Sample records for yield cooling ages

  1. Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics

    USGS Publications Warehouse

    Mix, A.C.; Morey, A.E.; Pisias, N.G.; Hostetler, S.W.

    1999-01-01

    The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5??to 6??C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.

  2. Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at

    Science.gov Websites

    NREL | Energy Systems Integration Facility | NREL Asetek Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at NREL Asetek's RackCDU liquid cooling system was installed and tested at the Energy Systems Integration Facility's (ESIF's) ultra-energy-efficient high-performance

  3. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    U-Pb SHRIMP zircon crystallization ages and Ar-Ar and K-Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U-Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar-Ar muscovite age of 182 ± 3 Ma and a K-Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U-Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K-Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K-Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K-Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian-Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198-182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern

  4. Cooling Models for Old White Dwarfs

    NASA Astrophysics Data System (ADS)

    Hansen, Brad M. S.

    1999-08-01

    We present new white dwarf cooling models that incorporate an accurate outer boundary condition based on new opacity and detailed radiative transfer calculations. We find that helium-atmosphere dwarfs cool considerably faster than has previously been claimed, while old hydrogen-atmosphere dwarfs will deviate significantly from blackbody appearance. We use our new models to derive age limits for the Galactic disk. We find that the Liebert, Dahn, & Monet luminosity function yields an age of only 6 Gyr if it is complete to stated limits. However, age estimates of individual dwarfs and the luminosity function of Oswalt et al. are both consistent with disk ages as large as ~11 Gyr. We have also used our models to place constraints on white dwarf dark matter in the Galactic halo. We find that previous attempts using inadequate cooling models were too severe and that direct detection limits allow a halo that is 11 Gyr old. If the halo is composed solely of helium-atmosphere dwarfs, the lower age limit is only 7.5 Gyr. We also demonstrate the importance of studying the cooling sequences of white dwarfs in globular clusters.

  5. Attenuated noradrenergic sensitivity during local cooling in aged human skin

    PubMed Central

    Thompson, Caitlin S; Holowatz, Lacy A; Kenney, W. Larry

    2005-01-01

    Reflex-mediated cutaneous vasoconstriction (VC) is impaired in older humans; however, it is unclear whether this blunted VC also occurs during local cooling, which mediates VC through different mechanisms. We tested the hypothesis that the sensitization of cutaneous vessels to noradrenaline (NA) during direct skin cooling seen in young skin is blunted in aged skin. In 11 young (18–30 years) and 11 older (62–76 years) men and women, skin blood flow was monitored at two forearm sites with laser Doppler (LD) flowmetry while local skin temperature was cooled and clamped at 24°C. Cutaneous vascular conductance (CVC; LD flux/mean arterial pressure) was expressed as percentage change from baseline (%ΔCVCbase). At one site, five doses of NA (10−10–10−2m) were sequentially infused via intradermal microdialysis during cooling while the other 24°C site served as control (Ringer solution + cooling). At control sites, VC due to cooling alone was similar in young versus older (−54 ± 5 versus −56 ± 3%ΔCVCbase, P= 0.46). In young, NA infusions induced additional dose-dependent VC (10−8, 10−6, 10−4 and 10−2m: −70 ± 2, −72 ± 3, −78 ± 3 and −79 ± 4%ΔCVCbase; P < 0.05 versus control). In older subjects, further VC did not occur until the highest infused dose of NA (10−2m: −70 ± 5%ΔCVCbase; P < 0.05 versus control). When cutaneous arterioles are sensitized to NA by direct cooling, young skin exhibits the capacity to further constrict to NA in a dose-dependent manner. However, older skin does not display enhanced VC capacity until treated with saturating doses of NA, possibly due to age-associated decrements in Ca2+ availability or α2C-adrenoceptor function. PMID:15705648

  6. The Cool White Dwarf Luminosity Function and the Age of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Ruiz, Maria Teresa; Bergeron, P.

    1998-04-01

    We present new optical and infrared data for the cool white dwarfs in the proper motion sample of Liebert, Dahn, & Monet. Stellar properties--surface chemical composition, effective temperature, radius, surface gravity, mass, and luminosity--are determined from these data by using the model atmospheres of Bergeron, Saumon, & Wesemael. The space density contribution is calculated for each star and the luminosity function (LF) for cool white dwarfs is determined. Comparing the LF to the most recent cooling sequences by Wood implies that the age of the local region of the Galactic disk is 8 +/- 1.5 Gyr. This result is consistent with the younger ages now being derived for the globular clusters and the universe itself.

  7. Hydroxyl Radical Fluorescence and Quantum Yield Following Lyman-α Photoexcitation of Water Vapor in a Room Temperature Cell and Cooled in a Supersonic Expansion.

    PubMed

    Young, Justin W; Booth, Ryan S; Vogelhuber, Kristen M; Stearns, Jaime A; Annesley, Christopher J

    2018-06-28

    Photoexcitation of water by Lyman-α (121.6 nm) induces a dissociation reaction that produces OH(A 2 Σ + ) + H. Despite this reaction being part of numerous studies, a combined understanding of the product and fluorescence yields is still lacking. Here, the rotational and vibrational distributions of OH(A) are determined from dispersed fluorescence following photoexcitation of both room-temperature and jet-cooled water vapor, for the first time in the same experiment. This work compares new data of state-resolved fluorescence with literature molecular branching ratios and brings previous studies into agreement through careful consideration of OH(A) fluorescent and predissociation lifetimes and confirms a fluorescent quantum yield of 8%. Comparison of the room-temperature and jet-cooled OH(A) populations indicate the temperature of H 2 O prior to excitation has subtle effects on the OH(A) population distribution, such as altering the rotational distribution in the ν' = 0 population and affecting the population in the ν' = 1 state. These results indicate jet-cooled water vapor may have a 1% higher fluorescence quantum yield compared to room-temperature water vapor.

  8. Regionally coherent Little Ice Age cooling in the Atlantic Warm Pool

    USGS Publications Warehouse

    Richey, J.N.; Poore, R.Z.; Flower, B.P.; Quinn, T.M.; Hollander, D.J.

    2009-01-01

    We present 2 new decadal-resolution foraminiferal Mg/Ca-SST records covering the past 6-8 centuries from the northern Gulf of Mexico (GOM). These records provide evidence for a Little Ice Age (LIA) cooling of 2??C, consistent with a published Mg/Ca record from Pigmy Basin. Comparison of these 3 records with existing SST proxy records from the GOM-Caribbean region show that the magnitude of LIA cooling in the Atlantic Warm Pool (AWP) was significantly larger than the mean hemispheric cooling of <1??C. We propose that a reduction in the intensity and spatial extent of the AWP during the LIA, combined with associated changes in atmospheric circulation may account for the regional SST patterns observed in the GOM-Caribbean region during the LIA. Copyright 2009 by the American Geophysical Union.

  9. Kinematic Modeling of Central Nepal: Thermochronometer Cooling Ages as a Constraint for Balanced Cross Sections

    NASA Astrophysics Data System (ADS)

    Olree, E.; Robinson, D. M.; McQuarrie, N.; Ghoshal, S.; Olsen, J.

    2016-12-01

    Using balanced cross sections, one can visualize a valid and admissible interpretation of the surface and subsurface data. Khanal (2014) and Cross (2014) produced two valid and admissible cross sections along the Marsyandi River in central Nepal. However, thermochronologic data adds another dimension that must be adhered to when producing valid and admissible balanced cross sections. Since the previous cross sections were produced, additional zircon-helium (ZHe) cooling ages along the Marsyandi River show ages of 1 Ma near the Main Central thrust in the hinterland to 4 Ma near the Main Boundary thrust closer to the foreland. This distribution of cooling ages requires recent uplift in the hinterland, which is not present in the cross sections. Although a restored version of the Khanal (2014) cross section is sequentially deformed using 2D Move, the kinematic sequence implied in the cross section is inconsistent with the ZHe age distribution. The hinterland dipping duplex proposed by Khanal would require cooling ages that are oldest near the Main Central thrust and young southwards toward the active ramp located 80 km north of the Main Frontal thrust. Instead, the 4 Ma age near the Main Boundary thrust and the increasingly younger ages to the north could be produced by either a foreland-dipping Lesser Himalayan duplex, which would keep active uplift in the north, or by translation of the hinterland dipping duplex southward over the ramp, moving the active thrust ramp northward. To address this problem, a new balanced cross section was produced using both new mapping through the region and the ZHe age distribution as additional constraints. The section was then restored and sequentially deformed in 2D Move. This study illustrates that multiple cross sections can be viable and admissible; however, they can still be incorrect. Thermochronology places additional constraints on the permissible geometries, and thus increases our ability to predict subsurface geometries

  10. Cooling treatment of olive paste during the oil processing: Impact on the yield and extra virgin olive oil quality.

    PubMed

    Veneziani, G; Esposto, S; Taticchi, A; Urbani, S; Selvaggini, R; Di Maio, I; Sordini, B; Servili, M

    2017-04-15

    In recent years, the temperature of processed olives in many olive-growing areas was often close to 30°C, due to the global warming and an early harvesting period. Consequently, the new trends in the extraction process have to include the opportunity to cool the olives or olive paste before processing to obtain high quality EVOO. A tubular thermal exchanger was used for a rapid cooling treatment (CT) of olive paste after crushing. The results did not show a significant difference in the oil yield or any modifications in the legal parameters. The cooling process determined a significant improvement of phenolic compounds in all the three Italian cultivar EVOOs analyzed, whereas the volatile compounds showed a variability largely affected by the genetic origin of the olives with C 6 aldehydes that seem to be more stable than C 6 alcohols and esters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.

    PubMed

    García-Berro, Enrique; Torres, Santiago; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi

    2010-05-13

    NGC 6791 is a well studied open cluster that it is so close to us that can be imaged down to very faint luminosities. The main-sequence turn-off age ( approximately 8 Gyr) and the age derived from the termination of the white dwarf cooling sequence ( approximately 6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, (22)Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallize and phase separation of the main constituents of the core of a typical white dwarf ((12)C and (16)O) is expected to occur. This sequence of events is expected to introduce long delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, resolving the age discrepancy for NGC 6791.

  12. Reassessment of ice-age cooling of the tropical ocean and atmosphere

    USGS Publications Warehouse

    Hostetler, S.W.; Mix, A.C.

    1999-01-01

    The CLIMAP project's reconstruction of past sea surface temperature inferred limited ice-age cooling in the tropical oceans. This conclusion has been controversial, however, because of the greater cooling indicated by other terrestrial and ocean proxy data. A new faunal sea surface temperature reconstruction, calibrated using the variation of foraminiferal species through time, better represents ice-age faunal assemblages and so reveals greater cooling than CLIMAP in the equatorial current systems of the eastern Pacific and tropical Atlantic oceans. Here we explore the climatic implications of this revised sea surface temperature field for the Last Glacial Maximum using an atmospheric general circulation model. Relative to model results obtained using CLIMAP sea surface temperatures, the cooler equatorial oceans modify seasonal air temperatures by 1-2??C or more across parts of South America, Africa and southeast Asia and cause attendant changes in regional moisture patterns. In our simulation of the Last Glacial Maximum, the Amazon lowlands, for example, are cooler and drier, whereas the Andean highlands are cooler and wetter than the control simulation. Our results may help to resolve some of the apparent disagreements between oceanic and continental proxy climate data. Moreover, they suggest a wind-related mechanism for enhancing the export of water vapour from the Atlantic to the Indo-Pacific oceans, which may link variations in deep-water production and high-latitude climate changes to equatorial sea surface temperatures.

  13. Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Gilmore, Michelle E.; McQuarrie, Nadine; Eizenhöfer, Paul R.; Ehlers, Todd A.

    2018-05-01

    In this study, reconstructions of a balanced geologic cross section in the Himalayan fold-thrust belt of eastern Bhutan are used in flexural-kinematic and thermokinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, topography, and radiogenic heat production. The kinematics for each scenario are created by sequentially deforming the cross section with ˜ 10 km deformation steps while applying flexural loading and erosional unloading at each step to develop a high-resolution evolution of deformation, erosion, and burial over time. By assigning ages to each increment of displacement, we create a suite of modeled scenarios that are input into a 2-D thermokinematic model to predict cooling ages. Comparison of model-predicted cooling ages to published thermochronometer data reveals that cooling ages are most sensitive to (1) the location and size of fault ramps, (2) the variable shortening rates between 68 and 6.4 mm yr-1, and (3) the timing and magnitude of out-of-sequence faulting. The predicted ages are less sensitive to (4) radiogenic heat production and (5) estimates of topographic evolution. We used the observed misfit of predicted to measured cooling ages to revise the cross section geometry and separate one large ramp previously proposed for the modern décollement into two smaller ramps. The revised geometry results in an improved fit to observed ages, particularly young AFT ages (2-6 Ma) located north of the Main Central Thrust. This study presents a successful approach for using thermochronometer data to test the viability of a proposed cross section geometry and kinematics and describes a viable approach to estimating the first-order topographic evolution of a compressional orogen.

  14. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Treesearch

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  15. Effects of post-reflow cooling rate and thermal aging on growth behavior of interfacial intermetallic compound between SAC305 solder and Cu substrate

    NASA Astrophysics Data System (ADS)

    Hu, Xiaowu; Xu, Tao; Jiang, Xiongxin; Li, Yulong; Liu, Yi; Min, Zhixian

    2016-04-01

    The interfacial reactions between Cu and Sn3Ag0.5Cu (SAC305) solder reflowed under various cooling rates were investigated. It is found that the cooling rate is an important parameter in solder reflow process because it influences not only microstructure of solder alloy but also the morphology and growth of intermetallic compounds (IMCs) formed between solder and Cu substrate. The experimental results indicate that only scallop-like Cu6Sn5 IMC layer is observed between solder and Cu substrate in case of water cooling and air cooling, while bilayer composed of scallop-like Cu6Sn5 and thin layer-like Cu3Sn is detected under furnace cooling due to sufficient reaction time to form Cu3Sn between Cu6Sn5 IMC and Cu substrate which resulted from slow cooling rate. Samples with different reflow cooling rates were further thermal-aged at 423 K. And it is found that the thickness of IMC increases linearly with square root of aging time. The growth constants of interfacial IMC layer during aging were obtained and compared for different cooling rates, indicating that the IMC layer thickness increased faster in samples under low cooling rate than in the high cooling rate under the same aging condition. The long prismatic grains were formed on the existing interfacial Cu6Sn5 grains to extrude deeply into solder matrix with lower cooling rate and long-term aging, and the Cu6Sn5 grains coarsened linearly with cubic root of aging time.

  16. Reflex vasoconstriction in aged human skin increasingly relies on Rho kinase-dependent mechanisms during whole body cooling

    PubMed Central

    Jennings, John D.; Holowatz, Lacy A.; Kenney, W. Larry

    2009-01-01

    Primary human aging may be associated with augmented Rho kinase (ROCK)-mediated contraction of vascular smooth muscle and ROCK-mediated inhibition of nitric oxide synthase (NOS). We hypothesized that the contribution of ROCK to reflex vasoconstriction (VC) is greater in aged skin. Cutaneous VC was elicited by 1) whole body cooling [mean skin temperature (Tsk) = 30.5°C] and 2) local norepinephrine (NE) infusion (1 × 10−6 M). Four microdialysis fibers were placed in the forearm skin of eight young (Y) and eight older (O) subjects for infusion of 1) Ringer solution (control), 2) 3 mM fasudil (ROCK inhibition), 3) 20 mM NG-nitro-l-arginine methyl ester (NOS inhibition), and 4) both ROCK + NOS inhibitors. Red cell flux was measured by laser-Doppler flowmetry over each site. Cutaneous vascular conductance (CVC) was calculated as flux/mean arterial pressure and normalized to baseline CVC (%ΔCVCbaseline). VC was reduced at the control site in O during cooling (Y, −34 ± 3; and O, −18 ± 3%ΔCVCbaseline; P < 0.001) and NE infusion (Y, −53 ± 4, and O, −41 ± 9%ΔCVCbaseline; P = 0.006). Fasudil attenuated VC in both age groups during mild cooling; however, this reduction remained only in O but not in Y skin during moderate cooling (Y, −30 ± 5; and O, −7 ± 1%ΔCVCbaseline; P = 0.016) and was not altered by NOS inhibition. Fasudil blunted NE-mediated VC in both age groups (Y, −23 ± 4; and O, −7 ± 3%ΔCVCbaseline; P < 0.01). Cumulatively, these data indicate that reflex VC is more reliant on ROCK in aged skin such that approximately half of the total VC response to whole body cooling is ROCK dependent. PMID:19717729

  17. The Temperature and Cooling Age of the White Dwarf Companion to the Millisecond Pulsar PSR B1855+09.

    PubMed

    van Kerkwijk MH; Bell; Kaspi; Kulkarni

    2000-02-10

    We report on Keck and Hubble Space Telescope observations of the binary millisecond pulsar PSR B1855+09. We detect its white dwarf companion and measure mF555W=25.90+/-0.12 and mF814W=24.19+/-0.11 (Vega system). From the reddening-corrected color, (mF555W-mF814W&parr0;0=1.06+/-0.21, we infer a temperature Teff=4800+/-800 K. The white dwarf mass is known accurately from measurements of the Shapiro delay of the pulsar signal, MC=0.258+0.028-0.016 M middle dot in circle. Hence, given a cooling model, one can use the measured temperature to determine the cooling age. The main uncertainty in the cooling models for such low-mass white dwarfs is the amount of residual nuclear burning, which is set by the thickness of the hydrogen layer surrounding the helium core. From the properties of similar systems, it has been inferred that helium white dwarfs form with thick hydrogen layers, with mass greater, similar3x10-3 M middle dot in circle, which leads to significant additional heating. This is consistent with expectations from simple evolutionary models of the preceding binary evolution. For PSR B1855+09, though, such models lead to a cooling age of approximately 10 Gyr, which is twice the spin-down age of the pulsar. It could be that the spin-down age were incorrect, which would call the standard vacuum dipole braking model into question. For two other pulsar companions, however, ages well over 10 Gyr are inferred, indicating that the problem may lie with the cooling models. There is no age discrepancy for models in which the white dwarfs are formed with thinner hydrogen layers ( less, similar3x10-4 M middle dot in circle).

  18. New Ar/Ar single grain mineral ages from Korean orogenic belts with implications for the Triassic cooling and exhumation history

    NASA Astrophysics Data System (ADS)

    de Jong, Koenraad; Ruffet, Gilles; Han, Seokyoung

    2013-04-01

    ductily deformed rocks in the mylonitised top of the Gyeonggi Massif yielded different 1? plateau ages: 242.8 ± 1.0 Ma and 240.3 ± 1.0 Ma for two chlorite-mica schists, and 219.7 ± 0.9 Ma for a garnet-bearing micaceous quartzite. Two amphibolites from Neoproterozoic orthogneiss in the Hongseong area yielded concordant 1? plateau ages of 228.1 ± 1.0 (biotite), 230.1 ± 1.0 (hornblende), and 229.8 ± 1.0 Ma (hornblende from a foliated garnet-bearing corona-textured amphibolite). 40Ar/39Ar laser-probe dating produced robust evidence that cooling and exhumation of once deeply buried rocks in different parts of Korea essentially occurred in middle to late Triassic time. The concordance of hornblende and mica ages in each of the target areas implies a rapid cooling, during at least part of the history, which seems not to have been coeval. This corroborates the observation that our Ar/Ar mineral ages are only a couple of million years younger than CHIME and SHRIMP U-Pb ages in accessory minerals, which are in the 230-255 Ma range in the uppermost Gyeonggi Massif and Imjingang Belt, and between 225-235 Ma in the Hongseong area. However, the much younger muscovite age from the mylonitic quartzite implies a prolonged recrystallization in the ductile shear zone in the uppermost Gyeonggi Massif. This is subject of ongoing research.

  19. Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Warren, Clare J.; Singh, Athokpam K.; Roberts, Nick M. W.; Regis, Daniele; Halton, Alison M.; Singh, Rajkumar B.

    2014-07-01

    The Zimithang Thrust juxtaposes two lithotectonic units of the Greater Himalayan Sequence in Arunachal Pradesh, NE India. Monazite U-Pb, muscovite 40Ar/39Ar and thermobarometric data from rocks in the hanging and footwall constrain the timing and conditions of their juxtaposition across the structure, and their subsequent cooling. Monazite grains in biotite-sillimanite gneiss in the hanging wall yield LA-ICP-MS U-Pb ages of 16 ± 0.2 to 12.7 ± 0.4 Ma. A schistose gneiss within the high strain zone yields overlapping-to-younger monazite ages of 14.9 ± 0.3 to 11.5 ± 0.3 Ma. Garnet-staurolite-mica schists in the immediate footwall yield older monazite ages of 27.3 ± 0.6 to 17.1 ± 0.2 Ma. Temperature estimates from Ti-in-biotite and garnet-biotite thermometry suggest similar peak temperatures were achieved in the hanging and footwalls (~ 525-650 °C). Elevated temperatures of ~ 700 °C appear to have been reached in the high strain zone itself and in the footwall further from the thrust. Single grain fusion 40Ar/39Ar muscovite data from samples either side of the thrust yield ages of ~ 7 Ma, suggesting that movement along the thrust juxtaposed the two units by the time the closure temperature of Ar diffusion in muscovite had been reached. These data confirm previous suggestions that major orogen-parallel out-of-sequence structures disrupt the Greater Himalayan Sequence at different times during Himalayan evolution, and highlight an eastwards-younging trend in 40Ar/39Ar muscovite cooling ages at equivalent structural levels along Himalayan strike.

  20. Some aspects of cool main sequence star ages derived from stellar rotation (gyrochronology)

    NASA Astrophysics Data System (ADS)

    Barnes, S. A.; Spada, F.; Weingrill, J.

    2016-09-01

    Rotation periods for cool stars can be measured with good precision by monitoring starspot light modulation. Observations have shown that the rotation periods of dwarf stars of roughly solar metallicity have such systematic dependencies on stellar age and mass that they can be used to derive reliable ages, a procedure called gyrochronology. We review the method and show illustrative cases, including recent ground- and space-based data. The age uncertainties approach 10 % in the best cases, making them a valuable complement to, and constraint on, asteroseismic or other ages. Edited, updated, and refereed version of a presentation at the WE-Heraeus-Seminar in Bad Honnef, Germany: Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

  1. Assessing the Potential Oleoresin Yields of Slash Pine Progenies at Juvenile Ages

    Treesearch

    A.E. Squillace; Charles R. Gansel

    1968-01-01

    The potential oleoresin yields of slash pine progenies can be assessed at juvenile ages, 7 to 8 years earlier than with previous methods. Seeds are sown in peat pots, outplanted shortly after germination at a spacing of 14 by 3 feet, and given intensive cultural treatment. At 26 years from seed, when the trees average about 9 feet tall, their potential yields are...

  2. Grass-legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years.

    PubMed

    Helgadóttir, Áslaug; Suter, Matthias; Gylfadóttir, Thórey Ó; Kristjánsdóttir, Thórdís A; Lüscher, Andreas

    2018-05-22

    Grassland-based livestock systems in cool maritime regions are commonly dominated by grass monocultures receiving relatively high levels of fertilizer. The current study investigated whether grass-legume mixtures can improve the productivity, resource efficiency and robustness of yield persistence of cultivated grassland under extreme growing conditions over a period of 5 years. Monocultures and mixtures of two grasses (Phleum pratense and Festuca pratensis) and two legumes (Trifolium pratense and Trifolium repens), one of which was fast establishing and the other temporally persistent, were sown in a field trial. Relative abundance of the four species in the mixtures was systematically varied at sowing. The plots were maintained under three N levels (20, 70 and 220 kg N ha-1 year-1) and harvested twice a year for five consecutive years. Yields of individual species and interactions between all species present were modelled to estimate the species diversity effects. Significant positive diversity effects in all individual years and averaged across the 5 years were observed. Across years, the four-species equi-proportional mixture was 71 % (N20: 20 kg N ha-1 year-1) and 51 % (N70: 70 kg N ha-1 year-1) more productive than the average of monocultures, and the highest yielding mixture was 36 % (N20) and 39 % (N70) more productive than the highest yielding monoculture. Importantly, diversity effects were also evident at low relative abundances of either species group, grasses or legumes in the mixture. Mixtures suppressed weeds significantly better than monocultures consistently during the course of the experiment at all N levels. The results show that even in the less productive agricultural systems in the cool maritime regions grass-legume mixtures can contribute substantially and persistently to a more sustainable agriculture. Positive grass-legume interactions suggest that symbiotic N2 fixation is maintained even under these marginal conditions, provided that

  3. Observations of Static Strain-Aging in Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe, R. D.; Lewandowski, J. J.; Oliver, B. F.; Kaufman, M. J.

    1996-01-01

    Static strain-aging has been investigated in eight polycrystalline NiAl alloys. After annealing at 1100 K for 7200 s followed by furnace cooling, high-purity, nitrogen-doped, and titanium-doped alloys exhibited continuous yielding, while conventional-purity and carbon-doped alloys exhibited distinct upper yield points and Luders strains. Either water quenching from 1100 K or prestraining via hydrostatic pressurization suppressed the yield points in the latter alloys, but they could be reintroduced by further annealing treatments. Yield points could be reintroduced more rapidly if the specimens were prestrained uniaxially rather than hydrostatically, owing to the arrangement of dislocations into cell structures during uniaxial deformation. Chemical analysis suggests that the species responsible for strain-aging is interstitial carbon.

  4. Countering Ice Ages: Re-directing Public Concern from Global Warming (GW) to Global Cooling (GC)

    NASA Astrophysics Data System (ADS)

    Singer, S. F.

    2016-02-01

    I present here three arguments in favor of such a drastic shift - which involves also a shift in current policies, such as mitigation of the greenhouse (GH) gas carbon dioxide. 1. Historical evidence shows that cooling, even on a regional or local scale, is much more damaging than warming. The key threat is to agriculture, leading to failure of harvests, followed by famine, starvation, disease, and mass deaths. 2. Also, GC is reasonably sure, while GW is iffy. The evidence from deep-sea sediment cores and ice cores shows some 17 (Milankovitch-style) glaciations in the past 2 million years, each typically lasting 100,000 years, interrupted by warm inter-glacials, typically around 10,000-yr duration. The most recent glaciation ended rather suddenly about 12,000 years ago. We are now in the warm Holocene, which is expected to end soon. Most of humanity may not survive the next, inevitable glaciation. We need to consider also the warming-cooling (Dansgaard-Oeschger-Bond - DOB) cycles, which seem solar-controlled and have a period of approx 1000-1500 years; its most recent cooling phase, the "Little Ice Age" (LIA), ended about 200 years ago. For details, see Unstoppable Global Warming: Every 1500 years by Singer &Avery [2007]. 3. Available technology seems adequate to assure human survival - at least in industrialized nations. The main threat is warfare, driven by competition for food and other essential resources. With nuclear weapons and delivery systems widely dispersed, the outcome of future wars is difficult to predict. Using geo-engineering to overcome a future cooling looks promising for both types of ice ages - with relatively low cost and low risk to the physical and biological environment. I will describe how to neutralize the "trigger" of major glaciations, and propose a particular greenhouse scheme that may counter the cooling phase of DOB cycles.

  5. Relationships of concentrations of certain blood constituents with milk yield and age of cows in dairy herds.

    PubMed

    Kitchenham, B A; Rowlands, G J; Shorbagi, H

    1975-05-01

    Regression analyses were performed on data from 48 Compton metabolic profile tests relating the concentrations of certain constituents in the blood of dairy cows to their milk yield, age and stage of lactation. The common partial regression coefficients for milk yield, age and stage of lactation were estimated for each blood constituent. The relationships of greatest statistical significance were between the concentrations of inorganic phosphate and globulin and age, and the concentration of albumin and milk yield.

  6. Effect of intensified feeding of heifer calves on growth, pubertal age, calving age, milk yield, and economics.

    PubMed

    Davis Rincker, L E; Vandehaar, M J; Wolf, C A; Liesman, J S; Chapin, L T; Weber Nielsen, M S

    2011-07-01

    The objective of this study was to determine if increasing the energy and protein intake of heifer calves would affect growth rates, age at puberty, age at calving, and first lactation milk yield. A second objective was to perform an economic analysis of this feeding program using feed costs, number of nonproductive days, and milk yield data. Holstein heifer calves born at the Michigan State Dairy Cattle Teaching and Research Center were randomly assigned to 1 of 2 dietary treatments (n=40/treatment) that continued from 2 d of age until weaning at 42 d of age. The conventional diet consisted of a standard milk replacer [21.5% crude protein (CP), 21.5% fat] fed at 1.2% of body weight (BW) on a dry matter basis and starter grain (19.9% CP) to attain 0.45 kg of daily gain. The intensive diet consisted of a high-protein milk replacer (30.6% CP, 16.1% fat) fed at 2.1% of BW on a dry matter basis and starter grain (24.3% CP) to achieve 0.68 kg of daily gain. Calves were gradually weaned from milk replacer by decreasing the amount offered for 5 and 12 d before weaning for the conventional and intensive diets, respectively. All calves were completely weaned at 42 d of age and kept in hutches to monitor individual starter consumption in the early postweaning period. Starting from 8 wk of age, heifers on both treatments were fed and managed similarly for the duration of the study. Body weight and skeletal measurements were taken weekly until 8 wk of age, and once every 4 wk thereafter until calving. Calves consuming the intensive diet were heavier, taller, and wider at weaning. The difference in withers height and hip width was carried over into the early post-weaning period, but a BW difference was no longer evident by 12 wk of age. Calves fed the intensive diet were younger and lighter at the onset of puberty. Heifers fed the high-energy and protein diet were 15 d younger at conception and 14 d younger at calving than heifers fed the conventional diet. Body weight after

  7. Effect of healthy aging on renal vascular responses to local cooling and apnea

    PubMed Central

    Patel, Hardikkumar M.; Mast, Jessica L.; Sinoway, Lawrence I.

    2013-01-01

    Sympathetically mediated renal vasoconstriction may contribute to the pathogenesis of hypertension in older adults, but empirical data in support of this concept are lacking. In 10 young (26 ± 1 yr) and 11 older (67 ± 2 yr) subjects, we quantified acute hemodynamic responses to three sympathoexcitatory stimuli: local cooling of the forehead, cold pressor test (CPT), and voluntary apnea. We hypothesized that all stimuli would increase mean arterial blood pressure (MAP) and renal vascular resistance index (RVRI) and that aging would augment these effects. Beat-by-beat MAP, heart rate (HR), and renal blood flow velocity (from Doppler) were measured in the supine posture, and changes from baseline were compared between groups. In response to 1°C forehead cooling, aging was associated with an augmented MAP (20 ± 3 vs. 6 ± 2 mmHg) and RVRI (35 ± 6 vs. 16 ± 9%) but not HR. In older adults, there was a positive correlation between the cold-induced pressor response and forehead pain (R = 0.726), but this effect was not observed in young subjects. The CPT raised RVRI in both young (56 ± 13%) and older (45 ± 8%) subjects, but this was not different between groups. Relative to baseline, end-expiratory apnea increased RVRI to a similar extent in both young (46 ± 14%) and older (41 ± 9%) subjects. During sympathetic activation, renal vasoconstriction occurred in both groups. Forehead cooling caused an augmented pressor response in older adults that was related to pain perception. PMID:23640587

  8. Evaporative cooling for Holstein dairy cows under grazing conditions

    NASA Astrophysics Data System (ADS)

    Valtorta, Silvia E.; Gallardo, Miriam R.

    . Twenty-four grazing Holstein cows in mid and late lactation were randomly assigned to two treatment groups: control and cooled. The trial was performed at the Experimental Dairy Unit, Rafaela Agricultural Experimental Station (INTA), Argentina. The objective was to evaluate the effects of sprinkler and fan cooling before milkings on milk production and composition. The effects of the cooling system on rectal temperature and respiration rate were also evaluated. Cooled cows showed higher milk production (1.04 l cow-1 day-1). The concentration and yield of milk fat and protein increased in response to cooling treatment. The cooling system also reduced rectal temperature and respiration rate. No effects were observed on body condition. It was concluded that evaporative cooling, which is efficient for housed animals, is also appropriate to improve yields and animal well-being under grazing systems. These results are impressive since the cooling system was utilized only before milkings, in a system where environmental control is very difficult to achieve. This trial was performed during a mild summer. The results would probably be magnified during hotter weather.

  9. An investigation of age and yield of fresh fruit bunches of oil palm based on ALOS PALSAR 2

    NASA Astrophysics Data System (ADS)

    Darmawan, S.; Takeuchi, W.; Haryati, A.; M, R. Najib A.; Na'aim, M.

    2016-06-01

    The objective on this study is to investigate age and yield of FFB of oil palms based on ALOS PALSAR 2. Study areas in oil palm plantations areas of Jerantut, Pahang Malaysia. Methodology consists collecting of ALOS PALSAR 2 and tabular data on the study area, processing of ALOS PALSAR 2 including of converting digital numbers to normalize radar cross sections (NRCS), topography correction and filtering, making of regions of interest according to areas of age and yield of FFB of oil palms and making of relationship analysis between backscatter value of HH, HV and age and yield of FFB of oil palm. The results have showed relationship between HH, HV and age of oil palm which R2 of 0.63 for HH and 0.42 for HV that indicated increasing of age of oil palm as increasing of HH and HV value. Also relationship between HH, HV and yield of FFB of oil palm which R2 of 0.26 for HH and 0.15 for HV, that indicated increasing of yield of FFB as decreasing of HH and HV value.

  10. Developmental trends of hot and cool executive function in school-aged children with and without autism spectrum disorder: Links with theory of mind.

    PubMed

    Kouklari, Evangelia-Chrysanthi; Tsermentseli, Stella; Monks, Claire P

    2018-03-26

    The development of executive function (EF) in autism spectrum disorder (ASD) has been investigated using only "cool"-cognitive EF tasks while there is limited knowledge regarding the development of "hot"-affective EF. Although cool EF development and its links to theory of mind (ToM) have been widely examined, understanding of the influence of hot EF to ToM mechanisms is minimal. The present study introduced a longitudinal design to examine the developmental changes in cool and hot EF of children with ASD (n = 45) and matched (to age and IQ) controls (n = 37) as well as the impact of EF on ToM development over a school year. For children with ASD, although selective cool (working memory and inhibition) and hot (affective decision making) EF domains presented age-related improvements, they never reached the performance level of the control group. Early cool working memory predicted later ToM in both groups but early hot delay discounting predicted later ToM only in the ASD group. No evidence was found for the reverse pattern (early ToM predicting later EF). These findings suggest that improvements in some EF aspects are evident in school age in ASD and highlight the crucial role that both cool and hot EF play in ToM development.

  11. Influence of conventional biochar and ageing biochar application to arable soil on soil fertility and plant yield

    NASA Astrophysics Data System (ADS)

    Dvořáčková, Helena; Záhora, Jaroslav; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    Biochar represents very controversial material which is product of pyrolysis. According to many studies biochar has positive effect on physical and chemical properties such as pH, conductivity, aggregates stability etc. Unfortunately biochar is product of combustion, so it can content toxic substance as are aromatic compound. These substances may have a negative effect on yield and microbial activities in soil. Our aim was eliminated concentration of toxic compound but preserved positive effect of biochar on soil properties. We was ageing/ activating of biochar in water environment and for soil inoculum we used native soil from landscape. Moreover two types of biochar was tested by pot experiment with seven variants, where conventional biochar from residual biomass and ageing biochar were applied in different doses: 10 t/ha, 20t/ha and 50 t/ha. Pots were placed in green house for 90 days and after the end of experiment the following parameters of soil fertility, health and quality were evaluated: content of soil organic matter, arbuscular mycorrhizal colonisation of Lactuca sativa L. roots, leaching of mineral nitrogen, changes in plant available nutrient content, EC and pH. Above all the total yield of indicator plant was observed. The significant (P < 0.05) differences in plant yield and soil properties were found. The application of conventional biochar didn't have positive effect on plant yield in comparison with ageing biochar. The positive effect of ageing biochar addition on soil fertility was directly proportional to the dose which were applied - increasing in dose of ageing biochar resulted in increase of plant yield. Moreover the special experimental containers were used, where we was able to monitor the development of root in soil with and without addition of biochar (conventional or ageing). The positive influence of ageing biochar addition into soil on development of Lactuca sativa L. roots was observed.

  12. OAKSIM: An individual-tree growth and yield simulator for managed, even-aged, upland oak stands

    Treesearch

    Donald E. Hilt; Donald E. Hilt

    1985-01-01

    OAKSIM is an individual-tree growth and yield simulator for managed, even-aged, upland oak stands. Growth and yield projections for various thinning alternatives can be made with OAKSIM for a period of up to 50 years. Simulator components include an individual-tree diameter growth model, a mortality model, height prediction equations, bark ratio equations, a taper-...

  13. Fission-track ages of apatites from the Precambrian of Rwanda and Burundi - Relationship to East African rift tectonics

    NASA Astrophysics Data System (ADS)

    van den Haute, P.

    1984-11-01

    Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.

  14. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program

    NASA Astrophysics Data System (ADS)

    Deswandri; Subekti, M.; Sunaryo, Geni Rina

    2018-02-01

    Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.

  15. Quantum calculations for one-dimensional cooling of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vredenbregt, E.; Doery, M.; Bergeman, T.

    1993-05-01

    We report theoretical velocity distributions for sub-Doppler laser cooling of metastable He*(2{sup 3}S), calculated with the Density Matrix and Monte Carlo Wavefunction approaches. For low-field (B = 50 mG) magnetic-field induced laser cooling on the 2{sup 3}S {yields} (2{sup 3}P, J = 2) transition ({lambda} = 1083 nm), we get a narrow, sub-Doppler structure, consisting of three, {approximately}1 photon recoil wide peaks, spaced {approximately}1 recoil apart. With increasing field, this three-peak structure develops into two velocity-selective resonance (VSR) peaks, each {approximately}2 recoils wide. For the 2{sup 3}S {yields} (3{sup 3}P, J = 2) transition ({lambda} 389 nm), VSR peaks aremore » predicted to appear at low field without the third, central peak, which only develops at higher field (B = 200 mG). Additional computations deal with polarization-gradient cooling. In general, we find that for one-dimensional cooling calculations, the Density Matrix method is more efficient than the Monte Carlo Wavefunction approach. Experiments are currently under way to test the results.« less

  16. Postexercise Cooling Rates in 2 Cooling Jackets

    PubMed Central

    Brade, Carly; Dawson, Brian; Wallman, Karen; Polglaze, Ted

    2010-01-01

    Abstract Context: Cooling jackets are a common method for removing stored heat accumulated during exercise. To date, the efficiency and practicality of different types of cooling jackets have received minimal investigation. Objective: To examine whether a cooling jacket containing a phase-change material (PC17) results in more rapid postexercise cooling than a gel cooling jacket and a no-jacket (control) condition. Design: Randomized, counterbalanced design with 3 experimental conditions. Setting: Participants exercised at 75% V̇o2max workload in a hot climate chamber (temperature  =  35.0 ± 1.4°C, relative humidity  =  52 ± 4%) for 30 minutes, followed by postexercise cooling for 30 minutes in cool laboratory conditions (ambient temperature  =  24.9 ± 1.8°C, relative humidity  =  39% ± 10%). Patients or Other Participants: Twelve physically active men (age  =  21.3 ± 1.1 years, height  =  182.7 ± 7.1 cm, body mass  =  76.2 ± 9.5 kg, sum of 6 skinfolds  =  50.5 ± 6.9 mm, body surface area  =  1.98 ± 0.14 m2, V̇o2max  =  49.0 ± 7.0 mL·kg−1·min−1) participated. Intervention(s): Three experimental conditions, consisting of a PC17 jacket, a gel jacket, and no jacket. Main Outcome Measure(s): Core temperature (TC), mean skin temperature (TSk), and TC cooling rate (°C/min). Results: Mean peak TC postexercise was 38.49 ± 0.42°C, 38.57 ± 0.41°C, and 38.55 ± 0.40°C for the PC17 jacket, gel jacket, and control conditions, respectively. No differences were observed in peak TC cooling rates among the PC17 jacket (0.038 ± 0.007°C/min), gel jacket (0.040 ± 0.009°C/min), and control (0.034 ± 0.010°C/min, P > .05) conditions. Between trials, no differences were calculated for mean TSk cooling. Conclusions: Similar cooling rates for all 3 conditions indicate that there is no benefit associated with wearing the PC17 or gel jacket. PMID:20210620

  17. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in murrah buffaloes

    NASA Astrophysics Data System (ADS)

    Aarif, Ovais; Aggarwal, Anjali

    2016-03-01

    This study aimed to evaluate the impact of evaporative cooling during late gestation on physiological responses, blood gas and acid base balance and subsequent milk production of Murrah buffaloes. To investigate this study sixteen healthy pregnant dry Murrah buffaloes (second to fourth parity) at sixty days prepartum were selected in the months of May to June and divided into two groups of eight animals each. One group of buffaloes (Cooled/CL) was managed under fan and mist cooling system during dry period. Group second buffaloes (Noncooled/NCL) remained as control without provision of cooling during dry period. The physiological responses viz. Rectal temperature (RT), Respiratory rate (RR) and Pulse rate were significantly ( P < 0.05) lower in group 2, with the provision of cooling. Skin surface temperature at thorax was significantly lower in cooled group relative to noncooled group. Blood pH and pO2 were significantly ( P < 0.05) higher in heat stressed group as compared to the cooled group. pCO2, TCO2, HCO3, SBC, base excess in extracellular fluid (BEecf), base excess in blood (BEb), PCV and Hb were significantly ( P < 0.05) higher in cooled group as compared to noncooled group. DMI was significantly ( P < 0.05) higher in cooled relative to noncooled animals. Milk yield, FCM, fat yield, lactose yield and total solid yield was significantly higher ( P < 0.05) in cooled group of Murrah buffaloes.

  18. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in murrah buffaloes.

    PubMed

    Aarif, Ovais; Aggarwal, Anjali

    2016-03-01

    This study aimed to evaluate the impact of evaporative cooling during late gestation on physiological responses, blood gas and acid base balance and subsequent milk production of Murrah buffaloes. To investigate this study sixteen healthy pregnant dry Murrah buffaloes (second to fourth parity) at sixty days prepartum were selected in the months of May to June and divided into two groups of eight animals each. One group of buffaloes (Cooled/CL) was managed under fan and mist cooling system during dry period. Group second buffaloes (Noncooled/NCL) remained as control without provision of cooling during dry period. The physiological responses viz. Rectal temperature (RT), Respiratory rate (RR) and Pulse rate were significantly (P < 0.05) lower in group 2, with the provision of cooling. Skin surface temperature at thorax was significantly lower in cooled group relative to noncooled group. Blood pH and pO2 were significantly (P < 0.05) higher in heat stressed group as compared to the cooled group. pCO2, TCO2, HCO3, SBC, base excess in extracellular fluid (BEecf), base excess in blood (BEb), PCV and Hb were significantly (P < 0.05) higher in cooled group as compared to noncooled group. DMI was significantly (P < 0.05) higher in cooled relative to noncooled animals. Milk yield, FCM, fat yield, lactose yield and total solid yield was significantly higher (P < 0.05) in cooled group of Murrah buffaloes.

  19. Effect of Depth and Duration of Cooling on Death or Disability at Age 18 Months Among Neonates With Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Laptook, Abbot R.; Pappas, Athina; McDonald, Scott. A.; Das, Abhik; Tyson, Jon E.; Poindexter, Brenda B.; Schibler, Kurt; Bell, Edward F.; Heyne, Roy J.; Pedroza, Claudia; Bara, Rebecca; Van Meurs, Krisa P.; Huitema, Carolyn M. Petrie; Grisby, Cathy; Devaskar, Uday; Ehrenkranz, Richard A.; Harmon, Heidi M.; Chalak, Lina F.; DeMauro, Sara B.; Garg, Meena; Hartley-McAndrew, Michelle E.; Khan, Amir M.; Walsh, Michele C.; Ambalavanan, Namasivayam; Brumbaugh, Jane E.; Watterberg, Kristi L.; Shepherd, Edward G.; Hamrick, Shannon E. G.; Barks, John; Cotten, C. Michael; Kilbride, Howard W.; Higgins, Rosemary D.

    2017-01-01

    Importance Hypothermia for 72 hours at 33.5°C for neonatal hypoxic-ischemic encephalopathy reduces death or disability, but rates continue to be high. Objective To determine if cooling for 120 hours or to a temperature of 32.0°C reduces death or disability at age 18 months in infants with hypoxic-ischemic encephalopathy. Design, Setting, and Participants Randomized 2 × 2 factorial clinical trial in neonates (≥36 weeks’ gestation) with hypoxic-ischemic encephalopathy at 18 US centers in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network between October 2010 and January 2016. Interventions A total of 364 neonates were randomly assigned to 4 hypothermia groups: 33.5°C for 72 hours (n = 95), 32.0°C for 72 hours (n = 90), 33.5°C for 120 hours (n = 96), or 32.0°C for 120 hours (n = 83). Main Outcomes and Measures The primary outcome was death or moderate or severe disability at 18 to 22 months of age adjusted for center and level of encephalopathy. Severe disability included any of Bayley Scales of Infant Development III cognitive score less than 70, Gross Motor Function Classification System (GMFCS) level of 3 to 5, or blindness or hearing loss despite amplification. Moderate disability was defined as a cognitive score of 70 to 84 and either GMFCS level 2, active seizures, or hearing with amplification. Results The trial was stopped for safety and futility in November 2013 after 364 of the planned 726 infants were enrolled. Among 347 infants (95%) with primary outcome data (mean age at follow-up, 20.7 [SD, 3.5] months; 42% female), death or disability occurred in 56 of 176 (31.8%) cooled for 72 hours and 54 of 171 (31.6%) cooled for 120 hours (adjusted risk ratio, 0.92 [95% CI, 0.68-1.25]; adjusted absolute risk difference, −1.0% [95% CI, −10.2% to 8.1%]) and in 59 of 185 (31.9%) cooled to 33.5°C and 51 of 162 (31.5%) cooled to 32.0°C (adjusted risk ratio, 0.92 [95% CI, 0

  20. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions?

    PubMed

    Buschmann, Johanna; Gao, Shuping; Härter, Luc; Hemmi, Sonja; Welti, Manfred; Werner, Clement M L; Calcagni, Maurizio; Cinelli, Paolo; Wanner, Guido A

    2013-09-01

    Adipose-derived stem cells are easily accessed and have a relatively high density compared with other mesenchymal stromal cells. Isolation protocols of adipose-derived stem cells (ASC) rely on the cell's ability to adhere to tissue culture plastic overnight. It was evaluated whether the floating ASC fractions are also of interest for cell-based therapies. In addition, the impact of age, body mass index (BMI) and harvest site was assessed. The surface protein profile with the use of flow cytometry, the cell yield and the doubling time of passages 4, 5 and 6 of ASC from 30 donors were determined. Adherent and supernatant fractions were compared. The impact of age, BMI and harvest site on cell yield and doubling times was determined. Both adherent and supernatant fractions showed high mean fluorescence intensities for CD13, CD29, CD44, CD73, CD90 and CD105 and comparatively low mean fluorescence intensities for CD11b, CD62L, intracellular adhesion molecule-1 and CD34. Doubling times of adherent and supernatant fractions did not differ significantly. Whereas the old age group had a significantly lower cell yield compared with the middle aged group, BMI and harvest site had no impact on cell yield. Finally, doubling times for passages 4, 5 and 6 were not influenced by the age and BMI of the donors, nor the tissue-harvesting site. The floating ASC fraction is an equivalent second cell source just like the adherent ASC fraction. Donor age, BMI and harvest site do not influence cell yield and proliferation rate. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. Cooling, exhumation, and deformation in the Hindu Kush, NW Pakistan: New constraints from preliminary 40Ar/39Ar and fission track analyses

    NASA Astrophysics Data System (ADS)

    Faisal, Shah; Larson, Kyle P.; Camacho, Alfredo; Coutand, Isabelle

    2018-06-01

    Asian crust in the Hindu Kush region in northern Pakistan records a protracted history of rifting, subduction and collision not commonly preserved within the Himalaya. Because of this, it is key to understanding the development of the southern Eurasian margin both prior to and after collision with India. New mica 40Ar/39Ar and apatite fission track geochronologic data from this region provide constraints on the kinematics of the Hindu Kush. 40Ar/39Ar muscovite and biotite ages from the late Cambrian Kafiristan pluton are 379.7 ± 1.7 Ma and 47.2 ± 0.3 Ma, respectively. The muscovite age may record cooling or partial resetting, while the biotite age is interpreted to record a thermal disruption associated with the early stages of continental collision in the Himalayan system. A 111.0 ± 0.6 Ma muscovite age from the northern part of the Tirich Mir pluton (∼123 Ma old; U-Pb) is interpreted to indicate a recrystallization event ∼12 Myrs after its intrusion. In addition, a younger muscovite age of 47.5 ± 0.2 Ma was derived from the opposite side of the same pluton in the immediate hanging wall of the Tirich Mir fault. This Eocene age is interpreted to represent the time of recrystallization during fault (re)activation in the early stages of India-Asia continent-continent collision. 40Ar/39Ar biotite analysis from the Buni-Zom pluton yields an age of 61.6 ± 1.1 Ma and is interpreted to reflect cooling at mid-upper crustal levels subsequent to the pluton's emplacement in the middle Cretaceous. Finally, 17.1-21.3 Ma 40Ar/39Ar ages from the Garam Chasma pluton and surrounding metapelites indicate cooling immediately following crystallization of the leucogranite body in the earliest Miocene/latest Oligocene. The younger cooling history is resolved by fission track dating of apatite (AFT). In the vicinity of the bounding Tirich Mir fault, the Tirich Mir pluton yields an AFT age of 1.4 ± 0.3 Ma, which is consistent with active exhumation associated with the surface

  2. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM)more » spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.« less

  3. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols.

    PubMed

    Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2013-06-04

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  4. Size, diet, and condition of age-0 Pacific cod (Gadus macrocephalus) during warm and cool climate states in the eastern Bering sea

    NASA Astrophysics Data System (ADS)

    Farley, Edward V.; Heintz, Ron A.; Andrews, Alex G.; Hurst, Thomas P.

    2016-12-01

    The revised Oscillating Control Hypothesis for the Bering Sea suggests that recruitment of groundfish is linked to climatic processes affecting seasonal sea ice that, in turn, drives the quality and quantity of prey available to young fish for growth and energy storage during their critical life history stages. We test this notion for age-0 (juvenile) Pacific cod (Gadus macrocephalus) by examining the variability in size, diet, and energetic condition during warm (2003-2005), average (2006), and cool (2007-2011) climate states in the eastern Bering Sea. Juvenile cod stomachs contained high proportions of age-0 walleye pollock (by wet weight) during years with warm sea temperatures with a shift to euphausiids and large copepods during years with cool sea temperatures. Juvenile cod were largest during years with warm sea temperatures and smallest during years with cool sea temperatures. However, energetic status (condition) of juvenile cod was highest during years with cool sea temperatures. This result is likely linked to the shift to high quality, lipid-rich prey found in greater abundance on the shelf and in the stomach contents of juvenile cod during cool years. Our examination of juvenile cod size, diet, and energetic status provided results that are similar to those from studies on juvenile pollock, suggesting that the common mechanisms regulating gadid recruitment on the eastern Bering Sea shelf are climate state, prey quality and quantity, and caloric density of gadids prior to winter.

  5. Chronologic implications for slow cooling of troctolite 76535 and temporal relationships between the Mg-suite and the ferroan anorthosite suite

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Connelly, James N.; Cassata, William S.; Gaffney, Amy M.; Bizzarro, Martin

    2017-03-01

    Ages have been obtained using the 87Rb-87Sr, 147Sm-143Nd, and 146Sm-142Nd isotopic systems for one of the most slowly cooled lunar rocks, Apollo 17 Mg-suite troctolite 76535. The 147Sm-143Nd, 146Sm-142Nd, and Rb-Sr ages derived from plagioclase, olivine, and pyroxene mineral isochrons yield concordant ages of 4307 ± 11 Ma, 4299+29/-35 Ma, and 4279 ± 52 Ma, respectively. These ages are slightly younger than the age determined on ferroan anorthosite suite (FAS) rock 60025 and are therefore consistent with the traditional magma ocean model of lunar differentiation in which the Mg-suite is intruded into the anorthositic crust. However, the Sm-Nd ages record when the rock passed below the closing temperature of the Sm-Nd system in this rock at ∼825 °C, whereas the Rb-Sr age likely records the closure temperature of ∼650 °C. A cooling rate of 3.9 °C/Ma is determined using the ages reported here and in the literature and calculated closure temperatures for the Ar-Ar, Pb-Pb, Rb-Sr, and Sm-Nd systems. This cooling rate is in good agreement with cooling rates estimated from petrographic observations. Slow cooling can lower apparent Sm-Nd crystallization ages by up to ∼80 Ma in the slowest cooled rocks like 76535, and likely accounts for some of the variation of ages reported for lunar crustal rocks. Nevertheless, slow cooling cannot account for the overlap in FAS and Mg-suite rock ages. Instead, this overlap appears to reflect the concordance of Mg-suite and FAS magmatism in the lunar crust as indicated by ages calculated for the solidus temperature of 76535 and 60025 of 4384 ± 24 Ma and 4383 ± 17, respectively. Not only are the solidus ages of 76535 and 60025 nearly concordant, but the Sm-Nd isotopic systematics suggest they are derived from reservoirs that were minimally differentiated prior to ∼4.38 Ga. Although the Sr isotopic composition of 60025 indicates its source was minimally differentiated, the Sr isotopic composition of 76535 indicates it underwent

  6. Yield Behavior of Solution Treated and Aged Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.

    2014-01-01

    Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.

  7. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  8. [sup 40]Ar/[sup 39]Ar evidence for delayed post-Acadian cooling in the southernmost Connecticut Valley Synclinorium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moecher, D.P.; Cosca, M.A.

    1992-01-01

    Available Ar-40/Ar-39 data for the Connecticut Valley Synclinorium (CVS) of the New England segment of the Appalachian Orogen indicate rapid post-Acadian cooling. However, new data indicate this pattern does not extend the entire length of the CVS. Ar-40/Ar-39 ages obtained from hornblende and muscovite in The Straits Schist indicate delayed cooling and a more complex post-Acadian thermal history. Data for the Seymour area are consistent with the studies above for the vicinity of the Waterbury Dome. The data farther south indicate one or more of the following: (1) slow (2--3C/Ma) post-Acadian cooling and uplift through the Permian; (2) post-Acadian coolingmore » through Hbl closure in the Mississippian with a subsequent Alleghanian metamorphism that did not exceed 500 C; or (3) post-Acadian cooling with subsequent metamorphism that approached 500 C or involved ductile recrystallization, partly resetting hornblende and totally resetting muscovite south of Derby. Petrologic evidence supporting (2) or (3) consists of widespread but not pervasive greenschist facies retrogression of Hbl + Pl + Sph assemblages in amphibolites to Act + Ep, and Grt + Ky + St assemblages in metapelites to Chl + Bt + Qz. The present data cannot resolve between (2) or (3). However, both are consistent with results of a study in the Bridgeport Synform that yield (1) a U-Pb monazite age of 296 [+-] 2 Ma from the Ansonia Leucogranite, implying the occurrence of an Alleghanian thermal event that promoted monazite growth; and, (2) a U-Pb cooling age of 360 Ma from sphene in the Pumpkin Ground Granodiorite, indicating that Alleghanian events did not exceed ca. 550 C.« less

  9. Field drying rate differences amoung cool-season grasses harvested for hay

    USDA-ARS?s Scientific Manuscript database

    Making high-quality, cool-season grass hay is a challenge, due to the field drying time needed to reach the appropriate moisture content and the high probability of rain in the spring when hay is typically produced. This study was conducted to determine if cool-season grasses with different yield po...

  10. COOL ROOF COATINGS INCORPORATING GLASS HOLLOW MICROSPHERES FOR IMPROVED SOLAR REFLECTANCE

    EPA Science Inventory

    Elastomeric cool-roof coatings can be applied to buildings to decrease heat gain, yielding energy savings and mitigating the “urban heat island” effect. Most cool-roof formulations are based on titanium dioxide (TiO2). While TiO2 and several TiO2

  11. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest

    NASA Astrophysics Data System (ADS)

    Cornish, P. M.; Vertessy, R. A.

    2001-02-01

    Water yields in a regrowth eucalypt forest were found to increase initially and then to decline below pre-treatment levels during the 16-year period which followed the logging of a moist old-growth eucalypt forest in Eastern Australia. Both regrowth and old-growth stands were dominated by Sydney Blue Gum ( Eucalyptus saligna Smith) and Silvertop Stringybark ( Eucalyptus laevopinea R. Baker). Using a paired-catchment approach we observed significant reductions in five of six gauged catchments, and were able to associate their magnitude with forest growth rate, canopy cover and soil depth. Regular yield declines were interrupted for a period in some catchments, possibly due to foliar insect attack. Yield reductions of up to a maximum 600 mm per year in logged and regenerated areas were in accord with water yield reductions observed in Mountain Ash ( Eucalyptus regnans F.J. Muell.) regeneration in Victoria. This study therefore represents the first confirmation of these Maroondah Mountain Ash results in another forest type that has also undergone eucalypt-to-eucalypt succession. Baseflow analysis indicated that baseflow and stormflow both increased after logging, with stormflow increases dominant in catchments with shallower soils. The lower runoff observed when the regenerating forest was aged 13-16 years was principally a consequence of lower baseflow.

  12. Internally Cooled Monolithic Silicon Nitride Aerospace Components

    NASA Technical Reports Server (NTRS)

    Best, Jonathan E.; Cawley, James D.; Bhatt, Ramakrishna T.; Fox, Dennis S.; Lang, Jerry (Technical Monitor)

    2000-01-01

    A set of rapid prototyping (RP) processes have been combined with gelcasting to make ceramic aerospace components that contain internal cooling geometry. A mold and core combination is made using a MM6Pro (Sanders Prototyping, Inc.) and SLA-250/40 (3Dsystems, Inc.). The MM6Pro produces cores from ProtoBuild (trademarked) wax that are dissolved in room temperature ethanol following gelcasting. The SLA-250/40 yields epoxy/acrylate reusable molds. Parts produced by this method include two types of specimens containing a high density of thin long cooling channels, thin-walled cylinders and plates, as well as a model hollow airfoil shape that can be used for burner rig evaluation of coatings. Both uncoated and mullite-coated hollow airfoils has been tested in a Mach 0.3 burner rig with cooling air demonstrating internal cooling and confirming the effectiveness of mullite coatings.

  13. Short-lived high-amplitude cooling on Svalbard during the Dark Ages

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; D`Andrea, William; Bakke, Jostein; Balascio, Nicholas; Werner, Johannes; Hoek, Wim

    2016-04-01

    As the paradigm of a stable Holocene climate has shifted, an increasing number of high-resolution proxy timeseries reveal dynamic conditions, characterized by high-amplitude climate shifts. Some of these events occurred during historical times and allow us to study the interaction between environmental and cultural change, providing valuable lessons for the near future. These include the Dark Ages Cold Period (DACP) between 300 and 800 AD, a period marked by political upheaval and climate instability that remains poorly investigated. Here, we present two temperature reconstructions from the High Arctic Svalbard Archipelago. To this end, we applied the established alkenone-based UK37 paleothermometer on sediments from two lakes on western Spitsbergen, Lake Hajeren and Lake Hakluyt. The Arctic is presently warming twice as fast as the global average and proxy data as well as model simulations suggest that this amplified response is characteristic for regional climate. The Arctic therefore provides a uniquely sensitive environment to study relatively modest climate shifts, like the DACP, that may not be adequately captured at lower-latitude sites. Owing to undisturbed sediments, a high sampling resolution and robust chronological control, the presented reconstructions resolve the attendant sub-centennial-scale climate shifts. Our findings suggest that the DACP marks a cold spell within the cool Neoglacial period, which started some 4 ka BP on Svalbard. Close investigation reveals a distinct temperature minimum around 500 AD that is reproduced in another alkenone-based temperature reconstruction from a nearby lake. At ± 1.75 °C, cooling underlines the sensitivity of Arctic climate as well as the magnitude of the DACP.

  14. Yield comparisons from even-aged and uneven-aged loblolly-shortleaf pine stands

    Treesearch

    James M. Guldin; James B. Baker

    1988-01-01

    Empirical yields for a 36-year management period are presented for seven long-term studies on similar sites in loblolly-shortleaf pine (Pinus taeda L.-P. echinata Mill.) stands on the upper southern coastal plain of southern Arkansas and northern Louisiana. Total merchantable cubic-fooy yields are highest for conventionally...

  15. Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Gemignani, Lorenzo; van der Beek, Peter

    2018-03-01

    One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo-Siang-Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo-Siang-Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i.e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the

  16. Effect of age and rainfall pH on contaminant yields from metal roofs.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark

    2014-01-01

    Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.

  17. Exotic Grass Yields Under Southern Pines

    Treesearch

    H.A. Pearson

    1975-01-01

    Kentucky 31 and Kenwell tall fescue, Pensacola bahia, and Brunswick grasses yielded nea,rly three times more forage under an established pine stand than native grasses 7 years after seeding. Introducing exotic grasses did not significantly increase total grass production but did enhance range quality since the cool-season grasses are green during winter and are higher...

  18. Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Mohamad, Hishamiakim; Mahmud, Abdus Samad; Nashrudin, Muhammad Naqib; Razali, Muhammad Fauzinizam

    2018-05-01

    The shape memory behavior of NiTi alloy is very sensitive to alloy composition and heat treatments, particularly annealing and ageing. This paper analysed the effect of ageing towards the thermomechanical behaviour of Ti-51at%Ni wire. The analysis focused on the effect of ageing at the different temperature on thermal transformation sequence and tensile deformation behaviour with respect to the recoverability of the alloy. It was found that B2-R transformation peak appeared in the differential scanning calorimetry (DSC) measurement when the alloys were aged at the temperature between 400°C to 475°C for 30 minutes. Further ageing at 500°C to 550°C yielded two stage transformation, B2-R-B19' in cooling. All aged wires exhibited good pseudoelastic behaviour when deformed at room temperature and yielded below 1% residual strain upon unloading. Ageing at 450°C resulted the smallest unrecovered strain of about 0.4%.

  19. Structure and properties of a splat cooled 2024 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Lebo, M.; Grant, N. J.

    1974-01-01

    In the investigation the alloy was melted, heated to 750 C, and atomized into fine droplets. The droplets were rapidly quenched against a heavy copper disk rotating at 1725 rpm. The resultant splat cooled flakes were screened. Three flake sizes were finally separated. Flakes of each size were separately processed. The characteristics of the splat cooling process and the properties of the obtained products are discussed. Splat cooling against a metallic substrate permits cooling rates up to about 1,000,000 deg C/sec. Increases in yield strength and tensile strength of 14 to 19% are observed for the splat products. Other improvements are connected with increases in fatigue life and stress rupture performance.

  20. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  1. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  2. Cooling and exhumation of continents at billion-year time scales

    NASA Astrophysics Data System (ADS)

    Blackburn, T.; Bowring, S. A.; Perron, T.; Mahan, K. H.; Dudas, F. O.

    2011-12-01

    Hat Block collided at ~1.8 Ga. Rutile U-Pb data from multiple xenoliths, each exhumed from a different depth within the crustal column reveal a range of dates that varies as a function of xenolith residence depth. The shallowest mid- to lower crustal xenoliths (~25 km) cooled first, yielding the youngest dates and yet cooled at rates between 0.1-0.25 °C/Ma over 500 My or more. Deeper xenoliths record cooling at progressively younger times at similar rates and time-scales. From orogony to eruption of xenoliths onto the surface, the lithospheric thermal history constructed using this technique may exceed a billion years. Combining this cooling history with a lithosphere thermal model yields an estimate for the average integrated rate of craton erosion between 0.00-<0.0025 km/Ma across the orogen; a range far lower than the geologically recent to present day rates for continental erosion (<0.005-0.1 km/Ma). This marks the first ever determination of continental exhumation rates on time-scales that approach the age of the continents themselves and has implications for secular cooling of the asthenosphere.

  3. Methods of cutting ponderosa pine in the Southwest - Establishment report: Even-aged yield study, Plot 11

    Treesearch

    Gilbert H. Schubert

    1963-01-01

    The objectie of the study is to obtain information on the growth and yield of even-aged stands of different stocking levels. The plot will also serve as the start of a detailed growing stock study for the ponderosa pine region.

  4. Early Wuchiapingian cooling linked to Emeishan basaltic weathering?

    NASA Astrophysics Data System (ADS)

    Yang, Jianghai; Cawood, Peter A.; Du, Yuansheng; Condon, Daniel J.; Yan, Jiaxin; Liu, Jianzhong; Huang, Yan; Yuan, Dongxun

    2018-06-01

    The last glaciation during the late Paleozoic ice age commenced at around the Guadalupian-Lopingian (G-L) boundary and is synchronous with the emplacement of the Emeishan large igneous province. Using CA-TIMS zircon U-Pb dating, we obtained an age of 259.51 ± 0.21 Ma for the uppermost tuff from the Puan volcanic sequence in the eastern Emeishan large igneous province, constraining the timing of Emeishan volcanism and providing another candidate age for the G-L boundary. In addition, we determined an age of 259.69 ± 0.72 Ma for a basal claystone in the immediately overlying Longtan Formation from a drill core section in southwest South China. These ages, along with source weathering trends of mudstones from the lower Longtan Formation, and compiled paleotemperature records, indicate an earliest Wuchiapingian cooling coinciding with the onset of the last Permian glaciation. This global cooling is associated with positive shifts in both organic and carbonate carbon isotopic records and likely a decrease in atmospheric pCO2. A hypothesised causal linkage is proposed in which the rapid post-eruptive basaltic weathering of the Emeishan province in an equatorial humid belt may accelerate the atmospheric CO2 consumption and lead to climate cooling. Our work supports the long-term climate cooling effects of large igneous provinces.

  5. Effect of Depth and Duration of Cooling on Death or Disability at Age 18 Months Among Neonates With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial.

    PubMed

    Shankaran, Seetha; Laptook, Abbot R; Pappas, Athina; McDonald, Scott A; Das, Abhik; Tyson, Jon E; Poindexter, Brenda B; Schibler, Kurt; Bell, Edward F; Heyne, Roy J; Pedroza, Claudia; Bara, Rebecca; Van Meurs, Krisa P; Huitema, Carolyn M Petrie; Grisby, Cathy; Devaskar, Uday; Ehrenkranz, Richard A; Harmon, Heidi M; Chalak, Lina F; DeMauro, Sara B; Garg, Meena; Hartley-McAndrew, Michelle E; Khan, Amir M; Walsh, Michele C; Ambalavanan, Namasivayam; Brumbaugh, Jane E; Watterberg, Kristi L; Shepherd, Edward G; Hamrick, Shannon E G; Barks, John; Cotten, C Michael; Kilbride, Howard W; Higgins, Rosemary D

    2017-07-04

    Hypothermia for 72 hours at 33.5°C for neonatal hypoxic-ischemic encephalopathy reduces death or disability, but rates continue to be high. To determine if cooling for 120 hours or to a temperature of 32.0°C reduces death or disability at age 18 months in infants with hypoxic-ischemic encephalopathy. Randomized 2 × 2 factorial clinical trial in neonates (≥36 weeks' gestation) with hypoxic-ischemic encephalopathy at 18 US centers in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network between October 2010 and January 2016. A total of 364 neonates were randomly assigned to 4 hypothermia groups: 33.5°C for 72 hours (n = 95), 32.0°C for 72 hours (n = 90), 33.5°C for 120 hours (n = 96), or 32.0°C for 120 hours (n = 83). The primary outcome was death or moderate or severe disability at 18 to 22 months of age adjusted for center and level of encephalopathy. Severe disability included any of Bayley Scales of Infant Development III cognitive score less than 70, Gross Motor Function Classification System (GMFCS) level of 3 to 5, or blindness or hearing loss despite amplification. Moderate disability was defined as a cognitive score of 70 to 84 and either GMFCS level 2, active seizures, or hearing with amplification. The trial was stopped for safety and futility in November 2013 after 364 of the planned 726 infants were enrolled. Among 347 infants (95%) with primary outcome data (mean age at follow-up, 20.7 [SD, 3.5] months; 42% female), death or disability occurred in 56 of 176 (31.8%) cooled for 72 hours and 54 of 171 (31.6%) cooled for 120 hours (adjusted risk ratio, 0.92 [95% CI, 0.68-1.25]; adjusted absolute risk difference, -1.0% [95% CI, -10.2% to 8.1%]) and in 59 of 185 (31.9%) cooled to 33.5°C and 51 of 162 (31.5%) cooled to 32.0°C (adjusted risk ratio, 0.92 [95% CI, 0.68-1.26]; adjusted absolute risk difference, -3.1% [95% CI, -12.3% to 6.1%]). A significant interaction between

  6. X-Ray spectroscopy of cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea

    1996-01-01

    Cooling flows in clusters of galaxies occur when the cooling time of the gas is shorter than the age of the cluster; material cools and falls to the center of the cluster potential. Evidence for short X-ray cooling times comes from imaging studies of clusters and X-ray spectroscopy of a few bright clusters. Because the mass accretion rate can be high (a few 100 solar mass units/year) the mass of material accumulated over the lifetime of a cluster can be as high as 10(exp 12) solar mass units. However, there is little evidence for this material at other wavelengths, and the final fate of the accretion material is unknown. X-ray spectra obtained with the Einstein SSS show evidence for absorption; if confirmed this result would imply that the accretion material is in the form of cool dense clouds. However ice on the SSS make these data difficult to interpret. We obtained ASCA spectra of the cooling flow cluster Abell 85. Our primary goals were to search for multi-temperature components that may be indicative of cool gas; search for temperature gradients across the cluster; and look for excess absorption in the cooling region.

  7. Complex Cooling Histories of Lunar Troctolite 76535 and Stillwater Orthoyroxenite SC-936

    NASA Technical Reports Server (NTRS)

    Domeneghetti, M. Chiara; McCallum, I. S.; Schwartz, J. M.; Camara, F.; Zema, M.; McCammon, C.; Ganguly, J.

    2001-01-01

    Fe-Mg site occupancy determinations of orthopyroxene from troctolite 76535 yield closure temperatures of ordering of 500-550 C and cooling rates of 1-10 C per year corresponding to shallow burial. 76535 was excavated from deep lunar crust before it had cooled to approx. 550 C. Additional information is contained in the original extended abstract.

  8. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.

    PubMed

    Shakouri, Ehsan; Haghighi Hassanalideh, Hossein; Gholampour, Seifollah

    2018-01-01

    Bone fracture occurs due to accident, aging, and disease. For the treatment of bone fractures, it is essential that the bones are kept fixed in the right place. In complex fractures, internal fixation or external methods are used to fix the fracture position. In order to immobilize the fracture position and connect the holder equipment to it, bone drilling is required. During the drilling of the bone, the required forces to chip formation could cause an increase in the temperature. If the resulting temperature increases to 47 °C, it causes thermal necrosis of the bone. Thermal necrosis decreases bone strength in the hole and, subsequently, due to incomplete immobilization of bone, fracture repair is not performed correctly. In this study, attempts have been made to compare local temperature increases in different processes of bone drilling. This comparison has been done between drilling without cooling, drilling with gas cooling, and liquid cooling on bovine femur. Drilling tests with gas coolant using direct injection of CO 2 and N 2 gases were carried out by internal coolant drill bit. The results showed that with the use of gas coolant, the elevation of temperature has limited to 6 °C and the thermal necrosis is prevented. Maximum temperature rise reached in drilling without cooling was 56 °C, using gas and liquid coolant, a maximum temperature elevation of 43 °C and 42 °C have been obtained, respectively. This resulted in decreased possibility of thermal necrosis of bone in drilling with gas and liquid cooling. However, the results showed that the values obtained with the drilling method with direct gas cooling are independent of the rotational speed of drill.

  9. Yield of Echocardiogram and Predictors of Positive Yield in Pediatric Patients: A Study in an Urban, Community-Based Outpatient Pediatric Cardiology Clinic.

    PubMed

    Billa, Ramya Deepthi; Szpunar, Susan; Zeinali, Lida; Anne, Premchand

    2018-01-01

    The yield of outpatient echocardiograms varies based on the indication for the echocardiogram and the age of the patient. The purpose of this study was to determine the cumulative yield of outpatient echocardiograms by age group and reason for the test. A secondary aim was to determine the predictors of a positive echocardiogram in an outpatient cardiology clinic at a large community teaching hospital. We retrospectively reviewed the charts of 891 patients who had a first-time echocardiogram between 2011 and 2015. Positive yield was defined as echocardiographic findings that explained the reason for the echocardiogram. The overall positive yield was 8.2%. Children between birth and 3 months of age had the highest yield (34.2%), and children between 12 and 18 years of age had the lowest yield (1%). Patients with murmurs (18.1%) had the highest yield compared with patients with other signs or symptoms. By age group and reason, the highest yields were as follows: 0 to 3 months of age, murmur (39.2%); 4 to 11 months of age, >1 symptom (50%); and 1 to 5 years of age, shortness of breath (66.7%). Based on our study, the overall yield of echocardiograms in the outpatient pediatric setting is low. Age and symptoms should be considered before ordering an echocardiogram.

  10. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be usedmore » to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.« less

  11. Retail yields and palatability evaluations of individual muscles from wet-aged and dry-aged beef ribeyes and top sirloin butts that were merchandised innovatively.

    PubMed

    Smith, A M; Harris, K B; Griffin, D B; Miller, R K; Kerth, C R; Savell, J W

    2014-05-01

    Paired ribeyes (n=24) and top sirloin butts (n=24) were dry-aged or wet-aged for 35 days before being merchandised as individual muscles: M. spinalis thoracis, M. longissimus thoracis, M. gluteobiceps, and M. gluteus medius. Wet-aged subprimals had greater saleable yields than dry-aged. Dry-aged M. spinalis thoracis and M. gluteobiceps received lower consumer overall like and flavor ratings than did wet-aged; interior muscles - M. longissimus thoracis and M. gluteus medius - did not differ. Trained panelists found higher musty and putrid flavors for dry-aged muscles closer to exterior surface. These flavors may have contributed to lower consumer overall like and flavor ratings for dry-aged M. spinalis thoracis and M. gluteobiceps. Using innovative styles to cut beef allows for greater merchandising options. However, development of undesirable flavor characteristics may be more pronounced when exterior muscles - M. spinalis thoracis and M. gluteobiceps - are exposed during dry-aging to extreme conditions and are consumed individually. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Adjusting site index and age to account for genetic effects in yield equations for loblolly pine

    Treesearch

    Steven A. Knowe; G. Sam Foster

    2010-01-01

    Nine combinations of site index curves and age adjustments methods were evaluated for incorporating genetic effects for open-pollinated loblolly pine (Pinus taeda L.) families. An explicit yield system consisting of dominant height, basal area, and merchantable green weight functions was used to compare the accuracy of predictions associated with...

  13. Modest Little Ice Age cooling of the Western Tropical Atlantic inferred from Sr-U Coral Paleothermometry

    NASA Astrophysics Data System (ADS)

    Alpert, A.; Cohen, A. L.; Oppo, D.; Gaetani, G. A.

    2016-12-01

    Proxy records of the Little Ice Age (LIA; 1450-1850CE) at high latitude Northern Hemisphere indicate temperatures 1-2°C cooler relative to the mid-20th century. However, estimates of sea surface temperatures (SSTs) from the western tropical Atlantic (WTA) range widely, indicating SSTs from 0- 4°C cooler than the mid-20th century. The largest of these cooling estimates indicate that the LIA tropics were more sensitive than the high latitudes, inconsistent with model predictions. Here we apply a novel coral thermometer, Sr-U, that has been demonstrated to accurately capture spatial and temporal variability across coral genera in both the Pacific and Atlantic Oceans. A continuous section of reconstructed SSTs in the WTA (Puerto Rico) during the LIA (1465-1560CE) reveals a modest cooling relative to the late 20th century but no significant difference from the early 20th century prior. At this site sensitive to the modern Atlantic Multidecadal Oscillation (AMO) multidecadal variability was present during the LIA with amplitude comparable to the 20th century. Our record is consistent with weaker tropical sensitivity to external forcing than at higher latitudes during the LIA.

  14. Legionella confirmation in cooling tower water

    PubMed Central

    Farhat, Maha; Shaheed, Raja A.; Al-Ali, Haidar H.; Al-Ghamdi, Abdullah S.; Al-Hamaqi, Ghadeer M.; Maan, Hawraa S.; Al-Mahfoodh, Zainab A.; Al-Seba, Hussain Z.

    2018-01-01

    Objectives: To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires’ disease. Methods: Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. Results: All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Conclusion: Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods. PMID:29436561

  15. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment

    NASA Astrophysics Data System (ADS)

    Chaiyabutr, N.; Chanpongsang, S.; Suadsong, S.

    2008-09-01

    The aim of this study was to determine how evaporative cooling modifies body function with respect to water metabolism and other variables relevant to milk synthesis in crossbred cattle. The study was conducted on two groups of 0.875HF:0.125RS crossbred Holstein cattle (87.5%) housed in an open-sided barn with a tiled roof (non-cooled animals) and in a close-sided barn under an evaporative cooling system (cooled animals). The maximum ambient temperature and relative humidity for the non-cooled group were 33°C and 61%, with the corresponding values for the evaporatively cooled barn being 28°C and 84%, respectively. The temperature humidity index (THI) of under non-cooled conditions was higher ( P < 0.05) than that in the cooled barn. Rectal temperatures and respiration rates of non-cooled animals were higher ( P < 0.05) than those of cooled animals. Daily dry matter intake (DMI) of cooled animals was higher while water intakes were lower ( P < 0.05) than those of non-cooled animals. The mean absolute values of plasma volume, blood volume, and extracellular fluid (ECF) of cooled animals were significantly higher ( P < 0.05) than those of non-cooled animals throughout all stages of lactation. Milk yields of cooled animals were higher by 42%, 36% and 79% on average than those of non-cooled animals during early-, mid- and late-lactation, respectively. The decline in milk yields as lactation advances was markedly apparent in late-lactating non-cooled animals, while no significant changes in milk composition at different stages of lactation were observed in either group. Mean arterial plasma concentrations, arteriovenous concentration differences (A-V differences) and the extraction ratio across the mammary gland for acetate, glucose and triglyceride of cooled animals were not significantly different compared with values for non-cooled animals. No differences were seen in plasma hormonal levels for triiodotyronine (T3) and insulin-like growth factor-1 (IGF-1), but

  16. U Pb ages of angrites

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri

    2008-01-01

    Precise U-Pb ages, determined with double spike ( 202Pb- 205Pb) thermal ionization m1ass spectrometry, are reported for angrites Angra dos Reis (AdoR), Lewis Cliff 86010 (LEW), and D'Orbigny. Nineteen of 23 acid-washed pyroxene fractions from these meteorites and whole rock fractions from D'Orbigny contain between 0.5 and 1.3 pg of total common Pb, indistinguishable from analytical blank. Measured 206Pb/ 204Pb ratios in these fractions are between 6300 and 14,100 for AdoR, 1160-4500 for LEW, and 608-8500 for D'Orbigny. Blank-corrected 206Pb/ 204Pb ratios for all three meteorites vary from 2160 to over 100,000. These fractions yielded precise and reproducible 207Pb ∗/ 206Pb ∗ dates with the average values of 4557.65 ± 0.13 Ma for AdoR, 4558.55 ± 0.15 Ma for LEW, and 4564.42 ± 0.12 Ma for D'Orbigny. Pb-Pb isochrons including data with slightly elevated common Pb, and U-Pb upper concordia intercepts, yield similar dates. The implications of these new Pb-isotopic ages of angrites are threefold. First, they demonstrate that AdoR and LEW are not coeval, and the group of "slowly cooled" angrites is therefore genetically diverse. Second, the new age of LEW suggests an upward revision of 53Mn- 53Cr "absolute" ages by 0.7 Ma. Third, a precise age of D'Orbigny allows consistent linking of the 53Mn- 53Cr and 26Al- 26Mg extinct nuclide chronometers to the absolute lime scale.

  17. Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.

    PubMed

    Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J

    2004-02-06

    We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.

  18. Time to Cooling Is Associated with Resuscitation Outcomes

    PubMed Central

    Janata, Andreas; Peacock, W. Frank; Deal, Nathan S.; Kalra, Sarathi; Sterz, Fritz

    2016-01-01

    Our purpose was to analyze evidence related to timing of cooling from studies of targeted temperature management (TTM) after return of spontaneous circulation (ROSC) after cardiac arrest and to recommend directions for future therapy optimization. We conducted a preliminary review of studies of both animals and patients treated with post-ROSC TTM and hypothesized that a more rapid cooling strategy in the absence of volume-adding cold infusions would provide improved outcomes in comparison with slower cooling. We defined rapid cooling as the achievement of 34°C within 3.5 hours of ROSC without the use of volume-adding cold infusions, with a ≥3.0°C/hour rate of cooling. Using the PubMed database and a previously published systematic review, we identified clinical studies published from 2002 through 2014 related to TTM. Analysis included studies with time from collapse to ROSC of 20–30 minutes, reporting of time from ROSC to target temperature and rate of patients in ventricular tachycardia or ventricular fibrillation, and hypothermia maintained for 20–24 hours. The use of cardiopulmonary bypass as a cooling method was an exclusion criterion for this analysis. We compared all rapid cooling studies with all slower cooling studies of ≥100 patients. Eleven studies were initially identified for analysis, comprising 4091 patients. Two additional studies totaling 609 patients were added based on availability of unpublished data, bringing the total to 13 studies of 4700 patients. Outcomes for patients, dichotomized into faster and slower cooling approaches, were determined using weighted linear regression using IBM SPSS Statistics software. Rapid cooling without volume-adding cold infusions yielded a higher rate of good neurological recovery than slower cooling methods. Attainment of a temperature below 34°C within 3.5 hours of ROSC and using a cooling rate of more than 3°C/hour appear to be beneficial. PMID:27906641

  19. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  20. Vacuum cooling of meat products: current state-of-the-art research advances.

    PubMed

    Feng, Chaohui; Drummond, Liana; Zhang, Zhihang; Sun, Da-Wen; Wang, Qijun

    2012-01-01

    Vacuum cooling (VC) is commonly applied for cooling of several foodstuffs, to provide exceptionally rapid cooling rates with low energy consumption and resulting in high-quality food products. However, for products such as meat and cooked meat products, the higher cooling loss of vacuum cooling compared with established methods still means lower yields, and important meat quality parameters can be negatively affected. Substantial efforts during the past ten years have aimed to improve the technology in order to offer the meat industry, especially the cooked meat industry, optimized production in terms of safety regulations and guidelines, as well as meat quality. This review presents and discusses recent VC developments directed to the cooked meat industry. The principles of VC, and the basis for improvements of this technology, are firstly discussed; future prospects for research and development in this area are later explored, particularly in relation to cooling of cooked meat and meat products.

  1. The evolution, argon diffusion properties, and 40Argon/39Argon ages of detachment-related fault rocks in the footwalls of the Whipple and Chemehuevi Mountains, Southeastern, California

    NASA Astrophysics Data System (ADS)

    Hazelton, Garrett Blaine

    Furnace and laser spot methods of obtaining 40Ar/ 39Ar ages from fine-grained cataclasite and pseudotachylyte are compared and evaluated in terms of protolith, faulting, and cooling age components. These methods are applied to fault rocks from outcrop-scale, small-displacement, brittle detachment faults (minidetachments or MDF's) that cut mid-crustal rocks from the footwalls of brittle, large-displacement (>20 km), top-to-the-NE, low-angle normal (i.e., detachment) faults in the Whipple (WM) and Chemehuevi Mountains (CM), SE California. Mid-Tertiary extension affected both areas from ˜26 Ma to ˜11--8 Ma. Rapid footwall cooling began at ˜22 Ma. WM-CM furnace ages range from 22.0 +/- 1.3 to 14.6 +/- 0.6 Ma, CM laser ages from 29.9 +/- 3.7 to 15.7 +/- 1.2 Ma. These ages are younger than host protolith formation and record detachment faulting or footwall cooling. At least 50 MDF's were mapped; they typically cut all basement fabrics. Brittle MDFand detacriment-generated fault rocks are texturally similar, but some in the WM are plastically deformed. Fault rock matrix was mechanically extracted, optically studied, probed to characterize bulk mineralogy. K-feldspar grains are the primary source of fault rock-derived Ar. The laser provides high spatial resolution and the furnace method yields the Ar diffusion properties of fault rock matrix. Both methods yield reproducible results, but ages are difficult to interpret without an established geothermochronologic context. Fault rock 40Ar/39Ar measurements reveal: (1) closure temperatures of 140--280°C (at 100°C/Myr); (2) activation energies ranging from 33--50 kcal/mol; (3) individual K-feldspar grain ages of 55--5 Ma; (4) unanticipated and poorly understood low-temperature diffusion behavior; (5) little difference between pseudotachylyte and cataclasite matrix diffusion and age results; (6) that pre-analysis sample characterization is requisite. The diffusion properties of prepared glasses (47--84% SiO2) were also

  2. Cooling rates and the depth of detachment faulting at oceanic core complexes: Evidence from zircon Pb/U and (U-Th)/He ages

    USGS Publications Warehouse

    Grimes, Craig B.; Cheadle, Michael J.; John, Barbara E.; Reiners, P.W.; Wooden, J.L.

    2011-01-01

    Oceanic detachment faulting represents a distinct mode of seafloor spreading at slow spreading mid-ocean ridges, but many questions persist about the thermal evolution and depth of faulting. We present new Pb/U and (U-Th)/He zircon ages and combine them with magnetic anomaly ages to define the cooling histories of gabbroic crust exposed by oceanic detachment faults at three sites along the Mid-Atlantic Ridge (Ocean Drilling Program (ODP) holes 1270D and 1275D near the 15??20???N Transform, and Atlantis Massif at 30??N). Closure temperatures for the Pb/U (???800??C-850??C) and (U-Th)/He (???210??C) isotopic systems in zircon bracket acquisition of magnetic remanence, collectively providing a temperature-time history during faulting. Results indicate cooling to ???200??C in 0.3-0.5 Myr after zircon crystallization, recording time-averaged cooling rates of ???1000??C- 2000??C/Myr. Assuming the footwalls were denuded along single continuous faults, differences in Pb/U and (U-Th)/He zircon ages together with independently determined slip rates allow the distance between the ???850??C and ???200??C isotherms along the fault plane to be estimated. Calculated distances are 8.4 ?? 4.2 km and 5.0 2.1 km from holes 1275D and 1270D and 8.4 ?? 1.4 km at Atlantis Massif. Estimating an initial subsurface fault dip of 50 and a depth of 1.5 km to the 200??C isotherm leads to the prediction that the ???850??C isotherm lies ???5-7 km below seafloor at the time of faulting. These depth estimates for active fault systems are consistent with depths of microseismicity observed beneath the hypothesized detachment fault at the TAG hydrothermal field and high-temperature fault rocks recovered from many oceanic detachment faults. Copyright 2011 by the American Geophysical Union.

  3. Current Pulses Momentarily Enhance Thermoelectric Cooling

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum

  4. Factors that determine the level of the yield strength and the return of the yield-point elongation in low-alloy ferrite-martensite steels

    NASA Astrophysics Data System (ADS)

    Fonstein, N.; Kapustin, M.; Pottore, N.; Gupta, I.; Yakubovsky, O.

    2007-09-01

    The results of laboratory investigations of dual-phase steels with different contents of carbon and alloying elements after the controlled cooling from the two-phase field and the final low-temperature tempering are presented. It is shown that the ratio of the yield strength to the tensile strength of dual-phase steels, just as the return of the yield-point elongation, depends on the volume fraction of martensite, temperature of the martensite transformation of the austenite component, quenching stresses, concentration of carbon in ferrite, and the temperature of the final tempering.

  5. Post-exercise cooling techniques in hot, humid conditions.

    PubMed

    Barwood, Martin James; Davey, Sarah; House, James R; Tipton, Michael J

    2009-11-01

    Major sporting events are often held in hot and humid environmental conditions. Cooling techniques have been used to reduce the risk of heat illness following exercise. This study compared the efficacy of five cooling techniques, hand immersion (HI), whole body fanning (WBF), an air cooled garment (ACG), a liquid cooled garment (LCG) and a phase change garment (PCG), against a natural cooling control condition (CON) over two periods between and following exercise bouts in 31 degrees C, 70%RH air. Nine males [age 22 (3) years; height 1.80 (0.04) m; mass 69.80 (7.10) kg] exercised on a treadmill at a maximal sustainable work intensity until rectal temperature (T (re)) reached 38.5 degrees C following which they underwent a resting recovery (0-15 min; COOL 1). They then recommenced exercise until T (re) again reached 38.5 degrees C and then undertook 30 min of cooling with (0-15 min; COOL 2A), and without face fanning (15-30 min; COOL 2B). Based on mean body temperature changes (COOL 1), WBF was most effective in extracting heat: CON 99 W; WBF: 235 W; PCG: 141 W; HI: 162 W; ACG: 101 W; LCG: 49 W) as a consequence of evaporating more sweat. Therefore, WBF represents a cheap and practical means of post-exercise cooling in hot, humid conditions in a sporting setting.

  6. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    NASA Astrophysics Data System (ADS)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  7. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    PubMed

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  8. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling.

    PubMed

    Perano, Kristen M; Usack, Joseph G; Angenent, Largus T; Gebremedhin, Kifle G

    2015-08-01

    The objective of this research was to test the effectiveness of conductive cooling in alleviating heat stress of lactating dairy cows. A conductive cooling system was built with waterbeds (Dual Chamber Cow Waterbeds, Advanced Comfort Technology Inc., Reedsburg, WI) modified to circulate chilled water. The experiment lasted 7 wk. Eight first-lactation Holstein cows producing 34.4±3.7kg/d of milk at 166±28 d in milk were used in the study. Milk yield, dry matter intake (DMI), and rectal temperature were recorded twice daily, and respiration rate was recorded 5 times per day. During wk 1, the cows were not exposed to experimental heat stress or conductive cooling. For the remaining 6 wk, the cows were exposed to heat stress from 0900 to 1700h each day. During these 6 wk, 4 of the 8 cows were cooled with conductive cooling (experimental cows), and the other 4 were not cooled (control cows). The study consisted of 2 thermal environment exposures (temperature-humidity index mean ± standard deviation of 80.7±0.9 and 79.0±1.0) and 2 cooling water temperatures (circulating water through the water mattresses at temperatures of 4.5°C and 10°C). Thus, a total of 4 conductive cooling treatments were tested, with each treatment lasting 1 wk. During wk 6, the experimental and control cows were switched and the temperature-humidity index of 79.0±1.0 with 4.5°C cooling water treatment was repeated. During wk 7, waterbeds were placed directly on concrete stalls without actively cooling the water. Least squares means and P-values for the different treatments were calculated with multivariate mixed models. Conductively cooling the cows with 4.5°C water decreased rectal temperature by 1.0°C, decreased respiration rate by 18 breaths/min, increased milk yield by 5%, and increased DMI by 14% compared with the controls. When the results from the 2 cooling water temperatures (4.5°C and 10°C circulating water) were compared, we found that the rectal temperature from 4.5

  9. Cooling Therapy Helps Newborns Years Later

    MedlinePlus

    ... longer. They examined data from 190 of the original study participants at ages 6 and 7 years. ... care group. “This follow-up study confirms the original finding, showing that children who received the cooling ...

  10. A Regeneratively Cooled Thrust Chamber For The Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Sparks, Dave; Woodcock, Gordon

    2000-01-01

    Abstract This paper presents the development of a low-cost, regeneratively-cooled thrust chamber for the Fastrac engine. The chamber was fabricated using hydraformed copper tubing to form the coolant jacket and wrapped with a fiber reinforced polymer composite Material to form a structural jacket. The thrust chamber design and fabrication approach was based upon Space America. Inc.'s 12,000 lb regeneratively-cooled LOX/kerosene rocket engine. Fabrication of regeneratively cooled thrust chambers by tubewall construction dates back to the early US ballistic missile programs. The most significant innovations in this design was the development of a low-cost process for fabrication from copper tubing (nickel alloy was the usual practice) and use of graphite composite overwrap as the pressure containment, which yields an easily fabricated, lightweight pressure jacket around the copper tubes A regeneratively-cooled reusable thrust chamber can benefit the Fastrac engine program by allowing more efficient (cost and scheduler testing). A proof-of-concept test article has been fabricated and will he tested at Marshall Space Flight Center in the late Summer or Fall of 2000.

  11. Heat pipe cooling of power processing magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  12. Metallographic cooling rates of L-group ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bennett, Marvin E.; Mcsween, Harry Y., Jr.

    1993-01-01

    yielded the slowest cooling rates and an increase in grade follows an increase in cooling rate. This is the opposite relationship to that predicted by the onion-shell model.

  13. Investigation of Strain Aging in the Ordered Intermetallic Compound beta-NiAl. Ph.D. Thesis Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Weaver, Mark Lovell

    1995-01-01

    The phenomenon of strain aging has been investigated in polycrystalline and single crystal NiAl alloys at temperatures between 300 and 1200 K. Static strain aging studies revealed that after annealing at 1100 K for 7200 s (i.e., 2h) followed by furnace cooling, high purity, nitrogen-doped and titanium-doped polycrystalline alloys exhibited continuous yielding, while conventional-purity and carbon-doped alloys exhibited distinct yield points and Luders strains. Prestraining by hydrostatic pressurization removed the yield points, but they could be reintroduced by further annealing treatments. Yield points could be reintroduced more rapidly if the specimens were prestrained uniaxially rather than hydrostatically, owing to the arrangement of dislocations into cell structures during uniaxial deformation. The time dependence of the strain aging events followed at t(exp 2/3) relationship suggesting that the yield points observed in polycrystalline NiAl were the result of the pinning of mobile dislocations by interstitials, specifically carbon. Between 700 and 800 K, yield stress plateaus, yield stress transients upon a ten-fold increase in strain rate, work hardening peaks, and dips in the strain rate sensitivity (SRS) have been observed in conventional-purity and carbon-doped polycrystals. In single crystals, similar behavior was observed; in conventional-purity single crystals, however, the strain rate sensitivity became negative resulting in serrated yielding, whereas, the strain rate sensitivity stayed positive in high purity and in molybdenum-doped NiAl. These observations are indicative of dynamic strain aging (DSA) and are discussed in terms of conventional strain aging theories. The impact of these phenomena on the composition-structure-property relations are discerned. Finally, a good correlation has been demonstrated between the properties of NiAl alloys and a recently developed model for strain aging in metals and alloys developed by Reed-Hill et al.

  14. Magnetic neutron star cooling and microphysics

    NASA Astrophysics Data System (ADS)

    Potekhin, A. Y.; Chabrier, G.

    2018-01-01

    Aims: We study the relative importance of several recent updates of microphysics input to the neutron star cooling theory and the effects brought about by superstrong magnetic fields of magnetars, including the effects of the Landau quantization in their crusts. Methods: We use a finite-difference code for simulation of neutron-star thermal evolution on timescales from hours to megayears with an updated microphysics input. The consideration of short timescales (≲1 yr) is made possible by a treatment of the heat-blanketing envelope without the quasistationary approximation inherent to its treatment in traditional neutron-star cooling codes. For the strongly magnetized neutron stars, we take into account the effects of Landau quantization on thermodynamic functions and thermal conductivities. We simulate cooling of ordinary neutron stars and magnetars with non-accreted and accreted crusts and compare the results with observations. Results: Suppression of radiative and conductive opacities in strongly quantizing magnetic fields and formation of a condensed radiating surface substantially enhance the photon luminosity at early ages, making the life of magnetars brighter but shorter. These effects together with the effect of strong proton superfluidity, which slows down the cooling of kiloyear-aged neutron stars, can explain thermal luminosities of about a half of magnetars without invoking heating mechanisms. Observed thermal luminosities of other magnetars are still higher than theoretical predictions, which implies heating, but the effects of quantizing magnetic fields and baryon superfluidity help to reduce the discrepancy.

  15. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows.

    PubMed

    West, J W; Mullinix, B G; Bernard, J K

    2003-01-01

    Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.

  16. Estimating oak growth and yield

    Treesearch

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    Yields from upland oak stands vary widely from stand to stand due to differences in age, site quality, species composition, and stand structure. Cutting history and other past disturbances such as grazing or fire also affect yields.

  17. Single-Grain (U-Th)/He Ages of Phosphates from St. Severin Chondrite

    NASA Astrophysics Data System (ADS)

    Min, K. K.; Reiners, P. W.; Shuster, D. L.

    2010-12-01

    Thermal evolution of chondrites provides valuable information on the heat budget, internal structure and dimensions of their parent bodies once existed before disruption. St. Severin LL6 ordinary chondrite is known to have experienced relatively slow cooling compared to H chondrites. The timings of primary cooling and subsequent thermal metamorphism were constrained by U/Pb (4.55 Ga), Sm/Nd (4.55 Ga), Rb/Sr (4.51 Ga) and K/Ar (4.4 Ga) systems. However, cooling history after the thermal metamorphism in a low temperature range (<200 °C) is poorly understood. In order to constrain the low-T thermal history of this meteorite, we performed (1) single-grain (U-Th)/He dating for five chlorapatite and fourteen merrillite aggregates from St. Severin, (2) examination of textural and chemical features of the phosphate aggregates using a scanning electron microscope (SEM), and (3) proton-irradiation followed by 4He and 3He diffusion experiments for single grains of chlorapatite and merrillite from Guarena meteorite, for general characterization of He diffusivity in these major U-Th reservoirs in meteorites. The α-recoil-uncorrected ages from St. Severin are distributed in a wide range of 333 ± 6 Ma and 4620 ± 1307 Ma. The probability density plot of these data shows a typical younging-skewed age distribution with a prominent peak at ~ 4.3 Ga. The weighted mean of the nine oldest samples is 4.284 ± 0.130 Ga, which is consistent with the peak of the probability plot. The linear dimensions of the phosphates are generally in the range of ~50 µm to 200 µm. The α recoil correction factor (FT) based on the morphology of the phosphate yields improbably old ages (>4.6 Ga), suggesting that within the sample aggregates, significant amounts of the α particles ejected from phosphates were implanted into the adjacent phases and therefore that this correction may not be appropriate in this case. The minimum FT value of 0.95 is calculated based on the peak (U-Th)/He age and 40Ar/39Ar

  18. Cooling modifies mixed median and ulnar palmar studies in carpal tunnel syndrome.

    PubMed

    Araújo, Rogério Gayer Machado de; Kouyoumdjian, João Aris

    2007-09-01

    Temperature is an important and common variable that modifies nerve conduction study parameters in practice. Here we compare the effect of cooling on the mixed palmar median to ulnar negative peak-latency difference (PMU) in electrodiagnosis of carpal tunnel syndrome (CTS). Controls were 22 subjects (19 women, mean age 42.1 years, 44 hands). Patients were diagnosed with mild symptomatic CTS (25 women, mean age 46.6 years, 34 hands). PMU was obtained at the usual temperature, >32 degrees C, and after wrist/hand cooling to <27 degrees C in ice water. After cooling, there was a significantly greater increase in PMU and mixed ulnar palmar latency in patients versus controls. We concluded that cooling significantly modifies the PMU. We propose that the latencies of compressed nerve overreact to cooling and that this response could be a useful tool for incipient CTS electrodiagnosis. There was a significant latency overreaction of the ulnar nerve to cooling in CTS patients. We hypothesize that subclinical ulnar nerve compression is associated with CTS.

  19. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.

    PubMed

    Meibom, Søren; Barnes, Sydney A; Platais, Imants; Gilliland, Ronald L; Latham, David W; Mathieu, Robert D

    2015-01-29

    The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars.

  20. Interpretation of thermochronological cooling ages using thermal modelling: an example from shallow magma intrusions from the Kerguelen archipelago

    NASA Astrophysics Data System (ADS)

    Ahadi, Floriane; Delpech, Guillaume; Gautheron, Cécile; Nomade, Sébastien; Zeyen, Hermann; Guillaume, Damien

    2017-04-01

    Low temperature thermochronology on plutonic rocks is traditionally used to calculate erosion rates over large time scale. However, this method requires a good knowledge of the local or regional geology and particularly the thermal structure and evolution of the crust. The Kerguelen Islands (48-50°S, 68/5-70.5°E, Indian Ocean) are the emerged part of a vast oceanic plateau and are mostly made up of Oligocene basaltic traps that are cross cut by a dense network of large and deep valleys. Numerous plutonic complexes of various age (20-4.5 Ma) locally intrude theses traps and cover about 15% of the main island's surface. The Rallier du Baty peninsula is the largest plutonic complex, it is mainly constituted of syenites and is divided into two adjacent circular plutonic complexes whose centres are distant of 15 km. The southern part has a laccolith structure with satellites plutons and was emplaced at shallow depth (about 1 to 3 km) between 13.7 ± 0.3 and 8.0 ± 0.2 Ma. The northern part was emplaced later between 7.8 ± 0.25 and 4.5 ± 0.1 Ma. The Kerguelen Islands are of particular interest to understand the impact of Cenozoïc climatic variations on the long-term geomorphological evolution of emerged reliefs at mid-latitudes. To understand the erosion of the area, we conducted the first study on the Kerguelen Islands using the biotite 40Ar/39Ar (BAr), apatite and zircon (U-Th)/He thermochronometers (AHe and ZHe). In the southern part, the BAr ages for the various intrusions of the complex range from 9.44 ± 0.13 Ma to 13.84 ± 0.07 Ma. These ages are identical to high-temperature crystallisation ages (U-Pb on zircon) indicating an extremely rapid cooling between ˜700 and ˜300°C. The mean ZHe ages range between 7.1 ± 2.3 and 8.8 ± 1.4 and the mean AHe ages range between 4.4 ± 0.3 Ma and 7.4 ± 0.7 Ma. The AHe ages of the southern complex are similar to the crystallization ages of the northern part of the complex. The mean AHe ages in the northern part are

  1. Comparing Social Stories™ to Cool versus Not Cool

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  2. Film cooling for a closed loop cooled airfoil

    DOEpatents

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  3. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  4. Solar heating and cooling.

    PubMed

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  5. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOEpatents

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  6. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo Javier

    Summer urban heat island (UHI) refers to the phenomenon of having higher urban temperatures compared to the those in surrounding suburban and rural areas. Higher urban air temperatures lead to increased cooling demand, accelerates the formation of smog, and contributes to the generation of greenhouse gas emissions. Dark-colored impervious surfaces cover a significant fraction of an urban fabric, and as hot and dry surfaces, are a major contributor to the UHI effect. Adopting solar-reflective ("cool") roofs and cool pavements, and increasing the urban vegetation, are strategies proven to mitigate urban heat islands. These strategies often have an "indirect" effect (ambient cooling) and "direct" effect (change in solar energy flux entering the conditioned space) on the energy use of buildings. This work investigates some elements of the UHI mitigation strategies, specifically the annual direct effect of a cool roof, and the direct and indirect effects of cool pavements. The first topic researched in this paper consists in an experimental assessment of the direct effects from replacing a conventional dark roof with a highly energy-efficient cool roof. The study measures and calculates the annual benefits of the cool roof on the cooling and heating energy uses, and the associated emission reductions. The energy savings attributed to the cool roof are validated by measuring the difference between the homes in the heat loads that entered the conditioned space through the ceiling and HVAC ducts. Fractional annual cooling energy savings (26%) were 2.6 times the 10% daily cooling energy savings measured in a previous study that used a white coating to increase the albedo of an asphalt shingle roof by the same amount (0.44). The improved cooling energy savings (26% vs. 10%) may be attributed to the cool tile's above-sheathing ventilation, rather than to its high thermal mass. The roof also provided energy savings during the heating season, yielding fractional annual gas

  7. Influence of cooling rates and addition of Equex pasta on cooled and frozen-thawed semen of generic gray (Canis lupus) and Mexican gray wolves (C. l. baileyi).

    PubMed

    Zindl, C; Asa, C S; Günzel-Apel, A-R

    2006-10-01

    A current priority for the preservation of the endangered Mexican gray wolf (Canis lupus baileyi) is the development of a sperm-based genome resource bank for subsequent use in artificial insemination. To optimize the quality of cryopreserved sperm, the procedures involved in processing semen before and during freezing need to be improved. The aim of this study were to examine the effects of: (i) different cooling periods before freezing and (ii) addition of Equex pasta (Minitüb, Tübingen, Germany) on the characteristics of sperm from the generic gray wolf and the Mexican gray wolf after cooling and cryopreservation. For Mexican wolf sperm, cooling for 0.5 and 1.0 h had a less detrimental effect on cell morphology than cooling for 2.5 h, whereas the slower cooling rate (2.5 h) had a less detrimental effect on functional parameters and seemed to cause less damage to plasma membrane and acrosome integrity than 0.5 and 1.0 h. For the generic gray wolf, cooling semen for 2.5 h had less detrimental effect on plasma membrane integrity and viability; together with the 0.5 h cooling time, it yielded the highest percentages of intact acrosomes. As previously shown in the domestic dog, Equex pasta had no beneficial effect on sperm characteristics in either wolf species.

  8. Serrated yielding in Al-Li alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; McShane, H.B.

    1993-05-01

    Serrated yielding (SY) during tensile testing has been observed in Al-Li alloys, both in the binary and the commercial quaternary alloys, in single crystal as well as polycrystalline materials. Serrated yielding is commonly explained by a dynamic strain aging (DSA) model developed by McCormick and van den Beukel. All the solute elements present in Al-Li alloys, viz., Mg, Cu and Li are known to give DSA and SY. Several researchers believe the DSA to be the cause of SY and they attribute the disappearance of SY simply to the removal of solute from the matrix with aging. However, this argumentmore » has serious flaws. The present paper examines this aspect critically. The authors concluded that Al-Li alloys the disappearance of serrated yielding at a certain stage of aging is not due to removal of the solute from the matrix but due to the change in the nature of the metastable [delta][prime] precipitates - from fine coherent shearable precipitates to larger noncoherent nonshearable precipitates - which prevents the formation of the deformation bands. The serrated yielding reappears with extensive over aging due to the dissolution of these precipitates in favor of the equilibrium precipitates. The equilibrium precipitates, being widely spaced, are ineffective in preventing the formation of deformation bands.« less

  9. Ar-40/Ar-39 Age of Hornblende-bearing R Chondrite LAP 04840

    NASA Technical Reports Server (NTRS)

    Righter, K.; Cosca, M.

    2014-01-01

    Chondrites have a complex chronology due to several variables affecting and operating on chondritic parent bodies such as radiogenic heating, pressure and temperature variation with depth, aqueous alteration, and shock or impact heating [1]. Unbrecciated chondrites can record ages from 4.56 to 4.4 Ga that represent cooling in small parent bodies. Some brecciated chondrites exhibit younger ages (<<4 to 4.4 Ga) that may reflect the age of brecciation, disturbance, or shock and impact events (<< 4 Ga). A unique R chondrite was recently found in the LaPaz Icefield of Antarctica - LAP 04840 [2]. This chondrite contains approx.15% hornblende and trace amounts of biotite, making it the first of its kind. Studies have revealed an equigranular texture, mineral equilibria yielding equilibration near 650-700 C and 250-500 bars, hornblende that is dominantly OH-bearing (very little Cl or F), and high D/H ratios [8,9,10]. To help gain a better understanding of the origin of this unique sample, we have measured the Ar-40/Ar-39 age. Age of 4.290 +/- 0.030 Ga is younger than one would expect for a sample that has cooled within a small body [4], and one might instead attribute the age to a younger shock event, On the other hand, there is no evidence for extensive shock in this meteorite (shock stage S2; [3]), so this sample may have been reannealed after the shock event. This age is similar to Ar-Ar ages determined for some other R chondrites

  10. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.

    PubMed

    Rustic, Gerald T; Koutavas, Athanasios; Marchitto, Thomas M; Linsley, Braddock K

    2015-12-18

    Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern. Copyright © 2015, American Association for the Advancement of Science.

  11. Competitive photodissociation channels in jet-cooled HNCO: Thermochemistry and near-threshold predissociation

    NASA Astrophysics Data System (ADS)

    Zyrianov, M.; Droz-Georget, Th.; Sanov, A.; Reisler, H.

    1996-11-01

    The photoinitiated unimolecular decomposition of jet-cooled HNCO has been studied following S1(1A″)←S0(1A') excitation near the thresholds of the spin-allowed dissociation channels: (1) H(2S)+NCO(X2Π) and (2) NH(a1Δ)+CO(X1Σ+), which are separated by 4470 cm-1. Photofragment yield spectra of NCO(X2Π) and NH (a1Δ) were obtained in selected regions in the 260-220 nm photolysis range. The NCO(X2Π)yield rises abruptly at 38 380 cm-1 and the spectrum exhibits structures as narrow as 0.8 cm-1 near the threshold. The linewidths increase only slowly with photolysis energy. The jet-cooled absorption spectrum near the channel (1) threshold [D0(H+NCO)] was obtained using two-photon excitation via the S1 state, terminating in a fluorescent product. The absorption spectrum is similar to the NCO yield spectrum, and its intensity does not diminish noticeably above D0(H+NCO), indicating that dissociation near threshold is slow. The NCO product near threshold is cold, as is typical of a barrierless reaction. NH (a1Δ) products appear first at 42 840 cm-1, but their yield is initially very small, as evidenced also by the insignificant decrease in the NCO yield in the threshold region of channel (2). The NH (a1Δ) yield increases faster at higher photolysis energies and the linewidths increase as well. At the channel (2) threshold, the NH (a1Δ) product is generated only in the lowest rotational level, J=2, and rotational excitation increases with photolysis energy. We propose that in the range 260-230 nm, HNCO (S1) undergoes radiationless decay terminating in S0/T1 followed by unimolecular reaction. Decompositions via channels (1) and (2) proceed without significant exit channel barriers. At wavelengths shorter than 230 nm, the participation of an additional, direct pathway cannot be ruled out. The jet-cooled photofragment yield spectra allow the determination, with good accuracy, of thermochemical values relevant to HNCO decomposition. The following heats of formation are

  12. Hot and Cool Executive Functions in Adolescence: Development and Contributions to Important Developmental Outcomes.

    PubMed

    Poon, Kean

    2017-01-01

    Despite significant theoretical advancement in the area of child neuropsychology, limited attention has been paid to the developmental features of adolescence. The present study intends to address this issue in relation to executive function (EF). EF refers to the psychological processes that underlie goal-directed behavior; recent studies separate cool EF (psychological process involves pure logic and critical analysis) and hot EF (psychological process driven by emotion). Although neurological findings suggest that adolescence is a sensitive period for EF development, data on comparing the developmental progression in hot or cool EFs is highly missing. Moreover, while evidence has confirmed the relationships between EF and day-to-day functioning, whether and how hot and cool EFs contribute to core developmental outcomes in adolescence is still remained unknown. The current study aims to enhance our understanding of the development and impacts of hot and cool EFs in adolescence. A total of 136 typically developing adolescents from age 12 to 17 completed four cool EF tasks including Backward digit span, Contingency naming test, Stockings of Cambridge, and Stroop Color and Word test, and one hot task on Cambridge gambling task. Data on academic performance and psychological adjustment was also collected. Results showed that cool and hot EF exhibited different patterns of age-related growth in adolescence. Specifically, cool EF ascended with age while hot EF showed a bell-shaped development. Moreover, there were correlations among cool EF measures but no association between cool and hot EFs. Further, cool EF was a better predictor of academic performance, while hot EF uniquely related to emotional problems. The results provide evidence for the association among cool EF tests and the differentiation of hot and cool EFs. The bell-shaped development of hot EF might suggest a period of heightened risk-taking propensity in middle adolescence. Given the plastic nature of

  13. Hot and Cool Executive Functions in Adolescence: Development and Contributions to Important Developmental Outcomes

    PubMed Central

    Poon, Kean

    2018-01-01

    Despite significant theoretical advancement in the area of child neuropsychology, limited attention has been paid to the developmental features of adolescence. The present study intends to address this issue in relation to executive function (EF). EF refers to the psychological processes that underlie goal-directed behavior; recent studies separate cool EF (psychological process involves pure logic and critical analysis) and hot EF (psychological process driven by emotion). Although neurological findings suggest that adolescence is a sensitive period for EF development, data on comparing the developmental progression in hot or cool EFs is highly missing. Moreover, while evidence has confirmed the relationships between EF and day-to-day functioning, whether and how hot and cool EFs contribute to core developmental outcomes in adolescence is still remained unknown. The current study aims to enhance our understanding of the development and impacts of hot and cool EFs in adolescence. A total of 136 typically developing adolescents from age 12 to 17 completed four cool EF tasks including Backward digit span, Contingency naming test, Stockings of Cambridge, and Stroop Color and Word test, and one hot task on Cambridge gambling task. Data on academic performance and psychological adjustment was also collected. Results showed that cool and hot EF exhibited different patterns of age-related growth in adolescence. Specifically, cool EF ascended with age while hot EF showed a bell-shaped development. Moreover, there were correlations among cool EF measures but no association between cool and hot EFs. Further, cool EF was a better predictor of academic performance, while hot EF uniquely related to emotional problems. The results provide evidence for the association among cool EF tests and the differentiation of hot and cool EFs. The bell-shaped development of hot EF might suggest a period of heightened risk-taking propensity in middle adolescence. Given the plastic nature of

  14. Economic feasibility of cooling dry cows across the United States.

    PubMed

    Ferreira, F C; Gennari, R S; Dahl, G E; De Vries, A

    2016-12-01

    Heat stress during the dry period reduces milk yield in the subsequent lactation of dairy cows. Our objectives were to quantify the economic losses due to heat stress if dry cows are not cooled and to evaluate the economic feasibility of dry cow cooling. We used weather data from the National Oceanic and Atmospheric Administration to calculate the number of heat stress days for each of the 50 US states. A heat stress day was declared when the daily average temperature-humidity index was ≥68. The number of dairy cows in each state in 2015 was obtained from the USDA-National Agricultural Statistics Service. We assumed that 15% of the cows were dry at any time, a 60-d dry period, and a calving interval of 400d. Only cows in their second or greater parity (65%) benefitted from cooling during the dry period of the previous parity. Milk yield decreased by 5kg in the subsequent lactation (340d) if the cow experienced heat stress during the dry period based on a review of the literature. The default marginal value of milk minus feed cost was $0.33/kg of milk. The investment analysis included purchases of fans and soakers and use of water and electricity. Investment in a dry cow barn was considered separately. The average US dairy cow would experience 96 (26%) heat stress days during the year if not cooled and loses 447kg of milk in the subsequent lactation if not cooled when dry. Annual losses would be $810 million if dry cows were not cooled ($87/cow per yr). For the top 3 milk-producing states (California, Wisconsin, New York), and Florida and Texas, the average milk losses in the subsequent lactation were 522, 349, 387, 1,197, and 904kg, and reduced profit per cow per year would be $101, $68, $75, $233, and $176, respectively. The average benefit-cost ratio and payback periods of cooling dry cows in the United States were 3.15 and 0.27 yr (dry cow barn already present) and 1.45 and 5.68 yr (if investing in a dry cow barn) in the default scenario. To reach positive net

  15. A comparison of 2 evaporative cooling systems on a commercial dairy farm in Saudi Arabia.

    PubMed

    Ortiz, X A; Smith, J F; Villar, F; Hall, L; Allen, J; Oddy, A; Al-Haddad, A; Lyle, P; Collier, R J

    2015-12-01

    Efficacy of 2 cooling systems (Korral Kool, KK, Korral Kool Inc., Mesa, AZ; FlipFan dairy system, FF, Schaefer Ventilation Equipment LLC, Sauk Rapids, MN) was estimated utilizing 400 multiparous Holstein dairy cows randomly assigned to 1 of 4 cooled California-style shade pens (2 shade pens per cooling system). Each shaded pen contained 100 cows (days in milk=58±39, milk production=56±18 kg/d, and lactation=3±1). Production data (milk yield and reproductive performance) were collected during 3mo (June-August, 2013) and physiological responses (core body temperature, respiration rates, surface temperatures, and resting time) were measured in June and July to estimate responses of cows to the 2 different cooling systems. Water and electricity consumption were recorded for each system. Cows in the KK system displayed slightly lower respiration rates in the month of June and lower surface temperatures in June and July. However, no differences were observed in the core body temperature of cows, resting time, feed intake, milk yield, services/cow, and conception rate between systems. The FF system used less water and electricity during this study. In conclusion, both cooling systems (KK and FF) were effective in mitigating the negative effects of heat stress on cows housed in arid environments, whereas the FF system consumed less water and electricity and did not require use of curtains on the shade structure. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. An evaluation of three growth and yield simulators for even-aged hardwood forests of the mid-Appalachian region

    Treesearch

    John R. Brooks; Gary W. Miller

    2011-01-01

    Data from even-aged hardwood stands in four ecoregions across the mid-Appalachian region were used to test projection accuracy for three available growth and yield software systems: SILVAH, the Forest Vegetation Simulator, and the Stand Damage Model. Average root mean squared error (RMSE) ranged from 20 to 140 percent of actual trees per acre while RMSE ranged from 2...

  17. Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization.

    PubMed

    Chee Loong, Teo; Idris, Ani

    2014-12-01

    Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco

    NASA Astrophysics Data System (ADS)

    Fang, Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    2017-06-01

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.

  19. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  20. Yield of Unthinned Yellow-Poplar

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1970-01-01

    Cubic-foot and board-foot yields of unthinned yellow-poplar (Liriodendron Tulipiferi L.) stands are described in relation to stand age, site index, and number of trees per acre. The yield tables are based on analysis of diameter distributions and height-diameter relationships obtained from 141 natural, unthinned yellow-poplar stands in the...

  1. Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: A 40Ar/39Ar and U-Pb study

    USGS Publications Warehouse

    Dalrymple, G.B.; Grove, M.; Lovera, O.M.; Harrison, T.M.; Hulen, J.B.; Lanphere, M.A.

    1999-01-01

    Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yield 207Pb/206Pb vs. 238U/206Pb concordia ages ranging from 1.13 ?? 0.04 Ma to 1.25 ?? 0.04 (1??) Ma. The weighted mean of the U/Pb model ages is 1.18 ?? 0.03 Ma. The U-Pb ages coincide closely with 40Ar/39Ar age spectrum plateau and 'terminal' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350??C by ~0.9-1.0 Ma. Interpretation of the feldspar 40Ar/39Ar age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350??to 300??C between 1.0 and 0.4 Ma or transitory reheating to 300-350??C at about 0.4-0.6 Ma. Subsequent rapid cooling to below 260??C between 0.4 and 0.2 Ma is in agreement with previous proposals that vapor-dominated conditions were initiated within the hydrothermal system at this time. Heat flow calculations constrained with K-feldspar thermal histories and the present elevated regional heat flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2 to 0.6 Ma.

  2. Cooling Flows

    NASA Astrophysics Data System (ADS)

    Fabian, A.; Murdin, P.

    2000-11-01

    A subsonic cooling flow occurs when the hot gaseous atmosphere of a galaxy, group or cluster of galaxies cools slowly. Such atmospheres occur as a result of gas having fallen into the DARK MATTER well of the object and heated by gravitational energy release. A dominant cooling process is the emission of radiation by the gas. As cooling proceeds the gas sinks further in the potential well, giving ...

  3. Optics-based approach to thermal management of photovoltaics: Selective-spectral and radiative cooling

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang; ...

    2017-01-20

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  4. Weighing Ultra-Cool Stars

    NASA Astrophysics Data System (ADS)

    2004-05-01

    Large Ground-Based Telescopes and Hubble Team-Up to Perform First Direct Brown Dwarf Mass Measurement [1] Summary Using ESO's Very Large Telescope at Paranal and a suite of ground- and space-based telescopes in a four-year long study, an international team of astronomers has measured for the first time the mass of an ultra-cool star and its companion brown dwarf. The two stars form a binary system and orbit each other in about 10 years. The team obtained high-resolution near-infrared images; on the ground, they defeated the blurring effect of the terrestrial atmosphere by means of adaptive optics techniques. By precisely determining the orbit projected on the sky, the astronomers were able to measure the total mass of the stars. Additional data and comparison with stellar models then yield the mass of each of the components. The heavier of the two stars has a mass around 8.5% of the mass of the Sun and its brown dwarf companion is even lighter, only 6% of the solar mass. Both objects are relatively young with an age of about 500-1,000 million years. These observations represent a decisive step towards the still missing calibration of stellar evolution models for very-low mass stars. PR Photo 19a/04: Orbit of the ultra-cool stars in 2MASSW J0746425+2000321. PR Photo 19b/04: Animated Gif of the orbital motion. Telephone number star Even though astronomers have found several hundreds of very low mass stars and brown dwarfs, the fundamental properties of these extreme objects, such as masses and surface temperatures, are still not well known. Within the cosmic zoo, these ultra-cool stars represent a class of "intermediate" objects between giant planets - like Jupiter - and "normal" stars less massive than our Sun, and to understand them well is therefore crucial to the field of stellar astrophysics. The problem with these ultra-cool stars is that contrary to normal stars that burn hydrogen in their central core, no unique relation exists between the luminosity of the

  5. Magnetic grain-size variations through an ash flow sheet: influence on magnetic properties and implications for cooling history

    USGS Publications Warehouse

    Rosenbaum, J.G.

    1993-01-01

    Rock magnetic studies of tuffs are essential to the interpretation of paleomagnetic data derived from such rocks, provide a basis for interpretation of aeromagnetic data over volcanic terranes, and yield insights into the depositional and cooling histories of ash flow sheets. A rhyolitic ash flow sheet, the Miocene-aged Tiva Canyon Member of the Paintbrush Tuff, contains both titanomagnetite phenocrysts, present in the magma prior to eruption, and cubic Fe-oxide microcrystals that grew after emplacement. Systematic variations in the quantity and magnetic grain size of the microcrystals produce large variations in magnetic properties through a section of the ash flow sheet penetrated in a borehole on the Nevada Test Site. Microcrystals are important contributors to remanent magnetization and magnetic susceptibility in two 15-m-thick zones at the top and bottom. Within these zones the size of microcrystals decreases both toward the quenched margins and toward the interior of the sheet. The decrease in microcrystal size toward the interior of the sheet is interpreted to indicate the presence of a cooling break; possibly represented by a concentration of pumice. -from Author

  6. An Individualized, Perception-Based Protocol to Investigate Human Physiological Responses to Cooling

    PubMed Central

    Coolbaugh, Crystal L.; Bush, Emily C.; Galenti, Elizabeth S.; Welch, E. Brian; Towse, Theodore F.

    2018-01-01

    Cold exposure, a known stimulant of the thermogenic effects of brown adipose tissue (BAT), is the most widely used method to study BAT physiology in adult humans. Recently, individualized cooling has been recommended to standardize the physiological cold stress applied across participants, but critical experimental details remain unclear. The purpose of this work was to develop a detailed methodology for an individualized, perception-based protocol to investigate human physiological responses to cooling. Participants were wrapped in two water-circulating blankets and fitted with skin temperature probes to estimate BAT activity and peripheral vasoconstriction. We created a thermoesthesia graphical user interface (tGUI) to continuously record the subject's perception of cooling and shivering status during the cooling protocol. The protocol began with a 15 min thermoneutral phase followed by a series of 10 min cooling phases and concluded when sustained shivering (>1 min duration) occurred. Researchers used perception of cooling feedback (tGUI ratings) to manually adjust and personalize the water temperature at each cooling phase. Blanket water temperatures were recorded continuously during the protocol. Twelve volunteers (ages: 26.2 ± 1.4 years; 25% female) completed a feasibility study to evaluate the proposed protocol. Water temperature, perception of cooling, and shivering varied considerably across participants in response to cooling. Mean clavicle skin temperature, a surrogate measure of BAT activity, decreased (−0.99°C, 95% CI: −1.7 to −0.25°C, P = 0.16) after the cooling protocol, but an increase in supraclavicular skin temperature was observed in 4 participants. A strong positive correlation was also found between thermoesthesia and peripheral vasoconstriction (ρ = 0.84, P < 0.001). The proposed individualized, perception-based protocol therefore has potential to investigate the physiological responses to cold stress applied across populations with

  7. The Advancement of Cool Roof Standards in China from 2010 to 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Jing; Levinson, Ronnen M.

    Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points formore » heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.« less

  8. Heat pipe cooling of power processing magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Chester, M. S.

    1979-01-01

    A heat pipe cooled transformer and input filter were developed for the 2.4 kW beam supply of a 30 cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. The design details are presented along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  9. Effects of feeding an immunomodulatory supplement to heat-stressed or actively cooled cows during late gestation on postnatal immunity, health, and growth of calves.

    PubMed

    Skibiel, Amy L; Fabris, Thiago F; Corrá, Fabiana N; Torres, Yazielis M; McLean, Derek J; Chapman, James D; Kirk, David J; Dahl, Geoffrey E; Laporta, Jimena

    2017-09-01

    Heat stress during late gestation negatively affects the physiology, health, and productivity of dairy cows as well as the calves developing in utero. Providing cows with active cooling devices, such as fans and soakers, and supplementing cows with an immunomodulating feed additive, OmniGen-AF (OG; Phibro Animal Health Corporation), improves immune function and milk yield of cows. It is unknown if maternal supplementation of OG combined with active cooling during late gestation might benefit the developing calf as well. Herein we evaluated markers of innate immune function, including immune cell counts, acute phase proteins, and neutrophil function, of calves born to multiparous dams in a 2 × 2 factorial design. Dams were supplemented with OG or a bentonite control (NO) beginning at 60 d before dry off and exposed to heat stress with cooling (CL) or without active cooling (HT) during the dry period (∼46 d). At birth, calves were separated from their dams and fed 6.6 L of their dams' colostrum in 2 meals. Calf body weight and rectal temperature were recorded, and blood samples were collected at birth (before colostrum feeding) and at 10, 28, and 49 d of age. Calves born to either CL dams or OG dams were heavier at birth than calves born to HT or NO dams, respectively. Concentrations of serum amyloid A were higher in the blood of calves born to OG dams relative to NO and for HT calves relative to CL calves. In addition, calves born to cooled OG dams had greater concentrations of plasma haptoglobin than calves born to cooled control dams. Neutrophil function at 10 d of age was enhanced in calves born to cooled OG dams and lymphocyte counts were higher in calves born to OG dams. Together these results suggest that adding OG to maternal feed in combination with active cooling of cows during late gestation is effective in mitigating the negative effects of in utero heat stress on postnatal calf growth and immune competence. Copyright © 2017 American Dairy Science

  10. Cooling systems of the resting area in free stall dairy barn

    NASA Astrophysics Data System (ADS)

    Calegari, F.; Calamari, L.; Frazzi, E.

    2016-04-01

    A study during the summer season evaluated the effect of different cooling systems on behavioral and productive responses of Italian Friesian dairy cows kept in an experimental-free stall barn located in the Po Valley in Italy. The study involved 30 lactating dairy cows subdivided into two groups kept in two pens with external hard court paddock in each free stall. The same cooling system was applied in the feeding area in both pens. A different cooling system in the resting area was applied to the two pens: in the pen SW, the resting area was equipped with fans and misters; in the other, there was simple ventilation (SV). Breathing rate, rectal temperature, milk yield, and milk characteristics (fat, protein, and somatic cell count) were measured. Behavioral activities (standing and lying cows in the different areas, as well as the animals in the feed bunk) were recorded. Mild to moderate heat waves during the trial were observed. On average, the breathing rate was numerically greater in SV compared with SW cows (60.2 and 55.8 breath/min, respectively), and mean rectal temperature remained below 39 °C in both groups during the trial (on average 38.7 and 38.8 °C in SV and SW, respectively. During the hotter periods of the trial, the time spent lying indoor in the free stall was greater in SW (11.8 h/day) than SV (10.7 h/day). Conversely, the time spent standing indoor without feeding was greater in SV (4.3 h/day) than SW (3.8 h/day). Milk yield was slightly better maintained during hotter period in SW compared with SV and somatic cell count was also slightly greater in the former. In conclusion, the adoption of the cooling system by means of evaporative cooling also in the resting area reduces the alteration of time budget caused by heat stress.

  11. Effect of core cooling on the radius of sub-Neptune planets

    NASA Astrophysics Data System (ADS)

    Vazan, A.; Ormel, C. W.; Dominik, C.

    2018-02-01

    Sub-Neptune planets are very common in our Galaxy and show a large diversity in their mass-radius relation. In sub-Neptunes most of the planet mass is in the rocky part (hereafter, core), which is surrounded by a modest hydrogen-helium envelope. As a result, the total initial heat content of such a planet is dominated by that of the core. Nonetheless, most studies contend that the core cooling only has a minor effect on the radius evolution of the gaseous envelope because the cooling of the core is in sync with the envelope; that is most of the initial heat is released early on timescales of 10-100 Myr. In this Letter we examined the importance of the core cooling rate for the thermal evolution of the envelope. Thus, we relaxed the early core cooling assumption and present a model in which the core is characterized by two parameters: the initial temperature and the cooling time. We find that core cooling can significantly enhance the radius of the planet when it operates on a timescale similar to the observed age, i.e. Gyr. Consequently, the interpretation of the mass-radius observations of sub-Neptunes depends on the assumed core thermal properties and the uncertainty therein. The degeneracy of composition and core thermal properties can be reduced by obtaining better estimates of the planet ages (in addition to their radii and masses) as envisioned by future observations.

  12. Experimental evaluation of cooling efficiency of the high performance cooling device

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  13. A comparison of legionella and other bacteria concentrations in cooling tower water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappabianca, R.M.; Jurinski, N.B.; Jurinski, J.B.

    1994-05-01

    A field study was conducted in which water samples collected from air conditioning cooling water reservoirs of high-rise buildings throughout an urban area were assayed for Legionella and for total bacteria. Buildings included within the study had ongoing biocidal treatment programs for the cooling towers. Separate sample analyses were performed to measure the viable colony concentrations of total bacteria and of Legionella in the process waters. The occurrence and viable counts of Legionella in 304 environmental water samples were determined by inoculating them onto plates of buffered charcoal yeast extract (BCYE) agar medium (a presumptive screening method). The samples weremore » collected during summer months between July and September. BCYE plate cultures of 50 (16.4%) of the samples yielded Legionella with viable counts ranging from 2 to 608 colony forming units per milliliter. In the water samples, 281 (92.4%) yielded viable counts of bacteria that ranged from 9 to 1.2 x 10{sup 6} per milliliter. This study demonstrates that Legionella are commonly present in the water of air conditioning cooling towers and that there is no significant correlation between concurrently sampled culture plate counts of Legionella and total bacteria plate counts. Correspondingly, there is no demonstrated validity for use of total bacterial counts as an inferential surrogate for the concentration of Legionella in the water. 19 refs., 3 figs., 1 tab.« less

  14. Control of plant virus diseases in cool-season grain legume crops.

    PubMed

    Makkouk, Khaled M; Kumari, Safaa G; van Leur, Joop A G; Jones, Roger A C

    2014-01-01

    Cool-season grain legume crops become infected with a wide range of viruses, many of which cause serious diseases and major yield losses. This review starts by discussing which viruses are important in the principal cool-season grain legume crops in different parts of the world, the losses they cause and their economic impacts in relation to control. It then describes the main types of control measures available: host resistance, phytosanitary measures, cultural measures, chemical control, and biological control. Examples are provided of successful deployment of the different types of measures to control virus epidemics in cool-season grain legume crops. Next it emphasizes the need for integrated approaches to control because single control measures used alone rarely suffice to adequately reduce virus-induced yield losses in these crops. Development of effective integrated disease management (IDM) strategies depends on an interdisciplinary team approach to (i) understand the ecological and climatic factors which lead to damaging virus epidemics and (ii) evaluate the effectiveness of individual control measures. In addition to using virus-resistant cultivars, other IDM components include sowing virus-tested seed stocks, selecting cultivars with low seed transmission rates, using diverse phytosanitary or cultural practices that minimize the virus source or reduce its spread, and using selective pesticides in an environmentally responsible way. The review finishes by briefly discussing the implications of climate change in increasing problems associated with control and the opportunities to control virus diseases more effectively through new technologies.

  15. Seasonal variation in time budgets and milk yield for Jersey, Friesland and crossbred cows raised in a pasture-based system.

    PubMed

    Dodzi, Madodana S; Muchenje, Voster

    2012-10-01

    The time budgets and daily milk yield of Jersey and Friesland cows and their crosses were compared in a pasture-based system by recording the time spent grazing, drinking, lying, standing and walking in four seasons of the year (cool-dry, hot-dry, hot-wet and post-rainy). Observations were made from 0800 to 1400 hours on seven cows per breed. Seven observers monitored the cows at 10-min intervals for 6 h using stop watches. Time spent standing was higher (P < 0.05) for Friesland compared to Jersey cows and the crossbred cows during the hot-wet season. Time spent walking differed among the three genotypes with the Jersey spending more time (P < 0.05) in both hot-wet and cool-dry seasons. No differences were noted on time spent lying down (P > 0.05) across the genotypes in the hot-wet season. In the cool-dry season, differences in time spent grazing (P < 0.05) were noted with the Jersey cows spending more time. The Friesland and the crossbred spent more time lying down (P < 0.05) than the Jersey cows in the cool-dry season. No time differences were noted for time spent standing (P > 0.05) in the same season. The Jersey cows spent the longest time walking (P < 0.05) during the cool-dry period. There were seasonal differences in time spent in all activities (P < 0.05). Time spent on grazing was longest in post-rainy season and lowest in hot-wet season. Differences were observed in the time spent lying down (P < 0.05). The longest period was observed in the hot-dry season and lowest in the hot-wet season. Daily milk yield varied (P < 0.05) with breed with the Friesland and Jersey producing higher yields than the crosses. The highest amount was produced in hot-dry and the least in hot-wet season. Milk yield and lying down were positively correlated (P < 0.05) in Jersey and Friesland cows. Standing was negatively correlated with milk yield (P < 0.05) in both Friesland and Jersey cows. No significant relationship was observed for the crossbred cows. It was concluded that

  16. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  17. Passive wall cooling panel with phase change material as a cooling agent

    NASA Astrophysics Data System (ADS)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  18. Restaurant Food Cooling Practices†

    PubMed Central

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  19. Restaurant food cooling practices.

    PubMed

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  20. Effectiveness of Rapid Cooling as a Method of Euthanasia for Young Zebrafish (Danio rerio).

    PubMed

    Wallace, Chelsea K; Bright, Lauren A; Marx, James O; Andersen, Robert P; Mullins, Mary C; Carty, Anthony J

    2018-01-01

    Despite increased use of zebrafish (Danio rerio) in biomedical research, consistent information regarding appropriate euthanasia methods, particularly for embryos, is sparse. Current literature indicates that rapid cooling is an effective method of euthanasia for adult zebrafish, yet consistent guidelines regarding zebrafish younger than 6 mo are unavailable. This study was performed to distinguish the age at which rapid cooling is an effective method of euthanasia for zebrafish and the exposure times necessary to reliably euthanize zebrafish using this method. Zebrafish at 3, 4, 7, 14, 16, 19, 21, 28, 60, and 90 d postfertilization (dpf) were placed into an ice water bath for 5, 10, 30, 45, or 60 min (n = 12 to 40 per group). In addition, zebrafish were placed in ice water for 12 h (age ≤14 dpf) or 30 s (age ≥14 dpf). After rapid cooling, fish were transferred to a recovery tank and the number of fish alive at 1, 4, and 12-24 h after removal from ice water was documented. Euthanasia was defined as a failure when evidence of recovery was observed at any point after removal from ice water. Results showed that younger fish required prolonged exposure to rapid cooling for effective euthanasia, with the required exposure time decreasing as fish age. Although younger fish required long exposure times, animals became immobilized immediately upon exposure to the cold water, and behavioral indicators of pain or distress rarely occurred. We conclude that zebrafish 14 dpf and younger require as long as 12 h, those 16 to 28 dpf of age require 5 min, and those older than 28 dpf require 30 s minimal exposure to rapid cooling for reliable euthanasia.

  1. Large Eddy Simulation of a Film Cooling Technique with a Plenum

    NASA Astrophysics Data System (ADS)

    Dharmarathne, Suranga; Sridhar, Narendran; Araya, Guillermo; Castillo, Luciano; Parameswaran, Sivapathasund

    2012-11-01

    Factors that affect the film cooling performance have been categorized into three main groups: (i) coolant & mainstream conditions, (ii) hole geometry & configuration, and (iii) airfoil geometry Bogard et al. (2006). The present study focuses on the second group of factors, namely, the modeling of coolant hole and the plenum. It is required to simulate correct physics of the problem to achieve more realistic numerical results. In this regard, modeling of cooling jet hole and the plenum chamber is highly important Iourokina et al. (2006). Substitution of artificial boundary conditions instead of correct plenum design would yield unrealistic results Iourokina et al. (2006). This study attempts to model film cooling technique with a plenum using a Large Eddy Simulation.Incompressible coolant jet ejects to the surface of the plate at an angle of 30° where it meets compressible turbulent boundary layer which simulates the turbine inflow conditions. Dynamic multi-scale approach Araya (2011) is introduced to prescribe turbulent inflow conditions. Simulations are carried out for two different blowing ratios and film cooling effectiveness is calculated for both cases. Results obtained from LES will be compared with experimental results.

  2. Next-Generation Factory-Produced Cool Asphalt Shingles: Phase 1 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen M.; Chen, Sharon S.; Ban-Weiss, George A.

    As the least expensive category of high-slope roofing in the U.S., shingles are found on the roofs of about 80% of U.S. homes, and constitute about 80% (by product area) of this market. Shingles are also among the least reflective high-slope roofing products, with few cool options on the market. The widespread use of cool roofs in the two warmest U.S. climate zones could reduce annual residential cooling energy use in these zones by over 7%. This project targets the development of high-performance cool shingles with initial solar reflectance at least 0.40 and a cost premium not exceeding US$0.50/ft². Phasemore » 1 of the current study explored three approaches to increasing shingle reflectance. Method A replaces dark bare granules by white bare granules to enhance the near-infrared reflectance attained with cool pigments. Method B applies a white basecoat and a cool-color topcoat to a shingle surfaced with dark bare granules. Method C applies a visually clear, NIR-reflecting surface treatment to a conventionally colored shingle. Method A was the most successful, but our investigation of Method B identified roller coating as a promising top-coating technique, and our study of Method C developed a novel approach based on a nanowire mesh. Method A yielded red, green, brown, and black faux shingles with solar reflectance up to 0.39 with volumetric coloration. Since the base material is white, these reflectances can readily be increased by using less pigment. The expected cost premium for Method A shingles is less than our target limit of $0.50/ft², and would represent less than a 10% increase in the installed cost of a shingle roof. Using inexpensive but cool (spectrally selective) iron oxide pigments to volumetrically color white limestone synthesized from sequestered carbon and seawater appears to offer high albedo at low cost. In Phase 2, we plan to refine the cool shingle prototypes, manufacture cool granules, and manufacture and market high-performance cool

  3. Why Do Objects Cool More Rapidly in Water than in Still Air?

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    An Internet search for why objects, especially humans, cool more rapidly in water than in air, both at the same temperature, and by how much, yields off-the-cuff answers unsupported by experiment or analysis. To answer these questions in depth requires a smattering of engineering heat transfer, including radiative transfer, and the different…

  4. Effects of internal electrode cooling on irreversible electroporation using a perfused organ model.

    PubMed

    O'Brien, Timothy J; Bonakdar, Mohammad; Bhonsle, Suyashree; Neal, Robert E; Aardema, Charles H; Robertson, John L; Goldberg, S Nahum; Davalos, Rafael V

    2018-05-28

    This study evaluates the effects of active electrode cooling, via internal fluid circulation, on the irreversible electroporation (IRE) lesion, deployed electric current and temperature changes using a perfused porcine liver model. A bipolar electrode delivered IRE electric pulses with or without activation of internal cooling to nine porcine mechanically perfused livers. Pulse schemes included a constant voltage, and a preconditioned delivery combined with an arc-mitigation algorithm. After treatment, organs were dissected, and treatment zones were stained using triphenyl-tetrazolium chloride (TTC) to demonstrate viability. Thirty-nine treatments were performed with an internally cooled applicator and 21 with a non-cooled applicator. For the constant voltage scenario, the average final electrical current measured was 26.37 and 29.20 A for the cooled and uncooled electrodes respectively ([Formula: see text]). The average final temperature measured was 33.01 and 42.43 °C for the cooled and uncooled electrodes respectively ([Formula: see text]). The average measured ablations (fixed lesion) were 3.88-by-2.08 cm and 3.86-by-2.12 cm for the cooled and uncooled electrode respectively ([Formula: see text], [Formula: see text]). Similarly, the preconditioned/arc-mitigation scenario yielded an average final electrical current measurement of a 41.07 and 47.20 A for the cooled and uncooled electrodes respectively ([Formula: see text]). The average final temperature measured was 34.93 and 44.90 °C for the cooled and uncooled electrodes respectively ([Formula: see text]). The average measured ablations (fixed lesion) were 3.67-by-2.27 cm and 3.58-by-2.09 cm for the cooled and uncooled applicators ([Formula: see text]). The internally-cooled bipolar applicator offers advantages that could improve clinical outcomes. Thermally mitigating internal perfusion technology reduced tissue temperatures and electric current while maintaining similar lesion sizes.

  5. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOEpatents

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  6. Coppice Sycamore Yields Through 9 Years

    Treesearch

    Harvey E. Kennedy

    1980-01-01

    Cutting cycle and spacing did not significantly affect sycamore dry-weight yields from ages 5-9 years (1974-l 978). Longer cutting cycles usually did give higher yields. Dry-weight yields ranged from 2886 lb per acre (3233 kg/ha) per year in the 1 year, 4x5 ft (1.2 x 1.5 m) spacing to 4541 lb (5088 kg/ha) in the 4-year, 4x5 ft s,pacing. Survival averaged 67 percent...

  7. Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon

    2016-06-01

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of the primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-cool or cool-cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.

  8. Spectral response data for development of cool coloured tile coverings

    NASA Astrophysics Data System (ADS)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  9. Effects of Controlled Cooling-Induced Ferrite-Pearlite Microstructure on the Cold Forgeability of XC45 Steel

    NASA Astrophysics Data System (ADS)

    Hu, Chengliang; Chen, Lunqiang; Zhao, Zhen; Gong, Aijun; Shi, Weibing

    2018-05-01

    The combination of hot/warm and cold forging with an intermediate controlled cooling process is a promising approach to saving costs in the manufacture of automobile parts. In this work, the effects of the ferrite-pearlite microstructure, which formed after controlled cooling, on the cold forgeability of a medium-carbon steel were investigated. Different specimens for both normal and notched tensile tests were directly heated to high temperature and then cooled down at different cooling rates, producing different ferrite volume fractions, ranging from 6.69 to 40.53%, in the ferrite-pearlite microstructure. The yield strength, ultimate tensile strength, elongation rate, percentage reduction of area, and fracture strain were measured by tensile testing. The yield strength, indicating deformation resistance, and fracture strain, indicating formability, were used to evaluate the cold forgeability. As the ferrite volume fraction increased, the cold forgeability of the dual-phase ferritic-pearlitic steel improved. A quantitatively relationship between the ferrite volume fraction and the evaluation indexes of cold forgeability for XC45 steel was obtained from the test data. To validate the mathematical relationship, different tensile specimens machined from real hot-forged workpieces were tested. There was good agreement between the predicted and measured values. Our predictions from the relationship for cold forgeability had an absolute error less than 5%, which is acceptable for industrial applications and will help to guide the design of combined forging processes.

  10. The decrease in yield strength in NiAl due to hydrostatic pressure

    NASA Technical Reports Server (NTRS)

    Margevicius, R. W.; Lewandowski, J. J.; Locci, I.

    1992-01-01

    The decrease in yield strength in NiAl due to hydrostatic pressure is examined via a comparison of the tensile flow behavior in the low strain regime at 0.1 MPa for NiAl which was cast, extruded, and annealed for 2 hr at 827 C in argon and very slowly cooled to room temperature. Pressurization to 1.4 GPa produces a subsequent reduction at 0.1 MP in proportional limit by 40 percent as well as a 25-percent reduction in the 0.2-percent offset yield strength, while pressurization with lower pressures produces a similar reduction, although smaller in magnitude.

  11. Film cooling air pocket in a closed loop cooled airfoil

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  12. On-chip magnetic cooling of a nanoelectronic device.

    PubMed

    Bradley, D I; Guénault, A M; Gunnarsson, D; Haley, R P; Holt, S; Jones, A T; Pashkin, Yu A; Penttilä, J; Prance, J R; Prunnila, M; Roschier, L

    2017-04-04

    We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.

  13. On-chip magnetic cooling of a nanoelectronic device

    NASA Astrophysics Data System (ADS)

    Bradley, D. I.; Guénault, A. M.; Gunnarsson, D.; Haley, R. P.; Holt, S.; Jones, A. T.; Pashkin, Yu. A.; Penttilä, J.; Prance, J. R.; Prunnila, M.; Roschier, L.

    2017-04-01

    We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.

  14. An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur

    2017-06-01

    The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear

  15. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    DOEpatents

    Burdgick, Steven Sebastian; Sexton, Brendan Francis; Kellock, Iain Robertson

    2002-01-01

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  16. 20 years of intensive uneven-aged management: Effect on Growth, Yield, and Species Composition in Two hardwood Stands in West Virginia

    Treesearch

    George R., Jr. Trimble; George R. Trimble

    1970-01-01

    In 1948 a study of uneven-aged forest management, with individual tree-selection cuttings, was begun on two 31-acre stands of Appalachian hardwoods in West Virginia. Now, after 20 years, these stands are beginning to show how this kind of management affects growth, yield, and species composition.

  17. Impact of nuclear data on sodium-cooled fast reactor calculations

    NASA Astrophysics Data System (ADS)

    Aures, Alexander; Bostelmann, Friederike; Zwermann, Winfried; Velkov, Kiril

    2016-03-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors.

  18. Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves

    PubMed Central

    Niinemets, Ülo; Sun, Zhihong; Talts, Eero

    2018-01-01

    Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully-expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from postillumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP. The saturating light intensity (QI90) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modeling canopy isoprene emission. PMID:26037962

  19. Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.

    PubMed

    Niinemets, Ülo; Sun, Zhihong; Talts, Eero

    2015-12-01

    Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP ), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post-illumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI ) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP . The saturating light intensity (QI90 ) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission. © 2015 John Wiley & Sons Ltd.

  20. Growth and yield in Eucalyptus globulus

    Treesearch

    James A. Rinehart; Richard B. Standiford

    1983-01-01

    A study of the major Eucalyptus globulus stands throughout California conducted by Woodbridge Metcalf in 1924 provides a complete and accurate data set for generating variable site-density yield models. Two models were developed using linear regression techniques. Model I depicts a linear relationship between age and yield best used for stands between five and fifteen...

  1. Petrographic Evidence for Rapid Heating and Cooling During Chrondrule Formation

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.

    2004-01-01

    The chondrule cooling rates used in most chondrule-formation models appear to be too low. Recent petrographic evidence indicates that the amount of crystal (especially olivine) growth that occurred after the last melting event was about 30 smaller than the grain sizes simulated in order to estimate cooling rates. The smaller amount of growth leads to an upwards revision of cooling rates by about a factor of 1000. Most chondrules are porphyritic. They consist of large and small crystals of olivine and, less commonly, pyroxene immersed in a mesostasis having a plagioclase-rich composition. In the most primitive chondrites the mesostasis is often vitreous. Because the large majority of chondrules contain FeS, it is clear that the nebula had cooled below the FeS condensation temperature (ca. 650 K) before chondrule formation occurred. The high FeO/(FeO+MgO) ratios of some chondrules require still lower nebular temperatures (less than 500 K). The traditional view has been that porphyritic chondrules formed in a single heating/cooling event and many laboratory experiments have been carried out in various kinds of kinds of furnaces to try to simulate the formation of chondrules textures in a single heating/cooling cycle. These furnace experiments have been used to infer the cooling rates of chondrules during the temperature range at which olivine crystallized from the melt. Most of these inferred values are in the range 0.01-1 K per second. These low cooling rates are problematical because there is no long-term nebular environment that yields such values. In transparent regions chondrules would cool at rates orders of magnitude higher, whereas in an opaque nebular disk the cooling rates would be many orders of magnitude lower. And these latter conditions are not suitable locations for chondrule formation because such high temperatures would cause the complete evaporation of chondrules (which have melting temperatures about 600 K higher than their evaporation temperatures

  2. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    PubMed

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  3. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    NASA Astrophysics Data System (ADS)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  4. A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite

    NASA Astrophysics Data System (ADS)

    Muirhead, Philip S.; Dressing, Courtney D.; Mann, Andrew W.; Rojas-Ayala, Bárbara; Lépine, Sébastien; Paegert, Martin; De Lee, Nathan; Oelkers, Ryan

    2018-04-01

    We present a catalog of cool dwarf targets (V-J> 2.7, T eff ≲ 4000 K) and their stellar properties for the upcoming Transiting Exoplanet Survey Satellite (TESS), for the purpose of determining which cool dwarfs should be observed using two minute observations. TESS has the opportunity to search tens of thousands of nearby, cool, late K- and M-type dwarfs for transiting exoplanets, an order of magnitude more than current or previous transiting exoplanet surveys, such as Kepler, K2, and ground-based programs. This necessitates a new approach to choosing cool dwarf targets. Cool dwarfs are chosen by collating parallax and proper motion catalogs from the literature and subjecting them to a variety of selection criteria. We calculate stellar parameters and TESS magnitudes using the best possible relations from the literature while maintaining uniformity of methods for the sake of reproducibility. We estimate the expected planet yield from TESS observations using statistical results from the Kepler mission, and use these results to choose the best targets for two minute observations, optimizing for small planets for which masses can conceivably be measured using follow-up Doppler spectroscopy by current and future Doppler spectrometers. The catalog is available in machine readable format and is incorporated into the TESS Input Catalog and TESS Candidate Target List until a more complete and accurate cool dwarf catalog identified by ESA’s Gaia mission can be incorporated.

  5. Obstetric Antecedents to Body Cooling Treatment of the Newborn Infant

    PubMed Central

    Nelson, David B.; Lucke, Ashley M.; McIntire, Donald D.; Sánchez, Pablo J.; Leveno, Kenneth J.; Chalak, Lina F.

    2014-01-01

    Objective Obstetric antecedents were analyzed in births where the infant received whole-body cooling for neonatal encephalopathy. Methods This retrospective cohort study included all live-born singleton infants delivered at or beyond 36 weeks gestation from October 2005 through December 2011. Infants who had received whole-body cooling identified by review of a prospective neonatal registry were compared to a control group comprising the remaining obstetric population delivered at greater than 36 weeks but not cooled. Univariable analysis was followed by a staged, stepwise selection of variables with the intent to rank significant risk factors for cooling. Results A total of 86,371 women delivered during the study period and 98 infants received whole-body cooling (1.1/1,000 livebirths). Of these 98 infants, 80 (88%) newborns had moderate encephalopathy and 10 (12%) had severe encephalopathy prior to cooling. Maternal age less than or equal to 15 years, low parity, maternal body habitus (BMI ≥ 40 kg/m2), diabetes, preeclampsia, induction, epidural analgesia, chorioamnionitis, length of labor, and mode of delivery were associated with significantly increased risk of infant cooling during univariable analysis. Catastrophic events to include umbilical cord prolapse (OR 14; 95%CI, 3–72), placental abruption (OR 17; 95%CI, 7–44), uterine rupture (OR 130; 95%CI, 11–1477) were the strongest factors associated with infant cooling after staged-stepwise logistic analysis. Conclusion A variety of intrapartum characteristics were associated with infant cooling for neonatal encephalopathy with the most powerful antecedents being umbilical cord prolapse, placental abruption, and uterine rupture. PMID:24530976

  6. Has Earth's Plate Tectonics Led to Rapid Core Cooling?

    NASA Astrophysics Data System (ADS)

    de Montserrat Navarro, A.; Morgan, J. P.; Vannucchi, P.; Connolly, J. A.

    2016-12-01

    Earth's mantle and core are convecting planetary heat engines. The mantle convects to lose heat from secular cooling, internal radioactivity, and core heatflow across its base. Its convection generates plate tectonics, volcanism, and the loss of 35 TW of mantle heat through Earth's surface. The core convects to lose heat from secular cooling, small amounts of internal radioactivity, and the freezing-induced growth of a compositionally denser inner core. Until recently, the geodynamo was thought to be powered by 4 TW of heatloss across the core-mantle boundary. More recent determinations of the outer core's thermal conductivity (Pozzo et al., 2012; Gomi et al., 2013) would imply that >15 TW of power should conduct down its adiabat. Secular core cooling has been previously thought to be too slow for this, based on estimates for the Clapeyron Slope for high-pressure freezing of an idealized pure-iron core (cf. Nimmo, 2007). The 500-1000 kg m-3 seismically-inferred jump in density between the liquid outer core and solid inner core allows a direct estimate of the Clapeyron Slope for the outer core's actual composition which contains 0.08±0.02 lighter elements (S,Si,O,Al, H,…) mixed into a Fe-Ni alloy. A PREM-like 600 kg m-3 density jump yields a Clapeyron Slope for which there has been 774K of core cooling during the freezing and growth of the inner core, cooling that has been releasing an average of 21 TW of power during the past 3 Ga. If so, core cooling could easily have powered Earth's long-lived geodynamo. Another implication is that the present-day mantle is strongly `bottom-heated', and diapiric mantle plumes should dominate deep mantle upwelling. This mode of core and mantle convection is consistent with slow, 37.5K/Ga secular cooling of Earth's mantle linked to more rapid secular cooling of the core (cf. Morgan, Rüpke, and White, 2016). Efficient plate subduction, hence plate tectonics, is a key ingredient for such rapid secular core cooling.We also show

  7. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald

    2014-09-01

    Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed ``gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.

  8. Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades

    NASA Technical Reports Server (NTRS)

    Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.

    1945-01-01

    An analysis of rim cooling, which cools the blade by condition alone, was conducted. Gas temperatures ranged from 1300 degrees to 1900 degrees F and rim temperatures from 0 degrees to 1000 degrees F below gas temperatures. Results show that gas temperature increases up to 200 degrees F are permissible provided that the blades are cooled by 400 degrees to 500 degrees F below the gas temperature. Relatively small amounts of blade cooling, at constant gas temperature, give large increases in blade life. Dependence of rim cooling on heat-transfer coefficient, blade dimensions, and thermal conductivity is determined by a single parameter.

  9. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  10. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  11. Effects of Cooling Conditions on Microstructure, Tensile Properties, and Charpy Impact Toughness of Low-Carbon High-Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2013-01-01

    In this study, four low-carbon high-strength bainitic steel specimens were fabricated by varying finish cooling temperatures and cooling rates, and their tensile and Charpy impact properties were investigated. All the bainitic steel specimens consisted of acicular ferrite, granular bainite, bainitic ferrite, and martensite-austenite constituents. The specimens fabricated with higher finish cooling temperature had a lower volume fraction of martensite-austenite constituent than the specimens fabricated with lower finish cooling temperature. The fast-cooled specimens had twice the volume fraction of bainitic ferrite and consequently higher yield and tensile strengths than the slow-cooled specimens. The energy transition temperature tended to increase with increasing effective grain size or with increasing volume fraction of granular bainite. The fast-cooled specimen fabricated with high finish cooling temperature and fast cooling rate showed the lowest energy transition temperature among the four specimens because of the lowest content of coarse granular bainite. These findings indicated that Charpy impact properties as well as strength could be improved by suppressing the formation of granular bainite, despite the presence of some hard microstructural constituents such as bainitic ferrite and martensite-austenite.

  12. Cooled-Spool Piston Compressor

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  13. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  14. Cooling circuit for and method of cooling a gas turbine bucket

    DOEpatents

    Jacala, Ariel C. P.

    2002-01-01

    A closed internal cooling circuit for a gas turbine bucket includes axial supply and return passages in the dovetail of the bucket. A first radial outward supply passage provides cooling medium to and along a passageway adjacent the leading edge and then through serpentine arranged passageways within the airfoil to a chamber adjacent the airfoil tip. A second radial passage crosses over the radial return passage for supplying cooling medium to and along a pair of passageways along the trailing edge of the airfoil section. The last passageway of the serpentine passageways and the pair of passageways communicate one with the other in the chamber for returning spent cooling medium radially inwardly along divided return passageways to the return passage. In this manner, both the leading and trailing edges are cooled using the highest pressure, lowest temperature cooling medium.

  15. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  16. Comments on ionization cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  17. Abundances of volatile-bearing phases in carbonaceous chondrites and cooling rates of meteorites based on cation ordering of orthopyroxenes

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra

    1989-01-01

    Results of preliminary calculations of volatile abundances in carbonaceous chondrites are discussed. The method (Ganguly 1982) was refined for the calculation of cooling rate on the basis of cation ordering in orthopyroxenes, and it was applied to the derivation of cooling rates of some stony meteorites. Evaluation of cooling rate is important to the analysis of condensation, accretion, and post-accretionary metamorphic histories of meteorites. The method of orthopyroxene speedometry is widely applicable to meteorites and would be very useful in the understanding of the evolutionary histories of carbonaceous chondrites, especially since the conventional metallographic and fission track methods yield widely different results in many cases. Abstracts are given which summarize the major conclusions of the volatile abundance and cooling rate calculations.

  18. Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling

    NASA Astrophysics Data System (ADS)

    Chandrasekar, M.; Senthilkumar, T.

    2016-07-01

    A passive thermal regulation technique with fins in conjunction with cotton wicks is developed in the present work for controlling the temperature of PV module during its operation. Experiments were conducted with the developed technique in the location of Tiruchirappalli (78.6°E and 10.8°N), Tamil Nadu, India with flat 25 Wp PV module and its viability was confirmed. The PV module temperature got reduced by 12 % while the electrical yield is increased by 14 % with the help of the developed cooling system. Basic energy balance equation applicable for PV module was used to evaluate the module temperatures and a fair agreement was obtained between the theoretical and experimental values for the cases of with cooling and without cooling.

  19. Cooling characteristics of air cooled radial turbine blades

    NASA Astrophysics Data System (ADS)

    Sato, T.; Takeishi, K.; Matsuura, M.; Miyauchi, J.

    The cooling design and the cooling characteristics of air cooled radial turbine wheels, which are designed for use with the gas generator turbine for the 400 horse power truck gas turbine engine, are presented. A high temperature and high speed test was performed under aerodynamically similar conditions to that of the prototype engine in order to confirm the metal temperature of the newly developed integrated casting wheels constructed of the superalloys INCO 713C. The test results compared with the analytical value, which was established on the basis of the results of the heat transfer test and the water flow test, are discussed.

  20. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  1. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  2. The Discovery of a Companion to the Very Cool Dwarf Gliese 569B with the Keck Adaptive Optics Facility.

    PubMed

    Martín; Koresko; Kulkarni; Lane; Wizinowich

    2000-01-20

    We report observations obtained with the Keck adaptive optics facility of the nearby (d=9.8 pc) binary Gl 569. The system was known to be composed of a cool primary (dM2) and a very cool secondary (dM8.5) with a separation of 5&arcsec; (49 AU). We have found that Gl 569B is itself double with a separation of only 0&farcs;101+/-0&farcs;002 (1 AU). This detection demonstrates the superb spatial resolution that can be achieved with adaptive optics at Keck. The difference in brightness between Gl 569B and the companion is approximately 0.5 mag in the J, H, and K&arcmin; bands. Thus, both objects have similarly red colors and very likely constitute a very low mass binary system. For reasonable assumptions about the age (0.12-1.0 Gyr) and total mass of the system (0.09-0.15 M middle dot in circle), we estimate that the orbital period is approximately 3 yr. Follow-up observations will allow us to obtain an astrometric orbit solution and will yield direct dynamical masses that can constrain evolutionary models of very low mass stars and brown dwarfs.

  3. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna--experimental and clinical studies.

    PubMed

    Kuang, Ming; Lu, Ming D; Xie, Xiao Y; Xu, Hui X; Mo, Li Q; Liu, Guang J; Xu, Zuo F; Zheng, Yan L; Liang, Jin Y

    2007-03-01

    To prospectively investigate whether the ablation zone induced with microwaves could be increased by delivering greater energy with a cooled-shaft antenna. All studies were animal care and ethics committee approved. Written informed consent was obtained from all patients. Microwave ablation was performed by using a cooled-shaft antenna in 48 ex vivo and 12 in vivo experiments with porcine livers. The coagulation diameters achieved in different microwave ablation parameter groups (60-90 W for 5-25 minutes) were compared. Ninety patients (78 men, 12 women; mean age, 53 years; age range, 20-82 years) with 133 0.8-8.0-cm (mean, 2.7 cm +/- 1.5 [standard deviation]) primary or metastatic liver cancers were treated with the same microwave ablation technique. Complete ablation (CA) and local tumor progression (LTP) rates were determined. Generalized estimating equations were used to compare differences in tumor size, ablation zone diameter, and CA and LTP rates between different patient subgroups. In the ex vivo livers, in vivo livers, and liver cancers, one application of microwave energy with 80 W for 25 minutes produced mean coagulation diameters of 5.6 x 7.4 cm, 3.5 x 5.9 cm, and 3.6 x 5.0 cm, respectively. Skin burn was not observed. CA rates in small (cooled-shaft antennas yielded large ablation zones in ex vivo and in vivo livers and in liver cancers. Effective local tumor control was achieved during one microwave ablation session. (c) RSNA, 2007.

  4. Obstetric antecedents to body-cooling treatment of the newborn infant.

    PubMed

    Nelson, David B; Lucke, Ashley M; McIntire, Donald D; Sánchez, Pablo J; Leveno, Kenneth J; Chalak, Lina F

    2014-08-01

    Obstetric antecedents were analyzed in births in which the infant received whole-body cooling for neonatal encephalopathy. This retrospective cohort study included all live-born singleton infants delivered at or beyond 36 weeks' gestation from October 2005 through December 2011. Infants who had received whole-body cooling identified by review of a prospective neonatal registry were compared with a control group comprising the remaining obstetric population delivered at greater than 36 weeks but not cooled. Univariable analysis was followed up by a staged, stepwise selection of variables with the intent to rank significant risk factors for cooling. A total of 86,371 women delivered during the study period and 98 infants received whole-body cooling (1.1 per 1000 live births). Of these 98 infants, 80 newborns (88%) had moderate encephalopathy and 10 (12%) had severe encephalopathy prior to cooling. Maternal age of 15 years or younger, low parity, maternal body habitus (body mass index of ≥40 kg/m(2)), diabetes, preeclampsia, induction, epidural analgesia, chorioamnionitis, length of labor, and mode of delivery were associated with significantly increased risk of infant cooling during a univariable analysis. Catastrophic events to include umbilical cord prolapse (odds ratio [OR], 14; 95% confidence interval [CI], 3-72), placental abruption (OR, 17; 95% CI, 7-44), uterine rupture (OR, 130; 95% CI, 11-1477) were the strongest factors associated with infant cooling after staged-stepwise logistic analysis. A variety of intrapartum characteristics were associated with infant cooling for neonatal encephalopathy, with the most powerful antecedents being umbilical cord prolapse, placental abruption, and uterine rupture. Copyright © 2014 Mosby, Inc. All rights reserved.

  5. ORBITAL CIRCULARIZATION OF HOT AND COOL KEPLER ECLIPSING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eylen, Vincent Van; Albrecht, Simon; Winn, Joshua N., E-mail: vincent@phys.au.dk

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler . This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of themore » primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot–hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot–hot binaries, but not for hot–cool or cool–cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.« less

  6. Cooled Water Production System,

    DTIC Science & Technology

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  7. Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Lodieu, N.; Tremblay, P.-E.; Bergeron, P.; Nitta, A.

    2011-07-01

    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint reduced proper motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T eff ≈ 6000 K. The current follow-up of 1400 deg2 of sky has produced 13 new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <=T eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km s-1 <= v tan <= 85 km s-1 and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <=T eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km s-1 <= v tan <= 100 km s-1. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.

  8. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. In addition we are exploring the effects of coronas on the He I 1083081 transition that is observed in the infrared. Highlights of these are summarized below including publications during this reporting period and presentations. Ground-based magnetic Doppler imaging of cool stars suggests that active stars have active regions located at high latitudes on their surface. We have performed similar imaging in X-ray to locate the sites of enhanced activity using Chandra spectra. Chandra HETG observations of the bright eclipsing contact binary 44i Boo and Chandra LETG observations for the eclipsing binary VW Cep show X-ray line profiles that are Doppler-shifted by orbital motion. After careful analysis of the spectrum of each binary, a composite line-profile is constructed by adding the individual spectral lines. This high signal-to-noise ratio composite line-profile yields orbital velocities for these binaries that are accurate to 30 km/sec and allows their orbital motion to be studied at higher time resolutions. In conjunction with X-ray lightcurves, the phase-binned composite line-profiles constrain coronal structures to be small and located at high latitudes. These observations and techniques show the power of the Doppler Imaging Technique applied to X-ray line emission.

  9. (40)Ar/(39)Ar Age of Hornblende-Bearing R Chondrite LAP 04840

    NASA Technical Reports Server (NTRS)

    Righter, K.; Cosca, M.

    2015-01-01

    Chondrites have a complex chronology due to several variables affecting and operating on chondritic parent bodies such as radiogenic heating, pressure and temperature variation with depth, aqueous alteration, and shock or impact heating. Unbrecciated chondrites can record ages from 4.56 to 4.4 Ga that represent cooling in small parent bodies. Some brecciated chondrites exhibit younger ages (much less than 4 to 4.4 Ga) that may reflect the age of brecciation, disturbance, or shock and impact events (much less than 4 Ga). A unique R chondrite was recently found in the LaPaz Icefield of Antarctica - LAP 04840. This chondrite contains approximately 15% hornblende and trace amounts of biotite, making it the first of its kind. Studies have revealed an equigranular texture, mineral equilibria yielding equilibration near 650-700 C and 250-500 bars, hornblende that is dominantly OH-bearing (very little Cl or F), and high D/H ratios. To help gain a better understanding of the origin of this unique sample, we have measured the (40)Ar/(39)Ar age (LAP 04840 split 39).

  10. Cool Cities, Cool Planet (LBNL Science at the Theater)

    ScienceCinema

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2018-06-14

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  11. Structural transition in sputter-deposited amorphous germanium films by aging at ambient temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okugawa, M.; Nakamura, R., E-mail: nakamura@mtr.osakafu-u.ac.jp; Numakura, H.

    The structure of amorphous Ge (a-Ge) films prepared by sputter-deposition and the effects of aging at ambient temperature and pressure were studied by pair-distribution-function (PDF) analysis from electron scattering and molecular dynamics simulations. The PDFs of the as-deposited and aged samples for 3–13 months showed that the major peaks for Ge-Ge bonds decrease in intensity and broaden with aging for up to 7 months. In the PDFs of a-Ge of molecular dynamics simulation obtained by quenching liquid at different rates, the major peak intensities of a slowly cooled model are higher than those of a rapidly cooled model. Analyses onmore » short- and medium-range configurations show that the slowly cooled model includes a certain amount of medium-range ordered (MRO) clusters, while the rapidly cooled model includes liquid-like configurations rather than MRO clusters. The similarity between experimental and computational PDFs implies that as-deposited films are similar in structure to the slowly cooled model, whereas the fully aged films are similar to the rapidly cooled model. It is assumed that as they undergo room-temperature aging, the MRO clusters disintegrate and transform into liquid-like regions in the same matrix. This transition in local configurations is discussed in terms of instability and the non-equilibrium of nanoclusters produced by a vapor-deposition process.« less

  12. Contributions of Hot and Cool Self-Regulation to Preschool Disruptive Behavior and Academic Achievement

    PubMed Central

    Willoughby, Michael; Kupersmidt, Janis; Voegler-Lee, Mare; Bryant, Donna

    2017-01-01

    The construct of self-regulation can be meaningfully distinguished into hot and cool components. The current study investigated self-regulation in a sample of 926 children aged 3–5 years old. Children’s performance on self-regulatory tasks was best described by two latent factors representing hot and cool regulation. When considered alone, hot and cool regulation were both significantly correlated with disruptive behavior and academic achievement. When considered together, cool regulation was uniquely associated with academic achievement, while hot regulation was uniquely associated with inattentive-overactive behaviors. Results are discussed with respect to treatment studies that directly target improvement in children’s self-regulation. PMID:21347919

  13. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals.

    PubMed

    Hosokawa, Yuri; Adams, William M; Belval, Luke N; Vandermark, Lesley W; Casa, Douglas J

    2017-03-01

    We investigated the efficacy of tarp-assisted cooling as a body cooling modality. Participants exercised on a motorized treadmill in hot conditions (ambient temperature 39.5°C [103.1°F], SD 3.1°C [5.58°F]; relative humidity 38.1% [SD 6.7%]) until they reached exercise-induced hyperthermia. After exercise, participants were cooled with either partial immersion using a tarp-assisted cooling method (water temperature 9.20°C [48.56°F], SD 2.81°C [5.06°F]) or passive cooling in a climatic chamber. There were no differences in exercise duration (mean difference=0.10 minutes; 95% CI -5.98 to 6.17 minutes or end exercise rectal temperature (mean difference=0.10°C [0.18°F]; 95% CI -0.05°C to 0.25°C [-0.09°F to 0.45°F] between tarp-assisted cooling (48.47 minutes [SD 8.27 minutes]; rectal temperature 39.73°C [103.51°F], SD 0.27°C [0.49°F]) and passive cooling (48.37 minutes [SD 7.10 minutes]; 39.63°C [103.33°F], SD 0.40°C [0.72°F]). Cooling time to rectal temperature 38.25°C (100.85°F) was significantly faster in tarp-assisted cooling (10.30 minutes [SD 1.33 minutes]) than passive cooling (42.78 [SD 5.87 minutes]). Cooling rates for tarp-assisted cooling and passive cooling were 0.17°C/min (0.31°F/min), SD 0.07°C/min (0.13°F/min) and 0.04°C/min (0.07°F/min), SD 0.01°C/min (0.02°F/min), respectively (mean difference=0.13°C [0.23°F]; 95% CI 0.09°C to 0.17°C [0.16°F to 0.31°F]. No sex differences were observed in tarp-assisted cooling rates (men 0.17°C/min [0.31°F/min], SD 0.07°C/min [0.13°F/min]; women 0.16°C/min [0.29°F/min], SD 0.07°C/min [0.13°F/min]; mean difference=0.02°C/min [0.04°F/min]; 95% CI -0.06°C/min to 0.10°C/min [-0.11°F/min to 0.18°F/min]). Women (0.04°C/min [0.07°F/min], SD 0.01°C/min [0.02°F/min]) had greater cooling rates than men (0.03°C/min [0.05°F/min], SD 0.01°C/min [0.02°F/min]) in passive cooling, with negligible clinical effect (mean difference=0.01°C/min [0.02°F/min]; 95% CI 0.001

  14. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  15. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  16. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  17. Turbine blade cooling

    DOEpatents

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  18. On importance assessment of aging multi-state system

    NASA Astrophysics Data System (ADS)

    Frenkel, Ilia; Khvatskin, Lev; Lisnianski, Anatoly

    2017-01-01

    Modern high-tech equipment requires precise temperature control and effective cooling below the ambient temperature. Greater cooling efficiencies will allow equipment to be operated for longer periods without overheating, providing a greater return on investment and increased in availability of the equipment. This paper presents application of the Lz-transform method to importance assessment of aging multi-state water-cooling system used in one of Israeli hospitals. The water cooling system consists of 3 principal sub-systems: chillers, heat exchanger and pumps. The performance of the system and the sub-systems is measured by their produced cooling capacity. Heat exchanger is an aging component. Straightforward Markov method applied to solve this problem will require building of a system model with numerous numbers of states and solving a corresponding system of multiple differential equations. Lz-transform method, which is used for calculation of the system elements importance, drastically simplified the solution. Numerical example is presented to illustrate the described approach.

  19. Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve

    2003-07-01

    Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual coolingmore » energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California

  20. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical Californiamore » nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code

  1. NASA Microclimate Cooling Challenges

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.

    2004-01-01

    The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.

  2. Thermo-Elastic Analysis of Internally Cooled Structures Using a Higher Order Theory

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Aboudi, Jacob

    2001-01-01

    This paper presents the results of a study on the thermomechanical behavior of internally cooled silicon nitride structures. Silicon nitride is under consideration for elevated temperature aerospace engine applications. and techniques for lowering the operating temperature of structures composed of this material are under development. Lowering the operating temperature provides a large payoff in terms of fatigue life and may be accomplished through the use of thermal barrier coatings (TBC's) and the novel concept of included cooling channels. Herein, an in-depth study is performed on the behavior of a flame-impinged silicon nitride plate with a TBC and internal channels cooled by forced air. The analysis is performed using the higher order theory for functionally graded materials (HOTFGM), which has been developed through NASA Glenn Research Center funding over the past several years. HOTFGM was chosen over the traditional finite element approach as a prelude to an examination of functionally graded silicon nitride structures for which HOTFGM is ideally suited. To accommodate the analysis requirement% of the internally cooled plate problem, two crucial enhancements were made to the two-dimensional Cartesian-based version of HOTFGM. namely, incorporation of internal boundary capabilities and incorporation of convective boundary conditions. Results indicate the viability and large benefits of cooling the plate via forced air through cooling channels. Furthermore, cooling can positively impact the stress and displacement fields present in the plate, yielding an additional payoff in terms of fatigue life. Finally, a spin-off capability resulted from inclusion of internal boundaries within HOTFGM; the ability to simulate the thermo-elastic response of structures with curved surfaces. This new capability is demonstrated, and through comparison with an analytical solution, shown to be viable and accurate.

  3. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  4. The Cool Kids Coalition.

    PubMed

    Corrarino, J E; Walsh, P J; Boyle, M L; Anselmo, D

    2000-01-01

    The Cool Kids Coalition was initiated as a community response to more than 214 hospitalizations of children under the age of five for burns over a 6-year period in one township in Long Island, NY. The coalition was started by public health nurses in partnership with the local chapter of the National Safe Kids Campaign. Goals included: 1. parent education regarding scald burn prevention; 2. development of innovative interventions for those at risk; and 3, development of innovative community approaches to scald prevention. Coalition members had diverse backgrounds and the coalition integrated non-traditional partners in injury control. The coalition doubled in size due to overwhelming community interest, growing within a few months from an initial group of 15 to a well-represented group of 30. Innovative programs were implemented that reached more than 3,000 parents, both in the community and home. Teaching was conducted with parents in the target population in Head Start centers, homeless shelters, the home, libraries, child care centers, a shelter for teen parents, etc. Member agencies incorporated the booklet and materials into their individual programs. The development of the Cool Kids Coalition illustrates the power of nursing in community health.

  5. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  6. Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades

    NASA Technical Reports Server (NTRS)

    Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.

    1947-01-01

    An analysis is presented of rim cooling of gas-turbine blades; that is, reducing the temperature at the base of the blade (wheel rim), which cools the blade by conduction alone. Formulas for temperature and stress distributions along the blade are derived and, by the use of experimental stress-rupture data for a typical blade alloy, a relation is established between blade life (time for rupture), operating speed, and amount of rim cooling for several gas temperatures. The effect of blade parameter combining the effects of blade dimensions, blade thermal conductivity, and heat-transfer coefficient is determined. The effect of radiation on the results is approximated. The gas temperatures ranged from 1300F to 1900F and the rim temperature, from 0F to 1000F below the gas temperature. This report is concerned only with blades of uniform cross section, but the conclusions drawn are generally applicable to most modern turbine blades. For a typical rim-cooled blade, gas temperature increases are limited to about 200F for 500F of cooling of the blade base below gas temperature, and additional cooling brings progressively smaller increases. In order to obtain large increases in thermal conductivity or very large decreases in heat-transfer coefficient or blade length or necessary. The increases in gas temperature allowable with rim cooling are particularly small for turbines of large dimensions and high specific mass flows. For a given effective gas temperature, substantial increases in blade life, however, are possible with relatively small amounts of rim cooling.

  7. Yield of a Choctawhatchee Sand Pine Plantation at Age 28

    Treesearch

    Russell M. Burns; R.H. Brendemuehl

    1969-01-01

    A little-known tree, Choctawhatchee sand pine (Pinus clausa [Chapm.] Vasey), seems well adapted to the infertile, droughty soils common to the sandhills of Florida which now produce little value. Published yield data based on plantation-grown Choctawhatchee sand pine are not available. One 28-year-old plantation of this race of sand pine, growing...

  8. The Effect of Cooled Perches on Immunological Parameters of Caged White Leghorn Hens during the Hot Summer Months

    PubMed Central

    Strong, Rebecca A.; Hester, Patricia Y.; Eicher, Susan D.; Hu, Jiaying; Cheng, Heng-Wei

    2015-01-01

    The objective of this study was to determine if thermally cooled perches improve hen immunity during hot summer. White Leghorn pullets at 16 week of age were randomly assigned to 18 cages of 3 banks at 9 hens per cage. Each bank was assigned to 1 of the 3 treatments up to 32 week of age: 1) thermally cooled perches, 2) perches with ambient air, and 3) cages without perches. Hens were exposed to natural ambient temperatures from June through September 2013 in Indiana with a 4 h acute heat episode at 27.6 week of age. The packed cell volume, heterophil to lymphocyte (H/L) ratio, plasma concentrations of total IgG, and cytokines of interleukin-1β and interleukin-6, plus lipopolysaccharide-induced tumor necrosis factor-α factor were measured at both 27.6 and 32 week of age. The mRNA expressions of these cytokines, toll-like receptor-4, and inducible nitric oxide synthase were also examined in the spleen of 32 week-old hens. Except for H/L ratio, thermally cooled perches did not significantly improve currently measured immunological indicators. These results indicated that the ambient temperature of 2013 summer in Indiana (24°C, 17.1 to 33.1°C) was not high enough and the 4 h heat episode at 33.3°C (32 to 34.6°C) was insufficient in length to evoke severe heat stress in hens. However, cooled perch hens had a lower H/L ratio than both air perch hens and control hens at 27.6 week of age and it was still lower compared to control hens (P < 0.05, respectively) at 32 week of age. The lowered H/L ratio of cooled perch hens may suggest that they were able to cope with acute heat stress more effectively than control hens. Further studies are needed to evaluate the effectiveness of thermally cooled perches on hen health under higher ambient temperatures. PMID:26495988

  9. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  10. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, Kent Goran; McLaurin, Leroy Dixon; Bertsch, Oran Leroy; Lowe, Perry Eugene

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  11. Effect of Cooling Rate on the Microstructure and Mechanical Properties of C-Mn-Al-Si-Nb Hot-Rolled TRIP Steels

    NASA Astrophysics Data System (ADS)

    Fu, B.; Y Lu, M.; Y Yang, W.; Li, L. F.; Y Zhao, Z.

    2017-12-01

    A novel thermomechanical process to manufacture hot-rolled TRIP steels has been proposed based on dynamic transformation of undercooled austenite (DTUA). The cooling rate between DTUA and isothermal bainitic treatment in the novel process is important. In the present study, effect of this cooling rate on the final microstructures and mechanical properties of a C-Mn-Al-Si-Nb TRIP steel was investigated. The results showed that the volume fractions of acicular ferrite and retained austenite were increased with the increment of cooling rate. As a consequence, higher yield strength and larger total elongation were obtained for the investigated steel with higher cooling rate. In addition, a value of 30.24 GPa% for the product of tensile strength and total elongation was acquired when the cooling rate was 25 K/s. This value has met the standard of the “Third Generation” of advanced high strength sheet steels.

  12. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  13. Estimating yellow-poplar growth and yield

    Treesearch

    Donald E. Beck

    1989-01-01

    Yellow-poplar grows in essentially pure, even-aged stands, so you can make growth and yield estimates from relatively few stand characteristics. The tables and models described here require only measures of stand age, stand basal area in trees 4.5 inches and larger, and site index. They were developed by remeasuring (at 5-year intervals over a 20-year period) many...

  14. Legionella species colonization in cooling towers: risk factors and assessment of control measures.

    PubMed

    Mouchtouri, Varvara A; Goutziana, Georgia; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2010-02-01

    Cooling towers can be colonized by Legionella spp, and inhalation of aerosols generated by their operation may cause Legionnaires' disease in susceptible hosts. Environmental investigations of Legionnaires' disease outbreaks linked with cooling towers have revealed poorly maintained systems, lack of control measures, and failure of system equipment. The purpose of this study was to identify Legionella-contaminated cooling towers, identify risk factors for contamination, and assess the effectiveness of control measures. A total of 96 cooling towers of public buildings were registered and inspected, and 130 samples were collected and microbiologically tested. Microbiological test results were associated with characteristics of cooling towers, water samples, inspection results, and maintenance practices. Of the total 96 cooling towers examined, 47 (48.9%) were colonized by Legionella spp, and 22 (22.9%) required remedial action. A total of 65 samples (50.0%) were positive (> or = 500 cfu L(-1)), and 30 (23%) were heavily contaminated (> or = 10(4) cfu L(-1)). Of the 69 isolates identified, 55 strains (79.7.%) were L pneumophila. Legionella colonization was positively associated with the absence of training on Legionella control (relative risk [RR] = 1.66; P = .02), absence of regular Legionella testing (RR = 2.07: P = .002), absence of sunlight protection (RR = 1.63: P = .02), with samples in which the free residual chlorine level in the water sample was < 0.5 mg/L (RR = 2.23; P = .01), and with total plate count (P =.001). Colonization was negatively associated with chemical disinfection (RR = 0.2; P = .0003) and with the presence of a risk assessment and management plan (RR = 0.12; P = .0005). A statistically significant higher age (P =.01) was found in legionellae-positive cooling towers (median, 17 years; interquartile range [IQR] =5.0 to 26.0 years) compared with noncolonized cooling towers (median age, 6 years; IQR =1.0 to 13.5 years). After the 22 legionellae

  15. Curved film cooling admission tube

    NASA Astrophysics Data System (ADS)

    Graham, R. W.; Papell, S. S.

    1980-10-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  16. Curved film cooling admission tube

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Papell, S. S. (Inventor)

    1980-01-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  17. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  18. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  19. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    USGS Publications Warehouse

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  20. Associations between and development of cool and hot executive functions across early childhood.

    PubMed

    O'Toole, Sarah; Monks, Claire P; Tsermentseli, Stella

    2018-03-01

    This study explored the development of cool and hot EF skills across early childhood. Children 4.5- to 5.5-years-old (N = 80) completed performance-based assessments of cool EF (inhibition and working memory), hot EF (affective decision-making and delay of gratification) at three time points across 12 months. Cool EF task performance was consistently correlated with early childhood, but hot EF task performance was not. Performance on cool EF tasks showed significant improvements over early childhood, but performance on hot EF tasks did not. During early childhood performance on delay of gratification and affective decision-making tasks may therefore be unrelated and show limited sensitivity to improvement. Statement of contribution What is already known about cool and hot EF An EF model has been proposed that distinguishes between cool-cognitive and hot-affective skills. Findings regarding whether cool and hot EF are distinct in early childhood are mixed. Hot EF skills, compared to cool EF abilities, are thought to develop more gradually. What the present study adds to understanding of cool and hot EF Performance on cool EF tasks and hot delay of gratification were associated in early childhood. Performance on hot EF tasks was not related, meaning they do not tap the same underlying factor. Age related gains in hot EF were not found, but 5-year-olds had better hot EF than 4-year-olds. © 2017 The British Psychological Society.

  1. Renewable Heating and Cooling

    EPA Pesticide Factsheets

    Find information on the benefits of renewable heating and cooling technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  2. Cooling and drying in northeast Africa across the Pliocene

    NASA Astrophysics Data System (ADS)

    Liddy, Hannah M.; Feakins, Sarah J.; Tierney, Jessica E.

    2016-09-01

    Terrestrial records suggest that Northeast Africa experienced drying during the Pliocene; however, these records are often incomplete in time and space, and questions about this shift in climate remain. Here, we use marine sediments from Deep Sea Drilling Project (DSDP) Site 231 in the Gulf of Aden to generate a multi-proxy organic geochemical record of northeast African climate spanning 5.3-2 Ma. This new record provides a regional perspective on climate and serves as context for the fossil record of early hominin evolution. We measured leaf wax carbon (δ13Cwax) and hydrogen (δDwax) isotopic composition and TEX86 (tetraether index of 86 carbons) to investigate past changes in vegetation, aridity, and ocean temperature, respectively. In the earliest Pliocene, we infer warm subsurface ocean temperatures from TEX86, semi-arid conditions on land and extensive C4 grasslands based on δDwax, δ13Cwax and previously published pollen. After 5 Ma, ocean temperatures gradually cooled, and at 4.3 Ma there was a transition to arid conditions on land based on δDwax and pollen. Grasslands yielded to a mid Pliocene landscape of dry shrublands. This drying appears to be an atmospheric response to cooling ocean temperatures, which may reflect changes in tropical ocean circulation, the intensification of Indian Monsoon winds or perhaps other changes associated with Pliocene cooling.

  3. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  4. Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate

    NASA Astrophysics Data System (ADS)

    Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY

    2017-12-01

    The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.

  5. Renewable Heating And Cooling

    EPA Pesticide Factsheets

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  6. Non-intrusive cooling system

    DOEpatents

    Morrison, Edward F.; Bergman, John W.

    2001-05-22

    A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

  7. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    NASA Astrophysics Data System (ADS)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  8. Effect of cycled combustion ageing on a cordierite burner plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Eugenio; Gancedo, J. Ramon; Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustionmore » conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.« less

  9. Film cooling from inclined cylindrical holes using large eddy simulations

    NASA Astrophysics Data System (ADS)

    Peet, Yulia V.

    2006-12-01

    The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold

  10. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  11. Laser cooling of molecular anions.

    PubMed

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  12. Thermoregulatory influence of a cooling vest on hyperthermic athletes.

    PubMed

    Lopez, Rebecca M; Cleary, Michelle A; Jones, Leon C; Zuri, Ron E

    2008-01-01

    Athletic trainers must have sound evidence for the best practices in treating and preventing heat-related emergencies and potentially catastrophic events. To examine the effectiveness of a superficial cooling vest on core body temperature (T(c)) and skin temperature (T(sk)) in hypohydrated hyperthermic male participants. A randomized control design with 2 experimental groups. Participants exercised by completing the heat-stress trial in a hot, humid environment (ambient temperature = 33.1 +/- 3.1 degrees C, relative humidity = 55.1 +/- 8.9%, wind speed = 2.1 +/- 1.1 km/hr) until a T(c) of 38.7 +/- 0.3 degrees C and a body mass loss of 3.27 +/- 0.1% were achieved. Ten healthy males (age = 25.6 +/- 1.6 years, mass = 80.3 +/- 13.7 kg). Recovery in a thermoneutral environment wearing a cooling vest or without wearing a cooling vest until T(c) returned to baseline. Rectal T(c), arm T(sk), time to return to baseline T(c), and cooling rate. During the heat-stress trial, T(c) significantly increased (3.6%) and, at 30 minutes of recovery, T(c) had decreased significantly (2.6%) for both groups. Although not significant, the time for return to baseline T(c) was 22.6% faster for the vest group (43.8 +/- 15.1 minutes) than for the no-vest group (56.6 +/- 18.0 minutes), and the cooling rate for the vest group (0.0298 +/- 0.0072 degrees C/min) was not significantly different from the cooling rate for the no-vest group (0.0280 +/- 0.0074 degrees C/min). The T(sk) during recovery was significantly higher (2.1%) in the vest group than in the no-vest group and was significantly lower (7.1%) at 30 minutes than at 0 minutes for both groups. We do not recommend using the cooling vest to rapidly reduce elevated T(c). Ice-water immersion should remain the standard of care for rapidly cooling severely hyperthermic individuals.

  13. Bounds on the Coupling of the Majoron to Light Neutrinos from Supernova Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2002-12-02

    We explore the role of Majoron (J) emission in the supernova cooling process, as a source of upper bound on the neutrino-Majoron coupling. We show that the strongest upper bound on the coupling to {nu}{sub 3} comes from the {nu}{sub e}{nu}{sub e} {yields} J process in the core of a supernova. We also find bounds on diagonal couplings of the Majoron to {nu}{sub {mu}({tau})}{nu}{sub {mu}({tau})} and on off-diagonal {nu}{sub e}{nu}{sub {mu}({tau})} couplings in various regions of the parameter space. We discuss the evaluation of cross-section for four-particle interactions ({nu}{nu} {yields} JJ and {nu}J {yields} {nu}J). We show that these aremore » typically dominated by three-particle sub-processes and do not give new independent constraints.« less

  14. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  15. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  16. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  17. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  18. Toward Cooling Uniformity: Investigation of Spiral, Sweeping Holes, and Unconventional Cooling Paradigms

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.

    2018-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.

  19. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  20. Cool DZ white dwarfs II: compositions and evolution of old remnant planetary systems

    NASA Astrophysics Data System (ADS)

    Hollands, M. A.; Gänsicke, B. T.; Koester, D.

    2018-06-01

    In a previous study, we analysed the spectra of 230 cool (Teff < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here, we interpret these abundances in terms of the accretion of debris from extrasolar planetesimals, and infer parent body compositions ranging from crust-like (rich in Ca and Ti) to core-like (rich in Fe and Ni). In particular, two white dwarfs, SDSS J0823+0546 and SDSS J0741+3146, which show log [Fe/Ca] > 1.9 dex, and Fe to Ni ratios similar to the bulk Earth, have accreted by far the most core-like exoplanetesimals discovered to date. With cooling ages in the range 1-8 Gyr, these white dwarfs are among the oldest stellar remnants in the Milky Way, making it possible to probe the long-term evolution of their ancient planetary systems. From the decrease in maximum abundances as a function of cooling age, we find evidence that the arrival rate of material on to the white dwarfs decreases by three orders of magnitude over a ≃ 6.5 Gyr span in white dwarf cooling ages, indicating that the mass-reservoirs of post-main sequence planetary systems are depleted on a ≃ 1 Gyr e-folding time-scale. Finally, we find that two white dwarfs in our sample are members of wide binaries, and both exhibit atypically high abundances, thus providing strong evidence that distant binary companions can dynamically perturb white dwarf planetary systems.

  1. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  2. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  3. The Continuing Search for Variability Among Cool White Dwarfs

    NASA Astrophysics Data System (ADS)

    Schaefer, J. J.; Oswalt, T. D.; Johnston, K. B.; Rudkin, M.; Heinz, T.

    2002-12-01

    The Continuing Search for Variability Among Cool White Dwarfs Justin J. Schaefer University of Wyoming Department of Physics and Astronomy P.O. Box 3905 Laramie, Wyoming 82071 USA (schaefju@uwyo.edu) Terry D. Oswalt, Kyle Johnston, Merissa Rudkin, Tamalyn Heinz Florida Institute of Technology and the SARA Observatory Department of Physics & Space Sciences 150 West University Boulevard Melbourne, Florida 32901 USA (oswalt@luyten.astro.fit.edu, kyjohnst@fit.edu, mrudkin@astro.fit.edu, theinz@fit.edu) ABSTRACT We present BVRI photometry of eleven binaries with white dwarf (WD) components. The observations were obtained at the SARA 0.9-meter telescope on Kitt Peak during the summer of 2002. Standard system (B-V), (V-R) and (R-I) color indices of four white dwarfs were determined. This data will be used to estimate the WD cooling ages in wide WD+dM binaries, as part of our ongoing research program to determine the chromospheric activity-age relation for M dwarf stars. Time-series differential photometry was also collected for eight cool white dwarfs as part of a program to explore the variability in the low luminosity, low temperature regime of the WD cooling track. We failed to detect any variability greater than ~0.04 magnitudes in these stars. Several nights of differential photometry data were collected on the DAO WD + K dwarf short-period variable HS1136+6646. From the light variations we determined a likely orbital period of 0.825 +/-0.009 days. Strong evidence is presented for two other possible periods within this light curve, possibly indicative of rotational modulation by the WD component. We gratefully acknowledge support from the National Science Foundation, which funds the SARA Research Experiences for Undergraduates program via grant AST-0097616 to Florida Tech. One of us (TDO) also acknowledges partial support for this work from NASA (subcontract Y701296) and the NSF (AST 0206115).

  4. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  5. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  6. The Contribution of "Cool" and "Hot" Components of Decision-Making in Adolescence: Implications for Developmental Psychopathology

    ERIC Educational Resources Information Center

    Seguin, Jean R.; Arseneault, Louise; Tremblay, Richard E.

    2007-01-01

    Impairments in either "cool" or "hot" processes may represent two pathways to deficient decision-making. Whereas cool processes are associated with cognitive and rational decisions, hot processes are associated with emotional, affective, and visceral processes. In this study, 168 boys were administered a card-playing task at ages 13 and 14 years…

  7. Volcanic and nonvolcanic rifted margins of the Red Sea and Gulf of Aden: Crustal cooling and margin evolution in Yemen

    NASA Astrophysics Data System (ADS)

    Menzies, Martin; Gallagher, Kerry; Yelland, Andrew; Hurford, Anthony J.

    1997-06-01

    New apatite fission track (AFT) data from the southern Red Sea volcanic and the Gulf of Aden nonvolcanic margins provide important constraints on the timing of crustal cooling relative to periods of volcanism and lithosphere extension. The AFT data define several regions of extension immediately adjacent to the Red Sea margin with AFT ages < 25 Ma and track-length distributions consistent with rapid cooling. Elevated Precambrian basement highs on the rift shoulder have AFT ages ≫ 100 Ma and track-length distributions indicative of a complex pre-rift history. An intervening area along the Red Sea and Gulf of Aden margins, and inland along the Balhaf graben (Jurassic rift), has AFT ages of 25-100 Ma. and track-length distributions indicative of rapid cooling. Elevated Precambrian basement highs are juxtaposed against topographically lower extended coastal terranes with sharp contrasts in AFT ages and track-length distributions, pointing to possible reactivation in the Tertiary of lineaments of Precambrian and Jurassic age. Integration of field observations with AFT data and 40Ar/ 39Ar data indicates that, on the Red Sea volcanic margin, surface uplift was initiated immediately prior to volcanism and that cooling was synchronous with widespread extension and an apparent hiatus in voluminous volcanic activity.

  8. Physiological and productive responses of multiparous lactating Holstein cows exposed to short-term cooling during severe summer conditions in an arid region of Mexico

    NASA Astrophysics Data System (ADS)

    Avendaño-Reyes, L.; Hernández-Rivera, J. A.; Álvarez-Valenzuela, F. D.; Macías-Cruz, U.; Díaz-Molina, R.; Correa-Calderón, A.; Robinson, P. H.; Fadel, J. G.

    2012-11-01

    Heat stress generates a significant economic impact for the dairy industry in arid and semi-arid regions of the world, so that heat abatement is an important issue for dairy producers. The objective of this study was to evaluate effects of two short-term cooling periods on physiological and productive status of lactating Holstein cows during hot ambient temperatures. Thirty-nine multiparous cows were blocked by milk yield and assigned to one of three treatments including: control group (C), cows cooled before milking time (0500 and 1700 h daily, 1 h cooling); AM group, cows cooled at 1000 h and before milking (2 h cooling); and AM + PM group, cows cooled at 1100, 1500 and 2200 h, as well as before milking (4 h cooling). The cooling system was placed in the holding pen which the cows were moved through for cooling. Respiratory rate, and temperatures of thurl and right flank, were lower ( P < 0.05) in cows from the AM + PM group than AM and C cows during the morning and afternoon. However, udder temperature was higher in the AM + PM group compared to AM and C groups during the afternoon, although lower than the AM group during the morning. Rectal temperature was similar in all groups. Thyroxin concentrations tended ( P < 0.10) to be lower in AM + PM relative to the AM and C groups. The AM + PM group had higher ( P < 0.05) milk production than C (18.70 vs. 17.43 kg, respectively), and AM + PM cows had a trend ( P < 0.10) to increased milk energy output vs. the C and AM groups (13.75 vs. 13.18 and 13.15 Mcal, respectively). Protein and fat in milk, body condition score, glucose, cholesterol, triglycerides and triiodothyronine were similar among the groups. Four hours of cooling with spray and fans during severe summer temperatures only modestly improved milk yield of lactating Holstein cows.

  9. Physiological and productive responses of multiparous lactating Holstein cows exposed to short-term cooling during severe summer conditions in an arid region of Mexico.

    PubMed

    Avendaño-Reyes, L; Hernández-Rivera, J A; Alvarez-Valenzuela, F D; Macías-Cruz, U; Díaz-Molina, R; Correa-Calderón, A; Robinson, P H; Fadel, J G

    2012-11-01

    Heat stress generates a significant economic impact for the dairy industry in arid and semi-arid regions of the world, so that heat abatement is an important issue for dairy producers. The objective of this study was to evaluate effects of two short-term cooling periods on physiological and productive status of lactating Holstein cows during hot ambient temperatures. Thirty-nine multiparous cows were blocked by milk yield and assigned to one of three treatments including: control group (C), cows cooled before milking time (0500 and 1700 h daily, 1 h cooling); AM group, cows cooled at 1000 h and before milking (2 h cooling); and AM + PM group, cows cooled at 1100, 1500 and 2200 h, as well as before milking (4 h cooling). The cooling system was placed in the holding pen which the cows were moved through for cooling. Respiratory rate, and temperatures of thurl and right flank, were lower (P < 0.05) in cows from the AM + PM group than AM and C cows during the morning and afternoon. However, udder temperature was higher in the AM + PM group compared to AM and C groups during the afternoon, although lower than the AM group during the morning. Rectal temperature was similar in all groups. Thyroxin concentrations tended (P < 0.10) to be lower in AM + PM relative to the AM and C groups. The AM + PM group had higher (P < 0.05) milk production than C (18.70 vs. 17.43 kg, respectively), and AM + PM cows had a trend (P < 0.10) to increased milk energy output vs. the C and AM groups (13.75 vs. 13.18 and 13.15 Mcal, respectively). Protein and fat in milk, body condition score, glucose, cholesterol, triglycerides and triiodothyronine were similar among the groups. Four hours of cooling with spray and fans during severe summer temperatures only modestly improved milk yield of lactating Holstein cows.

  10. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  11. The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex

    NASA Astrophysics Data System (ADS)

    Schoolmeesters, Nicole; Cheadle, Michael J.; John, Barbara E.; Reiners, Peter W.; Gee, Jeffrey; Grimes, Craig B.

    2012-10-01

    Oceanic core complexes (OCCs) are domal exposures of oceanic crust and mantle interpreted to be denuded to the seafloor by large slip oceanic detachment faults. We combine previously reported U-Pb zircon crystallization ages with (U-Th)/He zircon thermochronometry and multicomponent magnetic remanence data to determine the cooling history of the footwall to the Atlantis Massif OCC (30°N, MAR) and help establish cooling rates, as well as depths of detachment faulting and gabbro emplacement. We present nine new (U-Th)/He zircon ages for samples from IODP Hole U1309D ranging from 40 to 1415 m below seafloor. These data paired with U-Pb zircon ages and magnetic remanence data constrain cooling rates of gabbroic rocks from the upper 800 m of the central dome at Atlantis Massif as 2895 (+1276/-1162) °C Myr-1 (from ˜780°C to ˜250°C); the lower 600 m of the borehole cooled more slowly at mean rates of ˜500 (+125/-102) °C Myr-1(from ˜780°C to present-day temperatures). Rocks from the uppermost part of the hole also reveal a brief period of slow cooling at rates of ˜300°C Myr-1, possibly due to hydrothermal circulation to ˜4 km depth through the detachment fault zone. Assuming a fault slip rate of 20 mm/yr (from U-Pb zircon ages of surface samples) and a rolling hinge model for the sub-surface fault geometry, we predict that the 780°C isotherm lies at ˜7 km below the axial valley floor, likely corresponding both to the depth at which the semi-brittle detachment fault roots and the probable upper limit of significant gabbro emplacement.

  12. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    NASA Astrophysics Data System (ADS)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  13. Ex vivo investigations of laser auricular cartilage reshaping with carbon dioxide spray cooling in a rabbit model

    PubMed Central

    Wu, Edward C.; Sun, Victor; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Jia, Wangcun; Nelson, J. Stuart; Wong, Brian J. F.

    2014-01-01

    Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12–14 J/cm2 per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33–85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50–70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress. PMID:23307439

  14. Ex vivo investigations of laser auricular cartilage reshaping with carbon dioxide spray cooling in a rabbit model.

    PubMed

    Wu, Edward C; Sun, Victor; Manuel, Cyrus T; Protsenko, Dmitriy E; Jia, Wangcun; Nelson, J Stuart; Wong, Brian J F

    2013-11-01

    Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12-14 J/cm(2) per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33-85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50-70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress.

  15. Analysis of Radiant Cooling System Configurations Integrated with Cooling Tower for Different Indian Climatic Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Jyotirmay; Bhandari, Mahabir S; Jain, Robin

    Radiant cooling system has proven to be a low energy consumption system for building cooling needs. This study describes the use of cooling tower in radiant cooling system to improve the overall system efficiency. A comprehensive simulation feasibility study of the application of cooling tower in radiant cooling system was performed for the fifteen cities in different climatic zones of India. It was found that in summer, the wet bulb temperature (WBT) of the different climatic zones except warm-humid is suitable for the integration of cooling tower with radiant cooling system. In these climates, cooling tower can provide on averagemore » 24 C to 27 C water In order to achieve the energy saving potential, three different configurations of radiant cooling system have been compared in terms of energy consumption. The different configurations of the radiant cooling system integrated with cooling tower are: (1) provide chilled water to the floor, wall and ceiling mounted tubular installation. (2) provide chilled water to the wall and ceiling mounted tabular installation. In this arrangement a separate chiller has also been used to provide chilled water at 16 C to the floor mounted tubular installation. (3) provide chilled water to the wall mounted tabular installation and a separate chiller is used to provide chilled water at 16 C to the floor and ceiling mounted tabular installation. A dedicated outdoor air system is also coupled for dehumidification and ventilation in all three configurations. A conventional all-air system was simulated as a baseline to compare these configurations for assessing the energy saving potential.« less

  16. Cold perception and cutaneous microvascular response to local cooling at different cooling temperatures.

    PubMed

    Music, Mark; Finderle, Zarko; Cankar, Ksenija

    2011-05-01

    The aim of the present study was to investigate the effect of quantitatively measured cold perception (CP) thresholds on microcirculatory response to local cooling as measured by direct and indirect response of laser-Doppler (LD) flux during local cooling at different temperatures. The CP thresholds were measured in 18 healthy males using the Marstock method (thermode placed on the thenar). The direct (at the cooling site) and indirect (on contralateral hand) LD flux responses were recorded during immersion of the hand in a water bath at 20°C, 15°C, and 10°C. The cold perception threshold correlated (linear regression analysis, Pearson correlation) with the indirect LD flux response at cooling temperatures 20°C (r=0.782, p<0.01) and 15°C (r=0.605, p<0.01). In contrast, there was no correlation between the CP threshold and the indirect LD flux response during cooling in water at 10°C. The results demonstrate that during local cooling, depending on the cooling temperature used, cold perception threshold influences indirect LD flux response. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    USGS Publications Warehouse

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  18. Compressor bleed cooling fluid feed system

    DOEpatents

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  19. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  20. Cooling Water Intakes

    EPA Pesticide Factsheets

    Industries use large volumes of water for cooling. The water intakes pull large numbers of fish and other organisms into the cooling systems. EPA issues regulations on intake structures in order to minimize adverse environmental impacts.

  1. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  2. An Intense Slit Discharge Source of Jet-Cooled Molecular Ions and Radicals (T(sub rot) less than 30 K)

    NASA Technical Reports Server (NTRS)

    Anderson, David T.; Davis, Scott; Zwier, Timothy S.; Nesbitt, David J.

    1996-01-01

    A novel pulsed, slit supersonic discharge source is described for generating intense jet-cooled densities of radicals (greater than 10(exp 12)/cu cm) and molecular ions (greater than 10(exp 10)/cu cm) under long absorption path (80 cm), supersonically cooled conditions. The design confines the discharge region upstream of the supersonic expansion orifice to achieve efficient rotational cooling down to 30 K or less. The collisionally collimated velocity distribution in the slit discharge geometry yields sub-Doppler spectral linewidths, which for open-shell radicals reveals spin-rotation splittings and broadening due to nuclear hyperfine structure. Application of the slit source for high-resolution, direct IR laser absorption spectroscopy in discharges is demonstrated on species such as OH, H3O(+) and N2H(+).

  3. Laminated turbine vane design and fabrication. [utilizing film cooling as a cooling system

    NASA Technical Reports Server (NTRS)

    Hess, W. G.

    1979-01-01

    A turbine vane and associated endwalls designed for advanced gas turbine engine conditions are described. The vane design combines the methods of convection cooling and selective areas of full coverage film cooling. The film cooling technique is utilized on the leading edge, pressure side, and endwall regions. The turbine vane involves the fabrication of airfoils from a stack of laminates with cooling passages photoetched on the surface. Cold flow calibration tests, a thermal analysis, and a stress analysis were performed on the turbine vanes.

  4. The Effect of Intermittent Head Cooling on Aerobic Performance in the Heat

    PubMed Central

    Walters, Peter; Thom, Nathaniel; Libby, Kai; Edgren, Shelby; Azadian, Amanda; Tannous, Daniel; Sorenson, Elisabeth; Hunt, Brian

    2017-01-01

    Thermoregulation is critical for athletes, particularly those for those who must perform in the heat. Most strategies aimed at reducing heat stress have cooled participants before or during activity. The objective of this study is to investigate whether seven minutes of head cooling applied between bouts of aerobic exercise in hot (35 ± 1.0 °C) and dry (14.68 ±4.29% rh) environmental conditions could positively effect participants peak power output (PP) on a maximal effort graded exercise test (GXT). Twenty-two recreational active men ages 18 to 23 (19.8 ± 1.6 yrs.) completed three performance trials over a 21 day period. During the first trial, participants were familiarized with procedures and completed a maximal effort GXT on a cycle ergometer to establish maximal baseline performances. The second and third trials, which were counterbalanced, consisted of a cooling and placebo condition. During both of these trials, participants cycled 40 minutes at 65% of their maximum VO2, in hot (35 ± 1.0 °C) and dry (17-20% rh) environmental conditions. Immediately after this initial bout of activity, participants were given seven minutes of recovery in which head cooling was applied during the cooling condition and withheld during the placebo condition. Participants then completed a maximal effort GXT. Significant differences (p < 0.001) in participants peak power output (W) were measured when cooling was applied compared to the placebo condition (304.23(W) ± 26.19(W) cooling, 291.68(W) ± 26.04(W) placebo). These results suggest that a relatively brief period of intermittent cooling may enhance subsequent aerobic performance. Key points Thermoregulation is a critical performance variable Pre-cooling and Mid-cooling methods have been shown to benefit aerobic and anaerobic performance To date, intermittent head mid-cooling has not been investigated This study demonstrated that seven minutes of intermittent head cooling was sufficient to positively effect aerobic

  5. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  6. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  7. Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling

    NASA Technical Reports Server (NTRS)

    Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.

    1959-01-01

    An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.

  8. Characterizing Cool Giant Planets in Reflected Light

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  9. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    NASA Astrophysics Data System (ADS)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  10. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    PubMed

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  11. Water-Cooled Optical Thermometer

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1987-01-01

    Water-cooled optical probe measures temperature of nearby radiating object. Intended primarily for use in silicon-growing furnace for measuring and controlling temperatures of silicon ribbon, meniscus, cartridge surfaces, heaters, or other parts. Cooling water and flushing gas cool fiber-optic probe and keep it clean. Fiber passes thermal radiation from observed surface to measuring instrument.

  12. Hypersonic aerospace vehicle leading edge cooling using heat pipe, transpiration and film cooling techniques

    NASA Astrophysics Data System (ADS)

    Modlin, James Michael

    An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.

  13. Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ren, R.-C.; Cai, Ming

    2016-12-01

    The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.

  14. NREL, LiquidCool Solutions Partner on Energy-Efficient Cooling for

    Science.gov Websites

    denser and generate more heat. Liquid cooling, including the LiquidCool Solutions technology, offers a more energy-efficient solution that also allows for effective reuse of the heat rejected by the water, depending on the coolant temperature and heat exchanger specifications. These water temperatures

  15. Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.

    PubMed

    Barker, Zachary A; Stillwell, Ashlynn S

    2016-05-17

    Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy.

  16. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential.

    PubMed

    Ferraro, Vincenza; Gaillard-Martinie, Brigitte; Sayd, Thierry; Chambon, Christophe; Anton, Marc; Santé-Lhoutellier, Véronique

    2017-04-01

    Natural collagen is easily available from animal tissues such as bones. Main limitations reported in the use of natural collagen are heterogeneity and loss of integrity during recovery. However, its natural complexity, functionality and bioactivity still remain to be achieved through synthetic and recombinant ways. Variability of physicochemical properties of collagen extracted from bovine bone by acetic acid was then investigated taking into account endogenous and exogenous factors. Endogenous: bovine's bones age (4 and 7 years) and anatomy (femur and tibia); exogenous: thermal treatments (spray-drying and lyophilisation). Scanning electron microscopy, spectroscopy (EDS, FTIR, UV/Vis and CD), differential scanning calorimetry (DSC), centesimal composition, mass spectrometry, amino acids and zeta-potential analysis were used for the purpose. Age correlated negatively with yield of recovery and positively with minerals and proteoglycans content. Comparing the anatomy, higher yields were found for tibias, and higher stability of tibias collagen in solution was noticed. Whatever the age and the anatomy, collagens were able to renature and to self-assemble into tri-dimensional structures. Nonetheless thermal stability and kinetics of renaturation were different. Variability of natural collagen with bone age and anatomy, and drying methodology, may be a crucial advantage to conceive tailor-made applications in either the biological or technical sector. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 10 34 cm -2s -1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); themore » other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  18. Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Li, Guangqiang; Qin, Qingwei

    Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.

  19. Energy analysis of cool, medium, and dark roofs on residential buildings in the U.S

    NASA Astrophysics Data System (ADS)

    Dunbar, Michael A.

    This study reports an energy analysis of cool, medium, and dark roofs on residential buildings in the U.S. Three analyses were undertaken in this study: energy consumption, economic analysis, and an environmental analysis. The energy consumption reports the electricity and natural gas consumption of the simulations. The economic analysis uses tools such as simple payback period (SPP) and net present value (NPV) to determine the profitability of the cool roof and the medium roof. The variable change for each simulation model was the roof color. The default color was a dark roof and the results were focused on the changes produced by the cool roof and the medium roof. The environmental analysis uses CO2 emissions to assess the environmental impact of the cool roof and the medium roof. The analysis uses the U.S. Department of Energy (DOE) EnergyPlus software to produce simulations of a typical, two-story residential home in the U.S. The building details of the typical, two-story U.S. residential home and the International Energy Conservation Code (IECC) building code standards used are discussed in this study. This study indicates that, when material and labor costs are. assessed, the cool roof and the medium roof do not yield a SPP less than 10 years. Furthermore, the NPV results assess that neither the cool roof nor the medium roof are a profitable investment in any climate zone in the U.S. The environmental analysis demonstrates that both the cool roof and the medium roof have a positive impact in warmer climates by reducing the CO2 emissions as much as 264 kg and 129 kg, respectively.

  20. Effectiveness-weighted control of cooling system components

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  1. Effectiveness of Cool Roof Coatings with Ceramic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2011-01-01

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of

  2. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    NASA Astrophysics Data System (ADS)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  3. Cooling Tests of an Airplane Equipped with an NACA Cowling and a Wing-duct Cooling System

    NASA Technical Reports Server (NTRS)

    Turner, L I , Jr; Bierman, David; Boothy, W B

    1941-01-01

    Cooling tests were made of a Northrop A-17A attack airplane successively equipped with a conventional.NACA cowling and with a wing-duct cooling system. The method of cooling the engine by admitting air from the propeller slipstream into wing ducts, passing it first through the accessory compartment and then over the engine from rear to front, appeared to offer possibilities for improved engine cooling, increased cooling of the accessories, and better fairing of the power-plant installation. The results showed that ground cooling for the wing duct system without cowl flap was better than for the NACA cowling with flap; ground cooling was appreciably improved by installing a cowl flap. Satisfactory temperatures were maintained in both climb and high-speed flight, but, with the use of conventional baffles, a greater quantity of cooling air appeared to be required for the wing duct system.

  4. 46 CFR 153.432 - Cooling systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  5. 46 CFR 153.432 - Cooling systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  6. 46 CFR 153.432 - Cooling systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  7. 46 CFR 153.432 - Cooling systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  8. Experimental study on the cool storage performance of super absorbent polymers for cool storage clothes

    NASA Astrophysics Data System (ADS)

    Li, Shidong; Mo, Caisong; Wang, Junze; Zheng, Jingfu; Tian, Ruhong

    2017-11-01

    In this paper, a kind of cool storage clothes which can cool the human body in high temperature condition is put forward. super absorbent polymers was selected as a cold storage material, through at the normal and extreme environment simulation, the cold storage materials were prepared with different composition, and their performance was tested. Test results show that:under normal temperature conditions, the 1:50 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 43 minutes by about 30%; under the condition of 37°C, the 1:100 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 105 minutes by about 50%.

  9. Laser cooling by adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Norcia, Matthew; Cline, Julia; Bartolotta, John; Holland, Murray; Thompson, James

    2017-04-01

    We have demonstrated a new method of laser cooling applicable to particles with narrow linewidth optical transitions. This simple and robust cooling mechanism uses a frequency-swept laser to adiabatically transfer atoms between internal and motional states. The role of spontaneous emission is reduced (though is still critical) compared to Doppler cooling. This allows us to achieve greater slowing forces than would be possible with Doppler cooling, and may make this an appealing technique for cooling molecules. In this talk, I will present a demonstration of this technique in a cold strontium system. DARPA QUASAR, NIST, NSF PFC.

  10. Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding

    NASA Astrophysics Data System (ADS)

    Liu, Dongsheng; Li, Qingliang; Emi, Toshihiko

    2011-05-01

    Key parameters for a thermomechanically controlled processing and accelerated cooling process (TMCP-AcC) were determined for integrated mass production to produce extra high-yield-strength microalloyed low carbon SiMnCrNiCu steel plates for offshore structure and bulk shipbuilding. Confocal scanning microscopy was used to make in-situ observations on the austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate the flow stress behavior, static recrystallization (SRX) of austenite, and decomposition behavior of the TMCP conditioned austenite during continuous cooling. The Kocks-Mecking model was employed to describe the constitutive behavior, while the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach was used to predict the SRX kinetics. The effects of hot rolling schedule and AcC on microstructure and properties were investigated by test-scale rolling trials. The bridging between the laboratory observations and the process parameter determination to optimize the mass production was made by integrated industrial production trials on a set of a 5-m heavy plate mill equipped with an accelerated cooling system. Successful production of 60- and 50-mm-thick plates with yield strength in excess of 460 MPa and excellent toughness at low temperature (213 K (-60 °C)) in the parent metal and the simulated coarse-grained heat affected zone (CGHAZ) provides a useful integrated database for developing advanced high-strength steel plates via TMCP-AcC.

  11. Power electronics cooling apparatus

    DOEpatents

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  12. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  13. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling

    NASA Astrophysics Data System (ADS)

    Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; Song, Y.; Tang, J.; Li, Z.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Orestano, D.; Tortora, L.; Kuno, Y.; Ishimoto, S.; Filthaut, F.; Jokovic, D.; Maletic, D.; Savic, M.; Hansen, O. M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Dumbell, K.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Anderson, R. J.; Barclay, P.; Bayliss, V.; Boehm, J.; Bradshaw, T. W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Tucker, M.; Wilson, A.; Watson, S.; Bayes, R.; Nugent, J. C.; Soler, F. J. P.; Gamet, R.; Barber, G.; Blackmore, V. J.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Kurup, A.; Lagrange, J.-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Uchida, M. A.; Cobb, J. H.; Lau, W.; Booth, C. N.; Hodgson, P.; Langlands, J.; Overton, E.; Robinson, M.; Smith, P. J.; Wilbur, S.; Dick, A. J.; Ronald, K.; Whyte, C. G.; Young, A. R.; Boyd, S.; Franchini, P.; Greis, J. R.; Pidcott, C.; Taylor, I.; Gardener, R. B. S.; Kyberd, P.; Nebrensky, J. J.; Palmer, M.; Witte, H.; Bross, A. D.; Bowring, D.; Liu, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Freemire, B.; Hanlet, P.; Kaplan, D. M.; Mohayai, T. A.; Rajaram, D.; Snopok, P.; Suezaki, V.; Torun, Y.; Onel, Y.; Cremaldi, L. M.; Sanders, D. A.; Summers, D. J.; Hanson, G. G.; Heidt, C.; MICE Collaboration

    2017-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combined effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.

  14. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  15. Knowledge of childhood burn risks and burn first aid: Cool Runnings.

    PubMed

    Burgess, Jacqueline D; Watt, Kerrianne A; Kimble, Roy M; Cameron, Cate M

    2018-01-31

    The high incidence of hot beverage scalds among young children has not changed in the past 15 years, but preventive campaigns have been scarce. A novel approach was used to engage mothers of young children in an app-based hot beverage scald prevention campaign 'Cool Runnings'. This paper provides baseline data for this randomised controlled trial (RCT). Queensland-based mothers aged 18+ years with at least one child aged 5-12 months were recruited via social media to Cool Runnings, which is a two-group, parallel, single-blinded RCT. In total, 498 participants from across Queensland completed the baseline questionnaire. The most common source of burn first aid information was the internet (79%). One-third (33%) correctly identified hot beverage scalds as the leading cause of childhood burns, 43% knew the age group most at risk. While 94% reported they would cool a burn with water, only 10% reported the recommended 20min duration. After adjusting for all relevant variables, there were two independent predictors of adequate burn first aid knowledge: first aid training in the past year (OR=3.32; 95% CI 1.8 to 6.1) and smoking status (OR=0.17; 95% CI 0.04 to 0.7). In this study, mothers of young children were largely unaware how frequently hot beverage scalds occur and the age group most susceptible to them. Inadequate burn first aid knowledge is prevalent across mothers of young children; there is an urgent and compelling need to improve burn first aid knowledge in this group. Given the high incidence of hot beverages scalds in children aged 6-24 months, it is important to target future burn prevention/first aid campaigns at parents of young children. ACTRN12616000019404; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  17. Vaporization Would Cool Primary Battery

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  18. Precipitation of silicon from splat-cooled Al-Si alloys

    NASA Technical Reports Server (NTRS)

    Matyja, H.; Russell, K. C.; Grant, N. J.; Giessen, B. C.

    1975-01-01

    Splat cooled Al-Si solid solutions with 1 to 11 at.% Si were prepared and their precipitation kinetics were studied by transmission electron microscopy. The time required for appearance of particles visible at a magnification of 35,000 times was determined at temperatures between 248 K and 573 K. The resulting Arrhenius plots yielded activation energies ranging from 55 to 40 plus or minus 2kJ/mol over the composition range. Precipitate densities were higher and denuded zones of 100 to 150 nm were narrower than in comparable solid quenched samples. The activation energies are explained in terms of excess point defect concentrations.

  19. Physiologic and Functional Responses of MS Patients to Body Cooling Using Commercially Available Cooling Garments

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Lee, Hank C.; Luna, Bernadette; Webbon, Bruce W.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Personal cooling systems are widely used in industrial and aerospace environments to alleviate thermal stress. Increasingly they are also used by heat sensitive multiple sclerosis (HSMS) patients to relieve symptoms and improve quality of life. There are a variety of cooling systems commercially available to the MS community. However, little information is available regarding the comparative physiological changes produced by routine operation of these various systems. The objective of this study was to document and compare the patient response to two passive cooling vests and one active cooling garment. The Life Enhancement Technology, Inc. (LET) lightweight active cooling vest with cap, the MicroClimate Systems (MCS) Change of Phase garment, and the Steele Vest were each used to cool 13 male and 13 female MS subjects (31 to 67 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 C), were tested with one of the cooling garments. Oral, fight and left ear temperatures were logged manually every 5 min. An-n, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. Each subject was given a series of subjective and objective evaluation tests before and after cooling. The LET and Steele vests test groups had similar, significant (P less than 0.01) cooling effects on oral and ear canal temperature, which decreased approximately 0.4 C, and 0.3 C, respectively. Core temperature increased (N.S.) with all three vests during cooling. The LET vest produced the coldest (P less than 0.01) skin temperature. Overall, the LET vest provided the most improvement on subjective and objective performance measures. These results show that the garment configurations tested do not elicit a similar thermal response in all MS patients. Cooling with the LET active garment configuration resulted in the lowest body temperatures for the MS subjects; cooling with

  20. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions.

    PubMed

    Boyarkin, Oleg V; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ~150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  1. Mapping the dark matter in the NGC 5044 group with ROSAT: Evidence for a nearly homogeneous cooling flow with a cooling wake

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Jones, Christine; Forman, William; Daines, Stuart

    1994-01-01

    The NGC 5044 group of galaxies was observed by the ROSAT Position Sensitive Proportional Counter (PSPC) for 30 ks during its reduced pointed phase (1991 July). Due to the relatively cool gas temperature in the group (kT = 0.98 +/- 0.02 keV) and the excellent photon statistics (65,000 net counts), we are able to determine precisely a number of fundamental properties of the group within 250 kpc of the central galaxy. In particular, we present model-independent measurements of the total gravitating mass, the temperature and abundance profiles of the gas, and the mass accretion rate. Between 60 and 250 kpc, the gas is nearly isothermal with T varies as r(exp (-0.13 +/- 0.03)). The total gravitating mass of the group can be unambiguously determined from the observed density and temperature profiles of the gas using the equation of hydrostatic equilibrium. Within 250 kpc, the gravitating mass is 1.6 x 10(exp 13) solar mass, yielding a mass-to-light ratio of 130 solar mass/solar luminosity. The baryons (gas and stars) comprise 12% of the total mass within this radius. At small radii, the temperature clearly increases outward and attains a maximum value at 60 kpc. The positive temperature gradient in the center of the group confirms the existence of a cooling flow. The cooling flow region extends well beyond the temperature maximum with a cooling radius between 100 and 150 kpc. There are two distinct regions in the cooling flow separated by the temperature maximum. In the outer region, the gas is nearly isothermal with a unifor m Fe abundance of approximately 80% solar, the flow is nearly homogeneous with dot-M= 20 to 25 solar mass/year, the X-ray contours are spherically symmetric, and rho(sub gas) varies as r(exp -1.6). In the inner region, the temperature profile has a positive gradient, the mass accretion rate decreases rapidly inward, the gas density profile is steeper, and the X-ray image shows some substrucutre. NGC 5044 is offset from the centroid of the outer X

  2. Computing Cooling Flows in Turbines

    NASA Technical Reports Server (NTRS)

    Gauntner, J.

    1986-01-01

    Algorithm developed for calculating both quantity of compressor bleed flow required to cool turbine and resulting decrease in efficiency due to cooling air injected into gas stream. Program intended for use with axial-flow, air-breathing, jet-propulsion engines with variety of airfoil-cooling configurations. Algorithm results compared extremely well with figures given by major engine manufacturers for given bulk-metal temperatures and cooling configurations. Program written in FORTRAN IV for batch execution.

  3. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  4. Co/Ni ratios at taenite/kamacite interfaces and relative cooling rates in iron meteorites

    NASA Astrophysics Data System (ADS)

    Wasson, John T.; Hoppe, Peter

    2012-05-01

    We report a pilot study of a new technique to use the distribution of Co between kamacite and taenite to infer relative cooling rates of iron meteorites; data of Widge and Goldstein (1977) showed that the distribution is temperature dependent. A plot of the logarithm of the double ratio [(Co/Ni)kamacite/(Co/Ni)taenite] (abbreviated Rαγ) against inverse temperature yields a linear equation showing that the ratio ranges from ˜2.5 at 1080 K to ˜30 at 710 K. Thus, a measurement of Rαγ in the kamacite and taenite near the interface offers information about relative cooling rates; the higher Rαγ, the lower the cooling rate. A major advantage of this technique is that it is mainly affected by the final (low-temperature) cooling rate, just before the sample cooled to the blocking temperature where diffusion became insignificant. To test this method we used the NanoSIMS ion probe to measure Rαγ in two IVA and two IIIAB irons; members of each pair differ by large factors in elemental composition and in published metallographic cooling rates (Yang and Goldstein, 2006; Yang et al., 2008). Despite differing by a factor of 25 in estimated metallographic cooling rate, the two IVA irons showed similar Rαγ values of ˜22. If experimental uncertainties are considered this implies that, at low temperatures, their cooling rates differ by less than a factor of 5 with 95% confidence, i.e., significantly less than the range in metallographic cooling rates. In contrast, the IIIAB irons have different ratios; Rαγ in Haig is 29 whereas that in Cumpas, with a reported cooling rate 4.5 times lower, is 22, the opposite of that expected from the published cooling rates. A reevaluation of the Yang-Goldstein IIIAB data set shows that Haig has anomalous metallographic properties. We suggest that both the high Rαγ in Haig and the systematically low taenite central Ni contents are the result of impact-produced fractures in the taenite that allowed equilibration with kamacite down to

  5. High energy electron cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very closemore » to theoretical prediction for a usual two component plasma heat exchange.« less

  6. Cooling arrangement for a tapered turbine blade

    DOEpatents

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  7. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    DOEpatents

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  8. Pāhoehoe flow cooling, discharge, and coverage rates from thermal image chronometry

    USGS Publications Warehouse

    Dehn, Jonathan; Hamilton, Christopher M.; Harris, A. J. L.; Herd, Richard A.; James, M.R.; Lodato, Luigi; Steffke, Andrea

    2007-01-01

    Theoretically- and empirically-derived cooling rates for active pāhoehoe lava flows show that surface cooling is controlled by conductive heat loss through a crust that is thickening with the square root of time. The model is based on a linear relationship that links log(time) with surface cooling. This predictable cooling behavior can be used assess the age of recently emplaced sheet flows from their surface temperatures. Using a single thermal image, or image mosaic, this allows quantification of the variation in areal coverage rates and lava discharge rates over 48 hour periods prior to image capture. For pāhoehoe sheet flow at Kīlauea (Hawai`i) this gives coverage rates of 1–5 m2/min at discharge rates of 0.01–0.05 m3/s, increasing to ∼40 m2/min at 0.4–0.5 m3/s. Our thermal chronometry approach represents a quick and easy method of tracking flow advance over a three-day period using a single, thermal snap-shot.

  9. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  10. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling

    DOE PAGES

    Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; ...

    2017-06-19

    Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combinedmore » effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.« less

  11. High temperature cooling system and method

    DOEpatents

    Loewen, Eric P.

    2006-12-12

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  12. S'COOL Science

    ERIC Educational Resources Information Center

    Bryson, Linda

    2004-01-01

    This article describes one fifth grade's participation in in NASA's S'COOL (Students' Cloud Observations On-Line) Project, making cloud observations, reporting them online, exploring weather concepts, and gleaning some of the things involved in authentic scientific research. S?COOL is part of a real scientific study of the effect of clouds on…

  13. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Little, David Allen

    2001-01-01

    A combustion turbine may have a cooling circuit for directing a cooling medium through the combustion turbine to cool various components of the combustion turbine. This cooling circuit may include a compressor, a combustor shell and a component of the combustion turbine to be cooled. This component may be a rotating blade of the combustion turbine. A pressure changing mechanism is disposed in the combustion turbine between the component to be cooled and the combustor shell. The cooling medium preferably flows from the compressor to the combustor shell, through a cooler, the component to the cooled and the pressure changing mechanism. After flowing through the pressure changing mechanism, the cooling medium is returned to the combustor shell. The pressure changing mechanism preferably changes the pressure of the cooling medium from a pressure at which it is exhausted from the component to be cooled to approximately that of the combustor shell.

  14. Heat exchanger with auxiliary cooling system

    DOEpatents

    Coleman, John H.

    1980-01-01

    A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

  15. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  16. Efficacy of Cool-Down Exercises In the Practice Regimen of Elite Singers

    NASA Astrophysics Data System (ADS)

    Gottliebson, Renee O.

    Cool-down exercises are routinely prescribed for singers, yet few data exist about the efficacy of active recovery or cooling down of the vocal mechanism. The purpose of the present study was to compare three aspects of vocal function after using different recovery methods following rigorous voice use. Vocal function was assessed using (1) phonation threshold pressure (PTP); (2) acoustic measures (accuracy of tone production, duration of notes and duration of intervals between notes); and (3) measures of subjective perception: perceived phonatory effort (PPE) and Singing Voice Handicap Index (SVHI). Data were collected after 10-minutes of cool-down exercises, complete voice rest, and conversation immediately following a 50-minute voice lesson. Data were collected again 12-24 hours later. Participants included actively performing elite singers (7 women, 2 men) enrolled in the graduate program (M.M., D.M.A.) at the University of Cincinnati's College-Conservatory of Music. While it was expected that PTP estimates after cool downs would be significantly lower than baselines and the other conditions, it turns out that PTP estimates after cool downs were significantly higher at the 80% level of the pitch range. Statistically significant correlations between PTP estimates and PPE scores were found when comparing levels of the participants' pitch ranges (10%, 20%, 80%). Mean PPE scores were highest at the 80% level of the pitch range. The acoustic measures yielded variable results. Cool-down exercises did not result in significantly more accurate tone production and shorter staccato note duration and duration of intervals between staccato notes as compared to baselines and recovery conditions. Instead, participants demonstrated greater accuracy of tone production during baselines and lesser accuracy after voice rest. Staccato notes were significantly shorter in duration after the conversation condition as compared to voice rest. Duration between staccato notes was

  17. Highly ionized atoms in cooling gas. [in model for cooling of hot Galactic corona

    NASA Technical Reports Server (NTRS)

    Edgar, Richard J.; Chevalier, Roger A.

    1986-01-01

    The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Bruna, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.

  18. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  19. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  20. Microtextured Surfaces for Turbine Blade Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  1. PBF Cooling Tower. Hot deck of Cooling Tower with fan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. (U-Th-Sm)/He thermochronological age distribution in a slowly cooled plutonic complex (Ploumanac'h intrusion, France): insights into helium diffusion processes.

    NASA Astrophysics Data System (ADS)

    Recanati, A. C.; Gautheron, C.; Barbarand, J.; Tassan-Got, L.; Missenard, Y.; Pinna-Jamme, R.

    2015-12-01

    (U-Th-Sm)/He thermochronology is widely used to determine the thermal histories of mountain ranges and sedimentary basins. Apatite crystals retain helium at low temperatures, thus giving an insight into upper crustal evolution (e.g. exhumation, subsidence, erosion). Advanced models predict He production and diffusion rates in apatite crystals, thereby allowing determination of helium dates by integration over time/temperature paths (e.g. Gautheron et al., 2009). However, scattered dates and discordance between predicted and measured dates suggest that other parameters than time or temperature may also influence helium contents in apatite. The present study determines the variables that affect He diffusion in apatite over long timescales. We report the (U-Th-Sm)/He date distribution within a slowly cooled intrusion, along with AFT data, as well as extensive petrological and chemical characterization. The Ploumanac'h site (Brittany, France) was chosen because it includes small-scale spatial variations in petrology and chemistry (cooling event occurred 250 Myrs ago, followed by a long stay in the He partial retention zone, and a final Late Cretaceous exhumation. Results evidence scattered (U-Th-Sm)/He dates, ranging from 80±8 to 250±25 Myrs, whereas AFT ages range from 120 to 160 ±10 Myrs. The old and scattered (U-Th-Sm)/He ages cannot be explained with current models. We investigate the influence of monograin chemistry, crystal defect, and sample petrology on (U-Th-Sm)/He dates. Data confirm that He can be stored at defect sites, but also support a decrease in He retentivity for high equivalent damage fraction (>6-9106 tracks/cm2). GAUTHERON C., TASSAN-GOT L., BARBARAND J., PAGEL M., 2009. Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chem. Geol. 266, 166-179.

  3. Electronic cooling using thermoelectric devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu; Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, andmore » one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.« less

  4. Teaching Social Communication Skills Using a Cool versus Not Cool Procedure plus Role-Playing and a Social Skills Taxonomy

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Taubman, Mitchell; Milne, Christine; Dale, Stephanie; Leaf, Jeremy; Townley-Cochran, Donna; Tsuji, Kathleen; Kassardjian, Alyne; Alcalay, Aditt; Leaf, Ronald; McEachin, John

    2016-01-01

    We utilized a cool versus not cool procedure plus role-playing to teach social communication skills to three individuals diagnosed with autism spectrum disorder. The cool versus not cool procedure plus role-playing consisted of the researcher randomly demonstrating the behavior correctly (cool) two times and the behavior incorrectly (not cool) two…

  5. Yield stress materials in soft condensed matter

    NASA Astrophysics Data System (ADS)

    Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien

    2017-07-01

    A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.

  6. Towards new generation spectroscopic models of cool stars

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria

    2018-06-01

    Abstract: Spectroscopy is a unique tool to determine the physical parameters of stars. Knowledge of stellar chemical abundances, masses, and ages is the key to understanding the evolution of their host populations. I will focus on the current outstanding problems in spectroscopy of cool stars, which are the most useful objects in studies of our local Galactic neighborhood but also very distant systems, like faint dwarf Spheroidal galaxies. Among the most debated issues is to what extent can we trust the techniques, which rely on the classical assumptions of local thermodynamic equilibrium and hydrostatic balance. I will summarise the ongoing efforts to improve the models of cool stars, with the emphasis on NLTE and 3D modelling. I will then discuss how these exciting observations impact our knowledge of abundances in the Milky Way and in dSph systems, and present outlook for the future studies.

  7. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments.

    PubMed

    Safi, Taqiyyah S; Munday, Jeremy N

    2015-09-21

    The method of detailed balance, introduced by Shockley and Queisser, is often used to find an upper theoretical limit for the efficiency of semiconductor pn-junction based photovoltaics. Typically the solar cell is assumed to be at an ambient temperature of 300 K. In this paper, we describe and analyze the use of radiative cooling techniques to lower the solar cell temperature below the ambient to surpass the detailed balance limit for a cell in contact with an ideal heat sink. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that our proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for solar cells in an extraterrestrial environment in near-earth orbit.

  8. Multi-pass cooling for turbine airfoils

    DOEpatents

    Liang, George [Palm City, FL

    2011-06-28

    An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

  9. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2017-12-27

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  10. Kinetics of Fe2+-Mg order-disorder in orthopyroxene: experimental studies and applications to cooling rates of rocks

    NASA Astrophysics Data System (ADS)

    Stimpfl, M.; Ganguly, J.; Molin, G.

    2005-10-01

    We determined the forward rate constant (K+) for the Fe2+-Mg order-disorder between the M2 and M1 sites of orthopyroxene (OPx), which is described by the homogeneous reaction Fe2+ (M2) + Mg(M1) ↔ Mg(M2) + Fe2+ (M1), by both ordering and disordering experiments at isothermal condition and also by continuous cooling experiments. The rate constant was determined as a function of temperature in the range of 550-750°C, oxygen fugacity between quartz-fayalite-iron and Ni-NiO buffers, and at compositions of 16 and 50 mol% ferrosilite component. The K+ value derived from disordering experiment was found to be larger than that derived from ordering experiment at 550°C, while at T>580°C, these two values are essentially the same. The fO2 dependence of the rate constant can be described by the relation K+ α (fO2) n with n=5.5-6.5, which is compatible with the theoretically expected relation. The Arrhenius relation at the WI buffer condition is given by ln (C_{text{o}} {text{K}}^+) = - {41511 - 12600{text{X}}_{{text{Fe}}} }/{{T({text{K}})}} + 28.26 + 5.27{text{X}}_{{text{Fe}}}, min^{-1} where C o represents the total number of M2 + M1 sites occupied by Fe2+ and Mg per unit volume of the crystal. The above relation can be used to calculate the cooling rates of natural OPx crystals around the closure temperature ( T c) of Fe-Mg ordering, which are usually below 300°C for slowly cooled rocks. We determined the Fe-Mg ordering states of several OPx crystals (˜ Fs50) from the Central Gneissic Complex (Khtada Lake), British Columbia, which yields T c ˜290°C. Numerical simulation of the change of Fe2+-Mg ordering in OPx as a function of temperature using the above expression of rate constant and a non-linear cooling model yields quenched values of ordering states that are in agreement with the observed values for cooling rates of 11-17°C/Myr below 300°C. The inferred cooling rate is in agreement with the available geochronological constraints.

  11. 14 CFR 29.908 - Cooling fans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans installed...

  12. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows.

    PubMed

    Ardia, Daniel R; Pérez, Jonathan H; Clotfelter, Ethan D

    2010-06-22

    Nest microclimate can have strong effects that can carry over to later life-history stages. We experimentally cooled the nests of tree swallows (Tachycineta bicolor). Females incubating in cooled nests reduced incubation time and allowed egg temperatures to drop, leading to extended incubation periods. We partially cross-fostered nestlings to test carry-over effects of cooling during incubation on nestling innate constitutive immunity, assessed through bacteria killing ability (BKA) of blood. Nestlings that had been cooled as eggs showed a lower ability to kill bacteria than control nestlings, regardless of the treatment of their foster mother. However, there was no effect of treatment of rearing females on nestling BKA in control nestlings, even though cooled females made significantly fewer feeding visits than did control females. This suggests that the effect of cooling occurred during incubation and was not due to carry-over effects on nestling condition. Nestlings that were exposed to experimental cooling as embryos had lower residual body mass and absolute body mass at all four ages measured. Our results indicate that environmental conditions and trade-offs experienced during one stage of development can have important carry-over effects on later life-history stages.

  13. Computation of Turbulent Recirculating Flow in Channels, and for Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Chang, Byong Hoon

    1992-01-01

    Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-epsilon turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improved modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-epsilon turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating.

  14. Microstructures and Argon age dating

    NASA Astrophysics Data System (ADS)

    Forster, Marnie; Fitz Gerald, John; Lister, Gordon

    2010-05-01

    Microstructures can be dated using 40Ar/39Ar geochronology, but certain conditions apply. In particular the nature of the physical processes that took place during development of need be identified, and the pattern of gas release (and/or retention) during their evolution in nature, and subsequently in the mass spectrometer, during the measurement process. Most researchers cite temperature as the sole variable of importance. There is a belief that there is a single "closure temperature" or a "closure interval" above which the mineral is incapable of retaining radiogenic argon. This is a false conception. Closure is practically relevant only in circumstances that see a rock cooled relatively rapidly from temperatures that were high enough to prevent significant accumulation of radiogenic argon, to temperatures below which there is insignificant loss of radiogenic argon through the remainder of the geological history. These conditions accurately apply only to a limited subset - for example to rocks that cool rapidly from a melt and thereafter remain at or close to the Earth's surface, without subsequent ingress of fluids that would cause alteration and modification of microstructure. Some minerals in metamorphic rocks might display such "cooling ages" but in principle these data are difficult to interpret since they depend on the rate of cooling, the pressures that applied, and the subsequent geological history. Whereas the science of "cooling ages" is relatively well understood, the science of the Argon Partial Retention Zone is in its infancy. In the Argon PRZ it is evident that ages should (and do) show a strong correlation with microstructure. The difficulty is that, since diffusion of Argon is simultaneously multi-path and multi-scale, it is difficult to directly interrogate the distinct reservoirs that store gas populations and thus the age information that can be recorded as to the multiple events during the history of an individual microstructure. Laser

  15. Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation.

    PubMed

    Aryana, Arash; O'Neill, Padraig Gearoid; Pujara, Deep K; Singh, Steve K; Bowers, Mark R; Allen, Shelley L; d'Avila, André

    2016-08-01

    The optimal irrigation flow rate (IFR) during epicardial radiofrequency (RF) ablation has not been established. This study specifically examined the impact of IFR and intrapericardial fluid (IPF) accumulation during epicardial RF ablation. Altogether, 452 ex vivo RF applications (10 g for 60 seconds) delivered to the epicardial surface of bovine myocardium using 3 open-irrigated ablation catheters (ThermoCool SmartTouch, ThermoCool SmartTouch-SF, and FlexAbility) and 50 in vivo RF applications delivered (ThermoCool SmartTouch-SF) in 4 healthy adult swine in the presence or absence of IPF were examined. Ex vivo, RF was delivered at low (≤3 mL/min), reduced (5-7 mL/min), and high (≥10 mL/min) IFRs using intermediate (25-35 W) and high (35-45 W) power. In vivo, applications were delivered (at 9.3 ± 2.2 g for 60 seconds at 39 W) using reduced (5 mL/min) and high (15 mL/min) IFRs. Ex vivo, surface lesion diameter inversely correlated with IFR, whereas maximum lesion diameter and depth did not differ. While steam pops occurred more frequently at low IFR using high power (ThermoCool SmartTouch and ThermoCool SmartTouch-SF), tissue disruption was rare and did not vary with IFR. In vivo, charring/steam pop was not detected. Although there were no discernible differences in lesion size with IFR, surface lesion diameter, maximum diameter, depth, and volume were all smaller in the presence of IPF at both IFRs. Cooled-tip epicardial RF ablation created using reduced IFRs (5-7 mL/min) yields lesion sizes similar to those created using high IFRs (≥10 mL/min) without an increase in steam pop/tissue disruption, whereas the presence of IPF significantly reduces the lesion size. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. The influence and analysis of natural crosswind on cooling characteristics of the high level water collecting natural draft wet cooling tower

    NASA Astrophysics Data System (ADS)

    Ma, Libin; Ren, Jianxing

    2018-01-01

    Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.

  17. Multicompartment Liquid-Cooling/Warming Protective Garments

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2005-01-01

    Shortened, multicompartment liquid-cooling / warming garments (LCWGs) for protecting astronauts, firefighters, and others at risk of exposure to extremes of temperature are undergoing development. Unlike prior liquid-circulation thermal-protection suits that provide either cooling or warming but not both, an LCWG as envisioned would provide cooling at some body locations and/or heating at other locations, as needed: For example, sometimes there is a need to cool the body core and to heat the extremities simultaneously. An LCWG garment of the type to be developed is said to be shortened because the liquid-cooling and - heating zones would not cover the whole body and, instead, would cover reduced areas selected for maximum heating and cooling effectiveness. Physiological research is under way to provide a rational basis for selection of the liquid-cooling and -heating areas. In addition to enabling better (relative to prior liquid-circulation garments) balancing of heat among different body regions, the use of selective heating and cooling in zones would contribute to a reduction in the amount of energy needed to operate a thermal-protection suit.

  18. Radiative Cooling: Principles, Progress, and Potentials

    PubMed Central

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  19. Reduction in body temperature using hand cooling versus passive rest after exercise in the heat.

    PubMed

    Adams, William M; Hosokawa, Yuri; Adams, Elizabeth L; Belval, Luke N; Huggins, Robert A; Casa, Douglas J

    2016-11-01

    To examine the effects of hydration and hand cooling on lowering body temperature after exercise in the heat. Randomized cross-over design. Nine recreationally active male participants (mean±SD; age, 24±4; height, 177.3±9.9cm; body mass, 76.7±11.6kg; body fat, 14.7±5.8%) completed a bout of treadmill exercise in a hot environment. After completion of exercise, participants were assigned to the following trials for post-exercise cooling: (1) hydrated with passive rest (HY), (2) hydrated with hand cooling on both hands (HY+2HC), (3) dehydrated with passive rest (DY), and (4) dehydrated with hand cooling on both hands (DY+2HC). Within subject differences were assessed using a three-way (Hydration×Condition×Time) repeated measures ANOVA with Tukey's post hoc analysis if significant interactions were found. Irrespective of hydration status, hand cooling on both hands resulted in significantly greater reductions in T REC than passive cooling at minute 20 (0.27°C [0.05, 0.49], ES=2.08, p=0.017) (Fig. 1). The reduction in T REC at minute 18 trended towards statistical significance (0.21°C [.003, .42], ES=1.59, p=0.053). Hydration status alone and when differentiated among modes of cooling showed no differences on changes of T REC or heart rate across all conditions during post exercise recovery (p>0.05). Hand cooling on both hands reduced T REC more than passive cooling, however, the cooling rates observed render hand cooling a poor option for cooling. Greater reductions in T REC after exercise or between bouts of exercise may enhance recovery and subsequent performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  1. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan,

    2018-05-30

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  2. Effectiveness-weighted control method for a cooling system

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  3. Wing-Nacelle-Propeller Tests - Comparative Tests of Liquid-Cooled and Air-Cooled Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Wood, Donald H.

    1934-01-01

    This report gives the results of measurements of the lift, drag, and propeller characteristics of several wing and nacelle combinations with a tractor propeller. The nacelles were so located that the propeller was about 31% of the wing chord directly ahead of the leading edge of the wing, a position which earlier tests (NASA Report No. 415) had shown to be efficient. The nacelles were scale models of an NACA cowled nacelle for a radial air-cooled engine, a circular nacelle with the V-type engine located inside and the radiator for the cooling liquid located inside and the radiator for the type, and a nacelle shape simulating the housing which would be used for an extension shaft if the engine were located entirely within the wing. The propeller used in all cases was a 4-foot model of Navy No. 4412 adjustable metal propeller. The results of the tests indicate that, at the angles of attack corresponding to high speeds of flight, there is no marked advantage of one type of nacelle over the others as far as low drag is concerned, since the drag added by any of the nacelles in the particular location ahead of the wing is very small. The completely cowled nacelle for a radial air-cooled engine appears to have the highest drag, the liquid-cooled engine appears to have the highest drag, the liquid-cooled engine nacelle with external radiator slightly less drag. The liquid-cooled engine nacelle with radiator in the cowling hood has about half the drag of the cowled radial air-cooled engine nacelle. The extension-shaft housing shows practically no increase in drag over that of the wing alone. A large part of the drag of the liquid-cooled engine nacelle appears to be due to the external radiator. The maximum propulsive efficiency for a given propeller pitch setting is about 2% higher for the liquid-cooled engine nacelle with the radiator in the cowling hood than that for the other cowling arrangements.

  4. Screening apatites for (U-Th)/He thermochronometry via continuous ramped heating: He age components and implications for age dispersion

    NASA Astrophysics Data System (ADS)

    McDannell, Kalin T.; Zeitler, Peter K.; Janes, Darwin G.; Idleman, Bruce D.; Fayon, Annia K.

    2018-02-01

    Old slowly-cooled apatites often yield dispersed (U-Th)/He ages for a variety of reasons, some well understood and some not. Analytical protocols like careful grain selection can reduce the impact of this dispersion but add costs in time and resources and too often have proven insufficient. We assess a new analytical protocol that utilizes static-gas measurement during continuous ramped heating (CRH) as a means to rapidly screen apatite samples. In about the time required for a conventional total-gas analysis, this method can discriminate between samples showing expected volume-diffusion behavior and those showing anomalous release patterns inconsistent with their direct use in thermochronologic applications. This method also appears able to discriminate between the radiogenic and extraneous 4He fractions released by a sample, potentially allowing ages to be corrected. Well-behaved examples such as the Durango standard and other apatites with good age reproducibility show the expected smooth, sigmoidal gas-release curves predicted for volume diffusion using typical apatite kinetics, with complete exhaustion by ∼900 °C for linear heating at 20 °C/min. Secondary factors such as U and Th zoning and alpha-loss distribution have a relatively minor impact on such profiles. In contrast, samples having greater age dispersion show significant He release in the form of outgassing spikes and He release deferred to higher temperatures. Screening results for a range of samples permit us to assess the degree to which CRH screening can identify misbehaving grains, give insight into the source of extraneous He, and suggest that in some cases it may be possible to correct ages for the presence of such components.

  5. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD

    NASA Astrophysics Data System (ADS)

    Büntgen, Ulf; Myglan, Vladimir S.; Ljungqvist, Fredrik Charpentier; McCormick, Michael; di Cosmo, Nicola; Sigl, Michael; Jungclaus, Johann; Wagner, Sebastian; Krusic, Paul J.; Esper, Jan; Kaplan, Jed O.; de Vaan, Michiel A. C.; Luterbacher, Jürg; Wacker, Lukas; Tegel, Willy; Kirdyanov, Alexander V.

    2016-03-01

    Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe and Asia. In particular, the sixth century coincides with rising and falling civilizations, pandemics, human migration and political turmoil. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD (ref. ), which was probably sustained by ocean and sea-ice feedbacks, as well as a solar minimum. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague, transformation of the eastern Roman Empire and collapse of the Sasanian Empire, movements out of the Asian steppe and Arabian Peninsula, spread of Slavic-speaking peoples and political upheavals in China.

  6. Passive containment cooling water distribution device

    DOEpatents

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  7. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.

    Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to bemore » cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.« less

  8. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.

    Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to bemore » cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.« less

  9. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval1@mail.ru

    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  10. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  11. Specific cooling capacity of liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  12. Hydrogen film/conductive cooling

    NASA Technical Reports Server (NTRS)

    Ewen, R. L.

    1972-01-01

    Small scale nozzle tests using heated nitrogen were run to obtain effectiveness and wall heat transfer data with hydrogen film cooling. Effectiveness data are compared with an entrainment model developed from planar, unaccelerated flow data. Results indicate significant effects due to flow turning and acceleration. With injection velocity effects accounted for explicitly, heat transfer correlation coefficients were found to be the same with and without film cooling when properties are evaluated at an appropriate reference temperature for the local gas composition defined by the coolant effectiveness. A design study for an O2/H2 application with 300 psia (207 N/sq cm) chamber pressure and 1500 lbs (6670 N) thrust indicates an adiabatic wall design requires 4 to 5 percent of the total flow as hydrogen film cooling. Internal regenerative cooling designs were found to offer no reduction in coolant requirements.

  13. Selected yield tables for plantations and natural stands in Inland Northwest Forests

    Treesearch

    Albert R. Stage; David L. Renner; Roger C. Chapman

    1988-01-01

    Yields arrayed by site index and age have been tabulated for plantations of 500 trees per acre, with five thinning regimes, for Douglas-fir, grand fir, and western larch. Yields were also tabulated for naturally regenerated stands of the grand fir-cedar-hemlock ecosystem of the Inland Empire. All yields were estimated with the Prognosis Model for Stand Development,...

  14. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  15. Laser cooling of BaF

    NASA Astrophysics Data System (ADS)

    Bo, Yan; Bu, Wenhao; Chen, Tao; Lv, Guitao

    2017-04-01

    In this poster, we report our recently experimental progresses in laser cooling of BaF molecule. Our theoretic calculation shows BaF is a good candidate for laser cooling: quasi-cycling transitions, good wavelengths (around 900nm) for the main transitions. We have built a 4K cryogenic machine, laser ablate the target to make BaF molecules. The precise spectroscopy of BaF is measured and the laser cooling related transitions are identified. The collision between BaF and 4K He is carefully characterized. The quasi-cycling transition is demonstrated. And laser cooling experiment is going on.

  16. Magneto-optical cooling of atoms.

    PubMed

    Raizen, Mark G; Budker, Dmitry; Rochester, Simon M; Narevicius, Julia; Narevicius, Edvardas

    2014-08-01

    We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces, can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultracold atoms and phase-space density, with lower required laser power.

  17. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    PubMed

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  18. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  19. Cooled snubber structure for turbine blades

    DOEpatents

    Mayer, Clinton A.; Campbell, Christian X.; Whalley, Andrew; Marra, John J.

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  20. Cooling Technology for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    DiPirro, Michael; Cleveland, Paul; Durand, Dale; Klavins, Andy; Muheim, Daniella; Paine, Christopher; Petach, Mike; Tenerelli, Domenick; Tolomeo, Jason; Walyus, Keith

    2007-01-01

    NASA's New Millennium Program funded an effort to develop a system cooling technology, which is applicable to all future infrared, sub-millimeter and millimeter cryogenic space telescopes. In particular, this technology is necessary for the proposed large space telescope Single Aperture Far-Infrared Telescope (SAFIR) mission. This technology will also enhance the performance and lower the risk and cost for other cryogenic missions. The new paradigm for cooling to low temperatures will involve passive cooling using lightweight deployable membranes that serve both as sunshields and V-groove radiators, in combination with active cooling using mechanical coolers operating down to 4 K. The Cooling Technology for Large Space Telescopes (LST) mission planned to develop and demonstrate a multi-layered sunshield, which is actively cooled by a multi-stage mechanical cryocooler, and further the models and analyses critical to scaling to future missions. The outer four layers of the sunshield cool passively by radiation, while the innermost layer is actively cooled to enable the sunshield to decrease the incident solar irradiance by a factor of more than one million. The cryocooler cools the inner layer of the sunshield to 20 K, and provides cooling to 6 K at a telescope mounting plate. The technology readiness level (TRL) of 7 will be achieved by the active cooling technology following the technology validation flight in Low Earth Orbit. In accordance with the New Millennium charter, tests and modeling are tightly integrated to advance the technology and the flight design for "ST-class" missions. Commercial off-the-shelf engineering analysis products are used to develop validated modeling capabilities to allow the techniques and results from LST to apply to a wide variety of future missions. The LST mission plans to "rewrite the book" on cryo-thermal testing and modeling techniques, and validate modeling techniques to scale to future space telescopes such as SAFIR.

  1. Bunch beam cooling

    NASA Astrophysics Data System (ADS)

    Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.

    2017-07-01

    Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.

  2. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    NASA Technical Reports Server (NTRS)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  3. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyarkin, Oleg V., E-mail: oleg.boiarkin@epfl.ch; Kopysov, Vladimir

    2014-03-15

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ∼150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrastmore » to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion–He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.« less

  4. Improving crystal size distribution by internal seeding combined cooling/antisolvent crystallization with a cooling/heating cycle

    NASA Astrophysics Data System (ADS)

    Lenka, Maheswata; Sarkar, Debasis

    2018-03-01

    This work investigates the effect of internal seeding and an initial cooling/heating cycle on the final crystal size distribution (CSD) during a combined cooling/antisolvent crystallization of L-asparagine monohydrate from it's aqueous solution using isopropyl-alcohol as antisolvent. Internal seeds were generated by one-pot addition of various amounts of antisolvent to the crystallizer. It was then followed by a cooling/heating cycle to dissolve the fines produced and thus obtain a suitable initial seed. A combined cooling/antisolvent crystallization was then followed by employing a linear cooling profile with simultaneous addition of antisolvent with a constant mass flow rate to promote the growth of the internally generated seeds. The amount of initial antisolvent influences the characteristics of the internal seeds generated and the effect of initial amount of antisolvent on the final CSD is investigated. It was found that the introduction of a single cooling/heating cycle significantly improves the reproducibility of final CSD as well as the mean size. Overall, the study indicates that the application of internal seeding with a single cooling/heating cycle for fines dissolution is an effective technique to tailor crystal size distribution.

  5. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  6. Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2018-06-01

    This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.

  7. Parametric Cooling of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.

  8. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  9. Cooling of trapped ions by resonant charge exchange

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Rangwala, S. A.

    2018-04-01

    The two most widely used ion cooling methods are laser cooling and sympathetic cooling by elastic collisions (ECs). Here, we demonstrate another method of cooling ions that is based on resonant charge exchange (RCE) between the trapped ion and the ultracold parent atom. Specifically, trapped C s+ ions are cooled by collisions with cotrapped, ultracold Cs atoms and, separately, by collisions with cotrapped, ultracold Rb atoms. We observe that the cooling of C s+ ions by Cs atoms is more efficient than the cooling of C s+ ions by Rb atoms. This signals the presence of a cooling mechanism apart from the elastic ion-atom collision channel for the Cs-C s+ case, which is cooling by RCE. The efficiency of cooling by RCE is experimentally determined and the per-collision cooling is found to be two orders of magnitude higher than cooling by EC. The result provides the experimental basis for future studies on charge transport by electron hopping in atom-ion hybrid systems.

  10. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    PubMed

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  11. Cooling for newborns with hypoxic ischaemic encephalopathy.

    PubMed

    Jacobs, Susan E; Berg, Marie; Hunt, Rod; Tarnow-Mordi, William O; Inder, Terrie E; Davis, Peter G

    2013-01-31

    . Therapeutic hypothermia resulted in a statistically significant and clinically important reduction in the combined outcome of mortality or major neurodevelopmental disability to 18 months of age (typical RR 0.75 (95% CI 0.68 to 0.83); typical RD -0.15, 95% CI -0.20 to -0.10); number needed to treat for an additional beneficial outcome (NNTB) 7 (95% CI 5 to 10) (8 studies, 1344 infants). Cooling also resulted in statistically significant reductions in mortality (typical RR 0.75 (95% CI 0.64 to 0.88), typical RD -0.09 (95% CI -0.13 to -0.04); NNTB 11 (95% CI 8 to 25) (11 studies, 1468 infants) and in neurodevelopmental disability in survivors (typical RR 0.77 (95% CI 0.63 to 0.94), typical RD -0.13 (95% CI -0.19 to -0.07); NNTB 8 (95% CI 5 to 14) (8 studies, 917 infants). Some adverse effects of hypothermia included an increase sinus bradycardia and a significant increase in thrombocytopenia. There is evidence from the 11 randomised controlled trials included in this systematic review (N = 1505 infants) that therapeutic hypothermia is beneficial in term and late preterm newborns with hypoxic ischaemic encephalopathy. Cooling reduces mortality without increasing major disability in survivors. The benefits of cooling on survival and neurodevelopment outweigh the short-term adverse effects. Hypothermia should be instituted in term and late preterm infants with moderate-to-severe hypoxic ischaemic encephalopathy if identified before six hours of age. Further trials to determine the appropriate techniques of cooling, including refinement of patient selection, duration of cooling and method of providing therapeutic hypothermia, will refine our understanding of this intervention.

  12. Gross yield and mortality tables for fully stocked stands of Douglas-fir.

    Treesearch

    George R. Staebler

    1955-01-01

    Increasing interest in the practice of intensive forestry has demonstrated the need for gross yield tables for Douglas-fir showing the volume of trees that die as well as volume of live trees. Net yield tables for Douglas-fir, published in 1930, give the live volume in fully stocked stands at different ages on different sites. As in all normal yield tables, no...

  13. Variable area fuel cell cooling

    DOEpatents

    Kothmann, Richard E.

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  14. Mycobacteria in Finnish cooling tower waters.

    PubMed

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  15. A novel head-neck cooling device for concussion injury in contact sports

    PubMed Central

    Wang, Huan; Wang, Bonnie; Jackson, Kevin; Miller, Claire M.; Hasadsri, Linda; Llano, Daniel; Rubin, Rachael; Zimmerman, Jarred; Johnson, Curtis; Sutton, Brad

    2015-01-01

    Emerging research on the long-term impact of concussions on athletes has allowed public recognition of the potentially devastating effects of these and other mild head injuries. Mild traumatic brain injury (mTBI) is a multifaceted disease for which management remains a clinical challenge. Recent pre-clinical and clinical data strongly suggest a destructive synergism between brain temperature elevation and mTBI; conversely, brain hypothermia, with its broader, pleiotropic effects, represents the most potent neuro-protectant in laboratory studies to date. Although well-established in selected clinical conditions, a systemic approach to accomplish regional hypothermia has failed to yield an effective treatment strategy in traumatic brain injury (TBI). Furthermore, although systemic hypothermia remains a potentially valid treatment strategy for moderate to severe TBIs, it is neither practical nor safe for mTBIs. Therefore, selective head-neck cooling may represent an ideal strategy to provide therapeutic benefits to the brain. Optimizing brain temperature management using a National Aeronautics and Space Administration (NASA) spacesuit spinoff head-neck cooling technology before and/or after mTBI in contact sports may represent a sensible, practical, and effective method to potentially enhance recover and minimize post-injury deficits. In this paper, we discuss and summarize the anatomical, physiological, preclinical, and clinical data concerning NASA spinoff head-neck cooling technology as a potential treatment for mTBIs, particularly in the context of contact sports. PMID:28123788

  16. Mouse Embryo Cryopreservation by Rapid Cooling.

    PubMed

    Shaw, Jillian

    2018-05-01

    Embryo cryopreservation has been used to archive mouse strains. Protocols have evolved over this time and now vary considerably in terms of cryoprotectant solution, cooling and warming rates, methods to add and remove cryoprotectant, container or carrier type, volume of cryoprotectant, the stage of preimplantation development, and the use of additional treatments such as blastocyst puncture and microinjection. The rapid cooling methods use concentrated solutions of cryoprotectants to reduce the water content of the cell before cooling commences, thus preventing the formation of ice crystals. Embryos are equilibrated with the cryoprotectants, loaded into a carrier, and then rapidly cooled (e.g., by being plunged directly into LN 2 or onto a surface cooled in LN 2 ). The rapid cooling methods eliminate the need for controlled-rate freezers and seeding procedures. However, they are much more sensitive to minor variations when performing the steps. The rapid-cooling protocol described here is suitable for use with plastic insemination straws. Because it uses relatively large volumes, it is less technically demanding than some other methods that use minivolume devices. © 2018 Cold Spring Harbor Laboratory Press.

  17. Cooling of Kilauea Iki lava lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, R.G.

    1982-02-01

    In 1959 Kilauea Iki erupted leaving a 110 to 120 m lake of molten lava in its crater. The resulting lava lake has provided a unique opportunity to study the cooling dynamics of a molten body and its associated hydrothermal system. Field measurements taken at Kilauea Iki indicate that the hydrothermal system above the cooling magma body goes through several stages, some of which are well modeled analytically. Field measurements also indicate that during most of the solidification period of the lake, cooling from above is controlled by 2-phase convection while conduction dominates the cooling of the lake from below.more » A summary of the field work related to the study of the cooling dynamics of Kilauea Iki is presented. Quantitative and qualitative cooling models for the lake are discussed.« less

  18. Effects of dietary energy and lysine levels on growth performance and carcass yields of Pekin ducks from hatch to 21 days of age.

    PubMed

    Wen, Z G; Rasolofomanana, T J; Tang, J; Jiang, Y; Xie, M; Yang, P L; Hou, S S

    2017-09-01

    A 2 × 6 factorial experiment, using 2 dietary apparent metabolizable energy (AME) levels (2,750 and 3,050 Kcal/kg) and 6 supplemental lysine (Lys) levels (0, 0.10, 0.20, 0.30, 0.40, and 0.50%), was conducted to study the effects of dietary energy and lysine levels on growth performance and carcass yields of Pekin ducks from hatch to 21 d of age. A total of 576 one-day-old male White Pekin ducks was randomly allotted to 12 dietary treatments, each containing 6 replicate pens with 8 birds per pen. At 21 d of age, body weight gain, feed intake, and feed/gain were measured, and then 2 ducks selected randomly from each pen were slaughtered to evaluate the yields of abdominal fat, breast meat, and leg meat. As a result, birds that were fed basal diets with no Lys supplementation showed growth depression, and significant positive effects of dietary Lys supplementation on body weight gain (P < 0.001), feed intake (P < 0.001), and feed/gain (P = 0.002) were observed as dietary Lys increased gradually among all the groups. In addition, increasing energy levels did not affect overall body weight gain (P > 0.05), but feed intake (P = 0.001) and feed/gain (P = 0.009) decreased significantly between the groups. Dietary Lys levels influenced the yields of breast (P < 0.001) and leg (P = 0.001) meat among all the groups, but dietary energy levels had a significant positive effect only on abdominal fat yield (P = 0.014). The interaction between dietary energy and Lys influenced body weight gain of ducks significantly (P = 0.004). According to the broken-line regression analysis, Lys requirements of Pekin ducks for weight gain at 2,750 and 3,050 Kcal of AME/kg were 0.94 and 0.98%, respectively. It suggested that Lys requirement was higher at 3,050 Kcal of AME/kg than at 2,750 Kcal of AME/kg. Dietary energy content determined feed intake of the ducks, and high-energy diets will require a higher amino acid concentration to compensate for a lower feed intake. © 2017 Poultry

  19. The tectonothermal evolution of the Venezuelan Caribbean Mountain System: 40Ar/39Ar age insights from a Rodinian-related rock, the Cordillera de la Costa and Margarita Island

    NASA Astrophysics Data System (ADS)

    Fournier, Herbert W.; Lee, James K. W.; Urbani, Franco; Grande, Sebastián

    2017-12-01

    The Caribbean Mountain System in Venezuela contains rocks formed at high-pressure/low-temperature (HP/LT) conditions by the Cretaceous-Paleocene oblique collision occurred between the Caribbean and South American plates and involving Rodinian-related blocks. 40Ar/39Ar dating of rocks from the Cordillera de la Costa and Margarita Island has constrained key pre- and syntectonothermal events associated with the emplacement of this system. In a Rodinian marble, two phlogopite crystals of different grain sizes yield plateau ages of 888 ± 4 Ma and 874 ± 4 Ma. These results are interpreted as cooling ages after a major anorthosite-mangerite-charnockite-granite-suite intrusion at 920 Ma related to the break-up of Rodinia along the Amazonian-Baltica collisional zone - the Putumayo Orogen. Current plate reconstructions during the Neoproterozoic and previous age results indicate a correlation between the anorthositic complexes located in northwestern Venezuela (Yumare Complex) and southern Norway (Rogaland Complex), suggesting a similar tectonic setting during orogenic relaxation along the Amazonian and Baltica suture. A temperature-time path based on calculated Ar-closure temperatures of phlogopite indicates rapid cooling of 14 ± 4 °C Ma-1 from 920 Ma to 888 Ma, and a very slow to almost isothermal cooling of 4 ± 2 °C Ma-1 from 888 Ma to 874 Ma. On Margarita Island, magnesiohornblende and (alumino) barroisite from HP/LT rocks and muscovite from a leucocratic rock that was intruded before the HP/LT event yield identical ages within error at c. 54-47 Ma, consistent with previous dating results across the island utilizing different isotopic systems. The close association of these rocks and the Manzanillo Shear Zone indicates a main pathway for Ca-rich, 40Ar-free and hot fluids that locally raised the ambient T of the already exhumed and juxtaposed rock units. These fluids crystallized new hornblende and muscovite and thermally reset barroisite. This fluid activity event

  20. Solar-Cooled Hotel in the Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1982-01-01

    Performance of solar cooling system is described in 21-page report. System provides cooling for public areas including ball rooms, restaurant, lounge, lobby and shops. Chilled water from solar-cooling system is also used to cool hot water from hotel's desalinization plant.

  1. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  2. Modular Cooling Components

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.

    1994-01-01

    Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.

  3. Triatomic molecules laser-cooled

    NASA Astrophysics Data System (ADS)

    2017-06-01

    Molecules containing three atoms have been laser-cooled to ultracold temperatures for the first time. John Doyle and colleagues at Harvard University in the US used a technique called Sisyphus cooling to chill an ensemble of about a million strontium-monohydroxide molecules to 750 μK.

  4. Cooling of a sunspot

    NASA Technical Reports Server (NTRS)

    Boruta, N.

    1977-01-01

    The question of whether a perturbed photospheric area can grow into a region of reduced temperature resembling a sunspot is investigated by considering whether instabilities exist that can lead to a growing temperature change and corresponding magnetic-field concentration in some region of the photosphere. After showing that Alfven cooling can lead to these instabilities, the effect of a heat sink on the temperature development of a perturbed portion of the photosphere is studied. A simple form of Alfven-wave cooling is postulated, and computations are performed to determine whether growing modes exist for physically relevant boundary conditions. The results indicate that simple inhibition of convection does not give growing modes, but Alfven-wave production can result in cooling that leads to growing field concentration. It is concluded that since growing instabilities can occur with strong enough cooling, it is quite possible that energy loss through Alfven waves gives rise to a self-generating temperature change and sunspot formation.

  5. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  6. Provisioning cooling elements for chillerless data centers

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-12-13

    Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valves configured to selectively provide liquid coolant to the one or more liquid-cooled servers.

  7. Provisioning cooling elements for chillerless data centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Parida, Pritish R.

    Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valvesmore » configured to selectively provide liquid coolant to the one or more liquid-cooled servers.« less

  8. 2004 Savannah River Cooling Tower Collection (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of themore » six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.« less

  9. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  10. The Cooling Oceanic Lithosphere as Constrained by Surface Wave Dispersion Data

    NASA Astrophysics Data System (ADS)

    Hogg, C.; Laske, G.

    2003-12-01

    The tremendous improvement in resolution capabilities of global surface wave phase velocity maps now encourage us to search for anomalies that are caused by mantle plumes. On the other hand, the implications of even large--scale anomalies in such maps are still not well understood. One such anomaly is caused by the cooling oceanic lithosphere. Some studies investigate the cooling effects by fitting thermal models to the 3--dimensional mantle models resulting from tomographic inversions. The inversion of surface wave data for structure at depth is nonunique and the model often depends on the techniques applied. We prefer to compare the dispersion data directly with predictions from thermal models. Simple cooling models produce a signal that is roughly proportional to the square root of age. This signal is typically much smaller than the one caused by other lateral heterogeneity within the Earth's crust and upper mantle. In a careful analysis we are able to extract clear, roughly linear trends, in all major oceans. We explore the parameter space by fitting cooling half space as well as cooling plate models to the data. In the Pacific ocean, our data are inconsistent with standard parameters that are used to fit the observed bathymetry, and perhaps surface heat flux data. Instead of an initial temperature of 1350~deg C in the cooling half space model our data require a lower temperature (around 1200~deg C) to be well fit, especially the Love wave data. Regarding the cooling plate model, our data seem to require a thicker lithosphere to be well fit (135~km instead of the 'standard' 100 ~m). We observe similar trends for the other oceans investigated: the Indian ocean, the South and the North Atlantic oceans. For the Indian ocean in particular, a crust correction (removing the predictions caused by crustal structure including water depth and sediment thickness) is crucial to obtain an internally consistent dataset. For the Atlantic ocean, a large signal remains

  11. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  12. Evaluation of conductive cooling of lactating dairy cows under controlled environmental conditions.

    PubMed

    Ortiz, X A; Smith, J F; Rojano, F; Choi, C Y; Bruer, J; Steele, T; Schuring, N; Allen, J; Collier, R J

    2015-03-01

    Cooling systems used to reduce heat stress in dairy operations require high energy, water usage, or both. Steady increases in electricity costs and reduction of water availability and an increase in water usage regulations require evaluation of passive cooling systems to cool cows and reduce use of water and electricity. A study was conducted to evaluate the use of heat exchangers buried 25 cm below the surface as components in a conductive system for cooling cows. Six cows were housed in environmentally controlled rooms with tie-stall beds, which were equipped with a heat exchanger and filled with 25 cm of either sand or dried manure. Beds were connected to supply and return lines and individually controlled. Two beds (one per each kind of bedding material) constituted a control group (water off), and the other 4 (2 sand and 2 dried manure) used water at 7°C passing through the heat exchangers (water on). The experiment was divided in 2 periods of 40 d, and each period involved 3 repetitions of 3 different climates (hot and dry, thermo neutral, and hot and humid). Each cow was randomly assigned to a different treatment after each repetition was over. Sand bedding remained cooler than dried manure bedding in all environments and at all levels of cooling (water on or off). Bed temperatures were lower and heat flux higher during the bed treatment with sand and water on. We also detected a reduction in core body temperatures, respiration rates, rectal temperatures, and skin temperatures of those cows during the sand and water on treatment. Feed intake and milk yield numerically increased during the bed treatment with sand and water on for all climates. No major changes were observed in the lying time of cows or the composition of the milk produced. We conclude that use of heat exchangers is a viable adjunct to systems that employ fans, misters, and evaporative cooling methods to mitigate effects of heat stress on dairy cows. Sand was superior to dried manure as a

  13. Actively controlling coolant-cooled cold plate configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Parida, Pritish R.

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, formore » example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.« less

  14. Veneer grade yield from pruned Douglas-fir.

    Treesearch

    Edward J. II Dimock; Henry H. Haskell

    1962-01-01

    This paper reports actual veneer yields obtained from 10 trees pruned at age 38 and harvested 20 years later. Information of this kind is needed to help determine if and when to prune and ultimately will be essential to a thorough economic analysis of expected returns from pruning.

  15. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, Katharina, E-mail: katharina.strobel@aol.com; Lay, Matthew D.H., E-mail: mlay@fbrice.com; Easton, Mark A., E-mail: mark.easton@rmit.edu.au

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated withmore » the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.« less

  16. Hardness - Yield Strength Relation of Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Praveen Sekhar, Aluru; Nandy, Supriya; Ray, Kalyan Kumar; Das, Debdulal

    2018-03-01

    Assessing the mechanical properties of materials through indentation hardness test is an attractive method, rather than obtaining the properties through destructive approach like tensile testing. The present work emphasizes on the relation between hardness and yield strength of Al-Mg-Si alloys considering Tabor type equations. Al-0.5Mg-0.4Si alloy has been artificially aged at various temperatures (100 to 250 °C) for different time durations (0.083 to 1000 h) and the ageing response has been assessed by measuring the Vickers hardness and yield strength. Correlations of the existing data from the open literature have also been reviewed. Lastly, it has been explained that the deviation in obtained relation from Tabor’s equation is owing to the dislocation accumulation during indentation.

  17. [Dynamics of Amomum villosum growth and its fruit yield cultivated under tropical forests].

    PubMed

    Zheng, Zheng; Gan, Jianmin; Feng, Zhili; Meng, Ying

    2004-01-01

    Investigations on the dynamics of Amomum villosum growth and its fruit yield cultivated under tropical ravine rainforest and secondary forest at different elevations in Xishuangbanna showed that the yield of A. villosum was influenced by the site age, sun light level of understorey, and water stress in dry season. The fruit yield and mature plant density decreased with increasing age of the A. villosum site. The fruit yield increased with sun light level when the light level in understorey was under 35% of full sun light (P < 0.05). The fruit yield at the lower site by stream was significantly higher than that at upper site (P < 0.05). The yield difference between ravine rainforest and secondary forest was not significant. Planned cultivation of A. villosum in the secondary forest of the shifting cultivation land by ravine from 800-1000 m elevation instead of customary cultivation in the ravine rainforest, could not only resolve the problem of the effect of light deficiency in understorey and water stress in the dry season on A. villosum fruit yield, but also be useful to protect the tropical ravine rain forest.

  18. Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Thornber, Carl; Kauahikaua, James P.

    Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures ( 1150 °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12-14 °C over the first 2km of transport. At flow velocities of 1-2m/s, this translates to cooling rates of 22-50 °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20-50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of 104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9km from the vent. At this point, the flow was thermally stratified, with an interior temperature of 1137 °C and crystallinity of 15%, and a flow surface temperature of 1100 °C and crystallinity of 45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient

  19. Cooling for a rotating anode X-ray tube

    DOEpatents

    Smither, Robert K.

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  20. Liquid cooling of aircraft engines

    NASA Technical Reports Server (NTRS)

    Weidinger, Hanns

    1931-01-01

    This report presents a method for solving the problem of liquid cooling at high temperatures, which is an intermediate method between water and air cooling, by experiments on a test-stand and on an airplane. A utilizable cooling medium was found in ethylene glycol, which has only one disadvantage, namely, that of combustibility. The danger, however is very slight. It has one decided advantage, that it simultaneously serves as protection against freezing.

  1. Residual brain injury after early discontinuation of cooling therapy in mild neonatal encephalopathy.

    PubMed

    Lally, Peter J; Montaldo, Paolo; Oliveira, Vânia; Swamy, Ravi Shankar; Soe, Aung; Shankaran, Seetha; Thayyil, Sudhin

    2018-07-01

    We examined the brain injury and neurodevelopmental outcomes in a prospective cohort of 10 babies with mild encephalopathy who had early cessation of cooling therapy. All babies had MRI and spectroscopy within 2 weeks after birth and neurodevelopmental assessment at 2 years. Cooling was prematurely discontinued at a median age of 9 hours (IQR 5-13) due to rapid clinical improvement. Five (50%) had injury on MRI or spectroscopy, and two (20%) had an abnormal neurodevelopmental outcome at 2 years. Premature cessation of cooling therapy in babies with mild neonatal encephalopathy does not exclude residual brain injury and adverse long-term neurodevelopmental outcomes. This study refers to babies recruited into the MARBLE study (NCT01309711, pre-results stage). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Analysis of low-marbled Hanwoo cow meat aged with different dry-aging methods

    PubMed Central

    Lee, Hyun Jung; Choe, Juhui; Kim, Kwan Tae; Oh, Jungmin; Lee, Da Gyeom; Kwon, Ki Moon; Choi, Yang Il; Jo, Cheorun

    2017-01-01

    Objective Different dry-aging methods [traditional dry-aging (TD), simplified dry-aging (SD), and SD in an aging bag (SDB)] were compared to investigate the possible use of SD and/or SDB in practical situations. Methods Sirloins from 48 Hanwoo cows were frozen (Control, 2 days postmortem) or dry-aged for 28 days using the different aging methods and analyzed for chemical composition, total aerobic bacterial count, shear force, inosine 5′-monophosphate (IMP) and free amino acid content, and sensory properties. Results The difference in chemical composition, total aerobic bacterial count, shear force, IMP, and total free amino acid content were negligible among the 3 dry-aged groups. The SD and SDB showed statistically similar tenderness, flavor, and overall acceptability relative to TD. However, SDB had a relatively higher saleable yield. Conclusion Both SD and SDB can successfully substitute for TD. However, SDB would be the best option for simplified dry-aging of low-marbled beef with a relatively high saleable yield. PMID:28728384

  3. Analysis of low-marbled Hanwoo cow meat aged with different dry-aging methods.

    PubMed

    Lee, Hyun Jung; Choe, Juhui; Kim, Kwan Tae; Oh, Jungmin; Lee, Da Gyeom; Kwon, Ki Moon; Choi, Yang Il; Jo, Cheorun

    2017-12-01

    Different dry-aging methods [traditional dry-aging (TD), simplified dry-aging (SD), and SD in an aging bag (SDB)] were compared to investigate the possible use of SD and/or SDB in practical situations. Sirloins from 48 Hanwoo cows were frozen (Control, 2 days postmortem) or dry-aged for 28 days using the different aging methods and analyzed for chemical composition, total aerobic bacterial count, shear force, inosine 5'-monophosphate (IMP) and free amino acid content, and sensory properties. The difference in chemical composition, total aerobic bacterial count, shear force, IMP, and total free amino acid content were negligible among the 3 dry-aged groups. The SD and SDB showed statistically similar tenderness, flavor, and overall acceptability relative to TD. However, SDB had a relatively higher saleable yield. Both SD and SDB can successfully substitute for TD. However, SDB would be the best option for simplified dry-aging of low-marbled beef with a relatively high saleable yield.

  4. Fuel Cell Thermal Management Through Conductive Cooling Plates

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Burke, Kenneth A.

    2008-01-01

    An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.

  5. Association Between Use of a Scalp Cooling Device and Alopecia After Chemotherapy for Breast Cancer.

    PubMed

    Rugo, Hope S; Klein, Paula; Melin, Susan Anitra; Hurvitz, Sara A; Melisko, Michelle E; Moore, Anne; Park, Glen; Mitchel, Jules; Bågeman, Erika; D'Agostino, Ralph B; Ver Hoeve, Elizabeth S; Esserman, Laura; Cigler, Tessa

    2017-02-14

    Chemotherapy-induced alopecia is a common and distressing adverse effect. In previous studies of scalp cooling to prevent chemotherapy-induced alopecia, conclusions have been limited. To evaluate whether use of a scalp cooling system is associated with a lower amount of hair loss among women receiving specific chemotherapy regimens for early-stage breast cancer and to assess related changes in quality of life. A prospective cohort study conducted at 5 US medical centers of women with stage I or II breast cancer receiving adjuvant or neoadjuvant chemotherapy regimens excluding sequential or combination anthracycline and taxane (106 patients in the scalp cooling group and 16 in the control group; 14 matched by both age and chemotherapy regimen). The study was conducted between August 2013 and October 2014 with ongoing annual follow-up for 5 years. Use of a scalp cooling system. Scalp cooling was initiated 30 minutes prior to each chemotherapy cycle, with scalp temperature maintained at 3°C (37°F) throughout chemotherapy and for 90 minutes to 120 minutes afterward. Self-estimated hair loss using the Dean scale was assessed 4 weeks after the last dose of chemotherapy by unblinded patient review of 5 photographs. A Dean scale score of 0 to 2 (≤50% hair loss) was defined as treatment success. A positive association between scalp cooling and reduced risk of hair loss would be demonstrated if 50% or more of patients in the scalp cooling group achieved treatment success, with the lower bound of the 95% CI greater than 40% of the success proportion. Quality of life was assessed at baseline, at the start of the last chemotherapy cycle, and 1 month later. Median follow-up was 29.5 months. Among the 122 patients in the study, the mean age was 53 years (range, 28-77 years); 77.0% were white, 9.0% were black, and 10.7% were Asian; and the mean duration of chemotherapy was 2.3 months (median, 2.1 months). No participants in the scalp cooling group received anthracyclines. Hair

  6. DKDP crystal growth controlled by cooling rate

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  7. Photodetachment and Doppler laser cooling of anionic molecules

    NASA Astrophysics Data System (ADS)

    Gerber, Sebastian; Fesel, Julian; Doser, Michael; Comparat, Daniel

    2018-02-01

    We propose to extend laser-cooling techniques, so far only achieved for neutral molecules, to molecular anions. A detailed computational study is performed for {{{C}}}2- molecules stored in Penning traps using GPU based Monte Carlo simulations. Two cooling schemes—Doppler laser cooling and photodetachment cooling—are investigated. The sympathetic cooling of antiprotons is studied for the Doppler cooling scheme, where it is shown that cooling of antiprotons to subKelvin temperatures could becomes feasible, with impacts on the field of antimatter physics. The presented cooling schemes also have applications for the generation of cold, negatively charged particle sources and for the sympathetic cooling of other molecular anions.

  8. Optimal bus temperature for thermal comfort during a cool day.

    PubMed

    Velt, K B; Daanen, H A M

    2017-07-01

    A challenge for electric buses is to minimize heating and cooling power to maximally extend the driving range, but still provide sufficient thermal comfort for the driver and passengers. Therefore, we investigated the thermal sensation (TS) and thermal comfort (TC) of passengers in buses during a cool day (temperature 13.4 ± 0.5 °C, relative humidity (RH) 60 ± 5.8%) typical for the Dutch temperate maritime climate. 28 Males and 72 females rated TS and TC and gave information on age, stature, body weight and worn garments. The temperature in the bus of 22.5 ± 1.1 °C and RH of 59.9 ± 5.8% corresponded to a slightly warm feeling (TS = 0.85 ± 1.06) and TC of 0.39 ± 0.65. TS related significantly to bus temperature, clothing insulation and age. Linear regression based on these parameters showed that the temperature in the bus corresponding to TC = 0 and TS = 0 would have been 20.9 ± 0.6 °C. In conclusion, a 1.6 °C lower bus temperature during the investigated cool day probably would have led to less thermal discomfort and energy savings of electrical busses. The methodology to relate climatic measurements to subjective assessments is currently employed in a wider climatic range and may prove to be useful to find a better balance between thermal comfort and energy savings of the bus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Time-dependent Cooling in Photoionized Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnat, Orly, E-mail: orlyg@phys.huji.ac.il

    I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts ( z = 0 − 3), for a range of temperatures (10{sup 8}–10{sup 4} K), densities (10{sup −7}–10{sup 3} cm{sup −3}), and metallicities (10{sup −3}–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibriummore » (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).« less

  10. Near term application of water cooling

    NASA Astrophysics Data System (ADS)

    Horner, M. W.; Caruvana, A.; Cohn, A.; Smith, D. P.

    1980-03-01

    The paper presents studies of combined gas and steam-turbine cycles related to the near term application of water cooling technology to the commercial gas turbine operating on heavy residual oil or coal derived liquid fuels. Water cooling promises significant reduction of hot corrosion and ash deposition at the turbine first-stage nozzle. It was found that: (1) corrosion of some alloys in the presence of alkali contaminant was less as metal temperatures were lowered to the 800-1000 F range, (2) the rate of ash deposition is increased for air-cooled and water-cooled nozzles at the 2060 F turbine firing temperature compared to 1850 F, (3) the ash deposit for the water cooled nozzle was lighter and more easily removed at both 1850 and 2050 F, (4) on-line nutshelling was effective on the water-cooled nozzles even at 2050 F, and (5) the data indicates that the rate of ash deposition may be sensitive to surface wall temperatures.

  11. Space Cooling in the United States: A Market Deep Dive

    DOE PAGES

    Baxter, Van D.; Sikes, Karen; Khowailed, Gannate

    2016-01-01

    The American space cooling market is experiencing stricter efficiency standards, prosperous economic conditions, a steadily recovering housing market, population migration shift to warmer climates, and declining electricity prices. These factors have yielded a climate conducive to growth in air conditioning (AC) and air source heat pump (HP) shipments in the recent past with total AC and HP shipments in 2015 accounting for 6.8 million units, showing a growth of 32 % relative to 2010. In this article, the authors investigate the impact that regulatory changes and economic changes have had on unit shipments and identify future market influencers, including themore » introduction of advanced HVAC technologies and transition to more environmentally friendly refrigerants.« less

  12. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  13. Method of increasing the phase stability and the compressive yield strength of uranium-1 to 3 wt. % zirconium alloy

    DOEpatents

    Anderson, Robert C.

    1986-01-01

    A uranium-1 to 3 wt. % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750.degree. to 850.degree. C. and then quenched in water is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenched plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325.degree. to 375.degree. C. for five to six hours and then aging the plate at a higher temperature ranging from 480.degree. to 500.degree. C. for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  14. Measure Guideline: Ventilation Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  15. Neck Cooling Improves Table Tennis Performance amongst Young National Level Players

    PubMed Central

    Desai, Terun; Bottoms, Lindsay

    2017-01-01

    This study aimed to examine the effects of neck cooling on table tennis performance. Eight young, National level, male table tennis players (age 16 ± 2 years, height 1.77 ± 0.08 m, body mass 67.54 ± 10.66 kg) were recruited. Participants attended four testing sessions separated by a week. Session one determined fitness levels, and session two was a familiarisation trial. The final two sessions involved completing the table tennis-specific protocol either with (ICE) or without (CON) neck cooling for 1 min before each exercise period (bout: 80–90 shots), which represented an individual game. The exercise protocol required completing three bouts to represent a match, each simulating a different skill (forehand, backhand, alternate forehand and backhand), against a mechanical ball thrower. Performance was measured by the number of balls hitting two pre-determined targets. Heart rate, ratings of perceived exertion (RPE), and thermal sensation (TS) were measured. Total performance scores (shots on target) were significantly greater during ICE (136 ± 26), compared to CON (120 ± 25; p = 0.006) with a 15 (±12)% improvement. Effects for time (p < 0.05) but not condition (p > 0.05) were found for RPE and all other physiological variables. TS significantly decreased with cooling throughout the protocol (p = 0.03). Neck cooling appears to be beneficial for table tennis performance by lowering thermal sensation. PMID:29910379

  16. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  17. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  18. Tunable UV Laser Photolysis of NF2: Quantum Yield for NF(a1 delta) Production.

    DTIC Science & Technology

    1988-05-25

    UV Laser Photolysis of NF2: Quantum Yield for NF(a A) Production ’v0 LR. F. HEIDNER, H . HELVAJIAN , 4and J. B. KOFFEND Aerophysics Laboratory...experiments, the chemistry of NF2 with various hydrocarbons has been studied. It has also been shown that the addition-elimination reaction between H and NF2...COMPLI R LEN SP, 3 ,HAND L BE AM~ H O [ I , , i 1 CAIHOC IAM COOLED GaAs CAPACITANCE PHOTOTUIBE MANOMETER _ LENS /’~ ~L + . ANMEE _.... BANDPASS FILTER

  19. Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age.

    PubMed

    Kingma, B R M; Frijns, A J H; Saris, W H M; van Steenhoven, A A; van Marken Lichtenbelt, W D

    2010-07-01

    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18-28 years) and 16 elderly (E: 68-78 years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33 degrees C. Next, local temperature was reduced to 24 degrees C. After 15 min of local cooling, noradrenaline (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: -76 +/- 3 vs. E: -60 +/- 5 (P < 0.01), dorsal hand Y: -74 +/- 4 vs. E: -72 +/- 4 (n.s.), ventral hand Y: -80 +/- 7 vs. E: -70 +/- 11 (n.s.)]. In conclusion, in contrast to results from the ventral forearm, elderly did not show a blunted response to local cooling and noradrenaline at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age.

  20. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cooling tests. 25.1043 Section 25.1043... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1043 Cooling tests. (a) General. Compliance with § 25.1041 must be shown by tests, under critical ground, water, and flight operating conditions...

  1. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling tests. 25.1043 Section 25.1043... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1043 Cooling tests. (a) General. Compliance with § 25.1041 must be shown by tests, under critical ground, water, and flight operating conditions...

  2. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cooling tests. 25.1043 Section 25.1043... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1043 Cooling tests. (a) General. Compliance with § 25.1041 must be shown by tests, under critical ground, water, and flight operating conditions...

  3. Nature and probable age of metamorphism in northern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grambling, J.A.; Daniel, C.D.; Dallmeyer, R.D.

    1993-02-01

    Metamorphic conditions near the Al[sub 2]SiO[sub 5] triple point are unusually common in northern New Mexico. This observation is supported by mineralogy (Ky + And + Sil, Cld + Sil, Sil + Pg + Qz) and Grt-Bt-Pl-Ms thermobarometry (4--5 kb and 500--550 C). Isograds cut across tight folds (overturned to the north) in the Pecos, Rio Mora, Truchas and Picuris areas. Some deformation also accompanied or preceded metamorphism in the Rincon and Cimarron ranges. P-T paths derived from zoning in Grt and Pl, in Mn-andalusite, and the textural transition Ky to Sil to And reflect up to 2 kb ofmore » decompression, at constant temperature in the more southerly ranges but during cooling toward the north. These 500--550 C rocks are in direct contact with gneisses in the Rincon and Cimarron Ranges. Metaplutonic gneisses record hornblende pressures of 6--8 kb. Metasedimentary gneisses are migmatitic. Assemblages include Sil + Kfs, Hc + Qz and Alm + Bt + Sil, whereas Grt-Sil-Pl-Bt yields 6.5--7 kb and 700--725 C. Pressures increase northward from the Cimarrron Mountains. The gneisses display retrograde P-T paths with 2.5--3 kb of decompression and cooling through the Al[sub 2]SiO[sub 5] triple point. Geometric relationships between gneisses and 500--550 C rocks are best constrained in the Cimarron Mountains, where a folded but initially low-angle contact separates the two metamorphic grades. Gneisses are structurally beneath this contact. Other regions may display a similar geometry. The structurally-highest gneisses are locally mylonitic, suggesting that contacts between gneisses and 500--550 C rocks are ductile shear zones. Monazite U-Pb ages from gneisses of the Cimarron Range are 1420-1425 Ma, whereas hornblende argon ages are 1,395--1,397 Ma.« less

  4. The Role of the Cooling Prescription for Disk Fragmentation: Numerical Convergence and Critical Cooling Parameter in Self-gravitating Disks

    NASA Astrophysics Data System (ADS)

    Baehr, Hans; Klahr, Hubert

    2015-12-01

    Protoplanetary disks fragment due to gravitational instability when there is enough mass for self-gravitation, described by the Toomre parameter, and when heat can be lost at a rate comparable to the local dynamical timescale, described by {t}{{c}}=β {{{Ω }}}-1. Simulations of self-gravitating disks show that the cooling parameter has a rough critical value at {β }{{crit}}=3. When below {β }{{crit}}, gas overdensities will contract under their own gravity and fragment into bound objects while otherwise maintaining a steady state of gravitoturbulence. However, previous studies of the critical cooling parameter have found dependences on simulation resolution, indicating that the simulation of self-gravitating protoplanetary disks is not so straightforward. In particular, the simplicity of the cooling timescale tc prevents fragments from being disrupted by pressure support as temperatures rise. We alter the cooling law so that the cooling timescale is dependent on local surface density fluctuations, which is a means of incorporating optical depth effects into the local cooling of an object. For lower resolution simulations, this results in a lower critical cooling parameter and a disk that is more stable to gravitational stresses, suggesting that the formation of large gas giants planets in large, cool disks is generally suppressed by more realistic cooling. At our highest resolution, however, the model becomes unstable to fragmentation for cooling timescales up to β =10.

  5. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  6. The nominal cooling tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, R.

    1995-12-31

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95{degrees}F. Hot Water temperature (HWT) Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies through out the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can selectmore » the nominal cooling tower model recommended by the manufacturer. Ask any HVAC operator, refinery manager, power generating station operator what happens when the Wet Bulb reaches or exceeds the design WBT of the area. He probably will tell you, {open_quotes}My cooling tower works quite well, but in the summer time, I usually have trouble with it.{close_quotes} This occurs because he is operating a nominal cooling tower.« less

  7. Microbial decomposition of marine dissolved organic matter in cool oceanic crust

    NASA Astrophysics Data System (ADS)

    Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.

    2018-05-01

    Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.

  8. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  9. Heating, cooling, and uplift during Tertiary time, northern Sangre de Cristo Range, Colorado ( USA).

    USGS Publications Warehouse

    Lindsay, D.A.; Andriessen, P.A.M.; Wardlaw, B.R.

    1986-01-01

    Paleozoic sedimentary rocks in a wide area of the northern Sangre de Cristo Range show effects of heating during Tertiary time. Heating is tentatively interpreted as a response to burial during Laramide folding and thrusting and also to high heat flow during Rio Grande rifting. Fission-track ages of apatite across a section of the range show that rocks cooled abruptly below 120oC, the blocking temperature for apatite, approx 19 Ma ago. Cooling was probably in response to rapid uplift and erosion of the northern Sangre de Cristo Range during early Rio Grande rifting.-from Authors

  10. Comparison of different cooling regimes within a shortened liquid cooling/warming garment on physiological and psychological comfort during exercise

    NASA Technical Reports Server (NTRS)

    Leon, Gloria R.; Koscheyev, Victor S.; Coca, Aitor; List, Nathan

    2004-01-01

    The aim of this study was to compare the effectiveness of different cooling regime intensities to maintain physiological and subjective comfort during physical exertion levels comparable to that engaged in during extravehicular activities (EVA) in space. We studied eight subjects (six males, two females) donned in our newly developed physiologically based shortened liquid cooling/warming garment (SLCWG). Rigorous (condition 1) and mild (condition 2) water temperature cooling regimes were compared at physical exertion levels comparable to that performed during EVA to ascertain the effectiveness of a lesser intensity of cooling in maintaining thermal comfort, thus reducing energy consumption in the portable life support system. Exercise intensity was varied across stages of the session. Finger temperature, rectal temperature, and subjective perception of overall body and hand comfort were assessed. Finger temperature was significantly higher in the rigorous cooling condition and showed a consistent increase across exercise stages, likely due to the restriction of heat extraction because of the intensive cold. In the mild cooling condition, finger temperature exhibited an overall decline with cooling, indicating greater heat extraction from the body. Rectal temperature was not significantly different between conditions, and showed a steady increase over exercise stages in both rigorous and mild cooling conditions. Ratings of overall comfort were 30% higher (more positive) and more stable in mild cooling (p<0.001). The mild cooling regime was more effective than rigorous cooling in allowing the process of heat exchange to occur, thus maintaining thermal homeostasis and subjective comfort during physical exertion.

  11. Actively controlling coolant-cooled cold plate configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Parida, Pritish R.

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumptionmore » used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.« less

  12. 14 CFR 29.1043 - Cooling tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cooling tests. 29.1043 Section 29.1043... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Cooling § 29.1043 Cooling tests. (a) General. For the tests prescribed in § 29.1041(c), the following apply: (1) If the tests are conducted under conditions...

  13. 14 CFR 29.1043 - Cooling tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cooling tests. 29.1043 Section 29.1043... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Cooling § 29.1043 Cooling tests. (a) General. For the tests prescribed in § 29.1041(c), the following apply: (1) If the tests are conducted under conditions...

  14. 14 CFR 27.1043 - Cooling tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cooling tests. 27.1043 Section 27.1043... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Cooling § 27.1043 Cooling tests. (a) General. For the tests prescribed in § 27.1041(b), the following apply: (1) If the tests are conducted under conditions deviating...

  15. 14 CFR 27.1043 - Cooling tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling tests. 27.1043 Section 27.1043... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Cooling § 27.1043 Cooling tests. (a) General. For the tests prescribed in § 27.1041(b), the following apply: (1) If the tests are conducted under conditions deviating...

  16. 14 CFR 29.1043 - Cooling tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling tests. 29.1043 Section 29.1043... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Cooling § 29.1043 Cooling tests. (a) General. For the tests prescribed in § 29.1041(c), the following apply: (1) If the tests are conducted under conditions...

  17. 14 CFR 27.1043 - Cooling tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cooling tests. 27.1043 Section 27.1043... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Cooling § 27.1043 Cooling tests. (a) General. For the tests prescribed in § 27.1041(b), the following apply: (1) If the tests are conducted under conditions deviating...

  18. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  19. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  20. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  1. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  2. Saving Humanity from Catastrophic Cooling with Geo-Engineering

    NASA Astrophysics Data System (ADS)

    Haapala, K.; Singer, S. F.

    2016-02-01

    There are two kinds of ice ages; they are fundamentally different and therefore require different methods of mitigation: (i) Major (Milankovitch-style) glaciations occur on a 100,000-year time-scale and are controlled astronomically. (ii) "Little" ice ages were discovered in ice cores; they have been occurring on an approx. 1000-1500-yr cycle and are likely controlled by the Sun [Ref: Singer & Avery 2007. Unstoppable Global Warming: Every 1500 years]. The current cycle's cooling phase may be imminent - hence there may be urgent need for action. To stop onset of a major (Milankovitch) glaciation 1. Locate a "trigger" - a growing perennial snow/ice field - using satellites 2. Spread soot, to lower the albedo, and use Sun to melt 3. How much soot? How to apply soot? Learn by experimentation To lessen (regional, intermittent) cooling of DOB (Dansgaard-Oeschger-Bond) cycles1. Use greenhouse effect of manmade cirrus (ice particles) [Ref: Singer 1988. Meteorology and Atmospheric Physics 38:228 - 239]2. Inject water droplets (mist) near tropopause 3. Trace dispersion of cirrus cloud by satellite and observe warming at surface 4. How much water; over what area? How often to inject? Learn by experimentation Many scientific questions remain. While certainly interesting and important, there is really no need to delay the crucial and urgent tests of geo-engineering, designed to validate schemes of mitigation. Such proposed tests involve only minor costs and present negligible risks to the environment.

  3. High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Helo, Christoph; Clague, David A.; Dingwell, Donald B.; Stix, John

    2013-03-01

    We present a calorimetric analysis of pyroclastic glasses and glassy sheet lava flow crusts collected on Axial Seamount, Juan de Fuca Ridge, NE Pacific Ocean, at a water depth of about 1400 m. The pyroclastic glasses, subdivided into thin limu o Pele fragments and angular, blocky clasts, were retrieved from various stratigraphic horizons of volcaniclastic deposits on the upper flanks of the volcanic edifice. Each analysed pyroclastic sample consists of a single type of fragment from one individual horizon. The heat capacity (cp) was measured via differential scanning calorimetry (DSC) and analysed using relaxation geospeedometry to obtain the natural cooling rate across the glass transition. The limu o Pele samples (1 mm grain size fraction) and angular fragments (0.5 mm grain size fraction) exhibit cooling rates of 104.3 to 106.0 K s- 1 and 103.9 to 105.1 K s- 1, respectively. A coarser grain size fraction, 2 mm for limu o Pele and 1 mm for the angular clasts yields cooling rates at the order of 103.7 K s- 1. The range of cooling rates determined for the different pyroclastic deposits presumably relates to the size or intensity of the individual eruptions. The outer glassy crusts of the sheet lava flows were naturally quenched at rates between 63 K s- 1 and 103 K s- 1. By comparing our results with published data on the very slow quenching of lava flow crusts, we suggest that (1) fragmentation and cooling appear to be coupled dynamically and (2) ductile deformation upon the onset of cooling is restricted due to the rapid increase in viscosity. Lastly, we suggest that thermally buoyant plumes that may arise from rapid heat transfer efficiently separate clasts based on their capability to rise within the plume and as they subsequently settle from it.

  4. Erosional history of the Appalachians as recordeed in detrital zircon fission-track ages and lithic detritus in Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Naeser, C.W.; Naeser, N.D.; Edwards, Lucy E.; Weems, Robert E.; Southworth, C. Scott; Newell, Wayne L.

    2016-01-01

    Comparison of fission-track (FT) ages of detrital zircons recovered from Atlantic Coastal Plain sediments to FT ages of zircons from bedrock in source terranes in the Appalachians provides a key to understanding the provenance of the sediments and, in turn, the erosional and depositional history of the Atlantic passive margin.In Appalachian source terranes, the oldest zircon fission-track (ZFT) ages from bedrock in the western Appalachians (defined for this paper as the Appalachian Plateau, Valley and Ridge, and far western Blue Ridge) are notably older than the oldest ages from bedrock in the eastern Appalachians (Piedmont and main part of the Blue Ridge). The age difference is seen both in ZFT sample ages and in individual zircon grain ages and reflects differences in the thermotectonic history of the rocks. In the east, ZFT data indicate that the rocks cooled from temperatures high enough to partially or totally reset ZFT ages during the Paleozoic and (or) Mesozoic. The majority of the rocks are interpreted to have cooled through the ZFT closure temperature (∼235 °C) at various times during the late Paleozoic Alleghanian orogeny. In contrast, most of the rocks sampled in the western Appalachians have never been heated to temperatures high enough to totally reset their ZFT ages. Reflecting their contrasting thermotectonic histories, nearly 80 percent of the sampled western rocks yield one or more zircon grains with very old FT ages, in excess of 800 Ma; zircon grains yielding FT ages this old have not been found in rocks in the Piedmont and main part of the Blue Ridge. The ZFT data suggest that the asymmetry of zircon ages of exposed bedrock in the eastern and western Appalachians was in evidence by no later than the Early Cretaceous and probably by the Late Triassic.Detrital zircon suites from sands collected in the Atlantic Coastal Plain provide a record of detritus eroded from source terranes in the Appalachians during the Mesozoic and Cenozoic. In Virginia

  5. Regeneratively cooled transition duct with transversely buffered impingement nozzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Jay A; Lee, Ching-Pang; Crawford, Michael E

    2015-04-21

    A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In themore » impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.« less

  6. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER( box model for an idealized parcel in the lower stratosphere at 70 N during winter/spring with different assumed stratospheric coolings and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  7. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K Cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  8. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    PubMed

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Cooling arrangement for a gas turbine component

    DOEpatents

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-02-10

    A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.

  10. Hot heads & cool bodies: The conundrums of human brown adipose tissue (BAT) activity research.

    PubMed

    Bahler, Lonneke; Holleman, Frits; Booij, Jan; Hoekstra, Joost B; Verberne, Hein J

    2017-05-01

    Brown adipose tissue is able to increase energy expenditure by converting glucose and fatty acids into heat. Therefore, BAT is able to increase energy expenditure and could thereby facilitate weight loss or at least weight maintenance. Since cold is a strong activator of BAT, most prospective research is performed during cold to activate BAT. In current research, there are roughly two methods of cooling. Cooling by lowering ambient air temperature, which uses a fixed temperature for all subjects and personalized cooling, which uses cooling blankets or vests with temperatures that can be adjusted to the individual set point of shivering. These methods might trigger mechanistically different cold responses and hence result in a different BAT activation. This hypothesis is underlined by two studies with the same research question (difference in BAT activity between Caucasians and South Asians) one study found no differences in BAT activity whereas the other did found differences in BAT activity. Since most characteristics (e.g. age, BMI) were similar in the two studies, the best explanation for the differences in outcomes is the use of different cooling protocols. One of the reasons for differences in outcomes might be the sensory input from the facial skin, which might be important for the activation of BAT. In this review we will elaborate on the differences between the two cooling protocols used to activate BAT. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  11. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  12. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  13. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  14. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  15. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  16. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  17. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  18. Comparisons of housing, bedding, and cooling options for dairy calves.

    PubMed

    Hill, T M; Bateman, H G; Aldrich, J M; Schlotterbeck, R L

    2011-04-01

    Housing, bedding, and summer cooling were management options evaluated. Holstein calves (42±2 kg of body weight) initially 2 to 5 d of age were managed in southwest Ohio in poly hutches or wire mesh pens in a curtain-sided nursery with no supplemental heat. Calves were fed milk replacer (27% crude protein, 17% fat fed at 0.657 kg of dry matter per calf daily), starter (20% crude protein dry matter, textured, fed free-choice), and water (free-choice). Measurements were for 56 d. In trial 1, 28 calves per treatment were bedded with straw and housed in either hutches or nursery pens. This trial was conducted from September to March; the average temperature was 8°C and ranged from -17 to 31°C. In trial 2a, 16 calves per treatment were managed in nursery pens bedded with straw, in nursery pens bedded with sand, or in hutches bedded with sand. This trial was conducted from May to September; the average temperature was 21°C and ranged from 7 to 33°C. In trial 2b, 26 calves per treatment were housed in nursery pens and bedded with straw. This trial was conducted from May to September; the average temperature was 22°C and ranged from 8 to 34°C. One treatment was cooled with fans between 0800 and 1700 h and the other was not. Data were analyzed as repeated measures in a completely randomized block design by trial, with calf as the experimental unit. In trial 3, air in the nursery and calf hutches used above was sampled 35 d apart for calves aged 5 and 40 d. Air in individual hutches on 2 commercial farms was sampled for 5- and 40-d-old calves for 2 hutch types. Air in the multi-calf hutches was sampled for calves of 75 and 110 d of age. Bacterial concentrations of air samples were analyzed (log10) as odds ratios by Proc Logistic in SAS software (SAS Institute Inc., Cary, NC); differences were declared at P<0.05. In trial 1, weight gain of calves in nursery pens was 6% greater and feed efficiency was 4% greater than that of calves in hutches. In trial 2a, weight gain

  19. An integrated study on microtectonics, geothermometry and thermochronology of the Çataldaǧ Core Complex (NW Turkey): Implications for cooling, deformation and uplift history

    NASA Astrophysics Data System (ADS)

    Kamaci, Omer; Altunkaynak, Safak

    2017-04-01

    We present an integrated study on structure, microstructure, geothermometry and thermochronology of the Çataldaǧ Core Complex (ÇCC) in NW Turkey in order to understand the cooling, deformation and uplift mechanisms. ÇCC is formed from an Eo-Oligocene granite-gneiss-migmatite complex (GGMC) and an Early Miocene I-type granodioritic body (ÇG: Çataldaǧ granodiorite) which were exhumed as a dome-shaped core complex in the footwall of a ring-shaped low-angle detachment zone (The Çataldaǧ Detachment Fault Zone; ÇDFZ) in the Early Miocene. New U-Pb zircon (LA-ICPMS) and monazite ages of GGMC yielded magmatic ages of 33.8 and 30.1 Ma (Latest Eocene-Early Oligocene). 40Ar/39Ar muscovite, biotite and K-feldspar from the GGMC yielded the deformation age span 21.38±0,05 Ma and 20.81±0.04 Ma, which is also the emplacement age (20.84±0.13 Ma and 21.6±0.04 Ma) of ÇG. ÇDFZ is responsible for mainly top-to-the-north sense kinematic processes. The microstructural features of quartz, feldspar and mica indicate that the ÇCC has undergone continuous deformations during its cooling, from submagmatic to cataclastic conditions. Five microstructural grades have been classified under ductile (DZ) and ductile-to-brittle shear zone (SZ), according to the estimated deformation temperature and intensity of the strain. Microcline twinning, marginally replacement myrmekite and flame-perthite are predominant features for feldspar while chessboard extinction, grain boundary migration and subgrain rotation recrystallization is common for quartz in the DZ which has a deformation temperature range of >600°C to 400°C. Grain size reduction is an important factor for the ductile to brittle shear zone (SZ). Feldspar is represented by bulging recrystallization (BLG), feldspar-fish and domino-type microfracture/microfaulting and quartz show more elongated structures such as ribbons with high aspect ratios. Mineral-fish (muscovite, biotite and feldspar) structures indicate a temperature

  20. Highly ionized atoms in cooling gas

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Chevalier, R. A.

    1986-01-01

    The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Brune, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.

  1. Cooling rates of group IVA iron meteorites

    NASA Technical Reports Server (NTRS)

    Willis, J.; Wasson, J. T.

    1978-01-01

    Cooling rates of six group IVA iron meteorites were estimated by a taenite central Ni concentration-taenite half-width method. Calculated cooling rates range from 13 to 25 C/Myr, with an average of 20 C/Myr. No correlation between cooling rate and bulk Ni content is observed, and the data appear to be consistent with a uniform cooling rate as expected from an igneous core origin. This result differs from previous studies reporting a wide range in cooling rates that were strongly correlated with bulk Ni content. The differences result mainly from differences in the phase diagram and the selected diffusion coefficients. Cooling rates inferred from taenite Ni concentrations at the interface with kamacite are consistent with those based on taenite central Ni content.

  2. Sequential cooling insert for turbine stator vane

    DOEpatents

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  3. A Comparison of 2 Practical Cooling Methods on Cycling Capacity in the Heat

    PubMed Central

    Cuttell, Saul A.; Kiri, Victor; Tyler, Christopher

    2016-01-01

    Context:  Cooling the torso and neck can improve exercise performance and capacity in a hot environment; however, the proposed mechanisms for the improvements often differ. Objective:  To directly compare the effects of cooling the neck and torso region using commercially available devices on exercise capacity in a hot environment (temperature = 35°C ± 0.1°C, relative humidity = 50.1% ± 0.7%). Design:  Crossover study. Setting:  Laboratory. Patients or Other Participants:  Eight recreationally active, nonheat-acclimated men (age = 24 ± 4 years, height = 1.82 ± 0.10 m, mass = 80.3 ± 9.7 kg, maximal power output = 240 ± 25 W). Intervention(s):  Three cycling capacity tests at 60% maximal power output to volitional exhaustion: 1 with no cooling (NC), 1 with vest cooling (VC), and 1 with a neck cooling collar (CC). Main Outcome Measure(s):  Time to volitional exhaustion, rectal temperature, mean skin temperature, torso and neck skin temperature, body mass, heart rate, rating of perceived exertion, thermal sensation, and feeling scale were measured. Results:  Participants cycled longer with VC (32.2 ± 9.5 minutes) than NC (27. 6 ± 7.6 minutes; P = .03; d = 0.54) or CC (30.0 ± 8.8 minutes; P = .02; d = 0.24). We observed no difference between NC and CC (P = .12; d = 0.31). Neck and torso temperature and perceived thermal sensation were reduced with the use of cooling modalities (P < .001), but no other variables were affected. Conclusions:  Cycling capacity in the heat improved when participants used a commercially available cooling vest, but we observed no benefit from wearing a commercially available CC. The vest and the collar did not alter the heart rate, rectal temperature, skin temperature, or sweat-loss responses to the cycling bout. PMID:27571045

  4. Yield gaps and yield relationships in US soybean production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...

  5. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  6. Enhanced yield of chromosome aberrations after CT examinations in paediatric patients.

    PubMed

    Stephan, G; Schneider, K; Panzer, W; Walsh, L; Oestreicher, U

    2007-05-01

    To determine whether computed tomography (CT) could enhance the chromosome aberration yields in paediatric patients. Blood samples were taken before and after CT scans from 10 children for whom the medical justifications for CT examinations were accidental injuries and not diseases as investigated in earlier studies. Chromosome analysis was carried out in lymphocytes by fluorescence plus Giemsa (FPG) staining exclusively in metaphases of the first cell cycle in vitro. The mean blood dose of the 10 children was about 12.9 mGy which was determined by a newly developed dose estimation. Based on more than 20,000 analyzed cells it was found that after CT examination the frequencies of dicentrics (dic) and excess acentric fragments (ace) in lymphocytes were significantly increased. By subdividing the children into two age groups, those with an age from 0.4 years to 9 years and from 10 - 15 years, it became obvious that the observed increase in chromosome aberrations was mainly contributed by the younger age group. In this group the frequency of dicentrics was significantly increased whereas in the older group the observed increase was not significant. Our results demonstrate that CT examinations enhance the dicentrics yields in peripheral lymphocytes of children aged up to 15 years. Since in particular significantly increased dicentric yields could be observed in children with an age from 0.4 - 9 years, it can be assumed that children younger than 10 years may be more radiation sensitive than older subjects.

  7. Berkeley Lab's Cool Your School Program

    ScienceCinema

    Brady, Susan; Gilbert, Haley; McCarthy, Robert

    2018-02-02

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  8. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  9. Solute partitioning under continuous cooling conditions as a cooling rate indicator. [in lunar rocks

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Hopper, R. W.; Yinnon, H.; Uhlmann, D. R.; Taylor, L. A.; Garrison, J. R.; Hunter, R.

    1981-01-01

    A model of solute partitioning in a finite body under conditions of continuous cooling is developed for the determination of cooling rates from concentration profile data, and applied to the partitioning of zirconium between ilmenite and ulvospinel in the Apollo 15 Elbow Crater rocks. Partitioning in a layered composite solid is described numerically in terms of concentration profiles and diffusion coefficients which are functions of time and temperature, respectively; a program based on the model can be used to calculate concentration profiles for various assumed cooling rates given the diffusion coefficients in the two phases and the equilibrium partitioning ratio over a range of temperatures. In the case of the Elbow Rock gabbros, the cooling rates are calculated from measured concentration ratios 10 microns from the interphase boundaries under the assumptions of uniform and equilibrium initial conditions at various starting temperatures. It is shown that the specimens could not have had uniform concentrations profiles at the previously suggested initial temperature of 1350 K. It is concluded that even under conditions where the initial temperature, grain sizes and solute diffusion coefficients are not well characterized, the model can be used to estimate the cooling rate of a grain assemblage to within an order of magnitude.

  10. Evaluation by Rocket Combustor of C/C Composite Cooled Structure Using Metallic Cooling Tubes

    NASA Astrophysics Data System (ADS)

    Takegoshi, Masao; Ono, Fumiei; Ueda, Shuichi; Saito, Toshihito; Hayasaka, Osamu

    In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2800 K and the heat flux to the combustion chamber wall was about 9 MW/m2. No thermal damage was observed on the stainless steel tubes that were in contact with the C/C composite materials. The results of the heating test showed that such a metallic tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure (also as a heat exchanger) as well as indicated the possibility of reducing the amount of coolant even if the thermal load to the engine is high. Thus, application of this metallic tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined-cycle engine is expected.

  11. Convective Array Cooling for a Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Dolce, James (Technical Monitor)

    2003-01-01

    A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.

  12. Turbine stator vane segment having internal cooling circuits

    DOEpatents

    Jones, Raymond Joseph; Burns, James Lee; Bojappa, Parvangada Ganapathy; Jones, Schotsch Margaret

    2003-01-01

    A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chamber for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.

  13. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  14. Cooling rates of lunar volcanic glass beads

    NASA Astrophysics Data System (ADS)

    Hui, H.; Hess, K. U.; Zhang, Y.; Peslier, A. H.; Lange, R. A.; Dingwell, D. B.; Neal, C. R.

    2016-12-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  15. Cooling Rates of Lunar Volcanic Glass Beads

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  16. Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer Conditions: Maximum Cooling Capacity Mode

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.

    2017-05-01

    Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.

  17. Data center cooling method

    DOEpatents

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  18. Optimation of cooled shields in insulations

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.

    1984-01-01

    A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.

  19. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.

    PubMed

    Hosseini Koupaie, E; Eskicioglu, C

    2015-01-01

    This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  1. Feedback-controlled radiation pressure cooling

    NASA Astrophysics Data System (ADS)

    Prior, Yehiam; Vilensky, Mark; Averbukh, Ilya Sh.

    2008-03-01

    We propose a new approach to laser cooling of micromechanical devices, which is based on the phenomenon of optical bistability. These devices are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. The bistability may be induced by an external feedback loop. When excited by an external laser, the cavity field has two co-existing stable steady-states depending on the position of the moving mirror. If the latter moves slow enough, the field in the cavity adjusts itself adiabatically to the mirror's instantaneous position. The mirror experiences radiation pressure corresponding to the intensity value. A sharp transition between two values of the radiation pressure force happens twice per every period of the mirror oscillation at non-equivalent positions (hysteresis effect), which leads to a non-zero net energy loss. The cooling mechanism resembles Sisyphus cooling in which the cavity mode performs sudden transitions between two stable states. We provide a dynamical stability analysis of the coupled moving mirror -- cavity field system, and find the parameters for efficient cooling. Direct numerical simulations show that a bistable cavity provides much more efficient cooling compared to the regular one.

  2. Single-crystal 40Ar/39Ar incremental heating reveals bimodal sanidine ages in the Bishop Tuff

    NASA Astrophysics Data System (ADS)

    Andersen, N. L.; Jicha, B. R.; Singer, B. S.

    2015-12-01

    The 650 km3 Bishop Tuff (BT) is among the most studied volcanic deposits because it is an extensive marker bed deposited just after the Matuyama-Brunhes boundary. Reconstructions of the vast BT magma reservoir from which high-silica rhyolite erupted have long influenced thinking about how large silicic magma systems are assembled, crystallized, and mixed. Yet, the longevity of the high silica rhyolitic melt and exact timing of the eruption remain controversial due to recent conflicting 40Ar/39Ar sanidine vs. SIMS and ID-TIMS U-Pb zircon dates. We have undertaken 21 40Ar/39Ar incremental heating ages on 2 mm BT sanidine crystals from pumice in 3 widely separated outcrops of early-erupted fall and flow units. Plateau ages yield a bimodal distribution: a younger group has a mean of 766 ka and an older group gives a range between 772 and 782 ka. The younger population is concordant with the youngest ID-TIMS and SIMS U-Pb zircon ages recently published, as well as the astronomical age of BT in marine sediment. Of 21 crystals, 17 yield older, non-plateau, steps likely affected by excess Ar that would bias traditional 40Ar/39Ar total crystal fusion ages. The small spread in older sanidine ages, together with 25+ kyr of pre-eruptive zircon growth, suggest that the older sanidines are not partially outgassed xenocrysts. A bimodal 40Ar/39Ar age distribution implies that some fraction of rhyolitic melt cooled below the Ar closure temperature at least 10 ky prior to eruption. We propose that rapid "thawing" of a crystalline mush layer released older crystals into rhyolitic melt from which sanidine also nucleated and grew immediately prior to the eruption. High precision 40Ar/39Ar dating can thus provide essential information on thermo-physical processes at the millenial time scale that are critical to interpreting U-Pb zircon age distributions that are complicated by large uncertainties associated with zircon-melt U-Th systematics.

  3. Effects of heat acclimation on hand cooling efficacy following exercise in the heat.

    PubMed

    Adams, Elizabeth L; Vandermark, Lesley W; Pryor, J Luke; Pryor, Riana R; VanScoy, Rachel M; Denegar, Craig R; Huggins, Robert A; Casa, Douglas J

    2017-05-01

    This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO 2 max], 54.1 ± 1.3 ml·kg -1 ·min -1 ) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO 2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90-240 min of treadmill or stationary bike exercise (60-80% VO 2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min -1 ) had a greater cooling rate than NC (0.013 ± 0.003°C·min -1 ) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min -1 ) was similar to NC (0.025 ± 0.002°C·min -1 ) (0.004°C [-0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min -1 ) was similar to when NHA (0.020 ± 0.003°C·min -1 ) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.

  4. Time-dependent effects of heat advection and topography on cooling histories during erosion

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil S.; Grasemann, Bernhard

    1997-03-01

    Both erosion and surface topography cause a time-dependent variation in isotherm geometry that can result in significant errors in estimating natural exhumation rates from geochronologic data. Analytical solutions and two-dimensional numerical modelling are used to investigate the magnitude of these inaccuracies for conditions appropriate to many rapidly exhumed mountain chains of rugged relief. It is readily demonstrated that uplift of the topographic surface has a negligible effect on the cooling history of an exhumed rock sample and cannot be quantified by current geochronologic methods. The topography itself perturbs the isotherms to a depth that depends on both the vertical and horizontal scale of the surface relief. Estimations employing different isotopic systems in the same sample with higher closure temperatures (> 200°C) are not generally influenced by topography. However, direct conversion of cooling rates to exhumation rates assuming a simple constant linear geotherm markedly underestimates peak rates, due to variation of the geothermal gradient in time and space and to the time lag between exhumation and cooling. Estimations based on the altitude variation in apatite fission-track ages are less prone to such inaccuracies in geothermal gradient but are affected by near-surface time-dependent variation in isotherm depth due to advection and topography. In tectonically active mountain belts, high exhumation rates are coupled with rugged topography, and exhumation rates may be markedly overestimated, by factors of 2 or more. Even at lower exhumation rates on the order of 1 mm/a, the shape of the cooling curve is modified by advection and topography. A convex-concave shape to the cooling curve does not necessarily imply a change of exhumation rate; it may also be attained by a more complicated geothermal gradient induced by topographic relief. Very fast cooling below 100°C, often interpreted as reflecting faster exhumation, can be more simply explained by

  5. Aging dynamics in the polymer glass of poly(2-chlorostyrene): Dielectric susceptibility and volume

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Tahara, Daisuke

    2009-11-01

    Aging dynamics was investigated in the glassy states of poly(2-chlorostyrene) by measuring the complex electrical capacitance during aging below the glass transition temperature. The variations with time and temperature of the ac dielectric susceptibility and volume could be determined by simply measuring the variation in the complex electrical capacitance. Isothermal aging at a given temperature for several hours after an intermittent stop in constant-rate cooling is stored in the deviations of both the real and imaginary parts of the complex ac dielectric susceptibility and volume. During cooling after isothermal aging, the deviation of the ac dielectric susceptibility from the reference value decreases and almost vanishes at room temperature. By contrast, the deviation in volume induced during isothermal aging remains almost constant during cooling. The simultaneous measurement of ac dielectric susceptibility and volume clearly revealed that the ac dielectric susceptibility exhibits a full rejuvenation effect, whereas the volume does not show any rejuvenation effects. We discuss a plausible model that can reproduce the present experimental results.

  6. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magda, Karoly

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similarmore » regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.« less

  7. Effects of Cooling During Exercise on Thermoregulatory Responses of Men With Paraplegia.

    PubMed

    Bongers, Coen C W G; Eijsvogels, Thijs M H; van Nes, Ilse J W; Hopman, Maria T E; Thijssen, Dick H J

    2016-05-01

    People with spinal cord injury (SCI) have an altered afferent input to the thermoregulatory center, resulting in a reduced efferent response (vasomotor control and sweating capacity) below the level of the lesion. Consequently, core body temperature rises more rapidly during exercise in individuals with SCI compared with people who are able-bodied. Cooling strategies may reduce the thermophysiological strain in SCI. The aim of this study was to examine the effects of a cooling vest on the core body temperature response of people with a thoracic SCI during submaximal exercise. Ten men (mean age=44 years, SD=11) with a thoracic lesion (T4-T5 or below) participated in this randomized crossover study. Participants performed two 45-minute exercise bouts at 50% maximal workload (ambient temperature 25°C), with participants randomized to a group wearing a cooling vest or a group wearing no vest (separate days). Core body temperature and skin temperature were continuously measured, and thermal sensation was assessed every 3 minutes. Exercise resulted in an increased core body temperature, skin temperature, and thermal sensation, whereas cooling did not affect core body temperature. The cooling vest effectively decreased skin temperature, increased the core-to-trunk skin temperature gradient, and tended to lower thermal sensation compared with the control condition. The lack of differences in core body temperature among conditions may be a result of the relative moderate ambient temperature in which the exercise was performed. Despite effectively lowering skin temperature and increasing the core-to-trunk skin temperature gradient, there was no impact of the cooling vest on the exercise-induced increase in core body temperature in men with low thoracic SCI. © 2016 American Physical Therapy Association.

  8. Yield of skeletal survey by age in children referred to abuse specialists.

    PubMed

    Lindberg, Daniel M; Berger, Rachel P; Reynolds, Maegan S; Alwan, Riham M; Harper, Nancy S

    2014-06-01

    To determine rates of skeletal survey completion and injury identification as a function of age among children who underwent subspecialty evaluation for concerns of physical abuse. This was a retrospective secondary analysis of an observational study of 2609 children <60 months of age who underwent evaluation for possible physical abuse. We measured rates of skeletal survey completion and fracture identification for children separated by age into 6-month cohorts. Among 2609 subjects, 2036 (78%) had skeletal survey and 458 (18%) had at least one new fracture identified. For all age groups up to 36 months, skeletal survey was obtained in >50% of subjects, but rates decreased to less than 35% for subjects >36 months. New fracture identification rates for skeletal survey were similar between children 24-36 months of age (10.3%, 95% CI 7.2-14.2) and children 12-24 months of age (12.0%, 95% CI 9.2-15.3) CONCLUSIONS: Skeletal surveys identify new fractures in an important fraction of children referred for subspecialty consultation with concerns of physical abuse. These data support guidelines that consider skeletal survey mandatory for all such children <24 months of age and support a low threshold to obtain skeletal survey in children as old as 36 months. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Youn, B.; Mills, A. F.

    1995-01-01

    Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.

  10. Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.

    2016-03-01

    A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.

  11. Industrial stator vane with sequential impingement cooling inserts

    DOEpatents

    Jones, Russell B; Fedock, John A; Goebel, Gloria E; Krueger, Judson J; Rawlings, Christopher K; Memmen, Robert L

    2013-08-06

    A turbine stator vane for an industrial engine, the vane having two impingement cooling inserts that produce a series of impingement cooling from the pressure side to the suction side of the vane walls. Each insert includes a spar with a row of alternating impingement cooling channels and return air channels extending in a radial direction. Impingement cooling plates cover the two sides of the insert and having rows of impingement cooling holes aligned with the impingement cooling channels and return air openings aligned with the return air channel.

  12. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  13. Cooling Effectiveness of a Hybrid Microclimate Garment

    DTIC Science & Technology

    1988-04-01

    ELEMENT NO . NO . NO . JCCESSION NO .63747 D669 35 Cooling Effectiveness of a Hybrid Microclimate Garment (U) 12. PERSONAL AUTHOR(S) Barry S...be arranged. Therefore, no direct measurement of the cooling rate achieved by the air garments was obtained. After calculation of the liquid cooling...Cooling Performance. There was no significant difference between the levels of heat removed by the liquid and hybrid-liquid garments . The measured

  14. AGN self-regulation in cooling flow clusters

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Teyssier, R.

    2007-04-01

    We use three-dimensional high-resolution adaptive-mesh-refinement simulations to investigate if mechanical feedback from active galactic nucleus jets can halt a massive cooling flow in a galaxy cluster and give rise to a self-regulated accretion cycle. We start with a 3 × 109 Msolar black hole at the centre of a spherical halo with the mass of the Virgo cluster. Initially, all the baryons are in a hot intracluster medium in hydrostatic equilibrium within the dark matter's gravitational potential. The black hole accretes the surrounding gas at the Bondi rate, and a fraction of the accretion power is returned into the intracluster medium mechanically through the production of jets. The accretion, initially slow (~2 × 10-4 Msolaryr-1), becomes catastrophic, as the gas cools and condenses in the dark matter's potential. Therefore, it cannot prevent the cooling catastrophe at the centre of the cluster. However, after this rapid phase, where the accretion rate reaches a peak of ~0.2Msolaryr-1, the cavities inflated by the jets become highly turbulent. The turbulent mixing of the shock-heated gas with the rest of the intracluster medium puts a quick end to this short-lived rapid-growth phase. After dropping by almost two orders of magnitudes, the black hole accretion rate stabilizes at ~0.006 Msolaryr-1, without significant variations for several billions of years, indicating that a self-regulated steady state has been reached. This accretion rate corresponds to a negligible increase of the black hole mass over the age of the Universe, but is sufficient to create a quasi-equilibrium state in the cluster core.

  15. Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age

    PubMed Central

    Frijns, A. J. H.; Saris, W. H. M.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.

    2010-01-01

    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18–28 years) and 16 elderly (E: 68–78 years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33°C. Next, local temperature was reduced to 24°C. After 15 min of local cooling, noradrenalin (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: −76 ± 3 vs. E: −60 ± 5 (P < 0.01), dorsal hand Y: −74 ± 4 vs. E: −72 ± 4 (n.s.), ventral hand Y: −80 ± 7 vs. E: −70 ± 11 (n.s.)]. In conclusion, in contrast to results from the ventral forearm, elderly did not show a blunted response to local cooling and noradrenalin at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age. PMID:20300768

  16. ThermoYield actuators: nano-adjustable set-and-forget optics mounts

    NASA Astrophysics Data System (ADS)

    DeTienne, Michael D.; Bruccoleri, Alexander R.; Chalifoux, Brandon; Heilmann, Ralf K.; Tedesco, Ross E.; Schattenburg, Mark L.

    2017-08-01

    The X-ray optics community has been developing technology for high angular resolution, large collecting area X-ray telescopes such as the Lynx X-ray telescope concept. To meet the high collecting area requirements of such telescope concepts, research is being conducted on thin, segmented optics. The mounts that fixture and align segmented optics must be the correct length to sub-micron accuracy to satisfy the angular resolution goals of such a concept. Set-andforget adjustable length optical mounting posts have been developed to meet this need. The actuator consists of a cylinder made of metal. Halfway up the height of the metal cylinder, a reduced diameter cylindrical neck is cut. To change the length of this actuator, an axial compressive or tensile force is applied to the actuator. A high-current electrical pulse is sent through the actuator, and this electrical current resistively heats the neck of the actuator. This heating temporarily reduces the yield strength of the neck, so that the applied force plastically deforms the neck. Once the current stops and the neck cools, the neck will regain yield strength, and the plastic deformation will stop. All of the plastic deformation that occurred during heating is now permanent. Both compression and expansion of these actuators has been demonstrated in steps ranging from 6 nanometers to several microns. This paper will explain the concept of ThermoYield actuation, explore X-ray telescope applications, describe an experimental setup, show and discuss data, and propose future ideas.

  17. Cutting strategies and timber yields for unbalanced even-aged northern hardwood forests

    Treesearch

    William B. Leak; Stanley M. Filip; Stanley M. Filip

    1970-01-01

    The even-aged hardwood forest, with a poorly balanced distribution of age-classes, can cause perplexing problems during the first rotation. What is the best cutting strategy to follow? By using linear programming, we developed some cutting strategies that maximize board-foot production and produce a balanced age distribution by the end of the first rotation. We...

  18. Misting and fan cooling of the rest area in a dairy barn

    NASA Astrophysics Data System (ADS)

    Calegari, Ferdinando; Calamari, Luigi; Frazzi, Ermes

    2012-03-01

    This summer study aimed to evaluate the effect on dairy cows, kept in a free stall barn equipped with fans and sprinklers in the feeding area, of the delivery rate of misters in a cooling system in rest areas with different bedding materials. Thirty cows were divided into two homogenous groups according to milk yield and kept in two pens: one had beds with sand (SAMM) while the other had straw (STLM). Each pen was equipped with 2 fans (Ø 70 cm, 0.50 kW) and 2 misters (delivery rate of 11.2 and 22.5 L/h in STLM and SAMM, respectively) in the rest area. Microclimatic parameters, rectal temperature (RT), breathing rate (BR), milk yield, and some milk traits were recorded. Behavioural routines of the cows (standing and lying) were also continuously recorded during the hotter days. During the trial, two mild-moderate heat waves were observed. During these hotter periods, the daily maximum temperature recorded in the rest areas was 28.9 in SAMM and 31.2 in STLM, and the daily maximum THI was 78.2 in SAMM and 81.5 in STLM. In these periods, the cows in SAMM compared with those in STLM showed lower BR ( P < 0.05) and greater rest time (10.2 and 7.8 h/day in SAMM and STLM, respectively). The RT did not differ (38.89 ± 0.29 and 38.88 ± 0.33°C in STLM and SAMM r,espectively). In conclusion, our research suggests that the cooling system using fans plus misters with mild wetting in rest areas with sand as bedding materials reduces heat stress and improves cow comfort.

  19. Benchmark cool companions: ages and abundances for the PZ Telescopii system

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Pavlenko, Y. V.; Ivanyuk, O.; Gallardo, J.; Jones, M. I.; Day-Jones, A. C.; Jones, H. R. A.; Ruiz, M. T.; Pinfield, D. J.; Yakovina, L.

    2012-03-01

    We present new ages and abundance measurements for the pre-main-sequence star PZ Telescopii (more commonly known as PZ Tel). PZ Tel was recently found to host a young and low-mass companion. Such companions, whether they are brown dwarfs or planetary systems, can attain benchmark status by detailed study of the properties of the primary, and then evolutionary and bulk characteristics can be inferred for the companion. Using Fibre-fed Extended Range Optical Spectrograph spectra, we have measured atomic abundances (e.g. Fe and Li) and chromospheric activity for PZ Tel and used these to obtain the metallicity and age estimates for the companion. We have also determined the age independently using the latest evolutionary models. We find PZ Tel A to be a rapidly rotating (v sin i= 73 ± 5 km s-1), approximately solar metallicity star [log N(Fe) =-4.37 ± 0.06 dex or [Fe/H] = 0.05 ± 0.20 dex]. We measure a non-local thermodynamic equilibrium lithium abundance of log N(Li) = 3.1 ± 0.1 dex, which from depletion models gives rise to an age of 7? Myr for the system. Our measured chromospheric activity (? of -4.12) returns an age of 26 ± 2 Myr, as does fitting pre-main-sequence evolutionary tracks (τevol= 22 ± 3 Myr), both of these are in disagreement with the lithium age. We speculate on reasons for this difference and introduce new models for lithium depletion that incorporate both rotation and magnetic field effects. We also synthesize solar, metal-poor and metal-rich substellar evolutionary models to better determine the bulk properties of PZ Tel B, showing that PZ Tel B is probably more massive than previous estimates, meaning the companion is not a giant exoplanet, even though a planetary-like formation origin can go some way to describing the distribution of benchmark binaries currently known. We show how PZ Tel B compares to other currently known age and metallicity benchmark systems and try to empirically test the effects of dust opacity as a function of

  20. Growth and Yield of Thinned Yellow-Poplar

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1972-01-01

    Diameter distributions and yields for various combinations of site index, age, and density for unthinned and largely undisturbed stands of yellow-poplar (Liriodendron tulipifera L. ) have been presented by McGee and Della-Bianca (1967) and Beck and Della-Bianca (1970). Their results were based on the initial measurements of a network of permanent sample plots...