput technique that is already used to collect standard milk recording data, these FTIR calibrations for cheese yield and nutrient recovery highlight additional potential applications of the technique in the dairy industry, especially for monitoring cheese-making processes and milk payment systems. In addition, the prediction models can be used to provide breeding organizations with information on new phenotypes for cheese yield and milk nutrient recovery, potentially allowing these traits to be enhanced through selection. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Yield and fruit quality traits of atemoya hybrids grown in Puerto Rico
USDA-ARS?s Scientific Manuscript database
As consumers seek healthy and more diverse food products the demand for tropical fruits has increased significantly during the past 15 years. There is a lack of formal experimentation to determine yield performance and fruit quality traits of atemoya (Annona squamosa x A. cherimola) hybrids. Six a...
The JH1 Haplotype-a newly discovered marker for infertility in the jersy breed
USDA-ARS?s Scientific Manuscript database
The focus on production traits in genetic selection programs with little consideration for traits associated with reproduction has contributed to the decline in reproductive function. Moreover, there is a negative genetic correlation between milk yield and reproduction so that selection for yield ca...
Clark, Lindsay V.; Dzyubenko, Elena; Dzyubenko, Nikolay; Bagmet, Larisa; Sabitov, Andrey; Chebukin, Pavel; Johnson, Douglas A.; Kjeldsen, Jens Bonderup; Petersen, Karen Koefoed; Jørgensen, Uffe; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Zhao, Hua; Jin, Xiaoli; Peng, Junhua; Yamada, Toshihiko; Sacks, Erik J.
2016-01-01
Background and aims Miscanthus is a genus of perennial C4 grasses native to East Asia. It includes the emerging ligno-cellulosic biomass crop M. ×giganteus, a hybrid between M. sinensis and M. sacchariflorus. Biomass yield and cold tolerance are of particular interest in Miscanthus, given that this crop is more temperate adapted than its C4 relatives maize, sorghum and sugarcane. Methods A plant exploration was conducted in eastern Russia, at the northern extreme of the native range for Miscanthus, with collections including 174 clonal germplasm accessions (160 M. sacchariflorus and 14 M. sinensis) from 47 sites. Accessions were genotyped by restriction site-associated DNA sequencing (RAD-seq) and plastid microsatellites. Key Results Miscanthus sinensis was found in maritime climates near Vladivostok (43·6°N) and on southern Sakhalin Island (46·6°N). Miscanthus sacchariflorus was found inland at latitudes as high as 49·3°N, where M. sinensis was absent. Most M. sacchariflorus accessions were diploid, but approx. 2 % were tetraploids. Molecular markers revealed little population structure (Jost’s D < 0·007 among diploid groups) but high genetic diversity (expected heterozygosity = 0·14) within the collection of Russian M. sacchariflorus. Genome-wide association (GWA) analysis for traits measured at the collection sites revealed three M. sacchariflorus single nucleotide polymorphisms (SNPs) significantly associated with the number of stems per unit area, one with height and one with basal stem diameter; three were near or within previously described sorghum quantitative trait loci for related traits. Conclusions This new Miscanthus germplasm collection from eastern Russia will be useful for breeding Miscanthus and sugarcane cultivars with improved adaptation to cold. Moreover, a strategy is proposed to facilitate the rapid utilization of new germplasm collections: by implementing low-cost SNP genotyping to conduct GWA studies of phenotypic data obtained at collection sites, plant breeders can be provided with actionable information on which accessions have desirable traits and alleles. PMID:27451985
Chenu, Karine; Chapman, Scott C.; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L.
2009-01-01
Under drought, substantial genotype–environment (G × E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this “gene-to-phenotype” gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G × E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such “leafy” genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G × E interactions for complex traits such as drought tolerance. PMID:19786622
Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; Dugard, Christopher K.; Held, Michael A.; Klimek, John F.; Shreve, Jacob T.; Fowler, Matthew; Ziebell, Angela; Davis, Mark F.; Decker, Stephen R.; Turner, Geoffrey B.; Mosier, Nathan S.; Springer, Nathan M.; Thimmapuram, Jyothi; Weil, Clifford F.; McCann, Maureen C.; Carpita, Nicholas C.
2014-01-01
Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. PMID:24972714
Edwards, Christine E; Ewers, Brent E; Weinig, Cynthia
2016-08-24
Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.
Penning, Bryan W; Sykes, Robert W; Babcock, Nicholas C; Dugard, Christopher K; Held, Michael A; Klimek, John F; Shreve, Jacob T; Fowler, Matthew; Ziebell, Angela; Davis, Mark F; Decker, Stephen R; Turner, Geoffrey B; Mosier, Nathan S; Springer, Nathan M; Thimmapuram, Jyothi; Weil, Clifford F; McCann, Maureen C; Carpita, Nicholas C
2014-08-01
Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. © 2014 American Society of Plant Biologists. All Rights Reserved.
Nguyen, Thuy T T; Bowman, Phil J; Haile-Mariam, Mekonnen; Nieuwhof, Gert J; Hayes, Benjamin J; Pryce, Jennie E
2017-09-01
Excessive ambient temperature and humidity can impair milk production and fertility of dairy cows. Selection for heat-tolerant animals is one possible option to mitigate the effects of heat stress. To enable selection for this trait, we describe the development of a heat tolerance breeding value for Australian dairy cattle. We estimated the direct genomic values of decline in milk, fat, and protein yield per unit increase of temperature-humidity index (THI) using 46,726 single nucleotide polymorphisms and a reference population of 2,236 sires and 11,853 cows for Holsteins and 506 sires and 4,268 cows for Jerseys. This new direct genomic value is the Australian genomic breeding value for heat tolerance (HT ABVg). The components of the HT ABVg are the decline in milk, fat, and protein per unit increase in THI when THI increases above the threshold of 60. These components are weighted by their respective economic values, assumed to be equivalent to the weights applied to milk, fat, and protein yield in the Australian selection indices. Within each breed, the HT ABVg is then standardized to have a mean of 100 and standard deviation (SD) of 5, which is consistent with the presentation of breeding values for many other traits in Australia. The HT ABVg ranged from -4 to +3 SD in Holsteins and -3 to +4 SD in Jerseys. The mean reliabilities of HT ABVg among validation sires, calculated from the prediction error variance and additive genetic variance, were 38% in both breeds. The range in ABVg and their reliability suggests that HT can be improved using genomic selection. There has been a deterioration in the genetic trend of HT, and to moderate the decline it is suggested that the HT ABVg should be included in a multitrait economic index with other traits that contribute to farm profit. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Poly-Omic Prediction of Complex Traits: OmicKriging
Wheeler, Heather E.; Aquino-Michaels, Keston; Gamazon, Eric R.; Trubetskoy, Vassily V.; Dolan, M. Eileen; Huang, R. Stephanie; Cox, Nancy J.; Im, Hae Kyung
2014-01-01
High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a broad spectrum of complex traits, the combined predictive power of these associations for any given trait is generally too low to be of clinical relevance. We propose a novel systems approach to complex trait prediction, which leverages and integrates similarity in genetic, transcriptomic, or other omics-level data. We translate the omic similarity into phenotypic similarity using a method called Kriging, commonly used in geostatistics and machine learning. Our method called OmicKriging emphasizes the use of a wide variety of systems-level data, such as those increasingly made available by comprehensive surveys of the genome, transcriptome, and epigenome, for complex trait prediction. Furthermore, our OmicKriging framework allows easy integration of prior information on the function of subsets of omics-level data from heterogeneous sources without the sometimes heavy computational burden of Bayesian approaches. Using seven disease datasets from the Wellcome Trust Case Control Consortium (WTCCC), we show that OmicKriging allows simple integration of sparse and highly polygenic components yielding comparable performance at a fraction of the computing time of a recently published Bayesian sparse linear mixed model method. Using a cellular growth phenotype, we show that integrating mRNA and microRNA expression data substantially increases performance over either dataset alone. Using clinical statin response, we show improved prediction over existing methods. PMID:24799323
Ferragina, A; de los Campos, G; Vazquez, A I; Cecchinato, A; Bittante, G
2015-11-01
The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R(2) value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R(2) (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R(2) of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Yield and Fruit Quality Traits of Atemoya Cultivars Grown in Puerto Rico
USDA-ARS?s Scientific Manuscript database
The demand for tropical fruits has increased more than 33% during the last decade as consumers seek healthy and more diverse food products. There is a lack of formal experimentation to determine yield performance and fruit quality traits of atemoya (Annona squamosa x A. cherimola) cultivars. Six a...
Relationship between team identification and trait aggression: a replication.
Wann, Daniel L; Shelton, Sarah; Smith, Tony; Walker, Rhonda
2002-04-01
Research yielded no significant relationship between sport fandom and trait aggression. The current study replicated previous efforts using the Buss-Perry Aggression Questionnaire, an updated version of the Buss-Durkee Hostility Inventory. In contrast to past work, the current study did yield a significant relationship between fandom and aggression for men.
USDA-ARS?s Scientific Manuscript database
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat (Triticum aestivum L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect s...
Jia, Xiang-Jie; Wang, Chang-Fa; Yang, Gui-Wen; Huang, Jin-Ming; Li, Qiu-Ling; Zhong, Ji-Feng
2011-12-01
Three novel SNPs were found by DNA sequencing, PCR-RFLP and CRS-PCR methods were used for genotyping in 979 Chinese Holstein cattle. One SNP, G1178C, was identified in exon 2 of POU1F1 gene. Two novel SNPs, A906G and A1134G, were identified in 5'-flanking regulatory region (5'-UTR) of PRL gene. The association between polymorphisms of the two genes and milk performance traits were analyzed with PROC GLM of SAS. The results showed that GC genotype at 1178 locus of POU1F1 gene was advantageous for milk yield, milk protein yield, and milk fat yield. AG genotype at 906 locus was advantageous for milk yield. There was no significant difference between 1134 locus and milk performance traits of 5'-UTR of PRL gene. Analysis of genotype combination effect on milk production traits showed that the effect of combined genotype was not simple sum of single genotypes and the effects of gene pyramiding seemed to be more important in molecular breeding.
Accuracy of Genomic Prediction for Foliar Terpene Traits in Eucalyptus polybractea.
Kainer, David; Stone, Eric A; Padovan, Amanda; Foley, William J; Külheim, Carsten
2018-06-11
Unlike agricultural crops, most forest species have not had millennia of improvement through phenotypic selection, but can contribute energy and material resources and possibly help alleviate climate change. Yield gains similar to those achieved in agricultural crops over millennia could be made in forestry species with the use of genomic methods in a much shorter time frame. Here we compare various methods of genomic prediction for eight traits related to foliar terpene yield in Eucalyptus polybractea , a tree grown predominantly for the production of Eucalyptus oil. The genomic markers used in this study are derived from shallow whole genome sequencing of a population of 480 trees. We compare the traditional pedigree-based additive best linear unbiased predictors (ABLUP), genomic BLUP (GBLUP), BayesB genomic prediction model, and a form of GBLUP based on weighting markers according to their influence on traits (BLUP|GA). Predictive ability is assessed under varying marker densities of 10,000, 100,000 and 500,000 SNPs. Our results show that BayesB and BLUP|GA perform best across the eight traits. Predictive ability was higher for individual terpene traits, such as foliar α-pinene and 1,8-cineole concentration (0.59 and 0.73, respectively), than aggregate traits such as total foliar oil concentration (0.38). This is likely a function of the trait architecture and markers used. BLUP|GA was the best model for the two biomass related traits, height and 1 year change in height (0.25 and 0.19, respectively). Predictive ability increased with marker density for most traits, but with diminishing returns. The results of this study are a solid foundation for yield improvement of essential oil producing eucalypts. New markets such as biopolymers and terpene-derived biofuels could benefit from rapid yield increases in undomesticated oil-producing species. Copyright © 2018, G3: Genes, Genomes, Genetics.
Krystkowiak, Karolina; Sawikowska, Aneta; Frohmberg, Wojciech; Górny, Andrzej; Kędziora, Andrzej; Jankowiak, Janusz; Józefczyk, Damian; Karg, Grzegorz; Andrusiak, Joanna; Krajewski, Paweł; Szarejko, Iwona; Surma, Maria; Adamski, Tadeusz; Guzy-Wróbelska, Justyna; Kuczyńska, Anetta
2016-01-01
In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi). PMID:27227880
Wang, Yijun; Xu, Jing; Deng, Dexiang; Ding, Haidong; Bian, Yunlong; Yin, Zhitong; Wu, Yarong; Zhou, Bo; Zhao, Ye
2016-02-01
The meta-QTL and candidate genes will facilitate the elucidation of molecular bases underlying agriculturally important traits and open new avenues for functional markers development and elite alleles introgression in maize breeding program. A large number of QTLs attributed to grain productivity and other agriculturally important traits have been identified and deposited in public repositories. The integration of fruitful QTL becomes a major issue in current plant genomics. To this end, we first collected QTL for six agriculturally important traits in maize, including yield, plant height, ear height, leaf angle, stay-green, and maize rough dwarf disease resistance. The meta-analysis method was then employed to retrieve 113 meta-QTL. Additionally, we also isolated candidate genes for target traits by the bioinformatic technique. Several candidates, including some well-characterized genes, GA3ox2 for plant height, lg1 and lg4 for leaf angle, zfl1 and zfl2 for flowering time, were co-localized with established meta-QTL intervals. Intriguingly, in a relatively narrow meta-QTL region, the maize ortholog of rice yield-related gene GW8/OsSPL16 was believed to be a candidate for yield. Leveraging results presented in this study will provide further insights into the genetic architecture of maize agronomic traits. Moreover, the meta-QTL and candidate genes reported here could be harnessed for the enhancement of stress tolerance and yield performance in maize and translation to other crops.
Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N; Owusu-Mensah, Eric; Carey, Edward E; Mwanga, Robert O M; Yencho, G Craig
2017-03-01
Molecular markers are needed for enhancing the development of elite sweetpotato ( Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between 'New Kawogo' × 'Beauregard'. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H 2 ) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = -0.59, P < 0.001) and starch (r = -0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future.
Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N.; Owusu-Mensah, Eric; Carey, Edward E.; Mwanga, Robert O.M.; Yencho, G. Craig
2017-01-01
Molecular markers are needed for enhancing the development of elite sweetpotato (Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between ‘New Kawogo’ × ‘Beauregard’. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H2) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = −0.59, P < 0.001) and starch (r = −0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future. PMID:28588391
Parent, Boris; Bonneau, Julien; Maphosa, Lance; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2017-07-01
Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat ( Triticum aestivum ) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. © 2017 American Society of Plant Biologists. All Rights Reserved.
Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits.
Fleming, A; Schenkel, F S; Malchiodi, F; Ali, R A; Mallard, B; Sargolzaei, M; Jamrozik, J; Johnston, J; Miglior, F
2018-05-01
The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (-0.62 to -0.59) and with protein yield (-0.32 to -0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning of lactation were decreasing for long-chain and unsaturated fatty acid groups and increasing for short-chain fatty acids. Genetic correlations between fat percentage and fatty acids were increasing at the beginning of lactation for short- and medium-chain and saturated fatty acids, but slightly decreasing for long-chain and unsaturated fatty acid groups. These results can be used in defining fatty acid traits and breeding objectives. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K
2013-12-01
The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.
Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.
Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie
2016-09-15
Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.
Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle.
Yin, T; Pinent, T; Brügemann, K; Simianer, H; König, S
2015-08-01
This study presents an approach combining phenotypes from novel traits, deterministic equations from cattle nutrition, and stochastic simulation techniques from animal breeding to generate test-day methane emissions (MEm) of dairy cows. Data included test-day production traits (milk yield, fat percentage, protein percentage, milk urea nitrogen), conformation traits (wither height, hip width, body condition score), female fertility traits (days open, calving interval, stillbirth), and health traits (clinical mastitis) from 961 first lactation Brown Swiss cows kept on 41 low-input farms in Switzerland. Test-day MEm were predicted based on the traits from the current data set and 2 deterministic prediction equations, resulting in the traits labeled MEm1 and MEm2. Stochastic simulations were used to assign individual concentrate intake in dependency of farm-type specifications (requirement when calculating MEm2). Genetic parameters for MEm1 and MEm2 were estimated using random regression models. Predicted MEm had moderate heritabilities over lactation and ranged from 0.15 to 0.37, with highest heritabilities around DIM 100. Genetic correlations between MEm1 and MEm2 ranged between 0.91 and 0.94. Antagonistic genetic correlations in the range from 0.70 to 0.92 were found for the associations between MEm2 and milk yield. Genetic correlations between MEm with days open and with calving interval increased from 0.10 at the beginning to 0.90 at the end of lactation. Genetic relationships between MEm2 and stillbirth were negative (0 to -0.24) from the beginning to the peak phase of lactation. Positive genetic relationships in the range from 0.02 to 0.49 were found between MEm2 with clinical mastitis. Interpretation of genetic (co)variance components should also consider the limitations when using data generated by prediction equations. Prediction functions only describe that part of MEm which is dependent on the factors and effects included in the function. With high probability, there are more important effects contributing to variations of MEm that are not explained or are independent from these functions. Furthermore, autocorrelations exist between indicator traits and predicted MEm. Nevertheless, this integrative approach, combining information from dairy cattle nutrition with dairy cattle genetics, generated novel traits which are difficult to record on a large scale. The simulated data basis for MEm was used to determine the size of a cow calibration group for genomic selection. A calibration group including 2,581 cows with MEm phenotypes was competitive with conventional breeding strategies. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Tiezzi, F; de Los Campos, G; Parker Gaddis, K L; Maltecca, C
2017-03-01
Genotype by environment interaction (G × E) in dairy cattle productive traits has been shown to exist, but current genetic evaluation methods do not take this component into account. As several environmental descriptors (e.g., climate, farming system) are known to vary within the United States, not accounting for the G × E could lead to reranking of bulls and loss in genetic gain. Using test-day records on milk yield, somatic cell score, fat, and protein percentage from all over the United States, we computed within herd-year-season daughter yield deviations for 1,087 Holstein bulls and regressed them on genetic and environmental information to estimate variance components and to assess prediction accuracy. Genomic information was obtained from a 50k SNP marker panel. Environmental effect inputs included herd (160 levels), geographical region (7 levels), geographical location (2 variables), climate information (7 variables), and management conditions of the herds (16 total variables divided in 4 subgroups). For each set of environmental descriptors, environmental, genomic, and G × E components were sequentially fitted. Variance components estimates confirmed the presence of G × E on milk yield, with its effect being larger than main genetic effect and the environmental effect for some models. Conversely, G × E was moderate for somatic cell score and small for milk composition. Genotype by environment interaction, when included, partially eroded the genomic effect (as compared with the models where G × E was not included), suggesting that the genomic variance could at least in part be attributed to G × E not appropriately accounted for. Model predictive ability was assessed using 3 cross-validation schemes (new bulls, incomplete progeny test, and new environmental conditions), and performance was compared with a reference model including only the main genomic effect. In each scenario, at least 1 of the models including G × E was able to perform better than the reference model, although it was not possible to find the overall best-performing model that included the same set of environmental descriptors. In general, the methodology used is promising in accounting for G × E in genomic predictions, but challenges exist in identifying a unique set of covariates capable of describing the entire variety of environments. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2012-01-01
Background This study focused on the dynamics of genome-wide effects on five milk production and eight fertility traits as well as genetic correlations between the traits. For 2,405 Holstein Friesian bulls, estimated breeding values (EBVs) were used. The production traits were additionally assessed in 10-day intervals over the first 60 lactation days, as this stage is physiologically the most crucial time in milk production. Results SNPs significantly affecting the EBVs of the production traits could be separated into three groups according to the development of the size of allele effects over time: 1) increasing effects for all traits; 2) decreasing effects for all traits; and 3) increasing effects for all traits except fat yield. Most of the significant markers were found within 22 haplotypes spanning on average 135,338 bp. The DGAT1 region showed high density of significant markers, and thus, haplotype blocks. Further functional candidate genes are proposed for haplotype blocks of significant SNPs (KLHL8, SICLEC12, AGPAT6 and NID1). Negative genetic correlations were found between yield and fertility traits, whilst content traits showed positive correlations with some fertility traits. Genetic correlations became stronger with progressing lactation. When correlations were estimated within genotype classes, correlations were on average 0.1 units weaker between production and fertility traits when the yield increasing allele was present in the genotype. Conclusions This study provides insight into the expression of genetic effects during early lactation and suggests possible biological explanations for the presented time-dependent effects. Even though only three markers were found with effects on fertility, the direction of genetic correlations within genotype classes between production and fertility traits suggests that alleles increasing the milk production do not affect fertility in a more negative way compared to the decreasing allele. PMID:23244492
De Vries, F; Hamann, H; Drögemüller, C; Ganter, M; Distl, O
2005-01-01
The objective of this study was to analyze associations between ovine prion protein genotypes and production traits in East Friesian milk sheep. Production traits included the type traits scores for muscle mass, wool quality, and type; the reproduction traits age at first lambing, first lambing interval, second lambing interval, and total number of lambs born; the milk performance traits; milk, fat, and protein yields; fat and protein contents; and somatic cell scores. Prion protein genotypes were available for 658 East Friesian milk sheep. Linear animal models were used for the analysis of the prion protein genotype effects. The scores of the genotyped sheep for muscle mass, type, wool quality, and fat yield were significantly superior to those of the nongenotyped animals. An explanation for this might be that breeders seek to minimize genotyping costs by preselecting animals that do not meet the top breeding requirements. No significant associations were found between the prion protein genotypes and milk performance, type, or reproduction traits.
The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar).
Tsai, Hsin Yuan; Hamilton, Alastair; Guy, Derrick R; Tinch, Alan E; Bishop, Stephen C; Houston, Ross D
2015-05-19
Performance and quality traits such as harvest weight, fillet weight and flesh color are of economic importance to the Atlantic salmon aquaculture industry. The genetic factors underlying these traits are of scientific and commercial interest. However, such traits are typically polygenic in nature, with the number and size of QTL likely to vary between studies and populations. The aim of this study was to investigate the genetic basis of several growth and fillet traits measured at harvest in a large farmed salmon population by using SNP markers. Due to the marked heterochiasmy in salmonids, an efficient two-stage mapping approach was applied whereby QTL were detected using a sire-based linkage analysis, a sparse SNP marker map and exploiting low rates of recombination, while a subsequent dam-based analysis focused on the significant chromosomes with a denser map to confirm QTL and estimate their position. The harvest traits all showed significant heritability, ranging from 0.05 for fillet yield up to 0.53 for the weight traits. In the sire-based analysis, 1695 offspring with trait records and their 20 sires were successfully genotyped for the SNPs on the sparse map. Chromosomes 13, 18, 19 and 20 were shown to harbor genome-wide significant QTL affecting several growth-related traits. The QTL on chr. 13, 18 and 20 were detected in the dam-based analysis using 512 offspring from 10 dams and explained approximately 6-7 % of the within-family variation in these traits. We have detected several QTL affecting economically important complex traits in a commercial salmon population. Overall, the results suggest that the traits are relatively polygenic and that QTL tend to be pleiotropic (affecting the weight of several components of the harvested fish). Comparison of QTL regions across studies suggests that harvest trait QTL tend to be relatively population-specific. Therefore, the application of marker or genomic selection for improvement in these traits is likely to be most effective when the discovery population is closely related to the selection candidates (e.g. within-family genomic selection).
An assessment of yield gains under climate change due to genetic modification of pearl millet.
Singh, Piara; Boote, K J; Kadiyala, M D M; Nedumaran, S; Gupta, S K; Srinivas, K; Bantilan, M C S
2017-12-01
Developing cultivars with traits that can enhance and sustain productivity under climate change will be an important climate smart adaptation option. The modified CSM-CERES-Pearl millet model was used to assess yield gains by modifying plant traits determining crop maturity duration, potential yield and tolerance to drought and heat in pearl millet cultivars grown at six locations in arid (Hisar, Jodhpur, Bikaner) and semi-arid (Jaipur, Aurangabad and Bijapur) tropical India and two locations in semi-arid tropical West Africa (Sadore in Niamey and Cinzana in Mali). In all the study locations the yields decreased when crop maturity duration was decreased by 10% both in current and future climate conditions; however, 10% increase in crop maturity significantly (p<0.05) increased yields at Aurangabad and Bijapur, but not at other locations. Increasing yield potential traits by 10% increased yields under both the climate situations in India and West Africa. Drought tolerance imparted the lowest yield gain at Aurangabad (6%), the highest at Sadore (30%) and intermediate at the other locations under current climate. Under climate change the contribution of drought tolerance to the yield of cultivars either increased or decreased depending upon changes in rainfall of the locations. Yield benefits of heat tolerance substantially increased under climate change at most locations, having the greatest effects at Bikaner (17%) in India and Sadore (13%) in West Africa. Aurangabad and Bijapur locations had no yield advantage from heat tolerance due to their low temperature regimes. Thus drought and heat tolerance in pearl millet increased yields under climate change in both the arid and semi-arid tropical climates with greater benefit in relatively hotter environments. This study will assists the plant breeders in evaluating new promising plant traits of pearl millet for adapting to climate change at the selected locations and other similar environments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Dwivedi, Sangam L.; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro
2017-01-01
There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses. PMID:28900432
Dwivedi, Sangam L; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro
2017-01-01
There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and overall genetic gain of multigenic traits. An integrated approach involving multiple stakeholders specializing in management and utilization of genetic resources, crop breeding, molecular biology and genomics, agronomy, stress tolerance, and reproductive/seed biology will help to address the global challenge of ensuring food security in the face of growing resource demands and climate change induced stresses.
A novel approach to identify genes that determine grain protein deviation in cereals.
Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J
2015-06-01
Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Marital assortment for genetic similarity.
Eckman, Ronael E; Williams, Robert; Nagoshi, Craig
2002-10-01
The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.
Antonius, Daniel; Sinclair, Samuel Justin; Shiva, Andrew A; Messinger, Julie W; Maile, Jordan; Siefert, Caleb J; Belfi, Brian; Malaspina, Dolores; Blais, Mark A
2013-01-01
The heterogeneity of violent behavior is often overlooked in risk assessment despite its importance in the management and treatment of psychiatric and forensic patients. In this study, items from the Personality Assessment Inventory (PAI) were first evaluated and rated by experts in terms of how well they assessed personality features associated with reactive and instrumental aggression. Exploratory principal component analyses (PCA) were then conducted on select items using a sample of psychiatric and forensic inpatients (n = 479) to examine the latent structure and construct validity of these reactive and instrumental aggression factors. Finally, a confirmatory factor analysis (CFA) was conducted on a separate sample of psychiatric inpatients (n = 503) to evaluate whether these factors yielded acceptable model fit. Overall, the exploratory and confirmatory analyses supported the existence of two latent PAI factor structures, which delineate personality traits related to reactive and instrumental aggression.
Luo, Xiaojin; Wu, Shuang; Tian, Feng; Xin, Xiaoyun; Zha, Xiaojun; Dong, Xianxin; Fu, Yongcai; Wang, Xiangkun; Yang, Jinshui; Sun, Chuanqing
2011-07-01
Many rice breeding programs have currently reached yield plateaus as a result of limited genetic variability in parental strains. Dongxiang common wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.) and serves as an important gene pool for the genetic improvement of rice cultivars. In this study, heterotic loci (HLs) associated with six yield-related traits were identified in wild and cultivated rice and investigated using a set of 265 introgression lines (ILs) of O. rufipogon Griff. in the background of the Indica high-yielding cultivar Guichao 2 (O. sativa L.). Forty-two HLs were detected by a single point analysis of mid-parent heterosis values from test cross F(1) offspring, and 30 (71.5%) of these HLs showed significantly positive effects, consistent with the superiority shown by the F(1) test cross population in the six yield-related traits under study. Genetic mapping of hsp11, a locus responsible for the number of spikelets per panicle, confirmed the utility of these HLs. The results indicate that favorable HLs capable of improving agronomic traits are available. The identification of HLs between wild rice and cultivated rice could lead to a new strategy for the application of heterosis in rice breeding. Copyright © 2011. Published by Elsevier Ireland Ltd.
Pértille, F; Zanella, R; Felício, A M; Ledur, M C; Peixoto, J O; Coutinho, L L
2015-09-09
Genetic selection for production traits has resulted in a rapid improvement in animal performance and development. Previous studies have mapped quantitative trait loci for body weight at 35 and 41 days, and drum and thigh yield, onto chicken chromosome 4. We investigated this region for single nucleotide polymorphisms and their associations with important economic traits. Three positional candidate genes were studied: KLF3 (Krüeppel-like factor 3), SLIT2 (Slit homolog 2), and PPARGC1A (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha). Fragment sequencing of these genes was conducted in 11 F1 animals, and one polymorphism in each gene was selected and genotyped in an F2 population (N = 276) and a paternal broiler line TT (N = 840). Associations were identified with growth, carcass, and fat traits in the F2 and the paternal line (P < 0.05). Using single markers in both the F2 and the TT line, KLF3 was associated with weight gain (P < 0.05), PPPARGC1A was associated with liver and wing-parts weights and yields (P < 0.05), and SLIT2 was associated with back yield (P < 0.05) and fat traits (P < 0.05). Using multiple markers, KLF3 lost its significance in both populations, and SLIT2 was associated with feed conversion only in the TT population (P < 0.05). The QTLs mapped in the F2 population could be partly explained by PPARGC1A and SLIT2, which were associated with body weight at 35 and 41 days, respectively, and with drum and thigh yield in the same population. The results of this study indicate the importance of these genes for production traits.
Fang, Q; Forrest, R H; Zhou, H; Frampton, C M; Hickford, J G H
2013-07-01
Variation in the ovine CAPN3 gene was analysed using PCR-single strand conformational polymorphism, and its effect on growth and carcass traits was assessed in 513 New Zealand Romney lambs produced by 17 unrelated rams. Among the four allelic variants detected, the presence of variant *02 was found to be associated with an increased proportion of shoulder yield (absent: 32.6±0.01%; present: 33.4±0.03%; P=0.016), and tended to be associated with increased shoulder yield (lean meat yield of the shoulder expressed as a percentage of the hot carcass weight) (absent: 16.6±0.06%; present: 17.02±0.20%; P=0.067). No association was detected with growth traits or other carcass traits. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Indica rice cultivars can suppress weedy grasses. To better understand the important traits and genes underlying weed suppression and crop productivity, a recombinant inbred line (RIL) F8 population was developed by crossing non-suppressive ‘Katy’ and high-yielding, allelopathic ‘PI312777’. Three h...
USDA-ARS?s Scientific Manuscript database
Research on sapodilla has been very limited. A field study was conducted to determine the yield potential, fruit quality traits, leaf nutrient composition and scion/rootstock compatibility of cultivar ‘Prolific’ grafted onto 16 sapodilla rootstocks. For this purpose cultivars ‘Adelaide’, ‘Arcilago’...
Short communication: Estimates of genetic parameters for dairy fertility in New Zealand.
Amer, P R; Stachowicz, K; Jenkins, G M; Meier, S
2016-10-01
Reproductive performance of dairy cows in a seasonal calving system is especially important as cows are required to achieve a 365-d calving interval. Prior research with a small data set has identified that the genetic evaluation model for fertility could be enhanced by replacing the binary calving rate trait (CR42), which gives the probability of a cow calving within the first 42d since the planned start of calving at second, third, and fourth calving, with a continuous version, calving season day (CSD), including a heifer calving season day trait expressed at first calving, removing milk yield, retaining a probability of mating trait (PM21) which gives the probability of a cow being mated within the first 21d from the planned start of mating, and first lactation body condition score (BCS), and including gestation length (GL). The aim of this study was to estimate genetic parameters for the proposed new model using a larger data set and compare these with parameters used in the current system. Heritability estimates for CSD and PM21 ranged from 0.013 to 0.019 and from 0.031 to 0.058, respectively. For the 2 traits that correspond with the ones used in the current genetic evaluation system (mating trait, PM21 and BCS) genetic correlations were lower in this study compared with previous estimates. Genetic correlations between CSD and PM21 across different parities were also lower than the correlations between CR42 and PM21 reported previously. The genetic correlation between heifer CSD and CSD in first parity was 0.66. Estimates of genetic correlations of BCS with CSD were higher than those with PM21. For GL, direct heritability was estimated to be 0.67, maternal heritability was 0.11, and maternal repeatability was 0.22. Direct GL had moderate to high and favorable genetic correlations with evaluated fertility traits, whereas corresponding residual correlations remain low, which makes GL a useful candidate predictor trait for fertility in a multiple trait evaluation. The superiority of direct GL genetic component over the maternal GL component for predicting fertility was demonstrated. Future work planned in this area includes the implementation and testing of this new model on national fertility data. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gamal El-Dien, Omnia; Ratcliffe, Blaise; Klápště, Jaroslav; Chen, Charles; Porth, Ilga; El-Kassaby, Yousry A
2015-05-09
Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites in British Columbia, Canada. Four imputation algorithms were compared (mean value (MI), singular value decomposition (SVD), expectation maximization (EM), and a newly derived, family-based k-nearest neighbor (kNN-Fam)). Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about trait architecture. Finally, using PCA, multi-trait GS prediction models were developed. The EM and kNN-Fam imputation methods were superior for 30 and 60% missing data, respectively. The RR-BLUP GS prediction model produced better accuracies than the GRR indicating that the genetic architecture for these traits is complex. GS prediction accuracies for multi-site were high and better than those of single-sites while multi-site predictability produced the lowest accuracies reflecting type-b genetic correlations and deemed unreliable. The incorporation of genomic information in quantitative genetics analyses produced more realistic heritability estimates as half-sib pedigree tended to inflate the additive genetic variance and subsequently both heritability and gain estimates. Principle component scores as representatives of multi-trait GS prediction models produced surprising results where negatively correlated traits could be concurrently selected for using PCA2 and PCA3. The application of GS to open-pollinated family testing, the simplest form of tree improvement evaluation methods, was proven to be effective. Prediction accuracies obtained for all traits greatly support the integration of GS in tree breeding. While the within-site GS prediction accuracies were high, the results clearly indicate that single-site GS models ability to predict other sites are unreliable supporting the utilization of multi-site approach. Principle component scores provided an opportunity for the concurrent selection of traits with different phenotypic optima.
Jenkins, T G; Ferrell, C L; Roberts, A J
2000-01-01
Our objective was to evaluate differences in lactation traits and calf weights produced by F1 cows under varying daily metabolizable energy availability. Measures of milk yields and calf weight traits were recorded on mature F1 cows. The cows were produced from matings of Angus or Hereford dams with sires representing Angus/Hereford, Shorthorn, Galloway, Longhorn, Nellore, and Salers breeds. The cows' daily DM intakes of a diet composed of a corn silage or alfalfa silage plus corn silage were recorded from approximately 2 wk postpartum until the calves were weaned at an average age of 170 d. Milk yield measurements were recorded when the calves were approximately 14, 28, 56, 84, 112, 140, and 168 d of age. Sources of variation considered for the traits of interest included sire breed of the cow (SBC) and the covariates weaning age of the calf and daily metabolizable energy intake (DMEI) of the cow for lactation and calf weights. The linear and quadratic effects were evaluated for DMEI. The SBC x DMEI (linear) interaction was significant for total milk yield. Sire breed of cow differences (P < .05) were observed for milk yield at time of peak yield, persistency, preweaning ADG, and weaning weight. Salers- and Shorthorn-sired cows had greater (P < .05) peak yield than Galloway, Longhorn, or Nellore cross-bred cows but were not significantly different from the Hereford/Angus. Increasing DMEI linearly increased peak yield and total yield (P < .05). Preweaning ADG of calves from Nellore-sired cows was greater (P < .05) than all SBC. Preweaning ADG of calves from Galloway-sired cows was less than all SBC (P < .05). The linear effect of DMEI was heterogeneous across SBC for total yield. The pooled quadratic effect of DMEI was significant for all traits except birth weight. The DMEI for expression of maximum weaning weight was estimated to be 29 Mcal. Feed efficiency ratios for the test period were 28, 27, 30, 25, 28, 32, and 30 g calf weight:Mcal DMEI for reference and 1980s Angus/Hereford-, Shorthorn-, Galloway-, Longhorn-, Nellore-, and Salers-sired cows, respectively, at the DMEI level of 29 Mcal.
QTL and QTL x environment effects on agronomic and nitrogen acquisition traits in rice.
Senthilvel, Senapathy; Vinod, Kunnummal Kurungara; Malarvizhi, Palaniappan; Maheswaran, Marappa
2008-09-01
Agricultural environments deteriorate due to excess nitrogen application. Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input. Rice genotypes respond variably to soil available nitrogen. The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits. Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena. Three nitrogen regimes namely, native (0 kg/ha; no nitrogen applied), optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments. The parents and DH lines were significantly varying for all traits under different nitrogen regimes. All traits except plant height recorded significant genotype x environment interaction. Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake. Sixteen QTLs were detected by composite interval mapping. Eleven QTLs showed significant QTL x environment interactions. On chromosome 3, seven QTLs were detected associated with nitrogen use, plant yield and associated traits. A QTL region between markers RZ678, RZ574 and RZ284 was associated with nitrogen use and yield. This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.
The accuracy of Genomic Selection in Norwegian red cattle assessed by cross-validation.
Luan, Tu; Woolliams, John A; Lien, Sigbjørn; Kent, Matthew; Svendsen, Morten; Meuwissen, Theo H E
2009-11-01
Genomic Selection (GS) is a newly developed tool for the estimation of breeding values for quantitative traits through the use of dense markers covering the whole genome. For a successful application of GS, accuracy of the prediction of genomewide breeding value (GW-EBV) is a key issue to consider. Here we investigated the accuracy and possible bias of GW-EBV prediction, using real bovine SNP genotyping (18,991 SNPs) and phenotypic data of 500 Norwegian Red bulls. The study was performed on milk yield, fat yield, protein yield, first lactation mastitis traits, and calving ease. Three methods, best linear unbiased prediction (G-BLUP), Bayesian statistics (BayesB), and a mixture model approach (MIXTURE), were used to estimate marker effects, and their accuracy and bias were estimated by using cross-validation. The accuracies of the GW-EBV prediction were found to vary widely between 0.12 and 0.62. G-BLUP gave overall the highest accuracy. We observed a strong relationship between the accuracy of the prediction and the heritability of the trait. GW-EBV prediction for production traits with high heritability achieved higher accuracy and also lower bias than health traits with low heritability. To achieve a similar accuracy for the health traits probably more records will be needed.
Pintus, M A; Gaspa, G; Nicolazzi, E L; Vicario, D; Rossoni, A; Ajmone-Marsan, P; Nardone, A; Dimauro, C; Macciotta, N P P
2012-06-01
The large number of markers available compared with phenotypes represents one of the main issues in genomic selection. In this work, principal component analysis was used to reduce the number of predictors for calculating genomic breeding values (GEBV). Bulls of 2 cattle breeds farmed in Italy (634 Brown and 469 Simmental) were genotyped with the 54K Illumina beadchip (Illumina Inc., San Diego, CA). After data editing, 37,254 and 40,179 single nucleotide polymorphisms (SNP) were retained for Brown and Simmental, respectively. Principal component analysis carried out on the SNP genotype matrix extracted 2,257 and 3,596 new variables in the 2 breeds, respectively. Bulls were sorted by birth year to create reference and prediction populations. The effect of principal components on deregressed proofs in reference animals was estimated with a BLUP model. Results were compared with those obtained by using SNP genotypes as predictors with either the BLUP or Bayes_A method. Traits considered were milk, fat, and protein yields, fat and protein percentages, and somatic cell score. The GEBV were obtained for prediction population by blending direct genomic prediction and pedigree indexes. No substantial differences were observed in squared correlations between GEBV and EBV in prediction animals between the 3 methods in the 2 breeds. The principal component analysis method allowed for a reduction of about 90% in the number of independent variables when predicting direct genomic values, with a substantial decrease in calculation time and without loss of accuracy. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ruiz-Vera, Ursula M; Siebers, Matthew H; Drag, David W; Ort, Donald R; Bernacchi, Carl J
2015-11-01
Rising atmospheric CO2 concentration ([CO2 ]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2 ] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2 ] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free-air CO2 enrichment (FACE) technology was used to target atmospheric [CO2 ] to 200 μmol mol(-1) above ambient [CO2 ] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas-exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2 ] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season-long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down-regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2 ] unless appropriate adaptation traits can be introduced into future cultivars. © 2015 John Wiley & Sons Ltd.
Sadras, V O; Richards, R A
2014-05-01
Crop yield in dry environments can be improved with complementary approaches including selecting for yield in the target environments, selecting for yield potential, and using indirect, trait- or genomic-based methods. This paper (i) outlines the achievements of direct selection for yield in improving drought adaptation, (ii) discusses the limitations of indirect approaches in the context of levels of organization, and (iii) emphasizes trade-offs and synergies between nitrogen nutrition and drought adaptation. Selection for yield in the water- and nitrogen-scarce environments of Australia improved wheat yield per unit transpiration at a rate of 0.12kg ha(-1) mm(-1) yr(-1); for indirect methods to be justified, they must return superior rates of improvement, achieve the same rate at lower cost or provide other cost-effective benefits, such as expanding the genetic basis for selection. Slow improvement of crop adaptation to water stress using indirect methods is partially related to issues of scale. Traits are thus classified into three broad groups: those that generally scale up from low levels of organization to the crop level (e.g. herbicide resistance), those that do not (e.g. grain yield), and traits that might scale up provided they are considered in a integrated manner with scientifically sound scaling assumptions, appropriate growing conditions, and screening techniques (e.g. stay green). Predicting the scalability of traits may help to set priorities in the investment of research efforts. Primary productivity in arid and semi-arid environments is simultaneously limited by water and nitrogen, but few attempts are made to target adaptation to water and nitrogen stress simultaneously. Case studies in wheat and soybean highlight biological links between improved nitrogen nutrition and drought adaptation.
Bolund, Elisabeth; Schielzeth, Holger; Forstmeier, Wolfgang
2011-11-08
It is a common observation in evolutionary studies that larger, more ornamented or earlier breeding individuals have higher fitness, but that body size, ornamentation or breeding time does not change despite of sometimes substantial heritability for these traits. A possible explanation for this is that these traits do not causally affect fitness, but rather happen to be indirectly correlated with fitness via unmeasured non-heritable aspects of condition (e.g. undernourished offspring grow small and have low fitness as adults due to poor health). Whether this explanation applies to a specific case can be examined by decomposing the covariance between trait and fitness into its genetic and environmental components using pedigree-based animal models. We here examine different methods of doing this for a captive zebra finch population where male fitness was measured in communal aviaries in relation to three phenotypic traits (tarsus length, beak colour and song rate). Our case study illustrates how methods that regress fitness over breeding values for phenotypic traits yield biased estimates as well as anti-conservative standard errors. Hence, it is necessary to estimate the genetic and environmental covariances between trait and fitness directly from a bivariate model. This method, however, is very demanding in terms of sample sizes. In our study parameter estimates of selection gradients for tarsus were consistent with the hypothesis of environmentally induced bias (βA=0.035±0.25 (SE), βE=0.57±0.28 (SE)), yet this differences between genetic and environmental selection gradients falls short of statistical significance. To examine the generality of the idea that phenotypic selection gradients for certain traits (like size) are consistently upwardly biased by environmental covariance a meta-analysis across study systems will be needed.
2011-01-01
Backgound It is a common observation in evolutionary studies that larger, more ornamented or earlier breeding individuals have higher fitness, but that body size, ornamentation or breeding time does not change despite of sometimes substantial heritability for these traits. A possible explanation for this is that these traits do not causally affect fitness, but rather happen to be indirectly correlated with fitness via unmeasured non-heritable aspects of condition (e.g. undernourished offspring grow small and have low fitness as adults due to poor health). Whether this explanation applies to a specific case can be examined by decomposing the covariance between trait and fitness into its genetic and environmental components using pedigree-based animal models. We here examine different methods of doing this for a captive zebra finch population where male fitness was measured in communal aviaries in relation to three phenotypic traits (tarsus length, beak colour and song rate). Results Our case study illustrates how methods that regress fitness over breeding values for phenotypic traits yield biased estimates as well as anti-conservative standard errors. Hence, it is necessary to estimate the genetic and environmental covariances between trait and fitness directly from a bivariate model. This method, however, is very demanding in terms of sample sizes. In our study parameter estimates of selection gradients for tarsus were consistent with the hypothesis of environmentally induced bias (βA = 0.035 ± 0.25 (SE), βE = 0.57 ± 0.28 (SE)), yet this differences between genetic and environmental selection gradients falls short of statistical significance. Conclusions To examine the generality of the idea that phenotypic selection gradients for certain traits (like size) are consistently upwardly biased by environmental covariance a meta-analysis across study systems will be needed. PMID:22067225
Nayeri, Shadi; Sargolzaei, Mehdi; Abo-Ismail, Mohammed K; May, Natalie; Miller, Stephen P; Schenkel, Flavio; Moore, Stephen S; Stothard, Paul
2016-06-10
Genome-wide association studies (GWAS) are a powerful tool for detecting genomic regions explaining variation in phenotype. The objectives of the present study were to identify or refine the positions of genomic regions affecting milk production, milk components and fertility traits in Canadian Holstein cattle, and to use these positions to identify genes and pathways that may influence these traits. Several QTL regions were detected for milk production (MILK), fat production (FAT), protein production (PROT) and fat and protein deviation (FATD, PROTD respectively). The identified QTL regions for production traits (including milk production) support previous findings and some overlap with genes with known relevant biological functions identified in earlier studies such as DGAT1 and CPSF1. A significant region on chromosome 21 overlapping with the gene FAM181A and not previous linked to fertility in dairy cattle was identified for the calving to first service interval and days open. A functional enrichment analysis of the GWAS results yielded GO terms consistent with the specific phenotypes tested, for example GO terms GO:0007595 (lactation) and GO:0043627 (response to estrogen) for milk production (MILK), GO:0051057 (positive regulation of small GTPase mediated signal transduction) for fat production (FAT), GO:0040019 (positive regulation of embryonic development) for first service to calving interval (CTFS) and GO:0043268 (positive regulation of potassium ion transport) for days open (DO). In other cases the connection between the enriched GO terms and the traits were less clear, for example GO:0003279 (cardiac septum development) for FAT and GO:0030903 (notochord development) for DO trait. The chromosomal regions and enriched pathways identified in this study confirm several previous findings and highlight new regions and pathways that may contribute to variation in production or fertility traits in dairy cattle.
Preszler, Jonathan; Burns, G. Leonard; Litson, Kaylee; Geiser, Christian; Servera, Mateu
2016-01-01
The objective was to determine and compare the trait and state components of oppositional defiant disorder (ODD) symptom reports across multiple informants. Mothers, fathers, primary teachers, and secondary teachers rated the occurrence of the ODD symptoms in 810 Spanish children (55% boys) on two occasions (end first and second grades). Single source latent state-trait (LST) analyses revealed that ODD symptom ratings from all four sources showed more trait (M = 63%) than state residual (M = 37%) variance. A multiple source LST analysis revealed substantial convergent validity of mothers’ and fathers’ trait variance components (M = 68%) and modest convergent validity of state residual variance components (M = 35%). In contrast, primary and secondary teachers showed low convergent validity relative to mothers for trait variance (Ms = 31%, 32%, respectively) and essentially zero convergent validity relative to mothers for state residual variance (Ms = 1%, 3%, respectively). Although ODD symptom ratings reflected slightly more trait- than state-like constructs within each of the four sources separately across occasions, strong convergent validity for the trait variance only occurred within settings (i.e., mothers with fathers; primary with secondary teachers) with the convergent validity of the trait and state residual variance components being low to non-existent across settings. These results suggest that ODD symptom reports are trait-like across time for individual sources with this trait variance, however, only having convergent validity within settings. Implications for assessment of ODD are discussed. PMID:27148784
Variation of agronomic traits of ravenna grass and its potential as a biomass crop
USDA-ARS?s Scientific Manuscript database
Ravenna grass (Tripidium ravennae) is a tall robust bunchgrass with potential as an energy crop. The aim was to investigate the variation of agronomic traits of Ravenna grass. Univariate analyses of traits were conducted on 95 plants from 2013 to 2017. The traits were: biomass yield per plant, C, N,...
USDA-ARS?s Scientific Manuscript database
Fillet yield (FY, %) is an economically important trait in rainbow trout aquaculture that affects production efficiency. Despite that, FY has not received much attention in breeding programs because it is difficult to measure on a large number of fish and it cannot be directly measured on breeding c...
USDA-ARS?s Scientific Manuscript database
Analysis of uppermost fully expanded leaves is useful to detect deficiency of mineral nutrients such as phosphorus (P) and potassium (K) in soybean. Although, the leaf P or K status aids in fertilizer management, information on their seasonal association with the growth and yield traits at maturity ...
Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.
Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray
2006-08-01
High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.
Al-Kahtani, Saad Naser; Taha, El-Kazafy Abdou; Al-Abdulsalam, Mohammed
2017-07-01
This investigation was conducted at the Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, Saudi Arabia, during the alfalfa growing season in 2014. The study aimed to evaluate the impact of phosphorus fertilization and honeybee pollination on alfalfa seed production. The experiment was divided into 9 treatments of open pollination, honeybee pollination, and non-pollination with three different levels (0, 300 or 600 kg P 2 O 5 /ha/year) of triple super phosphate. All vegetative growth attributes of Hassawi alfalfa were significantly higher in the non-insect pollination plots, while the yield and yield component traits were significantly higher with either open pollination or honeybee pollination in parallel with the increasing level of phosphorus fertilizer up to 600 kg P 2 O 5 /ha/year in light salt-affected loamy sand soils. There was no seed yield in Hassawi alfalfa without insect pollination. Therefore, placing honeybee colonies near the fields of Hassawi alfalfa and adding 600 kg P 2 O 5 /ha/year can increase seed production.
Kumar, Santosh; Dwivedi, Sharad Kumar; Singh, S S; Kumar, Sanjeev; Sundaram, R K; Shivani; Mall, A K
2015-07-01
The objective of the present study was to examine the effect of aerobic situation on yield, physiological and biochemical traits of advanced breeding lines of rice. Experiment was conducted with two set of rice genotypes under two water regimes (aerobic and irrigated), during three consecutive wet seasons 2010-2012. Significant decrease in yield was observed in rice genotypes grown under aerobic situation as compared to the irrigated ones. Promising rice genotypes having the ability to maintain high plant biomass, harvest index, early vegetative vigour, improved physiological and biochemical traits in terms of relative water content (RWC), leaf area index (LAI), total soluble sugar, starch, protien and proline content help to sustain higher grain yield under aerobic situation. The yield gap between aerobic and irrigated rice ranged between 24% to 68%. Grain yield showed positive correlation with harvest index (0.434), test weight (0.647), plant biomass (0.411) and effective tiller numbers (0.473), whereas spikelet sterility was negative associated (-0.380). The current study suggested that promising genotypes viz., IR77298-14-1-2-130-2, IR84899-B-182-3-1-1-2, IR84887-B-157-38-1-1-3 and IR 84899-B-179-1-1-1-2 for aerobic situation, showing yield advantage due to better performance of physiological and biochemical traits, might be adopted in large area of rainfed ecosystem as well as in irrigated areas where water scarcity was a major problem.
He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min
2017-01-01
Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought, root traits also contribute to high nutrient uptake efficiency and benefit yield under drought.
Septiningsih, E M; Trijatmiko, K R; Moeljopawiro, S; McCouch, S R
2003-11-01
The objective of this study was to identify quantitative trait loci (QTLs) associated with grain quality in rice. Two hundred eighty-five BC(2)F(2 )families developed from an interspecific cross between cv IR64 and Oryza rufipogon (IRGC 105491) were evaluated for 14 seed quality traits. A total of 165 markers consisting of 131 single sequence repeats and 34 restriction fragment length polymorphism markers were used to create a genetic linkage map spanning the 12 rice chromosomes. Twenty-three independent QTLs were identified using single point analysis, interval mapping, and composite interval mapping. These loci consisted of one QTL for filled rough/total rough rice ratio, two for grain density, one for percentage of de-husked rice grains, two for percentage of green rice grains, three for percentage of damaged-yellow rice grains, two for percentage of red rice grains, one for milled rice recovery, three for head rice recovery, four for broken rice grains, two for crushed rice grains, one for amylose content, and one for gel consistency. For most of the QTLs identified in this study, the O. rufipogon-derived allele contributed an undesirable effect. For amylose content and gel consistency, the O. rufipogon allele may be useful in an IR64 background, depending on the cultural preferences of the consumer. Careful selection against the regions associated with negative effects will be required to avoid unwanted grain quality characteristics during the development of improved varieties for yield and yield components using introgressions from O. rufipogon.
The genetic architecture of maize (Zea mays L.) kernel weight determination.
Alvarez Prado, Santiago; López, César G; Senior, M Lynn; Borrás, Lucas
2014-09-18
Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60-0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. Copyright © 2014 Alvarez Prado et al.
Wright, Zara E; Pahlen, Shandell; Krueger, Robert F
2017-05-01
The Diagnostic and Statistical Manual for Mental Disorders-Fifth Edition (DSM-5) proposes an alternative model for personality disorders, which includes maladaptive-level personality traits. These traits can be operationalized by the Personality Inventory for the DSM-5 (PID-5). Although there has been extensive research on genetic and environmental influences on normative level personality, the heritability of the DSM-5 traits remains understudied. The present study addresses this gap in the literature by assessing traits indexed by the PID-5 and the International Personality Item Pool NEO (IPIP-NEO) in adult twins (N = 1,812 individuals). Research aims include (a) replicating past findings of the heritability of normative level personality as measured by the IPIP-NEO as a benchmark for studying maladaptive level traits, (b) ascertaining univariate heritability estimates of maladaptive level traits as measured by the PID-5, (c) establishing how much variation in personality pathology can be attributed to the same genetic components affecting variation in normative level personality, and (d) determining residual variance in personality pathology domains after variance attributable to genetic and environmental components of general personality has been removed. Results revealed that PID-5 traits reflect similar levels of heritability to that of IPIP-NEO traits. Further, maladaptive and normative level traits that correlate at the phenotypic level also correlate at the genotypic level, indicating overlapping genetic components contribute to variance in both. Nevertheless, we also found evidence for genetic and environmental components unique to maladaptive level personality traits, not shared with normative level traits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Arnould, Valérie M. R.; Reding, Romain; Bormann, Jeanne; Gengler, Nicolas; Soyeurt, Hélène
2015-01-01
Simple Summary Reducing the frequency of milk recording decreases the costs of official milk recording. However, this approach can negatively affect the accuracy of predicting daily yields. Equations to predict daily yield from morning or evening data were developed in this study for fatty milk components from traits recorded easily by milk recording organizations. The correlation values ranged from 96.4% to 97.6% (96.9% to 98.3%) when the daily yields were estimated from the morning (evening) milkings. The simplicity of the proposed models which do not include the milking interval should facilitate their use by breeding and milk recording organizations. Abstract Reducing the frequency of milk recording would help reduce the costs of official milk recording. However, this approach could also negatively affect the accuracy of predicting daily yields. This problem has been investigated in numerous studies. In addition, published equations take into account milking intervals (MI), and these are often not available and/or are unreliable in practice. The first objective of this study was to propose models in which the MI was replaced by a combination of data easily recorded by dairy farmers. The second objective was to further investigate the fatty acids (FA) present in milk. Equations to predict daily yield from AM or PM data were based on a calibration database containing 79,971 records related to 51 traits [milk yield (expected AM, expected PM, and expected daily); fat content (expected AM, expected PM, and expected daily); fat yield (expected AM, expected PM, and expected daily; g/day); levels of seven different FAs or FA groups (expected AM, expected PM, and expected daily; g/dL milk), and the corresponding FA yields for these seven FA types/groups (expected AM, expected PM, and expected daily; g/day)]. These equations were validated using two distinct external datasets. The results obtained from the proposed models were compared to previously published results for models which included a MI effect. The corresponding correlation values ranged from 96.4% to 97.6% when the daily yields were estimated from the AM milkings and ranged from 96.9% to 98.3% when the daily yields were estimated from the PM milkings. The simplicity of these proposed models should facilitate their use by breeding and milk recording organizations. PMID:26479379
Calus, M P L; de Haas, Y; Veerkamp, R F
2013-10-01
Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wang, Xuan; Yomano, Lorraine P; Lee, James Y; York, Sean W; Zheng, Huabao; Mullinnix, Michael T; Shanmugam, K T; Ingram, Lonnie O
2013-03-05
Pretreatments such as dilute acid at elevated temperature are effective for the hydrolysis of pentose polymers in hemicellulose and also increase the access of enzymes to cellulose fibers. However, the fermentation of resulting syrups is hindered by minor reaction products such as furfural from pentose dehydration. To mitigate this problem, four genetic traits have been identified that increase furfural tolerance in ethanol-producing Escherichia coli LY180 (strain W derivative): increased expression of fucO, ucpA, or pntAB and deletion of yqhD. Plasmids and integrated strains were used to characterize epistatic interactions among traits and to identify the most effective combinations. Furfural resistance traits were subsequently integrated into the chromosome of LY180 to construct strain XW129 (LY180 ΔyqhD ackA::PyadC'fucO-ucpA) for ethanol. This same combination of traits was also constructed in succinate biocatalysts (Escherichia coli strain C derivatives) and found to increase furfural tolerance. Strains engineered for resistance to furfural were also more resistant to the mixture of inhibitors in hemicellulose hydrolysates, confirming the importance of furfural as an inhibitory component. With resistant biocatalysts, product yields (ethanol and succinate) from hemicellulose syrups were equal to control fermentations in laboratory media without inhibitors. The combination of genetic traits identified for the production of ethanol (strain W derivative) and succinate (strain C derivative) may prove useful for other renewable chemicals from lignocellulosic sugars.
Wang, Xuan; Yomano, Lorraine P.; Lee, James Y.; York, Sean W.; Zheng, Huabao; Mullinnix, Michael T.; Shanmugam, K. T.; Ingram, Lonnie O.
2013-01-01
Pretreatments such as dilute acid at elevated temperature are effective for the hydrolysis of pentose polymers in hemicellulose and also increase the access of enzymes to cellulose fibers. However, the fermentation of resulting syrups is hindered by minor reaction products such as furfural from pentose dehydration. To mitigate this problem, four genetic traits have been identified that increase furfural tolerance in ethanol-producing Escherichia coli LY180 (strain W derivative): increased expression of fucO, ucpA, or pntAB and deletion of yqhD. Plasmids and integrated strains were used to characterize epistatic interactions among traits and to identify the most effective combinations. Furfural resistance traits were subsequently integrated into the chromosome of LY180 to construct strain XW129 (LY180 ΔyqhD ackA::PyadC′fucO-ucpA) for ethanol. This same combination of traits was also constructed in succinate biocatalysts (Escherichia coli strain C derivatives) and found to increase furfural tolerance. Strains engineered for resistance to furfural were also more resistant to the mixture of inhibitors in hemicellulose hydrolysates, confirming the importance of furfural as an inhibitory component. With resistant biocatalysts, product yields (ethanol and succinate) from hemicellulose syrups were equal to control fermentations in laboratory media without inhibitors. The combination of genetic traits identified for the production of ethanol (strain W derivative) and succinate (strain C derivative) may prove useful for other renewable chemicals from lignocellulosic sugars. PMID:23431191
Cottle, D J; Coffey, M P
2013-02-01
The objective of this study was to assess the impact of using different relative economic values (REVs) in selection indices on predicted financial and trait gains from selection of sires of cows and on the choice of leading Holstein bulls available in the UK dairy industry. Breeding objective traits were milk yield, fat yield, protein yield, lifespan, mastitis, non-return rate, calving interval and lameness. Relative importance of a trait, as estimated by a.h(2), was only moderately related to the rate of financial loss or total economic merit (ΔTEM) per percentage under- or overestimation of REV (r = 0.38 and 0.29, respectively) as a result of the variance-covariance structure of traits. The effects on TEM of under- or overestimating trait REVs were non-symmetrical. TEM was most sensitive to incorrect REVs for protein, fat, milk and lifespan and least sensitive to incorrect calving interval, lameness, non-return and mastitis REVs. A guide to deciding which dairy traits require the most rigorous analysis in the calculation of their REVs is given. Varying the REVs within a fairly wide range resulted in different bulls being selected by index and their differing predicted transmitting abilities would result in the herds moving in different directions in the long term (20 years). It is suggested that customized indices, where the farmer creates rankings of bulls tailored to their specific farm circumstances, can be worthwhile. © 2012 Blackwell Verlag GmbH.
Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J
2015-09-01
Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Stability of agronomic and yield related traits of Jatropha curcas accessions raised from cuttings
NASA Astrophysics Data System (ADS)
Mat, Nurul Hidayah Che; Yaakob, Zahira; Ratnam, Wickneswari
2016-11-01
Monitoring stability of agronomic and yield related traits is important for prediction of crop yields. This study was a latter study for the evaluation of 295 J. curcas individuals representing 21 accessions from eight countries at Biodiesel Research Station of Universiti Kebangsaan Malaysia, Kuala Pilah planted in December 2012. In this study, 183 J. curcas individuals were selected randomly from the population and their growth performance evaluated from December 2013 to December 2014. All the individual plants were raised from cuttings. The yield related data were recorded periodically and performance of each accession was analyzed using Statistical Analysis System (SAS) 9.4. Five traits which were number of fruits per plant (NFPP), number of fruits per inflorescence (NFPI), hundred seed weight (g) (HSW), number of seeds per plant (NSPP) and yield per plant (g) (YPP) showed significant differences among the accessions after two years of planting. Maximum values for each trait were 208 cm for plant height (PH), 31 for number of branches per plant (BPP), 115 for number of inflorescence per plant (NIPP), 582 for NFPP, 7 for NFPI, 307 for number of flowers per inflorescence (NFI), 17 for number of female flowers per inflorescence (NFFPI), 91.6 g for HSW, 1647.1 for NSPP and 927.6 g for YPP. Most of the plants which had performed well in the first year were among the best performers in the second year.
Poaceae vs. Abiotic Stress: Focus on Drought and Salt Stress, Recent Insights and Perspectives
Landi, Simone; Hausman, Jean-Francois; Guerriero, Gea; Esposito, Sergio
2017-01-01
Poaceae represent the most important group of crops susceptible to abiotic stress. This large family of monocotyledonous plants, commonly known as grasses, counts several important cultivated species, namely wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), and barley (Hordeum vulgare). These crops, notably, show different behaviors under abiotic stress conditions: wheat and rice are considered sensitive, showing serious yield reduction upon water scarcity and soil salinity, while barley presents a natural drought and salt tolerance. During the green revolution (1940–1960), cereal breeding was very successful in developing high-yield crops varieties; however, these cultivars were maximized for highest yield under optimal conditions, and did not present suitable traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise novel approaches and decipher the key components of agricultural production systems. Approaches to improve food production combining both enhanced water use efficiency (WUE) and acceptable yields are critical to create a sustainable agriculture in the future. This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular, the focus will be directed toward various aspects of water deprivation and salinity response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered, given the importance of the plant cell wall in sensing environmental constraints and in mediating a response; the role of silicon (Si), an important element for monocots' normal growth and development, will also be discussed, since it activates a broad-spectrum response to different exogenous stresses. Perspectives valorizing studies on landraces conclude the survey, as they help identify key traits for breeding purposes. PMID:28744298
Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; ...
2014-06-27
Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 x 3 Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yieldmore » was shared. A genome-wide association study for lignin abundance and sugar yield of the 282- member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. Finally, these results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.« less
Bignardi, A B; El Faro, L; Rosa, G J M; Cardoso, V L; Machado, P F; Albuquerque, L G
2012-04-01
A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L
2018-02-21
Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.
Piergiovanni, Angela R; Lupo, Francesco; Zaccardelli, Massimo
2011-01-15
Grass pea seeds are a good source of vegetable proteins, but the presence of toxic and antinutritional compounds represents a barrier to their large-scale use as food or animal feed. How much growing location and/or seasonal climate might affect the storage of these factors has been little investigated. Fourteen Italian ecotypes of grass pea were cultivated in two locations in southern Italy characterised by different climatic conditions. The seven ecotypes with the best yields and/or seed quality were investigated for a further two growing seasons. From a statistical point of view the physicochemical and nutritional traits among ecotypes were not the same from one year to the next. Moreover, a significant positive correlation was found between β-oxalyl-diamino-propionic acid and trypsin inhibitor contents. The lowest levels of both these compounds were associated with the highest amount of rainfall during the plant vegetative cycle. Principal component analysis of the data showed that the overall seed composition was affected by the growing location. Consequently, each grass pea genotype should also be carefully investigated in relation to different environments before being considered for release as safe for widespread human or animal consumption. Copyright © 2010 Society of Chemical Industry.
Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield
Choe, Eunsoo; Drnevich, Jenny; Williams, Martin M.
2016-01-01
Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The objectives were to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network. PMID:26796516
Genome Wide Analysis of Fertility and Production Traits in Italian Holstein Cattle
Stella, Alessandra; Biffani, Stefano; Negrini, Riccardo; Lazzari, Barbara; Ajmone-Marsan, Paolo; Williams, John L .
2013-01-01
A genome wide scan was performed on a total of 2093 Italian Holstein proven bulls genotyped with 50K single nucleotide polymorphisms (SNPs), with the objective of identifying loci associated with fertility related traits and to test their effects on milk production traits. The analysis was carried out using estimated breeding values for the aggregate fertility index and for each trait contributing to the index: angularity, calving interval, non-return rate at 56 days, days to first service, and 305 day first parity lactation. In addition, two production traits not included in the aggregate fertility index were analysed: fat yield and protein yield. Analyses were carried out using all SNPs treated separately, further the most significant marker on BTA14 associated to milk quality located in the DGAT1 region was treated as fixed effect. Genome wide association analysis identified 61 significant SNPs and 75 significant marker-trait associations. Eight additional SNP associations were detected when SNP located near DGAT1 was included as a fixed effect. As there were no obvious common SNPs between the traits analyzed independently in this study, a network analysis was carried out to identify unforeseen relationships that may link production and fertility traits. PMID:24265800
Liu, Gang; Jia, Lijia; Lu, Lahu; Qin, Dandan; Zhang, Jinping; Guan, Panfeng; Ni, Zhongfu; Yao, Yingyin; Sun, Qixin; Peng, Huiru
2014-11-01
QTLs controlling yield-related traits were mapped using a population derived from common wheat and Tibetan semi-wild wheat and they provided valuable information for using Tibetan semi-wild wheat in future wheat molecular breeding. Tibetan semi-wild wheat (Triticum aestivum ssp tibetanum Shao) is a kind of primitive hexaploid wheat and harbors several beneficial traits, such as tolerance to biotic and abiotic stresses. And as a wild relative of common wheat, heterosis of yield of the progeny between them was significant. This study focused on mapping QTLs controlling yield-related traits using a recombined inbred lines (RILs) population derived from a hybrid between a common wheat line NongDa3331 (ND3331) and the Tibetan semi-wild wheat accession Zang 1817. In nine location-year environments, a total of 148 putative QTLs controlling nine traits were detected, distributed on 19 chromosomes except for 1A and 2D. Single QTL explained the phenotypic variation ranging from 3.12 to 49.95%. Of these QTLs, 56 were contributed by Zang 1817. Some stable QTLs contributed by Zang 1817 were also detected in more than four environments, such as QPh-3A1, QPh-4B1 and QPh-4D for plant height, QSl-7A1 for spike length, QEp-4B2 for ears per plant, QGws-4D for grain weight per spike, and QTgw-4D for thousand grain weight. Several QTL-rich Regions were also identified, especially on the homoeologous group 4. The TaANT gene involved in floral organ development was mapped on chromosome 4A between Xksm71 and Xcfd6 with 0.8 cM interval, and co-segregated with the QTLs controlling floret number per spikelet, explaining 4.96-11.84% of the phenotypic variation. The current study broadens our understanding of the genetic characterization of Tibetan semi-wild wheat, which will enlarge the genetic diversity of yield-related traits in modern wheat breeding program.
USDA-ARS?s Scientific Manuscript database
Cultivated peanut (Arachis hypogaea L.), an important source of edible oil and protein, is widely grown in tropical and subtropical areas of the world. Genetic improvement of yield-related traits is essential for improving yield potential of new peanut varieties. Genomics-assisted breeding (GAB) can...
Associations Between Adiposity and Metabolic Syndrome Over Time: The Healthy Twin Study.
Song, Yun-Mi; Sung, Joohon; Lee, Kayoung
2017-04-01
We evaluated the association between changes in adiposity traits including anthropometric and fat mass indicators and changes in metabolic syndrome traits including metabolic syndrome clustering and individual components over time. We also assessed the shared genetic and environmental correlations between the two traits. Participants were 284 South Korean twin individuals and 279 nontwin family members had complete data for changes in adiposity traits and metabolic syndrome traits of the Healthy Twin study. Mixed linear model and bivariate variance-component analysis were applied. Over a period of 3.1 ± 0.6 years of study, changes in adiposity traits [body mass index (BMI), waist circumference, total fat mass, and fat mass to lean mass ratio] had significant associations with changes in metabolic syndrome clustering [high blood pressure, high serum glucose, high triglycerides (TG), and low high-density lipoprotein cholesterol] after adjusting for intra-familial and sibling correlations, age, sex, baseline metabolic syndrome clustering, and socioeconomic factors and health behaviors at follow-up. Change in BMI associated significantly with changes in individual metabolic syndrome components compared to other adiposity traits. Change in metabolic syndrome component TG was a better predictor of changes in adiposity traits compared to changes in other metabolic components. These associations were explained by significant environmental correlations but not by genetic correlations. Changes in anthropometric and fat mass indicators were positively associated with changes in metabolic syndrome clustering and those associations appeared to be regulated by environmental influences.
Penasa, M; De Marchi, M; Cassandro, M
2016-06-01
The aim of this study was to investigate the effect of pregnancy stage on milk yield, composition traits, and milk coagulation properties in Italian Holstein cattle. The data set included 25,729 records from 3,995 first-parity cows calving between August 2010 and August 2013 in 167 herds. The traits analyzed were milk yield (kg/d), fat (%), protein (%), casein (%), and lactose (%) contents, pH, somatic cell score, rennet coagulation time (min), and curd firmness (mm). To better understand the effect of gestation on the aforementioned traits, each record was assigned to one of the following classes of pregnancy stage: (1) nonpregnant, (2) pregnant from 1 to 120d, (3) pregnant from 121 to 210d, and (4) pregnant from 211 to 310d. Gestation stage significantly influenced all studied traits with the exception of somatic cell score. Milk production decreased and milk quality improved from the fourth month of pregnancy onward. For all traits, nonpregnant cows performed very similarly to cows in the first period of gestation. Rennet coagulation time and curd firmness were influenced by pregnancy stage, especially in the last weeks of gestation when milk had better coagulation characteristics; this information should be accounted for to adjust test-day records in genetic evaluation of milk coagulation properties. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Curtis, David; Knight, Jo; Sham, Pak C
2005-09-01
Although LOD score methods have been applied to diseases with complex modes of inheritance, linkage analysis of quantitative traits has tended to rely on non-parametric methods based on regression or variance components analysis. Here, we describe a new method for LOD score analysis of quantitative traits which does not require specification of a mode of inheritance. The technique is derived from the MFLINK method for dichotomous traits. A range of plausible transmission models is constructed, constrained to yield the correct population mean and variance for the trait but differing with respect to the contribution to the variance due to the locus under consideration. Maximized LOD scores under homogeneity and admixture are calculated, as is a model-free LOD score which compares the maximized likelihoods under admixture assuming linkage and no linkage. These LOD scores have known asymptotic distributions and hence can be used to provide a statistical test for linkage. The method has been implemented in a program called QMFLINK. It was applied to data sets simulated using a variety of transmission models and to a measure of monoamine oxidase activity in 105 pedigrees from the Collaborative Study on the Genetics of Alcoholism. With the simulated data, the results showed that the new method could detect linkage well if the true allele frequency for the trait was close to that specified. However, it performed poorly on models in which the true allele frequency was much rarer. For the Collaborative Study on the Genetics of Alcoholism data set only a modest overlap was observed between the results obtained from the new method and those obtained when the same data were analysed previously using regression and variance components analysis. Of interest is that D17S250 produced a maximized LOD score under homogeneity and admixture of 2.6 but did not indicate linkage using the previous methods. However, this region did produce evidence for linkage in a separate data set, suggesting that QMFLINK may have been able to detect a true linkage which was not picked up by the other methods. The application of model-free LOD score analysis to quantitative traits is novel and deserves further evaluation of its merits and disadvantages relative to other methods.
Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls.
Renaville, R; Gengler, N; Vrech, E; Prandi, A; Massart, S; Corradini, C; Bertozzi, C; Mortiaux, F; Burny, A; Portetelle, D
1997-12-01
The growth hormone factor-1/pituitary-specific transcription factor Pit-1 is responsible for the expression of growth hormone in mammals. Mutations in Pit-1 have been found in growth hormone disorders of mice and humans. We studied the eventual association between Pit-1 polymorphism using the HinfI enzyme and the milk yield and conformation traits of 89 Italian Holstein-Friesian bulls. A strategy employing polymerase chain reaction was used to amplify a 451-bp fragment from semen DNA. Digestion of polymerase chain reaction products with HinfI revealed two alleles: allele A was not digested (451-bp fragment), and allele B was cut at one restriction site, generating two fragments of 244 and 207 bp. Three patterns were observed; frequencies were 2.2, 31.5, and 66.3% for AA, AB, and BB, respectively. Fixed and mixed linear models were fitted on daughter yield deviations for milk yields and on deregressed proofs for conformation traits. Predictions were weighted using the inverse of the estimated variance of records. The models used contained mean and gene substitution effects for Pit-1 A allele as fixed effects and random sire effect for the mixed model. The A allele was found to be superior for milk and protein yields, inferior for fat percentage, and superior for body depth, angularity, and rear leg set, which is difficult to explain. A canonical transformation revealed that Pit-1 had three actions, one linked to milk yield traits and angularity, a second linked to body depth and rear leg set, and a third linked to lower fat yields and to higher angularity.
Schönhals, E M; Ortega, F; Barandalla, L; Aragones, A; Ruiz de Galarreta, J I; Liao, J-C; Sanetomo, R; Walkemeier, B; Tacke, E; Ritter, E; Gebhardt, C
2016-04-01
SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.
Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar
2017-01-01
Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836
Shahriari, Zolfaghar; Dadkhodaie, Ali
2018-01-01
Genotype × environment interaction (GEI) is an important aspect of both plant breeding and the successful introduction of new cultivars. In the present study, additive main effects and multiplicative interactions (AMMI) and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in Plantago. In total, 10 managed field trials were considered as environments to analyze GEI in thirty genotypes belonging to eight Plantago species. Genotypes were evaluated in a drought stress treatment and in normal irrigation conditions at two locations in Shiraz (Bajgah) for three years (2013-2014- 2015) and Kooshkak (Marvdasht, Fars, Iran) for two years (2014–2015). Three traits, seed yield and mucilage yield and content, were measured at each experimental site and in natural Plantago habitats. AMMI2 biplot analyses identified genotypes from several species with higher stability for seed yield and other genotypes with stable mucilage content and yield. P. lanceolata (G26), P. officinalis (G10), P. ovata (G14), P. ampleexcaulis (G11) and P. major (G4) had higher stability for seed yield. For mucilage yield, G21, G18 and G20 (P. psyllium), G1, G2 and G4 (P. major), G9 and G10 (P. officinalis) and P. lanceolata were identified as stable. G13 (P. ovata), G5 and G6 (P. major) and G30 (P. lagopus) had higher stability for mucilage content. No one genotype was found to have high levels of stability for more than one trait but some species had more than one genotype exhibiting stable trait performance. Based on trait variation, GGE biplot analysis identified two representative environments, one for seed yield and one for mucilage yield and content, with good discriminating ability. The identification of stable genotypes and representative environments should assist the breeding of new Plantago cultivars. PMID:29715274
Shahriari, Zolfaghar; Heidari, Bahram; Dadkhodaie, Ali
2018-01-01
Genotype × environment interaction (GEI) is an important aspect of both plant breeding and the successful introduction of new cultivars. In the present study, additive main effects and multiplicative interactions (AMMI) and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in Plantago. In total, 10 managed field trials were considered as environments to analyze GEI in thirty genotypes belonging to eight Plantago species. Genotypes were evaluated in a drought stress treatment and in normal irrigation conditions at two locations in Shiraz (Bajgah) for three years (2013-2014- 2015) and Kooshkak (Marvdasht, Fars, Iran) for two years (2014-2015). Three traits, seed yield and mucilage yield and content, were measured at each experimental site and in natural Plantago habitats. AMMI2 biplot analyses identified genotypes from several species with higher stability for seed yield and other genotypes with stable mucilage content and yield. P. lanceolata (G26), P. officinalis (G10), P. ovata (G14), P. ampleexcaulis (G11) and P. major (G4) had higher stability for seed yield. For mucilage yield, G21, G18 and G20 (P. psyllium), G1, G2 and G4 (P. major), G9 and G10 (P. officinalis) and P. lanceolata were identified as stable. G13 (P. ovata), G5 and G6 (P. major) and G30 (P. lagopus) had higher stability for mucilage content. No one genotype was found to have high levels of stability for more than one trait but some species had more than one genotype exhibiting stable trait performance. Based on trait variation, GGE biplot analysis identified two representative environments, one for seed yield and one for mucilage yield and content, with good discriminating ability. The identification of stable genotypes and representative environments should assist the breeding of new Plantago cultivars.
Dux, Marta; Muranowicz, Magdalena; Siadkowska, Eulalia; Robakowska-Hyżorek, Dagmara; Flisikowski, Krzysztof; Bagnicka, Emilia; Zwierzchowski, Lech
2018-05-01
The objective of the study reported in this Research Communication was to investigate the association of polymorphisms in the insulin-like growth factor receptor 2 (IGF2R) gene with milk traits in 283 Polish Holstein-Friesian (PHF) cows from the IGAB PAS farm in Jastrzębiec. IGF2R regulates the availability of biologically active IGF2 which is considered as a genetic marker for milk or meat production in farm animals. Two novel genetic polymorphisms were identified in the bovine IGF2R gene: a polymorphic TG-repeat in intron 23 (g.72389 (TG)15-67), and a g.72479 G > A SNP RFLP-StyI in exon 24. The following milk traits were investigated: milk yield, protein and fat yield, SCC and lactose content. To determine the influence of the IGF2R STR and SNP genotypes on the milk traits, we used the AI-REML (average information restricted maximum likelihood) method with repeatability, multi-trait animal model based on test-day information using DMU package. Statistical analysis revealed that the G/A genotype (P ≤ 0·01) was associated with milk and protein yield, lactose content and somatic cell count (SCC) in Polish HF cows. TGn (29/22, 28/29, 28/22, 28/28) genotypes were associated with high values for milk, (28/22, 28/23) with protein and fat yield, (25/20) with lactose content, and (29/33, 28/28) with low SCC. We suggest that the IGF2R gene polymorphisms could be useful genetic markers for dairy production traits in cattle.
Schiessl, Sarah; Iniguez-Luy, Federico; Qian, Wei; Snowdon, Rod J
2015-09-29
Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. Our study provides a valuable framework to further improve the adaptability and yield stability of this recent allopolyploid crop under changing environments. The results suggest that flowering time regulation within an adapted B. napus breeding pool is driven by a high number of small modulating processes rather than major transcription factors like Bna.CO. In contrast, yield regulation appears highly parallel, therefore yield could be increased by pyramiding positively associated haplotypes.
USDA-ARS?s Scientific Manuscript database
Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect-pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variatio...
Cecchinato, A; Bittante, G
2016-03-01
The aim of this study was to elucidate the relationships between various cheesemaking-related traits, namely the well-known traditional milk coagulation properties (MCP), the new curd firming and syneresis traits, the cheese yield, and the curd nutrient recoveries or whey losses (all measured at the individual level). Data were obtained from 1,167 Brown Swiss cows reared in 85 herds. A 2-L milk sample was collected once from each animal and assessed for 10 phenotypes related to changes in curd firmness (CF) over time, plus 7 cheesemaking traits. The CF-related traits included 4 traditional single-point lactodynamographic properties [rennet coagulation time (RCT, min); time to a CF of 20mm, min; and the CF 30 and 45 min after rennet addition (a30 and a45, respectively)], 4 parameters used to model the 360 CF data recorded over time for each milk sample [the potential asymptotic CF at infinite time (CFP, mm); the CF instant rate constant, % × min(-1); the syneresis instant rate constant, % × min(-1); and the RCT obtained from modeling individual samples], and 2 traits calculated from individual equations [the maximum CF(CFmax, mm); and the time at CFmax, min]. The cheesemaking traits included 3 cheese yield traits (weights of the fresh curd, curd solids and curd moisture as percent of the weights of the processed milk) and 4 milk nutrient recoveries in the curd (calculated as the percent ratios between a given nutrient in the curd versus that in the processed milk). Bayesian methodology-based multivariate analyses were used to estimate the phenotypic, additive genetic, herd/date, and residual relationships between the aforementioned traits, whereas statistical inferences were based on the marginal posterior distributions of the parameters of concern. The a45, CFP, and CFmax traits were genetically associated with all of the percent cheese yield traits (the additive genetic correlations varied from 0.752 to 0.855 for a45; 0.496 to 0.583 for CFP; and 0.750 to 0.801 for CFmax) and the nutrient recovery traits (additive genetic correlations varied from 0.296 to 0.901 for a45; 0.428 to 0.697 for CFP; and 0.412 to 0.941 for CFmax). Moreover, the nutrient recoveries for fat, solids, and energy exhibited large additive genetic correlations with the other coagulation and curd firming traits. In particular, recovery of protein and fat were found to be powerful instruments for understanding the relationships between milk technological properties and cheese quantity or quality. We observed only weak genetic relationships with the milk quality and MCP traits, suggesting that the highly heritable trait of protein recovery should perhaps be included as a genetic index when seeking to improve cheesemaking efficiency at the population level. In contrast, we found that fat recovery exhibited moderate genetic variation and could be improved through the CF over time traits, especially using those recorded during the late phase of the curd firming process. Moreover, our results demonstrated that the traditional MCP have limited relevance for predicting individual cheese yield. Therefore, their use for this purpose in the dairy industry and breeding programs seems questionable. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Solis, Julio; Gutierrez, Andres; Mangu, Venkata; Sanchez, Eduardo; Bedre, Renesh; Linscombe, Steve; Baisakh, Niranjan
2017-12-01
Drought stress is a constant threat to rice production worldwide. Most Mmodern rice cultivars are sensitive to drought, and the effect is severe at the reproductive stage. Conventional breeding for drought resistant (DR) rice varieties is slow and limited due to the quantitative nature of the DR traits. Identification of genes (QTLs)/markers associated with DR traits is a prerequisite for marker-assisted breeding. Grain yield is the most important trait and to this end drought yield QTLs have been identified under field conditions. The present study reports identification of drought yield QTLs under controlled conditions without confounding effects of other factors prevalent under natural conditions. A linkage map covering 1,781.5 cM with an average resolution of 9.76 cM was constructed using an F2 population from a cross between two Japonica cultivars, Cocodrie (drought sensitive) and Vandana (drought tolerant) with 213 markers distributed over 12 rice chromosomes. A subset of 59 markers (22 genic SSRs and 37 SNPs) derived from the transcriptome of the parents were also placed in the map. Single marker analysis using 187 F2:3 progeny identified 6 markers distributed on chromosomes 1, 5, and 8 to be associated with grain yield under drought (GYD). Composite interval mapping identified six genomic regions/quantitative trait loci (QTL) on chromosome 1, 5, 8, and 9 to be associated with GYD. QTLs located on chromosome 1 (qGYD1.2, qGYD1.3), chromosome 5 (qGYD5.1) and chromosome 8 (qGYD8.1) were contributed by Vandana alleles, whereas the QTLs, qGYD1.1 and qQYD9.1 were contributed by Cocodrie alelles. The additive positive phenotypic variance explained by the QTLs ranged from 30.0% to 34.0%. Candidate genes annotation within QTLs suggested the role of transcription factors and genes involved in osmotic potential regulation through catalytic/metabolic pathways in drought resistance tolerance mechanism contributing to yield.
Genetic diversity analysis of fruit characteristics of hawthorn germplasm.
Su, K; Guo, Y S; Wang, G; Zhao, Y H; Dong, W X
2015-12-07
One hundred and six accessions of hawthorn intraspecific resources, from the National Germplasm Repository at Shenyang, were subjected to genetic diversity and principal component analysis based on evaluation data of 15 fruit traits. Results showed that the genetic diversity of hawthorn fruit traits varied. Among the 15 traits, the fruit shape variable coefficient had the most obvious evaluation, followed by fruit surface state, dot color, taste, weight of single fruit, sepal posture, peduncle form, and metula traits. These are the primary traits by which hawthorn could be classified in the future. The principal component demonstrated that these traits are the most influential factors of hawthorn fruit characteristics.
Royal, M D; Pryce, J E; Woolliams, J A; Flint, A P F
2002-11-01
The decline of fertility in the UK dairy herd and the unfavorable genetic correlation (r(a)) between fertility and milk yield has necessitated the broadening of breeding goals to include fertility. The coefficient of genetic variation present in fertility is of similar magnitude to that present in production traits; however, traditional measurements of fertility (such as calving interval, days open, nonreturn rate) have low heritability (h2 < 0.05), and recording is often poor, hindering identification of genetically superior animals. An alternative approach is to use endocrine measurements of fertility such as interval to commencement of luteal activity postpartum (CLA), which has a higher h2 (0.16 to 0.23) and is free from management bias. Although CLA has favorable phenotypic correlations with traditional measures of fertility, if it is to be used in a selection index, the genetic correlation (ra) of this trait with fertility and other components of the index must be estimated. The aim of the analyses reported here was to obtain information on the ra between lnCLA and calving interval (CI), average body condition score (BCS; one to nine, an indicator of energy balance estimated from records taken at different months of lactation), production and a number of linear type traits. Genetic models were fitted using ASREML, and r(a) were inferred from genetic regression of lnCLA on sire-predicted transmitting abilities (PTA) for the trait concerned by multiplying the regression coefficient (b) by the ratio of the genetic standard deviations. The inferred r(a) between lnCLA and CI and average BCS were 0.36 and -0.84, respectively. Genetic correlations between InCLA and milk fat and protein yields were all positive and ranged between 0.33 and 0.69. Genetic correlations between InCLA and linear type traits reflecting body structure ranged from -0.25 to 0.15, and between udder characteristics they ranged from -0.16 to 0.05. Thus, incorporation of endocrine parameters of fertility, such as CIA, into a fertility index may offer the potential to improve the accuracy of breeding value prediction for fertility, thus allowing producers to make more informed selection decisions.
Tillering and panicle branching genes in rice.
Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing
2014-03-01
Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
LeBauer, D.
2015-12-01
Humans need a secure and sustainable food supply, and science can help. We have an opportunity to transform agriculture by combining knowledge of organisms and ecosystems to engineer ecosystems that sustainably produce food, fuel, and other services. The challenge is that the information we have. Measurements, theories, and laws found in publications, notebooks, measurements, software, and human brains are difficult to combine. We homogenize, encode, and automate the synthesis of data and mechanistic understanding in a way that links understanding at different scales and across domains. This allows extrapolation, prediction, and assessment. Reusable components allow automated construction of new knowledge that can be used to assess, predict, and optimize agro-ecosystems. Developing reusable software and open-access databases is hard, and examples will illustrate how we use the Predictive Ecosystem Analyzer (PEcAn, pecanproject.org), the Biofuel Ecophysiological Traits and Yields database (BETYdb, betydb.org), and ecophysiological crop models to predict crop yield, decide which crops to plant, and which traits can be selected for the next generation of data driven crop improvement. A next step is to automate the use of sensors mounted on robots, drones, and tractors to assess plants in the field. The TERRA Reference Phenotyping Platform (TERRA-Ref, terraref.github.io) will provide an open access database and computing platform on which researchers can use and develop tools that use sensor data to assess and manage agricultural and other terrestrial ecosystems. TERRA-Ref will adopt existing standards and develop modular software components and common interfaces, in collaboration with researchers from iPlant, NEON, AgMIP, USDA, rOpenSci, ARPA-E, many scientists and industry partners. Our goal is to advance science by enabling efficient use, reuse, exchange, and creation of knowledge.
Genetic parameters for yearling weight, carcass traits, and primal-cut yields of Hanwoo cattle.
Choi, T J; Alam, M; Cho, C I; Lee, J G; Park, B; Kim, S; Koo, Y; Roh, S H
2015-04-01
Genetic parameters associated with yearling weight, carcass traits, and primal-cut yields of male Hanwoo cattle were investigated using univariate and bivariate animal models. The mean yearling weight (YWT), carcass weight (CWT), longissimus muscle area (LMA), backfat thickness (BFT), and marbling score (MS) were 352.47 ± 0.40 kg, 337.39 ± 0.64 kg, 78.28 ± 0.13 cm2, 8.45 ± 0.05 mm, and 3.25 ± 0.03, respectively. Total primal-cut yield (TPC) was 78.95 ± 0.10% of CWT, of which 42.3% was contributed by the forequarters (chuck, CHK; shoulder, SLD; ribs, RIB; and brisket and flank, BAF). Loins, top round (TRND), and round (RND) were associated with yields of 13.57%, 5.45 ± 0.01%, and 8.87 ± 0.02%, respectively. The largest cut studied was ribs (15.67 ± 0.03%). The estimated heritabilities (h2) of YWT, CWT, LMA, BFT, and MS were 0.18 ± 0.02, 0.29 ± 0.04, 0.38 ± 0.05, 0.45 ± 0.05, and 0.62 ± 0.07, respectively. Shoulder yield was highly heritable in Hanwoo steers (0.83 ± 0.13), followed by the yields of round (0.66 ± 0.12), striploin (0.64 ± 0.12), top round (0.62 ± 0.12), sirloin (0.60 ± 0.12), and total primal-cut yield (0.52 ± 0.11). The h2 values of CHK, BAF, RIB, and tenderloin (TLN) ranged from 0.19 ± 0.09 to 0.41 ± 0.11. Generally, the genetic CV was low for most traits (2.33%-6.15%), except for CHK, BFT, and MS. The genetic correlation (rg) was strong between YWT and CWT (0.77 ± 0.06). The greatest positive and negative rg among carcass traits were those between LMA and CWT (0.52 ± 0.08) and between LMA and BFT (-0.30 ± 0.09), respectively. The correlation between CHK and SLD (0.81 ± 0.14), and those between SLD, TLN, TRND, and RND, were mostly strong (0.77-0.87), but the rg between RIB and other traits were strongly negative. The TPC yield showed moderate to high rg with most primal cuts. The YWT, CWT, and LMA correlated notably with CHK, SLD, and loin yields, especially LMA. However, BFT and MS were negatively correlated with many primal cuts but RIB. Those rg estimates were also opposite of that of LMA and CWT with primal cuts. Phenotypic correlations (rp) were generally weaker than rg estimates. The rp of YWT, CWT, and LMA were either zero or moderately negative compared to those of the BFT and MS with primal cuts. Most primal cuts yielded positive rp estimates among them, except for RIB. Our results suggest that direct selection for YWT, various carcass traits, and primal-cut yields may increase the carcass value of Hanwoo males.
Roberts, Jessica; Power, Aoife; Chandra, Shaneel; Chapman, James; Cozzolino, Daniel
2018-05-28
The current knowledge of the main factors governing livestock, crop and plant quality as well as yield in different species is incomplete. For example, this can be evidenced by the persistence of benchmark crop varieties for many decades in spite of the gains achieved over the same period. In recent years, it has been demonstrated that molecular breeding based on DNA markers has led to advances in breeding (animal and crops). However, these advances are not in the way that it was anticipated initially by the researcher in the field. According to several scientists, one of the main reasons for this was related to the evidence that complex target traits such as grain yield, composition or nutritional quality depend on multiple factors in addition to genetics. Therefore, some questions need to be asked: are the current approaches in molecular genetics the most appropriate to deal with complex traits such as yield or quality? Are the current tools for phenotyping complex traits enough to differentiate among genotypes? Do we need to change the way that data is collected and analysed?
Elbashir, Awad A. E.; Gorafi, Yasir S. A.; Tahir, Izzat S. A.; Elhashimi, Ashraf. M. A.; Abdalla, Modather G. A.; Tsujimoto, Hisashi
2017-01-01
In wheat (Triticum aestivum L.) high temperature (≥30°C) during grain filling leads to considerable reduction in grain yield. We studied 400 multiple synthetic derivatives (MSD) lines to examine the genetic variability of heat stress–adaptive traits and to identify new sources of heat tolerance to be used in wheat breeding programs. The experiment was arranged in an augmented randomized complete block design in four environments in Sudan. A wide range of genetic variability was found in most of the traits in all environments. For all traits examined, we found MSD lines that showed better performance than their parent ‘Norin 61’ and two adapted Sudanese cultivars. Using the heat tolerance efficiency, we identified 13 highly heat-tolerant lines and several lines with intermediate heat tolerance and good yield potential. We also identified lines with alleles that can be used to increase wheat yield potential. Our study revealed that the use of the MSD population is an efficient way to explore the genetic variation in Ae. tauschii for wheat breeding and improvement. PMID:29398942
Improved Soybean Oil for Biodiesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom Clemente; Jon Van Gerpen
2007-11-30
The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it ismore » imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.« less
Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard
2015-01-01
The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141
Mas, Flore; Harper, Aimee; Horner, Rachael; Welsh, Taylor; Jaksons, Peter; Suckling, David M
2018-02-15
Crop breeding programmes generally select for traits for improved yield and human consumption preferences. Yet, they often overlook one fundamental trait essential for insect-pollinated crops: pollinator attraction. This is even more critical for hybrid plants that rely on cross-pollination between the male-fertile line and the male-sterile line to set seeds. This study investigated the role of floral odours for honey bee pollination that could explain the poor seed yield in hybrid crops. The key floral bioactive compounds that honey bees detect were identified for three vegetable hybrid crops. It was found that 30% of the variation in bioactive compound quantities was explained by variety. Differences in quantities of the bioactive compounds triggered different degrees of olfactory response and were also associated with varied appetitive response. Correlating the abundance of each bioactive compound with seed yield, it was found that aldehydes such as nonanal and decanal can have a strong negative influence on seed yield with increasing quantity. Using these methodologies to identify relevant bioactive compounds associated with honey bee pollination, plant breeding programmes should also consider selecting for floral traits attractive to honey bees to improve crop pollination for enhanced seed yield. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Genetic correlations between wool traits and carcass traits in Merino sheep.
Mortimer, S I; Hatcher, S; Fogarty, N M; van der Werf, J H J; Brown, D J; Swan, A A; Jacob, R H; Geesink, G H; Hopkins, D L; Edwards, J E Hocking; Ponnampalam, E N; Pearce, K L; Pethick, D W
2017-06-01
Genetic correlations between 29 wool production and quality traits and 14 whole carcass measures and carcass component traits were estimated from the Information Nucleus of 8 flocks managed across a range of Australian sheep production environments and genetically linked. Wool data were from over 5,000 Merino progeny born over 5 yr, whereas carcass data were from over 1,200 wether progeny of over 176 sires, slaughtered at about 21 kg carcass weight, on average. Wool traits included yearling and adult records for wool weight, fiber diameter, fiber diameter variation, staple strength, scoured color, and visual scores for breech and body wrinkle. Whole carcass measures included HCW, dressing percentage (DP), and various measures of fat depth and eye muscle dimensions. Carcass components were obtained by dissection, and lean meat yield (LMY) was predicted. Heritability estimates for whole carcass measures ranged from 0.12 ± 0.08 to 0.35 ± 0.10 and ranged from 0.17 ± 0.10 to 0.46 ± 0.10 for carcass dissection traits, with no evidence of important genotype × environment interactions. Genetic correlations indicated that selection for increased clean wool weight will result in reduced carcass fat (-0.17 to -0.34) and DP (-0.48 ± 0.15), with little effect on carcass muscle. Selection for lower fiber diameter will reduce HCW (-0.48 ± 0.15) as well as carcass fat (0.14 to 0.27) and muscle (0.21 to 0.50). There were high genetic correlations between live animal measures of fat and muscle depth and the carcass traits (generally greater than 0.5 in size). Selection to increase HCW (and DP) will result in sheep with fewer wrinkles on the body (-0.57 ± 0.10) and barer breeches (-0.74 ± 0.12, favorable), with minor deterioration in scoured wool color (reduced brightness and increased yellowness). Selection for reduced fat will also result in sheep with fewer body wrinkles (-0.42 to -0.79). Increasing LMY in Merinos through selection would result in a large reduction in carcass fat and DP (-0.66 to -0.84), with a smaller increase in carcass muscle and some increase in wool weight and wrinkles. Although no major antagonisms are apparent between the wool and carcass traits, developing selection indexes for dual-purpose wool and meat breeding objectives will require accurate estimates of genetic parameters to ensure that unfavorable relationships are suitably considered. The findings will aid development of dual-purpose wool and meat breeding objectives.
Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate
Cox, Hannah C.; Bellis, Claire; Lea, Rod A.; Quinlan, Sharon; Hughes, Roger; Dyer, Thomas; Charlesworth, Jac; Blangero, John; Griffiths, Lyn R.
2009-01-01
Objective(s) An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. Methods This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. Results A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h2 = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h2 = 0.33) and 4 (h2 = 0.42), respectively. Conclusion(s): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels. PMID:19339786
USDA-ARS?s Scientific Manuscript database
Reciprocal populations of Atlantic and Superior were created with the objective of combining the desired traits of the two parents and selecting a new variety with similar characteristics as Atlantic but with improved internal quality. Both parents have contrasting characteristics for yield, specifi...
USDA-ARS?s Scientific Manuscript database
For several decades, breeding goals in dairy cattle focused on increased milk production. However, many functional traits have negative genetic correlations with milk yield and reductions in genetic merit for health and fitness have been observed. Herd management has been challenged to compensate fo...
Meta-analysis of Big Five personality traits in autism spectrum disorder.
Lodi-Smith, Jennifer; Rodgers, Jonathan D; Cunningham, Sara A; Lopata, Christopher; Thomeer, Marcus L
2018-04-01
The present meta-analysis synthesizes the emerging literature on the relationship of Big Five personality traits to autism spectrum disorder. Studies were included if they (1) either (a) measured autism spectrum disorder characteristics using a metric that yielded a single score quantification of the magnitude of autism spectrum disorder characteristics and/or (b) studied individuals with an autism spectrum disorder diagnosis compared to individuals without an autism spectrum disorder diagnosis and (2) measured Big Five traits in the same sample or samples. Fourteen reviewed studies include both correlational analyses and group comparisons. Eighteen effect sizes per Big Five trait were used to calculate two overall effect sizes per trait. Meta-analytic effects were calculated using random effects models. Twelve effects (per trait) from nine studies reporting correlations yielded a negative association between each Big Five personality trait and autism spectrum disorder characteristics (Fisher's z ranged from -.21 (conscientiousness) to -.50 (extraversion)). Six group contrasts (per trait) from six studies comparing individuals diagnosed with autism spectrum disorder to neurotypical individuals were also substantial (Hedges' g ranged from -.88 (conscientiousness) to -1.42 (extraversion)). The potential impact of personality on important life outcomes and new directions for future research on personality in autism spectrum disorder are discussed in light of results.
Neck blast disease influences grain yield and quality traits of aromatic rice.
Khan, Mohammad Ashik Iqbal; Bhuiyan, Md Rejwan; Hossain, Md Shahadat; Sen, Partha Pratim; Ara, Anjuman; Siddique, Md Abubakar; Ali, Md Ansar
2014-11-01
A critical investigation was conducted to find out the effect of neck blast disease on yield-contributing characters, and seed quality traits of aromatic rice in Bangladesh. Both healthy and neck-blast-infected panicles of three aromatic rice cultivars (high-yielding and local) were collected and investigated at Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh. All of the tested varieties were highly susceptible to neck blast disease under natural conditions, though no leaf blast symptoms appear on leaves. Neck blast disease increased grain sterility percentages, reduced grain size, yield and quality traits of seeds. The degrees of yield and seed quality reduction depended on disease severity and variety's genetic make-up. Unfilled grains were the main source of seed-borne pathogen, especially for blast in the seed lot. Transmission of blast pathogen from neck (panicle base) to seed was very poor. These findings are important, especially concerning the seed certification programme in which seed lots are certified on the basis of field inspection. Finally, controlled experiments are needed to draw more critical conclusions. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Debastiani, Vanderlei J; Pillar, Valério D
2012-08-01
SYNCSA is an R package for the analysis of metacommunities based on functional traits and phylogeny of the community components. It offers tools to calculate several matrix correlations that express trait-convergence assembly patterns, trait-divergence assembly patterns and phylogenetic signal in functional traits at the species pool level and at the metacommunity level. SYNCSA is a package for the R environment, under a GPL-2 open-source license and freely available on CRAN official web server for R (http://cran.r-project.org). vanderleidebastiani@yahoo.com.br.
Bordes, Jacques; Ravel, C; Jaubertie, J P; Duperrier, B; Gardet, O; Heumez, E; Pissavy, A L; Charmet, G; Le Gouis, J; Balfourier, F
2013-03-01
Modern wheat (Triticum aestivum L.) varieties in Western Europe have mainly been bred, and selected in conditions where high levels of nitrogen-rich fertilizer are applied. However, high input crop management has greatly increased the risk of nitrates leaching into groundwater with negative impacts on the environment. To investigate wheat nitrogen tolerance characteristics that could be adapted to low input crop management, we supplied 196 accessions of a wheat core collection of old and modern cultivars with high or moderate amounts of nitrogen fertilizer in an experimental network consisting of three sites and 2 years. The main breeding traits were assessed including grain yield and grain protein content. The response to nitrogen level was estimated for grain yield and grain number per m(2) using both the difference and the ratio between performance at the two input levels and the slope of joint regression. A large variability was observed for all the traits studied and the response to nitrogen level. Whole genome association mapping was carried out using 899 molecular markers taking into account the five ancestral group structure of the collection. We identified 54 main regions involving almost all chromosomes that influence yield and its components, plant height, heading date and grain protein concentration. Twenty-three regions, including several genes, spread over 16 chromosomes were involved in the response to nitrogen level. These chromosomal regions may be good candidates to be used in breeding programs to improve the performance of wheat varieties at moderate nitrogen input levels.
2013-01-01
Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P > hot1P107S,H274Y ≥ smp1R110Q,P269Q. Conclusions Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications. PMID:23759206
Charton, C; Guinard-Flament, J; Lefebvre, R; Barbey, S; Gallard, Y; Boichard, D; Larroque, H
2018-03-01
Despite its potential utility for predicting cows' milk yield responses to once-daily milking (ODM), the genetic basis of cow milk trait responses to ODM has been scarcely if ever described in the literature, especially for short ODM periods. This study set out to (1) estimate the genetic determinism of milk yield and composition during a 3-wk ODM period, (2) estimate the genetic determinism of milk yield responses (i.e., milk yield loss upon switching cows to ODM and milk yield recovery upon switching them back to twice-daily milking; TDM), and (3) seek predictors of milk yield responses to ODM, in particular using the first day of ODM. Our trial used 430 crossbred Holstein × Normande cows and comprised 3 successive periods: 1 wk of TDM (control), 3 wk of ODM, and 2 wk of TDM. Implementing ODM for 3 wk reduced milk yield by 27.5% on average, and after resuming TDM cows recovered on average 57% of the milk lost. Heritability estimates in the TDM control period and 3-wk ODM period were, respectively, 0.41 and 0.35 for milk yield, 0.66 and 0.61 for milk fat content, 0.60 and 0.80 for milk protein content, 0.66 and 0.36 for milk lactose content, and 0.20 and 0.15 for milk somatic cell score content. Milk yield and composition during 3-wk ODM and TDM periods were genetically close (within-trait genetic correlations between experimental periods all exceeding 0.80) but were genetically closer within the same milking frequency. Heritabilities of milk yield loss observed upon switching cows to ODM (0.39 and 0.34 for milk yield loss in kg/d and %, respectively) were moderate and similar to milk yield heritabilities. Milk yield recovery (kg/d) upon resuming TDM was a trait of high heritability (0.63). Because they are easy to measure, TDM milk yield and composition and milk yield responses on the first day of ODM were investigated as predictors of milk yield responses to a 3-wk ODM to easily detect animals that are well adapted to ODM. Twice-daily milking milk yield and composition were found to be partly genetically correlated with milk yield responses but not closely enough for practical application. With genetic correlations of 0.98 and 0.96 with 3-wk ODM milk yield losses (in kg/d and %, respectively), milk yield losses on the first day of ODM proved to be more accurate in predicting milk yield responses on longer term ODM than TDM milk yield. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zhou, J P; Dong, C H
2013-09-04
The traits particularly important for milk production include milk yield, protein percentage, fat percentage, and the somatic cell score. Alpha-lactalbumin (α-LA) is an important whey protein of cow milk, and is also present in the milk of many other mammalian species. In this study, we analyzed the genetic polymorphisms of the α-LA gene and their relationship to milk production traits (milk yield, protein percentage, fat percentage, and somatic cell score) in Chinese Holstein cows. The goal of this study was to contribute further molecular genetic information related to dairy cattle, to determine the molecular markers that are most closely linked with milk production traits, and to provide a scientific basis for the improvement of economically relevant traits in cows. Fluorescence-based conformation-sensitive gel electrophoresis, DNA sequencing, and ligation detection reaction techniques were used to analyze genetic variations of the α-LA gene (5'-UTR, exons 1, 2, 3, 4, and 3'-UTR) in 923 Chinese Holstein cows. One novel single nucleotide polymorphism (SNP), α-LA2516, was identified in exon 4 of the α-LA gene. Allele frequencies were as follows: T 0.674, C 0.326. Association analysis revealed that α-LA2516 was not associated with milk yield, protein percentage, fat percentage, or somatic cell score (P > 0.05). These findings suggest that the SNP α-LA2516 in the α-LA gene likely does not have potential as a molecular marker for milk production traits in Chinese Holstein cows.
Assessing Predictive Properties of Genome-Wide Selection in Soybeans
Xavier, Alencar; Muir, William M.; Rainey, Katy Martin
2016-01-01
Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. PMID:27317786
Yamazaki, T; Hagiya, K; Takeda, H; Osawa, T; Yamaguchi, S; Nagamine, Y
2016-08-01
Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open to maximize lifetime productivity in dairy cows.
Zhou, Yong; Dong, Guichun; Tao, Yajun; Chen, Chen; Yang, Bin; Wu, Yue; Yang, Zefeng; Liang, Guohua; Wang, Baohe; Wang, Yulong
2016-01-01
Identification of quantitative trait loci (QTLs) associated with rice root morphology provides useful information for avoiding drought stress and maintaining yield production under the irrigation condition. In this study, a set of chromosome segment substitution lines derived from 9311 as the recipient and Nipponbare as donor, were used to analysis root morphology. By combining the resequencing-based bin-map with a multiple linear regression analysis, QTL identification was conducted on root number (RN), total root length (TRL), root dry weight (RDW), maximum root length (MRL), root thickness (RTH), total absorption area (TAA) and root vitality (RV), using the CSSL population grown under hydroponic conditions. A total of thirty-eight QTLs were identified: six for TRL, six for RDW, eight for the MRL, four for RTH, seven for RN, two for TAA, and five for RV. Phenotypic effect variance explained by these QTLs ranged from 2.23% to 37.08%, and four single QTLs had more than 10% phenotypic explanations on three root traits. We also detected the correlations between grain yield (GY) and root traits, and found that TRL, RTH and MRL had significantly positive correlations with GY. However, TRL, RDW and MRL had significantly positive correlations with biomass yield (BY). Several QTLs identified in our population were co-localized with some loci for grain yield or biomass. This information may be immediately exploited for improving rice water and fertilizer use efficiency for molecular breeding of root system architectures.
Schönhals, Elske Maria; Ding, Jia; Ritter, Enrique; Paulo, Maria João; Cara, Nicolás; Tacke, Ekhard; Hofferbert, Hans-Reinhard; Lübeck, Jens; Strahwald, Josef; Gebhardt, Christiane
2017-08-22
Tuber yield and starch content of the cultivated potato are complex traits of decisive importance for breeding improved varieties. Natural variation of tuber yield and starch content depends on the environment and on multiple, mostly unknown genetic factors. Dissection and molecular identification of the genes and their natural allelic variants controlling these complex traits will lead to the development of diagnostic DNA-based markers, by which precision and efficiency of selection can be increased (precision breeding). Three case-control populations were assembled from tetraploid potato cultivars based on maximizing the differences between high and low tuber yield (TY), starch content (TSC) and starch yield (TSY, arithmetic product of TY and TSC). The case-control populations were genotyped by restriction-site associated DNA sequencing (RADseq) and the 8.3 k SolCAP SNP genotyping array. The allele frequencies of single nucleotide polymorphisms (SNPs) were compared between cases and controls. RADseq identified, depending on data filtering criteria, between 6664 and 450 genes with one or more differential SNPs for one, two or all three traits. Differential SNPs in 275 genes were detected using the SolCAP array. A genome wide association study using the SolCAP array on an independent, unselected population identified SNPs associated with tuber starch content in 117 genes. Physical mapping of the genes containing differential or associated SNPs, and comparisons between the two genome wide genotyping methods and two different populations identified genome segments on all twelve potato chromosomes harboring one or more quantitative trait loci (QTL) for TY, TSC and TSY. Several hundred genes control tuber yield and starch content in potato. They are unequally distributed on all potato chromosomes, forming clusters between 0.5-4 Mbp width. The largest fraction of these genes had unknown function, followed by genes with putative signalling and regulatory functions. The genetic control of tuber yield and starch content is interlinked. Most differential SNPs affecting both traits had antagonistic effects: The allele increasing TY decreased TSC and vice versa. Exceptions were 89 SNP alleles which had synergistic effects on TY, TSC and TSY. These and the corresponding genes are primary targets for developing diagnostic markers.
NASA Astrophysics Data System (ADS)
Khalil, Iftikhar Hussain; at-ur-Rahman, Hiday; Khan, Imran
2008-01-01
A set of 22 F5:7 experimental wheat lines along with four check cultivars (Dera-98, Fakhr-e-Sarhad, Ghaznavi-98 and Tatara) were evaluated as independent experiments under irrigated and rainfed environments using a randomized complete block design at NWFP Agricultural University, Peshawar during 2004-05. The two environments were statistically different for days to heading and spike length only. Highly significant genetic variability existed among the wheat lines (P<0.01) in the combined analysis across environments for all traits. Genotype×environment interactions were non-significant for all traits except 1000-grain weight indicating consistent performance of wheat genotypes across the two environments. Wheat lines and check cultivars were 2 to 5 days early in heading under rainfed environment compared to the irrigated. Plant height, spike length, 1000-grain weight, biological and grain yields were generally reduced under rainfed environment. Genetic variances were of greater magnitude than environmental variances for most of the traits in both environments. The heritability estimates were of higher magnitude (0.74 to 0.96) for days to heading, plant height, spike length, biological and grain yield, while medium (0.31 to 0.51) for 1000-grain weight. Selection differentials were negative for heading (-7.3 days in irrigated vs -9.4 days in rainfed) and plant height (-9.0 cm in irrigated vs -8.7 cm in rainfed) indicating possibility of selecting wheat genotypes with early heading and short plant stature. Positive selection differentials of 1.3 vs 1.6 cm for spike length, 3.8 vs 3.4 g for 1000-grain weight, 2488.2 vs 3139.7 kg ha-1 for biological yield and 691.6 vs 565.4 kg ha-1 for grain yield at 20% selection intensity were observed under irrigated and rainfed environments, respectively. Expected selection responses were 7.98 vs 8.91 days for heading, 8.20 vs 9.52 cm for plant height, 1.01 vs 1.61 cm for spike length, 2.12 vs 1.15 g for 1000-grain weight, 1655.8 vs 2317.2 kg ha-1 for biological yield and 691.6 vs 565.4 kg ha-1 for grain yield under the two test environments, respectively. The differential heritability and selection responses for yield and related traits suggest the simultaneous evaluation and selection of wheat lines under the two environments.
Bai, Xue; Zheng, Zhuqing; Liu, Bin; Ji, Xiaoyang; Bai, Yongsheng; Zhang, Wenguang
2016-08-22
The objective of this research was to investigate the variation of gene expression in the blood transcriptome profile of Chinese Holstein cows associated to the milk yield traits. We used RNA-seq to generate the bovine transcriptome from the blood of 23 lactating Chinese Holstein cows with extremely high and low milk yield. A total of 100 differentially expressed genes (DEGs) (p < 0.05, FDR < 0.05) were revealed between the high and low groups. Gene ontology (GO) analysis demonstrated that the 100 DEGs were enriched in specific biological processes with regard to defense response, immune response, inflammatory response, icosanoid metabolic process, and fatty acid metabolic process (p < 0.05). The KEGG pathway analysis with 100 DEGs revealed that the most statistically-significant metabolic pathway was related with Toll-like receptor signaling pathway (p < 0.05). The expression level of four selected DEGs was analyzed by qRT-PCR, and the results indicated that the expression patterns were consistent with the deep sequencing results by RNA-Seq. Furthermore, alternative splicing analysis of 100 DEGs demonstrated that there were different splicing pattern between high and low yielders. The alternative 3' splicing site was the major splicing pattern detected in high yielders. However, in low yielders the major type was exon skipping. This study provides a non-invasive method to identify the DEGs in cattle blood using RNA-seq for milk yield. The revealed 100 DEGs between Holstein cows with extremely high and low milk yield, and immunological pathway are likely involved in milk yield trait. Finally, this study allowed us to explore associations between immune traits and production traits related to milk production.
Vikram, Prashant; Swamy, B. P. Mallikarjuna; Dixit, Shalabh; Singh, Renu; Singh, Bikram P.; Miro, Berta; Kohli, Ajay; Henry, Amelia; Singh, N. K.; Kumar, Arvind
2015-01-01
Green Revolution (GR) rice varieties are high yielding but typically drought sensitive. This is partly due to the tight linkage between the loci governing plant height and drought tolerance. This linkage is illustrated here through characterization of qDTY1.1, a QTL for grain yield under drought that co-segregates with the GR gene sd1 for semi-dwarf plant height. We report that the loss of the qDTY1.1 allele during the GR was due to its tight linkage in repulsion with the sd1 allele. Other drought-yield QTLs (qDTY) also showed tight linkage with traits rejected in GR varieties. Genetic diversity analysis for 11 different qDTY regions grouped GR varieties separately from traditional drought-tolerant varieties, and showed lower frequency of drought tolerance alleles. The increased understanding and breaking of the linkage between drought tolerance and undesirable traits has led to the development of high-yielding drought-tolerant dwarf lines with positive qDTY alleles and provides new hope for extending the benefits of the GR to drought-prone rice-growing regions. PMID:26458744
Ohseto, Hisashi; Ishikuro, Mami; Kikuya, Masahiro; Obara, Taku; Igarashi, Yuko; Takahashi, Satomi; Kikuchi, Daisuke; Shigihara, Michiko; Yamanaka, Chizuru; Miyashita, Masako; Mizuno, Satoshi; Nagai, Masato; Matsubara, Hiroko; Sato, Yuki; Metoki, Hirohito; Tachibana, Hirofumi; Maeda-Yamamoto, Mari; Kuriyama, Shinichi
2018-04-01
Metabolic syndrome and the presence of metabolic syndrome components are risk factors for cardiovascular disease (CVD). However, the association between personality traits and metabolic syndrome remains controversial, and few studies have been conducted in East Asian populations. We measured personality traits using the Japanese version of the Eysenck Personality Questionnaire (Revised Short Form) and five metabolic syndrome components-elevated waist circumference, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose-in 1322 participants aged 51.1±12.7years old from Kakegawa city, Japan. Metabolic syndrome score (MS score) was defined as the number of metabolic syndrome components present, and metabolic syndrome as having the MS score of 3 or higher. We performed multiple logistic regression analyses to examine the relationship between personality traits and metabolic syndrome components and multiple regression analyses to examine the relationship between personality traits and MS scores adjusted for age, sex, education, income, smoking status, alcohol use, and family history of CVD and diabetes mellitus. We also examine the relationship between personality traits and metabolic syndrome presence by multiple logistic regression analyses. "Extraversion" scores were higher in those with metabolic syndrome components (elevated waist circumference: P=0.001; elevated triglycerides: P=0.01; elevated blood pressure: P=0.004; elevated fasting glucose: P=0.002). "Extraversion" was associated with the MS score (coefficient=0.12, P=0.0003). No personality trait was significantly associated with the presence of metabolic syndrome. Higher "extraversion" scores were related to higher MS scores, but no personality trait was significantly associated with the presence of metabolic syndrome. Copyright © 2018 Elsevier Inc. All rights reserved.
Doyle, Jennifer L; Berry, Donagh P; Walsh, Siobhan W; Veerkamp, Roel F; Evans, Ross D; Carthy, Tara R
2018-05-04
Linear type traits describing the skeletal, muscular, and functional characteristics of an animal are routinely scored on live animals in both the dairy and beef cattle industries. Previous studies have demonstrated that genetic parameters for certain performance traits may differ between breeds; no study, however, has attempted to determine if differences exist in genetic parameters of linear type traits among breeds or sexes. Therefore, the objective of the present study was to determine if genetic covariance components for linear type traits differed among five contrasting cattle breeds, and to also investigate if these components differed by sex. A total of 18 linear type traits scored on 3,356 Angus (AA), 31,049 Charolais (CH), 3,004 Hereford (HE), 35,159 Limousin (LM), and 8,632 Simmental (SI) were used in the analysis. Data were analyzed using animal linear mixed models which included the fixed effects of sex of the animal (except in the investigation into the presence of sexual dimorphism), age at scoring, parity of the dam, and contemporary group of herd-date of scoring. Differences (P < 0.05) in heritability estimates, between at least two breeds, existed for 13 out of 18 linear type traits. Differences (P < 0.05) also existed between the pairwise within-breed genetic correlations among the linear type traits. Overall, the linear type traits in the continental breeds (i.e., CH, LM, SI) tended to have similar heritability estimates to each other as well as similar genetic correlations among the same pairwise traits, as did the traits in the British breeds (i.e., AA, HE). The correlation between a linear function of breeding values computed conditional on covariance parameters estimated from the CH breed with a linear function of breeding values computed conditional on covariance parameters estimated from the other breeds was estimated. Replacing the genetic covariance components estimated in the CH breed with those of the LM had least effect but the impact was considerable when the genetic covariance components of the AA were used. Genetic correlations between the same linear type traits in the two sexes were all close to unity (≥0.90) suggesting little advantage in considering these as separate traits for males and females. Results for the present study indicate the potential increase in accuracy of estimated breeding value prediction from considering, at least, the British breed traits separate to continental breed traits.
Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M
2012-05-01
Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity resistances. Such a programme with field and laboratory evaluation at the outset will speed up delivery of varieties with improved root systems for higher yield.
Wang, Dan-Dan; Bai, Lu; Xu, Xiao-Shuang; Zhang, Fu-Sheng; Xing, Jie; Jia, Jin-Ping; Tian, Hong-Ling; Qin, Xue-Mei
2016-10-01
The agronomic traits (plant height, root diameter, root length, first lateral root height, lateral root amount, root weight) of 18 Polygala tenuifolia samples with different agronomic traits were analyzed, respectively. HPLC was used to analyze three main characteristic components including tenuifolin, polygalaxanthone Ⅲ, and 3,6'-disinapoyl sucrose. At last, the correlation between six agronomic traits and three main characteristic components were analyzed by scatter plot. We found no significant correlation between root diameter and three main characteristic components. There were no obvious correlations between tenuifolin and the remaining five agronomic traits. Short root length and first lateral root height as well as high lateral root amount resulted in high levels of polygalaxanthone Ⅲ in P. tenuifolia samples. High levels of 3,6'-disinapoyl sucrose were observed in P. tenuifolia samples with longer root. So, the current commodity criteria and traditional breeding of P. tenuifolia did not conform to pharmacopoeia standards, which excellent medicinal materials should have high contents of the main characteristic components. It was urgent to revise the current commodity criteria and breeding methods. Copyright© by the Chinese Pharmaceutical Association.
Pausch, Hubert; Wurmser, Christine; Reinhardt, Friedrich; Emmerling, Reiner; Fries, Ruedi
2015-06-01
Most association studies for pinpointing trait-associated variants are performed within breed. The availability of sequence data from key ancestors of several cattle breeds now enables immediate assessment of the frequency of trait-associated variants in populations different from the mapping population and their imputation into large validation populations. The objective of this study was to validate the effects of 4 putatively causative variants on milk production traits, male fertility, and stature in German Fleckvieh and Holstein-Friesian animals using targeted sequence imputation. We used whole-genome sequence data of 456 animals to impute 4 missense mutations in DGAT1, GHR, PRLR, and PROP1 into 10,363 Fleckvieh and 8,812 Holstein animals. The accuracy of the imputed genotypes exceeded 95% for all variants. Association testing with imputed variants revealed consistent antagonistic effects of the DGAT1 p.A232K and GHR p.F279Y variants on milk yield and protein and fat contents, respectively, in both breeds. The allele frequency of both polymorphisms has changed considerably in the past 20 yr, indicating that they were targets of recent selection for milk production traits. The PRLR p.S18N variant was associated with yield traits in Fleckvieh but not in Holstein, suggesting that it may be in linkage disequilibrium with a mutation affecting yield traits rather than being causal. The reported effects of the PROP1 p.H173R variant on milk production, male fertility, and stature could not be confirmed. Our results demonstrate that population-wide imputation of candidate causal variants from sequence data is feasible, enabling their rapid validation in large independent populations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rooting traits of peanut genotypes with different yield responses to terminal drought
USDA-ARS?s Scientific Manuscript database
Drought at pod filling can severely reduce yield of peanut. Better root systems can reduce yield loss from drought. However, the relationship of root characters with yield under terminal drought is not well understood. The objective of this study was to investigate the responses of peanut genotyp...
He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min
2017-01-01
Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought, root traits also contribute to high nutrient uptake efficiency and benefit yield under drought. PMID:28912792
Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice.
Vikram, Prashant; Swamy, B P Mallikarjuna; Dixit, Shalabh; Trinidad, Jennylyn; Sta Cruz, Ma Teresa; Maturan, Paul C; Amante, Modesto; Kumar, Arvind
2016-01-01
Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs underwent multiple-trait, multiple-interval mapping test (MT-MIM) to estimate the significance of pleiotropy effects. Results indicated towards possible linkages between the drought grain yield QTLs with co-locating flowering and/or plant height QTLs. Linkages of days to flowering and plant height were eliminated through a marker-assisted breeding approach. Drought grain yield QTLs also showed interaction effects with flowering QTLs. Drought responsiveness of the flowering locus on chromosome 3 (qDTY3.2) has been revealed through allelic analysis. Considering linkage and interaction effects associated with drought QTLs, a comprehensive marker-assisted breeding strategy was followed to develop rice genotypes with improved grain yield under drought stress.
Kadri, Naveen K; Guldbrandtsen, Bernt; Lund, Mogens S; Sahana, Goutam
2015-12-01
Intense selection to increase milk yield has had negative consequences for mastitis incidence in dairy cattle. Due to low heritability of mastitis resistance and an unfavorable genetic correlation with milk yield, a reduction in mastitis through traditional breeding has been difficult to achieve. Here, we examined quantitative trait loci (QTL) that segregate for clinical mastitis and milk yield on Bos taurus autosome 20 (BTA20) to determine whether both traits are affected by a single polymorphism (pleiotropy) or by multiple closely linked polymorphisms. In the latter but not the former situation, undesirable genetic correlation could potentially be broken by selecting animals that have favorable variants for both traits. First, we performed a within-breed association study using a haplotype-based method in Danish Holstein cattle (HOL). Next, we analyzed Nordic Red dairy cattle (RDC) and Danish Jersey cattle (JER) with the goal of determining whether these QTL identified in Holsteins were segregating across breeds. Genotypes for 12,566 animals (5,966 HOL, 5,458 RDC, and 1,142 JER) were determined by using the Illumina Bovine SNP50 BeadChip (50K; Illumina, San Diego, CA), which identifies 1,568 single nucleotide polymorphisms on BTA20. Data were combined, phased, and clustered into haplotype states, followed by within- and across-breed haplotype-based association analyses using a linear mixed model. Association signals for both clinical mastitis and milk yield peaked in the 26- to 40-Mb region on BTA20 in HOL. Single-variant association analyses were carried out in the QTL region using whole sequence level variants imputed from references of 2,036 HD genotypes (BovineHD BeadChip; Illumina) and 242 whole-genome sequences. The milk QTL were also segregating in RDC and JER on the BTA20-targeted region; however, an indication of differences in the causal factor(s) was observed across breeds. A previously reported F279Y mutation (rs385640152) within the growth hormone receptor gene showed strong association with milk, fat, and protein yields. In HOL, the highest peaks for milk yield and susceptibility to mastitis were separated by over 3.5 Mb (3.8 Mb by haplotype analysis, 3.6 Mb by single nucleotide polymorphism analysis), suggesting separate genetic variants for the traits. Further analysis yielded 2 candidate mutations for the mastitis QTL, at 33,642,072 bp (rs378947583) in an intronic region of the caspase recruitment domain protein 6 gene and 35,969,994 bp (rs133596506) in an intronic region of the leukemia-inhibitory factor receptor gene. These findings suggest that it may be possible to separate these beneficial and detrimental genetic factors through targeted selective breeding. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia
2016-01-01
Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311
Genomic Tools in Pea Breeding Programs: Status and Perspectives
Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith
2015-01-01
Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470
Mapping complex traits as a dynamic system
Sun, Lidan; Wu, Rongling
2017-01-01
Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a “system” in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. PMID:25772476
Dossou-Aminon, Innocent; Loko, Laura Yêyinou; Adjatin, Arlette; Ewédjè, Eben-Ezer B K; Dansi, Alexandre; Rakshit, Sujay; Cissé, Ndiaga; Patil, Jagannath Vishnu; Agbangla, Clément; Sanni, Ambaliou; Akoègninou, Akpovi; Akpagana, Koffi
2015-01-01
Sorghum [Sorghum bicolor (L.) Moench] is an important staple food crop in northern Benin. In order to assess its diversity in Benin, 142 accessions of landraces collected from Northern Benin were grown in Central Benin and characterised using 10 qualitative and 14 quantitative agromorphological traits. High variability among both qualitative and quantitative traits was observed. Grain yield (0.72-10.57 tons/ha), panicle weight (15-215.95 g), days to 50% flowering (57-200 days), and plant height (153.27-636.5 cm) were among traits that exhibited broader variability. Correlations between quantitative traits were determined. Grain yield for instance exhibited highly positive association with panicle weight (r = 0.901, P = 0.000) and 100 seed weight (r = 0.247, P = 0.000). UPGMA cluster analysis classified the 142 accessions into 89 morphotypes. Based on multivariate analysis, twenty promising sorghum genotypes were selected. Among them, AT41, AT14, and AT29 showed early maturity (57 to 66 days to 50% flowering), high grain yields (4.85 to 7.85 tons/ha), and shorter plant height (153.27 to 180.37 cm). The results obtained will help enhancing sorghum production and diversity and developing new varieties that will be better adapted to the current soil and climate conditions in Benin.
Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L
2014-03-01
Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses. © 2013 John Wiley & Sons Ltd.
Veerkamp, R F; Koenen, E P; De Jong, G
2001-10-01
Twenty type classifiers scored body condition (BCS) of 91,738 first-parity cows from 601 sires and 5518 maternal grandsires. Fertility data during first lactation were extracted for 177,220 cows, of which 67,278 also had a BCS observation, and first-lactation 305-d milk, fat, and protein yields were added for 180,631 cows. Heritabilities and genetic correlations were estimated using a sire-maternal grandsire model. Heritability of BCS was 0.38. Heritabilities for fertility traits were low (0.01 to 0.07), but genetic standard deviations were substantial, 9 d for days to first service and calving interval, 0.25 for number of services, and 5% for first-service conception. Phenotypic correlations between fertility and yield or BCS were small (-0.15 to 0.20). Genetic correlations between yield and all fertility traits were unfavorable (0.37 to 0.74). Genetic correlations with BCS were between -0.4 and -0.6 for calving interval and days to first service. Random regression analysis (RR) showed that correlations changed with days in milk for BCS. Little agreement was found between variances and correlations from RR, and analysis including a single month (mo 1 to 10) of data for BCS, especially during early and late lactation. However, this was due to excluding data from the conventional analysis, rather than due to the polynomials used. RR and a conventional five-traits model where BCS in mo 1, 4, 7, and 10 was treated as a separate traits (plus yield or fertility) gave similar results. Thus a parsimonious random regression model gave more realistic estimates for the (co)variances than a series of bivariate analysis on subsets of the data for BCS. A higher genetic merit for yield has unfavorable effects on fertility, but the genetic correlation suggests that BCS (at some stages of lactation) might help to alleviate the unfavorable effect of selection for higher yield on fertility.
Yang, S; Li, C; Xie, Y; Cui, X; Li, X; Wei, J; Zhang, Y; Yu, Y; Wang, Y; Zhang, S; Zhang, Q; Sun, D
2015-12-01
Our previous RNA sequencing experiment showed that the serum amyloid A2 (SAA2) gene was one of the most promising candidates for milk protein and fat traits in dairy cattle. The SAA2 gene encodes an apolipoprotein related to high-density lipoproteins. To further validate its genetic effects, genotype-phenotype associations were performed in this study. Through resequencing of the entire coding region and the 5'-regulatory region of the SAA2 gene using pooled DNA of 12 unrelated sires, one novel 3-bp insertion-deletion and five previously reported SNPs were detected. These identified SNPs were genotyped and tested for association with five milk production-related traits in 717 Chinese Holstein cows. After Bonferroni correction for multiple t-tests, five of them were found to be statistically significant for milk yield, fat yield and protein yield (P < 0.0001~0.0053). Haplotype-based association analysis revealed a similar effect on fat yield and protein yield (P = 0.0005, P = 0.0032 respectively). Then, using luciferase report assay, the regulatory effect of the three SNPs located in the promoter region (c.-22G>A; c.17G>C; c.114G>A) was evaluated on transcriptional activity. In HEK-293 cell lines, we found that constructs GCG and AGG showed higher luciferase activity compared with GCA (P < 0.01, P < 0.01 respectively). Meanwhile, the prediction of the putative differential transcription factor binding site revealed that c.17G>C and c.114G>A caused the alteration in the transcription factor. Overall, the findings presented here provide the first evidence for associations of the SAA2 gene with milk fat and protein traits, which appears to be a key candidate for milk production traits in dairy cattle. © 2015 Stichting International Foundation for Animal Genetics.
NASA Astrophysics Data System (ADS)
Sulistyo, A.; Purwantoro; Sari, K. P.
2018-01-01
Selection is a routine activity in plant breeding programs that must be done by plant breeders in obtaining superior plant genotypes. The use of appropriate selection criteria will determine the effectiveness of selection activities. The purpose of this study was to analysis the inheritable agronomic traits that contribute to soybean yield. A total of 91 soybean lines were planted in Muneng Experimental Station, Probolinggo District, East Java Province, Indonesia in 2016. All soybean lines were arranged in randomized complete block design with two replicates. Correlation analysis, path analysis and heritability estimation were performed on days to flowering, days to maturing, plant height, number of branches, number of fertile nodes, number of filled pods, weight of 100 seeds, and yield to determine selection criteria on soybean breeding program. The results showed that the heritability value of almost all agronomic traits observed is high except for the number of fertile nodes with low heritability. The result of correlation analysis shows that days to flowering, plant height and number of fertile nodes have positive correlation with seed yield per plot (0.056, 0.444, and 0.100, respectively). In addition, path analysis showed that plant height and number of fertile nodes have highest positive direct effect on soybean yield. Based on this result, plant height can be selected as one of selection criteria in soybean breeding program to obtain high yielding soybean variety.
Ackerly, D D; Cornwell, W K
2007-02-01
Plant functional traits vary both along environmental gradients and among species occupying similar conditions, creating a challenge for the synthesis of functional and community ecology. We present a trait-based approach that provides an additive decomposition of species' trait values into alpha and beta components: beta values refer to a species' position along a gradient defined by community-level mean trait values; alpha values are the difference between a species' trait values and the mean of co-occurring taxa. In woody plant communities of coastal California, beta trait values for specific leaf area, leaf size, wood density and maximum height all covary strongly, reflecting species distributions across a gradient of soil moisture availability. Alpha values, on the other hand, are generally not significantly correlated, suggesting several independent axes of differentiation within communities. This trait-based framework provides a novel approach to integrate functional ecology and gradient analysis with community ecology and coexistence theory.
Van Middelaar, C E; Berentsen, P B M; Dijkstra, J; Van Arendonk, J A M; De Boer, I J M
2015-07-01
Breeding has the potential to reduce greenhouse gas (GHG) emissions from dairy farming. Evaluating the effect of a 1-unit change (i.e., 1 genetic standard deviation improvement) in genetic traits on GHG emissions along the chain provides insight into the relative importance of genetic traits to reduce GHG emissions. Relative GHG values of genetic traits, however, might depend on feed-related farm characteristics. The objective of this study was to evaluate the effect of feed-related farm characteristics on GHG values by comparing the values of milk yield and longevity for an efficient farm and a less efficient farm. The less efficient farm did not apply precision feeding and had lower feed production per hectare than the efficient farm. Greenhouse gas values of milk yield and longevity were calculated by using a whole-farm model and 2 different optimization methods. Method 1 optimized farm management before and after a change in genetic trait by maximizing labor income; the effect on GHG emissions (i.e., from production of farm inputs up to the farm gate) was considered a side effect. Method 2 optimized farm management after a change in genetic trait by minimizing GHG emissions per kilogram of milk while maintaining labor income and milk production at least at the level before the change in trait; the effect on labor income was considered a side effect. Based on maximizing labor income (method 1), GHG values of milk yield and longevity were, respectively, 279 and 143kg of CO2 equivalents (CO2e)/unit change per cow per year on the less efficient farm, and 247 and 210kg of CO2e/unit change per cow per year on the efficient farm. Based on minimizing GHG emissions (method 2), GHG values of milk yield and longevity were, respectively, 538 and 563kg of CO2e/unit change per cow per year on the less efficient farm, and 453 and 441kg of CO2e/unit change per cow per year on the efficient farm. Sensitivity analysis showed that, for both methods, the absolute effect of a change in genetic trait depends on model inputs, including prices and emission factors. Substantial changes in relative importance between traits due to a change in model inputs occurred only in case of maximizing labor income. We concluded that assumptions regarding feed-related farm characteristics affect the absolute level of GHG values, as well as the relative importance of traits to reduce emissions when using a method based on maximizing labor income. This is because optimizing farm management based on maximizing labor income does not give any incentive for lowering GHG emissions. When using a method based on minimizing GHG emissions, feed-related farm characteristics affected the absolute level of the GHG values, but the relative importance of the traits scarcely changed: at each level of efficiency, milk yield and longevity were equally important. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.
2017-01-01
Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development of genotypes with optimized VPD-limited transpiration traits and deployment of these crops in water limited growing environments. The energy sorghum model and VPD-limited transpiration trait implementation are made available to simulate performance in other target environments. PMID:28377779
Truong, Sandra K; McCormick, Ryan F; Mullet, John E
2017-01-01
Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development of genotypes with optimized VPD-limited transpiration traits and deployment of these crops in water limited growing environments. The energy sorghum model and VPD-limited transpiration trait implementation are made available to simulate performance in other target environments.
Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.
2017-03-21
Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum’s long duration of vegetative growth increased water capture and biomass yield by ~30% compared to shortmore » season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development of genotypes with optimized VPD-limited transpiration traits and deployment of these crops in water limited growing environments. As a result, the energy sorghum model and VPD-limited transpiration trait implementation aremade available to simulate performance in other target environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.
Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum’s long duration of vegetative growth increased water capture and biomass yield by ~30% compared to shortmore » season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development of genotypes with optimized VPD-limited transpiration traits and deployment of these crops in water limited growing environments. As a result, the energy sorghum model and VPD-limited transpiration trait implementation aremade available to simulate performance in other target environments.« less
USDA-ARS?s Scientific Manuscript database
The role of microRNA expression and genetic variation in microRNA-binding sites of target genes on growth and muscle quality traits is poorly characterized. We used RNA-Seq approach to investigate their importance on 5 growth and muscle quality traits: whole body weight (WBW), muscle yield, muscle c...
Jansen, Constantin; Zhang, Yongzhong; Liu, Hongjun; Gonzalez-Portilla, Pedro J; Lauter, Nick; Kumar, Bharath; Trucillo-Silva, Ignacio; Martin, Juan Pablo San; Lee, Michael; Simcox, Kevin; Schussler, Jeff; Dhugga, Kanwarpal; Lübberstedt, Thomas
2015-07-01
Exploring and understanding the genetic basis of cob biomass in relation to grain yield under varying nitrogen management regimes will help breeders to develop dual-purpose maize. With rising energy demands and costs for fossil fuels, alternative energy from renewable sources such as maize cobs will become competitive. Maize cobs have beneficial characteristics for utilization as feedstock including compact tissue, high cellulose content, and low ash and nitrogen content. Nitrogen is quantitatively the most important nutrient for plant growth. However, the influence of nitrogen fertilization on maize cob production is unclear. In this study, quantitative trait loci (QTL) have been analyzed for cob morphological traits such as cob weight, volume, length, diameter and cob tissue density, and grain yield under normal and low nitrogen regimes. 213 doubled-haploid lines of the intermated B73 × Mo17 (IBM) Syn10 population have been resequenced for 8575 bins, based on SNP markers. A total of 138 QTL were found for six traits across six trials using composite interval mapping with ten cofactors and empirical comparison-wise thresholds (P = 0.001). Despite moderate to high repeatabilities across trials, few QTL were consistent across trials and overall levels of explained phenotypic variance were lower than expected some of the cob trait × trial combinations (R (2) = 7.3-43.1 %). Variation for cob traits was less affected by nitrogen conditions than by grain yield. Thus, the economics of cob usage under low nitrogen regimes is promising.
Association mapping for yield and grain quality traits in rice (Oryza sativa L.)
2010-01-01
Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm. PMID:21637426
Hayward, Adam D; Holopainen, Jari; Pettay, Jenni E; Lummaa, Virpi
2012-10-22
Severe food shortage is associated with increased mortality and reduced reproductive success in contemporary and historical human populations. Studies of wild animal populations have shown that subtle variation in environmental conditions can influence patterns of mortality, fecundity and natural selection, but the fitness implications of such subtle variation on human populations are unclear. Here, we use longitudinal data on local grain production, births, marriages and mortality so as to assess the impact of crop yield variation on individual age-specific mortality and fecundity in two pre-industrial Finnish populations. Although crop yields and fitness traits showed profound year-to-year variation across the 70-year study period, associations between crop yields and mortality or fecundity were generally weak. However, post-reproductive individuals of both sexes, and individuals of lower socio-economic status experienced higher mortality when crop yields were low. This is the first longitudinal, individual-based study of the associations between environmental variation and fitness traits in pre-industrial humans, which emphasizes the importance of a portfolio of mechanisms for coping with low food availability in such populations. The results are consistent with evolutionary ecological predictions that natural selection for resilience to food shortage is likely to weaken with age and be most severe on those with the fewest resources.
Zendri, Francesco; Ramanzin, Maurizio; Cipolat-Gotet, Claudio; Sturaro, Enrico
2017-02-01
This paper aimed at evaluating the effect of summer transhumance to mountain pastures of dairy cows of different breeds on cheese-making ability of milk. Data were from 649 dairy cows of specialized (Holstein Friesian and Brown Swiss) dual purpose (Simmental) and local (mostly Rendena and Alpine Grey) breeds. The Fourier-Transform Infra-Red Spectra (FTIRS) of their milk samples were collected before and after transhumance in 109 permanent dairy farms, and during transhumance in 14 summer farms (with multi-breeds herds) of the Trento Province, north-eastern Italy. A variety of 18 traits describing milk coagulation, curd firming, cheese yield and nutrients recovery in curd/loss in whey were predicted on the basis of FTIRS collected at the individual cow level. Moving the cows to summer farms improved curd firming traits but reduced cheese yields because of an increase of water and fat lost in the whey. During summer grazing, most of cheese-making traits improved, often non-linearly. The milk from summer farms supplementing cows with more concentrates showed better curd firming and cheese yield, because of lower fat lost in the whey. The breed of cows affected almost all the traits with a worst cheese-making ability for milk samples of Holsteins through all the trial, and interacted with concentrate supplementation because increasing compound feed tended to improve cheese-making traits for all breed, with the exception of local breeds for coagulation time and of Brown Swiss for curd firming time. In general, summer transhumance caused a favourable effect on cheese-making aptitude of milk, even though with some difference according to parity, initial days in milk, breed and concentrate supplementation of cows.
Aluoja, Anu; Voogne, Helina; Maron, Eduard; Gustavsson, J Petter; Võhma, Ulle; Shlik, Jakov
2009-01-01
The study aims to test the reliability and validity of the Estonian version of the Swedish universities Scales of Personality (SSP), and to characterize the position of the SSP-measured traits within the basic personality dimensions of the five-factor model. A total of 529 participants completed the Estonian version of the SSP. A subsample of 197 persons completed the SSP together with the Revised NEO Personality Inventory (NEO-PI-R). The internal consistency of the SSP scales was satisfactory. Principal component analysis yielded three factors representing neuroticism, aggression and disinhibition. The factor solution obtained in the Estonian sample was similar to the original SSP study in the Swedish normative sample. NEO-PI-R Neuroticism had highest correlations with SSP neuroticism factor scales. Extraversion had strongest relationship with adventure seeking and low detachment. Agreeableness correlated positively with SSP social desirability and negatively to aggression-irritability scales. Conscientiousness facet Deliberation correlated with Impulsiveness. The Estonian SSP showed acceptable reliability and validity, which confirms that SSP is applicable in different social and cultural background. The SSP measures traits that correspond to the major personality models. The SSP characterizes three broad dimensions of personality, namely neuroticism, disinhibition and aggression, which are useful in assessment of personality correlates of mental disorders.
Hu, Biao-lin; Li, Xia; Wan, Yong; Qiu, Zai-hui; Nie, Yuan-yuan; Xie, Jian-kun
2015-08-01
To identify the low nitrogen tolerance of Dongxiang wild rice (DXWR) and its progenies, ten phenotypic traits including plant height (PH), heading day (HD), panicle length (PL), number of effective tillers per plant (NETP), number of filled grains per panicle (NFGP), number of grains per panicle (NGP), grain density (GD), spikelet fertility (SF), 1000-grain mass (TGM) and grain yield per plant (GYP) were studied under normal and low nitrogen treatments, using backcross inbred lines (BILs) of Xieqingzao B//DXWR/Xieqingzao B in BC1 F12. Comprehensive evaluation on the low nitrogen tolerance of the BILs population was conducted using principal component analysis and the subordinate function. The evaluation results indicated that the low nitrogen tolerance of the line 116, 143 and 157 was the strongest, which could be served as the intermediate materials for genetic studies on the low nitrogen tolerance of DXWR and breeding for the low nitrogen tolerance in rice. The optimal regression equation of the low nitrogen tolerance in rice was established using stepwise regression analysis. The relative values of five traits including PH, NGP, SF, TGM and GYP were screened out and could be used as comprehensive evaluation indices for the low nitrogen tolerance in the whole growth stage. Therefore, more attention should be paid to the relative values of these five traits, especially for NGP and GYP, in the genetic improvement of the low nitrogen tolerance in rice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauly, Markus; Hake, Sarah
2013-10-31
The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and ormore » biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.« less
Cipolat-Gotet, C; Cecchinato, A; De Marchi, M; Bittante, G
2013-01-01
Cheese yield (CY) is the most important technological trait of milk, because cheese-making uses a very high proportion of the milk produced worldwide. Few studies have been carried out at the level of individual milk-producing animals due to a scarcity of appropriate procedures for model-cheese production, the complexity of cheese-making, and the frequent use of the fat and protein (or casein) contents of milk as a proxy for cheese yield. Here, we report a high-throughput cheese manufacturing process that mimics all phases of cheese-making, uses 1.5-L samples of milk from individual animals, and allows the simultaneous processing of 15 samples per run. Milk samples were heated (35°C for 40 min), inoculated with starter culture (90 min), mixed with rennet (51.2 international milk-clotting units/L of milk), and recorded for gelation time. Curds were cut twice (10 and 15 min after gelation), separated from the whey, drained (for 30 min), pressed (3 times, 20 min each, with the wheel turned each time), salted in brine (for 60 min), weighed, and sampled. Whey was collected, weighed, and sampled. Milk, curd, and whey samples were analyzed for pH, total solids, fat content, and protein content, and energy content was estimated. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), representing the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese compared with that in the milk. This procedure was used to process individual milk samples obtained from 1,167 Brown Swiss cows reared in 85 herds of the province of Trento (Italy). The assessed traits exhibited almost normal distributions, with the exception of REC(FAT). The average values (± SD) were as follows: %CY(CURD)=14.97±1.86, %CY(SOLIDS)=7.18±0.92, %CY(WATER)=7.77±1.27, dCY(CURD)=3.63±1.17, dCY(SOLIDS)=1.74±0.57, dCY(WATER)=1.88±0.63, REC(FAT)=89.79±3.55, REC(PROTEIN)=78.08±2.43, REC(SOLIDS)=51.88±3.52, and REC(ENERGY)=67.19±3.29. All traits were highly influenced by herd-test-date and days in milk of the cow, moderately influenced by parity, and weakly influenced by the utilized vat. Both %CY(CURD) and dCY(CURD) depended not only on the fat and protein (casein) contents of the milk, but also on their proportions retained in the curd; the water trapped in curd presented an higher variability than that of %CY(SOLIDS). All REC traits were variable and affected by days in milk and parity of the cows. The described model cheese-making procedure and the results obtained provided new insight into the phenotypic variation of cheese yield and recovery traits at the individual level. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Influence of trait empathy on the emotion evoked by sad music and on the preference for it.
Kawakami, Ai; Katahira, Kenji
2015-01-01
Some people experience pleasant emotion when listening to sad music. Therefore, they can enjoy listening to it. In the current study, we aimed to investigate such apparently paradoxical emotional mechanisms and focused on the influence of individuals' trait empathy, which has been reported to associate with emotional responses to sad music and a preference for it. Eighty-four elementary school children (42 males and 42 females, mean age 11.9 years) listened to two kinds of sad music and rated their emotional state and liking toward them. In addition, trait empathy was assessed using the Interpersonal Reactivity Index scale, which comprises four sub-components: Empathic Concern, Personal Distress, Perspective Taking, and Fantasy (FS). We conducted a path analysis and tested our proposed model that hypothesized that trait empathy and its sub-components would affect the preference for sad music directly or indirectly, mediated by the emotional response to the sad music. Our findings indicated that FS, a sub-component of trait empathy, was directly associated with liking sad music. Additionally, perspective taking ability, another sub-component of trait empathy, was correlated with the emotional response to sad music. Furthermore, the experience of pleasant emotions contributed to liking sad music.
Influence of trait empathy on the emotion evoked by sad music and on the preference for it
Kawakami, Ai; Katahira, Kenji
2015-01-01
Some people experience pleasant emotion when listening to sad music. Therefore, they can enjoy listening to it. In the current study, we aimed to investigate such apparently paradoxical emotional mechanisms and focused on the influence of individuals’ trait empathy, which has been reported to associate with emotional responses to sad music and a preference for it. Eighty-four elementary school children (42 males and 42 females, mean age 11.9 years) listened to two kinds of sad music and rated their emotional state and liking toward them. In addition, trait empathy was assessed using the Interpersonal Reactivity Index scale, which comprises four sub-components: Empathic Concern, Personal Distress, Perspective Taking, and Fantasy (FS). We conducted a path analysis and tested our proposed model that hypothesized that trait empathy and its sub-components would affect the preference for sad music directly or indirectly, mediated by the emotional response to the sad music. Our findings indicated that FS, a sub-component of trait empathy, was directly associated with liking sad music. Additionally, perspective taking ability, another sub-component of trait empathy, was correlated with the emotional response to sad music. Furthermore, the experience of pleasant emotions contributed to liking sad music. PMID:26578992
Genetic evaluation of lactation persistency for five breeds of dairy cattle.
Cole, J B; Null, D J
2009-05-01
Cows with high lactation persistency tend to produce less milk than expected at the beginning of lactation and more than expected at the end. Best prediction of lactation persistency is calculated as a function of trait-specific standard lactation curves and linear regressions of test-day deviations on days in milk. Because regression coefficients are deviations from a tipping point selected to make yield and lactation persistency phenotypically uncorrelated it should be possible to use 305-d actual yield and lactation persistency to predict yield for lactations with later endpoints. The objectives of this study were to calculate (co)variance components and breeding values for best predictions of lactation persistency of milk (PM), fat (PF), protein (PP), and somatic cell score (PSCS) in breeds other than Holstein, and to demonstrate the calculation of prediction equations for 400-d actual milk yield. Data included lactations from Ayrshire, Brown Swiss, Guernsey (GU), Jersey (JE), and Milking Shorthorn (MS) cows calving since 1997. The number of sires evaluated ranged from 86 (MS) to 3,192 (JE), and mean sire estimated breeding value for PM ranged from 0.001 (Ayrshire) to 0.10 (Brown Swiss); mean estimated breeding value for PSCS ranged from -0.01 (MS) to -0.043 (JE). Heritabilities were generally highest for PM (0.09 to 0.15) and lowest for PSCS (0.03 to 0.06), with PF and PP having intermediate values (0.07 to 0.13). Repeatabilities varied considerably between breeds, ranging from 0.08 (PSCS in GU, JE, and MS) to 0.28 (PM in GU). Genetic correlations of PM, PF, and PP with PSCS were moderate and favorable (negative), indicating that increasing lactation persistency of yield traits is associated with decreases in lactation persistency of SCS, as expected. Genetic correlations among yield and lactation persistency were low to moderate and ranged from -0.55 (PP in GU) to 0.40 (PP in MS). Prediction equations for 400-d milk yield were calculated for each breed by regression of both 305-d yield and 305-d yield and lactation persistency on 400-d yield. Goodness-of-fit was very good for both models, but the addition of lactation persistency to the model significantly improved fit in all cases. Routine genetic evaluations for lactation persistency, as well as the development of prediction equations for several lactation end-points, may provide producers with tools to better manage their herds.
Christian, Erica J; Meltzer, Christine L; Thede, Linda L; Kosson, David S
2017-04-01
Despite increasing interest in understanding psychopathic traits in youth, the role of early environmental factors in the development of psychopathic traits is not well understood. No prior studies have directly examined the relationship between early life events and psychopathic traits. We examined links between life events in the first 4 years of life and indices of the core affective and interpersonal components of psychopathy. Additionally, we examined relationships between early life events, psychopathic traits, and attachment to parents among 206 adjudicated adolescents. Results indicated that the total number of early life events was positively correlated with indices of the affective component of psychopathy. Moreover, psychopathic traits moderated the relationship between the number of early life events and later reports of attachment to parents. Findings suggest that early environmental factors could have important implications for the development of psychopathic traits and may impact attachment to parents for youth with psychopathic traits.
Using traits to uncover tropical forest function
McDowell, Nate G.; Xu, Chonggang
2017-04-11
Plant traits reflect their evolutionary history and influence physiological processes (Reich 2014). For example, the embolism risk taken by plants, called the embolism safety margin, is a good predictor of stomatal conductance, and hence photosynthesis (Skelton et al. 2015). Trait-science has grown dramatically in the last decade as we have found universal patterns governing the carbon and nutrient economies of plants (Bloom et al. 1985). Perhaps the greatest value of studying plant functional traits is that they yield understanding of plant functional processes.
Ma, Zhiying; He, Shoupu; Wang, Xingfen; Sun, Junling; Zhang, Yan; Zhang, Guiyin; Wu, Liqiang; Li, Zhikun; Liu, Zhihao; Sun, Gaofei; Yan, Yuanyuan; Jia, Yinhua; Yang, Jun; Pan, Zhaoe; Gu, Qishen; Li, Xueyuan; Sun, Zhengwen; Dai, Panhong; Liu, Zhengwen; Gong, Wenfang; Wu, Jinhua; Wang, Mi; Liu, Hengwei; Feng, Keyun; Ke, Huifeng; Wang, Junduo; Lan, Hongyu; Wang, Guoning; Peng, Jun; Wang, Nan; Wang, Liru; Pang, Baoyin; Peng, Zhen; Li, Ruiqiang; Tian, Shilin; Du, Xiongming
2018-05-07
Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.
Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.
Jiao, Yongqing; Wang, Yonghong; Xue, Dawei; Wang, Jing; Yan, Meixian; Liu, Guifu; Dong, Guojun; Zeng, Dali; Lu, Zefu; Zhu, Xudong; Qian, Qian; Li, Jiayang
2010-06-01
Increasing crop yield is a major challenge for modern agriculture. The development of new plant types, which is known as ideal plant architecture (IPA), has been proposed as a means to enhance rice yield potential over that of existing high-yield varieties. Here, we report the cloning and characterization of a semidominant quantitative trait locus, IPA1 (Ideal Plant Architecture 1), which profoundly changes rice plant architecture and substantially enhances rice grain yield. The IPA1 quantitative trait locus encodes OsSPL14 (SOUAMOSA PROMOTER BINDING PROTEIN-LIKE 14) and is regulated by microRNA (miRNA) OsmiR156 in vivo. We demonstrate that a point mutation in OsSPL14 perturbs OsmiR156-directed regulation of OsSPL14, generating an 'ideal' rice plant with a reduced tiller number, increased lodging resistance and enhanced grain yield. Our study suggests that OsSPL14 may help improve rice grain yield by facilitating the breeding of new elite rice varieties.
Meseret, S.; Tamir, B.; Gebreyohannes, G.; Lidauer, M.; Negussie, E.
2015-01-01
The development of effective genetic evaluations and selection of sires requires accurate estimates of genetic parameters for all economically important traits in the breeding goal. The main objective of this study was to assess the relative performance of the traditional lactation average model (LAM) against the random regression test-day model (RRM) in the estimation of genetic parameters and prediction of breeding values for Holstein Friesian herds in Ethiopia. The data used consisted of 6,500 test-day (TD) records from 800 first-lactation Holstein Friesian cows that calved between 1997 and 2013. Co-variance components were estimated using the average information restricted maximum likelihood method under single trait animal model. The estimate of heritability for first-lactation milk yield was 0.30 from LAM whilst estimates from the RRM model ranged from 0.17 to 0.29 for the different stages of lactation. Genetic correlations between different TDs in first-lactation Holstein Friesian ranged from 0.37 to 0.99. The observed genetic correlation was less than unity between milk yields at different TDs, which indicated that the assumption of LAM may not be optimal for accurate evaluation of the genetic merit of animals. A close look at estimated breeding values from both models showed that RRM had higher standard deviation compared to LAM indicating that the TD model makes efficient utilization of TD information. Correlations of breeding values between models ranged from 0.90 to 0.96 for different group of sires and cows and marked re-rankings were observed in top sires and cows in moving from the traditional LAM to RRM evaluations. PMID:26194217
Endelman, Jeffrey B; Carley, Cari A Schmitz; Bethke, Paul C; Coombs, Joseph J; Clough, Mark E; da Silva, Washington L; De Jong, Walter S; Douches, David S; Frederick, Curtis M; Haynes, Kathleen G; Holm, David G; Miller, J Creighton; Muñoz, Patricio R; Navarro, Felix M; Novy, Richard G; Palta, Jiwan P; Porter, Gregory A; Rak, Kyle T; Sathuvalli, Vidyasagar R; Thompson, Asunta L; Yencho, G Craig
2018-05-01
As one of the world's most important food crops, the potato ( Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive ( G ), digenic dominant ( D ), and additive × additive epistatic ( G # G ) effects were calculated using 3895 markers, and the numerator relationship matrix ( A ) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F 1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm. Copyright © 2018 by the Genetics Society of America.
Yang, G; Forrest, R; Zhou, H; Hodge, S; Hickford, J
2014-12-01
The uncoupling protein 1 (UCP1) plays an important role in the regulation of lipolysis and thermogenesis in adipose tissues. Genetic variation within three regions (the promoter, intron 2 and exon 5) of the ovine UCP1 gene (UCP1) was investigated using polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) analyses. These revealed three promoter variants (designated A, B and C) and two intron 2 variants (a and b). The association of this genetic variation with variation in lamb carcass traits and postweaning growth was investigated in New Zealand (NZ) Romney and Suffolk sheep. The presence of B in a lamb's genotype was associated with decreased subcutaneous carcass fat depth (V-GR) (p = 0.004) and proportion of total lean meat yield of loin meat (p = 0.005), and an increased proportion of total lean meat yield of hind-leg meat (p = 0.018). In contrast, having two copies of C was associated with increased V-GR (p < 0.001) and proportion of total lean meat yield of shoulder meat (p = 0.009), and a decreased hind-leg yield (p = 0.032). No associations were found with postweaning growth. These results suggest that ovine UCP1 is a potential gene marker for carcass traits. © 2014 Blackwell Verlag GmbH.
2013-01-01
Background Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select for DPR without compromising production. PMID:23759029
Penasa, M; Cassandro, M; Pretto, D; De Marchi, M; Comin, A; Chessa, S; Dal Zotto, R; Bittante, G
2010-07-01
The aim of the study was to quantify the effects of composite beta- and kappa-casein (CN) genotypes on genetic variation of milk coagulation properties (MCP); milk yield; fat, protein, and CN contents; somatic cell score; pH; and titratable acidity (TA) in 1,042 Italian Holstein-Friesian cows. Milk coagulation properties were defined as rennet coagulation time (RCT) and curd firmness (a(30)). Variance components were estimated using 2 animal models: model 1 included herd, days in milk, and parity as fixed effects and animal and residual as random effects, and model 2 was model 1 with the addition of composite beta- and kappa-CN genotype as a fixed effect. Genetic correlations between RCT and a(30) and between these traits and milk production traits were obtained with bivariate analyses, based on the same models. The inclusion of casein genotypes led to a decrease of 47, 68, 18, and 23% in the genetic variance for RCT, a(30), pH, and TA, respectively, and less than 6% for other traits. Heritability of RCT and a(30) decreased from 0.248 to 0.143 and from 0.123 to 0.043, respectively. A moderate reduction was found for pH and TA, whereas negligible changes were detected for other milk traits. Estimates of genetic correlations were comparable between the 2 models. Results show that composite beta- and kappa-CN genotypes are important for RCT and a(30) but cannot replace the recording of MCP themselves. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Yadav, S K; Pandey, P; Kumar, B; Suresh, B G
2011-05-01
This study has been conducted to determine the extent of genetic association between yield of Rice (Oryza sativa L.) and its components. The present experiment was carried out with 40 Rice (Oryza sativa L.) genotypes which were evaluated in a randomized block design with 3 replications during wet season of 2007 and 2008. Results showed that sufficient amount of variability was found in the entire gene pool for all traits studied. Higher magnitude of genotypic and phenotypic coefficients of variation was recorded for seed yield, harvest index, biological yield, number of spikelets per panicle, flag leaf length, plant height and number of tillers indicates that these characters are least influence by environment. High heritability coupled with high genetic advance as percent of mean was registered for seed yield, harvest index, number of spikelets per panicle, biological yield and flag leaf length, suggesting preponderance of additive gene action in the expression of these characters. Grain yield was significantly and positively associated with harvest index, number of tillers per hill, number of panicle per plant, panicle length, number of spikelet's per panicle and test weight at both genotypic and phenotypic levels. Path coefficient analysis revealed that harvest index, biological yield, number of tillers per hill, panicle length, number of spikelets per panicle, plant height and test weight had direct positive effect on seed yield, indicating these are the main contributors to yield. From this study it may be concluded that harvest index, number of tillers per hill, panicle length and number of spikelet per panicle and test weight are the most important characters that contributed directly to yield. Thus, these characters may serve selection criteria for improving genetic potential of rice.
Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.
Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M
2017-01-01
Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms and genes that lead to complex phenotypes, like meat quality, and the nutritional and healthfulness value of beef. Improvements in genome annotation and knowledge of gene function will contribute to more comprehensive analyses that will advance our ability to dissect the complex architecture of complex traits.
The infinitesimal model: Definition, derivation, and implications.
Barton, N H; Etheridge, A M; Véber, A
2017-12-01
Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence may be as fast as 1∕M. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum).
Weiner, Jacob; Du, Yan-Lei; Zhang, Cong; Qin, Xiao-Liang; Li, Feng-Min
2017-09-01
Although the importance of group selection in nature is highly controversial, several researchers have argued that plant breeding for agriculture should be based on group selection, because the goal in agriculture is to optimize population production, not individual fitness. A core hypothesis behind this claim is that crop genotypes with the highest individual fitness in a mixture of genotypes will not produce the highest population yield, because fitness is often increased by "selfish" behaviors, which reduce population performance. We tested this hypothesis by growing 35 cultivars of spring wheat (Triticum aestivum L.) in mixtures and monocultures, and analyzing the relationship between population yield in monoculture and individual yield in mixture. The relationship was unimodal, as predicted. The highest-yielding populations were from cultivars that had intermediate fitness, and these produced, on average, 35% higher yields than cultivars with the highest fitness. It is unlikely that plant breeding or genetic engineering can improve traits that natural selection has been optimizing for millions of years, but there is unutilized potential in traits that increase crop yield by decreasing individual fitness. © 2017 by the Ecological Society of America.
Tiezzi, Francesco; Maltecca, Christian
2015-04-02
Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by k-means cross-validation. Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore, bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in accuracy. Genomic relationship matrices weighted by marker realized variance yielded more accurate and less biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies may include other sources of information, such as functional annotation and gene networks, to better exploit the genetic architecture of traits and produce more stable predictions.
Smeets, Elke; Roefs, Anne; Jansen, Anita
2009-12-01
In the present study, the causal influence of chocolate craving on attentional bias for chocolate-related information was examined by experimentally inducing chocolate craving in a sample of high trait chocolate cravers vs. low trait chocolate cravers. A sample of 35 high trait chocoholics and 33 low trait chocolate cravers were randomly assigned to either the exposure condition in which craving was manipulated or the non-exposure condition. To measure attentional bias, a pictorial version of the visual search paradigm [Smeets, E., Roefs, A., van Furth, E., & Jansen, A. (2008). Attentional bias for body and food in eating disorders: increased distraction, speeded detection, or both? Behaviour Research and Therapy, 46, 229-238] was used, assessing two components: distraction and detection. It was found that experimentally induced chocolate craving led to increased distraction by chocolate pictures in the high trait chocolate cravers, in comparison to the low trait chocolate cravers. Moreover, this measure of distraction correlated strongly with self-reported craving, but only in the chocoholics and in the exposure condition. In the non-exposure condition, high trait chocolate cravers showed speeded detection of chocolate pictures relative to non-chocoholics, but this component did not correlate with self-reported craving. It is concluded that experimentally induced craving for chocolate causes a bias in, specifically the increased distraction component of attention in high trait chocolate cravers.
Friedrich, Juliane; Brand, Bodo; Ponsuksili, Siriluck; Graunke, Katharina L; Langbein, Jan; Knaust, Jacqueline; Kühn, Christa; Schwerin, Manfred
2016-02-01
Behaviour traits of cattle have been reported to affect important production traits, such as meat quality and milk performance as well as reproduction and health. Genetic predisposition is, together with environmental stimuli, undoubtedly involved in the development of behaviour phenotypes. Underlying molecular mechanisms affecting behaviour in general and behaviour and productions traits in particular still have to be studied in detail. Therefore, we performed a genome-wide association study in an F2 Charolais × German Holstein cross-breed population to identify genetic variants that affect behaviour-related traits assessed in an open-field and novel-object test and analysed their putative impact on milk performance. Of 37,201 tested single nucleotide polymorphism (SNPs), four showed a genome-wide and 37 a chromosome-wide significant association with behaviour traits assessed in both tests. Nine of the SNPs that were associated with behaviour traits likewise showed a nominal significant association with milk performance traits. On chromosomes 14 and 29, six SNPs were identified to be associated with exploratory behaviour and inactivity during the novel-object test as well as with milk yield traits. Least squares means for behaviour and milk performance traits for these SNPs revealed that genotypes associated with higher inactivity and less exploratory behaviour promote higher milk yields. Whether these results are due to molecular mechanisms simultaneously affecting behaviour and milk performance or due to a behaviour predisposition, which causes indirect effects on milk performance by influencing individual reactivity, needs further investigation. © 2015 Stichting International Foundation for Animal Genetics.
Guo, Jie; Shi, Weiping; Zhang, Zheng; Cheng, Jingye; Sun, Daizhen; Yu, Jin; Li, Xinlei; Guo, Pingyi; Hao, Chenyang
2018-02-20
Yield improvement is an ever-important objective of wheat breeding. Studying and understanding the phenotypes and genotypes of yield-related traits has potential for genetic improvement of crops. The genotypes of 215 wheat cultivars including 11 founder parents and 106 derivatives were analyzed by the 9 K wheat SNP iSelect assay. A total of 4138 polymorphic single nucleotide polymorphism (SNP) loci were detected on 21 chromosomes, of which 3792 were mapped to single chromosome locations. All genotypes were phenotyped for six yield-related traits including plant height (PH), spike length (SL), spikelet number per spike (SNPS), kernel number per spike (KNPS), kernel weight per spike (KWPS), and thousand kernel weight (TKW) in six irrigated environments. Genome-wide association analysis detected 117 significant associations of 76 SNPs on 15 chromosomes with phenotypic explanation rates (R 2 ) ranging from 2.03 to 12.76%. In comparing allelic variation between founder parents and their derivatives (106) and other cultivars (98) using the 76 associated SNPs, we found that the region 116.0-133.2 cM on chromosome 5A in founder parents and derivatives carried alleles positively influencing kernel weight per spike (KWPS), rarely found in other cultivars. The identified favorable alleles could mark important chromosome regions in derivatives that were inherited from founder parents. Our results unravel the genetic of yield in founder genotypes, and provide tools for marker-assisted selection for yield improvement.
Bobbo, T; Cipolat-Gotet, C; Bittante, G; Cecchinato, A
2016-07-01
The aim of this study was to investigate the relationships between somatic cell count (SCC) in milk and several milk technological traits at the individual cow level. In particular, we determined the effects of very low to very high SCC on traits related to (1) milk yield and composition; (2) coagulation properties, including the traditional milk coagulation properties (MCP) and the new curd firming model parameters; and (3) cheese yield and recovery of milk nutrients in the curd (or loss in the whey). Milk samples from 1,271 Brown Swiss cows from 85 herds were used. Nine coagulation traits were measured: 3 traditional MCP [rennet coagulation time (RCT, min), curd firming rate (k20, min), and curd firmness after 30 min (a30, mm)] and 6 new curd firming and syneresis traits [potential asymptotic curd firmness at infinite time (CFP, mm), curd firming instant rate constant (kCF, % × min(-1)), syneresis instant rate constant (kSR, % × min(-1)), rennet coagulation time estimated using the equation (RCTeq, min), maximum curd firmness achieved within 45 min (CFmax, mm), and time at achievement of CFmax (tmax, min)]. The observed cheese-making traits included 3 cheese yield traits (%CYCURD, %CYSOLIDS, and %CYWATER, which represented the weights of curd, total solids, and water, respectively, as a percentage of the weight of the processed milk) and 4 nutrient recoveries in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY, which each represented the percentage ratio between the nutrient in the curd and milk). Data were analyzed using a linear mixed model with the fixed effects of days in milk, parity, and somatic cell score (SCS), and the random effect of herd-date. Somatic cell score had strong influences on casein number and lactose, and also affected pH; these were traits characterized by a quadratic pattern of the data. The results also showed a negative linear relationship between SCS and milk yield. Somatic cell score influenced almost all of the tested coagulation traits (both traditional and modeled), with the exceptions of k20, CFP, and kSR. Gelation was delayed when the SCS decreased (slightly) and when it increased (strongly) with respect to a value of 2, as confirmed by the quadratic patterns observed for both RCT and RCTeq. The SCS effect on a30 showed a quadratic pattern almost opposite to that observed for RCT. With respect to the CFt parameters, kCF decreased linearly as SCS increased, resulting in a linear decrease of CFmax and a quadratic pattern for tmax. Milk SCS attained significance for %CYCURD, %CYWATER, and RECPROTEIN. As the SCS increased beyond 3, we observed a progressive quadratic decrease of the water retained in the curd (%CYWATER), which caused a parallel decrease in %CYCURD. With respect to RECPROTEIN, the negative effect of SCS was almost linear. Recovery of fat and (consequently) RECENERGY was characterized by a more evident quadratic trend, with the most favorable values associated with an intermediate SCS. Together, our results confirmed that high SCS has a negative effect on milk composition and technological traits, highlighting the nonlinear trends of some traits across the different classes of SCS. Moreover, we report that a very low SCS has a negative effect on some technological traits of milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine
2016-01-01
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine
2016-01-01
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra
Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less
Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra; ...
2016-01-21
Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2018-01-01
To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat ( Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598-50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2018-01-01
To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat (Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598–50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding. PMID:29619035
Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A.; del Pozo, Alejandro; Astudillo, Cesar A.; Lobos, Gustavo A.
2017-01-01
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat (Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ13C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and kNN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ13C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection. PMID:28337210
Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A; Del Pozo, Alejandro; Astudillo, Cesar A; Lobos, Gustavo A
2017-01-01
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat ( Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ 13 C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and k NN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ 13 C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection.
Li, Li; Paulo, Maria-João; van Eeuwijk, Fred
2010-01-01
Association mapping using DNA-based markers is a novel tool in plant genetics for the analysis of complex traits. Potato tuber yield, starch content, starch yield and chip color are complex traits of agronomic relevance, for which carbohydrate metabolism plays an important role. At the functional level, the genes and biochemical pathways involved in carbohydrate metabolism are among the best studied in plants. Quantitative traits such as tuber starch and sugar content are therefore models for association genetics in potato based on candidate genes. In an association mapping experiment conducted with a population of 243 tetraploid potato varieties and breeding clones, we previously identified associations between individual candidate gene alleles and tuber starch content, starch yield and chip quality. In the present paper, we tested 190 DNA markers at 36 loci scored in the same association mapping population for pairwise statistical epistatic interactions. Fifty marker pairs were associated mainly with tuber starch content and/or starch yield, at a cut-off value of q ≤ 0.20 for the experiment-wide false discovery rate (FDR). Thirteen marker pairs had an FDR of q ≤ 0.10. Alleles at loci encoding ribulose-bisphosphate carboxylase/oxygenase activase (Rca), sucrose phosphate synthase (Sps) and vacuolar invertase (Pain1) were most frequently involved in statistical epistatic interactions. The largest effect on tuber starch content and starch yield was observed for the paired alleles Pain1-8c and Rca-1a, explaining 9 and 10% of the total variance, respectively. The combination of these two alleles increased the means of tuber starch content and starch yield. Biological models to explain the observed statistical epistatic interactions are discussed. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1389-3) contains supplementary material, which is available to authorized users. PMID:20603706
Albert, Elise; Segura, Vincent; Gricourt, Justine; Bonnefoi, Julien; Derivot, Laurent; Causse, Mathilde
2016-01-01
Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses. PMID:27856709
USDA-ARS?s Scientific Manuscript database
Evaluation of sugarcane cultivars with diverse genetic background under similar location can help in better understanding cultivar response to environment and in identifying various physiological traits that could lead to improved yields. The objective of this study was to evaluate the growth, yield...
Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M
2007-01-01
We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus.
Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M
2007-01-01
We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus. PMID:18466597
The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice.
Li, Shuangcheng; Gao, Fengyan; Xie, Kailong; Zeng, Xiuhong; Cao, Ye; Zeng, Jing; He, Zhongshan; Ren, Yun; Li, Wenbo; Deng, Qiming; Wang, Shiquan; Zheng, Aiping; Zhu, Jun; Liu, Huainian; Wang, Lingxia; Li, Ping
2016-11-01
Grain weight is the most important component of rice yield and is mainly determined by grain size, which is generally controlled by quantitative trait loci (QTLs). Although numerous QTLs that regulate grain weight have been identified, the genetic network that controls grain size remains unclear. Herein, we report the cloning and functional analysis of a dominant QTL, grain length and width 2 (GLW2), which positively regulates grain weight by simultaneously increasing grain length and width. The GLW2 locus encodes OsGRF4 (growth-regulating factor 4) and is regulated by the microRNA miR396c in vivo. The mutation in OsGRF4 perturbs the OsmiR396 target regulation of OsGRF4, generating a larger grain size and enhanced grain yield. We also demonstrate that OsGIF1 (GRF-interacting factors 1) directly interacts with OsGRF4, and increasing its expression improves grain size. Our results suggest that the miR396c-OsGRF4-OsGIF1 regulatory module plays an important role in grain size determination and holds implications for rice yield improvement. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Sunflower Hybrid Breeding: From Markers to Genomic Selection
Dimitrijevic, Aleksandra; Horn, Renate
2018-01-01
In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits. PMID:29387071
Im, Chak Han; Park, Young-Hoon; Hammel, Kenneth E; Park, Bokyung; Kwon, Soon Wook; Ryu, Hojin; Ryu, Jae-San
2016-07-01
Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type factors, and 28 insertion/deletion (InDel) markers were mapped. The map consisted of 12 linkage groups (LGs) spanning 1047.8cM, with an average interval length of 4.09cM. Four independent populations (Pd3, Pd8, Pd14, and Pd15) derived from crossing between four monokaryons from KNR2532 as a tester strain and 98 monokaryons from KNR2312 were used to characterize quantitative trait loci (QTL) for nine traits such as yield, quality, cap color, and earliness. Using composite interval mapping (CIM), 71 QTLs explaining between 5.82% and 33.17% of the phenotypic variations were identified. Clusters of more than five QTLs for various traits were identified in three genomic regions, on LGs 1, 7 and 9. Regardless of the population, 6 of the 9 traits studied and 18 of the 71 QTLs found in this study were identified in the largest cluster, LG1, in the range from 65.4 to 110.4cM. The candidate genes for yield encoding transcription factor, signal transduction, mycelial growth and hydrolase are suggested by using manual and computational analysis of genome sequence corresponding to QTL region with the highest likelihood odds (LOD) for yield. The genetic map and the QTLs established in this study will help breeders and geneticists to develop selection markers for agronomically important characteristics of mushrooms and to identify the corresponding genes. Copyright © 2016 Elsevier Inc. All rights reserved.
Stratonovitch, Pierre; Semenov, Mikhail A.
2015-01-01
To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future. PMID:25750425
Bastiaansen, Leen; Hopwood, Christopher J; Van den Broeck, Joke; Rossi, Gina; Schotte, Christiaan; De Fruyt, Filip
2016-07-01
Besides the categorical classification of personality disorders (PDs) in Section II of the DSM-5 (American Psychiatric Association, 2013), which has been transferred as such from DSM-IV, Section III provides an alternative model to stimulate further research on the dimensional conceptualization of PDs. In this alternative system, a PD diagnosis is based on 2 essential criteria: impaired personality functioning and the presence of pathological traits. One topic that warrants further research concerns the incremental validity of these 2 components. The current study addresses this issue in a mixed community-patient sample (N = 233). First, Goldberg's (2006) "bass-ackwards" method was used to examine the hierarchical structure of pathological traits as measured by the Dimensional Assessment of Personality Pathology (DAPP-BQ; Livesley & Jackson, 2009). We then extracted a single higher order factor from the Severity Index of Personality Problems (SIPP-118; Verheul et al., 2008) to derive 1 coherent indicator of personality dysfunction. Correlation and hierarchical regression analyses were used to determine the incremental validity of the dysfunction factor versus the trait components at succeeding levels of the DAPP-BQ hierarchy. The results only partially supported the 2-component PD diagnosis, as traits and dysfunction appeared to have only limited incremental validity. Moreover, lower order traits were generally unable to outperform higher order components in predicting specific DSM-IV PDs. Implications for the conceptualization and assessment of personality pathology are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Application of different fertilizers on morphological traits of dill (Anethum graveolens L.).
Nejatzadeh-Barandozi, Fatemeh; Gholami-Borujeni, Fathollah
2014-12-01
The aim of this study was to evaluate the effects of nitroxin biofertilizer and chemical fertilizer on the growth, yield, and essential oil composition of dill. The experiment was conducted under field condition in randomized complete block design with three replications and two factors. The first factor was the concentrations of nitroxin biofertilizer (0%, 50%, and 100%) of the recommended amount (1 l of biological fertilizer for 30 kg of seed). The second factor was the following chemical fertilizer treatments: no fertilizer (control) and 50 and 100 kg ha(-1) urea along with 300 kg ha(-1) ammonium phosphate. Different characteristics such as plant height, number of umbel per plant, number of umbellet per umbel, number of grain per umbellet, 1,000 seed weight, grain yield, biological yield, and oil percentage were recorded. According to the results, the highest height, biological yield, and grain yield components (except harvest index) were obtained on biological fertilizer. The results showed the highest essential oil content detected in biological fertilizer and chemical fertilizer. Identification of essential oil composition showed that the content of carvone increased with the application of biofertilizers and chemical fertilizers. The results indicated that the application of biofertilizers enhanced yield and other plant criteria in this plant. Generally, it seems that the use of biofertilizers or combinations of biofertilizer and chemical fertilizer could improve dill performance in addition to reduction of environmental pollution.
Saha, S; Wu, J; Jenkins, J N; McCarty, J C; Stelly, D M
2013-01-01
The untapped potential of the beneficial alleles from Gossypium barbadense L. has not been well utilized in G. hirsutum L. (often referred to as Upland cotton) breeding programs. This is primarily due to genomic incompatibility and technical challenges associated with conventional methods of interspecific introgression. In this study, we used a hypoaneuploid-based chromosome substitution line as a means for systematically introgressing G. barbadense doubled-haploid line '3-79' germplasm into a common Upland genetic background, inbred 'Texas marker-1' ('TM-1'). We reported on the chromosomal effects, lint percentage, boll weight, seedcotton yield and lint yield in chromosome substitution CS-B (G. barbadense L.) lines. Using an additive-dominance genetic model, we studied the interaction of alleles located on two alien substituted chromosomes versus one alien substituted chromosome using a partial diallel mating design of selected CS-B lines (CS-B05sh, CS-B06, CS-B09, CS-B10, CS-B12, CS-B17 and CS-B18). Among these parents, CS-B09 and CS-B10 were reported for the first time. The donor parent 3-79, had the lowest additive effect for all of the agronomic traits. All of the CS-B lines had significant additive effects with boll weight and lint percentage. CS-B10 had the highest additive effects for lint percentage, and seedcotton and lint yield among all of the lines showing a transgressive genetic mode of inheritance for these traits. CS-B09 had greater additive genetic effects on lint yield, while CS-B06, CS-B10 and CS-B17 had superior additive genetic effects on both lint and seedcotton yield compared to TM-1 parent. The 3-79 line had the highest dominance effects for boll weight (0.513 g) and CS-B10 had the lowest dominance effect for boll weight (-0.702). Some major antagonistic genetic effects for the agronomic traits were present with most of the substituted chromosomes and chromosome arms, a finding suggested their recalcitrance to conventional breeding efforts. The results revealed that the substituted chromosomes and arms of 3-79 carried some cryptic beneficial alleles with potential to improve agronomic traits including yield, whose effects were masked at the whole genome level in 3-79.
Bahuguna, Rajeev Nayan; Joshi, Rohit; Shukla, Alok; Pandey, Mayank; Kumar, J
2012-08-01
A novel pathogen defense strategy by thiamine priming was evaluated for its efficacy against sheath blight pathogen, Rhizoctonia solani AG-1A, of rice and compared with that of systemic fungicide, carbendazim (BCM). Seeds of semidwarf, high yielding, basmati rice variety Vasumati were treated with thiamine (50 mM) and BCM (4 mM). The pot cultured plants were challenge inoculated with R. solani after 40 days of sowing and effect of thiamine and BCM on rice growth and yield traits was examined. Higher hydrogen peroxide content, total phenolics accumulation, phenylalanine ammonia lyase (PAL) activity and superoxide dismutase (SOD) activity under thiamine treatment displayed elevated level of systemic resistance, which was further augmented under challenging pathogen infection. High transcript level of phenylalanine ammonia lyase (PAL) and manganese superoxide dismutase (MnSOD) validated mode of thiamine primed defense. Though minimum disease severity was observed under BCM treatment, thiamine produced comparable results, with 18.12 per cent lower efficacy. Along with fortifying defense components and minor influence on photosynthetic pigments and nitrate reductase (NR) activity, thiamine treatment significantly reduced pathogen-induced loss in photosynthesis, stomatal conductance, chlorophyll fluorescence, NR activity and NR transcript level. Physiological traits affected under pathogen infection were found signatory for characterizing plant's response under disease and were detectable at early stage of infection. These findings provide a novel paradigm for developing alternative, environmentally safe strategies to control plant diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Li, Chunjia; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong
2017-01-01
Abstract Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. PMID:28444313
Zhang, Ning; Yu, Hong; Yu, Hao; Cai, Yueyue; Huang, Linzhou; Xu, Cao; Xiong, Guosheng; Meng, Xiangbing; Wang, Jiyao; Chen, Haofeng; Liu, Guifu; Jing, Yanhui; Yuan, Yundong; Liang, Yan; Li, Shujia; Smith, Steven M; Li, Jiayang; Wang, Yonghong
2018-06-18
Tiller angle in cereals is a key shoot architecture trait that strongly influences grain yield. Studies in rice (Oryza sativa L.) have implicated shoot gravitropism in the regulation of tiller angle. However, the functional link between shoot gravitropism and tiller angle is unknown. Here, we conducted a large-scale transcriptome analysis of rice shoots in response to gravistimulation and identified two new nodes of a shoot gravitropism regulatory gene network that also controls rice tiller angle. We demonstrate that HEAT STRESS TRANSCRIPTION FACTOR 2D (HSFA2D) is an upstream positive regulator of the LAZY1-mediated asymmetric auxin distribution pathway. We also show that two functionally redundant transcription factor genes, WUSCHEL RELATED HOMEOBOX6 (WOX6) and WOX11, are expressed asymmetrically in response to auxin to connect gravitropism responses with the control of rice tiller angle. These findings define upstream and downstream genetic components that link shoot gravitropism, asymmetric auxin distribution, and rice tiller angle. The results highlight the power of the high-temporal-resolution RNA-seq dataset, and its use to explore further genetic components controlling tiller angle. Collectively these approaches will identify genes to improve grain yields by facilitating the optimization of plant architecture. © 2018 American Society of Plant Biologists. All rights reserved.
New tools and new perspectives in sugar beet breeding
USDA-ARS?s Scientific Manuscript database
Plant breeding is effective in two arenas, providing crop protection traits such as disease resistance and stress tolerance, and product enhancement such as improving yield or quality. The fundamental units of plant breeding are populations from which to select traits of interest, and phenotypes, wh...
2012-01-01
Background Contemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems). This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input). Results Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires. Conclusions A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework upon which to identify the causal mechanisms underlying the various milk production traits and somatic cell score. Consequently this will deepen our understanding of how these traits are expressed. PMID:22449276
Affect, Behavior, Cognition, and Desire in the Big Five: An Analysis of Item Content and Structure
Wilt, Joshua; Revelle, William
2015-01-01
Personality psychology is concerned with affect (A), behavior (B), cognition (C) and desire (D), and personality traits have been defined conceptually as abstractions used to either explain or summarize coherent ABC (and sometimes D) patterns over time and space. However, this conceptual definition of traits has not been reflected in their operationalization, possibly resulting in theoretical and practical limitations to current trait inventories. Thus, the goal of this project was to determine the affective, behavioral, cognitive and desire (ABCD) components of Big-Five personality traits. The first study assessed the ABCD content of items measuring Big-Five traits in order to determine the ABCD composition of traits and identify items measuring relatively high amounts of only one ABCD content. The second study examined the correlational structure of scales constructed from items assessing ABCD content via a large, web-based study. An assessment of Big-Five traits that delineates ABCD components of each trait is presented, and the discussion focuses on how this assessment builds upon current approaches of assessing personality. PMID:26279606
Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2015-01-01
Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. PMID:26179580
Capturing pair-wise epistatic effects associated with three agronomic traits in barley.
Xu, Yi; Wu, Yajun; Wu, Jixiang
2018-04-01
Genetic association mapping has been widely applied to determine genetic markers favorably associated with a trait of interest and provide information for marker-assisted selection. Many association mapping studies commonly focus on main effects due to intolerable computing intensity. This study aims to select several sets of DNA markers with potential epistasis to maximize genetic variations of some key agronomic traits in barley. By doing so, we integrated a MDR (multifactor dimensionality reduction) method with a forward variable selection approach. This integrated approach was used to determine single nucleotide polymorphism pairs with epistasis effects associated with three agronomic traits: heading date, plant height, and grain yield in barley from the barley Coordinated Agricultural Project. Our results showed that four, seven, and five SNP pairs accounted for 51.06, 45.66 and 40.42% for heading date, plant height, and grain yield, respectively with epistasis being considered, while corresponding contributions to these three traits were 45.32, 31.39, 31.31%, respectively without epistasis being included. The results suggested that epistasis model was more effective than non-epistasis model in this study and can be more preferred for other applications.
Browning, R; Phelps, O; Chisley, C; Getz, W R; Hollis, T; Leite-Browning, M L
2012-03-01
Bucklings (n = 275) from a complete diallel of Boer, Kiko, and Spanish meat goats were slaughtered at 7 mo of age (4 mo postweaning) to evaluate genetic effects on carcass yield. Breed of sire did not affect (P > 0.05) live, carcass, and primal weights. Conversely, breed of dam was a consistently significant source of variation for carcass weight traits. Kiko dams produced kids with heavier (P < 0.05) live, carcass, and primal weights than Boer dams. Weights from Spanish dams were intermediate to Boer and Kiko with the significance of differences varying by trait. Cold carcass dressing percent was affected (P < 0.01) by breeds of sire and dam. Boer sires decreased (P < 0.05) dressing percent compared with Kiko and Spanish sires. Dressing percent was also less (P < 0.01) from Boer dams than from Kiko dams; Spanish dams were intermediate and did not differ (P > 0.05) from Boer or Kiko. Subjective conformation scores for muscularity were affected (P < 0.01) by breeds of sire and dam. Boer-sired kids had better (P < 0.01) live scores than Kiko-sired kids. Progeny of Boer dams had better (P < 0.05) live scores than progeny of Spanish dams. Boer-sired kids also had better carcass scores (P < 0.05) than Kiko-sired and Spanish-sired kids. Breed differences for primal cut proportions were negligible. Proportional boneless meat yields did not vary (P > 0.05) by breeds of sire or dam. Direct effects of Boer were negative for carcass weight, dressing percent, and shoulder weight and positive for proportional leg weight. Direct effects of Kiko were positive for carcass weight and shoulder weight and negative for proportional leg weight. Direct effects of Spanish did not differ (P > 0.10) from 0 for any trait tested. Heterosis levels were similar among breed pairings. Heterosis was substantial (P ≤ 0.05) for live, carcass, and primal weights (5 to 9%) but not for dressing percent, proportional boneless meat yield, or primal weight proportions (<2%). Significant genetic variation was observed among goat breeds for carcass yield traits. Dam breed was more influential than sire breed. Boer germplasm was not superior to Kiko or Spanish germplasm for carcass yield when semi-intensively managed on humid, subtropical pasture. Results emphasize the importance of comparative breed evaluations to provide industry with reliable information on carcass yield among goat genotypes.
Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands.
Hirano, Ko; Ordonio, Reynante Lacsamana; Matsuoka, Makoto
2017-01-01
Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the "center of gravity" of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique.
Identification of milling and baking quality QTL in multiple soft wheat mapping populations.
Cabrera, Antonio; Guttieri, Mary; Smith, Nathan; Souza, Edward; Sturbaum, Anne; Hua, Duc; Griffey, Carl; Barnett, Marla; Murphy, Paul; Ohm, Herb; Uphaus, Jim; Sorrells, Mark; Heffner, Elliot; Brown-Guedira, Gina; Van Sanford, David; Sneller, Clay
2015-11-01
Two mapping approaches were use to identify and validate milling and baking quality QTL in soft wheat. Two LG were consistently found important for multiple traits and we recommend the use marker-assisted selection on specific markers reported here. Wheat-derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wheat including flour yield, softness equivalent, flour protein, sucrose, sodium carbonate, water absorption and lactic acid, solvent retention capacities in a diversity panel and five bi-parental mapping populations. The populations were genotyped with SSR and DArT markers, with markers specific for the 1BL.1RS translocation and sucrose synthase gene. Association analysis and composite interval mapping were performed to identify quantitative trait loci (QTL). High heritability was observed for each of the traits evaluated, trait correlations were consistent over populations, and transgressive segregants were common in all bi-parental populations. A total of 26 regions were identified as potential QTL in the diversity panel and 74 QTL were identified across all five bi-parental mapping populations. Collinearity of QTL from chromosomes 1B and 2B was observed across mapping populations and was consistent with results from the association analysis in the diversity panel. Multiple regression analysis showed the importance of the two 1B and 2B regions and marker-assisted selection for the favorable alleles at these regions should improve quality.
Carpel size, grain filling, and morphology determine individual grain weight in wheat
Xie, Quan; Mayes, Sean; Sparkes, Debbie L.
2015-01-01
Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16−49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. PMID:26246614
Psychosocial factors and tooth wear with a significant component of attrition.
da Silva, A M; Oakley, D A; Hemmings, K W; Newman, H N; Watkins, S
1997-06-01
Pathological tooth wear is often associated with bruxism, which appears in turn to be influenced by psychosocial factors. This study investigated putative relationships between psychosocial factors (total and average perceived stress, state and trait anxiety) and tooth wear, comparing 45 patients exhibiting tooth wear with a significant component of attrition to 45 controls. Groups were matched for gender and age. Subjects completed the Modified and Perceived Stress Scale and the State-Trait Anxiety Inventory. A between-groups multivariate analysis of variance indicated that the two groups did not differ significantly on the combined psychosocial factors, F(4,85) = 1.16, P > 0.05. However, a univariate F-test showed that tooth-wear patients presented significantly more trait anxiety than controls, F(1,88) = 4.15, P < 0.05. Further research is indicated to clarify the importance of trait anxiety and other psychosocial factors in the progression of tooth wear with a significant component of attrition.
Koeck, A; Miglior, F; Jamrozik, J; Kelton, D F; Schenkel, F S
2013-07-01
The aim of this study was to investigate the genetic associations of ketosis and displaced abomasum with milk production traits in early first lactation of Canadian Holsteins. Health data recorded by producers were available from the national dairy cattle health system in Canada. Test-day records of milk, fat, and protein yields were obtained from the routine milk recoding scheme. Ketosis and displaced abomasum were defined as binary traits (0 = healthy; 1 = sick) based on whether or not the cow had at least 1 case of the respective disease in the period from calving to 100 d after calving. Mean frequencies of ketosis and displaced abomasum were 4.1 and 2.7%, respectively. The following milk production traits were considered: milk yield, fat percentage (Fat%), protein percentage (Prot%), fat-to-protein (F:P) ratio, and F:P ratio >1.5. The trait F:P ratio >1.5 was scored as 1 or 0, based on whether or not the cow had an F:P ratio >1.5. For milk production traits, the first (5-30 d in milk) and the second (31-60 d in milk) test days were considered. Data were analyzed using bivariate linear animal models. Average heritabilities of 0.02 and 0.04 were obtained for ketosis and displaced abomasum, respectively. For milk production traits, the lowest heritabilities were obtained for F:P >1.5 (0.04 to 0.08), whereas the highest estimates were found for Prot% (0.27 to 0.38). Ketosis and displaced abomasum were genetically uncorrelated with milk yield in early lactation. Moderate favorable correlations were found between metabolic diseases and milk composition traits. Ketosis was significantly correlated with Fat% (0.33), F:P ratio (0.30), and F:P ratio >1.5 (0.35) at the first test day, whereas all genetic correlations with milk composition traits at the second test day were not significant and close to zero. Significant favorable genetic correlations were also found between displaced abomasum and F:P ratio (0.26), F:P ratio >1.5 (0.25) and Prot% (-0.19) at the first test day. Also, Prot% at the second test day was significantly correlated (-0.16) with displaced abomasum. Overall, a higher Fat% and F:P ratio and a lower Prot% at the first test day were associated with an increased susceptibility to metabolic diseases. As genetic correlations between metabolic diseases and F:P ratio were far from unity, dairy producers should be encouraged to keep accurate and complete health data. This will be expected to yield to more accurate genetic evaluations for metabolic diseases. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rooting traits of peanut genotypes with different yield response to terminal drought
USDA-ARS?s Scientific Manuscript database
Drought at pod filling and maturity stages can severely reduce yield of peanut. Better root systems can reduce yield loss from drought. The goal of this study was to investigate the responses to terminal drought of peanut genotypes for root dry weight and root length density. A field experiment was ...
Validation of yield enhancing QTLs from a low-yielding wild ancestor of rice
USDA-ARS?s Scientific Manuscript database
A set of introgression lines (ILs) containing chromosomal segments from O. rufipogon (IRGC 105491), a wild relative of O. sativa, in the genetic background of an elite U.S. variety, cv. Jefferson, was developed to confirm the performance of six yield-enhancing quantitative trait loci (QTLs). Fifty B...
Lignin: Characterization of a Multifaceted Crop Component
2013-01-01
Lignin is a plant component with important implications for various agricultural disciplines. It confers rigidity to cell walls, and is therefore associated with tolerance to abiotic and biotic stresses and the mechanical stability of plants. In animal nutrition, lignin is considered an antinutritive component of forages as it cannot be readily fermented by rumen microbes. In terms of energy yield from biomass, the role of lignin depends on the conversion process. It contains more gross energy than other cell wall components and therefore confers enhanced heat value in thermochemical processes such as direct combustion. Conversely, it negatively affects biological energy conversion processes such as bioethanol or biogas production, as it inhibits microbial fermentation of the cell wall. Lignin from crop residues plays an important role in the soil organic carbon cycling, as it constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon sequestration. Due to the significance of lignin in several agricultural disciplines, the modification of lignin content and composition by breeding is becoming increasingly important. Both mapping of quantitative trait loci and transgenic approaches have been adopted to modify lignin in crops. However, breeding goals must be defined considering the conflicting role of lignin in different agricultural disciplines. PMID:24348159
Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities
Kembel, Steven W.; Cahill, James F.
2011-01-01
In this study, we used data from temperate grassland plant communities in Alberta, Canada to test two longstanding hypotheses in ecology: 1) that there has been correlated evolution of the leaves and roots of plants due to selection for an integrated whole-plant resource uptake strategy, and 2) that trait diversity in ecological communities is generated by adaptations to the conditions in different habitats. We tested the first hypothesis using phylogenetic comparative methods to test for evidence of correlated evolution of suites of leaf and root functional traits in these grasslands. There were consistent evolutionary correlations among traits related to plant resource uptake strategies within leaf tissues, and within root tissues. In contrast, there were inconsistent correlations between the traits of leaves and the traits of roots, suggesting different evolutionary pressures on the above and belowground components of plant morphology. To test the second hypothesis, we evaluated the relative importance of two components of trait diversity: within-community variation (species trait values relative to co-occurring species; α traits) and among-community variation (the average trait value in communities where species occur; β traits). Trait diversity was mostly explained by variation among co-occurring species, not among-communities. Additionally, there was a phylogenetic signal in the within-community trait values of species relative to co-occurring taxa, but not in their habitat associations or among-community trait variation. These results suggest that sorting of pre-existing trait variation into local communities can explain the leaf and root trait diversity in these grasslands. PMID:21687704
Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot Hm; Rengel, Zed
2016-06-01
Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot HM; Rengel, Zed
2016-01-01
Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. PMID:27049020
Lio, Guillaume; Gomez, Alice; Sirigu, Angela
2017-01-01
Facial width to height ratio (fWHR) is a morphological cue that correlates with sexual dimorphism and social traits. Currently, it is unclear how vertical and horizontal components of fWHR, distinctly capture faces’ social information. Using a new methodology, we orthogonally manipulated the upper facial height and the bizygomatic width to test their selective effect in the formation of impressions. Subjects (n = 90) saw pair of faces and had to select the face expressing better different social traits (trustworthiness, aggressiveness and femininity). We further investigated how sex and fWHR components interact in the formation of these judgements. Across experiments, changes along the vertical component better predicted participants' ratings rather than the horizontal component. Faces with smaller height were perceived as less trustworthy, less feminine and more aggressive. By dissociating fWHR and testing the contribution of its components independently, we obtained a powerful and discriminative measure of how facial morphology guides social judgements. PMID:28235081
Response of rice genotypes to weed competition in dry direct-seeded rice in India.
Mahajan, Gulshan; Ramesha, Mugalodi S; Chauhan, Bhagirath S
2014-01-01
The differential weed-competitive abilities of eight rice genotypes and the traits that may confer such attributes were investigated under partial weedy and weed-free conditions in naturally occurring weed flora in dry direct-seeded rice during the rainy seasons of 2011 and 2012 at Ludhiana, Punjab, India. The results showed genotypic differences in competitiveness against weeds. In weed-free plots, grain yield varied from 6.6 to 8.9 t ha(-1) across different genotypes; it was lowest for PR-115 and highest for the hybrid H-97158. In partial weedy plots, grain yield and weed biomass at flowering varied from 3.6 to 6.7 t ha(-1) and from 174 to 419 g m(-2), respectively. In partial weedy plots, grain yield was lowest for PR-115 and highest for PR-120. Average yield loss due to weed competition ranged from 21 to 46% in different rice genotypes. The study showed that early canopy closure, high leaf area index at early stage, and high root biomass and volume correlated positively with competitiveness. This study suggests that some traits (root biomass, leaf area index, and shoot biomass at the early stage) could play an important role in conferring weed competitiveness and these traits can be explored for dry-seeded rice.
Response of Rice Genotypes to Weed Competition in Dry Direct-Seeded Rice in India
Mahajan, Gulshan; Ramesha, Mugalodi S.; Chauhan, Bhagirath S.
2014-01-01
The differential weed-competitive abilities of eight rice genotypes and the traits that may confer such attributes were investigated under partial weedy and weed-free conditions in naturally occurring weed flora in dry direct-seeded rice during the rainy seasons of 2011 and 2012 at Ludhiana, Punjab, India. The results showed genotypic differences in competitiveness against weeds. In weed-free plots, grain yield varied from 6.6 to 8.9 t ha−1 across different genotypes; it was lowest for PR-115 and highest for the hybrid H-97158. In partial weedy plots, grain yield and weed biomass at flowering varied from 3.6 to 6.7 t ha−1 and from 174 to 419 g m−2, respectively. In partial weedy plots, grain yield was lowest for PR-115 and highest for PR-120. Average yield loss due to weed competition ranged from 21 to 46% in different rice genotypes. The study showed that early canopy closure, high leaf area index at early stage, and high root biomass and volume correlated positively with competitiveness. This study suggests that some traits (root biomass, leaf area index, and shoot biomass at the early stage) could play an important role in conferring weed competitiveness and these traits can be explored for dry-seeded rice. PMID:25093205
Tardieu, François
2013-01-01
This paper reviews methods for analyzing plant performance and its genetic variability under a range of environmental conditions. Biomass accumulation is linked every day to available light in the photosynthetically active radiation (PAR) domain, multiplied by the proportion of light intercepted by plants and by the radiation use efficiency. Total biomass is cumulated over the duration of the considered phase (e.g., plant cycle or vegetative phase). These durations are essentially constant for a given genotype provided that time is corrected for temperature (thermal time). Several ways of expressing thermal time are reviewed. Two alternative equations are presented, based either on the effect of transpiration, or on yield components. Their comparative interests and drawbacks are discussed. The genetic variability of each term of considered equations affects yield under water deficit, via mechanisms at different scales of plant organization and time. The effect of any physiological mechanism on yield of stressed plants acts via one of these terms, although the link is not always straightforward. Finally, I propose practical ways to compare the productivity of genotypes in field environments, and a “minimum dataset” of environmental data and traits that should be recorded for that. PMID:23423357
Identification of Marker-Trait Associations for Lint Traits in Cotton
Iqbal, Muhammad A.; Rahman, Mehboob-ur-
2017-01-01
Harvesting high quality lint, a long-awaited breeding goal—accomplished partly, can be achieved by identifying DNA markers which could be used for diagnosing cotton plants containing the desired traits. In the present studies, a total of 185 cotton genotypes exhibiting diversity for lint traits were selected from a set of 546 genotypes evaluated for fiber traits in 2009. These genotypes were extensively studied for three consecutive years (2011–2013) at three different locations. Significant genetic variations were found for average boll weight, ginning out turn (GOT), micronaire value, staple length, fiber bundle strength, and uniformity index. IR-NIBGE-3701 showed maximum GOT (43.63%). Clustering of genotypes using Ward's method was found more informative than that of the clusters generated by principal component analysis. A total of 382 SSRs were surveyed on 10 Gossypium hirsutum genotypes exhibiting contrasting fiber traits. Out of these, 95 polymorphic SSR primer pairs were then surveyed on 185 genotypes. The gene diversity averaged 0.191 and the polymorphic information content (PIC) averaged 0.175. Unweighted pair group method with arithmetic mean (UPGMA), principal coordinate analysis (PCoA), and STRUCTURE software grouped these genotypes into four major clusters each. Genetic distance within the clusters ranged from 0.0587 to 0.1030. A total of 47 (25.41%) genotypes exhibited shared ancestry. In total 6.8% (r2 ≥ 0.05) and 4.4% (r2 ≥ 0.1) of the marker pairs showed significant linkage disequilibrium (LD). A number of marker-trait associations (in total 75) including 13 for average boll weight, 18 for GOT percentage, eight for micronaire value, 18 for staple length, three for fiber bundle strength, and 15 for uniformity index were calculated. Out of these, MGHES-51 was associated with all the traits. Most of the marker-trait associations were novel while few validated the associations reported in the previous studies. High frequency of favorable alleles in cultivated varieties is possibly due to fixation of desirable alleles by domestication. These favorable alleles can be used in marker assisted breeding or for gene cloning using next generation sequencing tools. The present studies would set a stage for harvesting high quality lint without compromising the yield potential—ascertaining natural fiber security. PMID:28220132
Sano, Tomohito; Horie, Hideki; Matsunaga, Akiko; Hirono, Yuhei
2018-05-02
Use of covering cultivation to shade tea (Camellia sinensis L.) trees to produce high-quality, high-priced green tea has recently increased in Japan. Knowledge of shading effects on morphological and color traits, and chemical components of new tea shoots is important for product quality and productivity. We assessed these traits of tea shoots and their relationships under covering cultivation of various radiation intensities. Leaf thickness, LMA (leaf mass per area), and leaf density of new tea leaves were smaller under covering culture than under open-field culture. SPAD values and chlorophyll contents were larger under covering culture than under open culture. The derived exponential equation for estimating chlorophyll contents from SPAD values was improved by considering leaf thickness. Covering culture decreased EC (epicatechin) and EGC (epigallocatechin) contents, and increased theanine and caffeine contents. Principal component analysis on shoot and leaf traits indicated that LMA, and chlorophyll, EC, and EGC contents were strongly associated with shading effects. Morphological and color traits, and chemical components of new tea shoots and leaves varied depending on radiation intensity, shoot growth, and cropping season. These findings are useful for covering cultivation with high quality and high productivity in tea gardens. This article is protected by copyright. All rights reserved.
Bellucci, Andrea; Torp, Anna Maria; Bruun, Sander; Magid, Jakob; Andersen, Sven B.; Rasmussen, Søren K.
2015-01-01
A collection of 100 wheat varieties representing more than 100 years of wheat-breeding history in Scandinavia was established in order to identify marker-trait associations for plant height (PH), grain yield (GY), and biomass potential for bioethanol production. The field-grown material showed variations in PH from 54 to 122 cm and in GY from 2 to 6.61 t ha-1. The release of monomeric sugars was determined by high-throughput enzymatic treatment of ligno-cellulosic material and varied between 0.169 and 0.312 g/g dm for glucose (GLU) and 0.146 and 0.283 g/g dm for xylose (XYL). As expected, PH and GY showed to be highly influenced by genetic factors with repeatability (R) equal to 0.75 and 0.53, respectively, while this was reduced for GLU and XYL (R = 0.09 for both). The study of trait correlations showed how old, low-yielding, tall varieties released higher amounts of monomeric sugars after straw enzymatic hydrolysis, showing reduced recalcitrance to bioconversion compared to modern varieties. Ninety-three lines from the collection were genotyped with the DArTseq® genotypic platform and 5525 markers were used for genome-wide association mapping. Six quantitative trait loci (QTLs) for GY, PH, and GLU released from straw were mapped. One QTL for PH was previously reported, while the remaining QTLs constituted new genomic regions linked to trait variation. This paper is one of the first studies in wheat to identify QTLs that are important for bioethanol production based on a genome-wide association approach. PMID:26635859
Disease evaluations and agronomic traits of advanced peanut breeding lines in 2017
USDA-ARS?s Scientific Manuscript database
Disease evaluations of advanced peanut breeding lines are conducted annually to compare the agronomic traits (crop value, yield, seed grade and characteristics) and disease resistance in cultivars that are currently available or close to being released for the Southwest. In 2017, a total of 19 comm...
Understanding genetic control of biotic stress resistance in sorghum for applied breeding
USDA-ARS?s Scientific Manuscript database
Sorghum (Sorghum bicolor (L.) Moench) improvement deals with development of new crop cultivars which are superior to existing cultivars for traits of interest like high yield, better quality, resistance to pests and diseases, and specific usability traits (Reddy et al 2011; Ashok Kumar et al 2013). ...
Effects of foliar potassium fertilization on muskmelon fruit quality and yield
USDA-ARS?s Scientific Manuscript database
Consumer preference of many fruits and vegetables such as muskmelon [Cucumis melo L. (Reticulatus Group)] is determined by a few key quality traits such as sugar content, aroma and texture. These quality traits are directly related to adequate potassium (K) content in plant tissues. However, soil-...
Mullen, M P; Lynch, C O; Waters, S M; Howard, D J; O'Boyle, P; Kenny, D A; Buckley, F; Horan, B; Diskin, M G
2011-08-26
The somatotrophic axis (GH-IGF) is a key regulator of animal growth and development, affecting performance traits that include milk production, growth rate, body composition, and fertility. The aim of this study was to quantify the association of previously identified SNPs in bovine growth hormone (GH1) and insulin-like growth factor 1 (IGF-1) genes with direct performance trait measurements of lactation and fertility in Holstein-Friesian lactating dairy cows. Sixteen SNPs in both IGF-1 and GH1 were genotyped across 610 cows and association analyses were carried out with traits of economic importance including calving interval, pregnancy rate to first service and 305-day milk production, using animal linear mixed models accounting for additive genetic effects. Two IGF-1 SNPs, IGF1i1 and IGF1i2, were significantly associated with body condition score at calving, while a single IGF-1 SNP, IGF1i3, was significantly associated with milk production, including milk yield (means ± SEM; 751.3 ± 262.0 kg), fat yield (21.3 ± 10.2 kg) and protein yield (16.5 ± 8.0 kg) per lactation. Only one GH1 SNP, GH33, was significantly associated with milk protein yield in the second lactation (allele substitution effect of 9.8 ± 5.0 kg). Several GH1 SNPs were significantly associated with fertility, including GH32, GH35 and GH38 with calving to third parity (22.4 ± 11.3 days) (GH32 and GH38 only), pregnancy rate to first service (0.1%) and overall pregnancy rate (0.05%). The results of this study demonstrate the effects of variants of the somatotrophic axis on milk production and fertility traits in commercial dairy cattle.
Golder, H M; Lean, I J
2016-01-01
The effects of lasalocid on rumen measures, beef and dairy performance, and carcass traits were evaluated using meta-analysis. Meta-regression was used to investigate sources of heterogeneity. Ten studies (20 comparisons) were used in the meta-analysis on rumen measures. Lasalocid increased total VFA and ammonia concentrations by 6.46 and 1.44 m, respectively. Lasalocid increased propionate and decreased acetate and butyrate molar percentage (M%) by 4.62, 3.18, and 0.83%, respectively. Valerate M% and pH were not affected. Meta-regression found butyrate M% linearly increased with duration of lasalocid supplementation (DUR; = 0.017). When >200 mg/d was fed, propionate and valerate M% were higher and acetate M% was lower ( = 0.042, = 0.017, and = 0.005, respectively). Beef performance was assessed using 31 studies (67 comparisons). Lasalocid increased ADG by 40 g/d, improved feed-to-gain ratio (F:G) by 410 g/kg, and improved feed efficiency (FE; combined measure of G:F and the inverse of F:G). Lasalocid did not affect DMI, but heterogeneity in DMI was influenced by DUR ( = 0.004) and the linear effect of entry BW ( = 0.011). The combination of ≤100 vs. >100 d DUR and entry BW ≤275 vs. >275 kg showed that cattle ≤275 kg at entry fed lasalocid for >100 d had the lowest DMI. Heterogeneity of ADG was influenced by the linear effect of entry BW ( = 0.028) but not DUR. Combining entry BW ≤275 vs. >275 kg and DUR showed that cattle entering at >275 kg fed ≤100 d had the highest ADG. The FE ( = 0.025) and F:G ( = 0.015) linearly improved with dose, and entry BW >275 kg improved F:G ( = 0.038). Fourteen studies (25 comparisons) were used to assess carcass traits. Lasalocid increased HCW by 4.73 kg but not dressing percentage, mean fat cover, or marbling score. Heterogeneity of carcass traits was low and not affected by DUR or dose. Seven studies (11 comparisons) were used to assess dairy performance but the study power was relatively low and the evidence base is limited. Lasalocid decreased DMI in total mixed ration-fed cows by 0.89 kg/d but had no effect on milk yield, milk components, or component yields. Dose linearly decreased DMI ( = 0.049). The DUR did not affect heterogeneity of dairy measures. This work showed that lasalocid improved ADG, HCW, FE, and F:G for beef production. These findings may reflect improved energy efficiency from increased propionate M% and decreased acetate and butyrate M%. Large dairy studies are required for further evaluation of effects of lasalocid on dairy performance.
Characterization and genetic diversity of pepper (Capsicum spp) parents and interspecific hybrids.
Costa, M P S D; do Rêgo, M M; da Silva, A P G; do Rêgo, E R; Barroso, P A
2016-05-06
Pepper species exhibit broad genetic diversity, which enables their use in breeding programs. The objective of this study was to characterize the diversity between the parents of different species and their interspecific hybrids using morphological and molecular markers. The parents of Capsicum annuum (UFPB-01 and -137), C. baccatum (UFPB-72), and C. chinense (UFPB-128) and their interspecific hybrids (01x128, 72x128, and 137x128) were used for morphological and molecular characterization. Fruit length and seed yield per fruit (SYF) traits showed the highest variability, and three groups were formed based on these data. CVg/CVe ratio values (>1.0) were calculated for leaf length (1.67) and SYF (5.34). The trait that most contributed to divergence was the largest fruit diameter (26.42%), and the trait that least contributed was pericarp thickness (0.33%), which was subject to being discarded. The 17 primers produced 58 polymorphic bands that enabled the estimation of genetic diversity between parents and hybrids, and these results confirmed the results of the morphological data analyses. The principal component analysis results also corroborated the morphological and random-amplified polymorphic DNA data, and three groups that contained the same individuals were identified. These results confirmed reports in the literature regarding the phylogenetic relationships of the species used as parents, which demonstrated that C. annuum was closer to C. chinense as compared to C. baccatum.
Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian
2014-01-01
Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. PMID:25501589
The evolution of trade-offs under directional and correlational selection.
Roff, Derek A; Fairbairn, Daphne J
2012-08-01
Using quantitative genetic theory, we develop predictions for the evolution of trade-offs in response to directional and correlational selection. We predict that directional selection favoring an increase in one trait in a trade-off will result in change in the intercept but not the slope of the trade-off function, with the mean value of the selected trait increasing and that of the correlated trait decreasing. Natural selection will generally favor an increase in some combination of trait values, which can be represented as directional selection on an index value. Such selection induces both directional and correlational selection on the component traits. Theory predicts that selection on an index value will also change the intercept but not the slope of the trade-off function but because of correlational selection, the direction of change in component traits may be in the same or opposite directions. We test these predictions using artificial selection on the well-established trade-off between fecundity and flight capability in the cricket, Gryllus firmus and compare the empirical results with a priori predictions made using genetic parameters from a separate half-sibling experiment. Our results support the predictions and illustrate the complexity of trade-off evolution when component traits are subject to both directional and correlational selection. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B
2014-10-01
Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.
Donoghue, K A; Bird-Gardiner, T; Arthur, P F; Herd, R M; Hegarty, R F
2016-04-01
Ruminants contribute 80% of the global livestock greenhouse gas (GHG) emissions mainly through the production of methane, a byproduct of enteric microbial fermentation primarily in the rumen. Hence, reducing enteric methane production is essential in any GHG emissions reduction strategy in livestock. Data on 1,046 young bulls and heifers from 2 performance-recording research herds of Angus cattle were analyzed to provide genetic and phenotypic variance and covariance estimates for methane emissions and production traits and to examine the interrelationships among these traits. The cattle were fed a roughage diet at 1.2 times their estimated maintenance energy requirements and measured for methane production rate (MPR) in open circuit respiration chambers for 48 h. Traits studied included DMI during the methane measurement period, MPR, and methane yield (MY; MPR/DMI), with means of 6.1 kg/d (SD 1.3), 132 g/d (SD 25), and 22.0 g/kg (SD 2.3) DMI, respectively. Four forms of residual methane production (RMP), which is a measure of actual minus predicted MPR, were evaluated. For the first 3 forms, predicted MPR was calculated using published equations. For the fourth (RMP), predicted MPR was obtained by regression of MPR on DMI. Growth and body composition traits evaluated were birth weight (BWT), weaning weight (WWT), yearling weight (YWT), final weight (FWT), and ultrasound measures of eye muscle area, rump fat depth, rib fat depth, and intramuscular fat. Heritability estimates were moderate for MPR (0.27 [SE 0.07]), MY (0.22 [SE 0.06]), and the RMP traits (0.19 [SE 0.06] for each), indicating that genetic improvement to reduce methane emissions is possible. The RMP traits and MY were strongly genetically correlated with each other (0.99 ± 0.01). The genetic correlation of MPR with MY as well as with the RMP traits was moderate (0.32 to 0.63). The genetic correlation between MPR and the growth traits (except BWT) was strong (0.79 to 0.86). These results indicate that selection for lower MPR may have undesired effect on animal productivity. On the other hand, MY and the RMPR were either not genetically correlated or weakly correlated with BWT, YWT, and FWT (-0.06 to 0.23) and body composition traits (-0.18 to 0.18). Therefore, selection for lower MY or RMPR would lead to lower MPR without impacting animal productivity. Where the use of a ratio trait (e.g., MY) is not desirable, selection on any of the forms of RMP would be an alternative.
Yin, Tong; König, Sven
2018-03-01
The most common approach in dairy cattle to prove genotype by environment interactions is a multiple-trait model application, and considering the same traits in different environments as different traits. We enhanced such concepts by defining continuous phenotypic, genetic, and genomic herd descriptors, and applying random regression sire models. Traits of interest were test-day traits for milk yield, fat percentage, protein percentage, and somatic cell score, considering 267,393 records from 32,707 first-lactation Holstein cows. Cows were born in the years 2010 to 2013, and kept in 52 large-scale herds from 2 federal states of north-east Germany. The average number of genotyped cows per herd (45,613 single nucleotide polymorphism markers per cow) was 133.5 (range: 45 to 415 genotyped cows). Genomic herd descriptors were (1) the level of linkage disequilibrium (r 2 ) within specific chromosome segments, and (2) the average allele frequency for single nucleotide polymorphisms in close distance to a functional mutation. Genetic herd descriptors were the (1) intra-herd inbreeding coefficient, and (2) the percentage of daughters from foreign sires. Phenotypic herd descriptors were (1) herd size, and (2) the herd mean for nonreturn rate. Most correlations among herd descriptors were close to 0, indicating independence of genomic, genetic, and phenotypic characteristics. Heritabilities for milk yield increased with increasing intra-herd linkage disequilibrium, inbreeding, and herd size. Genetic correlations in same traits between adjacent levels of herd descriptors were close to 1, but declined for descriptor levels in greater distance. Genetic correlation declines were more obvious for somatic cell score, compared with test-day traits with larger heritabilities (fat percentage and protein percentage). Also, for milk yield, alterations of herd descriptor levels had an obvious effect on heritabilities and genetic correlations. By trend, multiple trait model results (based on created discrete herd classes) confirmed the random regression estimates. Identified alterations of breeding values in dependency of herd descriptors suggest utilization of specific sires for specific herd structures, offering new possibilities to improve sire selection strategies. Regarding genomic selection designs and genetic gain transfer into commercial herds, cow herds for the utilization in cow training sets should reflect the genomic, genetic, and phenotypic pattern of the broad population. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Influencing agent group behavior by adjusting cultural trait values.
Tuli, Gaurav; Hexmoor, Henry
2010-10-01
Social reasoning and norms among individuals that share cultural traits are largely fashioned by those traits. We have explored predominant sociological and cultural traits. We offer a methodology for parametrically adjusting relevant traits. This exploratory study heralds a capability to deliberately tune cultural group traits in order to produce a desired group behavior. To validate our methodology, we implemented a prototypical-agent-based simulated test bed for demonstrating an exemplar from intelligence, surveillance, and reconnaissance scenario. A group of simulated agents traverses a hostile territory while a user adjusts their cultural group trait settings. Group and individual utilities are dynamically observed against parametric values for the selected traits. Uncertainty avoidance index and individualism are the cultural traits we examined in depth. Upon the user's training of the correspondence between cultural values and system utilities, users deliberately produce the desired system utilities by issuing changes to trait. Specific cultural traits are without meaning outside of their context. Efficacy and timely application of traits in a given context do yield desirable results. This paper heralds a path for the control of large systems via parametric cultural adjustments.
Zengel, Bettina; Ambler, James K; McCarthy, Randy J; Skowronski, John J
2017-01-01
This article reports results from a study in which participants encountered either (a) previously known informants who were positive (e.g. Abraham Lincoln), neutral (e.g., Jay Leno), or negative (e.g., Adolf Hitler), or (b) previously unknown informants. The informants ostensibly described either a trait-implicative positive behavior, a trait-implicative negative behavior, or a neutral behavior. These descriptions were framed as either the behavior of the informant or the behavior of another person. Results yielded evidence of informant-trait linkages for both self-informants and for informants who described another person. These effects were not moderated by informant type, behavior valence, or the congruency or incongruency between the prior knowledge of the informant and the behavior valence. Results are discussed in terms of theories of Spontaneous Trait Inference and Spontaneous Trait Transference.
Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.
2017-01-01
Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA accessions. PMID:28282385
Albert, Elise; Segura, Vincent; Gricourt, Justine; Bonnefoi, Julien; Derivot, Laurent; Causse, Mathilde
2016-12-01
Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat
Silva-Perez, Viridiana; Molero, Gemma; Serbin, Shawn P.; ...
2017-12-22
Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (N area) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (V cmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350–2500 nm) can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas exchange and hyperspectralmore » reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels and/or in the field under yield potential conditions. Models were developed using half of the observed data with the remainder used for validation, yielding correlation coefficients (R 2 values) of 0.62 for V cmax25, 0.7 for J, 0.81 for SPAD, 0.89 for LMA, and 0.93 for N area, with bias <0.7%. The models were tested on elite lines and landraces that had not been used to create the models. The bias varied between -2.3% and -5.5% while relative error of prediction was similar for SPAD but slightly greater for LMA and N area.« less
Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva-Perez, Viridiana; Molero, Gemma; Serbin, Shawn P.
Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (N area) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (V cmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350–2500 nm) can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas exchange and hyperspectralmore » reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels and/or in the field under yield potential conditions. Models were developed using half of the observed data with the remainder used for validation, yielding correlation coefficients (R 2 values) of 0.62 for V cmax25, 0.7 for J, 0.81 for SPAD, 0.89 for LMA, and 0.93 for N area, with bias <0.7%. The models were tested on elite lines and landraces that had not been used to create the models. The bias varied between -2.3% and -5.5% while relative error of prediction was similar for SPAD but slightly greater for LMA and N area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Nate G.; Xu, Chonggang
Plant traits reflect their evolutionary history and influence physiological processes (Reich, 2014). For example, the embolism risk taken by plants, called the embolism safety margin, is a good predictor of stomatal conductance, and hence photosynthesis (Skelton et al., 2015). Trait-science has grown dramatically in the last decade as we have found niversal patterns governing the carbon and nutrient economies of plants (Bloom et al., 1985). Perhaps the greatest value of studying plant functional traits is that they yield understanding of plant functional processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Nate G.; Xu, Chonggang
Plant traits reflect their evolutionary history and influence physiological processes (Reich 2014). For example, the embolism risk taken by plants, called the embolism safety margin, is a good predictor of stomatal conductance, and hence photosynthesis (Skelton et al. 2015). Trait-science has grown dramatically in the last decade as we have found universal patterns governing the carbon and nutrient economies of plants (Bloom et al. 1985). Perhaps the greatest value of studying plant functional traits is that they yield understanding of plant functional processes.
Bhattarai, Dinesh; Chen, Xing; Ur Rehman, Zia; Hao, Xingjie; Ullah, Farman; Dad, Rahim; Talpur, Hira Sajjad; Kadariya, Ishwari; Cui, Lu; Fan, Mingxia; Zhang, Shujun
2017-02-01
The objective of the studies presented in this Research Communication was to investigate the association of single nucleotide polymorphisms present in the MAP4K4 gene with different milk traits in dairy cows. Based on previous QTL fine mapping results on bovine chromosome 11, the MAP4K4 gene was selected as a candidate gene to evaluate its effect on somatic cell count and milk traits in ChineseHolstein cows. Milk production traits including milk yield, fat percentage, and protein percentage of each cow were collected using 305 d lactation records. Association between MAP4K4 genotype and different traits and Somatic Cell Score (SCS) was performed using General Linear Regression Model of R. Two SNPs at exon 18 (c.2061T > G and c.2196T > C) with genotype TT in both SNPs were found significantly higher for somatic SCS. We found the significant effect of exon 18 (c.2061T > G) on protein percentage, milk yield and SCS. We identified SNPs at different location of MAP4K4 gene of the cattle and several of them were significantly associated with the somatic cell score and other different milk traits. Thus, MAP4K4 gene could be a useful candidate gene for selection of dairy cattle against mastitis and the identified polymorphisms might potentially be strong genetic markers.
Alim, M A; Dong, T; Xie, Y; Wu, X P; Zhang, Yi; Zhang, Shengli; Sun, D X
2014-11-01
This study was designed to evaluate significant associations between single nucleotide polymorphisms (SNPs) and milk composition and milk production traits in Chinese Holstein cows. Six SNPs were identified in the κ-casein gene using pooled DNA sequencing. The identified SNPs were genotyped by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) methods from 507 individuals. Out of six, we identified three non-synonymous SNPs (g.10888T>C, g.10924C>A and g.10944A>G) that changed in the protein product. SIFT (Sorting_Intolerant_From_Tolerant) prediction score (0.01) demonstrated that protein changed Isoleucine > Threonine (g.10888T>C) will affect the phenotypes. Significant associations between identified SNPs and three yield traits (milk, protein and fat) and two composition traits (fat and protein percentages) were found whereas it did not reach significance for fat percentage in haplotypes association. Importantly, the significant SNPs in our results showed a large proportion of the phenotypic variation of milk protein yield and concentration. Our results suggest that CSN3 is an important candidate gene that influences milk production traits, and identified polymorphisms and haplotypes could be used as a genetic marker in programs of marker-assisted selection for the genetic improvement of milk production traits in dairy cattle.
Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent
2014-10-01
Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Genotype × environment interactions and trait correlations significantly impact efforts to develop high yield, high quality, and environmentally stable Upland cotton (Gossypium hirsutum L.) cultivars. Knowledge of both can and should be used to design optimal breeding programs and effective selectio...
USDA-ARS?s Scientific Manuscript database
Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...
Assessing water-related plant traits to explain slow-wilting in soybean PI 471938
USDA-ARS?s Scientific Manuscript database
Exotic soybean accession PI 471938 from Nepal expresses a slow-wilting phenotype in the field, and the progeny of this genotype have been shown to have high yield under water-deficit conditions. However, the physiological basis for the slow-wilting trait in PI 471938 remains unclear and failure to ...
USDA-ARS?s Scientific Manuscript database
Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...
USDA-ARS?s Scientific Manuscript database
Grain yield and semolina quality traits are essential selection criteria in durum wheat breeding. However, high cost of phenotypic screening limited the selection only on small number of lines and at later generations. This leads to relatively low selection efficiency due to the advancement of undes...
Teodoro, P E; Rodrigues, E V; Peixoto, L A; Silva, L A; Laviola, B G; Bhering, L L
2017-03-22
Jatropha is research target worldwide aimed at large-scale oil production for biodiesel and bio-kerosene. Its production potential is among 1200 and 1500 kg/ha of oil after the 4th year. This study aimed to estimate combining ability of Jatropha genotypes by multivariate diallel analysis to select parents and crosses that allow gains in important agronomic traits. We performed crosses in diallel complete genetic design (3 x 3) arranged in blocks with five replications and three plants per plot. The following traits were evaluated: plant height, stem diameter, canopy projection between rows, canopy projection on the line, number of branches, mass of hundred grains, and grain yield. Data were submitted to univariate and multivariate diallel analysis. Genotypes 107 and 190 can be used in crosses for establishing a base population of Jatropha, since it has favorable alleles for increasing the mass of hundred grains and grain yield and reducing the plant height. The cross 190 x 107 is the most promising to perform the selection of superior genotypes for the simultaneous breeding of these traits.
Correlations and path analysis among agronomic and technological traits of upland cotton.
Farias, F J C; Carvalho, L P; Silva Filho, J L; Teodoro, P E
2016-08-12
To date, path analysis has been used with the aim of breeding different cultures. However, for cotton, there have been few studies using this analysis, and all of these have used fiber productivity as the primary dependent variable. Therefore, the aim of the present study was to identify agronomic and technological properties that can be used as criteria for direct and indirect phenotypes in selecting cotton genotypes with better fibers. We evaluated 16 upland cotton genotypes in eight trials conducted during the harvest 2008/2009 in the State of Mato Grosso, using a randomized block design with four replicates. The evaluated traits were: plant height, average boll weight, percentage of fiber, cotton seed yield, fiber length, uniformity of fiber, short fiber index, fiber strength, elongation, maturity of the fibers, micronaire, reflectance, and the degree of yellowing. Phenotypic correlations between the traits and cotton fiber yield (main dependent variable) were unfolded in direct and indirect effects through path analysis. Fiber strength, uniformity of fiber, and reflectance were found to influence fiber length, and therefore, these traits are recommended for both direct and indirect selection of cotton genotypes.
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to estimate variance components and identify regions of the genome associated with traits related to embryo transfer in Holsteins. Reproductive technologies are used in the dairy industry to increase the reproductive rate of superior females. A drawback of these met...
Kheirabadi, Khabat; Razmkabir, Mohammad
2016-01-01
Despite the importance of relationships between somatic cell score (SCS) and currently selected traits (milk, fat and protein yield) of Holstein cows, there was a lack of comprehensive literature for it in Iran. Therefore we tried to examine heritabilities and relationships between these traits using a fixed-regression animal model and Bayesian inference. The data set consisted of 1,078,966 test-day observations from 146,765 primiparous daughters of 1930 sires, with calvings from 2002 to 2013. Marginal posterior means of heritability estimates for SCS (0.03 ± 0.002) were distinctly lower than those for milk (0.204 ± 0.006), fat (0.096 ± 0.004) and protein (0.147 ± 0.005) yields. In the case of phenotypic correlations, the relationships between production and SCS were near zero at the beginning of lactation but become increasingly negative as days in milk increased. Although all environmental correlations between production and SCS were negative (-0.177 ± 0.007, -0.165 ± 0.008 and -0.152 ± 0.007 between SCS and milk, fat, and protein yield, respectively), slightly antagonistic genetic correlations were found; with posterior mean of relationships ranging from 0.01 ± 0.039 to 0.11 ± 0.036. This genetic opposition was distinctly higher for protein than for fat. Although small, the positive genetic correlations suggest some genetic antagonism between desired increased milk production and reduced SCS (i.e., single-trait selection for increased milk production will also increase SCS).
Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2015-09-01
Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M
2014-11-01
We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.
Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369
Variation among slash pine families in chlorophyll fluorescence traits
Anita C. Koehn; James H. Roberds; Robert L. Doudrick
2003-01-01
Abstract: Photochemical quenching, nonphotochemical quenching, and yield of photosystem II were measured on seedlings of full-sibling, open-, and self-pollinated slash pine (Pinus elliottii Engelm. var. elliottii) families. Our results reveal that genetic variation in photochemical quenching and yield of...
Azevedo, C F; Nascimento, M; Silva, F F; Resende, M D V; Lopes, P S; Guimarães, S E F; Glória, L S
2015-10-09
A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.
Breeding objectives for Holstein dairy cattle in Iran.
Sadeghi-Sefidmazgi, A; Moradi-Shahrbabak, M; Nejati-Javaremi, A; Miraei-Ashtiani, S R; Amer, P R
2012-06-01
Trait-by-trait and multiple trait bioeconomic modeling were used to derive farm-specific economic weights (EW) for a wide range of traits under different production and economic circumstances to define breeding objectives for Holstein dairy cattle in Iran. Production parameters and economic data were gathered on 10 dairy farms from March 2008 to February 2010. The EW (economic values multiplied by gene expressions, in US dollars per unit of trait per calf born from sires of self-replacing females in planning horizon of 20 yr) were estimated to be $0.15 per kilogram of milk yield; $1.36 per kilogram of fat yield; -$1.02 per kilogram of protein yield; $4.59 per month of longevity; -$1.22 per kilogram of mature cow weight; -$105.67 for combined somatic cell score and clinical mastitis; -$1.35 and -$0.28 for percentage direct and maternal calving difficulties, respectively; -$3.98 for percentage direct stillbirth; -$0.76 per day of age at first calving; -$0.72 per calving interval day; and $0.91 for percentage 56-d nonreturn rate on averages across investigated farms. The coefficient of variation of economic weights across the 10 farms was lowest for direct calving difficulty and highest for calving interval. The proposed Iranian selection index was compared with selection indices of major countries exporting semen to Iran. Average relative emphasis for production, durability, and health and reproduction, across all exporter countries, was 41, 37.5, and 21.5%, respectively, whereas the respective values were 50, 14, and 36% for the Iranian index. Significant differences in selection indices may potentially decrease the utility of importation of semen as a means of achieving sustainable genetic progress in Iran. Results obtained in this study provide important information about economic values of traits that can be used to improve the Iranian national progeny testing program as well as importation rules for semen to Iran. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, A.; Serbin, S.; Kucharik, C. J.; Townsend, P. A.
2014-12-01
Ecosystem models such AgroIBIS require detailed parameterizations of numerous vegetation traits related to leaf structure, biochemistry and photosynthetic capacity to properly assess plant carbon assimilation and yield response to environmental variability. In general, these traits are estimated from a limited number of field measurements or sourced from the literature, but rarely is the full observed range of variability in these traits utilized in modeling activities. In addition, pathogens and pests, such as the exotic soybean aphid (Aphis glycines), which affects photosynthetic pathways in soybean plants by feeding on phloem and sap, can potentially impact plant productivity and yields. Capturing plant responses to pest pressure in conjunction with environmental variability is of considerable interest to managers and the scientific community alike. In this research, we employed full-range (400-2500 nm) field and laboratory spectroscopy to rapidly characterize the leaf biochemical and physiological traits, namely foliar nitrogen, specific leaf area (SLA) and the maximum rate of RuBP carboxylation by the enzyme RuBisCo (Vcmax) in soybean plants, which experienced a broad range of environmental conditions and soybean aphid pressures. We utilized near-surface spectroscopic remote sensing measurements as a means to capture the spatial and temporal patterns of aphid impacts across broad aphid pressure levels. In addition, we used the spectroscopic data to generate a much larger dataset of key model parameters required by AgroIBIS than would be possible through traditional measurements of biochemistry and leaf-level gas exchange. The use of spectroscopic retrievals of soybean traits allowed us to better characterize the variability of plant responses associated with aphid pressure to more accurately model the likely impacts of soybean aphid on soybeans. Our next steps include the coupling of the information derived from our spectral measurements with the AgroIBIS model to project the impacts of increasing aphid pressures on yields expected with continued global change and altered environmental conditions.
The heat-shock protein/chaperone network and multiple stress resistance.
Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid
2017-04-01
Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Costello, Thomas H; Unterberger, Ansley; Watts, Ashley L; Lilienfeld, Scott O
2018-01-01
Despite widespread assumptions that psychopathy is associated with serious and repeated law-breaking, individuals with psychopathic personality traits do not invariably become chronic criminal offenders. As a partial explanation for this finding, Lykken (1995) ventured that a fearless temperament underlies both psychopathic traits and heroic behavior, and that heroic individuals' early exposure to effective socializing forces such as warm parenting or healthy self-esteem often fosters a characteristic adaption that tends to beget "successful" behaviors, thereby differentiating heroes from convicts. In this study, we investigate relations between psychopathy, principally its fearless dominance dimension, pride, and prosocial and antisocial behavior in a community sample ( N = 339). Fearless dominance and self-centered impulsivity components of psychopathy yielded differential relations with authentic and hubristic pride (Tracy and Robins, 2004), such that fearless dominance was significantly positively correlated with both facets of pride while self-centered Impulsivity was significantly negatively correlated with authentic pride and significantly positively correlated with hubristic pride. Further, authentic pride moderated (potentiated) the relation between fearless dominance and transformational leadership, one of the two outcome measures for prosocial behavior employed in our investigation. Authentic pride did not moderate the relations between fearless dominance and either our other measure of prosocial behavior (heroism) or antisocial behavior, nor did positive parenting moderate the relations between psychopathy components and social behavior. Unexpectedly, hubristic pride significantly moderated the relation between impulsive-antisocial features and antisocial behavior in a protective manner.
Costello, Thomas H.; Unterberger, Ansley; Watts, Ashley L.; Lilienfeld, Scott O.
2018-01-01
Despite widespread assumptions that psychopathy is associated with serious and repeated law-breaking, individuals with psychopathic personality traits do not invariably become chronic criminal offenders. As a partial explanation for this finding, Lykken (1995) ventured that a fearless temperament underlies both psychopathic traits and heroic behavior, and that heroic individuals’ early exposure to effective socializing forces such as warm parenting or healthy self-esteem often fosters a characteristic adaption that tends to beget “successful” behaviors, thereby differentiating heroes from convicts. In this study, we investigate relations between psychopathy, principally its fearless dominance dimension, pride, and prosocial and antisocial behavior in a community sample (N = 339). Fearless dominance and self-centered impulsivity components of psychopathy yielded differential relations with authentic and hubristic pride (Tracy and Robins, 2004), such that fearless dominance was significantly positively correlated with both facets of pride while self-centered Impulsivity was significantly negatively correlated with authentic pride and significantly positively correlated with hubristic pride. Further, authentic pride moderated (potentiated) the relation between fearless dominance and transformational leadership, one of the two outcome measures for prosocial behavior employed in our investigation. Authentic pride did not moderate the relations between fearless dominance and either our other measure of prosocial behavior (heroism) or antisocial behavior, nor did positive parenting moderate the relations between psychopathy components and social behavior. Unexpectedly, hubristic pride significantly moderated the relation between impulsive-antisocial features and antisocial behavior in a protective manner. PMID:29520247
Genetic Correlations Between Carcass Traits And Molecular Breeding Values In Angus Cattle
USDA-ARS?s Scientific Manuscript database
This research elucidated genetic relationships between carcass traits, ultrasound indicator traits, and their respective molecular breeding values (MBV). Animals whose MBV data were used to estimate (co)variance components were not previously used in development of the MBV. Results are presented fo...
Genomic Tools in Groundnut Breeding Program: Status and Perspectives
Janila, P.; Variath, Murali T.; Pandey, Manish K.; Desmae, Haile; Motagi, Babu N.; Okori, Patrick; Manohar, Surendra S.; Rathnakumar, A. L.; Radhakrishnan, T.; Liao, Boshou; Varshney, Rajeev K.
2016-01-01
Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut. PMID:27014312
Zsögön, Agustin; Cermak, Tomas; Voytas, Dan; Peres, Lázaro Eustáquio Pereira
2017-03-01
The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the world's main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
García-Ruiz, Adriana; Cole, John B; VanRaden, Paul M; Wiggans, George R; Ruiz-López, Felipe J; Van Tassell, Curtis P
2016-07-12
Seven years after the introduction of genomic selection in the United States, it is now possible to evaluate the impact of this technology on the population. Selection differential(s) (SD) and generation interval(s) (GI) were characterized in a four-path selection model that included sire(s) of bulls (SB), sire(s) of cows (SC), dam(s) of bulls (DB), and dam(s) of cows (DC). Changes in SD over time were estimated for milk, fat, and protein yield; somatic cell score (SCS); productive life (PL); and daughter pregnancy rate (DPR) for the Holstein breed. In the period following implementation of genomic selection, dramatic reductions were seen in GI, especially the SB and SC paths. The SB GI reduced from ∼7 y to less than 2.5 y, and the DB GI fell from about 4 y to nearly 2.5 y. SD were relatively stable for yield traits, although modest gains were noted in recent years. The most dramatic response to genomic selection was observed for the lowly heritable traits DPR, PL, and SCS. Genetic trends changed from close to zero to large and favorable, resulting in rapid genetic improvement in fertility, lifespan, and health in a breed where these traits eroded over time. These results clearly demonstrate the positive impact of genomic selection in US dairy cattle, even though this technology has only been in use for a short time. Based on the four-path selection model, rates of genetic gain per year increased from ∼50-100% for yield traits and from threefold to fourfold for lowly heritable traits.
García-Ruiz, Adriana; Cole, John B.; VanRaden, Paul M.; Wiggans, George R.; Ruiz-López, Felipe J.; Van Tassell, Curtis P.
2016-01-01
Seven years after the introduction of genomic selection in the United States, it is now possible to evaluate the impact of this technology on the population. Selection differential(s) (SD) and generation interval(s) (GI) were characterized in a four-path selection model that included sire(s) of bulls (SB), sire(s) of cows (SC), dam(s) of bulls (DB), and dam(s) of cows (DC). Changes in SD over time were estimated for milk, fat, and protein yield; somatic cell score (SCS); productive life (PL); and daughter pregnancy rate (DPR) for the Holstein breed. In the period following implementation of genomic selection, dramatic reductions were seen in GI, especially the SB and SC paths. The SB GI reduced from ∼7 y to less than 2.5 y, and the DB GI fell from about 4 y to nearly 2.5 y. SD were relatively stable for yield traits, although modest gains were noted in recent years. The most dramatic response to genomic selection was observed for the lowly heritable traits DPR, PL, and SCS. Genetic trends changed from close to zero to large and favorable, resulting in rapid genetic improvement in fertility, lifespan, and health in a breed where these traits eroded over time. These results clearly demonstrate the positive impact of genomic selection in US dairy cattle, even though this technology has only been in use for a short time. Based on the four-path selection model, rates of genetic gain per year increased from ∼50–100% for yield traits and from threefold to fourfold for lowly heritable traits. PMID:27354521
QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance.
Klein, Anthony; Houtin, Hervé; Rond, Céline; Marget, Pascal; Jacquin, Françoise; Boucherot, Karen; Huart, Myriam; Rivière, Nathalie; Boutet, Gilles; Lejeune-Hénaut, Isabelle; Burstin, Judith
2014-06-01
Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.
Estimating age from the pubic symphysis: A new component-based system.
Dudzik, Beatrix; Langley, Natalie R
2015-12-01
The os pubis is one of the most widely used areas of the skeleton for age estimation. Current pubic symphyseal aging methods for adults combine the morphology associated with the developmental changes that occur into the mid-30s with the degenerative changes that span the latter portion of the age spectrum. The most popular methods are phase-based; however, the definitions currently used to estimate age intervals may not be adequately defined and/or accurately understood by burgeoning researchers and seasoned practitioners alike. This study identifies patterns of growth and maturation in the pubic symphysis to derive more precise age estimates for individuals under 40 years of age. Emphasis is placed on young adults to provide more informative descriptions of epiphyseal changes associated with the final phases of skeletal maturation before degeneration commences. This study investigated macroscopic changes in forensically relevant modern U.S. samples of known age, sex, and ancestry from the Maricopa County Forensic Science Center in Phoenix, Arizona as well as donated individuals from the William M. Bass Forensic and Donated Collections at the University of Tennessee, Knoxville (n=237). Age-related traits at locations with ontogenetic and biomechanical relevance were broken into components and scored. The components included the pubic tubercle, the superior apex of the face, the ventral and dorsal demifaces, and the ventral and dorsal symphyseal margins. Transition analysis was applied to elucidate the transition ages between the morphological states of each component. The categorical scores and transition analysis ages were subjected to multinomial logistic regression and decision tree analysis to derive accurate age interval estimates. Results of these analyses were used to construct a decision tree-style flow chart for practitioner use. High inter-rater agreement of the individual component traits (linear weighted kappa values ≥0.665 for all traits in the decision tree) indicates that the method offers unambiguous scoring for age-related changes of the pubic symphysis. Validation of the flow chart on a sample of 47 individuals provided by the Montana State Crime Lab yielded 94% accuracy overall, indicating that the method has the potential to deliver precise and accurate age estimates of individuals prior to the onset of advanced degenerative changes. A pubic symphysis that exhibits epiphyseal changes and/or billowing is suitable for this method; a pubic symphysis that exhibits degenerative changes (i.e. porosity and/or rim erosion) is not suitable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Trait impulsivity components correlate differently with proactive and reactive control
Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju
2017-01-01
The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems. PMID:28423021
Trait impulsivity components correlate differently with proactive and reactive control.
Huang, Shihua; Zhu, Zude; Zhang, Wei; Chen, Yu; Zhen, Shuangju
2017-01-01
The relationship between impulsivity and cognitive control is still unknown. We hypothesized that trait impulsivity would differentially correlate with specific cognitive control processes. Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor, attention, and non-planning impulsiveness components. Cognitive control was measured by a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-three participants performed the Stroop task while they were scanned by functional magnetic resonance imaging. Proactive and reactive control involved increased activity in the fronto-parietal network, and brain activity was associated with impulsivity scores. Specifically, higher motor impulsiveness was associated with a larger proactive control effect in the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was associated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern suggests that impulsivity trait components are attributable to different cognitive control subsystems.
Hufnagel, Barbara; de Sousa, Sylvia M.; Assis, Lidianne; Guimaraes, Claudia T.; Leiser, Willmar; Azevedo, Gabriel C.; Negri, Barbara; Larson, Brandon G.; Shaff, Jon E.; Pastina, Maria Marta; Barros, Beatriz A.; Weltzien, Eva; Rattunde, Henry Frederick W.; Viana, Joao H.; Clark, Randy T.; Falcão, Alexandre; Gazaffi, Rodrigo; Garcia, Antonio Augusto F.; Schaffert, Robert E.; Kochian, Leon V.; Magalhaes, Jurandir V.
2014-01-01
Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil. PMID:25189534
Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments
Dia, Mahendra; Wehner, Todd C; Perkins-Veazie, Penelope; Hassell, Richard; Price, Daniel S; Boyhan, George E; Olson, Stephen M; King, Stephen R; Davis, Angela R; Tolla, Gregory E; Bernier, Jerome; Juarez, Benito
2016-01-01
Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html. PMID:28066557
Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R
2017-01-01
Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.
Polania, Jose; Rao, Idupulapati M.; Cajiao, Cesar; Grajales, Miguel; Rivera, Mariela; Velasquez, Federico; Raatz, Bodo; Beebe, Stephen E.
2017-01-01
Drought is the major abiotic stress factor limiting yield of common bean (Phaseolus vulgaris L.) in smallholder systems in Latin America and eastern and southern Africa; where it is a main source of protein in the daily diet. Identification of shoot and root traits associated with drought resistance contributes to improving the process of designing bean genotypes adapted to drought. Field and greenhouse studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia to determine the relationship between grain yield and different shoot and root traits using a recombinant inbred lines (RILs) population (MD23–24 × SEA 5) of common bean. The main objectives of this study were to identify: (i) specific shoot and root morpho-physiological traits that contribute to improved resistance to drought and that could be useful as selection criteria in breeding beans for drought resistance; and (ii) superior genotypes with desirable shoot and root traits that could serve as parents in breeding programs that are aimed at improving drought resistance. A set of 121 bean genotypes (111 RILs, 2 parents, 8 checks) belonging to the Mesoamerican gene pool and one cowpea variety were evaluated under field conditions with two levels of water supply (irrigated and rainfed) over three seasons. To complement field studies, a greenhouse study was conducted using plastic cylinders with soil inserted into PVC pipes, to determine the relationship between grain yield obtained under field conditions with different root traits measured under greenhouse conditions. Resistance to drought stress was positively associated with a deeper and vigorous root system, better shoot growth, and superior mobilization of photosynthates to pod and seed production. The drought resistant lines differed in their root characteristics, some of them with a vigorous and deeper root system while others with a moderate to shallow root system. Among the shoot traits measured, pod harvest index, and seed number per area could serve as useful selection criteria for assessing sink strength and for genetic improvement of drought resistance in common bean. PMID:28316609
Farmers' breeding practices and traits of economic importance for indigenous chicken in RWANDA.
Mahoro, J; Muasya, T K; Mbuza, F; Mbuthia, J; Kahi, A K
2018-01-01
Data on breeding practices and traits of economic importance for the indigenous chicken (IC) were collected through personal interviews using structured questionnaires and direct observations of chicken management practices. The study was conducted from November 2015 to January 2016 in Rwamagana, Rulindo, Ruhango, Kicukiro and Muhanga districts of Rwanda. Data were collected and analysed through computation of indices, which represented a weighted average of all rankings of a specific trait. Spearman's non-parametric rank correlation was calculated for ranking of traits of economic importance to indicate the directional effects. The results on chicken ecotypes and their attributes showed that prolificacy, mature weight, disease tolerance, egg number and heat tolerance were highly preferred. The dwarf ecotype was most abundantly reared (38.84%) and considered to be significantly smaller and to have poorer growth rate, but to have better prolificacy than other indigenous chicken ecotypes. Selection of breeding cock and hen was based on disease tolerance, body weight at sexual maturity, body size and growth rate. In addition, for hen, mothering ability and egg fertility (Fer) were considered. Indices for the traits perceived by farmers as of primary economic importance were egg yield (0.093), disease tolerance (0.091), high growth rate (0.089), prolificacy (0.088), high body weight (0.087) and egg fertility (0.083). The most important traits considered by the marketers were body weight (BW), disease tolerance (Dtol), plumage colour (Pcol), egg yolk colour (EYC), meat quality (MQ), growth rate (GR) and egg yield (EY) whereas for consumers, meat quality, egg yolk colour, egg yield, body weight and growth rate were considered. Among traits perceived as important by farmers, a positive and significant correlation was found between BW and GR and Fer. Correlation was moderate for BW and prolificacy, drought tolerance (Drtol), Dtol and EYC. BW was negatively correlated with temperament (Temp), heat tolerance, Pcol and egg shell colour (ESC). Regarding marketers and consumers' preference rank correlation, positive and significant correlation was between BW and GR and MQ. As such, appropriate ecotypes (indigenous chicken) which have these characteristics need to be identified and utilised more based on their performance and adaption to the environment conditions to ensure efficient IC production.
Polania, Jose; Rao, Idupulapati M; Cajiao, Cesar; Grajales, Miguel; Rivera, Mariela; Velasquez, Federico; Raatz, Bodo; Beebe, Stephen E
2017-01-01
Drought is the major abiotic stress factor limiting yield of common bean ( Phaseolus vulgaris L.) in smallholder systems in Latin America and eastern and southern Africa; where it is a main source of protein in the daily diet. Identification of shoot and root traits associated with drought resistance contributes to improving the process of designing bean genotypes adapted to drought. Field and greenhouse studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia to determine the relationship between grain yield and different shoot and root traits using a recombinant inbred lines (RILs) population (MD23-24 × SEA 5) of common bean. The main objectives of this study were to identify: (i) specific shoot and root morpho-physiological traits that contribute to improved resistance to drought and that could be useful as selection criteria in breeding beans for drought resistance; and (ii) superior genotypes with desirable shoot and root traits that could serve as parents in breeding programs that are aimed at improving drought resistance. A set of 121 bean genotypes (111 RILs, 2 parents, 8 checks) belonging to the Mesoamerican gene pool and one cowpea variety were evaluated under field conditions with two levels of water supply (irrigated and rainfed) over three seasons. To complement field studies, a greenhouse study was conducted using plastic cylinders with soil inserted into PVC pipes, to determine the relationship between grain yield obtained under field conditions with different root traits measured under greenhouse conditions. Resistance to drought stress was positively associated with a deeper and vigorous root system, better shoot growth, and superior mobilization of photosynthates to pod and seed production. The drought resistant lines differed in their root characteristics, some of them with a vigorous and deeper root system while others with a moderate to shallow root system. Among the shoot traits measured, pod harvest index, and seed number per area could serve as useful selection criteria for assessing sink strength and for genetic improvement of drought resistance in common bean.
Leibman, Mark; Shryock, Jereme J; Clements, Michael J; Hall, Michael A; Loida, Paul J; McClerren, Amanda L; McKiness, Zoe P; Phillips, Jonathan R; Rice, Elena A; Stark, Steven B
2014-09-01
Grain yield from maize hybrids continues to improve through advances in breeding and biotechnology. Despite genetic improvements to hybrid maize, grain yield from distinct maize hybrids is expected to vary across growing locations due to numerous environmental factors. In this study, we examine across-location variation in grain yield among maize hybrids in three case studies. The three case studies examine hybrid improvement through breeding, introduction of an insect protection trait or introduction of a transcription factor trait associated with increased yield. In all cases, grain yield from each hybrid population had a Gaussian distribution. Across-location distributions of grain yield from each hybrid partially overlapped. The hybrid with a higher mean grain yield typically outperformed its comparator at most, but not all, of the growing locations (a 'win rate'). These results suggest that a broad set of environmental factors similarly impacts grain yields from both conventional- and biotechnology-derived maize hybrids and that grain yields among two or more hybrids should be compared with consideration given to both mean yield performance and the frequency of locations at which each hybrid 'wins' against its comparators. From an economic standpoint, growers recognize the value of genetically improved maize hybrids that outperform comparators in the majority of locations. Grower adoption of improved maize hybrids drives increases in average U.S. maize grain yields and contributes significant value to the economy. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Su, Chengfu; Wang, Wei; Gong, Shunliang; Zuo, Jinghui; Li, Shujiang; Xu, Shizhong
2017-01-01
Increasing grain yield is the ultimate goal for maize breeding. High resolution quantitative trait loci (QTL) mapping can help us understand the molecular basis of phenotypic variation of yield and thus facilitate marker assisted breeding. The aim of this study is to use genotyping-by-sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of all F2 individuals from a cross between two varieties of maize that are in clear contrast in yield and related traits. A set of 199 F2 progeny derived from the cross of varieties SG-5 and SG-7 were generated and genotyped by GBS. A total of 1,046,524,604 reads with an average of 5,258,918 reads per F2 individual were generated. This number of reads represents an approximately 0.36-fold coverage of the maize reference genome Zea_mays.AGPv3.29 for each F2 individual. A total of 68,882 raw SNPs were discovered in the F2 population, which, after stringent filtering, led to a total of 29,927 high quality SNPs. Comparative analysis using these physically mapped marker loci revealed a higher degree of synteny with the reference genome. The SNP genotype data were utilized to construct an intra-specific genetic linkage map of maize consisting of 3,305 bins on 10 linkage groups spanning 2,236.66 cM at an average distance of 0.68 cM between consecutive markers. From this map, we identified 28 QTLs associated with yield traits (100-kernel weight, ear length, ear diameter, cob diameter, kernel row number, corn grains per row, ear weight, and grain weight per plant) using the composite interval mapping (CIM) method and 29 QTLs using the least absolute shrinkage selection operator (LASSO) method. QTLs identified by the CIM method account for 6.4% to 19.7% of the phenotypic variation. Small intervals of three QTLs (qCGR-1, qKW-2, and qGWP-4) contain several genes, including one gene (GRMZM2G139872) encoding the F-box protein, three genes (GRMZM2G180811, GRMZM5G828139, and GRMZM5G873194) encoding the WD40-repeat protein, and one gene (GRMZM2G019183) encoding the UDP-Glycosyltransferase. The work will not only help to understand the mechanisms that control yield traits of maize, but also provide a basis for marker-assisted selection and map-based cloning in further studies. PMID:28533786
Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology.
Xie, Quan; Li, Na; Yang, Yang; Lv, Yulong; Yao, Hongni; Wei, Rong; Sparkes, Debbie L; Ma, Zhengqiang
2018-05-01
Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains m -2 , grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of today's free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat 'Forno' × European spelt 'Oberkulmer' recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains m -2 , grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains m -2 , and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy.