Sample records for yield growth rate

  1. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield

    PubMed Central

    Ferris, Michael; Bruggeman, Frank J.

    2018-01-01

    Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM) and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts. PMID:29451895

  2. [Effects of alternative furrow irrigation and nitrogen application rate on photosynthesis, growth, and yield of cucumber in solar greenhouse].

    PubMed

    Zhang, Liu-xia; Wang, Shu-zhong; Sui, Xiao-lei; Zhang, Zhen-xian

    2011-09-01

    This paper studied the effects of alternative furrow irrigation and nitrogen (N) application rate (no N, optimal N, and conventional N) on the photosynthesis, growth characteristics, yield formation, and fruit quality of cucumber (Cucumis sativus) cultivar Jinyu No. 5 in a solar greenhouse in winter-spring growth season and autumn-winter season. Under alternative furrow irrigation, the net photosynthetic rate of upper, middle, eand lower leaves was appreciably lower and the transpiration rate decreased significantly, and the transient water use efficiency of upper and middle leaves improved, as compared with those under conventional irrigation. Stomatal factor was the limiting factor of photosynthesis under alternative furrow irrigation. The photosynthesis and transient water use efficiency of functional leaves under alternative furrow irrigation increased with increasing N application rate. Comparing with conventional irrigation, alternative furrow irrigation decreased leaf chlorophyll content and plant biomass, but increased root biomass, root/shoot ratio, and dry matter allocation in root and fruit. The economic output under alternative furrow irrigation was nearly the same as that under conventional irrigation, whereas the water use efficiency for economic yield increased significantly, suggesting the beneficial effects of alternative furrow irrigation on root development and fruit formation. With the increase of N application rate, the leaf chlorophyll content, chlorophyll a/b, specific leaf mass, plant biomass, economic yield, and fruit Vc and soluble sugar contents under alternative furrow irrigation increased, but no significant difference was observed between the treatments optimal N and conventional N. N application had little effects on the water use efficiency for economic yield. The economic yield and biomass production of the cucumber were significantly higher in winter-spring growth season than in autumn-winter growth season.

  3. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1.

    PubMed

    Fu, Yanfen; Beck, David A C; Lidstrom, Mary E

    2016-07-19

    Two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. (13)C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. The major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, (13)C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.

  4. Fatigue crack growth under general-yielding cyclic-loading

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1986-01-01

    In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta J. The correlation of da/dN with delta J was also studied by a number of other investigators. However, none of thse studies have correlated da/dN with delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tips fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.

  5. Difference in C3–C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1

    DOE PAGES

    Fu, Yanfen; Beck, David A. C.; Lidstrom, Mary E.

    2016-07-19

    In this study, two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. 13C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. As a result, the major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways.more » Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, 13C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.« less

  6. Difference in C3–C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yanfen; Beck, David A. C.; Lidstrom, Mary E.

    In this study, two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. 13C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. As a result, the major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways.more » Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, 13C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.« less

  7. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats.

    PubMed

    Hernández, Horacio; Flores, José Alfredo; Delgadillo, José Alberto; Fernández, Ilda G; Flores, Manuel de Jesús; Mejía, Ángel; Elizundia, José Manuel; Bedos, Marie; Ponce, José Luis; Ramírez, Sergio

    2016-04-01

    This study was designed to determine whether any relationship exists between exposure to artificial long days, milk yield, maternal plasma insulin-like growth factor 1 (IGF-1) levels, and kid growth rate in goats. One group of lactating goats was maintained under naturally decreasing day length (control group; n = 19), while in another one, they were kept under artificial long days (LD group; n = 19). Milk yield was higher in goats from the LD group than that in the control group (P < 0.05). Maternal IGF-1 levels at day 57 of lactation were higher (P < 0.05) in goats from the LD group than the levels in the control group and were positively correlated with the total milk yields per goat at days 43 and 57 of lactation (r = 0.77 and r = 0.84, respectively; P < 0.01). Daily weight gain at week 4 was higher (P < 0.01) in kids from the LD group than that in kids from the control group and was correlated with total and average IGF-1 maternal levels (r = 0.60 and r = 0.60, P < 0.05). It was concluded that submitting lactating goats to artificial long days increases milk yield, plasma IGF-1 maternal levels and the growth rate of the kids. © 2015 Japanese Society of Animal Science.

  8. Material and methods to increase plant growth and yield

    DOEpatents

    Kirst, Matias

    2015-09-15

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  9. Materials and methods to increase plant growth and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirst, Matias

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  10. Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinches, A.; Pallent, L.J.

    1986-10-01

    Rate and yield information relating to biomass and product formation and to nitrogen, glucose and oxygen consumption are described for xanthan gum batch fermentations in which both chemically defined (glutamate nitrogen) and complex (peptone nitrogen) media are employed. Simple growth and product models are used for data interpretation. For both nitrogen sources, rate and yield parameter estimates are shown to be independent of initial nitrogen concentrations. For stationary phases, specific rates of gum production are shown to be independent of nitrogen source but dependent on initial nitrogen concentration. The latter is modeled empirically and suggests caution in applying simple productmore » models to xanthan gum fermentations. 13 references.« less

  11. Growth and yield of shortleaf pine

    Treesearch

    Paul A. Murphy

    1986-01-01

    A survey of available growth and yield information for shortleaf pine (Pinus echinata Mill.) is given. The kinds of studies and data sources that produce this information are also evaluated, and an example of how a growth and yield model can be used to answer management questions is illustrated. Guidelines are given for using growth and yield models, and needs for...

  12. Growth and yield models for central hardwoods

    Treesearch

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    Over the last 20 years computers have become an efficient tool to estimate growth and yield. Computerized yield estimates vary from simple approximation or interpolation of traditional normal yield tables to highly sophisticated programs that simulate the growth and yield of each individual tree.

  13. Effect of vermicompost on growth, yield and nutrition status of tomato (Lycopersicum esculentum).

    PubMed

    Azarmi, Rasool; Ziveh, Parviz Sharifi; Satari, Mohammad Reza

    2008-07-15

    An experiment was conducted to determine the effects of vermicompost on growth, yield and fruit quality of tomato (Lycopersicum esculentum var. Super Beta) in a field condition. The experiment was a randomized complete block design with four replications. The different rates of vermicompost (0, 5, 10 and 15 t ha(-1)) was incorporated into the top 15 cm of soil. During experiment period, fruits were harvested twice in a week and total yield were recorded for two months. At the end of experiment, growth characteristics such as leaf number, leaf area and shoot dry weights were determined. The results revealed that addition of vermicompost at rate of 15 t ha(-1) significantly (at p < 0.05) increased growth and yield compared to control. Vermicompost with rate of 15 t ha(-1) increased EC of fruit juice and percentage of fruit dry matter up to 30 and 24%, respectively. The content of K, P, Fe and Zn in the plant tissue increased 55, 73, 32 and 36% compared to untreated plots respectively. The result of our experiment showed addition of vermicompost had significant (p < 0.05) positive effects on growth, yield and elemental content of plant as compared to control.

  14. Modeling global yield growth of major crops under multiple socioeconomic pathways

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Kim, W.; Zhihong, S.; Nishimori, M.

    2016-12-01

    Global gridded crop models (GGCMs) are a key tool in deriving global food security scenarios under climate change. However, it is difficult for GGCMs to reproduce the reported yield growth patterns—rapid growth, yield stagnation and yield collapse. Here, we propose a set of parameterizations for GGCMs to capture the contributions to yield from technological improvements at the national and multi-decadal scales. These include country annual per capita gross domestic product (GDP)-based parameterizations for the nitrogen application rate and crop tolerance to stresses associated with high temperature, low temperature, water deficit and water excess. Using a GGCM combined with the parameterizations, we present global 140-year (1961-2100) yield growth simulations for maize, soybean, rice and wheat under multiple shared socioeconomic pathways (SSPs) and no climate change. The model reproduces the major characteristics of reported global and country yield growth patterns over the 1961-2013 period. Under the most rapid developmental pathway SSP5, the simulated global yields for 2091-2100, relative to 2001-2010, are the highest (1.21-1.82 times as high, with variations across the crops), followed by SSP1 (1.14-1.56 times as high), SSP2 (1.12-1.49 times as high), SSP4 (1.08-1.38 times as high) and SSP3 (1.08-1.36 times as high). Future country yield growth varies substantially by income level as well as by crop and by SSP. These yield pathways offer a new baseline for addressing the interdisciplinary questions related to global agricultural development, food security and climate change.

  15. Growth analysis and yield of two varieties of groundnut (Arachis hypogaea L.) as influenced by different weed control methods.

    PubMed

    Olayinka, Bolaji U; Etejere, Emmanuel O

    Field trials were carried out to evaluate the effects of seven weed management strategies on the growth and yield of two groundnut varieties (Samnut 10 and MK 373) for two successive seasons (2010-2011). The experimental layout was a split plot complete randomized block design with three replications. The two groundnut varieties showed identical pattern of results for leaf area index, dry matter accumulation, relative growth rate, net assimilation rate and crop growth rate as well as yield. All the weed control treatments significantly enhanced the growth and yield compared with the weedy check. The weed free check had the highest growth but the highest yield was recorded from rice straw mulch at 0.1 m depth + one hand weeding at 6 weeks after sowing (WAS) due to increase in number of matured pods per plant, seed weight per plant and 100-seed weight. The results showed that rice straw mulch at 0.1 m depth + one hand weeding at 6 WAS was better agronomical practice for enhancing growth and yield of groundnut. This enhancement could be as a result of its positive influence on physiological parameters such as leaf area index, dry matter accumulation, relative growth rate, net assimilation rate and crop growth rate. Its use is also ecofriendly as it limits the need for synthetic herbicide.

  16. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    PubMed Central

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  17. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    PubMed

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha -1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  18. Growth and yield of Giant Sequoia

    Treesearch

    David J. Dulitz

    1986-01-01

    Very little information exists concerning growth and yield of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz). For old-growth trees, diameter growth is the single factor adding increment since maximum height has been obtained. Diameter growth averages 0.04 inches per year in normal old-growth trees but will fluctuate with changes in the...

  19. Influence of transport energization on the growth yield of Escherichia coli.

    PubMed

    Muir, M; Williams, L; Ferenci, T

    1985-09-01

    The growth yields of Escherichia coli on glucose, lactose, galactose, maltose, maltotriose, and maltohexaose were estimated under anaerobic conditions in the absence of electron acceptors. The yields on these substrates exhibited significant differences when measured in carbon-limited chemostats at similar growth rates and compared in terms of grams (dry weight) of cells produced per mole of hexose utilized. Maltohexaose was the most efficiently utilized substrate, and galactose was the least efficiently utilized under these conditions. All these sugars were known to be metabolized to glucose 6-phosphate and produced the same pattern of fermentation products. The differences in growth yields were ascribed to differences in energy costs for transport and phosphorylation of these sugars. A formalized treatment of these factors in determining growth yields was established and used to obtain values for the cost of transport and hence the energy-coupling stoichiometries for the transport of substrates via proton symport and binding-protein-dependent mechanisms in vivo. By this approach, the proton-lactose stoichiometry was found to be 1.1 to 1.8 H+ per lactose, equivalent to approximately 0.5 ATP used per lactose transported. The cost of transporting maltose via a binding-protein-dependent mechanism was considerably higher, being over 1 to 1.2 ATP per maltose or maltodextrin transported. The formalized treatment also permitted estimation of the net ATP yield from the metabolism of these sugars; it was calculated that the growth yield data were consistent with the production of 2.8 to 3.2 ATP in the metabolism of glucose 6-phosphate to fermentation products.

  20. Influence of transport energization on the growth yield of Escherichia coli.

    PubMed Central

    Muir, M; Williams, L; Ferenci, T

    1985-01-01

    The growth yields of Escherichia coli on glucose, lactose, galactose, maltose, maltotriose, and maltohexaose were estimated under anaerobic conditions in the absence of electron acceptors. The yields on these substrates exhibited significant differences when measured in carbon-limited chemostats at similar growth rates and compared in terms of grams (dry weight) of cells produced per mole of hexose utilized. Maltohexaose was the most efficiently utilized substrate, and galactose was the least efficiently utilized under these conditions. All these sugars were known to be metabolized to glucose 6-phosphate and produced the same pattern of fermentation products. The differences in growth yields were ascribed to differences in energy costs for transport and phosphorylation of these sugars. A formalized treatment of these factors in determining growth yields was established and used to obtain values for the cost of transport and hence the energy-coupling stoichiometries for the transport of substrates via proton symport and binding-protein-dependent mechanisms in vivo. By this approach, the proton-lactose stoichiometry was found to be 1.1 to 1.8 H+ per lactose, equivalent to approximately 0.5 ATP used per lactose transported. The cost of transporting maltose via a binding-protein-dependent mechanism was considerably higher, being over 1 to 1.2 ATP per maltose or maltodextrin transported. The formalized treatment also permitted estimation of the net ATP yield from the metabolism of these sugars; it was calculated that the growth yield data were consistent with the production of 2.8 to 3.2 ATP in the metabolism of glucose 6-phosphate to fermentation products. PMID:3928598

  1. Predawn respiration rates during flowering are highly predictive of yield response in Gossypium hirsutum when yield variability is water-induced.

    PubMed

    Snider, John L; Chastain, Daryl R; Meeks, Calvin D; Collins, Guy D; Sorensen, Ronald B; Byrd, Seth A; Perry, Calvin D

    2015-07-01

    Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesized that predawn respiration rates (RPD) would be (1) more sensitive to drought than photosynthetic processes and (2) highly predictive of water-induced yield variability in Gossypium hirsutum. Two studies (at Tifton and Camilla Georgia) addressed these hypotheses. At Tifton, drought was imposed beginning at the onset of flowering (first flower) and continuing for three weeks (peak bloom) followed by a recovery period, and predawn water potential (ΨPD), RPD, net photosynthesis (AN) and maximum quantum yield of photosystem II (Fv/Fm) were measured throughout the study period. At Camilla, plants were exposed to five different irrigation regimes throughout the growing season, and average ΨPD and RPD were determined between first flower and peak bloom for all treatments. For both sites, fiber yield was assessed at crop maturity. The relationships between ΨPD, RPD and yield were assessed via non-linear regression. It was concluded for field-grown G. hirsutum that (1) RPD is exceptionally sensitive to progressive drought (more so than AN or Fv/Fm) and (2) average RPD from first flower to peak bloom is highly predictive of water-induced yield variability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.

    PubMed

    Adesemoye, A O; Torbert, H A; Kloepper, J W

    2009-11-01

    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies.

  3. Two-Way Selection for Growth Rate in the Common Carp (CYPRINUS CARPIO L.)

    PubMed Central

    Moav, R.; Wohlfarth, G.

    1976-01-01

    The domesticated European carp was subjected to a two-way selection for growth rate. Five generations of mass selection for faster growth rate did not yield any response, but subsequent selection between groups (families) resulted in considerable progress while maintaining a large genetic variance. Selection for slow growth rate yielded relatively strong response for the first three generations. Random-bred control lines suffered from strong inbreeding depression and when two lines were crossed, the F1 showed a high degree of heterosis. Selection was performed on pond-raised fish, but growth rate was also tested in cages. A strong pond-cage genetic interaction was found. A theoretical explanation was suggested involving overdominance for fast growth rate and amplification through competition of intra-group but not inter-group variation. PMID:1248737

  4. Waterlogging effects on growth and yield components in late-planted soybean.

    PubMed

    Linkemer, G; Board, J E; Musgrave, M E

    1998-01-01

    A major agronomic problem in the southeastern USA is low yield of late-planted soybean [Glycine max (L.) Merr.]. This problem is aggravated by the adverse effect of waterlogging on crop growth. Our objectives were to identify soybean growth stages sensitive to waterlogging; identify yield components and physiological parameters explaining yield losses induced by waterlogging; and determine the extent of yield losses induced by waterlogging under natural field conditions. Greenhouse and field studies were conducted during 1993 and 1994 near Baton Rouge, LA, (30 degrees N Lat) on a Commerce silt loam. Waterlogging tolerance was assessed in cultivar Centennial (Maturity Group VI) at three vegetative and five reproductive growth stages by maintaining the water level at the soil surface in a greenhouse study. Using the same cultivar, we evaluated the effect of drainage in the field for late-planted soybean. Rain episodes determined the timing of waterlogging; redox potential and oxygen concentration of the soil were used to quantify the intensity of waterlogging stress. Results of the greenhouse study indicated that the early vegetative period (V2) and the early reproductive stages (R1, R3, and R5) were most sensitive to waterlogging. Three to 5 cm of rain per day falling on poorly drained soil was sufficient to reduce crop growth rate, resulting in a yield decline from 2453 to 1550 kg ha-1. Yield loss in both field and greenhouse studies was induced primarily by decreased pod production resulting from fewer pods per reproductive node. In conclusion, waterlogging was determined to be an important stress for late-planted soybean in high rainfall areas such as the Gulf Coast Region.

  5. Effect of salt stress on morpho-physiology, vegetative growth and yield of rice.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ali, E; Ismail, Mohd Razi; Selamat, Ahmed; Karim, S M Rezaul

    2014-03-01

    Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.

  6. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    PubMed

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-05-01

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small

  7. Growth, yield and plant water relationships in sweet potatoes in response to carbon dioxide enrichment: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    In the summer of 1985, under the joint program of US Department of Energy, Carbon Dioxide Division, and Tuskegee University, experiments were conducted to study growth, yield, photosynthesis and plant water relationships in sweet potato plants grown in an enriched CO/sub 2/ environment. The main experiment utilized open top chambers to study the effects of CO/sub 2/ and soil moisture on growth, yield and photosynthesis of field-grown plants. In addition, potted plants in open top chambers were utilized in a study of the effects of different CO/sub 2/ concentrations on growth pattern, relative growth rate, net assimilation rate and biomassmore » increment at different stages of development. The interaction effects of enriched CO/sub 2/ and water stress on biomass production, yield, xylem potential, and stomatal conductance were also investigated. 29 refs., 18 figs., 41 tabs.« less

  8. Relationship of grapevine yield and growth to nematode densities.

    PubMed

    Ferris, H; McKenry, M V

    1975-07-01

    Yield, growth, and vigor of individual grape vines were correlated with nematode population densities in a series of California vineyards. In a Hanford sandy loam soil, Xiphinema americanum densities showed negative correlations with yield, growth, and vigor of vines. When vines were categorized according to vigor, X. americanurn densities had little relationship to yield of high-vigor vines, but were negatively correlated with yield of low-vigor vines. Densities of Paratylenchus harnatus were positively correlated with yield, growth, and vigor of vines. Correlations between Meloidogyne spp. densities and vine performance were variable, even when the vines were separated according to soil type and plant vigor. Densities of Meloidogyne spp. populations were generally higher on coarser-textured, sandy soils and the vines were less vigorous there. Densities of P. hamatus were greater in fine-textured soils.

  9. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 20051

    PubMed Central

    Zuidhof, M. J.; Schneider, B. L.; Carney, V. L.; Korver, D. R.; Robinson, F. E.

    2014-01-01

    The effect of commercial selection on the growth, efficiency, and yield of broilers was studied using 2 University of Alberta Meat Control strains unselected since 1957 and 1978, and a commercial Ross 308 strain (2005). Mixed-sex chicks (n = 180 per strain) were placed into 4 replicate pens per strain, and grown on a current nutritional program to 56 d of age. Weekly front and side profile photographs of 8 birds per strain were collected. Growth rate, feed intake, and measures of feed efficiency including feed conversion ratio, residual feed intake, and residual maintenance energy requirements were characterized. A nonlinear mixed Gompertz growth model was used to predict BW and BW variation, useful for subsequent stochastic growth simulation. Dissections were conducted on 8 birds per strain semiweekly from 21 to 56 d of age to characterize allometric growth of pectoralis muscles, leg meat, abdominal fat pad, liver, gut, and heart. A novel nonlinear analysis of covariance was used to test the hypothesis that allometric growth patterns have changed as a result of commercial selection pressure. From 1957 to 2005, broiler growth increased by over 400%, with a concurrent 50% reduction in feed conversion ratio, corresponding to a compound annual rate of increase in 42 d live BW of 3.30%. Forty-two-day FCR decreased by 2.55% each year over the same 48-yr period. Pectoralis major growth potential increased, whereas abdominal fat decreased due to genetic selection pressure over the same time period. From 1957 to 2005, pectoralis minor yield at 42 d of age was 30% higher in males and 37% higher in females; pectoralis major yield increased by 79% in males and 85% in females. Over almost 50 yr of commercial quantitative genetic selection pressure, intended beneficial changes have been achieved. Unintended changes such as enhanced sexual dimorphism are likely inconsequential, though musculoskeletal, immune function, and parent stock management challenges may require additional

  10. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents.

    PubMed

    Martin, Thomas E; Oteyza, Juan C; Mitchell, Adam E; Potticary, Ahva L; Lloyd, Penn

    2015-03-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  11. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents

    USGS Publications Warehouse

    Martin, Thomas E.; Oteyza, Juan C.; Mitchell, Adam E.; Potticary, Ahva L.; Lloyd, P.

    2016-01-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  12. Impact of Thiamethoxam Seed Treatment on Growth and Yield of Rice, Oryza sativa.

    PubMed

    Lanka, S K; Senthil-Nathan, S; Blouin, D J; Stout, M J

    2017-04-01

    Neonicotinoid seed treatments are widely used in agriculture. In rice, Oryza sativa L., in the southern United States, neonicotinoid seed treatments are used to manage early-season populations of the rice water weevil, Lissorhoptrus oryzophilus Kuschel. In addition to their effects on pests, neonicotinoid seed treatments may benefit crop plants directly by increasing plant growth or altering plant responses to stresses. As part of an effort to assess the overall benefits of thiamethoxam seed treatment in rice, rice emergence, growth, and yield were evaluated. In a growth chamber, rice emergence from the soil was 1-2 d more rapid from treated than untreated seeds. These laboratory results were supported by field experiments that revealed higher stand counts from thiamethoxam-treated plots than from untreated plots. Yields from thiamethoxam treatments were no higher than those from untreated plots under conditions in which weevil larvae were absent, a result inconsistent with the hypothesis that thiamethoxam imparts direct yield benefits. In a series of field experiments conducted to compare the relationship between weevil larval densities and rice yields in plots treated with several rates of thiamethoxam or chlorantraniliprole (another widely used seed treatment insecticide), the relationship between weevil density and yield did not differ markedly among both seed treatments. Overall yields from both seed treatments did not differ significantly, despite more effective control in chlorantraniliprole-treated plots. These results provide strong support for effect of thiamethoxam on early-season growth of rice, but only weak support for its direct effect on rice yields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures.

    PubMed

    Brink, Hendrik Gideon; Nicol, Willie

    2014-08-19

    Succinic acid is well established as bio-based platform chemical with production quantities expecting to increase exponentially within the next decade. Actinobacillus succinogenes is by far the most studied wild organism for producing succinic acid and is known for high yield and titre during production on various sugars in batch culture. At low shear conditions continuous fermentation with A. succinogenes results in biofilm formation. In this study, a novel shear controlled fermenter was developed that enabled: 1) chemostat operation where self-immobilisation was opposed by high shear rates and, 2) in-situ removal of biofilm by increasing shear rates and subsequent analysis thereof. The volumetric productivity of the biofilm fermentations were an order of magnitude more than the chemostat runs. In addition the biofilm runs obtained substantially higher yields. Succinic acid to acetic acid ratios for chemostat runs were 1.28±0.2 g.g(-1), while the ratios for biofilm runs started at 2.4 g.g(-1) and increased up to 3.3 g.g(-1) as glucose consumption increased. This corresponded to an overall yield on glucose of 0.48±0.05 g.g(-1) for chemostat runs, while the yields varied between 0.63 g.g(-1) and 0.74 g.g(-1) for biofilm runs. Specific growth rates (μ) were shown to be severely inhibited by the formation of organic acids, with μ only 12% of μ(max) at a succinic acid titre of 7 g.L(-1). Maintenance production of succinic acid was shown to be dominant for the biofilm runs with cell based production rates (extracellular polymeric substance removed) decreasing as SA titre increases. The novel fermenter allowed for an in-depth bioreaction analysis of A. succinogenes. Biofilm cells achieve higher SA yields than suspended cells and allow for operation at higher succinic acid titre. Both growth and maintenance rates were shown to drastically decrease with succinic acid titre. The A. succinogenes biofilm process has vast potential, where self-induced high cell densities

  14. Modeling the effects of ozone on soybean growth and yield.

    PubMed

    Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W

    1990-01-01

    A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.

  15. Quantitative Trait Loci Controlling Vegetative Growth Rate in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Idareta, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucia

    2002-01-01

    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information. PMID:11872457

  16. Nitrate concentration effects on NO3-N uptake and reduction, growth, and fruit yield in strawberry

    NASA Technical Reports Server (NTRS)

    Darnell, R. L.; Stutte, G. W.; Sager, J. C. (Principal Investigator)

    2001-01-01

    Strawberries (Fragaria xananassa Duch. 'Osogrande') were grown hydroponically with three NO3-N concentrations (3.75, 7.5, or 15.0 mM) to determine effects of varying concentration on NO3-N uptake and reduction rates, and to relate these processes to growth and fruit yield. Plants were grown for 32 weeks, and NO3-N uptake and nitrate reductase (NR) activities in roots and shoots were measured during vegetative and reproductive growth. In general, NO3-N uptake rates increased as NO3-N concentration in the hydroponics system increased. Tissue NO3- concentration also increased as external NO3-N concentration increased, reflecting the differences in uptake rates. There was no effect of external NO3-N concentration on NR activities in leaves or roots during either stage of development. Leaf NR activity averaged approximately 360 nmol NO2 formed/g fresh weight (FW)/h over both developmental stages, while NR activity in roots was much lower, averaging approximately 115 nmol NO2 formed/g FW/h. Vegetative organ FW, dry weight (DW), and total fruit yield were unaffected by NO3-N concentration. These data suggest that the inability of strawberry to increase growth and fruit yield in response to increasing NO3-N concentrations is not due to limitations in NO3-N uptake rates, but rather to limitations in NO3- reduction and/or assimilation in both roots and leaves.

  17. A Growth and Yield Model for Thinned Stands of Yellow-Poplar

    Treesearch

    Bruce R. Knoebel; Harold E. Burkhart; Donald E. Beck

    1986-01-01

    Simultaneous growth and yield equations were developed for predicting basal area growth and cubic-foot volume growth and yield in thinned stands of yellow-poplar. A joint loss function involving both volume and basal area was used to estimate the coefficients in the system of equations. The estimates obtained were analytically compatible, invariant for projection...

  18. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1989-01-01

    Effects of different ratios incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce (Lactuca sativa L.) in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16% of total irradiance (82 W m-2) from ln lamps. Although leaf dry weight and area were 12-17% greater at 84% ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84% ln was compared with 50% ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84% ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50% ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50% ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84% ln for 8 days continuously.

  19. Global growth and stability of agricultural yield decrease with pollinator dependence

    PubMed Central

    Garibaldi, Lucas A.; Aizen, Marcelo A.; Klein, Alexandra M.; Cunningham, Saul A.; Harder, Lawrence D.

    2011-01-01

    Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers’ inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield–resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961–2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached. PMID:21422295

  20. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  1. Forest Growth and Yield Models Viewed From a Different Perspective

    Treesearch

    Jeffery C. Goelz

    2002-01-01

    Typically, when different forms of growth and yield models are considered, they are grouped into convenient discrete classes. As a heuristic device, I chose to use a contrasting perspective, that all growth and yield models are diameter distribution models that merely differ in regard to which diameter distribution is employed and how the distribution is projected to...

  2. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.

    PubMed

    Zakhartsev, Maksim; Yang, Xuelian; Reuss, Matthias; Pörtner, Hans Otto

    2015-08-01

    Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin

  3. Enhancing growth and yield of grey oyster mushroom (Pleurotus sajor-caju) using sound treatment at different intervals

    NASA Astrophysics Data System (ADS)

    Roshita, I.; Mukhlis, A. Amir; Ain, M. S. Nur; Fern, C. Shi; Zarina, Z.

    2017-09-01

    Mushrooms are famous for their use as source of nutrient and medicinal purposes. Wild mushrooms grew in a large number in the nature after a heavy down pour. Some believes that the thunderstorm and lightning can have effects on the growth of mushrooms. Hence, this study was conducted to investigate the impact of different acoustic sound treatment intervals towards the growth of grey oyster mushroom (Pleurotus sajor-caju). Five different sound treatment intervals involved which were; no treatment (control), 5-day, 10-day, 15-day and 20 day. The variables investigated were mycelium growth rate, growth stage performance (durations for mycelium filling up the bags, pinhead emergence and fruiting bodies formation), yield (number of fruiting bodies, total weight of fruiting bodies and percentage of biological efficiency) and physical analyses (pileus size, colour and texture). There were significant differences (P<0.05) observed in the mycelium growth rate, mycelium filling up the bags and number of fruiting bodies formation among different treatment intervals. As conclusion, the sound treated at different intervals have significant impact on the growth and yield of mushroom production where treatment at 5-day intervals was found to be the best treatment interval.

  4. Response of vegetation to carbon dioxide. Growth, yield and plant water relationships in sweet potatoes in response to carbon dioxide enrichment 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-08-01

    In the summer of 1985, under the joint program of US Department of Energy, Carbon Dioxide Division, and Tuskegee University, experiments were conducted to study growth, yield, photosynthesis and plant water relationships in sweet potato plants growth in an enriched CO{sub 2} environment. The main experiment utilized open top chambers to study the effects of CO{sub 2} and soil moisture on growth, yield and photosynthesis of field-grown plants. In addition, potted plants in open top chambers were utilized in a study of the effects of different CO{sub 2} concentrations on growth pattern, relative growth rate, net assimilation rate and biomassmore » increment at different stages of development. The interaction effects of enriched CO{sub 2} and water stress on biomass production, yield, xylem potential, and stomatal conductance were also investigated. The overall results of the various studies are described.« less

  5. DKDP crystal growth controlled by cooling rate

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  6. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Effects of different ratios of incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16 percent of total irradiance (82 W/sq m) from ln lamps. Although leaf dry weight and area were 12-17 percent greater at 84 percent ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84 percent ln was compared with 50 percent ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84 percent ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50 percent ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50 percent ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84 percent ln for 8 days continuously.

  7. Growth yields and fermentation balance of Bacteroides fragilis cultured in glucose-enriched medium.

    PubMed

    Frantz, J C; McCallum, R E

    1979-03-01

    Bacteroides fragilis is an obligate anaerobic bacterium classified with the gram-negative, non-sporeforming bacilli and is the Bacteroides species most frequently isolated from human infections. In the present study, experiments were designed to investigate growth characteristics of B. fragilis in a complex medium. In a minimal defined medium, which was employed for comparison purposes, B. fragilis grew with a generation time of 2 h. Growth of the organism in glucose-enriched medium used in the present study was superior. Maximum generation time was 60 min. Total and viable cells (colony-forming units) were 8.9 x 10(9) and 2.1 x 10(9), respectively, at maximum measurable growth. The molar growth yield (Ym) was 51.5. Growth yields were found to reach a maximum 2 to 3 h before maximum growth and to vary with respect to the phase of growth. Estimates of the fermentation products indicated that glucose was the sole energy substrate. Major products included acetic acid, propionic acid, lactic acid, and succinic acid. Other products included ethyl alcohol, pyruvic acid, and fumaric acid. No attempt was made to recover CO2 or formic acid. The OR balances from two experiments were 0.013 and -0.093 and the respective carbon recoveries were 6.268 and 6.241. The results of the present study show that B. fragilis is capable of rapid rates of growth in vitro by using glucose as the sole energy source.

  8. Adoption of multivariate copulae in prognostication of economic growth by means of interest rate

    NASA Astrophysics Data System (ADS)

    Saputra, Dewi Tanasia; Indratno, Sapto Wahyu, Dr.

    2015-12-01

    Inflation, at a healthy rate, is a sign of growing economy. Nonetheless, when inflation rate grows uncontrollably, it will negatively influence economic growth. Many tackle this problem by increasing interest rate to help protecting the value of money which is detained by inflation. There are few, however, who study the effects of interest rate in economic growth. The main purposes of this paper are to find how the change of interest rate affects economic growth and to use the relationship in prognostication of economic growth. By using expenditure model, a linear relationship between economic growth and interest rate is developed. The result is then used for prediction by normal copula and Vine Archimedean copula. It is shown that increasing interest rate to tackle inflation is a poor solution. Whereas implementation of copula in predicting economic growth yields an accurate result, with not more than 0.5% difference.

  9. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management

    PubMed Central

    Döring, Johanna; Frisch, Matthias; Tittmann, Susanne; Stoll, Manfred; Kauer, Randolf

    2015-01-01

    The main objective of this study was to determine growth, yield and fruit quality of grapevines under organic and biodynamic management in relation to integrated viticultural practices. Furthermore, the mechanisms for the observed changes in growth, yield and fruit quality were investigated by determining nutrient status, physiological performance of the plants and disease incidence on bunches in three consecutive growing seasons. A field trial (Vitis vinifera L. cv. Riesling) was set up at Hochschule Geisenheim University, Germany. The integrated treatment was managed according to the code of good practice. Organic and biodynamic plots were managed according to Regulation (EC) No 834/2007 and Regulation (EC) No 889/2008 and according to ECOVIN- and Demeter-Standards, respectively. The growth and yield of the grapevines differed strongly among the different management systems, whereas fruit quality was not affected by the management system. The organic and the biodynamic treatments showed significantly lower growth and yield in comparison to the integrated treatment. The physiological performance was significantly lower in the organic and the biodynamic systems, which may account for differences in growth and cluster weight and might therefore induce lower yields of the respective treatments. Soil management and fertilization strategy could be responsible factors for these changes. Yields of the organic and the biodynamic treatments partially decreased due to higher disease incidence of downy mildew. The organic and the biodynamic plant protection strategies that exclude the use of synthetic fungicides are likely to induce higher disease incidence and might partially account for differences in the nutrient status of vines under organic and biodynamic management. Use of the biodynamic preparations had little influence on vine growth and yield. Due to the investigation of important parameters that induce changes especially in growth and yield of grapevines under

  10. Douglas-fir growth and yield: research 1909-1960.

    Treesearch

    R.O. Curtis; D.D. Marshall

    2004-01-01

    Systematic research on growth and yield of Douglas-fir began in 1909. This line of early research evolved over time and culminated in publication of USDA Bulletin 201, The Yield of Douglas-fir in the Pacific Northwest. B201 had an enormous influence on development of Douglas-fir forestry and was arguably the most influential single research publication ever produced in...

  11. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Estimating yellow-poplar growth and yield

    Treesearch

    Donald E. Beck

    1989-01-01

    Yellow-poplar grows in essentially pure, even-aged stands, so you can make growth and yield estimates from relatively few stand characteristics. The tables and models described here require only measures of stand age, stand basal area in trees 4.5 inches and larger, and site index. They were developed by remeasuring (at 5-year intervals over a 20-year period) many...

  13. Crop yield response to increasing biochar rates

    USDA-ARS?s Scientific Manuscript database

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  14. Adjusting slash pine growth and yield for silvicultural treatments

    Treesearch

    Stephen R. Logan; Barry D. Shiver

    2006-01-01

    With intensive silvicultural treatments such as fertilization and competition control now commonplace in today's slash pine (Pinus elliottii Engelm.) plantations, a method to adjust current growth and yield models is required to accurately account for yield increases due to these practices. Some commonly used ad-hoc methods, such as raising site...

  15. Status of growth and yield information for northern forest types

    Treesearch

    Dale S. Solomon

    1977-01-01

    Existing regional growth-and-yield information for most of the northern forest types is summarized by species. Present research is concentrated on growth-simulation models, constructed by either aggregating available information or through individual tree growth studies. A uniformity of more refined measurements is needed so that future growth models can be tried for...

  16. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    USGS Publications Warehouse

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  17. Recent patterns of crop yield growth and stagnation.

    PubMed

    Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A

    2012-01-01

    In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.

  18. Stocking, growth, and yield of birch stands

    Treesearch

    Dale S. Solomon; William B. Leak

    1969-01-01

    Intensive forest management depends heavily upon our ability to measure, control, and predict the growth, yield, or general development of timber stands, regardless of whether the management goal is for timber, aesthetics, recreation, water, or wildlife. A large amount of mensurational data about birch stands has been developed in recent years or synthesized from...

  19. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  20. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth.

    PubMed

    Li, Shuangcheng; Li, Wenbo; Huang, Bin; Cao, Xuemei; Zhou, Xingyu; Ye, Shumei; Li, Chengbo; Gao, Fengyan; Zou, Ting; Xie, Kailong; Ren, Yun; Ai, Peng; Tang, Yangfan; Li, Xuemei; Deng, Qiming; Wang, Shiquan; Zheng, Aiping; Zhu, Jun; Liu, Huainian; Wang, Lingxia; Li, Ping

    2013-01-01

    Grain number, panicle seed setting rate, panicle number and grain weight are the most important components of rice grain yield. To date, several genes related to grain weight, grain number and panicle number have been described in rice. However, no genes regulating the panicle seed setting rate have been functionally characterized. Here we show that the domestication-related POLLEN TUBE BLOCKED 1 (PTB1), a RING-type E3 ubiquitin ligase, positively regulates the rice panicle seed setting rate by promoting pollen tube growth. The natural variation in expression of PTB1 which is affected by the promoter haplotype and the environmental temperature, correlates with the rice panicle seed setting rate. Our results support the hypothesis that PTB1 is an important maternal sporophytic factor of pollen tube growth and a key modulator of the rice panicle seed setting rate. This finding has implications for the improvement of rice yield.

  1. Ultrahigh-yield growth of GaN via halogen-free vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Kimura, Taishi

    2018-06-01

    The material yield of Ga during GaN growth via halogen-free vapor-phase epitaxy (HF-VPE) was systematically investigated and found to be much higher than that obtained using conventional hydride VPE. This is attributed to the much lower process pressure and shorter seed-to-source distance, owing to the inherent chemical reactions and corresponding reactor design used for HF-VPE growth. Ultrahigh-yield GaN growth was demonstrated on a 4-in.-diameter sapphire seed substrate.

  2. High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst.

    PubMed

    Beard, James D; Stringer, Jonathan; Ghita, Oana R; Smith, Patrick J

    2013-10-09

    This study reports on the fabrication of vertically aligned carbon nanotubes localized at specific sites on a growth substrate by deposition of a nanoparticle suspension using inkjet printing. Carbon nanotubes were grown with high yield as vertically aligned forests to a length of approximately 400 μm. The use of inkjet printing for catalyst fabrication considerably improves the production rate of vertically aligned patterned nanotube forests compared with conventional patterning techniques, for example, electron beam lithography or photolithography.

  3. Growth and yield predictions for upland oak stands. 10 years after initial thinning

    Treesearch

    Martin E. Dale; Martin E. Dale

    1972-01-01

    The purpose of this paper is to furnish part of the needed information, that is, quantitative estimates of growth and yield 10 years after initial thinning of upland oak stands. All estimates are computed from a system of equations. These predictions are presented here in tabular form for convenient visual inspection of growth and yield trends. The tables show growth...

  4. Growth and Yield of Appalachian Mixed Hardwoods After Thinning

    Treesearch

    Wade C. Harrison; Harold E. Burkhart; Thomas E. Burk; Donald E. Beckand

    1986-01-01

    G-RAT (Growth of Hardwoods After Thinning) is a system of computer programs used to predict growth and yield of Appalachian mixed hardwoods after thinning. Given a tree list or stand table, along with inputs of stand age, site index, and stand basal area before thinning, G-RAT software uses species-specific individual tree equations to predict tree basal area...

  5. Stocking, growth, and yield of oak stands

    Treesearch

    Samuel F. Gingrich

    1971-01-01

    An appraisal of stocking in even-aged upland oak stands is a prerequisite for determining the cultural needs of a given stand. Most oak stands have sufficient stocking to utilize the site, but are deficient in high-quality trees. Thinning such stands offers a good opportunity to upgrade the relative quality of the growing stock and enhance the growth and yield...

  6. Interactions of viruses in Cowpea: effects on growth and yield parameters

    PubMed Central

    Kareem, KT; Taiwo, MA

    2007-01-01

    The study was carried out to investigate the effects of inoculating three cowpea cultivars: "OLO II", "OLOYIN" and IT86D-719 with three unrelated viruses: Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture on growth and yield of cultivars at 10 and 30 days after planting (DAP). Generally, the growth and yield of the buffer inoculated control plants were significantly higher than those of the virus inoculated plants. Inoculation of plants at an early age of 10 DAP resulted in more severe effect than inoculations at a later stage of 30 DAP. The average values of plant height and number of leaves produced by plants inoculated 30 DAP were higher than those produced by plants inoculated 10 DAP. Most of the plants inoculated 10 DAP died and did not produce seeds. However, " OLOYIN" cultivar was most tolerant and produced reasonable yields when infected 30 DAP. The effect of single viruses on growth and yield of cultivars showed that CABMV caused more severe effects in IT86D-719, SBMV had the greatest effect on "OLO II" while CMeV induced the greatest effect on "OLOYIN". Yield was greatly reduced in double infections involving CABMV in combination with either CMeV or SBMV in "OLOYIN" and "OLO II", however, there was complete loss in yield of IT86D-719. Triple infection led to complete yield loss in all the three cultivars. PMID:17286870

  7. Natural genetic variation for morphological and molecular determinants of plant growth and yield.

    PubMed

    Nunes-Nesi, Adriano; Nascimento, Vitor de Laia; de Oliveira Silva, Franklin Magnum; Zsögön, Agustin; Araújo, Wagner L; Sulpice, Ronan

    2016-05-01

    The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Optimum poultry litter rates for maximum profit vs. yield in cotton production

    USDA-ARS?s Scientific Manuscript database

    Cotton lint yield responds well to increasing rates of poultry litter fertilization, but little is known of how optimum rates for yield compare with optimum rates for profit. The objectives of this study were to analyze cotton lint yield response to poultry litter application rates, determine and co...

  9. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, E B; Guilderson, T P; Dunbar, R B

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimensmore » as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.« less

  10. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  11. Growth and yield responses of field-grown sweetpotato to elevated carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, P.K.; Hileman, D.R.; Ghosh, P.P.

    1996-09-01

    Root crops are important in developing countries, where food supplies are frequently marginal. Increases in atmospheric CO{sub 2} usually lead to increases in plant growth and yield, but little is known about the response of root crops to CO{sub 2} enrichment under field conditions. This experiment was conducted to investigate the effects of CO{sub 2} enrichment on growth and yield of field-grown sweetpotato. Plants were grown in open-top chambers in the field at four CO{sub 2} levels ranging from 354 (ambient) to 665 {mu}mol mol{sup {minus}1} in two growing seasons. Shoot growth was not affected significantly by elevated CO{sub 2}.more » Yield of storage roots increased 46 and 75% at the highest CO{sub 2} level in the 2 yr. The yield enhancement occurred through increases in the number of storage roots in the second year. Storage-root/shoot ratios increased 44% and leaf nitrogen concentrations decreased by 24% at the highest CO{sub 2} level. A comparison of plants grown in the open field to plants grown in open-top chambers at ambient CO{sub 2} concentrations indicated that open-top chambers reduced shoot growth in the first year and storage-root yield in both years. These results are consistent with the majority of CO{sub 2}-enrichment studies done on pot-grown sweetpotato. 37 refs., 2 figs., 5 tabs.« less

  12. Loblolly Pine Growth and Yield Prediction for Managed West Gulf Plantations

    Treesearch

    V. Clark Baldwin; D.P. Feduccia

    1987-01-01

    Complete description, including tables, graphs, computer output, of a growth and yield prediction system providing volume and weight yields in stand and stock table format. An example of system use is given along with information about the computer program, COMPUTE P-LOB, that operates the system.

  13. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.

    PubMed

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Kwasnitschka, Tom; Metaxas, Anna; Dullo, Wolf-Christian

    2016-12-01

    Growth rates of deep-water corals provide important information on the recovery potential of these ecosystems, for example from fisheries-induced impacts. Here, we present in situ growth dynamics that are currently largely unknown for deep-water octocorals, calculated by applying a non-destructive method. Videos of a boulder harbouring multiple colonies of Paragorgia arborea and Primnoa resedaeformis in the Northeast Channel Coral Conservation Area at the entrance to the Gulf of Maine at 863 m depth were collected in 2006, 2010 and 2014. Photogrammetric reconstructions of the boulder and the fauna yielded georeferenced 3D models for all sampling years. Repeated measurements of total length and cross-sectional area of the same colonies allowed the observation of growth dynamics. Growth rates of total length of Paragorgia arborea decreased over time with higher rates between 2006 and 2010 than between 2010 and 2014, while growth rates of cross-sectional area remained comparatively constant. A general trend of decreasing growth rates of total length with size of the coral colony was documented. While no growth was observed for the largest colony (165 cm in length) between 2010 and 2014, a colony 50-65 cm in length grew 3.7 cm yr-1 between 2006 and 2010. Minimum growth rates of 1.6-2.7 cm yr-1 were estimated for two recruits (<23 cm in 2014) of Primnoa resedaeformis. We successfully extracted biologically meaningful data from photogrammetric models and present the first in situ growth rates for these coral species in the Northwest Atlantic.

  15. Yield response to variable rate irrigation in corn

    USDA-ARS?s Scientific Manuscript database

    To investigate the impact of variable rate irrigation on corn yield, twenty plots of corn were laid out under a center pivot variable rate irrigation (VRI) system in an experimental field near Stoneville, MS. The VRI system is equipped with five VRI zone control units, a global positioning system (G...

  16. Intercropping of two Leucaena spp. with sweet potato: yield, growth rate and biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, J.F.

    1982-01-01

    Results of trials with Leucaena leucocephala and Leucaena diversifolia at Wau, Papua New Guinea, showed potential benefits of the agroforestry cropping system. The total biomass yield (sweet potato plus firewood and green manure) was considerably greater than the yield per unit area of sweet potato alone. 3 references.

  17. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Stanciel, K.; Mortley, D. G.; Hileman, D. R.; Loretan, P. A.; Bonsi, C. K.; Hill, W. A.

    2000-01-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  18. Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie.

    PubMed

    Huang, Chengjian; Wei, Gang; Jie, Yucheng; Wang, Longchang; Zhou, Hangfei; Ran, Chunyan; Huang, Zaocun; Jia, Huijuan; Anjum, Shakeel Ahmad

    2014-03-01

    Ramie (Boehmeria nivea L.) is one of the oldest and most important fiber crops in China due to the comfortable textile of its fine fiber. Increased ramie fiber demand brings ramie cultivation to salt-affected regions. The aim of this research was to determine morphological, physiological and biochemical responses of ramie by subjecting plants to varying concentrations of NaCl (0, 2, 4, 6 and 8 g NaCl/kg dry soil) at vigorous growth stage for 10 and 20 days. Results indicated that salinity stress substantially inhibited the growth of hybrid ramie plants and led to remarkable decline in fiber yield. However, when grown at 2 g NaCl/kg growth and fiber yield were similar to non-saline control. In addition, chlorophyll fluorescence and gas exchange parameters were correlated with growth and yield response. Salt treatments promoted a subsequent decrease in maximum quantum efficiency of PSII photochemistry (Fv/Fm), quantum efficiency of open PSII reaction centers (Fv'/Fm') and quantum yield of PSII (φPSII) while non-photochemical quenching (NPQ) changed conversely. Photochemical quenching (qP) and electron transport rate of PSII (ETR) increased at 2 and 4 g NaCl/kg then decreased at 6 and 8 g NaCl/kg. Substantial decline in the PSII activity at high salinity was associated with the loss of chlorophyll contents. Moreover, marked decrease in net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs) was also recorded. Nonetheless, intercellular CO2 (Ci) decreased at low salt stress, subsequently increased at high salt stress while water use efficiency (WUE) and instantaneous water use efficiency (WUEi) altered in opposite direction. Substantial decrease of photosynthesis at high salinity was due to non-stomatal factors. Furthermore, salinity stress led to decrease of proteins and accumulation of proline and malondialdehyde (MDA), as well as enhanced activities of superoxide dismutase (SOD, EC 1.15.1.1) and peroxidase (POD, EC 1.11.1.6), whereas

  19. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    PubMed

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  20. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  1. OAKSIM: An individual-tree growth and yield simulator for managed, even-aged, upland oak stands

    Treesearch

    Donald E. Hilt; Donald E. Hilt

    1985-01-01

    OAKSIM is an individual-tree growth and yield simulator for managed, even-aged, upland oak stands. Growth and yield projections for various thinning alternatives can be made with OAKSIM for a period of up to 50 years. Simulator components include an individual-tree diameter growth model, a mortality model, height prediction equations, bark ratio equations, a taper-...

  2. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  3. Simulated yields for managed northern hardwood stands

    Treesearch

    Dale S. Solomon; William B. Leak; William B. Leak

    1986-01-01

    Board-foot and cubic-foot yields developed with the forest growth model SlMTlM are presented for northern hardwood stands grown with and without management. SIMTIM has been modified to include more accurate growth rates by species, a new stocking chart, and yields that reflect species values and quality classes. Treatments range from no thinning to intensive quality...

  4. [Effects of Lime on Seedling Growth,Yield and Volatile Constituents of Atractylodes lancea].

    PubMed

    Zhang, Yan; Miki, Sakurai; Chen, Mei-lan; Takeda, Xiuji; Zhao, Dong-yue; Kang, Li-ping; Guo, Lan-ping

    2015-03-01

    To investigate the effects of different amounts of lime on yield and quality of Atractylodes lancea, and to provide reference for the herb growing site soil improvement and self-poisoning ease. Add different gradients of lime, and then measure their growth targets, yield and four kinds of volatile constituents content(hinesol, atractylone, β-eudesmol and atractylodin). Volatile constituents yield per plant was calculated. Adding 160 g/m2 lime had a significant role in promoting the growth and yield of herb; Adding 80 g/m2 lime was conducive to the volatile constituents production, and adding lime decreased the atractylone and atractylodin content, while increased the hinesol and β-eudesmol content; Adding 160 g/m2 lime promoted the volatile constituents yield per plant. Adding lime plays a role of neutralize soil pH, antibacteria and prevention incognita, and has a certain degree of ease autotoxicity and obstacle,and then promotes the yield and volatile constituents production of Atractylodes lancea.

  5. Container longleaf pine seedling morphology in response to varying rates of nitrogen fertilization in the nursery and subsequent growth after outplanting

    Treesearch

    D. Paul Jackson; R. Kasten Dumroese; James P. Barnett; William B. Patterson

    2007-01-01

    A fertilization rate of 2 or 3 mg nitrogen (N) per week for 20 weeks yielded longleaf pine (Pinus palustris) seedlings grown inside a greenhouse that survived well and produced good root collar diameter (RCD) growth the first year after outplanting. Of a range of fertilization rates (0.5 to 4 mg N/week), the 2 mg rate yielded seedlings that did not...

  6. Nitrogen rate strategies for reducing yield-scaled nitrous oxide emissions in maize

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Nafziger, Emerson D.; Pittelkow, Cameron M.

    2017-12-01

    Mitigating nitrogen (N) losses from agriculture without negatively impacting crop productivity is a pressing environmental and economic challenge. Reductions in N fertilizer rate are often highlighted as a solution, yet the degree to which crop yields and economic returns may be impacted at the field-level remains unclear, in part due to limited data availability. Farmers are risk averse and potential yield losses may limit the success of voluntary N loss mitigation protocols, thus understanding field-level yield tradeoffs is critical to inform policy development. Using a case study of soil N2O mitigation in the US Midwest, we conducted an ex-post assessment of two economic and two environmental N rate reduction strategies to identify promising practices for maintaining maize yields and economic returns while reducing N2O emissions per unit yield (i.e. yield-scaled emissions) compared to an assumed baseline N input level. Maize yield response data from 201 on-farm N rate experiments were combined with an empirical equation predicting N2O emissions as a function of N rate. Results indicate that the economic strategy aimed at maximizing returns to N (MRTN) led to moderate but consistent reductions in yield-scaled N2O emissions with small negative impacts on yield and slight increases in median returns. The economic optimum N rate strategy reduced yield-scaled N2O emissions in 75% of cases but increased them otherwise, challenging the assumption that this strategy will automatically reduce environmental impacts per unit production. Both environmental strategies, one designed to increase N recovery efficiency and one to balance N inputs with grain N removal, further reduced yield-scaled N2O emissions but were also associated with negative yield penalties and decreased returns. These results highlight the inherent tension between achieving agronomic and economic goals while reducing environmental impacts which is often overlooked in policy discussions. To enable the

  7. Growth models for ponderosa pine: I. Yield of unthinned plantations in northern California.

    Treesearch

    William W. Oliver; Robert F. Powers

    1978-01-01

    Yields for high-survival, unthinned ponderosa pine (Pinus ponderosa Laws.) plantations in northern California are estimated. Stems of 367 trees in 12 plantations were analyzed to produce a growth model simulating stand yields. Diameter, basal area, and net cubic volume yields by Site Indices50 40 through 120 are tabulated for...

  8. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    USGS Publications Warehouse

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  9. Phytoplankton growth rate modelling: can spectroscopic cell chemotyping be superior to physiological predictors?

    PubMed

    Fanesi, Andrea; Wagner, Heiko; Wilhelm, Christian

    2017-02-08

    Climate change has a strong impact on phytoplankton communities and water quality. However, the development of robust techniques to assess phytoplankton growth is still in progress. In this study, the growth rate of phytoplankton cells grown at different temperatures was modelled based on conventional physiological traits (e.g. chlorophyll, carbon and photosynthetic parameters) using the partial least square regression (PLSR) algorithm and compared with a new approach combining Fourier transform infrared-spectroscopy and PLSR. In this second model, it is assumed that the macromolecular composition of phytoplankton cells represents an intracellular marker for growth. The models have comparable high predictive power (R 2 > 0.8) and low error in predicting new observations. Interestingly, not all of the predictors present the same weight in the modelling of growth rate. A set of specific parameters, such as non-photochemical fluorescence quenching (NPQ) and the quantum yield of carbon production in the first model, and lipid, protein and carbohydrate contents for the second one, strongly covary with cell growth rate regardless of the taxonomic position of the phytoplankton species investigated. This reflects a set of specific physiological adjustments covarying with growth rate, conserved among taxonomically distant algal species that might be used as guidelines for the improvement of modern primary production models. The high predictive power of both sets of cellular traits for growth rate is of great importance for applied phycological studies. Our approach may find application as a quality control tool for the monitoring of phytoplankton populations in natural communities or in photobioreactors. © 2017 The Author(s).

  10. An empirical model of the phytoplankton chlorophyll : carbon ratio-the conversion factor between productivity and growth rate

    USGS Publications Warehouse

    Cloern, James E.; Grenz, Christian; Vidergar-Lucas, Lisa

    1995-01-01

    We present an empirical model that describes the ratio of phytoplankton chlorophyll a to carbon, Chl: C, as a function of temperature, daily irradiance, and nutrient-limited growth rate. Our model is based on 219 published measurements of algal cultures exposed to light-limited or nutrient-limited growth conditions. We illustrate an approach for using this estimator of Chl: C to calculate phytoplankton population growth rate from measured primary productivity. This adaptive Chl: C model gives rise to interactive light-nutrient effects in which growth efficiency increases with nutrient availability under low-light conditions. One implication of this interaction is the enhancement of phytoplankton growth efficiency, in addition to enhancement of biomass yield, as a response to eutrophication.

  11. Role of Hydrogen in High-Yield Growth of Boron Nitride Nanotubes at Atmospheric Pressure by Induction Thermal Plasma.

    PubMed

    Kim, Keun Su; Couillard, Martin; Shin, Homin; Plunkett, Mark; Ruth, Dean; Kingston, Christopher T; Simard, Benoit

    2018-01-23

    We recently demonstrated scalable manufacturing of boron nitride nanotubes (BNNTs) directly from hexagonal BN (hBN) powder by using induction thermal plasma, with a high-yield rate approaching 20 g/h. The main finding was that the presence of hydrogen is crucial for the high-yield growth of BNNTs. Here we investigate the detailed role of hydrogen by numerical modeling and in situ optical emission spectroscopy (OES) and reveal that both the thermofluidic fields and chemical pathways are significantly altered by hydrogen in favor of rapid growth of BNNTs. The numerical simulation indicated improved particle heating and quenching rates (∼10 5 K/s) due to the high thermal conductivity of hydrogen over the temperature range of 3500-4000 K. These are crucial for the complete vaporization of the hBN feedstock and rapid formation of nanosized B droplets for the subsequent BNNT growth. Hydrogen is also found to extend the active BNNT growth zone toward the reactor downstream, maintaining the gas temperature above the B solidification limit (∼2300 K) by releasing the recombination heat of H atoms, which starts at 3800 K. The OES study revealed that H radicals also stabilize B or N radicals from dissociation of the feedstock as BH and NH radicals while suppressing the formation of N 2 or N 2 + species. Our density functional theory calculations showed that such radicals can provide faster chemical pathways for the formation of BN compared with relatively inert N 2 .

  12. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    PubMed Central

    Miller, Gabriel A.; Clissold, Fiona J.; Mayntz, David; Simpson, Stephen J.

    2009-01-01

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization. PMID:19625322

  13. Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate

    PubMed Central

    Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.

    1971-01-01

    The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579

  14. Flower synchrony, growth and yield enhancement of small type bitter gourd (Momordica charantia L.) through plant growth regulators and NPK fertilization.

    PubMed

    Mia, Baset M A; Islam, Md Serajul; Miah, Md Yunus; Das, M R; Khan, H I

    2014-02-01

    Assessment of growth regulator and NPK fertilization effects are important tools for flower stimulation and yield improvement in cucurbits. This investigation demonstrates the comparative male-female flower induction and fruit yield of small sized bitter gourd treated with NPK fertilizers and plant growth regulators. Namely, two experiments having three replicates were conducted in a Randomized Complete Block Design (RCBD) with NPK fertilization and plant growth regulators-GA3, NAA and Ethophon application on small sized bitter gourd-genotype BG5 at the research field of the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU). In experiment 1, different doses of NPK fertilizers comprised of 10 treatments and in that of experiment 2, different levels of plant growth regulators indicated 10 treatments. The results indicated that application of different doses of NPK fertilizer and plant growth regulators significantly (< or = 0.05) influenced over the flower initiation and fruit setting. The application of N90-P45-K60 fertilizer along with Ethophon spraying resulted in the better yield of small sized bitter gourd.

  15. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  16. Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata.

    PubMed

    Tetteh, Rashied; Yamaguchi, Masahiro; Wada, Yoshiharu; Funada, Ryo; Izuta, Takeshi

    2015-01-01

    To assess the effects of O(3)on growth, net photosynthesis and yield of two African varieties of cowpea(Vigna unguiculata L.), Blackeye and Asontem were exposed as potted plants to air that was either filtered to remove O(3) (FA), non-filtered air (NF), non-filtered with added O3 of approximately 50 nL L(-1) (ppb) from 11:00 to 16:00 (NF + O(3)) for 88 days in open-top chambers. The mean O(3) concentration (11:00-16:00) during the exposure period had a range from 16 ppb in the FA treatment to 118 ppb in the NF + O(3) treatment. Net photosynthetic rate and leaf area per plant were significantly reduced by exposure to O(3), reducing the growth of both varieties. Exposure to O(3) significantly reduced the 100-seed weight and number of seeds per pod. As a result, cowpea yield was significantly reduced by long-term exposure to O(3), with no difference in sensitivity between the varieties.

  17. Growth, yield, and structure of extended rotation Pinus resinosa stands in Minnesota, USA

    Treesearch

    Anthony W. D' Amato; Brian J. Palik; Christel C. Kern

    2010-01-01

    Extended rotations are increasingly used to meet ecological objectives on forestland; however, information about long-term growth and yield of these systems is lacking for most forests in North America. Additionally, long-term growth responses to repeated thinnings in older stands have received little attention. We addressed these needs by examining the growth and...

  18. [Effect of the development phase and growth rate of a Shigella sonnei population on the reproduction of homologous bacteriophage].

    PubMed

    Voroshilova, N N; Kazakova, T B

    1983-04-01

    This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.

  19. Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh.

    PubMed

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1)) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1) in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha(-1) and thereafter, yield decreased slightly beyond 40 kg seed ha(-1). Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1) in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha(-1). In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1). Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.

  20. Effect of Weed Management and Seed Rate on Crop Growth under Direct Dry Seeded Rice Systems in Bangladesh

    PubMed Central

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S.

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha−1) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha−1 in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha−1 and thereafter, yield decreased slightly beyond 40 kg seed ha−1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0–2.2 and 2.9–3.2 t ha−1 in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha−1. In the partially-weedy plots, weed biomass decreased by 41–60% and 54–56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha−1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition. PMID:25000520

  1. Effects of inbreeding on coastal Douglas fir growth and yield in operational plantations: a model-based approach.

    PubMed

    Wang, Tongli; Aitken, Sally N; Woods, Jack H; Polsson, Ken; Magnussen, Steen

    2004-04-01

    In advanced generation seed orchards, tradeoffs exist between genetic gain obtained by selecting the best related individuals for seed orchard populations, and potential losses due to subsequent inbreeding between these individuals. Although inbreeding depression for growth rate is strong in most forest tree species at the individual tree level, the effect of a small proportion of inbreds in seed lots on final stand yield may be less important. The effects of inbreeding on wood production of mature stands cannot be assessed empirically in the short term, thus such effects were simulated for coastal Douglas fir [ Pseudotsuga menziesii var. menziesii (Mirb.) Franco] using an individual-tree growth and yield model TASS (Tree and Stand Simulator). The simulations were based on seed set, nursery culling rates, and 10-year-old field test performance for trees resulting from crosses between unrelated individuals and for inbred trees produced through mating between half-sibs, full-sibs, parents and offspring and self-pollination. Results indicate that inclusion of a small proportion of related clones in seed orchards will have relatively low impacts on stand yields due to low probability of related individuals mating, lower probability of producing acceptable seedlings from related matings than from unrelated matings, and a greater probability of competition-induced mortality for slower growing inbred individuals than for outcrossed trees. Thus, competition reduces the losses expected due to inbreeding depression at harvest, particularly on better sites with higher planting densities and longer rotations. Slightly higher breeding values for related clones than unrelated clones would offset or exceed the effects of inbreeding resulting from related matings. Concerns regarding the maintenance of genetic diversity are more likely to limit inclusion of related clones in orchards than inbreeding depression for final stand yield.

  2. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  3. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  4. Yield rate of chromosomal microarray analysis in fetuses with congenital heart defects.

    PubMed

    Turan, Sifa; Asoglu, Mehmet Resit; Gabbay-Benziv, Rinat; Doyle, Lauren; Harman, Christopher; Turan, Ozhan M

    2018-02-01

    The purpose of this study was to calculate the yield rates of CMA in fetuses diagnosed with various CHDs in a tertiary center. This cohort study collected prenatal genetic test results of 145 fetuses diagnosed with CHD. All 145 cases underwent Conventional karyotype (CK), followed by CMA in cases of negative CK result. "Detection rate" of genetic abnormalities was calculated as the percentage of cases with genetic abnormalities identified. The rate of genetic abnormalities detected by CK was first calculated, and then the cumulative detection rate was calculated in the study population. "Yield rate of CMA" was determined by subtracting the cumulative detection rate from the detection rate of CK. The cumulative detection rate was assumed to represent the detection rate of CMA since it is due to the fact that if CMA had been done for all patients before CK, it would have diagnosed all the genetic abnormalities in the study population, and thus it was named as anticipated CMA. Of the 145 CHD cases, 92 (63.4%) had isolated CHD and 53 (36.6%) had concomitant CHD and extracardiac anomaly (ECA). The detection rate of genetic abnormalities was 14% and 33.8% for CK and anticipated-CMA respectively (p < .001). The yield rate of CMA was 19.8% and 16.1% before and after the exclusion of cases with 22q.11.2 deletion/duplication, respectively. The detection rates of genetic abnormalities for isolated CHD, and concomitant CHD-ECA groups were 6.5% and 26.4% by CK, and 23.9% and 50.9% by anticipated-CMA, respectively (p < .01). The yield rate of CMA was 17.4% and 24.5% for isolated CHD and concomitant CHD-ECA cases, respectively. CMA increases the diagnostic yield in fetuses with CHD, regardless of whether it is isolated or not. CMA should be the modality of choice when investigating the genetic origin of CHDs until whole exome or genome sequencing is implemented into routine clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate.

    PubMed

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.

  6. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    PubMed Central

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  7. Stature of sub-arctic birch in relation to growth rate, lifespan and tree form.

    PubMed

    Jónsson, Thorbergur Hjalti

    2004-11-01

    Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0-2, 2-4 and 4-12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature.

  8. Stature of Sub-arctic Birch in Relation to Growth Rate, Lifespan and Tree Form

    PubMed Central

    JÓNSSON, THORBERGUR HJALTI

    2004-01-01

    • Background and Aims Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. • Methods A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0–2, 2–4 and 4–12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. • Key Results Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. • Conclusions The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature. PMID:15374837

  9. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    PubMed

    Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology

  10. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change

    PubMed Central

    Ashraf, M. Irfan; Meng, Fan-Rui; Bourque, Charles P.-A.; MacLean, David A.

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial

  11. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  12. Connection between the growth rate distribution and the size dependent crystal growth

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  13. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model.

    PubMed

    Wang, Qianfeng; Wu, Jianjun; Li, Xiaohan; Zhou, Hongkui; Yang, Jianhua; Geng, Guangpo; An, Xueli; Liu, Leizhen; Tang, Zhenghong

    2017-04-01

    The quantitative evaluation of the impact of drought on crop yield is one of the most important aspects in agricultural water resource management. To assess the impact of drought on wheat yield, the Environmental Policy Integrated Climate (EPIC) crop growth model and daily Standardized Precipitation Evapotranspiration Index (SPEI), which is based on daily meteorological data, are adopted in the Huang Huai Hai Plain. The winter wheat crop yields are estimated at 28 stations, after calibrating the cultivar coefficients based on the experimental site data, and SPEI data was taken 11 times across the growth season from 1981 to 2010. The relationship between estimated yield and multi-scale SPEI were analyzed. The optimum time scale SPEI to monitor drought during the crop growth period was determined. The reference yield was determined by averaging the yields from numerous non-drought years. From this data, we propose a comprehensive quantitative method which can be used to predict the impact of drought on wheat yields by combining the daily multi-scale SPEI and crop growth process model. This method was tested in the Huang Huai Hai Plain. The results suggested that estimation of calibrated EPIC was a good predictor of crop yield in the Huang Huai Hai Plain, with lower RMSE (15.4 %) between estimated yield and observed yield at six agrometeorological stations. The soil moisture at planting time was affected by the precipitation and evapotranspiration during the previous 90 days (about 3 months) in the Huang Huai Hai Plain. SPEI G90 was adopted as the optimum time scale SPEI to identify the drought and non-drought years, and identified a drought year in 2000. The water deficit in the year 2000 was significant, and the rate of crop yield reduction did not completely correspond with the volume of water deficit. Our proposed comprehensive method which quantitatively evaluates the impact of drought on crop yield is reliable. The results of this study further our

  14. Growth Rates of Microbes in the Oceans.

    PubMed

    Kirchman, David L

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  15. Stand-level growth and yield component models for red oak-sweetgum forests on Mid-South minor stream bottoms

    Treesearch

    Emily B. Schultz; J. Clint Iles; Thomas G. Matney; Andrew W. Ezell; James S. Meadows; Theodor D. Leininger; al. et.

    2010-01-01

    Greater emphasis is being placed on Southern bottomland hardwood management, but relatively few growth and yield prediction systems exist that are based on sufficient measurements. We present the aggregate stand-level expected yield and structural component equations for a red oak (Quercus section Lobatae)-sweetgum (Liquidambar styraciflua L.) growth and yield model....

  16. Real-Time Imaging of Ground Cover: Relationships with Radiation Capture, Canopy Photosynthesis, and Daily Growth Rate

    NASA Technical Reports Server (NTRS)

    Klassen, S. P.; Ritchie, G.; Frantz, J. M.; Pinnock, D.; Bugbee, B.

    2003-01-01

    Cumulative absorbed radiation is highly correlated with crop biomass and yield. In this chapter we describe the use of a digital camera and commercial imaging software for estimating daily radiation capture, canopy photosynthesis, and relative growth rate. Digital images were used to determine percentage of ground cover of lettuce (Lactuca sativa L.) communities grown at five temperatures. Plants were grown in a steady-state, 10-chamber CO2 gas exchange system, which was used to measure canopy photosynthesis and daily carbon gain. Daily measurements of percentage of ground cover were highly correlated with daily measurements of both absorbed radiation (r(sup 2) = 0.99) and daily carbon gain (r(sup 2) = 0.99). Differences among temperature treatments indicated that these relationships were influenced by leaf angle, leaf area index, and chlorophyll content. An analysis of the daily images also provided good estimates of relative growth rates, which were verified by gas exchange measurements of daily carbon gain. In a separate study we found that images taken at hourly intervals were effective for monitoring real-time growth. Our data suggests that hourly images can be used for early detection of plant stress. Applications, limitations, and potential errors are discussed. We have long known that crop yield is determined by the efficiency of four component processes: (i) radiation capture, (ii) quantum yield, (iii) carbon use efficiency, and (iv) carbon partitioning efficiency (Charles-Edwards, 1982; Penning de Vries & van Laar, 1982; Thornley, 1976). More than one-half century ago, Watson (1947, 1952) showed that variation in radiation capture accounted for almost all of the variation in yield between sites in temperate regions, because the three other components are relatively constant when the crop is not severely stressed. More recently, Monteith (1977) reviewed the literature on the close correlation between radiation capture and yield. Bugbee and Monje (1992

  17. The fficiency of Mycorrhiza biofertilizer treatment to the growth and yield of soybean

    NASA Astrophysics Data System (ADS)

    Samanhudi; Pujiasmanto, B.; Sudadi; Putra, I. H.; Mumtazah, H. M.

    2018-03-01

    Soybean is one of the major commodities in Indonesia. Due to its high demand, its requires an effort to increase the production. Soybeans are generally cultivated in dry land, for that its need a special management to increase the yield. The association between Mycorrhiza and roots help the plant to get water and nutrients. In this regard Mycorrhiza expected to increase soybean yield and efficiency. This research aim is to study the dose of Mycorrhiza on the growth and yield of soybean efficiently. The experiment was conducted in Selogiri District, Wonogiri, while the analysis of Mycorrhiza and soil was inFaculty of Agriculture, Universitas Sebelas Maret Surakarta from February to April 2016. Randomized Complete Block Design (RCBD) with two factors was emplyed for this experiment. The treatments are compost dose (derived from Waste Management Faculty of Agriculture UNS) and Mycorrhizal dose (obtained from BPPT Serpong). The result showed that the Mycorrhiza treatmentwas able to improved the growth and yield of soybean. The most efficient dose of is Mycorrhiza treatment at 0.64 ton ha-1.

  18. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    NASA Astrophysics Data System (ADS)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  19. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory.

    PubMed

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-07-27

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.

  20. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory

    PubMed Central

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R.; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-01-01

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R2 of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system. PMID:27460882

  1. [Effects of flower bud removal and artificial pollination on growth and yield of Tulipa edulis].

    PubMed

    Miao, Yuan-Yuan; Zhu, Zai-Biao; Guo, Qiao-Sheng; Ma, Hong-Liang; Yang, Ying; Zhu, Li-Fang

    2014-06-01

    The study was conducted to explore the response of growth and yield of Tulipa edulis to flower bud removal and artificial pollination. And flower bud removal and artificial pollination were carried out in the squaring period and bloom stage respectively. The morphological index and biomass indicators were determined and the yield was counted in harvest time. Result showed that flower bud removal was beneficial to the growth of T. edulis, resulting in increasing growth index, biomass as well as the yield of bulb. The diameter and dry weight of T. edulis fruit by artificial pollination were increased significantly compared with the control. Seed setting percentage increased to 100%, and the number of seed as well as the single grain weight increased by 69.03% and 16.48%, respectively, which did not significantly affect the bulb production. In conclusion, Flower bud removal treatment accelerates bulb biomass increase, so as to improve its yield. Artificial pollination raised significantly seed setting percentage, seed number as well as the single grain weight.

  2. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  3. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat

    PubMed Central

    Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2015-01-01

    Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. PMID:26179580

  4. Effects of potentised substances on growth rate of the water plant Lemna gibba L.

    PubMed

    Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan

    2009-04-01

    This study investigated, whether the growth rate of Lemna gibba L. (duckweed) can be influenced by the application of homeopathic potencies of gibberellic acid, kinetin, argentum nitricum, and lemna minor. Duckweed was grown in either potencies (14x-30x, decimal steps) or water controls (unsuccussed and succussed) over seven days. Frond (leaf-like structure) growth was measured using a non-destructive image analysis system. Growth rates were calculated for three time intervals (0-7, 0-3, 3-7 days). Five to six independent, randomized and blinded experiments were analysed for each of the four tested substances. Water control experiments were performed repeatedly to test the reliability of the experimental set-up (systematic negative controls). The systematic negative control experiments did not yield any significant effects. Hence, false positive results could be excluded. The test system had a low coefficient of variation (1.5%). Out of the four tested substances gibberellic acid had the most pronounced effect (p=0.0002, F-test) on the main outcome parameter frond growth rate (r(area) day 0-7). Potency levels 15x, 17x, 18x, 23x and 24x reduced growth rate of Lemna gibba (p<0.05 against the pooled water control, LSD test). Lemna gibba may be considered as a suitable test organism for further studies on the efficacy of homeopathic potencies. Evidence accumulates, that adjacent potency levels may strongly differ in their biological activity. Potential consequences for therapeutical application might be worth investigating.

  5. Growth rate variation among passerine species in tropical and temperate sites: an antagonistic interaction between parental food provisioning and nest predation risk

    USGS Publications Warehouse

    Martin, Thomas E.; Llyod, Penn; Bosque, Carlos; Barton, Daniel C.; Biancucci, Atilio L.; Cheng, Yi-Ru; Ton, Riccardo

    2011-01-01

    Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species.

  6. Growth and yield in natural stands of slash pine and suggested management alternatives

    Treesearch

    Frank A. Bennett

    1980-01-01

    Yields are presented by stand age, site index, and stand basal area at the beginning of a growth period. Differences between these yields and those projected 20 and 50 years ago are explained partly by changing definitions of normal or full stocking and partly by changes in forest management. If only pulpwood harvesting is envisioned, fairly high stocking is needed to...

  7. Growth and yield of red pine in the Lake States

    Treesearch

    Robert E. Buckman; Badege Bishaw; T.J. Hanson; Frank A. Benford

    2006-01-01

    This review examines the entire portfolio of active and inactive red pine growth and yield studies maintained by the USDA Forest Service, North Central Research Station and several of its cooperators. The oldest studies date back to the mid-1920s. Available for analysis are 31 experiments and sets of monitoring plots in both planted and natural forests. These contain 3...

  8. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    PubMed Central

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  9. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    PubMed

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  10. Molecular Based Temperature and Strain Rate Dependent Yield Criterion for Anisotropic Elastomeric Thin Films

    NASA Technical Reports Server (NTRS)

    Bosi, F.; Pellegrino, S.

    2017-01-01

    A molecular formulation of the onset of plasticity is proposed to assess temperature and strain rate effects in anisotropic semi-crystalline rubbery films. The presented plane stress criterion is based on the strain rate-temperature superposition principle and the cooperative theory of yielding, where some parameters are assumed to be material constants, while others are considered to depend on specific modes of deformation. An orthotropic yield function is developed for a linear low density polyethylene thin film. Uniaxial and biaxial inflation experiments were carried out to determine the yield stress of the membrane via a strain recovery method. It is shown that the 3% offset method predicts the uniaxial elastoplastic transition with good accuracy. Both the tensile yield points along the two principal directions of the film and the biaxial yield stresses are found to obey the superposition principle. The proposed yield criterion is compared against experimental measurements, showing excellent agreement over a wide range of deformation rates and temperatures.

  11. Growth axis maturation is linked to nutrition, growth and developmental rate.

    PubMed

    Hetz, Jennifer A; Menzies, Brandon R; Shaw, Geoffrey; Rao, Alexandra; Clarke, Iain J; Renfree, Marilyn B

    2015-08-15

    Maturation of the mammalian growth axis is thought to be linked to the transition from fetal to post-natal life at birth. However, in an altricial marsupial, the tammar wallaby (Macropus eugenii), this process occurs many months after birth but at a time when the young is at a similar developmental stage to that of neonatal eutherian mammals. Here we manipulate growth rates and demonstrate in slow, normal and fast growing tammar young that nutrition and growth rate affect the time of maturation of the growth axis. Maturation of GH/IGF-I axis components occurred earlier in fast growing young, which had significantly increased hepatic GHR, IGF1 and IGFALS expression, plasma IGF-I concentrations, and significantly decreased plasma GH concentrations compared to age-matched normal young. These data support the hypothesis that the time of maturation of the growth axis depends on the growth rate and maturity of the young, which can be accelerated by changing their nutritional status. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. The maximum growth rate of life on Earth

    NASA Astrophysics Data System (ADS)

    Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Olley, June; Ratkowsky, David

    2018-01-01

    Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.

  13. Growth, yield and compositional characteristics of Jerusalem artichoke as it relates to biomass production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, M.D.; Chubey, B.B.; Dorrell, D.G.

    1980-01-01

    Jerusalem artichoke (Helianthus tuberosus L.) has shown excellent potential as a carbohydrate-rich crop. Initial investigations determined inulin and tuber yields; however, when additional studies showed that good quality pulp remained after inulin extraction and high forage yields per hectare were obtainable, the scope of investigation was broadened to assess utilization of the total plant. Plant growth, yield and compositional characteristics of Jerusalem artichoke as they relate to biomass production will be reported.

  14. A semi-empirical model for the complete orientation dependence of the growth rate for vapor phase epitaxy - Chloride VPE of GaAs

    NASA Technical Reports Server (NTRS)

    Seidel-Salinas, L. K.; Jones, S. H.; Duva, J. M.

    1992-01-01

    A semi-empirical model has been developed to determine the complete crystallographic orientation dependence of the growth rate for vapor phase epitaxy (VPE). Previous researchers have been able to determine this dependence for a limited range of orientations; however, our model yields relative growth rate information for any orientation. This model for diamond and zincblende structure materials is based on experimental growth rate data, gas phase diffusion, and surface reactions. Data for GaAs chloride VPE is used to illustrate the model. The resulting growth rate polar diagrams are used in conjunction with Wulff constructions to simulate epitaxial layer shapes as grown on patterned substrates. In general, this model can be applied to a variety of materials and vapor phase epitaxy systems.

  15. Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon

    USGS Publications Warehouse

    Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.

    1997-01-01

    We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.

  16. Division-Based, Growth Rate Diversity in Bacteria

    PubMed Central

    Gangwe Nana, Ghislain Y.; Ripoll, Camille; Cabin-Flaman, Armelle; Gibouin, David; Delaune, Anthony; Janniere, Laurent; Grancher, Gerard; Chagny, Gaelle; Loutelier-Bourhis, Corinne; Lentzen, Esther; Grysan, Patrick; Audinot, Jean-Nicolas; Norris, Vic

    2018-01-01

    To investigate the nature and origins of growth rate diversity in bacteria, we grew Escherichia coli and Bacillus subtilis in liquid minimal media and, after different periods of 15N-labeling, analyzed and imaged isotope distributions in individual cells with Secondary Ion Mass Spectrometry. We find a striking inter- and intra-cellular diversity, even in steady state growth. This is consistent with the strand-dependent, hyperstructure-based hypothesis that a major function of the cell cycle is to generate coherent, growth rate diversity via the semi-conservative pattern of inheritance of strands of DNA and associated macromolecular assemblies. We also propose quantitative, general, measures of growth rate diversity for studies of cell physiology that include antibiotic resistance. PMID:29867792

  17. Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms†

    PubMed Central

    Kostka, Joel E.; Dalton, Dava D.; Skelton, Hayley; Dollhopf, Sherry; Stucki, Joseph W.

    2002-01-01

    Smectite clay minerals are abundant in soils and sediments worldwide and are typically rich in Fe. While recent investigations have shown that the structural Fe(III) bound in clay minerals is reduced by microorganisms, previous studies have not tested growth with clay minerals as the sole electron acceptor. Here we have demonstrated that a pure culture of Shewanella oneidensis strain MR-1 as well as enrichment cultures of Fe(III)-reducing bacteria from rice paddy soil and subsurface sediments are capable of conserving energy for growth with the structural Fe(III) bound in smectite clay as the sole electron acceptor. Pure cultures of S. oneidensis were used for more detailed growth rate and yield experiments on various solid- and soluble-phase electron acceptors [smectite, Fe(III) oxyhydroxide FeOOH, Fe(III) citrate, and oxygen] in the same minimal medium. Growth was assessed as direct cell counts or as an increase in cell carbon (measured as particulate organic carbon). Cell counts showed that similar growth of S. oneidensis (108 cells ml−1) occurred with smectitic Fe(III) and on other Fe forms [amorphous Fe(III) oxyhydroxide, and Fe citrate] or oxygen as the electron acceptor. In contrast, cell yields of S. oneidensis measured as the increase in cell carbon were similar on all Fe forms tested while yields on oxygen were five times higher, in agreement with thermodynamic predictions. Over a range of particle loadings (0.5 to 4 g liter−1), the increase in cell number was highly correlated to the amount of structural Fe in smectite reduced. From phylogenetic analysis of the complete 16S rRNA gene sequences, a predominance of clones retrieved from the clay mineral-reducing enrichment cultures were most closely related to the low-G+C gram-positive members of the Bacteria (Clostridium and Desulfitobacterium) and the δ-Proteobacteria (members of the Geobacteraceae). Results indicate that growth with smectitic Fe(III) is similar in magnitude to that with Fe

  18. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    PubMed

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  19. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants.

    PubMed

    Kataria, Sunita; Guruprasad, K N; Ahuja, Sumedha; Singh, Bupinder

    2013-10-05

    A field experiment was conducted under tropical climate for assessing the effect of ambient UV-B and UV-A by exclusion of UV components on the growth, photosynthetic performance and yield of C3 (cotton, wheat) and C4 (amaranthus, sorghum) plants. The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315nm), UV-A+B (<400nm), transmitted all the UV (280-400nm) or without filters. All the four plant species responded to UV exclusion by a significant increase in plant height, leaf area, leaf biomass, total biomass accumulation and yield. Measurements of the chlorophyll, chlorophyll fluorescence parameters, gas exchange parameters and the activity of Ribulose-1,5-bisphosphate carboxylase (Rubisco) by fixation of (14)CO2 indicated a direct relationship between enhanced rate of photosynthesis and yield of the plants. Quantum yield of electron transport was enhanced by the exclusion of UV indicating better utilization of PAR assimilation and enhancement in reducing power in all the four plant species. Exclusion of UV-B in particular significantly enhanced the net photosynthetic rate, stomatal conductance and activity of Rubisco. Additional fixation of carbon due to exclusion of ambient UV-B was channeled towards yield as there was a decrease in the level of UV-B absorbing substances and an increase in soluble proteins in all the four plant species. The magnitude of the promotion in all the parameters studied was higher in dicots (cotton, amaranthus) compared to monocots (wheat, sorghum) after UV exclusion. The results indicated a suppressive action of ambient UV-B on growth and photosynthesis; dicots were more sensitive than monocots in this suppression while no great difference in sensitivity was found between C3 and C4 plants. Experiments indicated the suppressive action of ambient UV on carbon fixation and yield of C3 and C4 plants. Exclusion of solar UV-B will have agricultural benefits in both C3 and C4 plants

  20. Biomedical progress rates as new parameters for models of economic growth in developed countries.

    PubMed

    Zhavoronkov, Alex; Litovchenko, Maria

    2013-11-08

    While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age. The biomedical progress rate is comprised of the rejuvenation rate (extending the productive lifespan) and the non-rejuvenating rate (extending the lifespan beyond the age at which the net contribution to the economy becomes negative). While staying within the neoclassical economics framework and extending the overlapping generations (OLG) growth model and assumptions from the life cycle theory of saving behavior, we provide an example of the relations between these new parameters in the context of demographics, labor, households and the firm.

  1. Biomedical Progress Rates as New Parameters for Models of Economic Growth in Developed Countries

    PubMed Central

    Zhavoronkov, Alex; Litovchenko, Maria

    2013-01-01

    While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age. The biomedical progress rate is comprised of the rejuvenation rate (extending the productive lifespan) and the non-rejuvenating rate (extending the lifespan beyond the age at which the net contribution to the economy becomes negative). While staying within the neoclassical economics framework and extending the overlapping generations (OLG) growth model and assumptions from the life cycle theory of saving behavior, we provide an example of the relations between these new parameters in the context of demographics, labor, households and the firm. PMID:24217179

  2. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat.

    PubMed

    Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2015-09-01

    Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens L.) as affected by growing media.

    PubMed

    Rezaei Nejad, Abdolhossein; Ismaili, Ahmad

    2014-03-30

    Using proper growing medium is known to be an effective way to improve crop growth and yield. However, the effects of growing media on geranium essential oil have scarcely ever been examined in detail. In this research, the effects of different growing media (soil, sand, pumice, perlite and perlite + cocopeat) on growth, oil yield and composition of geranium were studied. Growth was significantly improved in soilless-grown plants compared with soil-grown plants. Oil yield of soilless-grown plants (except for pumice) was about threefold higher than that of soil-grown plants. The increase in oil yield was correlated with higher leaf dry weight (r²  = 0.96), as oil content was not affected. The citronellol/geranium ratio of oil was clearly affected by growing media, ranging from 5:1 in soil culture to 3:1 in soilless culture. The latter is acceptable for perfumery. Compared with soil, soilless media could produce higher yields of high-quality geranium oil that fits market requirements. Growth, oil yield and composition of plants grown in sand (a cheap and abundant growing medium) were not significantly different from those of plants grown in perlite and perlite + cocopeat. © 2013 Society of Chemical Industry.

  4. Growth and development rates have different thermal responses.

    PubMed

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  5. Population growth rates: issues and an application.

    PubMed Central

    Godfray, H Charles J; Rees, Mark

    2002-01-01

    Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering. PMID:12396521

  6. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  7. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    USDA-ARS?s Scientific Manuscript database

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  8. Sewage sludge used as organic manure in Moroccan sunflower culture: Effects on certain soil properties, growth and yield components.

    PubMed

    Mohamed, Bourioug; Mounia, Krouna; Aziz, Abouabdillah; Ahmed, Harraq; Rachid, Bouabid; Lotfi, Aleya

    2018-06-15

    The wastewater treatment and sludge production sectors in Morocco are recent. Considered as waste, no management strategy for sewage sludge (SS) has been implemented. Thus, its disposal definitely represents a major environmental problem since sludge is either incinerated, used as landfill or simply deposited near wastewater treatment plants. The objective of this study was to determine the effects of dehydrated SS on certain soil properties (pH, electrical conductivity (EC), Mineral nitrogen, available phosphate P 2 O 5 , and soluble potassium K 2 O), and also on growth and yield components of the sunflower (Helianthus annuus L.). An experiment was conducted using six treatment rates (0; 0 + NPK; 15; 30; 60 and 120 t ha -1 ). The results showed that soil pH was significantly affected by SS, becoming less alkaline compared to the control, while electrical conductivity increased significantly when the applied doses were above 30 t ha -1 . Also, a significant enrichment in mineral N and available phosphorus was detected in amended soil. However, no differences were found between pots having received the mineral fertilization and the SS at 15 t ha -1 . Stem height growth of the sunflower seedlings receiving SS increased significantly compared to the two controls. For both the aerial and root parts, significant increases in dry biomass accumulation were observed compared to the unamended plants. Net CO 2 assimilation (A n ) increased, while stomatal conductance (g sw ) and transpiration rates (T r ) decreased with increasing SS rates. SS application at 15 t ha -1 presented similar values of the yield components compared to plants fertilized chemically. However, grain yield (in quintals ha -1 ) was noted to be 2.4, 5 and 8 times higher in treatments receiving SS respectively at the rate of 30, 60 and 120 t ha -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    PubMed

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions. © 2014 John Wiley & Sons Ltd.

  10. Predawn respiration rates during flowering are highly predictive of yield response in Gossypium hirsutum when yield variability is water-induced

    USDA-ARS?s Scientific Manuscript database

    Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesiz...

  11. Modeling Tetragonal Lysozyme Crystal Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2003-01-01

    Tetragonal lysozyme 110 face crystal growth rates, measured over 5 orders of magnitude in range, can be described using a model where growth occurs by 2D nucleation on the crystal surface for solution supersaturations of c/c(sub eq) less than or equal to 7 +/- 2. Based upon the model, the step energy per unit length, beta was estimated to be approx. 5.3 +/- 0.4 x 10(exp -7) erg/mol-cm, which for a step height of 56 A corresponds to barrier of approx. 7 +/- 1 k(sub B)T at 300 K. For supersaturations of c/c(sub eq) > 8, the model emphasizing crystal growth by 2D nucleation not only could not predict, but also consistently overestimated, the highest observable crystal growth rates. Kinetic roughening is hypothesized to occur at a cross-over supersaturation of c/c(sub eq) > 8, where crystal growth is postulated to occur by a different process such as adsorption. Under this assumption, all growth rate data indicated that a kinetic roughening transition and subsequent crystal growth by adsorption for all solution conditions, varying in buffer pH, temperature and precipitant concentration, occurs for c/c(sub eq)(T, pH, NaCl) in the range between 5 and 10, with an energy barrier for adsorption estimated to be approx. 20 k(sub B)T at 300 K. Based upon these and other estimates, we determined the size of the critical surface nucleate, at the crossover supersaturation and higher concentrations, to range from 4 to 10 molecules.

  12. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators.

    PubMed

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2015-07-01

    Crop yield, vegetative or reproductive, depends on access to an adequate supply of essential mineral nutrients. At the same time, a crop plant's growth and development, and thus yield, also depend on in situ production of plant hormones. Thus optimizing mineral nutrition and providing supplemental hormones are two mechanisms for gaining appreciable yield increases. Optimizing the mineral nutrient supply is a common and accepted agricultural practice, but the co-application of nitrogen-based fertilizers with plant hormones or plant growth regulators is relatively uncommon. Our review discusses possible uses of plant hormones (gibberellins, auxins, cytokinins, abscisic acid and ethylene) and specific growth regulators (glycine betaine and polyamines) to enhance and optimize crop yield when co-applied with nitrogen-based fertilizers. We conclude that use of growth-active gibberellins, together with a nitrogen-based fertilizer, can result in appreciable and significant additive increases in shoot dry biomass of crops, including forage crops growing under low-temperature conditions. There may also be a potential for use of an auxin or cytokinin, together with a nitrogen-based fertilizer, for obtaining additive increases in dry shoot biomass and/or reproductive yield. Further research, though, is needed to determine the potential of co-application of nitrogen-based fertilizers with abscisic acid, ethylene and other growth regulators. © 2014 Society of Chemical Industry.

  13. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil.

    PubMed

    Saleem, Muhammad; Asghar, Hafiz Naeem; Zahir, Zahir Ahmad; Shahid, Muhammad

    2018-03-01

    Present study was conducted to evaluate the effect of lead tolerant plant growth promoting rhizobacteria (LTPGPR) on growth, physiology, yield, antioxidant activities and lead uptake in sunflower in soil contaminated with lead under pot conditions. Three pre-characterized LTPGP strains (S2 (Pseudomonas gessardii strain BLP141), S5 (Pseudomonas fluorescens A506) and S10 (Pseudomonas fluorescens strain LMG 2189)) were used to inoculate sunflower growing in soil contaminated with different levels (300, 600 and 900 mg kg -1 ) of lead by using lead nitrate salt as source of lead. Treatments were arranged according to completely randomized design with factorial arrangements. At harvesting, data regarding growth attributes (root shoot length, root shoot fresh and dry weights), yield per plant, physiological attributes (Chlorophyll 'a', 'b' and carotenoids content), antioxidant activities (Ascorbate peroxidase, catalase, superoxide dismutase and glutathione reductase), proline and malanodialdehyde content, and lead content in root, shoot and achenes of sunflower were recorded. Data were analysed by standard statistical procedures. Results showed that lead contamination reduced the plants growth, physiology and yield at all levels of lead stress. But application of LTPGPR in soil contaminated with lead improved plant growth, physiology, yield, and antioxidant activities, proline, and reduced the malanodialdehyde content (that is reduced by the application of different strains in lead contamination) of sunflower as compared to plants grown in soil without inoculation. Inoculation also promoted the uptake of lead in root, shoots and reduced the uptake of lead in achenes of plants as compared to plants in lead contamination without inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Growth rate of YBCO-Ag superconducting single grains

    NASA Astrophysics Data System (ADS)

    Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.

    2017-12-01

    The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.

  15. Mathematical functions for predicting growth and yield of black walnut plantations in the Central States.

    Treesearch

    Raymond S. Ferrell; Allen L. Lundgren

    1976-01-01

    Mathematical functions were fitted to unpublished summaries of yield data collected and reported by L.F. Kellogg in 1940 for unmanaged black walnut plantations in the Central States. They cover a wide range of conditions and provide the best data base available for simulating growth and yield in plantations.

  16. The instantaneous radial growth rate of stellar discs

    NASA Astrophysics Data System (ADS)

    Pezzulli, G.; Fraternali, F.; Boissier, S.; Muñoz-Mateos, J. C.

    2015-08-01

    We present a new and simple method to measure the instantaneous mass and radial growth rates of the stellar discs of spiral galaxies, based on their star formation rate surface density (SFRD) profiles. Under the hypothesis that discs are exponential with time-varying scalelengths, we derive a universal theoretical profile for the SFRD, with a linear dependence on two parameters: the specific mass growth rate ν _ M ≡ dot{M}_⋆ /M_⋆ and the specific radial growth rate ν _ R ≡ dot{R}_⋆ /R_⋆ of the disc. We test our theory on a sample of 35 nearby spiral galaxies, for which we derive a measurement of νM and νR. 32/35 galaxies show the signature of ongoing inside-out growth (νR > 0). The typical derived e-folding time-scales for mass and radial growth in our sample are ˜10 and ˜30 Gyr, respectively, with some systematic uncertainties. More massive discs have a larger scatter in νM and νR, biased towards a slower growth, both in mass and size. We find a linear relation between the two growth rates, indicating that our galaxy discs grow in size at ˜0.35 times the rate at which they grow in mass; this ratio is largely unaffected by systematics. Our results are in very good agreement with theoretical expectations if known scaling relations of disc galaxies are not evolving with time.

  17. Five-Year-Old Cottonwood Plantation on a Clay Site: Growth, Yield, and Soil Properties

    Treesearch

    R. M. Krinard; H. E. Kennedy

    1980-01-01

    A random sample of Stoneville select cottonwood (Populus deltoides Bartr.) clones planted on recent old-field clay soils at 12- by 12- foot spacing averaged 75-percent survival after five years. The growth and yield was about half that expected from planted cottonwood on medium-textured soils. Soil moisture analysis showed more height growth in years...

  18. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat

    NASA Technical Reports Server (NTRS)

    Grotenhuis, T. P.; Bugbee, B.

    1997-01-01

    Although terrestrial atmospheric CO2 levels will not reach 1000 micromoles mol-1 (0.1%) for decades, CO2 levels in growth chambers and greenhouses routinely exceed that concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1(1%). Numerous studies have examined CO2 effects up to 1000 micromoles mol-1, but biochemical measurements indicate that the beneficial effects of CO2 can continue beyond this concentration. We studied the effects of near-optimal (approximately 1200 micromoles mol-1) and super-optimal CO2 levels (2400 micromoles mol-1) on yield of two cultivars of hydroponically grown wheat (Triticum aestivum L.) in 12 trials in growth chambers. Increasing CO2 from sub-optimal to near-optimal (350-1200 micromoles mol-1) increased vegetative growth by 25% and seed yield by 15% in both cultivars. Yield increases were primarily the result of an increased number of heads per square meter. Further elevation of CO2 to 2500 micromoles mol-1 reduced seed yield by 22% (P < 0.001) in cv. Veery-10 and by 15% (P < 0.001) in cv. USU-Apogee. Super-optimal CO2 did not decrease the number of heads per square meter, but reduced seeds per head by 10% and mass per seed by 11%. The toxic effect of CO2 was similar over a range of light levels from half to full sunlight. Subsequent trials revealed that super-optimal CO2 during the interval between 2 wk before and after anthesis mimicked the effect of constant super-optimal CO2. Furthermore, near-optimal CO2 during the same interval mimicked the effect of constant near-optimal CO2. Nutrient concentration of leaves and heads was not affected by CO2. These results suggest that super-optimal CO2 inhibits some process that occurs near the time of seed set resulting in decreased seed set, seed mass, and yield.

  19. Estimating oak growth and yield

    Treesearch

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    Yields from upland oak stands vary widely from stand to stand due to differences in age, site quality, species composition, and stand structure. Cutting history and other past disturbances such as grazing or fire also affect yields.

  20. A Growth-rate Indicator for Compton-thick Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Masini, A.; Ballantyne, D. R.; Baloković, M.; Brandt, W. N.; Chen, C.-T.; Comastri, A.; Farrah, D.; Gandhi, P.; Harrison, F. A.; Ricci, C.; Stern, D.; Walton, D. J.

    2016-07-01

    Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGNs) is difficult to measure. A statistically significant correlation between the Eddington ratio, λ Edd, and the X-ray power-law index, Γ, observed in unobscured AGNs offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line of sight to the central engine is heavily obscured, the recovery of the intrinsic Γ is challenging. Here we study a sample of local, predominantly CT megamaser AGNs, where the black hole mass, and thus Eddington luminosity, are well known. We compile results of the X-ray spectral fitting of these sources with sensitive high-energy (E > 10 keV) NuSTAR data, where X-ray torus models, which take into account the reprocessing effects have been used to recover the intrinsic Γ values and X-ray luminosities, L X. With a simple bolometric correction to L X to calculate λ Edd, we find a statistically significant correlation between Γ and λ Edd (p = 0.007). A linear fit to the data yields Γ = (0.41 ± 0.18)log10 λ Edd + (2.38 ± 0.20), which is statistically consistent with results for unobscured AGNs. This result implies that torus modeling successfully recovers the intrinsic AGN parameters. Since the megamasers have low-mass black holes (M BH ≈ 106-107 M ⊙) and are highly inclined, our results extend the Γ-λ Edd relationship to lower masses and argue against strong orientation effects in the corona, in support of AGN unification. Finally this result supports the use of Γ as a growth-rate indicator for accreting black holes, even for CT AGNs.

  1. [Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades].

    PubMed

    Hou, Wen-jia; Geng, Ting; Chen, Qun; Chen, Chang-qing

    2015-01-01

    By using rice growth period, yield and climate observation data during the recent two decades, the impact of climate warming on rice in Northeast China was investigated by mathematical statistics methods. The results indicated that in the three provinces of Northeast China, the average, maximum and minimum temperatures in rice growing season were on the. rise, and the rainfall presented a downward trend during 1989-2009. Compared to 1990s, the rice whole growth periods of Heilongjiang, Jilin and Liaoning provinces in 2000s were prolonged 14 d, 4.5 d and 5.1 d, respectively. The increase of temperature in May, June and September could extend the rice growth period, while that in July would shorten the growth duration. The rice growth duration of registered varieties and experiment sites had a similar increasing trend in Northeast China except for the Heilongjiang Province, and the extension of registered varieties growth period was the main factor causing the prolonged growth period of rice at experiment sites. The change in daily average, minimum and maximum temperatures all could affect the rice yield in Northeast China. The increasing temperature significantly increased the rice yield in Heilongjiang Province, especially in the west region of Sanjiang Plain. Except for the south of Liaoning Province, rice yields in other regions of Northeast China were promoted by increasing temperature. Proper measures for breeding, cultivation and farming, could be adopted to fully improve the adaptation of rice to climate warming in Northeast China.

  2. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species

  3. 31 CFR 356.21 - How are awards at the high yield or discount rate calculated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discount rate calculated? 356.21 Section 356.21 Money and Finance: Treasury Regulations Relating to Money... high yield or discount rate calculated? (a) Awards to submitters. We generally prorate bids at the highest accepted yield or discount rate under § 356.20(a)(2) of this part. For example, if 80.15% is the...

  4. Growth status and estimated growth rate of youth football players: a community-based study.

    PubMed

    Malina, Robert M; Morano, Peter J; Barron, Mary; Miller, Susan J; Cumming, Sean P

    2005-05-01

    To characterize the growth status of participants in community-sponsored youth football programs and to estimate rates of growth in height and weight. Mixed-longitudinal over 2 seasons. Two communities in central Michigan. Members of 33 youth football teams in 2 central Michigan communities in the 2000 and 2001 seasons (Mid-Michigan PONY Football League). Height and weight of all participants were measured prior to each season, 327 in 2000 and 326 in 2001 (n = 653). The body mass index (kg/m) was calculated. Heights and weights did not differ from season to season and between the communities; the data were pooled and treated cross-sectionally. Increments of growth in height and weight were estimated for 166 boys with 2 measurements approximately 1 year apart to provide an estimate of growth rate. Growth status (size-attained) of youth football players relative to reference data (CDC) for American boys and estimated growth rate relative to reference values from 2 longitudinal studies of American boys. Median heights of youth football players approximate the 75th percentiles, while median weights approximate the 75th percentiles through 11 years and then drift toward the 90th percentiles of the reference. Median body mass indexes of youth football players fluctuate about the 85th percentiles of the reference. Estimated growth rates in height approximate the reference and may suggest earlier maturation, while estimated growth rates in weight exceed the reference. Youth football players are taller and especially heavier than reference values for American boys. Estimated rates of growth in height approximate medians for American boys and suggest earlier maturation. Estimated rates of growth in weight exceed those of the reference and may place many youth football players at risk for overweight/obesity, which in turn may be a risk factor for injury.

  5. Estimated winter wheat yield from crop growth predicted by LANDSAT

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.

    1977-01-01

    An evapotranspiration and growth model for winter wheat is reported. The inputs are daily solar radiation, maximum temperature, minimum temperature, precipitation/irrigation and leaf area index. The meteorological data were obtained from National Weather Service while LAI was obtained from LANDSAT multispectral scanner. The output provides daily estimates of potential evapotranspiration, transpiration, evaporation, soil moisture (50 cm depth), percentage depletion, net photosynthesis and dry matter production. Winter wheat yields are correlated with transpiration and dry matter accumulation.

  6. Variation in growth, physiology, and yield of six sugarcane cultivars from across the globe in Florida

    USDA-ARS?s Scientific Manuscript database

    Evaluation of sugarcane cultivars with diverse genetic background under similar location can help in better understanding cultivar response to environment and in identifying various physiological traits that could lead to improved yields. The objective of this study was to evaluate the growth, yield...

  7. The effect of size and competition on tree growth rate in old-growth coniferous forests

    USGS Publications Warehouse

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  8. Influence of growth rate on nitrogen balance in adolescent sprint athletes.

    PubMed

    Aerenhouts, Dirk; Van Cauwenberg, Jelle; Poortmans, Jacques Remi; Hauspie, Ronald; Clarys, Peter

    2013-08-01

    This study aimed to estimate nitrogen balance and protein requirements in adolescent sprint athletes as a function of growth rate and physical development. Sixty adolescent sprint athletes were followed up biannually over a 2-yr period. Individual growth curves and age at peak height velocity were determined. Skeletal muscle mass (SMM) was estimated based on anthropometric measurements and fat mass was estimated by underwater densitometry. Seven-day diet and physical activity diaries were completed to estimate energy balance and protein intake. Nitrogen analysis of 24-hr urine samples collected on 1 weekday and 1 weekend day allowed calculation of nitrogen balance. Body height, weight, and SMM increased throughout the study period in both genders. Mean protein intakes were between 1.4 and 1.6 g kg-1 day-1 in both genders. A protein intake of 1.46 g kg-1 day-1 in girls and 1.35 g kg-1 day-1 in boys was needed to yield a positive nitrogen balance. This did not differ between participants during and after their growth spurt. None of the growth parameters was significantly related to nitrogen balance. It can be concluded that a mean protein intake around 1.5 g kg-1 day-1 was sufficient to stay in a positive nitrogen balance, even during periods of peak growth. Therefore, protein intake should not be enhanced in peak periods of linear or muscular growth.

  9. A standardized data structure for describing and exchanging data from remeasured growth and yield plots

    Treesearch

    Michael D. Sweet; John C. Byrne

    1990-01-01

    Proposes standard data definitions and format to facilitate the sharing of growth and yield permanent plot data for the development, testing, and improvement of tree or stand growth models. The data structure presented provides standards for documenting sampling design, plot location and summary descriptors, measurement dates, treatments, site attributes, and...

  10. Testing the accuracy of growth and yield models for southern hardwood forests

    Treesearch

    H. Michael Rauscher; Michael J. Young; Charles D. Webb; Daniel J. Robison

    2000-01-01

    The accuracy of ten growth and yield models for Southern Appalachian upland hardwood forests and southern bottomland forests was evaluated. In technical applications, accuracy is the composite of both bias (average error) and precision. Results indicate that GHAT, NATPIS, and a locally calibrated version of NETWIGS may be regarded as being operationally valid...

  11. [Dynamics of Amomum villosum growth and its fruit yield cultivated under tropical forests].

    PubMed

    Zheng, Zheng; Gan, Jianmin; Feng, Zhili; Meng, Ying

    2004-01-01

    Investigations on the dynamics of Amomum villosum growth and its fruit yield cultivated under tropical ravine rainforest and secondary forest at different elevations in Xishuangbanna showed that the yield of A. villosum was influenced by the site age, sun light level of understorey, and water stress in dry season. The fruit yield and mature plant density decreased with increasing age of the A. villosum site. The fruit yield increased with sun light level when the light level in understorey was under 35% of full sun light (P < 0.05). The fruit yield at the lower site by stream was significantly higher than that at upper site (P < 0.05). The yield difference between ravine rainforest and secondary forest was not significant. Planned cultivation of A. villosum in the secondary forest of the shifting cultivation land by ravine from 800-1000 m elevation instead of customary cultivation in the ravine rainforest, could not only resolve the problem of the effect of light deficiency in understorey and water stress in the dry season on A. villosum fruit yield, but also be useful to protect the tropical ravine rain forest.

  12. High yields from young-growth ponderosa pine.

    Treesearch

    Edwin L. Mowat

    1947-01-01

    A ponderosa pine stand growing at a net rate of 618 board feet per acre per year may be rather amazing to foresters accustomed to the proverbial slow growth of this species in the virgin forest. Yet that is the average increment for the last 6 years of a 102-year-old even-aged stand on Lookout Mountain in the Pringle Falls Experimental Forest in central Oregon. During...

  13. [Effects of irrigation and planting patterns on photosynthetic characteristics of flag leaf and yield at late growth stages of winter wheat].

    PubMed

    Dong, Hao; Bi, Jun; Xia, Guang-Li; Zhou, Xun-Bo; Chen, Yu-Hai

    2014-08-01

    High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.

  14. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit.

    PubMed

    Rahman, Mosaddiqur; Sabir, Abdullah As; Mukta, Julakha Akter; Khan, Md Mohibul Alam; Mohi-Ud-Din, Mohammed; Miah, Md Giashuddin; Rahman, Mahfuzur; Islam, M Tofazzal

    2018-02-06

    Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.

  15. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum).

    PubMed

    Gutiérrez-Miceli, Federico A; Santiago-Borraz, Jorge; Montes Molina, Joaquín Adolfo; Nafate, Camerino Carlos; Abud-Archila, Miguel; Oliva Llaven, María Angela; Rincón-Rosales, Reiner; Dendooven, Luc

    2007-11-01

    The effects of earthworm-processed sheep-manure (vermicompost) on the growth, productivity and chemical characteristics of tomatoes (Lycopersicum esculentum) (c.v. Rio Grande) were investigated in a greenhouse experiment. Five treatments were applied combining vermicompost and soil in proportions of 0:1, 1:1, 1:2, 1:3, 1:4 and 1:5 (v/v). Growth and yield parameters were measured 85 days and 100 days after transplanting. Addition of vermicompost increased plant heights significantly, but had no significant effect on the numbers of leaves or yields 85 days after transplanting. Yields of tomatoes were significantly greater when the relationship vermicompost:soil was 1:1, 1:2 or 1:3, 100 days after transplanting. Addition of sheep-manure vermicompost decreased soil pH, titratable acidity and increased soluble and insoluble solids, in tomato fruits compared to those harvested from plants cultivated in unamended soil. Sheep-manure vermicompost as a soil supplement increased tomato yields and soluble, insoluble solids and carbohydrate concentrations.

  16. Effect of selection for growth rate on relative growth in rabbits.

    PubMed

    Pascual, M; Pla, M; Blasco, A

    2008-12-01

    The effect of selection for growth rate on relative growth of the rabbit body components was studied. Animals from the 18th generation of a line selected for growth rate were compared with a contemporary control group formed with offspring of embryos that were frozen at the seventh generation of selection of the same line. A total of 313 animals were slaughtered at 4, 9, 13, 20, and 40 wk old. The offal, organs, tissues, and retail cuts were weighed, and several carcass linear measurements were recorded. Huxley's allometric equations relating the weights of the components with respect to BW were fitted. Butterfield's quadratic equations relating the degree of maturity of the components and the degree of maturity of BW were also fitted. In most of the components studied, both models lead to similar patterns of growth. Blood was isometric or early maturing and skin was late maturing or isometric depending on the use of Huxley's or Butterfield's model. Full gastrointestinal tract, liver, kidneys, thoracic viscera, and head were early maturing, and the chilled carcass and reference carcass were late maturing. The retail cuts of the reference carcass showed isometry (forelegs) or late maturing growth (breast and ribs, loin, hind legs, and abdominal walls). Dissectible fat of the carcass and meat of the hind leg had a late development, whereas bone of the hind leg was early maturing. Lumbar circumference length was later maturing than the carcass length and thigh length. Sex did not affect the relative growth of most of the components. Butterfield's model showed that males had an earlier development of full gastrointestinal tract and later growth of kidneys than females. No effect of selection on the relative growth of any of the components studied was found, leading to similar patterns of growth and similar carcass composition at a given degree of maturity after 11 generations of selection for growth rate.

  17. Response of Escherichia coli growth rate to osmotic shock.

    PubMed

    Rojas, Enrique; Theriot, Julie A; Huang, Kerwyn Casey

    2014-05-27

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless "stored" growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan.

  18. Response of Escherichia coli growth rate to osmotic shock

    PubMed Central

    Rojas, Enrique; Theriot, Julie A.; Huang, Kerwyn Casey

    2014-01-01

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless “stored” growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan. PMID:24821776

  19. Analysis of private health insurance premium growth rates: 1985-1992.

    PubMed

    Feldstein, P J; Wickizer, T M

    1995-10-01

    The rate of increase in health care expenditures has been a central policy concern for well over a decade, yet little empirical research has been conducted to examine expenditure growth rates. This study analyzed health insurance premium growth rates for a selected sample of 95 insured groups over the period 1985 to 1992. During this time, premiums increased by approximately 150% in nominal terms and by 45% in real terms. The observed rate of growth was not constant over time, however. The most rapid growth occurred during the years 1986 to 1989; thereafter, the rate of increase in premiums declined. Multivariate analysis was conducted to assess the effects on premium growth rates of selected variables representing insurance benefit design features, market competitive factors, insurance system factors, and group-specific factors. In addition to the percentage increase in benefit payments, other factors found to affect premium growth rates were health maintenance organization market penetration, deductible level, the coinsurance rate, and state insurance mandates. Further, this analysis suggests that the insurance underwriting cycle may play an important role in influencing insurance premium growth rates. These results support the belief that health maintenance organization induced competition has potential to control the rate of increase in health care costs.

  20. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, R.; Adamson, P.; Burov, A.

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  1. Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism.

    PubMed

    Biswas, Ranjita; Wilson, Charlotte M; Giannone, Richard J; Klingeman, Dawn M; Rydzak, Thomas; Shah, Manesh B; Hettich, Robert L; Brown, Steven D; Guss, Adam M

    2017-01-01

    Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H 2 production, including the hydrogenase maturase hydG and NiFe hydrogenase ech , were deleted from the chromosome of C. thermocellum . While ethanol yield increased, the growth rate of Δ hydG decreased substantially compared to wild type. Addition of 5 mM acetate to the growth medium improved the growth rate in C. thermocellum ∆hydG , whereas wild type remained unaffected. Transcriptomic analysis of the wild type showed essentially no response to the addition of acetate. However, in C. thermocellum ΔhydG , 204 and 56 genes were significantly differentially regulated relative to wild type in the absence and presence of acetate, respectively. Genes, Clo1313_0108-0125, which are predicted to encode a sulfate transport system and sulfate assimilatory pathway, were drastically upregulated in C. thermocellum ΔhydG in the presence of added acetate. A similar pattern was seen with proteomics. Further physiological characterization demonstrated an increase in sulfide synthesis and elimination of cysteine consumption in C. thermocellum ΔhydG . Clostridium thermocellum ΔhydGΔech had a higher growth rate than ΔhydG in the absence of added acetate, and a similar but less pronounced transcriptional and physiological effect was seen in this strain upon addition of acetate. Sulfur metabolism is perturbed in C. thermocellum ΔhydG strains, likely to increase flux through sulfate reduction to act either as an electron sink to balance redox reactions or to offset an unknown deficiency in sulfur assimilation.

  2. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions

    PubMed Central

    Séry, D. Jean-Marc; Kouadjo, Z. G. Claude; Voko, B. R. Rodrigue; Zézé, Adolphe

    2016-01-01

    The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the

  3. Effects of Homeopathic Arsenicum Album, Nosode, and Gibberellic Acid Preparations on the Growth Rate of Arsenic-Impaired Duckweed (Lemna gibba L.)

    PubMed Central

    Jäger, Tim; Scherr, Claudia; Simon, Meinhard; Heusser, Peter; Baumgartner, Stephan

    2010-01-01

    This study evaluated the effects of homeopathically potentized Arsenicum album, nosode, and gibberellic acid in a bioassay with arsenic-stressed duckweed (Lemna gibba L.). The test substances were applied in nine potency levels (17x, 18x, 21x–24x, 28x, 30x, 33x) and compared with controls (unsuccussed and succussed water) regarding their influence on the plant’s growth rate. Duckweed was stressed with arsenic(V) for 48 h. Afterwards, plants grew in either potentized substances or water controls for 6 days. Growth rates of frond (leaf) area and frond number were determined with a computerized image analysis system for different time intervals (days 0–2, 2–6, 0–6). Five independent experiments were evaluated for each test substance. Additionally, five water control experiments were analyzed to investigate the stability of the experimental setup (systematic negative control experiments). All experiments were randomized and blinded. The test system exhibited a low coefficient of variation (≈1%). Unsuccussed and succussed water did not result in any significant differences in duckweed growth rate. Data from the control and treatment groups were pooled to increase statistical power. Growth rates for days 0–2 were not influenced by any homeopathic preparation. Growth rates for days 2–6 increased after application of potentized Arsenicum album regarding both frond area (p < 0.001) and frond number (p < 0.001), and by application of potentized nosode (frond area growth rate only, p < 0.01). Potencies of gibberellic acid did not influence duckweed growth rate. The systematic negative control experiments did not yield any significant effects. Thus, false-positive results can be excluded with high certainty. To conclude, the test system with L. gibba impaired by arsenic(V) was stable and reliable. It yielded evidence for specific effects of homeopathic Arsenicum album preparations and it will provide a valuable tool for future experiments that aim at revealing

  4. Effect of Oxygen-Supply Rates on Growth of Escherichia coli

    PubMed Central

    McDaniel, L. E.; Bailey, E. G.; Zimmerli, A.

    1965-01-01

    The effect of oxygen-supply rates on bacterial growth was studied in commercially available unbaffled and baffled flasks with the use of Escherichia coli in a synthetic medium as a test system. The amount of growth obtained depended on the oxygen-supply rate. Based on oxygen-absorption rates (OAR) measured by the rate of sulfite oxidation, equal OAR values in different types of flasks did not give equal amounts of growth. However, growth was essentially equal at the equal sulfite-oxidation rates when these were determined in the presence of killed whole cultures. Specific growth rates were reduced only at oxygen-supply rates much lower than those at which the total amount of growth was reduced. For the physical set-up used in this work and with the biological system employed, Bellco 598 flasks and flasks fitted with Biotech stainless-steel baffles gave satisfactory results at workable broth volumes; unbaffled and Bellco 600 flasks did not. PMID:14264837

  5. Interactions of Nitrogen Source and Rate and Weed Removal Timing Relative to Nitrogen Content in Corn and Weeds and Corn Grain Yield.

    PubMed

    Knight, Alexandra M; Everman, Wesley J; Jordan, David L; Heiniger, Ronnie W; Smyth, T Jot

    2017-01-01

    Adequate fertility combined with effective weed management is important in maximizing corn ( Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth ( Amaranthus palmeri S. Wats.) and large crabgrass ( Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.

  6. Interactions of Nitrogen Source and Rate and Weed Removal Timing Relative to Nitrogen Content in Corn and Weeds and Corn Grain Yield

    PubMed Central

    Knight, Alexandra M.; Heiniger, Ronnie W.; Smyth, T. Jot

    2017-01-01

    Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield. PMID:28487878

  7. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  8. Linking growth and yield and process models to estimate impact of environmental changes on growth of loblolly pine

    Treesearch

    V. Clark Baldwin; Harold E. Burkhart; James A. Westfall; Kelly D. Peterson

    2001-01-01

    PTAEDA2 is a distance-dependent, individual tree model that simulates the growth and yield of a plantation of loblolly pine (Pinus taeda L.)on an annual basis. The MAESTRO model utilizes an array of trees in a stand to calculate and integrate the effects of biological and physical variables on the photosynthesis and respiration processes of a target...

  9. Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell

    PubMed

    Bockmann; Muller

    2000-09-18

    Experimental studies were performed on the buoyancy-driven instability of an autocatalytic reaction front in a quasi-2D cell. The unstable density stratification at an ascending front leads to convection that results in a fingerlike front deformation. The growth rates of the spatial modes of the instability are determined at the initial stage. A stabilization is found at higher wave numbers, while the system is unstable against low wave number perturbations. Whereas comparison with a reported model governed by Hele-Shaw flow fails, a two-dimensional Navier-Stokes model yields more satisfactory results. Still, present deviations suggest the presence of an additional mechanism that suppresses the growth.

  10. Analysis of traffic growth rates

    DOT National Transportation Integrated Search

    2001-08-01

    The primary objectives of this study were to determine patterns of traffic flow and develop traffic growth rates by traffic composition and highway type for Kentucky's system of highways. Additional subtasks included the following: 1) a literature se...

  11. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation

    PubMed Central

    Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J.; Moore, Kenneth J.; Thorburn, Peter; Archontoulis, Sotirios V.

    2016-01-01

    Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR’s were within the historical N rate error range (40–50 kg N ha-1). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward

  12. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation.

    PubMed

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J; Moore, Kenneth J; Thorburn, Peter; Archontoulis, Sotirios V

    2016-01-01

    Improved prediction of optimal N fertilizer rates for corn ( Zea mays L. ) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean ( Glycine max L. ) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha -1 ) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR's were within the historical N rate error range (40-50 kg N ha -1 ). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward

  13. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat.

    PubMed

    Ahmad, Shakeel; Imran, Muhammad; Hussain, Sabir; Mahmood, Sajid; Hussain, Azhar; Hasnain, Muhammad

    2017-08-01

    The fertilizer use efficiency (FUE) of agricultural crops is generally low, which results in poor crop yields and low economic benefits to farmers. Among the various approaches used to enhance FUE, impregnation of mineral fertilizers with plant growth-promoting bacteria (PGPB) is attracting worldwide attention. The present study was aimed to improve growth, yield and nutrient use efficiency of wheat by bacterially impregnated mineral fertilizers. Results of the pot study revealed that impregnation of diammonium phosphate (DAP) and urea with PGPB was helpful in enhancing the growth, yield, photosynthetic rate, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) of wheat. However, the plants treated with F8 type DAP and urea, prepared by coating a slurry of PGPB (Bacillus sp. strain KAP6) and compost on DAP and urea granules at the rate of 2.0 g 100 g -1 fertilizer, produced better results than other fertilizer treatments. In this treatment, growth parameters including plant height, root length, straw yield and root biomass significantly (P ≤ 0.05) increased from 58.8 to 70.0 cm, 41.2 to 50.0 cm, 19.6 to 24.2 g per pot and 1.8 to 2.2 g per pot, respectively. The same treatment improved grain yield of wheat by 20% compared to unimpregnated DAP and urea (F0). Likewise, the maximum increase in photosynthetic rate, grain NP content, grain NP uptake, NUE and PUE of wheat were also recorded with F8 treatment. The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Effect of vermicast generated from an allelopathic weed lantana (Lantana camara) on seed germination, plant growth, and yield of cluster bean (Cyamopsis tetragonoloba).

    PubMed

    Karthikeyan, M; Hussain, N; Gajalakshmi, S; Abbasi, S A

    2014-11-01

    In perhaps the first-ever study of its kind, the effect of vermicompost, derived solely from an allelopathic weed, on the germination, growth, and yield of a botanical species, has been carried out. In test plots, the soil was treated with the vermicompost of lantana (Lantana camara) at the rates of 5, 7.5, and 10 t ha(-1), and cluster bean (Cyamopsis tetragonoloba) was grown on it. The performance of these systems was compared with the systems in which the soil was fortified with inorganic fertilizers (IFs) in concentrations equivalent to those present in the respective vermicompost (VC) treatments. Additionally, a set of control was studied in which the soil was used without fortification by either VC or IF. It was seen that up to 51.5 % greater germination success occurred in the VC treatments compared to controls. VC also supported better plant growth in terms of stem diameter, shoot length, shoot mass, number of leaves, and leaf pigments. The positive impact extended up to fruit yield. In addition, vermicast application enhanced root nodule formation, reduced disease incidence, and allowed for a smaller number of stunted plants. The results indicate that allelopathic ingredients of lantana seem to have been totally eliminated during the course of its vermicomposting and that lantana vermicompost has the potential to support germination, growth, and fruit yield better than equivalent quantities of IFs.

  15. Comparison of an empirical forest growth and yield simulator and a forest gap simulator using actual 30-year growth from two even-aged forests in Kentucky

    Treesearch

    Daniel A. Yaussy

    2000-01-01

    Two individual-tree growth simulators are used to predict the growth and mortality on a 30-year-old forest site and an 80-year-old forest site in eastern Kentucky. The empirical growth and yield model (NE-TWIGS) was developed to simulate short-term (

  16. Development of growth and yield models for southern hardwoods: site index determinations

    Treesearch

    John Paul McTague; Daniel J. Robison; David O' Loughlin; Joseph Roise; Robert Kellison

    2006-01-01

    Growth and yield data from across 13 southern States, collected from 1967 to 2004 from fully-stocked even-aged southern hardwood forests on a variety of site types, was used to calculate site index curves. These derived curves provide an efficient means to evaluate the productivity-age relation which varies across many sites. These curves were derived for mixed-species...

  17. Divergent biparietal diameter growth rates in twin pregnancies.

    PubMed

    Houlton, M C

    1977-05-01

    Twenty-eight twin pregnancies were monitored by serial ultrasonic cephalometry from 30 or 31 weeks' gestation. The rates of growth of the individual twins as determined by biparietal diameters were similar in 11 cases (39%) and divergent in 17 (61%). When the rates of growth were divergent, the lesser rate was always below the mean for singleton pregnancies, and the incidence of small-for-gestational-age babies was 18 of 34 (53%). It was apparent that the greater the difference in biparietal diameters within the 2 weeks preceding delivery, the higher the risk of a small-for-gestation-age baby being delivered. No comment could be made on the growth rate prior to 28 weeks except that at diagnosis there was little or no difference in biparietal diameters.

  18. [Influence of different levels of irrigation and nitrogen application on the root growth and yield of spring wheat under permanent raised bed.

    PubMed

    Chen, Juan; Ma, Zhong Ming; Lyu, Xiao Dong; Liu, Ting Ting

    2016-05-01

    To establish an optimum combination of water and nitrogen for spring under permanent raised bed (PRB) tillage, a field investigation was carried out to assess effects of irrigation and N application on root growth, yield, irrigation water productivity and N efficiency. The experiment followed a completely randomized split-plot design, taking furrow irrigation 1200 m 3 ·hm -2 (W 1 ), 2400 m 3 ·hm -2 (W 2 ), 3600 m 3 ·hm -2 (W 3 ) as main plot treatments, and N rates (0, 90, 180, 270 kg·hm -2 ) the sub-plot treatments. Our results showed that the root mass density (RWD) was significantly affected by irrigation and N application, the RWD of spring wheat reached a maximum at the filling stage, followed by a slow decline until maturity, while the effect of N on RWD depended on soil water conditions. The application of N 2 produced the maximum RWD under W 2 irrigation, the application of N 1 produced the maximum RWD under W 1 irrigation, and the application of N 3 produced the maximum RWD under W 3 irrigation. The order of irrigation regime effect on RWD of spring wheat was W 2 >W 3 >W 1 . The order of irrigation regime and N rate effect on RWD of spring wheat was irrigation>N>irrigation and N interaction. W 2 N 2 treatment produced the highest RWD value. The root-to-shoot ratio (R/S) descended with the rising of irrigation water and nitrogen amount, and the combined treatment (W 1 N 0 ) produced the maximum R/S. The root system was mainly distributed in the 0-40 cm soil layer, in which the RWD accounted for 85% of the total RWD in 0-80 cm soil depth. There was a significantly positive relationship between RWD in the 0-40 cm and the yield of spring wheat, RWD in the 40-60 cm had higher linear dependence on the yield of spring wheat. W 2 increased the proportion of RWD in the deep soil layer (40-60 cm). The irrigation and N rate had a significant impact on biomass and grain yield of spring wheat, the biomass increased as the N rate and water amount increased, W 2 N 2

  19. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    PubMed

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. A GROWTH-RATE INDICATOR FOR COMPTON-THICK ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brightman, M.; Baloković, M.; Harrison, F. A.

    2016-07-20

    Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGNs) is difficult to measure. A statistically significant correlation between the Eddington ratio, λ {sub Edd}, and the X-ray power-law index, Γ, observed in unobscured AGNs offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line of sight to the central engine is heavily obscured, the recovery of the intrinsic Γ is challenging. Here we study a sample of local, predominantly CT megamaser AGNs, where themore » black hole mass, and thus Eddington luminosity, are well known. We compile results of the X-ray spectral fitting of these sources with sensitive high-energy ( E > 10 keV) NuSTAR data, where X-ray torus models, which take into account the reprocessing effects have been used to recover the intrinsic Γ values and X-ray luminosities, L {sub X}. With a simple bolometric correction to L {sub X} to calculate λ {sub Edd}, we find a statistically significant correlation between Γ and λ {sub Edd} ( p = 0.007). A linear fit to the data yields Γ = (0.41 ± 0.18)log{sub 10} λ {sub Edd} + (2.38 ± 0.20), which is statistically consistent with results for unobscured AGNs. This result implies that torus modeling successfully recovers the intrinsic AGN parameters. Since the megamasers have low-mass black holes ( M {sub BH} ≈ 10{sup 6}–10{sup 7} M {sub ⊙}) and are highly inclined, our results extend the Γ– λ {sub Edd} relationship to lower masses and argue against strong orientation effects in the corona, in support of AGN unification. Finally this result supports the use of Γ as a growth-rate indicator for accreting black holes, even for CT AGNs.« less

  1. Seasonal variations in ectotherm growth rates: Quantifying growth as an intermittent non steady state compensatory process

    USGS Publications Warehouse

    Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.

    2011-01-01

    Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.

  2. The US Stock Market Leads the Federal Funds Rate and Treasury Bond Yields

    PubMed Central

    Guo, Kun; Zhou, Wei-Xing; Cheng, Si-Wei; Sornette, Didier

    2011-01-01

    Using a recently introduced method to quantify the time-varying lead-lag dependencies between pairs of economic time series (the thermal optimal path method), we test two fundamental tenets of the theory of fixed income: (i) the stock market variations and the yield changes should be anti-correlated; (ii) the change in central bank rates, as a proxy of the monetary policy of the central bank, should be a predictor of the future stock market direction. Using both monthly and weekly data, we found very similar lead-lag dependence between the S&P 500 stock market index and the yields of bonds inside two groups: bond yields of short-term maturities (Federal funds rate (FFR), 3M, 6M, 1Y, 2Y, and 3Y) and bond yields of long-term maturities (5Y, 7Y, 10Y, and 20Y). In all cases, we observe the opposite of (i) and (ii). First, the stock market and yields move in the same direction. Second, the stock market leads the yields, including especially the FFR. Moreover, we find that the short-term yields in the first group lead the long-term yields in the second group before the financial crisis that started in mid-2007 and the inverse relationship holds afterwards. These results suggest that the Federal Reserve is increasingly mindful of the stock market behavior, seen as key to the recovery and health of the economy. Long-term investors seem also to have been more reactive and mindful of the signals provided by the financial stock markets than the Federal Reserve itself after the start of the financial crisis. The lead of the S&P 500 stock market index over the bond yields of all maturities is confirmed by the traditional lagged cross-correlation analysis. PMID:21857954

  3. The US stock market leads the federal funds rate and treasury bond yields.

    PubMed

    Guo, Kun; Zhou, Wei-Xing; Cheng, Si-Wei; Sornette, Didier

    2011-01-01

    Using a recently introduced method to quantify the time-varying lead-lag dependencies between pairs of economic time series (the thermal optimal path method), we test two fundamental tenets of the theory of fixed income: (i) the stock market variations and the yield changes should be anti-correlated; (ii) the change in central bank rates, as a proxy of the monetary policy of the central bank, should be a predictor of the future stock market direction. Using both monthly and weekly data, we found very similar lead-lag dependence between the S&P 500 stock market index and the yields of bonds inside two groups: bond yields of short-term maturities (Federal funds rate (FFR), 3M, 6M, 1Y, 2Y, and 3Y) and bond yields of long-term maturities (5Y, 7Y, 10Y, and 20Y). In all cases, we observe the opposite of (i) and (ii). First, the stock market and yields move in the same direction. Second, the stock market leads the yields, including especially the FFR. Moreover, we find that the short-term yields in the first group lead the long-term yields in the second group before the financial crisis that started in mid-2007 and the inverse relationship holds afterwards. These results suggest that the Federal Reserve is increasingly mindful of the stock market behavior, seen as key to the recovery and health of the economy. Long-term investors seem also to have been more reactive and mindful of the signals provided by the financial stock markets than the Federal Reserve itself after the start of the financial crisis. The lead of the S&P 500 stock market index over the bond yields of all maturities is confirmed by the traditional lagged cross-correlation analysis.

  4. Growth behavior and growth rate dependency in LEDs performance for Mg-doped a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun-Man; Kim, Jong-Min; Lee, Dong-Hun; Shin, Chan-Soo; Ko, Chul-Gi; Kong, Bo-Hyun; Cho, Hyung-Koun; Yoon, Dae-Ho

    2011-07-01

    We investigated the influence of growth rate of Mg-doped a-plane GaN on the surface morphological and electrical properties, and the characteristics of InGaN-based nonpolar LEDs. Mg-doped a-plane GaN layers were grown on r-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cathode luminescence (CL) analysis exhibited that the surface morphology changed from stripe features with large triangular pits to rough and rugged surface with small asymmetric V-shape pits, as the growth rate increased. The Mg incorporation into a-plane GaN layers increased with increasing growth rate of Mg-doped a-plane GaN, while the activation efficiency of Mg dopants decreased in a-plane GaN. Additionally, it was found that operation voltage at 20 mA decreased in characteristics of LEDs, as the growth rate of Mg-doped a-plane GaN decreased. Meanwhile, the EL intensity of LEDs with p-GaN layers grown at higher growth rate was improved compared to that of LEDs with p-GaN layers grown at lower growth rate. Such an increase of EL intensity is attributed to the rougher surface morphology with increasing growth rate of Mg-doped a-plane GaN.

  5. Dynamics and estimates of growth and loss rates of bacterioplankton in a temperate freshwater system.

    PubMed

    Jugnia, Louis-B; Sime-Ngando, Télesphore; Gilbert, Daniel

    2006-10-01

    The growth rate and losses of bacterioplankton in the epilimnion of an oligo-mesotrophic reservoir were simultaneously estimated using three different methods for each process. Bacterial production was determined by means of the tritiated thymidine incorporation method, the dialysis bag method and the dilution method, while bacterial mortality was assessed with the dilution method, the disappearance of thymidine-labeled natural cells and ingestion of fluorescent bacterial tracers by heterotrophic flagellates. The different methods used to estimate bacterial growth rates yielded similar results. On the other hand, the mortality rates obtained with the dilution method were significantly lower than those obtained with the use of thymidine-labeled natural cells. The bacterial ingestion rate by flagellates accounted on average for 39% of total bacterial mortality estimated by the dilution method, but this value fell to 5% when the total mortality was measured by the thymidine-labeling method. Bacterial abundance and production varied in opposite phase to flagellate abundance and the various bacterial mortality rates. All this points to the critical importance of methodological aspects in the elaboration of quantitative models of matter and energy flows over the time through microbial trophic networks in aquatic systems, and highlights the role of bacterioplankton as a source of carbon for higher trophic levels in the studied system.

  6. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    NASA Astrophysics Data System (ADS)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  7. Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ranjita; Wilson, Charlotte M.; Giannone, Richard J.

    Background: Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H 2 production, including the hydrogenase maturase hydG, were deleted from the chromosome of C. thermocellum. While ethanol yield increased, the growth rate decreased substantially compared to wild type. Results: Addition of 5 mM acetate to the growth medium improved the growth rate in C. thermocellum ΔhydG,more » whereas wild type remained unaffected. Transcriptomic analysis of the wild type showed essentially no response to the addition of acetate. However, in C. thermocellum ΔhydG, 204 and 56 genes were significantly differentially regulated relative to wild type in the absence and presence of acetate, respectively. Genes Clo1313_0108-0125, which are predicted to encode a sulfate transport system and sulfate assimilatory pathway, were drastically up-regulated in C. thermocellum ΔhydG in presence of added acetate. A similar pattern was seen with proteomics. Further physiological characterization demonstrated an increase in sulfide synthesis and elimination of cysteine consumption in C. thermocellum ΔhydG. In conclusion, sulfur metabolism is perturbed in C. thermocellum ΔhydG, possibly to increase flux through sulfate reduction to act as an electron sink to balance redox reactions.« less

  8. Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism

    DOE PAGES

    Biswas, Ranjita; Wilson, Charlotte M.; Giannone, Richard J.; ...

    2017-01-03

    Background: Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H 2 production, including the hydrogenase maturase hydG, were deleted from the chromosome of C. thermocellum. While ethanol yield increased, the growth rate decreased substantially compared to wild type. Results: Addition of 5 mM acetate to the growth medium improved the growth rate in C. thermocellum ΔhydG,more » whereas wild type remained unaffected. Transcriptomic analysis of the wild type showed essentially no response to the addition of acetate. However, in C. thermocellum ΔhydG, 204 and 56 genes were significantly differentially regulated relative to wild type in the absence and presence of acetate, respectively. Genes Clo1313_0108-0125, which are predicted to encode a sulfate transport system and sulfate assimilatory pathway, were drastically up-regulated in C. thermocellum ΔhydG in presence of added acetate. A similar pattern was seen with proteomics. Further physiological characterization demonstrated an increase in sulfide synthesis and elimination of cysteine consumption in C. thermocellum ΔhydG. In conclusion, sulfur metabolism is perturbed in C. thermocellum ΔhydG, possibly to increase flux through sulfate reduction to act as an electron sink to balance redox reactions.« less

  9. Optimizing gas transfer to improve growth rate of Haematococcus pluvialis in a raceway pond with chute and oscillating baffles.

    PubMed

    Yang, Zongbo; Cheng, Jun; Li, Ke; Zhou, Junhu; Cen, Kefa

    2016-08-01

    Up-down chute and oscillating (UCO) baffles were used to generate vortex and oscillating flow field to improve growth rate of Haematococcus pluvialis in a raceway pond. Effects of gas flow rate, solution velocity, and solution depth on solution mass transfer coefficient and mixing time were evaluated using online pH and dissolved oxygen probes. Mass transfer coefficient increased by 1.3 times and mixing time decreased by 33% when UCO baffles were used in the H. pluvialis solution, resulting in an 18% increase in biomass yield with 2% CO2. The H. pluvialis biomass yield further increased to 1.5g/L, and astaxanthin composition accumulated to 29.7mg/L under relatively higher light intensity and salinity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Revisiting the Estimation of Dinosaur Growth Rates

    PubMed Central

    Myhrvold, Nathan P.

    2013-01-01

    Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot be replicated by using the methods originally reported; results from new methods are in many cases different, in both the quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves, which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented. PMID:24358133

  11. Noise in gene expression is coupled to growth rate

    PubMed Central

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  12. Calculating second derivatives of population growth rates for ecology and evolution

    PubMed Central

    Shyu, Esther; Caswell, Hal

    2014-01-01

    1. Second derivatives of the population growth rate measure the curvature of its response to demographic, physiological or environmental parameters. The second derivatives quantify the response of sensitivity results to perturbations, provide a classification of types of selection and provide one way to calculate sensitivities of the stochastic growth rate. 2. Using matrix calculus, we derive the second derivatives of three population growth rate measures: the discrete-time growth rate λ, the continuous-time growth rate r = log λ and the net reproductive rate R0, which measures per-generation growth. 3. We present a suite of formulae for the second derivatives of each growth rate and show how to compute these derivatives with respect to projection matrix entries and to lower-level parameters affecting those matrix entries. 4. We also illustrate several ecological and evolutionary applications for these second derivative calculations with a case study for the tropical herb Calathea ovandensis. PMID:25793101

  13. Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates

    PubMed Central

    Rebnegger, Corinna; Vos, Tim; Graf, Alexandra B.; Valli, Minoska; Pronk, Jack T.

    2016-01-01

    ABSTRACT The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris. Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX/Smax) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h−1 to near-zero specific growth rates (μ < 0.001 h−1). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production

  14. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

    PubMed

    Yassine, Fatima; Bassil, Nathalie; Flouty, Roula; Chokr, Ali; Samrani, Antoine El; Boiteux, Gisèle; Tahchi, Mario El

    2016-08-01

    Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of photoperiod on wheat growth, development and yield in CELSS

    NASA Astrophysics Data System (ADS)

    Yunze, Shen; Shuangsheng, Guo

    2014-12-01

    A Controlled Ecological Life Support System (CELSS) is a sealed system used in spaceflight in order to provide astronauts with food and O2 by plants. It is of great significance to increase the energy-using efficiency because energy is extremely deficient in the space. Therefore, the objective of this research was to increase the energy-using efficiency of wheat by regulating the photoperiod. Sixteen treatments were set in total: four photoperiods before flowering (PBF) combined with four photoperiods after flowering (PAF) of 12 h, 16 h, 20 h and 24 h. The light source was red-blue LED (90% red+10% blue). As a result, the growth period of wheat was largely extended by shorter PBF, particularly the number of days from tillering to jointing and from jointing to heading. The period from flowering to maturity was extended by shorter PAF. Shorter PBF and longer PAF could increase not only the yield but also the energy-using efficiency of wheat. As for the nutritional quality, longer photoperiod (both PBF and PAF) increased starch concentration as well as decreased protein concentration of seeds. The effects of PBF and PAF were interactional. The lighting strategy with PBF of 12 h and PAF of 24 h was proved to be the optimum photoperiod for wheat cultivation in CELSS. The mechanisms of photoperiod effect contain two aspects. Firstly, photoperiod is a signal for many processes in plant growth, particularly the process of ear differentiation. Shorter PBF promoted the ear differentiation of wheat, increasing the spikelet number, floret number and seed number and thus enhancing the yield. Secondly, longer photoperiod leads to more light energy input and longer time of photosynthesis, so that longer PAF provided more photosynthate and increased seed yield.

  16. Longleaf pine wood and straw yields from two old-field planted sites in Georgia

    Treesearch

    E. David Dickens; David J. Moorhead; Bryan C. McElvany; Ray Hicks

    2012-01-01

    Little is known or published concerning longleaf pine’s growth rate, or wood and pine straw yields on old-field sites. Two study areas were installed in unthinned longleaf plantations established on former old-fields in Screven and Tift Counties, Georgia to address pine growth and straw yields. Soil series were delineated and replicated plots with three levels of...

  17. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    PubMed

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  18. Influence of spacing and depth of planting to growth and yield of arrowroot (Marantha arundinacea)

    NASA Astrophysics Data System (ADS)

    Qodliyati, M.; Supriyono; Nyoto, S.

    2018-03-01

    This study was conducted to determine the optimum spacing and depth of planting to the growth and yield of arrowroot. This research was conducted at the Experimental Field of Agriculture Faculty, Sebelas Maret University on Jumantono, Karanganyar. This research was conducted using Randomized Completely Block Design (RCBD) with two treatment factors of plant spacing and depth of planting. Plant spacing consists of 3 levels, including J1 (30×30 cm), J2 (30×40 cm) and J3 (30×50 cm). Depth of planting consists of 2 levels which are K1 (10 cm) and K2 (20 cm). Data were analyzed by DMRT (Duncan’s Multiple Range Test) at 5% significance level. The results showed that spacing of 30×50 cm have significantly higher plant height, tuber (common names of rhizome) length, and tuber weight per plant. The depth of 20 cm gives a higher yield on the number of tubers per plant and tuber weight per plot variables. Both treatments have no significant interaction on growth and yield.

  19. Effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown hydroponically

    NASA Technical Reports Server (NTRS)

    Ogbuehi, Cyriacus R.; Loretan, Phil A.; Bonsi, C. K.; Hill, Walter A.; Morris, Carlton E.; Biswas, P. K.; Mortley, Desmond G.

    1989-01-01

    Sweet potato shoot tips have been shown to be a nutritious green vegetable. A study was conducted to determine the effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown in the greenhouse using the nutrient film technique (NFT). The nutrient solution consisted of a modified half Hoagland solution. Biweekly shoot tip harvests, beginning 42 days after planting, provided substantial amounts of vegetable greens and did not affect the fresh and dry foliage weights or the storage root number and fresh and dry storage root weights at final harvest. The rates of anion and cation uptake were not affected by tip harvests.

  20. Noise in gene expression is coupled to growth rate.

    PubMed

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L).

    PubMed

    Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan

    2017-01-01

    Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65-70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency.

  2. Phase feeding in a big-bird production scenario: effect on growth performance, yield, and fillet dimension.

    PubMed

    Brewer, V B; Owens, C M; Emmert, J L

    2012-05-01

    Phase feeding (PF) has been effective at maintaining broiler growth while reducing production cost, but the effect on different broiler strains and sex has not been assessed. An experiment was conducted using 4 commercial broiler strains grown up to 63 d of age (n = 1,440), comparing a PF approach to an industry-type diet. At d 17, birds began either the industry or PF regimen. The industry regimen consisted of average industry nutrient levels with periods from 17 to 32 d, 32 to 40 d, 40 to 49 d, and 49 d to the end of trial. For PF, diets were prepared that contained Lys, sulfur amino acids, and Thr levels matching the predicted requirements for birds at the beginning (high nutrient density) and end (low nutrient density) of PF. Pelleted high and low nutrient density diets were blended to produce rations containing amino acid levels that matched the predicted PF requirements over 2-d intervals. Weight gain, feed intake, and feed efficiency were calculated through d 58. Birds were commercially processed at 59, 61, or 63 d; yield and fillet dimensions were measured. Phase feeding did not effect weight gain or feed intake of broilers during the overall growth period (17-58 d). For most strains, PF did not effect final BW, yield, or fillet dimensions. However, strain and sex had greater effects on growth performance, yields, and fillet dimensions. Strains B and D had greater breast yield than strains A and C. Reduced feed costs ($0.01 to $0.04 per kilogram of gain, depending on strain) were observed for all strains with PF for the overall growth period (17-58 d). Therefore, potential savings on feed costs are possible for all strains used in this study with the incorporation of the PF regimen.

  3. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    NASA Astrophysics Data System (ADS)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  4. The influence of impurities on the growth rate of calcite

    NASA Astrophysics Data System (ADS)

    Meyer, H. J.

    1984-05-01

    The effects of 34 different additives on the growth rate of calcite were investigated. An initial growth rate of about one crystal monolayer (3 × 10 -8 cm) per minute was adjusted at a constant supersaturation which was maintained by a control circuit. Then the impurity was added step by step and the reduction of the growth rate was measured. The impurity concentration necessary to reduce the initial growth rate by a certain percentage increased in the order Fe 2+, ATP, P 3O 5-10, P 2O 4-7, (PO 3) 6-6, Zn 2+, ADP, Ce 3+, Pb 2+, carbamyl phosphate, Fe 3+, PO 3-4, Co 2+, Mn 2+, Be 2+, β-glycerophosphate, Ni 2+, Cd 2+, "Tris", phenylphosphate, chondroitine sulphate, Ba 2+, citrate, AMP, Sr 2+, tricarballylate, taurine, SO 2-4, Mg 2+ by 4 orders of magnitude. The most effective additives halved the initial growth rate in concentrations of 2 × 10 -8 mol/1. For Fe 2+ the halving concentration was nearly proportional to the initial rate. The mechanism of inhibition by adsorption of the impurities at growth sites (kinks) is discussed.

  5. Wall yield threshold and effective turgor in growing bean leaves.

    PubMed

    Van Volkenburgh, E; Cleland, R E

    1986-01-01

    The rate of cell enlargement depends on cell-wall extensibility (m) and on the amount of turgor pressure (P) which exceeds the wall yield threshold (Y). The difference (P-Y) is the growth-effective turgor (P e). Values of P, Y and P ehave been measured in growing bean (Phaseolus vulgaris L.) leaves with an isopiestic psychrometer, using the stress-relaxation method to derive Y. When rapid leaf growth is initiated by light, P, Y and P eall decrease. Thereafter, while the growth rate declines in maturing leaves, Y continues to decrease and P eactually increases. These data confirm earlier results indicating that the changes in light-stimulated leaf growth rate are primarily controlled by changes in m, and not by changes in P e. Seedlings incubated at 100% relative humidity have increased P, but this treatment does not increase growth rate. In some cases Y changes in parallel with P, so that P eremains unchanged. These data point out the importance of determining P e, rather than just P, when relating cell turgor to the growth rate.

  6. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  7. Comparing Basal Area Growth Rates in Repeated Inventories: Simpson's Paradox in Forestry

    Treesearch

    Charles E. Thomas; Bernard R. Parresol

    1989-01-01

    Recent analyses of radial growth rates in southern commercial forests have shown that current rates are lower than past rates when compared diameter class by diameter class. These results have been interpreted as an indication that the growth rate of the forest is declining. In this paper, growth rates of forest populations in Alabama are studied. Basal area growth (a...

  8. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton.

    PubMed Central

    Clark, D R; Flynn, K J

    2000-01-01

    A range of marine phytoplankton was grown in closed systems in order to investigate the kinetics of dissolved inorganic carbon (DIC) use and the influence of the nitrogen source under conditions of constant pH. The kinetics of DIC use could be described by a rectangular hyperbolic curve, yielding estimations of KG(DIC) (the half saturation constant for carbon-specific growth, i.e. C mu) and mu max (the theoretical maximum C mu). All species attained a KG(DIC) within the range of 30-750 microM DIC. For most species, NH4+ use enabled growth with a lower KG(DIC) and/or, for two species, an increase in mu max. At DIC concentrations of > 1.6 mM, C mu was > 90% saturated for all species relative to the rate at the natural seawater DIC concentration of 2.0 mM. The results suggest that neither the rate nor the extent of primary productivity will be significantly limited by the DIC in the quasi-steady-state conditions associated with oligotrophic oceans. The method needs to be applied in the conditions associated with dynamic coastal (eutrophic) systems for clarification of a potential DIC rate limitation where cells may grow to higher densities and under variable pH and nitrogen supply. PMID:10874743

  9. Improving estimates of tree mortality probability using potential growth rate

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.

    2015-01-01

    Tree growth rate is frequently used to estimate mortality probability. Yet, growth metrics can vary in form, and the justification for using one over another is rarely clear. We tested whether a growth index (GI) that scales the realized diameter growth rate against the potential diameter growth rate (PDGR) would give better estimates of mortality probability than other measures. We also tested whether PDGR, being a function of tree size, might better correlate with the baseline mortality probability than direct measurements of size such as diameter or basal area. Using a long-term dataset from the Sierra Nevada, California, U.S.A., as well as existing species-specific estimates of PDGR, we developed growth–mortality models for four common species. For three of the four species, models that included GI, PDGR, or a combination of GI and PDGR were substantially better than models without them. For the fourth species, the models including GI and PDGR performed roughly as well as a model that included only the diameter growth rate. Our results suggest that using PDGR can improve our ability to estimate tree survival probability. However, in the absence of PDGR estimates, the diameter growth rate was the best empirical predictor of mortality, in contrast to assumptions often made in the literature.

  10. Effects of H2 and Formate on Growth Yield and Regulation of Methanogenesis in Methanococcus maripaludis

    PubMed Central

    Costa, Kyle C.; Yoon, Sung Ho; Pan, Min; Burn, June A.; Baliga, Nitin S.

    2013-01-01

    Hydrogenotrophic methanogenic Archaea are defined by an H2 requirement for growth. Despite this requirement, many hydrogenotrophs are also capable of growth with formate as an electron donor for methanogenesis. While certain responses of these organisms to hydrogen availability have been characterized, responses to formate starvation have not been reported. Here we report that during continuous culture of Methanococcus maripaludis under defined nutrient conditions, growth yields relative to methane production decreased markedly with either H2 excess or formate excess. Analysis of the growth yields of several mutants suggests that this phenomenon occurs independently of the storage of intracellular carbon or a transcriptional response to methanogenesis. Using microarray analysis, we found that the expression of genes encoding coenzyme F420-dependent steps of methanogenesis, including one of two formate dehydrogenases, increased with H2 starvation but with formate occurred at high levels regardless of limitation or excess. One gene, encoding H2-dependent methylene-tetrahydromethanopterin dehydrogenase, decreased in expression with either H2 limitation or formate limitation. Expression of genes for the second formate dehydrogenase, molybdenum-dependent formylmethanofuran dehydrogenase, and molybdenum transport increased specifically with formate limitation. Of the two formate dehydrogenases, only the first could support growth on formate in batch culture where formate was in excess. PMID:23335420

  11. Depression of Photosynthesis, Growth, and Yield in Field-Grown Green Pepper (Capsicum annuum L.) Exposed to Acidic Fog and Ambient Ozone 1

    PubMed Central

    Takemoto, Brent K.; Bytnerowicz, Andrzej; Olszyk, David M.

    1988-01-01

    The relationship among physiological, injury, growth, and yield responses was examined in field-grown green pepper (Capsicum annuum L. `California Wonder') subjected to two airborne environmental stresses. The primary objectives were to determine if the stresses could cause alterations in the plant responses, and to determine if any stress induced alterations in physiological or injury responses were correlated with effects on growth or yield. Responses were monitored in green pepper exposed to simulated acidic fog alone, or in combination with ambient concentrations of ozone in open-top field chambers. Both highly acidic fog and ambient ozone depressed green pepper growth and yield responses via the inhibition of photosynthesis. Applications of highly acidic fog (i.e. two exposures of pH 1.68 fog per week for 11 weeks) caused a significant depression of net photosynthesis, reduction in leaf buffering capacity, and an extensive amount of leaf injury. These alterations closely paralleled decreases in growth and yield on a percentage basis. In contrast, ambient ozone had similar impacts on net photosynthesis, growth and yield, but enhanced leaf buffering capacity, and caused no visible injury. The pollutant-specific differences in plant response are discussed with respect to whole-plant carbon metabolism and physiological compensation. PMID:16666330

  12. Growth-rate dependent global effects on gene expression in bacteria

    PubMed Central

    Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence

    2010-01-01

    Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380

  13. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  14. Enhanced growth, yield and physiological characteristics of rice under elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Abzar, A.; Ahmad, Wan Juliana Wan; Said, Mohd Nizam Mohd; Doni, Febri; Zaidan, Mohd Waznul Adly Mohd; Fathurahman, Zain, Che Radziah Che Mohd

    2018-04-01

    Carbon dioxide (CO2) is rapidly increasing in the atmosphere. It is an essential element for photosynthesis which attracts attention among scientists on how plants will perform in the rising CO2 level. Rice as one of the most important staple food in the world has been studied on the growth responses under elevated CO2. The present research was carried out to determine the growth and physiology of rice in elevated CO2 condition. This research was carried out using complete randomized design with elevated (800 ppm) and ambient CO2. Results showed that growth parameters such as plant height, tillers and number of leaves per plant were increased by elevated CO2. The positive changes in plant physiology when exposed to high CO2 concentration includes significant change (p<0.05) in yield parameters such as panicle number, grain number per panicle, biomass and 1000 grain weight under the elevated CO2 of 800 ppm.

  15. Variations in Volatile Oil Yield and Composition of "Xin-yi" (Magnolia biondii Pamp. Flower Buds) at Different Growth Stages.

    PubMed

    Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong

    2018-06-01

    Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.

  16. Effect of Sowing Methods and NPK Levels on Growth and Yield of Rainfed Maize (Zea mays L.).

    PubMed

    Gul, Shamim; Khan, M H; Khanday, B A; Nabi, Sabeena

    2015-01-01

    To investigate the response of rainfed maize to sowing methods and NPK levels, an experiment was undertaken during kharif of 2011 and 2012 at Dryland (Kerawa) Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Budgam. The experiment was laid out in a randomized block design with combination of 2 sowing methods (flat sowing, 75 cm apart rows, and ridge sowing, 75 cm apart ridges) and 3 fertility levels (60 : 40 : 20, 75 : 50 : 30, and 90 : 60 : 40 N : P2O5 : K2O kg ha(-1)) with three replications. Various growth characters, namely, plant height, leaf area index, dry matter accumulation, number of days to different phenological stages, and yield, and yield contributing characters namely, cob length, number of grains cob(-1), cob diameter (cm), and 100-seed weight (g), were significantly higher with S2 over S1 during both the years of experimentation. Fertilizer levels F3 (90 : 60 : 40) and F2 (75 : 50 : 30) at par with one another produced significant increase in growth and yield characters, namely, plant height, leaf area index, dry matter production at different growth stages, cob length, number of cobs plant(-1), number of grains cob(-1), and 100-seed weight over F1 (60 : 40 : 20). Significantly higher grain yield was recorded with fertilizer level F3 (90 : 60 : 40) being at par with F2 (75 : 50 : 30) and showed significant increase over F1 (60 : 40 : 20) with superiority of 5.4 and 5.7 per cent during 2011 and 2012, respectively. The findings of the study concluded that ridge method of sowing of maize with NPK levels of 75 : 50 : 30 kg ha(-1) showed better performance of crop in terms of growth, yield, and yield attributes.

  17. Effect of Sowing Methods and NPK Levels on Growth and Yield of Rainfed Maize (Zea mays L.)

    PubMed Central

    2015-01-01

    To investigate the response of rainfed maize to sowing methods and NPK levels, an experiment was undertaken during kharif of 2011 and 2012 at Dryland (Kerawa) Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Budgam. The experiment was laid out in a randomized block design with combination of 2 sowing methods (flat sowing, 75 cm apart rows, and ridge sowing, 75 cm apart ridges) and 3 fertility levels (60 : 40 : 20, 75 : 50 : 30, and 90 : 60 : 40 N : P2O5 : K2O kg ha−1) with three replications. Various growth characters, namely, plant height, leaf area index, dry matter accumulation, number of days to different phenological stages, and yield, and yield contributing characters namely, cob length, number of grains cob−1, cob diameter (cm), and 100-seed weight (g), were significantly higher with S2 over S1 during both the years of experimentation. Fertilizer levels F3 (90 : 60 : 40) and F2 (75 : 50 : 30) at par with one another produced significant increase in growth and yield characters, namely, plant height, leaf area index, dry matter production at different growth stages, cob length, number of cobs plant−1, number of grains cob−1, and 100-seed weight over F1 (60 : 40 : 20). Significantly higher grain yield was recorded with fertilizer level F3 (90 : 60 : 40) being at par with F2 (75 : 50 : 30) and showed significant increase over F1 (60 : 40 : 20) with superiority of 5.4 and 5.7 per cent during 2011 and 2012, respectively. The findings of the study concluded that ridge method of sowing of maize with NPK levels of 75 : 50 : 30 kg ha−1 showed better performance of crop in terms of growth, yield, and yield attributes. PMID:26090269

  18. Seed-Specific Expression of OsDWF4, a Rate-Limiting Gene Involved in Brassinosteroids Biosynthesis, Improves Both Grain Yield and Quality in Rice.

    PubMed

    Li, Qian-Feng; Yu, Jia-Wen; Lu, Jun; Fei, Hong-Yuan; Luo, Ming; Cao, Bu-Wei; Huang, Li-Chun; Zhang, Chang-Quan; Liu, Qiao-Quan

    2018-04-18

    Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.

  19. Growth rate variation and potential paleoceanographic proxies in Primnoa pacifica: Insights from high-resolution trace element microanalysis

    NASA Astrophysics Data System (ADS)

    Aranha, Renita; Edinger, Evan; Layne, Graham; Piercey, Glenn

    2014-01-01

    interannual variation. Mg/Ca ratios ranged from 70 to 136 mmol mol-1, and Sr/Ca ratios from 2.041 to 3.14 mmol mol-1. Previously published relationships between gorgonian calcite Mg/Ca and seawater temperature yielded average temperatures matching ambient measurements, but the intra- and inter-annual variation in apparent temperature based on the Mg/Ca ratios was more than double the observed variation in modern seawater temperature ranges in the region. Annual variation in Mg/Ca and Sr/Ca could be related to seasonal changes in precipitation efficiency, which is likely a function of short-term fluctuations in coral growth rate, in turn related to variation in primary productivity. Seasonal and interannual variations in food availability, driven by primary productivity, may affect skeletal growth rate, hence Mg/Ca and Sr/Ca ratios. Primnoid coral skeletal microgeochemistry probably records temporal changes in both temperature and primary productivity.

  20. Phytoplankton growth rates in a light-limited environment, San Francisco Bay

    USGS Publications Warehouse

    Alpine, Andrea E.; Cloern, James E.

    1988-01-01

    This study was motivated by the need for quantitative measures of phytoplankton population growth rate in an estuarine environment, and was designed around the presumption that growth rates can be related empirically to light exposure. We conducted the study in San Francisco Bay (California, USA), which has large horizontal gradients in light availability (Zp:Zm) typical of many coastal plain estuaries, and nutrient concentrations that often exceed those presumed to limit phytoplankton growth (Cloern et al. 1985). We tested the hypothesis that light availability is the primary control of phytoplankton growth, and that previous estimates of growth rate based on the ratio of productivity to biomass (Cloern et al. 1985) are realistic. Specifically, we wanted to verify that growth rate varies spatially along horizontal gradients of light availability indexed as Zp:Zm, such that phytoplankton turnover rate is rapid in shallow clear areas (high Zp:Zm) and slow in deep turbid areas (low Zp:Zm). We used an in situ incubation technique which simulated vertical mixing, and measured both changes in cell number and carbon production as independent estimates of growth rate across a range of Zp:Zm ratios.

  1. Modelling the growth Rate of Algal in sediment-laden flow

    NASA Astrophysics Data System (ADS)

    Li, H.

    2017-12-01

    Phytoplankton plays an important role as a primary producer in aquatic ecosystems. Fluid dynamics can affect the growth of algae in a number of ways and can be divided into two categories. On the one hand the advection and diffusion processes may disrupt the vertical migration of phytoplankton. On the other hand hydrodynamic effects of sediment suspension which can affect algal growth, by releasing nutrients and reducing light intensity. Natural water generally contains sediment. Therefore, when the flow enters the lake, it will cause a change in the phytoplankton community at the junction. Few people have studied the effects of sediment-laden flows to algal growth rates. In this project, Baiyangdian was chosen as the key research area to study the effect of sediment-laden flow on the growth rate of algae. And we conducted a microcosmic experiment in the laboratory to simulate the effect of sediment-laden flow on the growth rate of algae, and constructed a numerical model for the growth rate of algae in sediment-laden flow.

  2. Relationship between Monokaryotic Growth Rate and Mating Type in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Pérez, Gúmer; Iribarren, Iñaki; Blanco, Juan A.; Alfonso, Mikel; Pisabarro, Antonio G.; Ramírez, Lucía

    2001-01-01

    The edible fungus Pleurotus ostreatus (oyster mushroom) is an industrially produced heterothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Two mating loci (matA and matB) control different steps of hyphal fusion, nuclear migration, and nuclear sorting during the onset and progress of the dikaryotic growth. Previous studies have shown that the segregation of the alleles present at the matB locus differs from that expected for a single locus because (i) new nonparental B alleles appeared in the progeny and (ii) there was a distortion in the segregation of the genomic regions close to this mating locus. In this study, we pursued these observations by using a genetic approach based on the identification of molecular markers linked to the matB locus that allowed us to dissect it into two genetically linked subunits (matBα and matBβ) and to correlate the presence of specific matBα and matA alleles with differences in monokaryotic growth rate. The availability of these molecular markers and the mating type dependence of growth rate in monokaryons can be helpful for marker-assisted selection of fast-growing monokaryons to be used in the construction of dikaryons able to colonize the substrate faster than the competitors responsible for reductions in the industrial yield of this fungus. PMID:11472908

  3. Ten-gram scale SiC@SiO2 nanowires: high-yield synthesis towards industrialization, in situ growth mechanism and their peculiar photoluminescence and electromagnetic wave absorption properties.

    PubMed

    Li, Z J; Yu, H Y; Song, G Y; Zhao, J; Zhang, H; Zhang, M; Meng, A L; Li, Q D

    2017-02-01

    SiC@SiO 2 nanowires, as a functional nanocomposite, have attracted widespread attention due to their fascinating performance and broad application prospect. However, the low-cost, high yield preparation of large-scale SiC@SiO 2 nanowires is still a bottleneck, which hinders their industrial application. Herein, a carbothermal reduction strategy has been developed to synthesize SiC@SiO 2 nanowires, which breaks through the handicap of the traditional growth pattern that uses the aid of a substrate. Systematic characterization results illustrate that the yield of the as-obtained products greatly depends on the heating rate, and ten-gram scale SiC@SiO 2 nanowires (∼27.2 g) composed of a cubic β-SiC core and homogeneous amorphous SiO 2 coating are achieved under the optimum process parameters. The in situ mechanisms of expansion-insertion-growth and inhibition of expansion-package-obstruction are proposed to rationally interpret the growth process of SiC@SiO 2 nanowires and the effect of various heating rates, respectively. Furthermore, the SiC@SiO 2 nanowires display violet-blue photoluminescence and electromagnetic wave absorption properties. This study not only provides some beneficial suggestions for the commercial production of SiC@SiO 2 nanowires, but also reveals promising applications of SiC@SiO 2 nanowires in the optical and electromagnetic shielding fields. Moreover, the developed novel in situ growth mechanism enriches the growth theory of one-dimension nanomaterials and offers inspiration for their industrial-scale production.

  4. Growth and yield in Eucalyptus globulus

    Treesearch

    James A. Rinehart; Richard B. Standiford

    1983-01-01

    A study of the major Eucalyptus globulus stands throughout California conducted by Woodbridge Metcalf in 1924 provides a complete and accurate data set for generating variable site-density yield models. Two models were developed using linear regression techniques. Model I depicts a linear relationship between age and yield best used for stands between five and fifteen...

  5. Whiskey springs long-term coast redwood density management; final growth, sprout, and yield results

    Treesearch

    Lynn A. Webb; James L. Lindquist; Erik Wahl; Andrew Hubb

    2012-01-01

    Multi-decadal studies of commercial and precommercial thinning in redwood stands are rare and consequently of value. The Whiskey Springs study at Jackson Demonstration State Forest has a data set spanning 35 years. In addition to growth and yield response to commercial thinning, the results provide important information for evaluating regeneration and...

  6. Growth and yield of white spruce plantations in the Lake States (a literature review).

    Treesearch

    H. Michael Rauscher

    1984-01-01

    This summary of the white spruce literature covers the structure, site relations, population dynamics, and cultural practices applicable to established plantations in the Lake States. The objective of this paper is to assemble and organize all information relevant to the silviculture, growth, and yield of white spruce plantations in the Lake States .

  7. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Steve A.

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies tomore » optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of

  8. Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L)

    PubMed Central

    Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan

    2017-01-01

    Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65–70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency. PMID:28384647

  9. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize.

    PubMed

    Oury, Vincent; Tardieu, François; Turc, Olivier

    2016-06-01

    Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. A compendium of forest growth and yield simulators for the Pacific coast states

    Treesearch

    Martin W. Ritchie

    1999-01-01

    This manuscript provides information needed for the user to access current information about forest growth and yield simulators. Ultimately, the best source of information for any simulator is the user’s guide and the sage advice of those who built the simulator. In some instances, these people are easy to find and are willing to provide all the support for the program...

  11. Gaseous pollutants from brick kiln industry decreased the growth, photosynthesis, and yield of wheat (Triticum aestivum L.).

    PubMed

    Adrees, Muhammad; Ibrahim, Muhammad; Shah, Aamir Mehmood; Abbas, Farhat; Saleem, Farhan; Rizwan, Muhammad; Hina, Saadia; Jabeen, Fariha; Ali, Shafaqat

    2016-05-01

    Gaseous pollutant emissions from brick kiln industries deteriorate the current state of ambient air quality in Pakistan and worldwide. These gaseous pollutants affect the health of plants and may decrease plant growth and yield. A field experiment that was conducted to monitor the concentration of gaseous pollutants emitted mainly from brick kilns in the ambient air and associated impacts on the growth and physiological attributes of the two wheat (Triticum spp.) cultivars. Plants were grown at three sites, including control (Ayub Agriculture Research Institute, AARI), low pollution (LP) site (Small Estate Industry), and high pollution (HP) site (Sidar Bypass), of Faisalabad, Pakistan. Monitoring of ambient air pollution at experimental sites was carried out using the state-of-art ambient air analyzers. Plants were harvested after 120 days of germination and were analyzed for different growth attributes. Results showed that the hourly average concentration of gaseous air pollutants CO, NO2, SO2, and PM10 at HP site were significantly higher than the LP and control sites. Similarly, gaseous pollutants decreased plant height, straw and grain yield, photosynthesis and increased physical injury, and metal concentrations in the grains. However, wheat response toward gaseous pollutants did not differ between cultivars (Galaxy and 8173) studied. Overall, the results indicated that brick kiln emissions could reduce the performance of wheat grown in the soils around kilns and confirm the adverse impacts of pollutants on the growth, yield, and quality of the wheat.

  12. Timber value growth rates in New England

    Treesearch

    David A, Gansner; Stanford L. Arner; Thomas W. Birch; Thomas W. Birch

    1990-01-01

    Rates of growth in the value of standing timber can vary greatly from stand to stand and from tree to tree. In Maine, the compound annual rate of change in stand value between the two most recent forest inventories ranged from -12 to +43 percent. Faced with this kind of variation, forest managers can use help in determining financial rates of return for their woodland...

  13. Very slow growth of Escherichia coli.

    PubMed Central

    Chesbro, W; Evans, T; Eifert, R

    1979-01-01

    A recycling fermentor (a chemostat with 100% biomass feedback) was used to study glucose-limited behavior of Escherichia coli B. The expectation from mass transfer analysis that growth would asymptotically approach a limit mass determined by the glucose provision rate (GPR) and the culture's maintenance requirement was not met. Instead, growth proceeded at progressively lower rates through three distinct phases. After the fermentor was seeded, but before glucose became limiting, growth followed the usual, exponential path (phase 1). About 12 h postseeding, residual glucose in the fermentor fell below 1 microgram . ml-1 and the growth rate (dx/dt) became constant and a linear function of GPR (phase 2). The specific growth rate, mu, therefore fell continuously throughout the phase. Biomass yield and glucose assimilation (13%) were near the level for exponential growth, however, and independent of GPR over a broad range. At a critical specific growth rate (0.04 h-1 for this strain), phase 2 ended abruptly and phase 3 commenced. In phase 3, the growth rate was again constant, although lower than in phase 2, so that mu continued to fall, but growth rates and yields were praboloid functions of GPR. They were never zero, however, at any positive value of GPR. By inference, the fraction of metabolic energy used for maintenance functions is constant for a given GPR, although different for phases 2 and 3, and independent of biomass. In both phases 2 and 3, orcinol, diphenylamine, and Lowry reactive materials were secreted at near-constant rates such that over 50% as much biosynthetic mass was secreted as was retained by the cells. Images PMID:378981

  14. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers.

    PubMed

    Arancon, Norman Q; Edwards, Clive A; Atiyeh, Rola; Metzger, James D

    2004-06-01

    Vermicomposts, produced commercially from food wastes, were substituted at a range of different concentrations into a soil-less commercial bedding plant container medium, Metro-Mix 360 (MM360), to evaluate their effects on the growth and yields of peppers in the greenhouse. Six-week-old peppers (Capsicum annum L. var. California) were transplanted into 100%, 80%, 60%, 40%, 20% or 10% MM360 substituted with 0%, 10%, 20%, 40%, 60%, 80% and 100% vermicompost. All plants were watered three times weekly with 200 ppm Peter's Nutrient Solution from the time of transplanting up to 107 days. Peppers grown in potting mixtures containing 40% food waste vermicomposts and 60% MM360 yielded 45% more fruit weights and had 17% greater mean number of fruits than those grown in MM360 only. The mean heights, numbers of buds and numbers of flowers of peppers grown in potting mixtures containing 10-80% vermicompost although greater did not differ significantly from those of peppers grown in MM360. There were no positive correlations between the increases in pepper yields, and the amounts of mineral-N and microbial biomass-N in the potting mixtures, or the concentrations of nitrogen in the shoot tissues of peppers. Factors such as: an improvement of the physical structure of the potting medium, increases in populations of beneficial microorganisms and the potential availability of plant growth-influencing-substances produced by microorganisms in vermicomposts, could have contributed to the increased pepper yields obtained. Copyright 2003 Elsevier Ltd.

  15. Growth rates of young-of-year shovelnose sturgeon in the Upper Missouri River

    USGS Publications Warehouse

    Braaten, P. J.; Fuller, D.B.

    2007-01-01

    Information on growth during the larval and young-of-year life stages in natural river environments is generally lacking for most sturgeon species. In this study, methods for estimating ages and quantifying growth were developed for field-sampled larval and young-of-year shovelnose sturgeon Scaphirhynchus platorynchus in the upper Missouri River. First, growth was assessed by partitioning samples of young-of-year shovelnose sturgeon into cohorts, and regressing weekly increases in cohort mean length on sampling date. This method quantified relative growth because ages of the cohorts were unknown. Cohort increases in mean length among sampling dates were positively related (P < 0.05, r2 > 0.59 for all cohorts) to sampling date, and yielded growth rate estimates of 0.80–2.95 mm day−1 (2003) and 0.44–2.28 mm day−1 (2004). Highest growth rates occurred in the largest (and earliest spawned) cohorts. Second, a method was developed to estimate cohort hatch dates, thus age on date of sampling could be determined. This method included quantification of post-hatch length increases as a function of water temperature (growth capacity; mm per thermal unit, mm TU−1), and summation of mean daily water temperatures to achieve the required number of thermal units that corresponded to post-hatch lengths of shovelnose sturgeon on sampling dates. For six of seven cohorts of shovelnose sturgeon analyzed, linear growth models (r2 ≥ 0.65, P < 0.0001) or Gompertz growth models (r2 ≥ 0.83, P < 0.0001) quantified length-at-age from hatch through 55 days post-hatch (98–100 mm). Comparisons of length-at-age derived from the growth models indicated that length-at-age was greater for the earlier-hatched cohorts than later-hatched cohorts. Estimated hatch dates for different cohorts were corroborated based on the dates that newly-hatched larval shovelnose sturgeon were sampled in the drift. These results provide the first quantification of growth dynamics

  16. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    PubMed

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Understanding the demographic drivers of realized population growth rates.

    PubMed

    Koons, David N; Arnold, Todd W; Schaub, Michael

    2017-10-01

    Identifying the demographic parameters (e.g., reproduction, survival, dispersal) that most influence population dynamics can increase conservation effectiveness and enhance ecological understanding. Life table response experiments (LTRE) aim to decompose the effects of change in parameters on past demographic outcomes (e.g., population growth rates). But the vast majority of LTREs and other retrospective population analyses have focused on decomposing asymptotic population growth rates, which do not account for the dynamic interplay between population structure and vital rates that shape realized population growth rates (λt=Nt+1/Nt) in time-varying environments. We provide an empirical means to overcome these shortcomings by merging recently developed "transient life-table response experiments" with integrated population models (IPMs). IPMs allow for the estimation of latent population structure and other demographic parameters that are required for transient LTRE analysis, and Bayesian versions additionally allow for complete error propagation from the estimation of demographic parameters to derivations of realized population growth rates and perturbation analyses of growth rates. By integrating available monitoring data for Lesser Scaup over 60 yr, and conducting transient LTREs on IPM estimates, we found that the contribution of juvenile female survival to long-term variation in realized population growth rates was 1.6 and 3.7 times larger than that of adult female survival and fecundity, respectively. But a persistent long-term decline in fecundity explained 92% of the decline in abundance between 1983 and 2006. In contrast, an improvement in adult female survival drove the modest recovery in Lesser Scaup abundance since 2006, indicating that the most important demographic drivers of Lesser Scaup population dynamics are temporally dynamic. In addition to resolving uncertainty about Lesser Scaup population dynamics, the merger of IPMs with transient LTREs will

  18. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2.

    PubMed

    Kumar, Sumit; Chaitanya, Bharatula S K; Ghatty, Sreenivas; Reddy, Attipalli R

    2014-11-01

    Jatropha (Jatropha curcas) is a non-edible oil producing plant which is being advocated as an alternative biofuel energy resource. Its ability to grow in diverse soil conditions and minimal requirements of essential agronomical inputs compared with other oilseed crops makes it viable for cost-effective advanced biofuel production. We designed a study to investigate the effects of elevated carbon dioxide concentration ([CO(2)]) (550 ppm) on the growth, reproductive development, source-sink relationships, fruit and seed yield of J. curcas. We report, for the first time that elevated CO(2) significantly influences reproductive characteristics of Jatropha and improve its fruit and seed yields. Net photosynthetic rate of Jatropha was 50% higher in plants grown in elevated CO(2) compared with field and ambient CO(2) -grown plants. The study also revealed that elevated CO(2) atmosphere significantly increased female to male flower ratio, above ground biomass and carbon sequestration potential in Jatropha (24 kg carbon per tree) after 1 year. Our data demonstrate that J. curcas was able to sustain enhanced rate of photosynthesis in elevated CO(2) conditions as it had sufficient sink strength to balance the increased biomass yields. Our study also elucidates that the economically important traits including fruit and seed yield in elevated CO(2) conditions were significantly high in J. curcas that holds great promise as a potential biofuel tree species for the future high CO(2) world. © 2014 Scandinavian Plant Physiology Society.

  19. A Simple Device to Measure Root Growth Rates

    ERIC Educational Resources Information Center

    Rauser, Wilfried E.; Horton, Roger F.

    1975-01-01

    Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)

  20. Rapid and improved recovery rate of Mycobacterium tuberculosis in Mycobacteria Growth Indicator Tube combined with solid Löwenstein Jensen medium.

    PubMed

    Rivera, A B; Tupasi, T E; Grimaldo, E R; Cardano, R C; Co, V M

    1997-10-01

    Clinical microbiology laboratory with limited resources in a developing country. To determine the recovery rate of Mycobacterium tuberculosis (MTB) in Mycobacteria Growth Indicator Tube (MGIT) combined with Löwenstein Jensen (LJ) culture medium. Stock cultures and reference strains of mycobacteria and clinical specimens were inoculated into MGIT and onto LJ. The combined recovery rate was determined and time to positive culture in each medium was compared. All known stock and reference cultures of mycobacteria grew in both media. MGIT combined with LJ increased the recovery rate from 109 (63.4%) to 122 (70.9%) of 172 clinical specimens. Of those isolated, the yield in MGIT (99.2%) exceeded that in LJ (89.3%). The average day to detection of MTB in MGIT was earlier by 14.2 days compared to LJ (15.7 days vs. 29.9 days). For mycobacteria other than tuberculosis (MOTT), there was little difference in the recovery time, except for M. kansasii where growth in MGIT was earlier by one week and M. triviale where growth in MGIT was detected later than LJ. MGIT is an excellent system for the rapid isolation of mycobacteria. It increases the recovery rate of MTB when combined with LJ.

  1. Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Mingyuan; Lu, Ming; Chu, Yong

    In situ microscopy of colloidal nanocrystal growth offers a unique opportunity to acquire direct and straightforward data for assessing classical growth models. For this study, we observe the growth trajectories of individual Ag nanoparticles in solution using in situ scanning transmission electron microscopy. For the first time, we provide experimental evidence of growth rates of Ag nanoparticles in the presence of Pt in solution that are significantly faster than predicted by Lifshitz-Slyozov-Wagner theory. We attribute these observed anomalous growth rates to the synergistic effects of the catalytic properties of Pt and the electron beam itself. Transiently reduced Pt atoms servemore » as active sites for Ag ions to grow, thereby playing a key role in controlling the growth kinetics. Electron beam illumination greatly increases the local concentration of free radicals, thereby strongly influencing particle growth rate and the resulting particle morphology. Through a systematic investigation, we demonstrate the feasibility of utilizing these synergistic effects for controlling the growth rates and particle morphologies at the nanoscale. Our findings not only expand the current scope of crystal growth theory, but may also lead to a broader scientific application of nanocrystal synthesis.« less

  2. Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM

    DOE PAGES

    Ge, Mingyuan; Lu, Ming; Chu, Yong; ...

    2017-11-27

    In situ microscopy of colloidal nanocrystal growth offers a unique opportunity to acquire direct and straightforward data for assessing classical growth models. For this study, we observe the growth trajectories of individual Ag nanoparticles in solution using in situ scanning transmission electron microscopy. For the first time, we provide experimental evidence of growth rates of Ag nanoparticles in the presence of Pt in solution that are significantly faster than predicted by Lifshitz-Slyozov-Wagner theory. We attribute these observed anomalous growth rates to the synergistic effects of the catalytic properties of Pt and the electron beam itself. Transiently reduced Pt atoms servemore » as active sites for Ag ions to grow, thereby playing a key role in controlling the growth kinetics. Electron beam illumination greatly increases the local concentration of free radicals, thereby strongly influencing particle growth rate and the resulting particle morphology. Through a systematic investigation, we demonstrate the feasibility of utilizing these synergistic effects for controlling the growth rates and particle morphologies at the nanoscale. Our findings not only expand the current scope of crystal growth theory, but may also lead to a broader scientific application of nanocrystal synthesis.« less

  3. On Growth Rates of Subadditive Functions for Semiflows

    NASA Astrophysics Data System (ADS)

    Schreiber, Sebastian J.

    1998-09-01

    Letφ: X×T+→Xbe a semiflow on a compact metric spaceX. A functionF: X×T+→Xis subadditive with respect toφifF(x, t+s)⩽F(x, t)+F(φ(x, t),nbsp;s). We define the maximal growth rate ofFto be supx∈X lim supt→∞(1/t) F(x, t). This growth rate is shown to equal the maximal growth rate of the subadditive function restricted to the minimal center of attraction of the semiflow. Applications to Birkhoff sums, characteristic exponents of linear skew-product semiflows on Banach bundles, and average Lyapunov functions are developed. In particular, a relationship between the dynamical spectrum and the measurable spectrum of a linear skew-product flow established by R. A. Johnson, K. J. Palmer, and G. R. Sell (SIAM J. Math. Anal.18, 1987, 1-33) is extended to semiflows in an infinite dimensional setting.

  4. Calculation Of Clinopyroxene And Olivine Growth Rates Using Plagioclase Residence Time

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Borell, A.; Leu, A.

    2012-12-01

    According to the Crystal Size Distribution theory (CSD) in a plot of logarithm of number of crystals of a given size range per unit volume [ln(n)], against crystal size [L] shows a straight line. Slope of that line is given by where is the crystal residence time and G is the crystal growth rate. Therefore if is known then G can be calculated. We used thin sections of the Kilauea basalt from Hawaii where olivine, clinopyroxene and plagioclase crystallized within a small temperature range, and the crystal growth rate of plagioclase is known. Assuming that crystal residence times of these three minerals are the same, we plotted ln(n) against L and using the slope and the known crystal growth rate of plagioclase we calculated the crystal growth rates of clinopyroxene and olivine. For the clinopyroxene growth rate we report 10-10.9cm/sec, which is in good agreement with Congdon's data of 10-10 cm/sec. We also calculated the growth rate of olivine is a basaltic melt as 10-8.5 cm/sec which is comparable to < 10-10 to 10-7 cm/sec given by Donaldson and Jambon.

  5. Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems

    NASA Astrophysics Data System (ADS)

    Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki

    2014-04-01

    We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.

  6. The OsPS1-F gene regulates growth and development in rice by modulating photosynthetic electron transport rate.

    PubMed

    Ramamoorthy, Rengasamy; Vishal, Bhushan; Ramachandran, Srinivasan; Kumar, Prakash P

    2018-02-01

    Ds insertion in rice OsPS1-F gene results in semi-dwarf plants with reduced tiller number and grain yield, while genetic complementation with OsPS1-F rescued the mutant phenotype. Photosynthetic electron transport is regulated in the chloroplast thylakoid membrane by multi-protein complexes. Studies about photosynthetic machinery and its subunits in crop plants are necessary, because they could be crucial for yield enhancement in the long term. Here, we report the characterization of OsPS1-F (encoding Oryza sativa PHOTOSYSTEM 1-F subunit) using a single copy Ds insertion rice mutant line. The homozygous mutant (osps1-f) showed striking difference in growth and development compared to the wild type (WT), including, reduction in plant height, tiller number, grain yield as well as pale yellow leaf coloration. Chlorophyll concentration and electron transport rate were significantly reduced in the mutant compared to the WT. OsPS1-F gene was highly expressed in rice leaves compared to other tissues at different developmental stages tested. Upon complementation of the mutant with proUBI::OsPS1-F, the observed mutant phenotypes were rescued. Our results illustrate that OsPS1-F plays an important role in regulating proper growth and development of rice plants.

  7. How can we make plants grow faster? A source–sink perspective on growth rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Angela C.; Rogers, Alistair; Rees, Mark

    Growth is a major component of fitness in all organisms, an important mediator of competitive interactions in plant communities, and a central determinant of yield in crops. Understanding what limits plant growth is therefore of fundamental importance to plant evolution, ecology, and crop science, but each discipline views the process from a different perspective. This review highlights the importance of source–sink interactions as determinants of growth. The evidence for source- and sink-limitation of growth, and the ways in which regulatory molecular feedback systems act to maintain an appropriate source:sink balance, are first discussed. Evidence clearly shows that future increases inmore » crop productivity depend crucially on a quantitative understanding of the extent to which sources or sinks limit growth, and how this changes during development. In addition, to identify bottlenecks limiting growth and yield, a holistic view of growth is required at the whole-plant scale, incorporating mechanistic interactions between physiology, resource allocation, and plant development. Such a holistic perspective on source–sink interactions will allow the development of a more integrated, whole-system level understanding of growth, with benefits across multiple disciplines.« less

  8. How can we make plants grow faster? A source–sink perspective on growth rate

    DOE PAGES

    White, Angela C.; Rogers, Alistair; Rees, Mark; ...

    2015-10-14

    Growth is a major component of fitness in all organisms, an important mediator of competitive interactions in plant communities, and a central determinant of yield in crops. Understanding what limits plant growth is therefore of fundamental importance to plant evolution, ecology, and crop science, but each discipline views the process from a different perspective. This review highlights the importance of source–sink interactions as determinants of growth. The evidence for source- and sink-limitation of growth, and the ways in which regulatory molecular feedback systems act to maintain an appropriate source:sink balance, are first discussed. Evidence clearly shows that future increases inmore » crop productivity depend crucially on a quantitative understanding of the extent to which sources or sinks limit growth, and how this changes during development. In addition, to identify bottlenecks limiting growth and yield, a holistic view of growth is required at the whole-plant scale, incorporating mechanistic interactions between physiology, resource allocation, and plant development. Such a holistic perspective on source–sink interactions will allow the development of a more integrated, whole-system level understanding of growth, with benefits across multiple disciplines.« less

  9. The Interrelationship between Promoter Strength, Gene Expression, and Growth Rate

    PubMed Central

    Klesmith, Justin R.; Detwiler, Emily E.; Tomek, Kyle J.; Whitehead, Timothy A.

    2014-01-01

    In exponentially growing bacteria, expression of heterologous protein impedes cellular growth rates. Quantitative understanding of the relationship between expression and growth rate will advance our ability to forward engineer bacteria, important for metabolic engineering and synthetic biology applications. Recently, a work described a scaling model based on optimal allocation of ribosomes for protein translation. This model quantitatively predicts a linear relationship between microbial growth rate and heterologous protein expression with no free parameters. With the aim of validating this model, we have rigorously quantified the fitness cost of gene expression by using a library of synthetic constitutive promoters to drive expression of two separate proteins (eGFP and amiE) in E. coli in different strains and growth media. In all cases, we demonstrate that the fitness cost is consistent with the previous findings. We expand upon the previous theory by introducing a simple promoter activity model to quantitatively predict how basal promoter strength relates to growth rate and protein expression. We then estimate the amount of protein expression needed to support high flux through a heterologous metabolic pathway and predict the sizable fitness cost associated with enzyme production. This work has broad implications across applied biological sciences because it allows for prediction of the interplay between promoter strength, protein expression, and the resulting cost to microbial growth rates. PMID:25286161

  10. Effect of treated tannery effluent with domestic wastewater and amendments on growth and yield of cotton.

    PubMed

    Jagathjothi, N; Amanullah, M Mohamed; Muthukrishnan, P

    2013-11-15

    Pot culture and field experiments were carried out at the Common Effluent Treatment Plant (CETP), Dindigul during kharif 2011-12 to investigate the influence of irrigation of treated tannery effluent along with domestic wastewater on growth, yield attributes and yield of cotton. The pot culture was in a factorial completely randomized design and field experiment laid out in factorial randomized block design with four replications. The results revealed that the mixing proportion of 25% Treated Tannery Effluent (TTE)+75% domestic wastewater (DWW) application recorded taller plants, higher dry matter production, number of sympodial branches plant(-1), number of fruiting points plant(-1), number of bolls plant(-1) and seed cotton yield with yield reduction of 15.28 and 16.11% compared to normal water irrigation under pot culture and field experiment, respectively. Regarding amendments, gypsum application registered higher seed cotton yield followed by VAM.

  11. Cell growth and catecholase production for Polyporus versicolor in submerged culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1977-04-01

    Cell growth and catecholase production for Polyporus versicolor (ATCC 12679) were studied in mechanically agitated submerged culture, as functions of temperature. The exponential-phase growth rate exhibited a maximum at 28/sup 0/C. Over the range of 20/sup 0/C to approximately 30/sup 0/C, both cell mass and enzyme yield factors were constant. At higher temperatures (30 to 40/sup 0/C) cell mass yield factor decreased and enzyme yield factor increased. Specific respiration rate of P. versicolor was determined. Thermal deactivation of catecholase was investigated between 30 and 50/sup 0/C, and deactivation rates were fit to an Arrhenius rate expression.

  12. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.

    PubMed

    Guzmán de Villoria, R; Figueredo, S L; Hart, A J; Steiner, S A; Slocum, A H; Wardle, B L

    2009-10-07

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al2O3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of approximately 1 mm are achieved at substrate speeds up to 2.4 mm s(-1). Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.

  13. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    PubMed

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants.

  14. Integrated crop management practices for maximizing grain yield of double-season rice crop.

    PubMed

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-12

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  15. Pollen-tube growth rates in Collinsia heterophylla (Plantaginaceae): one-donor crosses reveal heritability but no effect on sporophytic-offspring fitness.

    PubMed

    Lankinen, Asa; Maad, Johanne; Armbruster, W Scott

    2009-04-01

    Evolutionary change in response to natural selection will occur only if a trait confers a selective advantage and there is heritable variation. Positive connections between pollen traits and fitness have been found, but few studies of heritability have been conducted, and they have yielded conflicting results. To understand better the evolutionary significance of pollen competition and its potential role in sexual selection, the heritability of pollen tube-growth rate and the relationship between this trait and sporophytic offspring fitness were investigated in Collinsia heterophylla. Because the question being asked was if female function benefited from obtaining genetically superior fathers by enhancing pollen competition, one-donor (per flower) crosses were used in order to exclude confounding effects of post-fertilization competition/allocation caused by multiple paternity. Each recipient plant was crossed with an average of five pollen donors. Pollen-tube growth rate and sporophytic traits were measured in both generations. Pollen-tube growth rate in vitro differed among donors, and the differences were correlated with in vivo growth rate averaged over two to four maternal plants. Pollen-tube growth rate showed significant narrow-sense heritability and evolvability in a father-offspring regression. However, this pollen trait did not correlate significantly with sporophytic-offspring fitness. These results suggest that pollen-tube growth rate can respond to selection via male function. The data presented here do not provide any support for the hypothesis that intense pollen competition enhances maternal plant fitness through increased paternity by higher-quality sporophytic fathers, although this advantage cannot be ruled out. These data are, however, consistent with the hypothesis that pollen competition is itself selectively advantageous, through both male and female function, by reducing the genetic load among successful gametophytic fathers (pollen), and

  16. Pollen-tube growth rates in Collinsia heterophylla (Plantaginaceae): one-donor crosses reveal heritability but no effect on sporophytic-offspring fitness

    PubMed Central

    Lankinen, Åsa; Maad, Johanne; Armbruster, W. Scott

    2009-01-01

    Background and Aims Evolutionary change in response to natural selection will occur only if a trait confers a selective advantage and there is heritable variation. Positive connections between pollen traits and fitness have been found, but few studies of heritability have been conducted, and they have yielded conflicting results. To understand better the evolutionary significance of pollen competition and its potential role in sexual selection, the heritability of pollen tube-growth rate and the relationship between this trait and sporophytic offspring fitness were investigated in Collinsia heterophylla. Methods Because the question being asked was if female function benefited from obtaining genetically superior fathers by enhancing pollen competition, one-donor (per flower) crosses were used in order to exclude confounding effects of post-fertilization competition/allocation caused by multiple paternity. Each recipient plant was crossed with an average of five pollen donors. Pollen-tube growth rate and sporophytic traits were measured in both generations. Key Results Pollen-tube growth rate in vitro differed among donors, and the differences were correlated with in vivo growth rate averaged over two to four maternal plants. Pollen-tube growth rate showed significant narrow-sense heritability and evolvability in a father–offspring regression. However, this pollen trait did not correlate significantly with sporophytic-offspring fitness. Conclusions These results suggest that pollen-tube growth rate can respond to selection via male function. The data presented here do not provide any support for the hypothesis that intense pollen competition enhances maternal plant fitness through increased paternity by higher-quality sporophytic fathers, although this advantage cannot be ruled out. These data are, however, consistent with the hypothesis that pollen competition is itself selectively advantageous, through both male and female function, by reducing the genetic load

  17. Nitrogen source and rate effects on furrow irrigated corn yields and NUE

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) rate studies were conducted under furrow irrigated corn (Zea mays L.) production on a silty clay soil to compare polymer-coated urea (PCU) and stabilized urea (SU; contains urease and nitrification inhibitors) effects on corn yields, plant N uptake and N use efficiency (NUE) to granular...

  18. Growth rate of plasma-synthesized vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Lowndes, D. H.; Simpson, M. L.

    2002-08-01

    Vertically aligned carbon nanofibers (VACNFs) were synthesized by direct-current plasma enhanced chemical vapor deposition using acetylene and ammonia as the gas source. The mechanisms responsible for changing the nanofiber growth rate were studied and phenomenological models are proposed. The feedstock for VACNF growth is suggested to consist mainly of radicals formed in the plasma and not the unexcited acetylene gas molecules. The growth rate is shown to increase dramatically by changing the radical transport mechanism from diffusive to forced flow, which was accomplished by increasing the gas flow in the direction perpendicular to the substrate.

  19. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain.

    PubMed

    Zhang, Yitao; Wang, Hongyuan; Lei, Qiuliang; Luo, Jiafa; Lindsey, Stuart; Zhang, Jizong; Zhai, Limei; Wu, Shuxia; Zhang, Jingsuo; Liu, Xiaoxia; Ren, Tianzhi; Liu, Hongbin

    2018-03-15

    Optimizing the nitrogen (N) application rate can increase crop yield while reducing the environmental risks. However, the optimal N rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. Taking the wheat-maize rotation cropping system on the North China Plain as a case study, we quantified the variation of N application rates when targeting constraints on yield, economic performance, N uptake and N utilization, by conducting field experiments between 2011 and 2013. Results showed that the optimal N application rate was highest when targeting N uptake (240kgha -1 for maize, and 326kgha -1 for wheat), followed by crop yield (208kgha -1 for maize, and 277kgha -1 for wheat) and economic income (191kgha -1 for maize, and 253kgha -1 for wheat). If environmental costs were considered, the optimal N application rates were further reduced by 20-30% compared to those when targeting maximum economic income. However, the optimal N rate, with environmental cost included, may result in soil nutrient mining under maize, and an extra input of 43kgNha -1 was needed to make the soil N balanced and maintain soil fertility in the long term. To obtain a win-win situation for both yield and environment, the optimal N rate should be controlled at 179kgha -1 for maize, which could achieve above 99.5% of maximum yield and have a favorable N balance, and at 202kgha -1 for wheat to achieve 97.4% of maximum yield, which was about 20kgNha -1 higher than that when N surplus was nil. Although these optimal N rates vary on spatial and temporal scales, they are still effective for the North China Plain where 32% of China's total maize and 45% of China's total wheat are produced. More experiments are still needed to determine the optimal N application rates in other regions. Use of these different optimal N rates would contribute to improving the sustainability of agricultural development in China. Copyright © 2017 Elsevier B.V. All rights

  20. Growth and exopolysaccharide yield of Lactobacillus delbrueckii ssp. bulgaricus DSM 20081 in batch and continuous bioreactor experiments at constant pH.

    PubMed

    Mende, Susann; Krzyzanowski, Leona; Weber, Jost; Jaros, Doris; Rohm, Harald

    2012-02-01

    Some Lactobacillus delbrueckii ssp. bulgaricus strains are able to synthesize exopolysaccharides (EPS) and are therefore highly important for the dairy industry as starter cultures. The aim of this study was to investigate the nutritional requirements for growth and EPS production of Lactobacillus delbrueckii ssp. bulgaricus DSM 20081. A medium was developed from a semi-defined medium (SDM) in which glucose was replaced by lactose and different combinations of supplements (nucleobases, vitamins, salts, sodium formate and orotic acid) were added. Constant pH batch fermentation with the modified medium resulted in an EPS yield of approximately 210 mg glucose equivalents per liter medium. This was a 10-fold increase over flask cultivation of this strain in SDM. Although not affecting cell growth, the mixture of salts enhanced the EPS synthesis. Whereas EPS production was approximately 12 mg/g dry biomass without salt supplementation, a significantly higher yield (approximately 20 mg/g dry biomass) was observed after adding the salt mixture. In continuous fermentation, a maximal EPS concentration was obtained at a dilution rate of 0.31/h (80 mg EPS/L), which corresponded to a specific EPS production of 49 mg/g dry biomass. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Camelina growth and yield response to sowing depth and rate in the northern Corn Belt USA

    USDA-ARS?s Scientific Manuscript database

    Camelina (Camelina sativa L.) is gaining interest as a productive alternative oilseed crop for biofuels and healthy food-use applications. Developing sound agronomic practices for its production is key to optimizing its seed oil yield potential. Plant stand establishment of camelina has been problem...

  2. Growth rate degeneracies in kinematic dynamos

    NASA Astrophysics Data System (ADS)

    Favier, B.; Proctor, M. R. E.

    2013-09-01

    We consider the classical problem of kinematic dynamo action in simple steady flows. Due to the adjointness of the induction operator, we show that the growth rate of the dynamo will be exactly the same for two types of magnetic boundary conditions: the magnetic field can be normal (infinite magnetic permeability, also called pseudovacuum) or tangent (perfect electrical conductor) to the boundaries of the domain. These boundary conditions correspond to well-defined physical limits often used in numerical models and relevant to laboratory experiments. The only constraint is for the velocity field u to be reversible, meaning there exists a transformation changing u into -u. We illustrate this surprising property using S2T2 type of flows in spherical geometry inspired by [Dudley and James, Proc. R. Soc. London A1364-502110.1098/rspa.1989.0112 425, 407 (1989)]. Using both types of boundary conditions, it is shown that the growth rates of the dynamos are identical, although the corresponding magnetic eigenmodes are drastically different.

  3. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    NASA Astrophysics Data System (ADS)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  4. Stress relaxation of cell walls and the yield threshold for growth: demonstration and measurement by micro-pressure probe and psychrometer techniques.

    PubMed

    Cosgrove, D J; Van Volkenburgh, E; Cleland, R E

    1984-01-01

    Theory predicts that, for growing plant cells isolated from a supply of water, stress relaxation of the cell wall should decrease cell turgor pressure (P) until the yield threshold for cell explanation is reached. This prediction was tested by direct P measurements of pea (Pisum sativum L.) stem cortical cells before and after excision of the growing region and isolation of the growing tissue from an external water supply. Cell P was measured with the micro-pressure probe under conditions which eliminated transpiration. Psychrometric measurements of water potential confirmed the pressure-probe measurements. Following excision, P of the growing cells decreased in 1 h by an average of 1.8 bar to a mean plateau value of 2.8 bar, and remained constant thereafter. Treatment with 10(-5) M indole-3-acetic acid or 10(-5) M fusicoccin (known growth stimulants) accelerated the rate of P relaxation, whereas various treatments which inhibit growth slowed down or completely stopped P relaxation in apical segments. In contrast, P of basal (nongrowing) segments gradually increased because of absorption of solutes from the cell-wall free space of the tissue. Such solute absorption also occurred in apical segments, but wall relaxation held P at the yield threshold in those segments which were isolated from an external water supply. These results provide a new and rapid method for measuring the yield threshold and they show that P in intact growing pea stems exceeds the yield threshold by about 2 bar. Wall relaxation is shown here to affect the water potential and turgor pressure of excised growing segments. In addition, solute release and absorption upon excision may influence the water potential and turgor pressure of nongrowing excised plant tissues.

  5. Economy, efficiency, and the evolution of pollen tube growth rates.

    PubMed

    Williams, Joseph H; Edwards, Jacob A; Ramsey, Adam J

    2016-03-01

    Pollen tube growth rate (PTGR) is an important aspect of male gametophyte performance because of its central role in the fertilization process. Theory suggests that under intense competition, PTGRs should evolve to be faster, especially if PTGR accurately reflects gametophyte quality. Oddly, we know remarkably little about how effectively the work of tube construction is translated to elongation (growth and growth rate). Here we test the prediction that pollen tubes grow equally efficiently by comparing the scaling of wall production rate (WPR) to PTGR in three water lilies that flower concurrently: Nymphaea odorata, Nuphar advena and Brasenia schreberi. Single-donor pollinations on flower or carpel pairs were fixed just after pollen germination (time A) and 45 min later (time B). Mean PTGR was calculated as the average increase in tube length over that growth period. Tube circumferences (C) and wall thicknesses (W) were measured at time B. For each donor, WPR = mean (C × W) × mean PTGR. Within species, pollen tubes maintained a constant WPR to PTGR ratio, but species had significantly different ratios. N. odorata and N. advena had similar PTGRs, but for any given PTGR, they had the lowest and highest WPRs, respectively. We showed that growth rate efficiencies evolved by changes in the volume of wall material used for growth and in how that material was partitioned between lateral and length dimensions. The economics of pollen tube growth are determined by tube design, which is consequent on trade-offs between efficient growth and other pollen tube functions. © 2016 Botanical Society of America.

  6. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  7. Brain Growth Rate Abnormalities Visualized in Adolescents with Autism

    PubMed Central

    Hua, Xue; Thompson, Paul M.; Leow, Alex D.; Madsen, Sarah K.; Caplan, Rochelle; Alger, Jeffry R.; O’Neill, Joseph; Joshi, Kishori; Smalley, Susan L.; Toga, Arthur W.; Levitt, Jennifer G.

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous disorder of brain development with wide-ranging cognitive deficits. Typically diagnosed before age 3, ASD is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared to those of typically developing children and adolescents. Using tensor-based morphometry (TBM), we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and 7 typically developing boys (mean age/inter-scan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole-brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (p = 0.03, corrected), especially in the parietal (p = 0.008), temporal (p = 0.03) and occipital lobes (p =0.02). We also visualized abnormal overgrowth in autism in some gray matter structures, such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. TBM revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. PMID:22021093

  8. Brain growth rate abnormalities visualized in adolescents with autism.

    PubMed

    Hua, Xue; Thompson, Paul M; Leow, Alex D; Madsen, Sarah K; Caplan, Rochelle; Alger, Jeffry R; O'Neill, Joseph; Joshi, Kishori; Smalley, Susan L; Toga, Arthur W; Levitt, Jennifer G

    2013-02-01

    Autism spectrum disorder is a heterogeneous disorder of brain development with wide ranging cognitive deficits. Typically diagnosed before age 3, autism spectrum disorder is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared with those of typically developing children and adolescents. Using tensor-based morphometry, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and seven typically developing boys (mean age/interscan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (P = 0.03, corrected), especially in the parietal (P = 0.008), temporal (P = 0.03), and occipital lobes (P = 0.02). We also visualized abnormal overgrowth in autism in gray matter structures such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. Tensor-based morphometry revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. Copyright © 2011 Wiley Periodicals, Inc.

  9. Effect of cell size and shear stress on bacterium growth rate

    NASA Astrophysics Data System (ADS)

    Fadlallah, Hadi; Jarrahi, Mojtaba; Herbert, Éric; Peerhossaini, Hassan; PEF Team

    2015-11-01

    Effect of shear stress on the growth rate of Synechocystis and Chlamydomonas cells is studied. An experimental setup was prepared to monitor the growth rate of the microorganisms versus the shear rate inside a clean room, under atmospheric pressure and 20 °C temperature. Digital magnetic agitators are placed inside a closed chamber provided with airflow, under a continuous uniform light intensity over 4 weeks. In order to study the effect of shear stress on the growth rate, different frequencies of agitation are tested, 2 vessels filled with 150 ml of each specie were placed on different agitating system at the desired frequency. The growth rate is monitored daily by measuring the optical density and then correlate it to the cellular concentration. The PH was adjusted to 7 in order to maintain the photosynthetic activity. Furthermore, to measure the shear stress distribution, the flow velocity field was measured using PIV. Zones of high and low shear stress were identified. Results show that the growth rate is independent of the shear stress magnitude, mostly for Synechocystis, and with lower independency for Chlamydomonas depending on the cell size for each species.

  10. 3D fold growth rates in transpressional tectonic settings

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel

    2015-04-01

    Geological folds are inherently three-dimensional (3D) structures; hence, they also grow in 3D. In this study, fold growth in all three dimensions is quantified numerically using a finite-element algorithm for simulating deformation of Newtonian media in 3D. The presented study is an extension and generalization of the work presented in Frehner (2014), which only considered unidirectional layer-parallel compression. In contrast, the full range from strike slip settings (i.e., simple shear) to unidirectional layer-parallel compression is considered here by varying the convergence angle of the boundary conditions; hence the results are applicable to general transpressional tectonic settings. Only upright symmetrical single-layer fold structures are considered. The horizontal higher-viscous layer exhibits an initial point-like perturbation. Due to the mixed pure- and simple shear boundary conditions a mechanical buckling instability grows from this perturbation in all three dimensions, described by: Fold amplification (vertical growth): Fold amplification describes the growth from a fold shape with low limb-dip angle to a shape with higher limb-dip angle. Fold elongation (growth parallel to fold axis): Fold elongation describes the growth from a dome-shaped (3D) structure to a more cylindrical fold (2D). Sequential fold growth (growth perpendicular to fold axial plane): Sequential fold growth describes the growth of secondary (and further) folds adjacent to the initial isolated fold. The term 'lateral fold growth' is used as an umbrella term for both fold elongation and sequential fold growth. In addition, the orientation of the fold axis is tracked as a function of the convergence angle. Even though the absolute values of all three growth rates are markedly reduced with increasing simple-shear component at the boundaries, the general pattern of the quantified fold growth under the studied general-shear boundary conditions is surprisingly similar to the end

  11. MICROSCOPIC METABOLISM OF CALCIUM IN BONE. IV. Ca$sup 45$ DEPOSITION AND GROWTH RATE IN CANINE OSTEONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, J.H.; Jowsey, J.; Rowland, R.E.

    1959-02-01

    The Ca/sup 45/ content of individual osteons in three dogs given single intravenous injections has been measured autoradiographically and correlated with osteon canal diameter measured from microradiographs. An osteon was found to contain up to 10/sup -6/ of the injected activity, its total activity per unit length being approximately proportional to the square of its canal diameter at the time of injection. The activities observed at 12 hours or 2 weeks after injection divided by the corresponding time integral of the blood specific activity yield an accretion rate for calcium at each canal diameter such that the half-diameter time formore » the canal of an average forming osteon in a rather wide distnibution is 3 plus or minus 1 weeks, which is consistent with direct observations of osteon growth. It is concluded that the intense concentrations or in vivo-deposited Ca/sup 45/ which we have observed in canine osteons 12 hours or more after injection are due to accretion of calcium in appositional growth at approximately the specific activity measured in the large veins. The nature of the Ca/sup 45/ uptake in osteons which have completed or arrested appositional growth before injection cannot be inferred from the present data, but such uptake is here of an order of magnitude less than that due to appositional growth. Comparison of calculated blood flow with observed osteon growth rate indieates that an osteon in the early stages of appositiona« less

  12. The Effect of the Laboratory Specimen on Fatigue Crack Growth Rate

    NASA Technical Reports Server (NTRS)

    Forth, S. C.; Johnston, W. M.; Seshadri, B. R.

    2006-01-01

    Over the past thirty years, laboratory experiments have been devised to develop fatigue crack growth rate data that is representative of the material response. The crack growth rate data generated in the laboratory is then used to predict the safe operating envelope of a structure. The ability to interrelate laboratory data and structural response is called similitude. In essence, a nondimensional term, called the stress intensity factor, was developed that includes the applied stresses, crack size and geometric configuration. The stress intensity factor is then directly related to the rate at which cracks propagate in a material, resulting in the material property of fatigue crack growth response. Standardized specimen configurations and experimental procedures have been developed for laboratory testing to generate crack growth rate data that supports similitude of the stress intensity factor solution. In this paper, the authors present laboratory fatigue crack growth rate test data and finite element analyses that show similitude between standard specimen configurations tested using the constant stress ratio test method is unobtainable.

  13. Do fish growth rates correlate with PCB body burdens?

    Treesearch

    Andrew L. Rypel; David R. Bayne

    2010-01-01

    We evaluated whether growth rates of six fish species correlated with PCB concentrations in a moderately-to-heavily polluted freshwater ecosystem. Using a large dataset (n ¼ 984 individuals), and after accounting for growth effects related to fish age, habitat, sex, and lipids, growth correlated significantly, but positively with lipid-corrected PCB concentrations for...

  14. Control of growth of juvenile leaves of Eucalyptus globulus: effects of leaf age.

    PubMed

    Metcalfe, J C; Davies, W J; Pereira, J S

    1991-12-01

    Biophysical variables influencing the expansion of plant cells (yield threshold, cell wall extensibility and turgor) were measured in individual Eucalyptus globulus leaves from the time of emergence until cessation of growth. Leaf water relations variables and growth rates were determined as relative humidity was changed on an hourly basis. Yield threshold and cell wall extensibility were estimated from plots of leaf growth rate versus turgor. Cell wall extensibility was also measured by the Instron technique, and yield threshold was determined experimentally both by stress relaxation in a psychrometer chamber and by incubation in a range of polyethylene glycol solutions. Once emerging leaves reached approximately 5 cm(2) in size, increases in leaf area were rapid throughout the expansive phase and varied little between light and dark periods. Both leaf growth rate and turgor were sensitive to changes in humidity, and in the longer term, both yield threshold and cell wall extensibility changed as the leaf aged. Rapidly expanding leaves had a very low yield threshold and high cell wall extensibility, whereas mature leaves had low cell wall extensibility. Yield threshold increased with leaf age.

  15. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans.

    PubMed

    Arias, María M Díaz; Leandro, Leonor F; Munkvold, Gary P

    2013-08-01

    Fusarium spp. are commonly isolated from soybean roots but the pathogenic activity of most species is poorly documented. Aggressiveness and yield impact of nine species of Fusarium were determined on soybean in greenhouse (50 isolates) and field microplot (19 isolates) experiments. Root rot severity and shoot and root dry weights were compared at growth stages V3 or R1. Root systems were scanned and digital image analysis was conducted; yield was measured in microplots. Disease severity and root morphology impacts varied among and within species. Fusarium graminearum was highly aggressive (root rot severity >90%), followed by F. proliferatum and F. virguliforme. Significant variation in damping-off (20 to 75%) and root rot severity (<20 to >60%) was observed among F. oxysporum isolates. In artificially-infested microplots, root rot severity was low (<25%) and mean yield was not significantly reduced. However, there were significant linear relationships between yield and root symptoms for some isolates. Root morphological characteristics were more consistent indicators of yield loss than root rot severity. This study provides the first characterization of aggressiveness and yield impact of Fusarium root rot species on soybean at different plant stages and introduces root image analysis to assess the impact of root pathogens on soybean.

  16. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Nina N.; Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Niemierko, Andrzej

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change wasmore » classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly

  17. A whole stand growth and yield system for young longleaf pine plantations in Southwest Georgia

    Treesearch

    John R. Brooks; Steven B. Jack

    2006-01-01

    A whole stand growth and yield system for planted longleaf pine (Pinus palustris Mill.) was developed from permanent plot data collected annually over an 8 year period. The dataset consists of 12 intensively-managed longleaf pine plantations that are located in Lee, Worth, Mitchell, and Baker counties in southwest Georgia. Stand survival, dominant...

  18. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid.

    PubMed

    Li, X L; Cui, X H; Han, J R

    2006-09-01

    To determine the effect of oxidative stress and exogenous ascorbic acid on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. In this experiment, high oxidative stress was applied by the inclusion of FeSO(4) in the growth medium and exposure to light. Low oxidative stress was applied by omitting iron from the growth medium and by incubation in the dark. Supplementation of exogenous ascorbic acid (as antioxidant) to the basal medium caused a concentration-dependent delay of sclerotial differentiation (up to 48 h), decrease of sclerotial biomass (up to 40%) and reduction of carotenoid yield (up to 91%). On the contrary, the exogenous ascorbic acid also caused a concentration-dependent decrease of lipid peroxidation in colonies of this fungus. Under high oxidative stress growth condition, the sclerotial biomass and carotenoid yield of PT95 strain in each plate culture reached 305 mg and 32.94 microg, which were 1.23 and 3.71 times higher, respectively, than those at low oxidative stress growth condition. These data prompted us to consider that in order to attain higher sclerotial biomass and pigment yield, the strain PT95 should be grown under high oxidative stress and in the absence of antioxidants. These results suggest that strain PT95 may be used for solid-state fermentation of carotenoid production under high oxidative stress growth conditions.

  19. Plasma Instability Growth Rates in the F-Region Cusp Ionosphere

    NASA Astrophysics Data System (ADS)

    Moen, J. I.; Daabakk, Y.; Oksavik, K.; Clausen, L.; Bekkeng, T. A.; Abe, T.; Saito, Y.; Baddeley, L. J.; Lorentzen, D. A.; Sigernes, F.; Yeoman, T. K.

    2014-12-01

    There are at least two different micro-instability processes that applies to the F-region cusp/polar cap ionosphere. These are the Gradient Drift Instability (GDI) and the Kelvin Helmholtz Instability (KHI). Due to space weather effects on radio communication and satellite signals it is of practical interest to assess the relative importance of these two instability modes and to quantify their growth rates. The Investigation of Cusp Irregularities (ICI) rocket program has been developed to investigate these plasma instabilities and formation scintillation irregularities. High resolution measurements are critical to get realistic quantities on the growth rates. The results achieved so far demonstrates that cusp ionosphere precipitation can give rise to km scale plasma structures on which grow rates are down to a few tens of seconds compared to earlier measures of ten minutes based on ground observations. This has to do with the spatial resolution required for these measurements. Growth rates for the KHI instability is found to be of the same order, which is consistent with growth rates calculated from the EISCAT Svalbard Radar. I.e. both instability modes can be highly efficient in the cusp ionosphere.

  20. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome

    PubMed Central

    Selph, Karen E.; Landry, Michael R.; Taylor, Andrew G.; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R.; Wokuluk, John; Pasulka, Alexis

    2016-01-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production (14C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5–0.9 day−1), but higher on the edge of the dome (∼0.9–1.0 day−1) and in adjacent coastal waters (0.9–1.3 day−1). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5–0.6 day−1), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m−2 day−1 on average, even during a period of reduced upwelling. PMID:27275025

  1. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome.

    PubMed

    Selph, Karen E; Landry, Michael R; Taylor, Andrew G; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R; Wokuluk, John; Pasulka, Alexis

    2016-03-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production ( 14 C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5-0.9 day -1 ), but higher on the edge of the dome (∼0.9-1.0 day -1 ) and in adjacent coastal waters (0.9-1.3 day -1 ). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5-0.6 day -1 ), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m -2 day -1 on average, even during a period of reduced upwelling.

  2. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  3. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize1[OPEN

    PubMed Central

    Tardieu, François

    2016-01-01

    Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. PMID:26598464

  4. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    PubMed

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  5. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions

    PubMed Central

    Cely, Martha V. T.; Siviero, Marco A.; Emiliano, Janaina; Spago, Flávia R.; Freitas, Vanessa F.; Barazetti, André R.; Goya, Erika T.; Lamberti, Gustavo de Souza; dos Santos, Igor M. O.; De Oliveira, Admilton G.; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone. PMID:27920781

  6. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues.

    PubMed

    Xu, Yang; Yang, Jie; Wang, Yihua; Wang, Jiachang; Yu, Yang; Long, Yu; Wang, Yunlong; Zhang, Huan; Ren, Yulong; Chen, Jun; Wang, Ying; Zhang, Xin; Guo, Xiuping; Wu, Fuqing; Zhu, Shanshan; Lin, Qibing; Jiang, Ling; Wu, Chuanyin; Wang, Haiyang; Wan, Jianmin

    2017-07-01

    Seed-setting rate is a critical determinant of grain yield in rice (Oryza sativa L.). Rapid and healthy pollen tube growth in the style is required for high seed-setting rate. The molecular mechanisms governing this process remain largely unknown. In this study, we isolate a dominant low seed-setting rate rice mutant, sss1-D. Cellular examination results show that pollen tube growth is blocked in about half of the mutant styles. Molecular cloning and functional assays reveals that SSS1-D encodes OsCNGC13, a member of the cyclic nucleotide-gated channel family. OsCNGC13 is preferentially expressed in the pistils and its expression is dramatically reduced in the heterozygous plant, suggesting a haploinsufficiency nature for the dominant mutant phenotype. We show that OsCNGC13 is permeable to Ca2+. Consistent with this, accumulation of cytoplasmic calcium concentration ([Ca2+]cyt) is defective in the sss1-D mutant style after pollination. Further, the sss1-D mutant has altered extracellular matrix (ECM) components and delayed cell death in the style transmission tract (STT). Based on these results, we propose that OsCNGC13 acts as a novel maternal sporophytic factor required for stylar [Ca2+]cyt accumulation, ECM components modification and STT cell death, thus facilitating the penetration of pollen tube in the style for successful double fertilization and seed-setting in rice.

  7. Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation.

    PubMed

    Shen, Min; Jun Kang, Yi; Li Wang, Huan; Sheng Zhang, Xiang; Xin Zhao, Qing

    2012-01-01

    To determine the effects of three PGPRs on plant growth, yield, and quality of tomato under simulated seawater irrigation, a two consecutive seasons' field experiment was conducted in Yancheng Teachers University plot from April to June and August to October, 2011. The results showed that Erwinia persicinus RA2 containing ACC deaminase exhibited the best ability compared with Bacillus pumilus WP8 and Pseudomonas putida RBP1 which had no ACC deaminase activity to enhance marketable yields of fresh and dried fruits in tomato under simulated seawater irrigation especially under HS condition. B. pumilus WP8 had significant effects on improving tomato fruit quality under the conditions of irrigating with 1.0% NaCl solution (MS) and with 2.0% NaCl solution (HS). Na(+) contents were generally accumulated much more in tomato plant mid-shoot leaves than in fruits whatever the salt concentration. More sodium accumulation in leaves of E. persicinus RA2 and B. pumilus WP8 treatments under HS condition were found than in control. E. persicinus RA2 and B. pumilus WP8 can promote tomato growth, improve fruit quality more firmly than P. putida RBP1 during two consecutive seasons. Our study suggested that E. persicinus RA2 and B. pumilus WP8 are considered to be promising PGPR strains which are suited for application in salt marsh planting, ACC deaminase activity was not unique index on screening for PGPRs with the aim of salt stress tolerance, and plant growth promoting activities may be relevant to different growth indices and different stress conditions.

  8. Experimental Study of Sr Partitioning into Calcite at Various Linear Growth Rates and Temperatures: Preliminary Results.

    NASA Astrophysics Data System (ADS)

    Gabitov, R. I.; Watson, B. E.

    2004-05-01

    minute. After treatment the remaining solution was blown out by a stream of nitrogen to preclude the precipitation of Sr phase. We observed that the precipitated calcite crystals can be very different in size even if the runs have the same input rate of calcite components. The cave-type and cold-seal runs yielded 15-40 μ m calcites, but in the drift experiments crystal size varied between 60 μ m and 1 mm. Electron microprobe analysis across the large crystals show that the concentration of Sr is higher in the center and decreases toward the edge. This is probably due to the cube-root dependence of radial growth on the volume change of the growing crystals. Like previous workers who measured bulk uptake of Sr as a function of precipitation rate, we observed that increased growth rate (V, nm/s) enhances Sr uptake into the crystal, raising Kdbulk/liquid=(Sr/Ca)bulk/(Sr/Ca)liquid. Kdbulk/liquid = 0.03 to 0.06 when log(V)=-1.1 to -0.6 at 25° C in the cave-type runs (I=0.01). At higher ionic strength (I=0.52) and T=55° C, Kdbulk/liquid=0.11 to 0.15 when log(V)=-0.6 to 0.4 in the drift experiments. XPS analysis of surface-liquid experiments yielded higher Kdsurface/liquid=(Sr/Ca)surface/(Sr/Ca)liquid values compared with Kdbulk/liquid. This combined evidence supports the idea that Sr is enriched at the calcite surface relative to the bulk crystal during crystal growth.

  9. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates

    PubMed Central

    Williams, Caroline M.; Szejner-Sigal, Andre; Morgan, Theodore J.; Edison, Arthur S.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving “Beyond the Mean”. PMID:27103615

  10. Nationwide Macroeconomic Variables and the Growth Rate of Bariatric Surgeries in Brazil.

    PubMed

    Cazzo, Everton; Ramos, Almino Cardoso; Pareja, José Carlos; Chaim, Elinton Adami

    2018-06-06

    The effect of nationwide economic issues on the necessary expansion in the number of bariatric procedures remains unclear. This study aims to determine whether there are correlations between the growth rate in the number of bariatric surgeries and the major macroeconomic variables over time in Brazil. It is a nationwide analysis regarding the number of bariatric surgeries in Brazil and the main national macroeconomic variables from 2003 through 2016: gross domestic product (GDP), inflation rate, and the unemployment rate, as well as the evolution in the number of registered bariatric surgeons. There were significant positive correlations of the growth rate of surgeries with the early variations of the GDP (R = 0.5558; p = 0.04863) and of the overall health expenditure per capita (R = 0.78322; p = 0.00259). The growth rate of the number of bariatric surgeries was not correlated with the unemployment and inflation rates, as well as with the growth rate of available bariatric surgeons. There were direct relationships between the growth rate of bariatric surgeries and the evolutions of the GDP and health care expenditure per capita. These variables appear to influence the nationwide offer of bariatric surgery.

  11. Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model.

    PubMed

    Zhang, Yitao; Wang, Hongyuan; Liu, Shen; Lei, Qiuliang; Liu, Jian; He, Jianqiang; Zhai, Limei; Ren, Tianzhi; Liu, Hongbin

    2015-05-01

    Identification of critical nitrogen (N) application rate can provide management supports for ensuring grain yield and reducing amount of nitrate leaching to ground water. A five-year (2008-2012) field lysimeter (1 m × 2 m × 1.2 m) experiment with three N treatments (0, 180 and 240 kg Nha(-1)) was conducted to quantify maize yields and amount of nitrate leaching from a Haplic Luvisol soil in the North China Plain. The experimental data were used to calibrate and validate the process-based model of Denitrification-Decomposition (DNDC). After this, the model was used to simulate maize yield production and amount of nitrate leaching under a series of N application rates and to identify critical N application rate based on acceptable yield and amount of nitrate leaching for this cropping system. The results of model calibration and validation indicated that the model could correctly simulate maize yield and amount of nitrate leaching, with satisfactory values of RMSE-observation standard deviation ratio, model efficiency and determination coefficient. The model simulations confirmed the measurements that N application increased maize yield compared with the control, but the high N rate (240 kg Nha(-1)) did not produce more yield than the low one (120 kg Nha(-1)), and that the amount of nitrate leaching increased with increasing N application rate. The simulation results suggested that the optimal N application rate was in a range between 150 and 240 kg ha(-1), which would keep the amount of nitrate leaching below 18.4 kg NO₃(-)-Nha(-1) and meanwhile maintain acceptable maize yield above 9410 kg ha(-1). Furthermore, 180 kg Nha(-1) produced the highest yields (9837 kg ha(-1)) and comparatively lower amount of nitrate leaching (10.0 kg NO₃(-)-Nha(-1)). This study will provide a valuable reference for determining optimal N application rate (or range) in other crop systems and regions in China. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    USDA-ARS?s Scientific Manuscript database

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  13. Implications of Bishop Tuff zircon U-Pb ages for rates of zircon growth and magma accumulation

    NASA Astrophysics Data System (ADS)

    Reid, M. R.; Schmitt, A. K.

    2012-12-01

    Rates of geologic processes obtained from natural studies rely on accurate geochronologic information. An important benchmark in geochronology as well as a valuable source of insights into the evolution of voluminous explosive eruptions is the >600 km3 Bishop Tuff (BT). A recently determined weighted mean 206Pb/238U date of 767.1±0.9 ka for a BT zircon population [1] is indistinguishable from the recalibrated 40Ar/39Ar sanidine date of 767.4±2.2 ka [2], potentially providing a key intercalibration point between astronomical and radio-isotopic dating approaches. Consequences of these results are linear zircon growth rates of >1×10-14 cm/sec and magma accumulation rates of >200 km3/ka. In contrast, spatially selective SIMS U-Pb dating of BT zircons yielded mean pre-eruption ages of 850 ka [3], a difference that raises questions about the validity of intercalibration between U-Pb and K-Ar dating methods and the history of magma accumulation. We obtained new SIMS analyses of the BT zircons using more spatially and analytically sensitive methods and verifying our accuracy against the TIMS dated Quaternary zircon 61.308A (2.488±0.002 Ma). Analyses were performed on zircon rims and on oriented cross-sections exposed during optical interferometry-calibrated serial sectioning removing the outermost ~31 μm. Sputtering by a 100 nA ion beam versus the normally employed 10-12 nA beam resulted in enhanced radiogenic Pb yields and analytical uncertainties for Quaternary zircon approaching the U-Pb age reproducibility of the primary zircon standard (~1-2 % for AS3). Ages obtained at ~31 μm depth (representing <5% of crystal growth in most cases) average 892±26ka (MSWD=0.29), corroborating previous evidence for residence times of several tens of ka. Rim ages average 781±22 ka (MSWD=0.61), overlapping Ar/Ar determinations of eruption age and corroborating the importance of near-eruption aged zircon growth. Our results confirm the presence of BT zircon domains that predate

  14. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity.

    PubMed

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  15. Unusual growth rate during cystic echinococcosis.

    PubMed

    Valour, Florent; Khenifer, Safia; Della-Schiava, Nellie; Cotte, Eddy; Guibert, Benoit; Wallon, Martine; Durupt, Stéphane; Durieu, Isabelle

    2014-04-01

    Cystic echinococcosis is a world wild zoonosis caused by Echinococcus granulosus, leading to hepatic and lung cysts with a usually slight growth rate. We report the case of an 82year-old Algerian woman with hepatic and lung cystic echinococcosis with a 10-fold size increase in 6months. Copyright © 2013. Published by Elsevier Ireland Ltd.

  16. In vivo growth rates are poorly correlated with phage therapy success in a mouse infection model.

    PubMed

    Bull, J J; Otto, G; Molineux, I J

    2012-02-01

    Two classes of phages yield profoundly different levels of recovery in mice experimentally infected with an Escherichia coli O18:K1:H7 strain. Phages requiring the K1 capsule for infection (K1-dep) rescue virtually all infected mice, whereas phages not requiring the capsule (K1-ind) rescue modest numbers (∼30%). To rescue infected mice, K1-ind phages require at least a 10(6)-fold-higher inoculum than K1-dep phages. Yet their in vivo growth dynamics are only modestly inferior to those of K1-dep phages, and competition between the two phage types in the same mouse reveals only a slight growth advantage for the K1-dep phage. The in vivo growth rate seems unlikely to be the primary determinant of phage therapy success. An alternative explanation is that the success of K1-dep phages is due substantially to their proteomic composition. They encode an enzyme that degrades the K1 capsule, which has been shown in other work to be sufficient to cure infection in the complete absence of phages.

  17. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant.

    PubMed

    Tripti; Kumar, Adarsh; Usmani, Zeba; Kumar, Vipin; Anshumali

    2017-04-01

    Overuse of agrochemical fertilizers alarmingly causes deterioration in soil health and soil-flora. Persistence of these agrochemicals exerts detrimental effects on environment, potentially inducing toxic effects on human health, thus pronouncing an urgent need for a safer substitute. The present study investigates the potential use of agricultural and industrial wastes as carrier materials, viz. biochar and flyash, respectively, for preparation of bioformulations (or biofertilizers) using two plant growth promoting rhizobacteria, Bacillus sp. strain A30 and Burkholderia sp. strain L2, and its effect on growth of Lycopersicon esculentum Mill. (tomato). The viability of strains was determined based on colony forming units (cfu) count of each bioformulation at an interval of 60 days for a period of 240 days. Seeds were coated with different carrier based bioformulations and pot experiment(s) were carried out to access its effects on plant growth parameters. Biochar based bioformulations showed higher cfu count and maximum viability for strain L2 (10 7  cfu g -1 ) at 240 days of storage. Maximum percentage of seed germination was also observed in biochar inoculated with strain L2. Significant (p < 0.05) increase in plant growth parameters (dry and fresh biomass, length, number of flowers) were ascertained from the pot experiment and amongst all bioformulations, biochar inoculated with strain L2 performed consistently thriving results for tomato yield. Furthermore, post-harvest study of this bioformulation treated soil improved physico-chemical properties and dehydrogenase activity as compared to pre-plantation soil status. Overall, we show that prepared biochar based bioformulation using Burkholderia sp. L2 as inoculum can tremendously enhance the productivity of tomato, soil fertility, and can also act as a sustainable substitute for chemical fertilizers. In addition, mixture of biochar and flyash inoculated with strain L2 also showed noteworthy results for the

  18. On the growth rate of gallstones in the human gallbladder

    NASA Astrophysics Data System (ADS)

    Nudelman, I.

    1993-05-01

    The growth rate of a single symmetrically oval shaped gallbladder stone weighing 10.8 g was recorded over a period of six years before surgery and removal. The length of the stone was measured by ultrasonography and the growth rate was found to be linear with time, with a value of 0.4 mm/year. A smaller stone growing in the wall of the gallbladder was detected only three years before removal and grew at a rate of ˜ 1.33 mm/year. The morphology and metallic ion chemical composition of the large stone and of a randomly selected small stone weighing about 1.1 g, extracted from another patient, were analyzed and compared. It was found that the large stone contained besides calcium also lead, whereas the small stone contained mainly calcium. It is possible that the lead causes a difference in mechanism between the growth of a single large and growth of multiple small gallstones.

  19. Growth rate for blackhole instabilities

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik; Wald, Robert

    2015-04-01

    Hollands and Wald showed that dynamic stability of stationary axisymmetric black holes is equivalent to positivity of canonical energy on a space of linearised axisymmetric perturbations satisfying certain boundary and gauge conditions. Using a reflection isometry of the background, we split the energy into kinetic and potential parts. We show that the kinetic energy is positive. In the case that potential energy is negative, we show existence of exponentially growing perturbations and further obtain a variational formula for the growth rate.

  20. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Bonsi, C. K.; Loretan, P. A.; Hill, W. A.; Morris, C. E.

    2000-01-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  1. High-biomass C4 grasses-Filling the yield gap.

    PubMed

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Growth Performance, Carcass Characteristics and Meat Yield of Boer Goats Fed Diets Containing Leaves or Whole Parts of Andrographis paniculata.

    PubMed

    Yusuf, A L; Goh, Y M; Samsudin, A A; Alimon, A R; Sazili, A Q

    2014-04-01

    The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05).

  3. Growth Performance, Carcass Characteristics and Meat Yield of Boer Goats Fed Diets Containing Leaves or Whole Parts of Andrographis paniculata

    PubMed Central

    Yusuf, A. L.; Goh, Y. M.; Samsudin, A. A.; Alimon, A. R.; Sazili, A. Q.

    2014-01-01

    The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05). PMID:25049980

  4. Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States.

    PubMed

    Johnson, Sarah E; Abrams, Marc D

    2009-11-01

    This study uses data from the International Tree-Ring Data Bank website and tree cores collected in the field to explore growth rate (basal area increment, BAI) relationships across age classes (from young to old) for eight tree species in the eastern US. These species represent a variety of ecological traits and include those in the genera Populus, Quercus, Pinus, Tsuga and Nyssa. We found that most trees in all age classes and species exhibit an increasing BAI throughout their lives. This is particularly unusual for trees in the older age classes that we expected to have declining growth in the later years, as predicted by physiological growth models. There exists an inverse relationship between growth rate and increasing age class. The oldest trees within each species have consistently slow growth throughout their lives, implying an inverse relationship between growth rate and longevity. Younger trees (< 60 years of age) within each species are consistently growing faster than the older trees when they are of the same age resulting from a higher proportion of fast-growing trees in these young age classes. Slow, but increasing, BAI in the oldest trees in recent decades is a continuation of their growth pattern established in previous centuries. The fact that they have not shown a decreasing growth rate in their old age contradicts physiological growth models and may be related to the stimulatory effects of global change phenomenon (climate and land-use history).

  5. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars.

    PubMed

    Sarvestani, Zinolabedin Tahmasebi; Pirdashti, Hemmatollah; Sanavy, Seyed Ali Mohammad Modarres; Balouchi, Hamidreza

    2008-05-15

    A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.

  6. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  7. An updated whole stand growth and yield system for planted longleaf pine in southwest Georgia

    Treesearch

    John R. Brooks; Steven B. Jack

    2016-01-01

    An updated whole stand growth and yield system for planted longleaf pine (Pinus palustris) was developed from permanent plot data collected annually over a 13 to 16 year period. The data set consists of 15 intensively managed longleaf pine plantations that are located in Lee, Worth, Mitchell, and Baker counties in southwest Georgia. Stand survival, dominant height,...

  8. Growth rate dependence of boron incorporation into BxGa1-xAs layers

    NASA Astrophysics Data System (ADS)

    Detz, H.; MacFarland, D.; Zederbauer, T.; Lancaster, S.; Andrews, A. M.; Schrenk, W.; Strasser, G.

    2017-11-01

    This work provides a comprehensive study of the incorporation behavior of B in growing GaAs under molecular beam epitaxy conditions. Structural characterization of superlattices revealed a strong dependence of the BAs growth rate on the GaAs growth rate used. In general, higher GaAs growth rates lead to a higher apparent BAs growth rate, although lower B cell temperatures showed saturation behavior. Each B cell temperature requires a minimum GaAs growth rate for producing smooth films. The B incorporation into single thick layers was found to be reduced to 75-80% compared to superlattice structures. The p-type carrier densities in 1000 nm thick layers were found to be indirectly proportional to the B content. Furthermore, 500 nm thick BxGa1-xAs layers showed significantly lower carrier concentrations, indicating B segregation on the surface during growth of thicker layers.

  9. In situ earthworm breeding in orchards significantly improves the growth, quality and yield of papaya (Carica papaya L.)

    PubMed Central

    Xiang, Huimin; Guo, Lei; Zhao, Benliang

    2016-01-01

    The aim of this study was to compare the effects of four fertilizer applications—control (C), chemical fertilizer (F), compost (O), and in situ earthworm breeding (E)—on the growth, quality and yield of papaya (Carica papaya L.). In this study, 5 g plant−1 urea (CH4N2O, %N = 46.3%) and 100 g plant−1 microelement fertilizer was applied to each treatment. The fertilizer applications of these four treatments are different from each other. The results showed that the E treatment had the highest growth parameters over the whole growth period. At 127 days after transplantation, the order of plant heights from greatest to smallest was E > F > O > C, and the stem diameters were E > F > O > C, with significant differences between all treatments. Soluble-solid, sugar, vitamin C, and protein content significantly increased in the E treatment. In addition, the total acid and the electrical conductivity of the fruit significantly decreased in the E treatment. Fruit firmness clearly increased in the O treatment, and decreased in the F treatment. The fresh individual fruit weights, fruit numbers, and total yields were greatly improved in the F and E treatments, and the total yield of the E treatment was higher than that in the F treatment. In conclusion, the in situ earthworm breeding treatment performed better than conventional compost and chemical fertilizer treatments. Furthermore, in situ earthworm breeding may be a potential organic fertilizer application in orchards because it not only improves the fruit quality and yield but also reduces the amount of organic wastes from agriculture as a result of the activities of earthworms. PMID:27994969

  10. Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation.

    PubMed

    Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting

    2017-03-08

    Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. New growth and yield data on Caspar third growth

    Treesearch

    Norm Henry

    1999-01-01

    A study established in 1981 to monitor and study the growth response of 18 pre-commercially thinned plots in the coast redwood forest type on the Jackson Demonstration State Forest (JDSF) was re-measured recently. A report documenting the results of the last 12 years of growth response (1987-1998) is being developed currently by the principal researcher Jim Lindquist....

  12. Shifts in growth strategies reflect tradeoffs in cellular economics

    PubMed Central

    Molenaar, Douwe; van Berlo, Rogier; de Ridder, Dick; Teusink, Bas

    2009-01-01

    The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies. PMID:19888218

  13. Long-term growth rates and effects of bleaching in Acropora hyacinthus

    NASA Astrophysics Data System (ADS)

    Gold, Zachary; Palumbi, Stephen R.

    2018-03-01

    Understanding the response of coral growth to natural variation in the environment, as well as to acute temperature stress under current and future climate change conditions, is critical to predicting the future health of coral reef ecosystems. As such, ecological surveys are beginning to focus on corals that live in high thermal stress environments to understand how future coral populations may adapt to climate change. We investigated the relationship between coral growth, thermal microhabitat, symbionts type, and thermal acclimatization of four species of the Acropora hyacinthus complex in back-reef lagoons in American Samoa. Coral growth was measured from August 2010 to April 2016 using horizontal planar area of coral colonies derived from photographs and in situ maximum width measurements. Despite marked intraspecific variation, we found that planar colony growth rates were significantly different among cryptic species. The highly heat tolerant A. hyacinthus variant "HE" increased in area an average of 2.9% month-1 (0.03 cm average mean radial extension month-1). By contrast, the three less tolerant species averaged 6.1% (0.07 cm average mean radial extension month-1). Planar growth rates were 40% higher on average in corals harboring Clade C versus Clade D symbiont types, although marked inter-colony variation in growth rendered this difference nonsignificant. Planar growth rates for all four species dropped to near zero following a 2015 bleaching event, independent of the visually estimated percent area of bleaching. Within 1 yr, growth rates recovered to previous levels, confirming previous studies that found sublethal effects of thermal stress on coral growth. Long-term studies of individual coral colonies provide an important tool to measure impacts of environmental change and allow integration of coral physiology, genetics, symbionts, and microclimate on reef growth patterns.

  14. [Correlation between growth rate of corpus callosum and neuromotor development in preterm infants].

    PubMed

    Liu, Rui-Ke; Sun, Jie; Hu, Li-Yan; Liu, Fang

    2015-08-01

    To investigate the growth rate of corpus callosum by cranial ultrasound in very low birth weight preterm infants and to provide a reference for early evaluation and improvement of brain development. A total of 120 preterm infants under 33 weeks' gestation were recruited and divided into 26-29(+6) weeks group (n=64) and 30-32(+6) weeks group (n=56) according to the gestational age. The growth rate of corpus callosum was compared between the two groups. The correlation between the corpus callosum length and the cerebellar vermis length and the relationship of the growth rate of corpus callosum with clinical factors and the neuromotor development were analyzed. The growth rate of corpus callosum in preterm infants declined since 2 weeks after birth. Compared with the 30-32(+6) weeks group, the 26-29(+6) weeks group had a significantly lower growth rate of corpus callosum at 3-4 weeks after birth, at 5-6 weeks after birth, and from 7 weeks after birth to 40 weeks of corrected gestational age. There was a positive linear correlation between the corpus callosum length and the cerebellar vermis length. Small-for-gestational age infants had a low growth rate of corpus callosum at 2 weeks after birth. The 12 preterm infants with severe abnormal intellectual development had a lower growth rate of corpus callosum compared with the 108 preterm infants with non-severe abnormal intellectual development at 3-6 weeks after birth. The 5 preterm infants with severe abnormal motor development had a significantly lower growth rate of corpus callosum compared with the 115 preterm infants with non-severe abnormal motor development at 3-6 weeks after birth. The decline of growth rate of corpus callosum in preterm infants at 2-6 weeks after birth can increase the risk of severe abnormal neuromotor development.

  15. Delta L: An Apparatus for Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Strongly diffracting high quality macromolecule crystals of suitable volume are keenly sought for X-ray diffraction analysis so that high-resolution molecular structure data can be obtained. Such data is of tremendous value to medical research, agriculture and commercial biotechnology. In previous studies by many investigators microgravity has been reported in some instances to improve biological macromolecule X-ray crystal quality while little or no improvement was observed in other cases. A better understanding of processes effecting crystal quality improvement in microgravity will therefore be of great benefit in optimizing crystallization success in microgravity. In ground based research with the protein lysozyme we have previously shown that a population of crystals grown under the same solution conditions, exhibit a variation in X-ray diffraction properties (Judge et al., 1999). We have also observed that under the same solution conditions, individual crystals will grow at slightly different growth rates. This phenomenon is called growth rate dispersion. For small molecule materials growth rate dispersion has been directly related to crystal quality (Cunningham et al., 1991; Ristic et al., 1991). We therefore postulate that microgravity may act to improve crystal quality by reducing growth rate dispersion. If this is the case then as different, Materials exhibit different degrees of growth rate dispersion on the ground then growth rate dispersion could be used to screen which materials may benefit the most from microgravity crystallization. In order to assess this theory the Delta L hardware is being developed so that macromolecule crystal growth rates can be measured in microgravity. Crystal growth rate is defined as the change or delta in crystal size (defined as a characteristic length, L) over time; hence the name of the hardware. Delta L will consist of an optics, a fluids, and a data acquisition sub-assemblies. The optics assembly will consist of a

  16. Effect of compression rate on ice VI crystal growth using dDAC

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Hee; Kim, Yong-Jae; Lee, Sooheyong; Cho, Yong Chan; Lee, Geun Woo; Frontier in Extreme Physics Team

    It is well known that static and dynamic pressure give different results in many aspects. Understanding of crystal growth under such different pressure condition is one of the crucial issues for the formation of materials in the earth and planets. To figure out the crystal growth under the different pressure condition, we should control compression rate from static to dynamic pressurization. Here, we use a dynamic diamond anvil cell (dDAC) technique to study the effect of compression rate of ice VI crystal growth. Using dDAC with high speed camera, we monitored growth of a single crystal ice VI. A rounded ice crystal with rough surface was selected in the phase boundary of water and ice VI and then, its repetitive growth and melting has been carried out by dynamic operation of the pressure cell. The roughened crystal showed interesting growth transition with compression rate from three dimensional to two dimensional growth as well as faceting process. We will discuss possible mechanism of the growth change by compression rate with diffusion mechanism of water. This research was supported by the Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea (NRF-2014M1A7A1A01030128).

  17. Maintaining a permanent plot data base for growth and yield research: Solutions to some recurring problems

    Treesearch

    John C. Byrne

    1993-01-01

    Methods for solving some recurring problems of maintaining a permanent plot data base for growth and yield reseuch are described. These methods include documenting data from diverse sampling designs, changing sampling designs, changing field procedures, and coordinating activities in the plots with the land management agency. Managing a permanent plot data base (...

  18. Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.

    PubMed

    Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R

    2018-01-22

    The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    NASA Astrophysics Data System (ADS)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  20. [Effects of different nitrogen application rates on 15N-urea absorption, utilization, loss and fruit yield and quality of dwarf apple].

    PubMed

    Chen, Qian; Ding, Ning; Peng, Ling; Ge, Shun Feng; Jiang, Yuan Mao

    2017-07-18

    Seven-year-old 'Yanfu3'/M 26 /M. hupehensis Rehd. seedlings and 15 N trace technique were used to explore the characteristics of 15 N-urea absorption, utilization, loss and fruit yield and quality under different nitrogen application rates (N 100 , N 200 and N 300 ). The main results were as follows: the plant growth, 15 N absorption, utilization and loss differed significantly under different treatments. The plant leaf chlorophyll content (SPAD value), photosynthetic rate (P n ), total N content of leaves and the biomass, as well as the root-shoot ratio of N 200 treatment were obviously higher than the N 100 and N 300 treatments. Significant differences were observed in the 15 N derived from fertilizer (Ndff value) of different organs under different nitrogen application rates. The Ndff of fruits (flowers), leaves, one-year-old branch, and perennial branches in each measurement period was N 100 >N 200 >N 300 , while that of the roots at full-bloom and spring shoot growing slowly stage was N 100 >N 200 >N 300 , and in a trend of N 200 >N 100 >N 300 at autumn shoot growing stage, fruit rapid-swel-ling stage and fruit maturity stage. At fruit maturity stage, plant 15 N nitrogen utilization ratio of N 200 treatment was 23.6%, which was obviously higher than the N 100 (16.3%) and N 300 (14.4%) treatments, with the 15 N loss rate of 56.4%, obviously lower than the N 100 (60.6%) and N 300 (66.1%) treatments. There were significant differences among the treatments in fruit mass, yield per plant, soluble solid, fruit firmness, soluble sugar, titratable acids and sugar-acid ratio of different nitrogen rates, and the N 200 treatment showed the best performance, followed by the N 300 treatment, and then the N 100 treatment.

  1. Correcting speleothem oxygen isotopic variations for growth-rate controlled kinetic fractionation effects

    NASA Astrophysics Data System (ADS)

    Stoll, Heather; Moreno, Ana; Cacho, Isabel; Mendez Vicence, Ana; Gonzalez Lemos, Saul; Pirla Casasayas, Gemma; Cheng, Hai; Wang, Xianfeng; Edwards, R. Lawrence

    2015-04-01

    The oxygen isotopic signature may be the most widely used climate indicator in stalagmites, but recent experimental and theoretical studies indicate the potential for kinetic fractionation effects which may be significant, especially in situations where the primary signal from rainfall isotopic composition and cave temperature is limited to a few permil. Here we use a natural set of stalagmites to illustrate the magnitude of such effects and the potential for deconvolving kinetic signals from the primary temperature and rainfall signals. We compare isotopic records from 6 coeval stalagmites covering the interval 140 to 70 ka, from two proximal caves in NW Spain which experienced the same primary variations in temperature and rainfall d18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 microns/year have oxygen isotopic ratios more than 1 permil more negative than coeval stalagmites with very slow (5 micron/year) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. We compare the composite corrected oxygen isotopic record with other records of the timing of glacial inception in the North Atlantic realm.

  2. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction.

    PubMed

    Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu; Ying, Bei-Wen

    2017-07-05

    Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. IMPORTANCE Genome reduction is a powerful approach for investigating the fundamental rules for living systems. Whether genetically disturbed genomes have any specific properties that are different from or similar to those of natively evolved genomes has been under

  3. Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities

    NASA Astrophysics Data System (ADS)

    Adkins, Raymond; Shelton, Emily M.; Renoult, Marie-Charlotte; Carles, Pierre; Rosenblatt, Charles

    2017-06-01

    Magnetic levitation was used to measure the growth rate Σ vs wave vector k of a Rayleigh-Taylor instability in a three-layer fluid system, a crucial step in the elucidation of interface coupling in finite-layer instabilities. For a three-layer (low-high-low density) system, the unstable mode growth rate decreases as both the height h of the middle layer and k are reduced, consistent with an interface coupling ∝e-k h . The ratios of the three-layer to the established two-layer growth rates are in good agreement with those of classic linear stability theory, which has long resisted verification in that configuration.

  4. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    PubMed

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  5. Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.

    PubMed

    Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison

    2017-05-01

    In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ergodicity, hidden bias and the growth rate gain

    NASA Astrophysics Data System (ADS)

    Rochman, Nash D.; Popescu, Dan M.; Sun, Sean X.

    2018-05-01

    Many single-cell observables are highly heterogeneous. A part of this heterogeneity stems from age-related phenomena: the fact that there is a nonuniform distribution of cells with different ages. This has led to a renewed interest in analytic methodologies including use of the ‘von Foerster equation’ for predicting population growth and cell age distributions. Here we discuss how some of the most popular implementations of this machinery assume a strong condition on the ergodicity of the cell cycle duration ensemble. We show that one common definition for the term ergodicity, ‘a single individual observed over many generations recapitulates the behavior of the entire ensemble’ is implied by the other, ‘the probability of observing any state is conserved across time and over all individuals’ in an ensemble with a fixed number of individuals but that this is not true when the ensemble is growing. We further explore the impact of generational correlations between cell cycle durations on the population growth rate. Finally, we explore the ‘growth rate gain’—the phenomenon that variations in the cell cycle duration leads to an improved population-level growth rate—in this context. We highlight that, fundamentally, this effect is due to asymmetric division.

  7. The effects of population density on juvenile growth rate in white-tailed deer.

    PubMed

    Barr, Brannon; Wolverton, Steve

    2014-10-01

    Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer (Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.

  8. The Effects of Population Density on Juvenile Growth Rate in White-Tailed Deer

    NASA Astrophysics Data System (ADS)

    Barr, Brannon; Wolverton, Steve

    2014-10-01

    Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer ( Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.

  9. Scaling laws in the dynamics of crime growth rate

    NASA Astrophysics Data System (ADS)

    Alves, Luiz G. A.; Ribeiro, Haroldo V.; Mendes, Renio S.

    2013-06-01

    The increasing number of crimes in areas with large concentrations of people have made cities one of the main sources of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behavior. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

  10. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.).

    PubMed

    Joshi, Anjali; Kaur, Simranjeet; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-06-01

    Reports of multi-walled carbon nanotubes (MWCNTs) incorporated into plants have indicated better yield and productivity, yet the phenomena need in-depth understanding especially when agricultural crops are tested. We primed wheat seeds with MWCNTs to understand the effects on germination, growth, anatomy, physiology and yield. This study, carried out in field conditions, is a step forward over the previous reports. Early germination, excessive root hair, denser stomata and larger root length result in faster growth and higher yield of wheat plants. Denser root hair facilitated the uptake of both water and essential minerals such as phosphorus (P) and potassium (K), which boosted the crop yield by significantly improving grain yield per plant from 1.53 to 2.5 g, a 63% increase. Increase in cell elongation by 80% was recorded, while xylem and phloem sizes dilated to almost 83% and 85% of control, thus enhancing their capacity to conduct water and nutrients. Augmented growth of MWCNT-primed wheat, enhancement in grain number, biomass, stomatal density, xylem-phloem size, epidermal cells, and water uptake is observed while finding no DNA damage. This opens up an entirely new aspect to using cost-effective nanomaterials (the MWCNTs were produced in-house) for enhancing the performance of crop plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Variation in Yield Gap Induced by Nitrogen, Phosphorus and Potassium Fertilizer in North China Plain

    PubMed Central

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP. PMID:24349204

  12. Variation in yield gap induced by nitrogen, phosphorus and potassium fertilizer in North China Plain.

    PubMed

    Dai, Xiaoqin; Ouyang, Zhu; Li, Yunsheng; Wang, Huimin

    2013-01-01

    A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha(-1) yr(-1) for wheat and 560.6 kg ha(-1) yr(-1) for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha(-1) yr(-1). The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.

  13. Comparison of heavy metal loads in stormwater runoff from major and minor urban roads using pollutant yield rating curves.

    PubMed

    Davis, Brett; Birch, Gavin

    2010-08-01

    Trace metal export by stormwater runoff from a major road and local street in urban Sydney, Australia, is compared using pollutant yield rating curves derived from intensive sampling data. The event loads of copper, lead and zinc are well approximated by logarithmic relationships with respect to total event discharge owing to the reliable appearance of a first flush in pollutant mass loading from urban roads. Comparisons of the yield rating curves for these three metals show that copper and zinc export rates from the local street are comparable with that of the major road, while lead export from the local street is much higher, despite a 45-fold difference in traffic volume. The yield rating curve approach allows problematic environmental data to be presented in a simple yet meaningful manner with less information loss. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Measurement of gas yields and flow rates using a custom flowmeter

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Pinkston, J.C.; Stern, L.A.

    2001-01-01

    A simple gas collection apparatus based on the principles of a Torricelli tube has been designed and built to measure gas volume yields and flow rates. This instrument is routinely used to monitor and collect methane gas released during methane hydrate dissociation experiments. It is easily and inexpensively built, operates at ambient pressures and temperatures, and measures gas volumes of up to 7 L to a precision of about 15 ml (about 0.0025 mol). It is capable of measuring gas flow rates varying from more than 103 to less than 10-1 ml/min during gas evolution events that span minutes to several days. We have obtained a highly reproducible hydrate number of n=5.891 with a propagated uncertainty of ??0.020 for synthetic methane hydrate. ?? 2001 American Institute of Physics.

  15. Growth and yield model for non-timber forest product of kemenyan (Styrax sumatrana J.J. Sm) in Tapanuli, North Sumatra

    NASA Astrophysics Data System (ADS)

    Aswandi; Kholibrina, C. R.

    2018-02-01

    Kemenyan is Styrax tree resin, the main of non-timber forest product commodity in Lake Toba catchment area, North Sumatra since hundreds years ago. However, there are lack of information about the growth and yield prediction for this tree species. The objective of study is to construct the growth and yield models for Styrax sumatrana in Tapanuli region, North Sumatra. Measurement data from 20 temporary plots were used to formulate stand diameter and height equations, and to project the incense production. The highest Current Annual Increment (CAI) of diameter occurs in the stand’s age 21 to 25 years (1.00 cm/year). The growth of diameter declines significantly to 0.48 cm/year in age 46 to 50 years, and decrease to 0.26 cm/year at age 50 years up. The intersection of CAI and MAI curves occur in stand age 31 to 35 years. It shows that the optimal growth occurs in this period. The average of incenses production was 318.59 g/tree/year. The optimum incense production was achieved when the diameter growth was maximal and tapping scars accumulation was limited.

  16. Effect of drought and heat stresses on plant growth and yield: a review

    NASA Astrophysics Data System (ADS)

    Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K.

    2013-12-01

    Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress-tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.

  17. Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.).

    PubMed

    Kishore, G K; Pande, S; Podile, A R

    2005-01-01

    To isolate and characterize groundnut-associated bacterial isolates for growth promotion of groundnut in field. Three hundred and ninety-three groundnut-associated bacteria, representing the geocarposphere, phylloplane and rhizosphere, and endophytes were applied as seed treatment in greenhouse. Maximum increase in plant biomass (up to 26%) was observed following treatment with a rhizosphere isolate identified as Bacillus firmis GRS 123, and two phylloplane isolates Bacillus megaterium GPS 55 and Pseudomonas aeruginosa GPS 21. There was no correlation between the production of L-tryptophan-derived auxins and growth promotion by the test isolates. Actively growing cells and peat formulations of GRS 123 and GPS 55, and actively growing cells of GPS 21, significantly increased the plant growth and pod yield (up to 19%) in field. Rifampicin-resistant mutants of GRS 123 and GPS 21 colonized the ecto- and endorhizospheres of groundnut, respectively, up to 100 days after sowing (DAS), whereas GPS 55 was recovered from both the habitats at 100 DAS. Seed bacterization with phylloplane isolates promoted groundnut growth indicating the possibility of isolating rhizosphere beneficial bacteria from different habitats. Identification of phylloplane bacteria as effective plant growth-promoting rhizobacteria (PGPR) broadens the spectrum of PGPR available for field application.

  18. Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (chlorophyta)

    USGS Publications Warehouse

    Kuwabara, J.S.

    1985-01-01

    Culturing experiments in chemically defined growth media were conducted to observe possible Zn and P interactions on Selenastrum capricornutum Printz growth indexes. Elevated Zn concentrations (7.5 ?? 10-8 and 1.5 ?? 10-7 M [Zn2+]) were highly detrimental to algal growth, affecting lag, exponential, and stationary growth phases. P behaved as a yield-limiting nutrient with maximum cell densities increasing linearly with total P. This yield limitation was intensified at elevated Zn concentrations. Although calculated cellular phosphorus concentrations increased markedly with Zn ion activity, elevated Zn concentrations had no apparent effect on rates of phosphorus uptake estimated for Selenastrum during exponential growth. Results indicated that P-Zn interactions were significant in describing Selenastrum cell yield results and are consistent with previous Zn studies on chlorophytes. These P-Zn interactions and the observed inhibitory growth effects of submicromolar Zn concentrations suggest that in nature an apparent P yield-limiting condition may result from elevated Zn concentrations.

  19. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity

    PubMed Central

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400

  20. Canopy disturbance intervals, early growth rates, and canopy accession trends of oak-dominated old-growth forests

    Treesearch

    James S. Rentch; Ray R., Jr. Hicks

    2003-01-01

    Using a radial growth averaging technique, changes in growth rates of overstory oaks were used to quantify canopy disturbance events at five old-growth sites. On average, at least one canopy disturbance occurred on these sites every 3 years; larger multiple-tree disturbances occurred every 17 years. Although there was some variation by site and by historical period,...

  1. Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H. Eugene; Grosse, I.

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈-0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  2. Size-dependent standard deviation for growth rates: empirical results and theoretical modeling.

    PubMed

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H Eugene; Grosse, I

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma(R) on the average value of the wages with a scaling exponent beta approximately 0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma(R) on the average payroll with a scaling exponent beta approximately -0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  3. A comparison of loblolly pine growth and yield on pure pine and mixed pine-hardwood sites

    Treesearch

    James D. Haywood; John R. Toliver

    1989-01-01

    The case histories of four loblolly pine (Pinus taeda L.) sites were examined to determine if differences in growth and yield could be associated with stand type. The stand types were pure loblolly pine and mixed loblolly pine-hardwood. All sites were located on silt loam soils and mechanical site preparation was carried out on all sites before...

  4. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates.

    PubMed

    Agostinho, Flavia B; Tubana, Brenda S; Martins, Murilo S; Datnoff, Lawrence E

    2017-08-29

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha -1 ) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha -1 and one foliar Si solution applied at 20, 40 and 80 mg Si L -1 ) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As ( P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si ( P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  5. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates

    PubMed Central

    Agostinho, Flavia B.; Tubana, Brenda S.; Martins, Murilo S.; Datnoff, Lawrence E.

    2017-01-01

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha−1) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha−1 and one foliar Si solution applied at 20, 40 and 80 mg Si L−1) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants. PMID:28850079

  6. Malaria infection and feather growth rate predict reproductive success in house martins.

    PubMed

    Marzal, Alfonso; Reviriego, Maribel; Hermosell, Ignacio G; Balbontín, Javier; Bensch, Staffan; Relinque, Carmen; Rodríguez, Laura; Garcia-Longoria, Luz; de Lope, Florentino

    2013-04-01

    Carry-over effects take place when events occurring in one season influence individual performance in a subsequent season. Blood parasites (e.g. Plasmodium and Haemoproteus) have strong negative effects on the body condition of their hosts and could slow the rate of feather growth on the wintering grounds. In turn, these winter moult costs could reduce reproductive success in the following breeding season. In house martins Delichon urbica captured and studied at a breeding site in Europe, we used ptilochronology to measure growth rate of tail feathers moulted on the winter range in Africa, and assessed infection status of blood parasites transmitted on the wintering grounds. We found a negative association between haemosporidian parasite infection status and inferred growth rate of tail feathers. A low feather growth rate and blood parasite infections were related to a delay in laying date in their European breeding quarters. In addition, clutch size and the number of fledglings were negatively related to a delayed laying date and blood parasite infection. These results stress the importance of blood parasites and feather growth rate as potentially mechanisms driving carry-over effects to explain fitness differences in wild populations of migratory birds.

  7. Measurement of Microscopic Growth Rates in Float-Zone Silicon Crystals

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Time dependent convective flows during crystal growth of doped semiconductors lead to fluctuations of the composition, so called dopant striations. In general, it is difficult to decide which is the main mechanism for the generation of these striations, it might be either the fluctuation of the concentration field in the melt and the extent of the solute boundary layer ahead of the solid-liquid interface or a variation of the growth velocity. Direct access to the concentration field is rather complicated to achieve, especially considering the high process temperature and the chemical activity of liquid silicon. The contribution of growth rate fluctuations to the formation of compositional fluctuations can be determined by measuring microscopic growth rates. The classical method of current pulses requires electrical feed-throughs and good electrical contacts, both are critical issues for the growth of high purity silicon crystals. Using a radiation based heating system, the heating power can be modulated very fast and effectively. We added to the normal heater power a sinusoidal off-set in the frequency range of 1 to 10 Hz, generating a narrow spaced weak rippling in the grown crystals which are superposed to the dopant striations caused by natural and by thermocapillary convection. The pulling speed was varied between 1 and 4mm/min. The microscope images of etched crystals slices have been analyzed by peak-search algorithms (measuring the spacing between each artificially induced marker) and by FFT. Performing growth experiments under a time-dependent flow regime, fluctuations of the microscopic growth velocity of Delta(v)/v(sub average) up to 50% have been measured. Damping the time-dependent convection by the use of an axial, static magnetic field of 500mT, the microscopic growth rate became constant within the resolution limit of this method. The results will be discussed using analytical methods for the calculation of microscopic growth velocity and by

  8. Growth rate in the dynamical dark energy models.

    PubMed

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  9. Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield

    NASA Astrophysics Data System (ADS)

    Suarez, L. A.; Apan, A.; Werth, J.

    2016-10-01

    Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.

  10. Growth rates of rainbow smelt in Lake Champlain: Effects of density and diet

    USGS Publications Warehouse

    Stritzel, Thomson J.L.; Parrish, D.L.; Parker-Stetter, S. L.; Rudstam, L. G.; Sullivan, P.J.

    2011-01-01

    Stritzel Thomson JL, Parrish DL, Parker-Stetter SL, Rudstam LG, Sullivan PJ. Growth rates of rainbow smelt in Lake Champlain: effects of density and diet. Ecology of Freshwater Fish 2010. ?? 2010 John Wiley & Sons A/S Abstract- We estimated the densities of rainbow smelt (Osmerus mordax) using hydroacoustics and obtained specimens for diet analysis and groundtruthed acoustics data from mid-water trawl sampling in four areas of Lake Champlain, USA-Canada. Densities of rainbow smelt cohorts alternated during the 2-year study; age-0 rainbow smelt were very abundant in 2001 (up to 6fish per m2) and age-1 and older were abundant (up to 1.2fish per m2) in 2002. Growth rates and densities varied among areas and years. We used model selection on eight area-year-specific variables to investigate biologically plausible predictors of rainbow smelt growth rates. The best supported model of growth rates of age-0 smelt indicated a negative relationship with age-0 density, likely associated with intraspecific competition for zooplankton. The next best-fit model had age-1 density as a predictor of age-0 growth. The best supported models (N=4) of growth rates of age-1 fish indicated a positive relationship with availability of age-0 smelt and resulting levels of cannibalism. Other plausible models were contained variants of these parameters. Cannibalistic rainbow smelt consumed younger conspecifics that were up to 53% of their length. Prediction of population dynamics for rainbow smelt requires an understanding of the relationship between density and growth as age-0 fish outgrow their main predators (adult smelt) by autumn in years with fast growth rates, but not in years with slow growth rates. ?? 2011 John Wiley & Sons A/S.

  11. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa.

    PubMed

    Healey, Adam L; Lee, David J; Lupoi, Jason S; Papa, Gabriella; Guenther, Joel M; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28-38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.

  12. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    PubMed Central

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.; Papa, Gabriella; Guenther, Joel M.; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A.; Henry, Robert J.

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production

  13. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    DOE PAGES

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.; ...

    2016-11-18

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable,it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application,it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin,glucan,and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) amongmore » parental and hybrid populations,whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age,with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase),and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%,respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass,with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass,respectively),with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate,biomass composition,and further optimization of enzymatic saccharification yield,high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.« less

  14. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable,it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application,it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin,glucan,and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) amongmore » parental and hybrid populations,whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age,with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase),and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%,respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass,with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass,respectively),with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate,biomass composition,and further optimization of enzymatic saccharification yield,high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.« less

  15. [Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties].

    PubMed

    Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang

    2017-04-18

    To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could

  16. Plant Growth-promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers

    USDA-ARS?s Scientific Manuscript database

    Efforts to reduce fertilizer rates while increasing nutrient uptake to maintain high yields are very important due to the increasing cost of fertilizers and their potential negative environmental impacts. The objectives of this study were to determine (i) if reduced rates of inorganic fertilizer cou...

  17. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Steve A.; Hazen, Samuel; Mullet, John

    Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to futuremore » strategies to optimize energy crop biomass yield.« less

  18. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    NASA Astrophysics Data System (ADS)

    Reddy, Michael M.

    2012-08-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10-4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10-4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  19. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    USGS Publications Warehouse

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  20. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction

    PubMed Central

    Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu

    2017-01-01

    ABSTRACT Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. PMID:28679744

  1. Lateral vegetation growth rates exert control on coastal foredune hummockiness and coalescing time

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Moore, Laura J.; Durán Vinent, Orencio

    2017-08-01

    Coastal foredunes form along sandy, low-sloped coastlines and range in shape from continuous dune ridges to hummocky features, which are characterized by alongshore-variable dune crest elevations. Initially scattered dune-building plants and species that grow slowly in the lateral direction have been implicated as a cause of foredune hummockiness. Our goal in this work is to explore how the initial configuration of vegetation and vegetation growth characteristics control the development of hummocky coastal dunes including the maximum hummockiness of a given dune field. We find that given sufficient time and absent external forcing, hummocky foredunes coalesce to form continuous dune ridges. Model results yield a predictive rule for the timescale of coalescing and the height of the coalesced dune that depends on initial plant dispersal and two parameters that control the lateral and vertical growth of vegetation, respectively. Our findings agree with previous observational and conceptual work - whether or not hummockiness will be maintained depends on the timescale of coalescing relative to the recurrence interval of high-water events that reset dune building in low areas between hummocks. Additionally, our model reproduces the observed tendency for foredunes to be hummocky along the southeast coast of the US where lateral vegetation growth rates are slower and thus coalescing times are likely longer.

  2. The effect of pre-stress cycles on fatigue crack growth - An analysis of crack growth mechanism. [in Al alloy plates

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1974-01-01

    Cyclic prestress increases subsequent fatigue crack growth rate in 2024-T351 aluminum alloy. This increase in growth rate, caused by the prestress, and the increased rate, caused by temper embrittlement as observed by Ritchie and Knott (1973), cannot be explained by the crack tip blunting model alone. Each fatigue crack increment consists of two components, a brittle and a ductile component. They are controlled by the ductility of the material and its cyclic yield strength, respectively.

  3. The effect of dosages of microbial consortia formulation and synthetic fertilizer on the growth and yield of field-grown chili

    NASA Astrophysics Data System (ADS)

    Istifadah, N.; Sapta, D.; Krestini, H.; Natalie, B.; Suryatmana, P.; Nurbaity, A.; Hidersah, R.

    2018-03-01

    Chili (Capsicum annuum, L) is one of important horticultural crop in Indonesia. Formulation of microbial consortia containing Bacillus subtilis, Pseudomonas sp., Azotobacter chroococcum and Trichoderma harzianum has been developed. This study evaluated the effects of dosage of the microbial formulation combined with NPK fertilizer on growth and yield of chili plants in the field experiment. The experiment was arranged in completely randomized design of factorial, in which the first factor was dosage of formulation (0, 2.5, 5.0, 7.5, 10 g per plant) and the second factor was NPK fertilizer dosage (0, 25, 50 and 75% of the standard dosage). The treatments were replicated three times. For application, the formulation was mixed with chicken manure 1:10 (w/v). The results showed that application of microbial formulation solely improved the chili growth. There was interaction between dosages of the microbial formulation and NPK fertilizer in improving plant height, nitrogen availability and the chili yield, while there was no interaction between those dosages in improving the root length. Combination between microbial formulation at the dosage of 5.0-7.5 g per plant combined with NPK fertilizer with the dosage 50 or 75% of the standard dosage support relatively better growth and the chili yield.

  4. Yield prediction by analysis of multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Suits, G. H.

    1975-01-01

    A preliminary model describing the growth and grain yield of wheat was developed. The modeled growth characteristics of the wheat crop were used to compute wheat canopy reflectance using a model of vegetation canopy reflectance. The modeled reflectance characteristics were compared with the corresponding growth characteristics and grain yield in order to infer their relationships. It appears that periodic wheat canopy reflectance characteristics potentially derivable from earth satellites will be useful in forecasting wheat grain yield.

  5. Increasing plant growth by modulating omega-amidase expression in plants

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  6. Gross domestic product growth rates as confined Lévy flights: Towards a unifying theory of economic growth rate fluctuations

    NASA Astrophysics Data System (ADS)

    Lera, Sandro Claudio; Sornette, Didier

    2018-01-01

    A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.

  7. Gross domestic product growth rates as confined Lévy flights: Towards a unifying theory of economic growth rate fluctuations.

    PubMed

    Lera, Sandro Claudio; Sornette, Didier

    2018-01-01

    A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.

  8. Influence of corruption on economic growth rate and foreign investment

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Shao, Jia; Njavro, Djuro; Ivanov, Plamen Ch.; Stanley, H. E.

    2008-06-01

    We analyze the dependence of the Gross Domestic Product ( GDP) per capita growth rates on changes in the Corruption Perceptions Index ( CPI). For the period 1999 2004 for all countries in the world, we find on average that an increase of CPI by one unit leads to an increase of the annual GDP per capita growth rate by 1.7%. By regressing only the European countries with transition economies, we find that an increase of CPI by one unit generates an increase of the annual GDP per capita growth rate by 2.4%. We also analyze the relation between foreign direct investments received by different countries and CPI, and we find a statistically significant power-law functional dependence between foreign direct investment per capita and the country corruption level measured by the CPI. We introduce a new measure to quantify the relative corruption between countries based on their respective wealth as measured by GDP per capita.

  9. Delta L: An Apparatus for Measuring Macromolecular Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, is was necessary to develop new hardware that could measure the crystal growth rates of a population of crystals growing under the same solution conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of a crystal over time, the hardware was named Delta L. Delta L consists of fluids, optics, and data acquisition, sub-assemblies. Temperature control is provided for the crystal growth chamber. Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS). Delta L prototype hardware has been assembled. This paper will describe an overview of the design of Delta L and present preliminary crystal growth rate data.

  10. Phenytoin crystal growth rates in the presence of phosphate and chloride ions

    NASA Astrophysics Data System (ADS)

    Zipp, G. L.; Rodríguez-Hornedo, N.

    1992-09-01

    Phenytoin crystal growth kinetics have been measured as a function of supersaturation in pH 2.2 phosphoric acid and pH 2.2 hydrochloric acid solutions. Two different methods were used for the kinetic analysis. The first involved a zone-sensing device which provided an analysis of the distribution of crystals in a batch crystallizer. Crystal growth rates were calculated from the increase in the size of the distribution with time. In the second method, growth rates were evaluated from the change in size with time of individual crystals observed under an inverted microscope. The results from each method compare favorably. The use of both techniques provides an excellent opportunity to exploit the strengths of each: an average growth rate from a population of crystals from batch crystallization and insight into the effect of growth on the morphology of the crystals from the individual crystal measurements.

  11. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.

    PubMed

    Nakielski, Jerzy; Lipowczan, Marcin

    2013-01-01

    Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.

  12. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    PubMed

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P < 0.05). Absolute hindlimb blood flow was reduced in IUGR (IUGR: 32.9 ± 5.6 ml min -1 ; CON: 60.9 ± 6.5 ml min -1 ; P < 0.005), although flow normalized to hindlimb weight was similar between groups

  13. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite.

    PubMed

    Tao, Fulu; Zhang, Zhao; Shi, Wenjiao; Liu, Yujie; Xiao, Dengpan; Zhang, Shuai; Zhu, Zhu; Wang, Meng; Liu, Fengshan

    2013-10-01

    Based on the crop trial data during 1981-2009 at 57 agricultural experimental stations across the North Eastern China Plain (NECP) and the middle and lower reaches of Yangtze River (MLRYR), we investigated how major climate variables had changed and how the climate change had affected crop growth and yield in a setting in which agronomic management practices were taken based on actual weather. We found a significant warming trend during rice growing season, and a general decreasing trend in solar radiation (SRD) in the MLRYR during 1981-2009. Rice transplanting, heading, and maturity dates were generally advanced, but the heading and maturity dates of single rice in the MLRYR (YZ_SR) and NECP (NE_SR) were delayed. Climate warming had a negative impact on growth period lengths at about 80% of the investigated stations. Nevertheless, the actual growth period lengths of YZ_SR and NE_SR, as well as the actual length of reproductive growth period (RGP) of early rice in the MLRYR (YZ_ER), were generally prolonged due to adoption of cultivars with longer growth period to obtain higher yield. In contrast, the actual growth period length of late rice in the MLRYR (YZ_LR) was shortened by both climate warming and adoption of early mature cultivars to prevent cold damage and obtain higher yield. During 1981-2009, climate warming and decrease in SRD changed the yield of YZ_ER by -0.59 to 2.4%; climate warming during RGP increased the yield of YZ_LR by 8.38-9.56%; climate warming and decrease in SRD jointly reduced yield of YZ_SR by 7.14-9.68%; climate warming and increase in SRD jointly increased the yield of NE_SR by 1.01-3.29%. Our study suggests that rice production in China has been affected by climate change, yet at the same time changes in varieties continue to be the major factor driving yield and growing period trends. © 2013 John Wiley & Sons Ltd.

  14. How do output growth-rate distributions look like? Some cross-country, time-series evidence

    NASA Astrophysics Data System (ADS)

    Fagiolo, G.; Napoletano, M.; Roventini, A.

    2007-05-01

    This paper investigates the statistical properties of within-country gross domestic product (GDP) and industrial production (IP) growth-rate distributions. Many empirical contributions have recently pointed out that cross-section growth rates of firms, industries and countries all follow Laplace distributions. In this work, we test whether also within-country, time-series GDP and IP growth rates can be approximated by tent-shaped distributions. We fit output growth rates with the exponential-power (Subbotin) family of densities, which includes as particular cases both Gaussian and Laplace distributions. We find that, for a large number of OECD (Organization for Economic Cooperation and Development) countries including the US, both GDP and IP growth rates are Laplace distributed. Moreover, we show that fat-tailed distributions robustly emerge even after controlling for outliers, autocorrelation and heteroscedasticity.

  15. [Growth rate and bone maturation in celiac disease (author's transl)].

    PubMed

    Martínez Sopena, M J; Calvo Romero, M C; Bedate Calderón, P; Alonso Franch, M; Sánchez Villares, E

    1978-05-01

    The growth and bone maturation of 43 celiac patients were analyzed. A significant correlation between gluten intake and growth rate was found. The authors suggest this is a good parameter to advise the best moment to make the control biopsie and the provocation test.

  16. Growth and yield of patchouli (Pogostemon cablin, Benth) due to mulching and method of fertilizer on rain-fed land

    NASA Astrophysics Data System (ADS)

    Nasruddin; Harahap, E. M.; Hanum, C.; Siregar, L. A. M.

    2018-02-01

    The drought stress that occurs during growth results in a drastic reduction in growth and yield. This study was aimed to study the effect of mulching and method of fertilizer application in reducing the impact of drought stress on patchouli plants. The experiment was conducted from July to December 2016 using a split plot design into three replications with two treatment factors. The first factor was mulch factor with three levels, i.e. M0 (without mulch), M1 (rice straw mulch) and M2 (silver black plastic mulch). The second factor was the method of fertilizer application consisting of three stages: C1 (once), C2 (twice), C3 (three times). The parameters included plant height, number of branches, number of leaves, root length, wet weight of plant, root canopy ratio, total of chlorophyll, soil temperature and soil moisture content. The results showed the use of straw mulch reduce the impact of drought stress on patchouli plants. Two times fertilizer application gave better growth and yield. The use of straw mulch produced lower temperature degrees and maintained soil moisture content.

  17. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling

    PubMed Central

    Koopman, Jacob J.E.; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S.; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species. PMID:26959761

  18. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling.

    PubMed

    Koopman, Jacob J E; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S; Sun, Liou Y; Bartke, Andrzej

    2016-03-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species.

  19. Quantifying potential yield and water-limited yield of summer maize in the North China Plain

    NASA Astrophysics Data System (ADS)

    Jiang, Mingnuo; Liu, Chaoshun; Chen, Maosi

    2017-09-01

    The North China Plain is a major food producing region in China, and climate change could pose a threat to food production in the region. Based on China Meteorological Forcing Dataset, simulating the growth of summer maize in North China Plain from 1979 to 2015 with the regional implementation of crop growth model WOFOST. The results showed that the model can reflect the potential yield and water-limited yield of Summer Maize in North China Plain through the calibration and validation of WOFOST model. After the regional implementation of model, combined with the reanalysis data, the model can better reproduce the regional history of summer maize yield in the North China Plain. The yield gap in Southeastern Beijing, southern Tianjin, southern Hebei province, Northwestern Shandong province is significant, these means the water condition is the main factor to summer maize yield in these regions.

  20. Effects of climate change on plant population growth rate and community composition change.

    PubMed

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.

  1. Growth-rate periodicity of Streptomyces levoris during space flight

    NASA Technical Reports Server (NTRS)

    Rogers, T. D.; Brower, M. E.; Taylor, G. R.

    1977-01-01

    Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.

  2. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  3. Effects of Nitrogen Application Rate on the Yields, Nutritive Value and Silage Fermentation Quality of Whole-crop Wheat.

    PubMed

    Li, C J; Xu, Z H; Dong, Z X; Shi, S L; Zhang, J G

    2016-08-01

    Whole-crop wheat (Triticum aestivum L.) as forage has been extensively used in the world. In this study, the effects of N application rates on the yields, nutritive value and silage quality were investigated. The N application rates were 0, 75, 150, 225, and 300 kg/ha. The research results indicated that the dry matter yield of whole-crop wheat increased significantly with increasing N rate up to 150 kg/ha, and then leveled off. The crude protein content and in vitro dry matter digestibility of whole-crop wheat increased significantly with increasing N up to 225 kg/ha, while they no longer increased at N 300 kg/ha. On the contrary, the content of various fibers tended to decrease with the increase of N application. The content of lactic acid, acetic acid and propionic acid in silages increased with the increase of N rate (p<0.05). The ammonia-N content of silages with higher N application rates (≥225 kg/ha) was significantly higher than that with lower N application rates (≤150 kg/ha). Whole-crop wheat applied with high levels of N accumulated more nitrate-N. In conclusion, taking account of yields, nutritive value, silage quality and safety, the optimum N application to whole-crop wheat should be about 150 kg/ha at the present experiment conditions.

  4. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  5. Effect of cow manure and empty fruit bunches application treated with different fertilizers on growth and yield of chili (Capsicum annum)

    NASA Astrophysics Data System (ADS)

    Ghazali, Mohd Rashdan; Mutalib, Sahilah Abd.; Abdullah, Aminah

    2016-11-01

    Study on the comparison of cow manure (CM) and empty fruit bunches (EFB) compost application as planting medium was conducted using four different treatments of fertilizer (without fertilizer, chemical fertilizer, organic fertilizer, and both fertilizer) on growth and yield of chili (Capsicum annum). The experiment started on August until December 2014 which consisted of eight treatments and were laid in a completely randomized block design (CRBD) with three replications. Variety chili that was used was Cilibangi 3. The seed was planted inside the tray for one week and transferred into the polybag containing growth media consisted of soil, compost (CM or EFB compost) and sand with ratio 3:2:1. Treatments without fertilizer were acted as a control. Throughout the study, plant growth performance and yield were recorded. The highest height of the plants for CM compost was 100.8 cm using chemical fertilizer and have significant different between the groups. For EFB compost was 92.7 cm using also chemical fertilizer but no significant different between the groups. The highest fruits weight per plant for CM compost was 485.67 g treated with both fertilizers and for EFB compost was 420.17 g treated with chemical fertilizer. Analysis of variance (ANOVA) table stated that fruits weight per plant has significant different for both planting medium with the fertilizer treatment. For the highest total fruits per plant, CM compost recorded about average 55 fruits per plant using both fertilizers and EFB compost recorded around 45 fruit per plant using chemical fertilizer. There was significantly different for total fruits per plant for both planting medium with the fertilizer treatment according to the ANOVA table. For CM, the ripening time was around 102-112 days and for EFB compost was around 96-110 days. Thus, application of CM compost treated with both chemical and organic fertilizers demonstrated better growth and fruit yield. While EFB compost was better growth and fruit

  6. Phase feeding in a small-bird production scenario: effect on growth performance, yield, and fillet dimension.

    PubMed

    Brewer, V B; Owens, C M; Emmert, J L

    2012-05-01

    Phase feeding (PF) has been effective at maintaining broiler growth while reducing production cost, but the effect on different broiler strains grown in a small-bird production scenario has not been assessed. Three strains of commercial broilers were fed a diet containing average industry nutrient levels from 0 to 18 d. From 18 to 32 d, birds were fed either diets with average industry nutrient levels or diets with phased levels of amino acids. For PF, diets were prepared that contained Lys, sulfur amino acids, and Thr levels matching the predicted requirements for birds at the beginning (high nutrient density) and end (low nutrient density) of PF. Pelleted high and low nutrient-density diets were blended to produce rations containing amino acid levels that matched the predicted PF requirements over 2-d intervals, and diets were switched every other day during PF. Treatments were replicated in 6 pens; each pen contained 15 males and 15 females. Weight gain, feed intake, and feed efficiency were calculated. All birds were commercially processed; yield and fillet dimensions were calculated. Differences among strain BW were noted on d 0, 18, 32, and at processing. Males weighed more than females on d 18 (excluding strain C), 32, and the day of processing. Weight gain was affected by strain (P < 0.05) but not by feeding regimen in the overall growth period (18-39 d). Feed efficiency was improved by PF in strains B and C during the overall growth period. Fillet yield was improved with PF for strain B, and there were no significant differences between PF and industry fillet yields for the other 2 strains. Phase feeding had no effect on fillet dimensions, and there was little effect of strain. These results suggest that different strains may vary in their response to PF, although performance was similar or better in PF birds compared with birds fed the industry diet, regardless of strain.

  7. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    PubMed Central

    Khan, Shahbaz; Anwar, Sumera; Kuai, Jie; Ullah, Sana; Fahad, Shah; Zhou, Guangsheng

    2017-01-01

    Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016) under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2) and four N rates (0, 60, 120, and 180 kg ha−1). Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80%) and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy. PMID:28536581

  8. Yield performance of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (higher Basidiomycetes), using different waste materials as substrates.

    PubMed

    Azizi, Majid; Tavana, Maryam; Farsi, Mohammad; Oroojalian, Fatemeh

    2012-01-01

    In this research the effect of sawdust, malt extract, and wheat bran on yield, biological efficiency (BE), and mycelia growth of Ganoderma lucidum was investigated. Three kinds of sawdust (beech, poplar, and hornbeam) as basal medium were mixed with two levels of wheat bran (5% and 10% w/w) and malt extract (2.5% and 5% w/w) as medium supplement for production of G. lucidum in factorial experiments on the basis of completely randomized design with three replications. The results showed that various kinds of sawdust affect fruiting body yield, BE, and mycelia growth rate significantly. The highest fruiting body yield and BE (102.58 g/kg and 12.89%, respectively) were found using hornbeam sawdust. The beech sawdust promotes the mycelia growth rate more than other sawdust. Analysis of variance showed that there is a significant interaction between the sawdust type and wheat bran, sawdust type and malt extract, and wheat bran and malt extract as far as yield and BE of G. lucidum was concerned. A final comparison of the different formulae indicated that the best combinations for high yield (142.44 g/kg) and BE (18.68%) were obtained in a combination of poplar sawdust with 5% malt extract and 10% wheat bran. The highest mycelia growth rate (10.6 mm/day) was obtained in a combination of beech sawdust with 2.5% malt extract and 10% wheat bran.

  9. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  10. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  11. Associations between heterozygosity and growth rate variables in three western forest trees

    Treesearch

    Jeffry B. Milton; Peggy Knowles; Kareen B. Sturgeon; Yan B. Linhart; Martha Davis

    1981-01-01

    For each of three species, quaking aspen, ponderosa pine, and lodgepole pine, we determined the relationships between a ranking of heterozygosity of individuals and measures of growth rate. Genetic variation was assayed by starch gel electrophoresis of enzymes. Growth rates were characterized by the mean, standard deviation, logarithm of the variance, and coefficient...

  12. The evaluation system of city's smart growth success rates

    NASA Astrophysics Data System (ADS)

    Huang, Yifan

    2018-04-01

    "Smart growth" is to pursue the best integrated perform+-ance of the Economically prosperous, socially Equitable, and Environmentally Sustainable(3E). Firstly, we establish the smart growth evaluation system(SGI) and the sustainable development evaluation system(SDI). Based on the ten principles and the definition of three E's of sustainability. B y using the Z-score method and the principal component analysis method, we evaluate and quantify indexes synthetically. Then we define the success of smart growth as the ratio of the SDI to the SGI composite score growth rate (SSG). After that we select two cities — Canberra and Durres as the objects of our model in view of the model. Based on the development plans and key data of these two cities, we can figure out the success of smart growth. And according to our model, we adjust some of the growth indicators for both cities. Then observe the results before and after adjustment, and finally verify the accuracy of the model.

  13. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  14. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  15. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  16. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  17. 7 CFR 760.811 - Rates and yields; calculating payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... from NASS or other sources approved by FSA that show there is a significant difference in yield or value based on a distinct and separate end use of the crop. Despite potential differences in yield or...

  18. Rate limits in silicon sheet growth - The connections between vertical and horizontal methods

    NASA Technical Reports Server (NTRS)

    Thomas, Paul D.; Brown, Robert A.

    1987-01-01

    Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.

  19. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    NASA Astrophysics Data System (ADS)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations

  20. Shape of growth-rate distribution determines the type of Non-Gibrat’s Property

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atushi; Fujimoto, Shouji; Mizuno, Takayuki

    2011-11-01

    In this study, the authors examine exhaustive business data on Japanese firms, which cover nearly all companies in the mid- and large-scale ranges in terms of firm size, to reach several key findings on profits/sales distribution and business growth trends. Here, profits denote net profits. First, detailed balance is observed not only in profits data but also in sales data. Furthermore, the growth-rate distribution of sales has wider tails than the linear growth-rate distribution of profits in log-log scale. On the one hand, in the mid-scale range of profits, the probability of positive growth decreases and the probability of negative growth increases symmetrically as the initial value increases. This is called Non-Gibrat’s First Property. On the other hand, in the mid-scale range of sales, the probability of positive growth decreases as the initial value increases, while the probability of negative growth hardly changes. This is called Non-Gibrat’s Second Property. Under detailed balance, Non-Gibrat’s First and Second Properties are analytically derived from the linear and quadratic growth-rate distributions in log-log scale, respectively. In both cases, the log-normal distribution is inferred from Non-Gibrat’s Properties and detailed balance. These analytic results are verified by empirical data. Consequently, this clarifies the notion that the difference in shapes between growth-rate distributions of sales and profits is closely related to the difference between the two Non-Gibrat’s Properties in the mid-scale range.

  1. Effect of Different Substrates and Casing Materials on the Growth and Yield of Calocybe indica.

    PubMed

    Amin, Ruhul; Khair, Abul; Alam, Nuhu; Lee, Tae Soo

    2010-06-01

    Calocybe indica, a tropical edible mushroom, is popular because it has good nutritive value and it can be cultivated commercially. The current investigation was undertaken to determine a suitable substrate and the appropriate thickness of casing materials for the cultivation of C. indica. Optimum mycelial growth was observed in coconut coir substrate. Primordia initiation with the different substrates and casing materials was observed between the 13th and 19th day. The maximum length of stalk was recorded from sugarcane leaf, while diameter of stalk and pileus, and thickness of pileus were found in rice straw substrate. The highest biological and economic yield, and biological efficiency were also obtained in the rice straw substrate. Cow dung and loamy soil, farm-yard manure, loamy soil and sand, and spent oyster mushroom substrates were used as casing materials to evaluate the yield and yield-contributing characteristics of C. indica. The results indicate that the number of effective fruiting bodies, the biological and economic yield, and the biological efficiency were statistically similar all of the casing materials used. The maximum biological efficiency was found in the cow dung and loamy soil casing material. The cow dung and loamy soil (3 cm thick) was the best casing material and the rice straw was the best substrate for the commercial cultivation of C. indica.

  2. Effect of Different Substrates and Casing Materials on the Growth and Yield of Calocybe indica

    PubMed Central

    Amin, Ruhul; Khair, Abul; Alam, Nuhu

    2010-01-01

    Calocybe indica, a tropical edible mushroom, is popular because it has good nutritive value and it can be cultivated commercially. The current investigation was undertaken to determine a suitable substrate and the appropriate thickness of casing materials for the cultivation of C. indica. Optimum mycelial growth was observed in coconut coir substrate. Primordia initiation with the different substrates and casing materials was observed between the 13th and 19th day. The maximum length of stalk was recorded from sugarcane leaf, while diameter of stalk and pileus, and thickness of pileus were found in rice straw substrate. The highest biological and economic yield, and biological efficiency were also obtained in the rice straw substrate. Cow dung and loamy soil, farm-yard manure, loamy soil and sand, and spent oyster mushroom substrates were used as casing materials to evaluate the yield and yield-contributing characteristics of C. indica. The results indicate that the number of effective fruiting bodies, the biological and economic yield, and the biological efficiency were statistically similar all of the casing materials used. The maximum biological efficiency was found in the cow dung and loamy soil casing material. The cow dung and loamy soil (3 cm thick) was the best casing material and the rice straw was the best substrate for the commercial cultivation of C. indica. PMID:23956634

  3. Maximum Rate of Growth of Enstrophy in Solutions of the Fractional Burgers Equation

    NASA Astrophysics Data System (ADS)

    Yun, Dongfang; Protas, Bartosz

    2018-02-01

    This investigation is a part of a research program aiming to characterize the extreme behavior possible in hydrodynamic models by analyzing the maximum growth of certain fundamental quantities. We consider here the rate of growth of the classical and fractional enstrophy in the fractional Burgers equation in the subcritical and supercritical regimes. Since solutions to this equation exhibit, respectively, globally well-posed behavior and finite-time blowup in these two regimes, this makes it a useful model to study the maximum instantaneous growth of enstrophy possible in these two distinct situations. First, we obtain estimates on the rates of growth and then show that these estimates are sharp up to numerical prefactors. This is done by numerically solving suitably defined constrained maximization problems and then demonstrating that for different values of the fractional dissipation exponent the obtained maximizers saturate the upper bounds in the estimates as the enstrophy increases. We conclude that the power-law dependence of the enstrophy rate of growth on the fractional dissipation exponent has the same global form in the subcritical, critical and parts of the supercritical regime. This indicates that the maximum enstrophy rate of growth changes smoothly as global well-posedness is lost when the fractional dissipation exponent attains supercritical values. In addition, nontrivial behavior is revealed for the maximum rate of growth of the fractional enstrophy obtained for small values of the fractional dissipation exponents. We also characterize the structure of the maximizers in different cases.

  4. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes.

    PubMed

    Cubo, Jorge; Legendre, Pierre; de Ricqlès, Armand; Montes, Laëtitia; de Margerie, Emmanuel; Castanet, Jacques; Desdevises, Yves

    2008-01-01

    The biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking. Here we use a new statistical method of variation partitioning to analyze bone growth in amniotes. (1) Historical component. The variation of bone growth rates contains a significant phylogenetic signal, suggesting that the observed patterns are partly the outcome of shared ancestry. (2) Functional causation. High growth rates, although energy costly, may be adaptive (i.e., they may increase survival rates) in taxa showing short growth periods (e.g., birds). In ectothermic amniotes, low resting metabolic rates may limit the maximum possible growth rates. (3) Structural constraint. Whereas soft tissues grow through a multiplicative process, growth of mineralized tissues is accretionary (additive, i.e., mineralization fronts occur only at free surfaces). Bone growth of many amniotes partially circumvents this constraint: it is achieved not only at the external surface of the bone shaft, but also within cavities included in the bone cortex as it grows centrifugally. Our approach contributes to the unification of historicism, functionalism, and structuralism toward a more integrated evolutionary biology.

  5. Size evolution in microorganisms masks trade-offs predicted by the growth rate hypothesis.

    PubMed

    Gounand, Isabelle; Daufresne, Tanguy; Gravel, Dominique; Bouvier, Corinne; Bouvier, Thierry; Combe, Marine; Gougat-Barbera, Claire; Poly, Franck; Torres-Barceló, Clara; Mouquet, Nicolas

    2016-12-28

    Adaptation to local resource availability depends on responses in growth rate and nutrient acquisition. The growth rate hypothesis (GRH) suggests that growing fast should impair competitive abilities for phosphorus and nitrogen due to high demand for biosynthesis. However, in microorganisms, size influences both growth and uptake rates, which may mask trade-offs and instead generate a positive relationship between these traits (size hypothesis, SH). Here, we evolved a gradient of maximum growth rate (μ max ) from a single bacterium ancestor to test the relationship among μ max , competitive ability for nutrients and cell size, while controlling for evolutionary history. We found a strong positive correlation between μ max and competitive ability for phosphorus, associated with a trade-off between μ max and cell size: strains selected for high μ max were smaller and better competitors for phosphorus. Our results strongly support the SH, while the trade-offs expected under GRH were not apparent. Beyond plasticity, unicellular populations can respond rapidly to selection pressure through joint evolution of their size and maximum growth rate. Our study stresses that physiological links between these traits tightly shape the evolution of competitive strategies. © 2016 The Author(s).

  6. Exploring Latent Class Based on Growth Rates in Number Sense Ability

    ERIC Educational Resources Information Center

    Kim, Dongil; Shin, Jaehyun; Lee, Kijyung

    2013-01-01

    The purpose of this study was to explore latent class based on growth rates in number sense ability by using latent growth class modeling (LGCM). LGCM is one of the noteworthy methods for identifying growth patterns of the progress monitoring within the response to intervention framework in that it enables us to analyze latent sub-groups based not…

  7. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  8. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    PubMed Central

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  9. Molecular Analysis of the In Situ Growth Rates of Subsurface Geobacter Species

    PubMed Central

    Giloteaux, Ludovic; Barlett, Melissa; Chavan, Milind A.; Smith, Jessica A.; Williams, Kenneth H.; Wilkins, Michael; Long, Philip; Lovley, Derek R.

    2013-01-01

    Molecular tools that can provide an estimate of the in situ growth rate of Geobacter species could improve understanding of dissimilatory metal reduction in a diversity of environments. Whole-genome microarray analyses of a subsurface isolate of Geobacter uraniireducens, grown under a variety of conditions, identified a number of genes that are differentially expressed at different specific growth rates. Expression of two genes encoding ribosomal proteins, rpsC and rplL, was further evaluated with quantitative reverse transcription-PCR (qRT-PCR) in cells with doubling times ranging from 6.56 h to 89.28 h. Transcript abundance of rpsC correlated best (r2 = 0.90) with specific growth rates. Therefore, expression patterns of rpsC were used to estimate specific growth rates of Geobacter species during an in situ uranium bioremediation field experiment in which acetate was added to the groundwater to promote dissimilatory metal reduction. Initially, increased availability of acetate in the groundwater resulted in higher expression of Geobacter rpsC, and the increase in the number of Geobacter cells estimated with fluorescent in situ hybridization compared well with specific growth rates estimated from levels of in situ rpsC expression. However, in later phases, cell number increases were substantially lower than predicted from rpsC transcript abundance. This change coincided with a bloom of protozoa and increased attachment of Geobacter species to solid phases. These results suggest that monitoring rpsC expression may better reflect the actual rate that Geobacter species are metabolizing and growing during in situ uranium bioremediation than changes in cell abundance. PMID:23275510

  10. [Effects of postponed basal nitrogen application with reduced nitrogen rate on grain yield and nitrogen use efficiency of south winter wheat].

    PubMed

    Zhang, Lei; Shao, Yu Hang; Gu, Shi Lu; Hu, Hang; Zhang, Wei Wei; Tian, Zhong Wei; Jiang, Dong; Dai, Ting Bo

    2016-12-01

    Excessive nitrogen (N) fertilizer application has led to a reduction of nitrogen use efficiency and environmental problems. It was of great significance for high-yield and high-efficiency cultivation to reduce N fertilizer application with modified application strategies. A two-year field experiment was conducted to study effects of different N application rates at basal and seedling application stages on grain yield and nitrogen use efficiency. Taking the conventional nitrogen application practice (240 kg N·hm -2 with application at basal, jointing, and booting stages at ratios of 5:3:2, respectively) as control, a field trial was conducted at different N application rates (240, 180 and 150 kg N·hm -2 , N 240 , N 180 and N 150 , respectively) and different application times [basal (L 0 ), fourth (L 4 ) and sixth leaf stage (L 6 )] to investigate the effects on grain yield and nitrogen use efficiency. The results indicated that grain yield decreased along with reducing the N application rate, but it had no significant difference between N 240 and N 180 while decreased significantly under N 150 . Nitrogen agronomy and recovery efficiency were all highest under N 180 . Among different N application stages, grain yield and nitrogen use efficiency were highest under L 4 . N 180 L 4 had no signifi-cant difference with control in grain yield, but its nitrogen use efficiency was significantly higher. The leaf area index, flag leaf photosynthesis rate, leaf nitrogen content, activity of nitrogen reductase and glutamine synthase in flag leaf, dry matter and N accumulation after jointing of N 180 L 4 had no significant difference with control. In an overall view, postponing basal N fertilizer application at reduced nitrogen rate could maintain high yield and improve nitrogen use efficiency through improving photosynthetic production capacity and promoting nitrogen uptake and assimilation.

  11. Growth rate measurement in free jet experiments

    NASA Astrophysics Data System (ADS)

    Charpentier, Jean-Baptiste; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2017-07-01

    An experimental method was developed to measure the growth rate of the capillary instability for free liquid jets. The method uses a standard shadow-graph imaging technique to visualize a jet, produced by extruding a liquid through a circular orifice, and a statistical analysis of the entire jet. The analysis relies on the computation of the standard deviation of a set of jet profiles, obtained in the same experimental conditions. The principle and robustness of the method are illustrated with a set of emulated jet profiles. The method is also applied to free falling jet experiments conducted for various Weber numbers and two low-viscosity solutions: a Newtonian and a viscoelastic one. Growth rate measurements are found in good agreement with linear stability theory in the Rayleigh's regime, as expected from previous studies. In addition, the standard deviation curve is used to obtain an indirect measurement of the initial perturbation amplitude and to identify beads on a string structure on the jet. This last result serves to demonstrate the capability of the present technique to explore in the future the dynamics of viscoelastic liquid jets.

  12. Developmental changes in growth, yield and volatile oil of some chinese garlic lines in comparison with the local cultivar "Balady".

    PubMed

    Abouziena, H F; El-Saeid, Hamed M

    2013-10-15

    Balady cultivar and six Chinese lines were planted to study their developmental growth, yield and essential oil variations. Bulb of Balady cultivar had more two folds of cloves number per bulb than the Chinese lines. On the contrary Balady cv had the lowest clove weight compared to all Chinese lines. Chinese lines significantly surppassed the Balady cultivar in the bulb yield ha(-1). The bulb yield ha(-1) could be arrangement in descending order as follow Line B > Line F > Line D > Line C > Line A > Line E > Balady cv. Line B significantly surpassed the other tested lines in oil yield and had 7 folds oil yield plant(-1) than the local cultivar. The main compound in the bulb was found to be methylallay disulfide in both Chinese lines and Balady cultivar. Some components which found in the garlic bulbs at the age 150 days disappeared at the maturity time. Chinese Line B recorded the highest bulb yield and volatile oil content comparing with other lines.

  13. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    PubMed Central

    Efthimiadou, Aspasia; Katsenios, Nikolaos; Papastylianou, Panayiota; Triantafyllidis, Vassilios; Travlos, Ilias; Bilalis, Dimitrios J.

    2014-01-01

    The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT) has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences. PMID:25097875

  14. Improved national growth rate method: a comment.

    PubMed

    Begum, N

    1991-09-01

    Rahman's 1987 paper on an improvement in the National Growth Rate Method (NGRM) is discussed. Rahman's assumption is that migration in/out of a city of region is constant, and because the method requires minimal data, it is suitable for application in developing countries. This assumption means that the model is inappropriate for developing countries which are known to have nonuniform rates of population change. Size of city also affects the migration pattern, where larger cities with greater numbers of industrial and business concerns and social services receive a rapid influx of new migrants. This view is also reflected in Rahman's paper. The example is given that Dhaka SMA, Bangladesh received 60% more migrants in 2 periods: 130,000 in migrants/year from 1974 to 1981 vs. 82,000/year from 1961 to 1974. Chittagong, Khulna, and Rajshahi SMA's had similar growth from 1961 to 1981, but there was a slower rate in the 2nd period. Positive contributions of the Rahman paper are the identification of the problems of the nuisance parameter. Rahman points out that the definition of the migration rate is flawed by the traditional NGRM parameter describing the natural increase of migrants. It is stated that recognition of this flaw and the development of a simple case of uniform migration is a good beginning for developing a more realistic model of migration. It is suggested that an extra parameter to represent departure from uniformity in the estimation be introduced. More data would be required. If the task is to use only 2 censuses for estimation of a single parameter, then there is a seemingly insurmountable problem.

  15. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest

    NASA Astrophysics Data System (ADS)

    Cornish, P. M.; Vertessy, R. A.

    2001-02-01

    Water yields in a regrowth eucalypt forest were found to increase initially and then to decline below pre-treatment levels during the 16-year period which followed the logging of a moist old-growth eucalypt forest in Eastern Australia. Both regrowth and old-growth stands were dominated by Sydney Blue Gum ( Eucalyptus saligna Smith) and Silvertop Stringybark ( Eucalyptus laevopinea R. Baker). Using a paired-catchment approach we observed significant reductions in five of six gauged catchments, and were able to associate their magnitude with forest growth rate, canopy cover and soil depth. Regular yield declines were interrupted for a period in some catchments, possibly due to foliar insect attack. Yield reductions of up to a maximum 600 mm per year in logged and regenerated areas were in accord with water yield reductions observed in Mountain Ash ( Eucalyptus regnans F.J. Muell.) regeneration in Victoria. This study therefore represents the first confirmation of these Maroondah Mountain Ash results in another forest type that has also undergone eucalypt-to-eucalypt succession. Baseflow analysis indicated that baseflow and stormflow both increased after logging, with stormflow increases dominant in catchments with shallower soils. The lower runoff observed when the regenerating forest was aged 13-16 years was principally a consequence of lower baseflow.

  16. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    DOE PAGES

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less

  17. Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1985-01-01

    The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.

  18. Sweet potato growth parameters, yield components and nutritive value for CELSS applications

    NASA Technical Reports Server (NTRS)

    Loretan, P. A.; Bonsi, C. K.; Hill, W. A.; Ogbuehi, C. R.; Mortley, D. G.

    1989-01-01

    Sweet potatoes have been grown hydroponically using the nutrient film technique (NFT) to provide a potential food source for long-term manned space missions. Experiments in both sand and NFT cultivars have produced up to 1790 g/plant of fresh storage root with an edible biomass index ranging from 60-89 percent and edible biomass linear growth rates of 39-66 g/sq m day in 105 to 130 days. Experiments with different cultivars, nutrient solution compositions, application rates, air and root temperatures, photoperiods, and light intensities indicate good potential for sweet potatoes in CELSS.

  19. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-10-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  20. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-11-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  1. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria.

    PubMed

    Inhan-Garip, Ayse; Aksu, Burak; Akan, Zafer; Akakin, Dilek; Ozaydin, A Nilufer; San, Tangul

    2011-12-01

    To determine the effect of extremely low frequency (<300 Hz) electromagnetic fields (ELF-EMF) on the growth rate of Gram-positive and Gram-negative bacteria and to determine any morphological changes that might have been caused by ELF-EMF. Six bacterial strains, three Gram-negative and three Gram-positive were subjected to 50 Hz, 0.5 mT ELF-EMF for 6 h. To determine growth rate after ELF-EMF application, bacteria exposed to ELF-EMF for 3 h were collected, transferred to fresh medium and cultured without field application for another 4 h. Growth-rate was determined by optical density (OD) measurements made every hour. Morphological changes were determined with Transmission electron microscopy (TEM) for two gram-negative and two gram-positive strains collected after 3 h of field application. A decrease in growth rate with respect to control samples was observed for all strains during ELF-EMF application. The decrease in growth-rate continued when exposed bacteria were cultured without field application. Significant ultrastructural changes were observed in all bacterial strains, which were seen to resemble the alterations caused by cationic peptides. This study shows that ELF-EMF induces a decrease in growth rate and morphological changes for both Gram-negative and Gram-positive bacteria.

  2. Two rhizobacterial strains, individually and in interactions with Rhizobium sp., enhance fusarial wilt control, growth, and yield in pigeon pea.

    PubMed

    Dutta, Swarnalee; Morang, Pranjal; Kumar S, Nishanth; Dileep Kumar, B S

    2014-09-01

    A Pseudomonas aeruginosa strain, RRLJ 04, and a Bacillus cereus strain, BS 03, were tested both individually and in combination with a Rhizobium strain, RH 2, for their ability to enhance plant growth and nodulation in pigeon pea (Cajanus cajan L.) under gnotobiotic, greenhouse and field conditions. Both of the rhizobacterial strains exhibited a positive effect on growth in terms of shoot height, root length, fresh and dry weight, nodulation and yield over the non-treated control. Co-inoculation of seeds with these strains and Rhizobium RH 2 also reduced the number of wilted plants, when grown in soil infested with Fusarium udum. Gnotobiotic studies confirmed that the suppression of wilt disease was due to the presence of the respective PGPR strains. Seed bacterization with drug-marked mutants of RRLJ 04 and BS 03 confirmed their ability to colonize and multiply along the roots. The results suggest that co-inoculation of these strains with Rhizobium strain RH 2 can be further exploited for enhanced growth, nodulation and yield in addition to control of fusarial wilt in pigeon pea.

  3. Sex-based differences in Adelie penguin (Pygoscelis adeliae) chick growth rates.

    USGS Publications Warehouse

    Jennings, Scott; Varsani, Arvind; Dugger, Catherine; Ballard, Grant; Ainley, David G.

    2016-01-01

    Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d-1 faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species—one krill (Euphausia crystallorophias) and one fish (Pleuragramma antarctica), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact

  4. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coveney, M.F.; Wetzel, R.G.

    The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-{mu}m-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganicmore » phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.« less

  5. Metabolism correlates with variation in post-natal growth rate among songbirds at three latitudes

    USGS Publications Warehouse

    Ton, Riccardo; Martin, Thomas E.

    2016-01-01

    4. Our results suggest that variation in metabolic rates has an important influence on broad patterns of avian growth rates at a global scale. We suggest further studies that address the ecological and physiological costs and consequences of variation in metabolism and growth rates.

  6. Magnetospheric chorus - Amplitude and growth rate

    NASA Technical Reports Server (NTRS)

    Burtis, W. J.; Helliwell, R. A.

    1975-01-01

    A new study of the amplitude of magnetospheric chorus with 1966-1967 data from the Stanford University/Stanford Research Institute VLF receivers on Ogo 1 and Ogo 3 has confirmed the band-limited character of magnetospheric chorus in general and the double-banding of near-equatorial chorus. Chorus amplitude tended to be inversely correlated with frequency, implying lower intensities at lower L values. Individual chorus emissions often showed a characteristic amplitude variation, with rise times of 10 to 300 ms, a short duration at peak amplitude, and decay times of 100 to 3000 msec. Growth was often approximately exponential, with rates from 200 to nearly 2000 dB/sec. Rate of change of frequency was found in many cases to be independent of emission amplitude, in agreement with the cyclotron feedback theory of chorus (Helliwell, 1967, 1970).

  7. Growth rates of fine aerosol particles at a site near Beijing in June 2013

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Li, Yanan; Zhang, Fang; Sun, Yele; Wang, Pucai

    2018-02-01

    Growth of fine aerosol particles is investigated during the Aerosol-CCN-Cloud Closure Experiment campaign in June 2013 at an urban site near Beijing. Analyses show a high frequency (˜ 50%) of fine aerosol particle growth events, and show that the growth rates range from 2.1 to 6.5 nm h-1 with a mean value of ˜ 5.1 nm h-1. A review of previous studies indicates that at least four mechanisms can affect the growth of fine aerosol particles: vapor condensation, intramodal coagulation, extramodal coagulation, and multi-phase chemical reaction. At the initial stage of fine aerosol particle growth, condensational growth usually plays a major role and coagulation efficiency generally increases with particle sizes. An overview of previous studies shows higher growth rates over megacity, urban and boreal forest regions than over rural and oceanic regions. This is most likely due to the higher condensational vapor, which can cause strong condensational growth of fine aerosol particles. Associated with these multiple factors of influence, there are large uncertainties for the aerosol particle growth rates, even at the same location.

  8. Comparative growth characteristics and yield attributes of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) on different substrates in India.

    PubMed

    Jandaik, Savita; Singh, Rajender; Sharma, Mamta

    2013-01-01

    The present study investigated the effects of four forestry byproducts (sawdust of oak, mango, khair, and tuni) and three agricultural residues (paddy straw, wheat straw, and soybean waste) along with four supplements (wheat bran, rice bran, corn flour, and gram powder) on growth characteristics (spawn run and primordial formation) and yield of Ganoderma lucidum. There were significant differences (P=0.05) in yield regardless of substrates and supplements used in experimentation. Among substrates, agriculture residues supported better yield and biological efficiency of G. lucidum compared to forestry byproducts irrespective of the supplements. The highest yield (82.5 g) and biological efficiency (27.5%) were recorded from paddy straw supplemented with wheat bran, which invariably resulted in significantly higher yield compared to the unsupplemented check(s) or other supplements used in this study.

  9. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    PubMed

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.

  10. Population and prehistory I: Food-dependent population growth in constant environments.

    PubMed

    Lee, Charlotte T; Tuljapurkar, Shripad

    2008-06-01

    We present a demographic model that describes the feedbacks between food supply, human mortality and fertility rates, and labor availability in expanding populations, where arable land area is not limiting. This model provides a quantitative framework to describe how environment, technology, and culture interact to influence the fates of preindustrial agricultural populations. We present equilibrium conditions and derive approximations for the equilibrium population growth rate, food availability, and other food-dependent measures of population well-being. We examine how the approximations respond to environmental changes and to human choices, and find that the impact of environmental quality depends upon whether it manifests through agricultural yield or maximum (food-independent) survival rates. Human choices can complement or offset environmental effects: greater labor investments increase both population growth and well-being, and therefore can counteract lower agricultural yield, while fertility control decreases the growth rate but can increase or decrease well-being. Finally we establish equilibrium stability criteria, and argue that the potential for loss of local stability at low population growth rates could have important consequences for populations that suffer significant environmental or demographic shocks.

  11. Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast

    PubMed Central

    Van Hoek, Pim; Van Dijken, Johannes P.; Pronk, Jack T.

    1998-01-01

    The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates. PMID:9797269

  12. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic

    USGS Publications Warehouse

    Bjorndal, Karen A.; Bolten, Alan B.; Chaloupka, Milani; Saba, Vincent S.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Santos, Armando J.B.; Bortolon, Luis Felipe Wurdig; Meylan, Anne B.; Meylan, Peter A.; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C.; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E.; van Dam, Robert P.; Willis, Sue; Nava, Mabel; Hart, Kristen M.; Cherkiss, Michael S.; Crowder, Andrew; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A.; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M.; Foley, Allen M.; Bailey, Rhonda; Carthy, Raymond R.; Scarpino, Russell; McMichael, Erin; Provancha, Jane A.; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M.; Boulon, Ralf H.; Collazo, Jaime; Wershoven, Robert; Hernández, Vicente Guzmán; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Metz, Tasha L.; Gordon, Amanda L.; Landry, Andre M.; Shaver, Donna J.; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J.; McGowan, Andrew; Witt, Matthew J.; Campbell, Cathi L.; Lagueux, Cynthia J.; Bethel, Thomas L.; Kenyon, Lory

    2017-01-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles – hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta – exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) – the strongest on record – combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study

  13. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic.

    PubMed

    Bjorndal, Karen A; Bolten, Alan B; Chaloupka, Milani; Saba, Vincent S; Bellini, Cláudio; Marcovaldi, Maria A G; Santos, Armando J B; Bortolon, Luis Felipe Wurdig; Meylan, Anne B; Meylan, Peter A; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E; van Dam, Robert P; Willis, Sue; Nava, Mabel; Hart, Kristen M; Cherkiss, Michael S; Crowder, Andrew G; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M; Foley, Allen M; Bailey, Rhonda; Carthy, Raymond R; Scarpino, Russell; McMichael, Erin; Provancha, Jane A; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M; Boulon, Ralf H; Collazo, Jaime A; Wershoven, Robert; Guzmán Hernández, Vicente; Stringell, Thomas B; Sanghera, Amdeep; Richardson, Peter B; Broderick, Annette C; Phillips, Quinton; Calosso, Marta; Claydon, John A B; Metz, Tasha L; Gordon, Amanda L; Landry, Andre M; Shaver, Donna J; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J; McGowan, Andrew; Witt, Matthew J; Campbell, Cathi L; Lagueux, Cynthia J; Bethel, Thomas L; Kenyon, Lory

    2017-11-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the

  14. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  15. Population growth, interest rate, and housing tax in the transitional China

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Wen, Xing-Chun

    2017-03-01

    This paper combines and develops the models in Lastrapes (2002) and Mankiw and Weil (1989), which enables us to analyze the effects of interest rate and population growth shocks on housing price in one integrated framework. Based on this model, we carry out policy simulations to examine whether the housing (stock or flow) tax reduces the housing price fluctuations caused by interest rate or population growth shocks. Simulation results imply that the choice of housing tax tools depends on the kind of shock that housing market faces. In the situation where the housing price volatility is caused by the population growth shock, the flow tax can reduce the volatility of housing price while the stock tax makes no difference to it. If the shock is resulting from the interest rate, the policy maker should not impose any kind of the housing taxes. Furthermore, the effect of one kind of the housing tax can be strengthened by that of the other type of housing tax.

  16. Extending the durability of cultivar resistance by limiting epidemic growth rates.

    PubMed

    Carolan, Kevin; Helps, Joe; van den Berg, Femke; Bain, Ruairidh; Paveley, Neil; van den Bosch, Frank

    2017-09-27

    Cultivar resistance is an essential part of disease control programmes in many agricultural systems. The use of resistant cultivars applies a selection pressure on pathogen populations for the evolution of virulence, resulting in loss of disease control. Various techniques for the deployment of host resistance genes have been proposed to reduce the selection for virulence, but these are often difficult to apply in practice. We present a general technique to maintain the effectiveness of cultivar resistance. Derived from classical population genetics theory; any factor that reduces the population growth rates of both the virulent and avirulent strains will reduce selection. We model the specific example of fungicide application to reduce the growth rates of virulent and avirulent strains of a pathogen, demonstrating that appropriate use of fungicides reduces selection for virulence, prolonging cultivar resistance. This specific example of chemical control illustrates a general principle for the development of techniques to manage the evolution of virulence by slowing epidemic growth rates. © 2017 The Author(s).

  17. Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties.

    PubMed

    Fang, Caihong; Zhao, Guili; Xiao, Yanling; Zhao, Jun; Zhang, Zijun; Geng, Baoyou

    2016-11-14

    Au nanobipyramids (NBPs) have attracted great attention because of their unique localized surface plasmon resonance properties. However, the current growth methods always have low yield or suffer tedious process. Developing new ways to direct synthesis of high-yield Au NBPs using common agents is therefore desirable. Here, we employed chloroplatinic acid as the key shape-directing agent for the first time to grow Au NBPs using a modified seed-mediated method at room temperature. H 2 PtCl 6 was added both during the seed preparation and in growth solution. Metallic Pt, reduced from chloroplatinic acid, will deposit on the surface of the seed nanoparticles and the Au nanocrystals and thus plays a critical role for the formation of Au NBPs. Additionally, the reductant, precursor, and surfactant are all cheap and commonly used. Furthermore, the Au NBPs offer narrow size distribution, two sharp tips, and a shared basis. Au NBPs therefore show much higher refractive index sensitivities than that of the Au nanorods. The refractive index sensitivities and lager figure of merit values of Au NBPs exhibit an increase of 63% and 321% respectively compared to the corresponding values of Au nanorod sample.

  18. Declining growth rate of West Nile virus in North America.

    PubMed

    Snapinn, Katherine W; Holmes, Edward C; Young, David S; Bernard, Kristen A; Kramer, Laura D; Ebel, Gregory D

    2007-03-01

    To determine the demographic history of West Nile virus (WNV) in North America, we employed a coalescent method to envelope coding region data sets for the NY99 and WN02 genotypes. Although the observed genetic diversities in both genotypes were of approximately the same age, the mean rate of epidemiological growth of the WN02 population was approximately three times that of the NY99 population, a finding compatible with the recent dominance of the former genotype. However, there has also been a marked decrease in the recent growth rate of WN02, suggesting that WNV has reached its peak prevalence in North America.

  19. Predators select against high growth rates and risk-taking behaviour in domestic trout populations.

    PubMed

    Biro, Peter A; Abrahams, Mark V; Post, John R; Parkinson, Eric A

    2004-11-07

    Domesticated (farm) salmonid fishes display an increased willingness to accept risk while foraging, and achieve high growth rates not observed in nature. Theory predicts that elevated growth rates in domestic salmonids will result in greater risk-taking to access abundant food, but low survival in the presence of predators. In replicated whole-lake experiments, we observed that domestic trout (selected for high growth rates) took greater risks while foraging and grew faster than a wild strain. However, survival consequences for greater growth rates depended upon the predation environment. Domestic trout experienced greater survival when risk was low, but lower survival when risk was high. This suggests that animals with high intrinsic growth rates are selected against in populations with abundant predators, explaining the absence of such phenotypes in nature. This is, to our knowledge, the first large-scale field experiment to directly test this theory and simultaneously quantify the initial invasibility of domestic salmonid strains that escape into the wild from aquaculture operations, and the ecological conditions affecting their survival.

  20. Estimating bottomland hardwood growth and yield

    Treesearch

    1989-01-01

    Most bottomland hardwoods grow on very productive sites-site index 70 or more. A fully stocked immature stand (table 1, fig. 1) requires tending throughout its life. The goal is to attain a stand of approximately 50 high quality trees of commercial species per acre at maturity. Releasing these crop trees can result in the cumulative yield of 2,000-4,000 board feet per...

  1. Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels.

    PubMed

    Singh, Poonam; Agrawal, Madhoolika; Agrawal, Shashi Bhushan

    2009-03-01

    A field study was conducted to evaluate the impact of ambient ozone on mustard (Brassica campestris L. var. Kranti) plants grown under recommended and 1.5 times recommended NPK doses at a rural site of India using filtered (FCs) and non-filtered open top chambers (NFCs). Ambient mean O(3) concentration varied from 41.65 to 54.2ppb during the experiment. Plants growing in FCs showed higher photosynthetic rate at both NPK levels, but higher stomatal conductance only at recommended NPK. There were improvements in growth parameters and biomass of plants in FCs as compared to NFCs at both NPK levels with higher increments at 1.5 times recommended. Seed yield and harvest index decreased significantly only at recommended NPK in NFCs. Seed quality in terms of nutrients, protein and oil contents reduced in NFCs at recommended NPK. The application of 1.5 times recommended NPK provided protection against yield loss due to ambient O(3).

  2. Effects of submicron ammonium sulfate particles on the growth and yield of komatsuna (Brassica rapa L. var. perviridis)

    NASA Astrophysics Data System (ADS)

    Motai, Akira; Nakaba, Satoshi; Lenggoro, I. Wuled; Watanabe, Makoto; Wada, Yoshiharu; Izuta, Takeshi

    2017-11-01

    The aim of this study was to determine the effects of submicron ammonium sulfate (AS) particles on komatsuna (Brassica rapa L. cv. Hakkei) plants. First, we optimized a leaf-washing method to measure the amount of AS particles deposited on the leaf surface of the plants. Then, we used this method to determine the retention time of particles deposited on the leaf surface of the plants. We also investigated the effects of AS particles on the growth and yield of the plants. Almost all the AS particles deposited on the leaf surface were removed within 1 min washing time with ultrapure water, and ion leaching from the leaf was relatively slow but continuous during the leaf-washing procedure. On the basis of these results, we determined that 1 min was a suitable washing time to remove most of the AS particles while minimizing the influence of ion leaching from the leaf. The amount of particulate SO42- deposited on the leaf surface decreased over time, probably because AS particles deposited on the leaf surface deliquesced, allowing ions such as SO42- in the deliquescence solution to be absorbed into the leaf. The plants were grown and exposed to AS particles for 16 days in naturally lit phytotrons. The daily mean increase in the concentration of SO42- in PM2.5 by the exposure to AS particles was 22.5 μg m-3 in the phytotrons. The growth and yield of the plants were significantly reduced by the exposure to AS particles. The exposure to AS particles did not affect the leaf concentrations of nitrogen and chlorophyll, but significantly reduced stomatal conductance. Therefore, stomatal closure is one of the reasons for the AS particle-induced reductions in the growth and yield of komatsuna plants.

  3. Volume recovery, grade yield, and properties of lumber from young-growth sitka spruce and western hemlock in southeast Alaska.

    Treesearch

    Glenn A. Christensen; Kent R. Julin; Robert J. Ross; Susan. Willits

    2002-01-01

    Wood volume recovery, lumber grade yield, and mechanical properties of young-growth Sitka spruce (Picea sitchensis (Bong.) Carr.) and western hemlock (Tsuga heterophyla (Raf.) Sarg.)were examined. The sample included trees from commercially thinned and unthinned stands and fluted western hemlock logs obtained from a sort yard....

  4. A trait-based trade-off between growth and mortality: evidence from 15 tropical tree species using size-specific relative growth rates

    PubMed Central

    Philipson, Christopher D; Dent, Daisy H; O’Brien, Michael J; Chamagne, Juliette; Dzulkifli, Dzaeman; Nilus, Reuben; Philips, Sam; Reynolds, Glen; Saner, Philippe; Hector, Andy

    2014-01-01

    A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species-specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed-effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed-effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade-off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade-off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments

  5. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L.

    PubMed

    Su, Zhen-Zhu; Wang, Ting; Shrivastava, Neeraj; Chen, You-Yuan; Liu, Xiaoxi; Sun, Chao; Yin, Yufeng; Gao, Qi-Kang; Lou, Bing-Gan

    2017-06-01

    In current scenario, crop productivity is being challenged by decreasing soil fertility. To cope up with this problem, different beneficial microbes are explored to increase the crop productivity with value additions. In this study, Brassica napus L., an important agricultural economic oilseed crop with rich source of nutritive qualities, was interacted with Piriformospora indica, a unique root colonizing fungus with wide host range and multifunctional aspects. The fungus-treated plants showed a significant increase in agronomic parameters with plant biomass, lodging-resistance, early bolting and flowering, oil yield and quality. Nutritional analysis revealed that plants treated by P. indica had reduced erucic acid and glucosinolates contents, and increased the accumulation of N, Ca, Mg, P, K, S, B, Fe and Zn elements. Low erucic acid and glucosinolates contents are important parameters for high quality oil, because oils high in erucic acid and glucosinolates are considered undesirable for human nutrition. Furthermore, the expression profiles of two encoding enzyme genes, Bn-FAE1 and BnECR, which are responsible for regulating erucic acid biosynthesis, were down-regulated at mid- and late- life stages during seeds development in colonized plants. These results demonstrated that P. indica played an important role in enhancing plant growth, rapeseed yield and quality improvement of B. napus. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  7. Influence of temperature on growth rate and lag phase of fungi isolated from Argentine corn.

    PubMed

    González, H H; Resnik, S L; Vaamonde, G

    1988-03-01

    The influence of temperature on the growth of nine strains of fungi belonging to the genera Eurotium, Aspergillus, Penicillium and Fusarium has been investigated for the temperature range 15-35 degrees C. The lag phase and the growth rate were evaluated by using a laboratory medium. The maximum growth rate for E. repens, A. wentii and P. chrysogenum was observed at about 25 degrees C, for P. citrinum near 30 degrees C and for F. semitectum and F. moniliforme between 20 and 25 degrees C. The growth rate of A. niger, A. flavus and A. parasiticus increased with increasing temperatures in the range studied. For all strains studied it appeared that the higher the growth rate the lower the lag phase was.

  8. Vertical Bridgman growth of Hg 1-xMn xTe with variational withdrawal rate

    NASA Astrophysics Data System (ADS)

    Zhi, Gu; Wan-Qi, Jie; Guo-Qiang, Li; Long, Zhang

    2004-09-01

    Based on the solute redistribution models, Vertical Bridgman growth of Hg1-xMnxTe with variational withdrawal rate is studied. Both theoretical analysis and experimental results show that the axial composition uniformity is improved and the crystal growth rate is also increased at the optimized variational method of withdrawal rate.

  9. Selective fishing induces density-dependent growth.

    PubMed

    Svedäng, Henrik; Hornborg, Sara

    2014-06-12

    Over the last decades, views on fisheries management have oscillated between alarm and trust in management progress. The predominant policy for remedying the world fishing crisis aims at maximum sustainable yield (MSY) by adjusting gear selectivity and fishing effort. Here we report a case study on how striving for higher yields from the Eastern Baltic cod stock by increasing selectivity has become exceedingly detrimental for its productivity. Although there is a successive increase in numbers of undersized fish, growth potential is severely reduced, and fishing mortality in fishable size has increased. Once density-dependent growth is introduced, the process is self-enforcing as long as the recruitment remains stable. Our findings suggest that policies focusing on maximum yield while targeting greater sizes are risky and should instead prioritize catch rates over yield. Disregarding the underlying population structure may jeopardize stock productivity, with dire consequences for the fishing industry and ecosystem structure and function.

  10. A lysimeter study of nitrate leaching, optimum fertilisation rate and growth responses of corn (Zea mays L.) following soil amendment with water-saving super-absorbent polymer.

    PubMed

    Islam, M Robiul; Mao, Sishuai; Xue, Xuzhang; Eneji, A Egrinya; Zhao, Xingbao; Hu, Yuegao

    2011-08-30

    Nitrate leaching and the resulting groundwater contamination from intensive cereal production has become a major concern for long-term farmland efficiency and environmental sustainability in northern China. The aim of this study was to evaluate a water-saving super-absorbent polymer (SAP) for minimising NO(3)(-) leaching from soil and optimising corn growth and yield. Thirty-six undisturbed soil lysimeters were installed in a field lysimeter facility in drought-affected northern China to study the growth and yield characteristics of summer corn (Zea mays L.) as well as the amount of NO(3)-leaching losses under different fertiliser (standard, medium or 75% and low, or 50% of conventional fertilisation rate) and SAP (control, 0; level-1, 15 kg ha(-1) and level-2, 30 kg ha(-1)) treatments. Corn yield fell by 19.7% under medium and 37.7% under low fertilisation; the application of SAP increased yield significantly by 44.4% on level-1 and 80.3% on level-2. Similarly, plant height, leaf area, number of grains as well as protein, soluble sugar and starch contents in the grain also increased with SAP treatment. Application of SAP at 30 kg ha(-1) plus half of conventional fertilisation can reduce maximum (64.1%) nitrate leaching losses from soil. Application of SAP at 30 kg ha(-1) plus only half the amount of conventional fertiliser rate (150 kg urea, and 50 kg each of superphosphate and potassium sulfate) would be a more appropriate practice both for minimising nitrate leaching and sustainable corn production under the arid and semiarid conditions of northern China. Copyright © 2011 Society of Chemical Industry.

  11. Effects of physical agitation on yield of greenhouse-grown soybean

    NASA Technical Reports Server (NTRS)

    Jones, R. S.; Mitchell, C. A.

    1992-01-01

    Agronomic and horticultural crop species experience reductions in growth and harvestable yield after exposure to physical agitation (also known as mechanical stress), as by wind or rain. A greenhouse study was conducted to test the influence of mechanical stress on soybean yield and to determine if exposure to mechanical stress during discrete growth periods has differential effects on seed yield. A modified rotatory shaker was used to apply seismic (i.e., shaking) stress. Brief, periodic episodes of seismic stress reduced stem length, total seed dry weight, and seed number of soybean [Glycine max (L.) Merr.]. Lodging resistance was greater for plants stressed during vegetative growth or throughout vegetative and reproductive growth than during reproductive growth only. Seed dry weight yield was reduced regardless of the timing or duration of stress application, but was lowest when applied during reproductive development. Seismic stress applied during reproductive growth stages R1 to R2 (Days 3 to 4) was as detrimental to seed dry weight accumulation as was stress applied during growth stages R1 to R6 (Days 39 to 42). Seed dry weight per plant was highly correlated with seed number per plant, and seed number was correlated with the seed number of two- and three-seeded pods. Dry weight per 100 seeds was unaffected by seismic-stress treatment. Growth and yield reductions resulting from treatments applied only during the vegetative stage imply that long-term mechanical effects were induced, from which the plants did not fully recover. It is unclear which yield-controlling physiological processes were affected by mechanical stress. Both transient and long-term effects on yield-controlling processes remain to be elucidated.

  12. Silviculture affects composition, growth, and yield in mixed northern conifers: 40-year results from the Penobscot Experimental Forest

    Treesearch

    Paul E. Sendak; John C. Brissette; Robert M. Frank

    2003-01-01

    This long-term experiment in Maine, U.S.A., was designed to provide information on the best silvicultural practices for managing stands of mixed northern conifers in northeastern U.S.A. We evaluated growth and yield and changes in species composition, quality, and structure during the first 40 years of the experiment. Replicated treatments include the selection system...

  13. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-05

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. The use of Ampelisca abdita growth rate as an indicator of sediment quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, D.P.; Thompson, B.

    1995-12-31

    Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs.more » the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well.« less

  15. Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator

    NASA Astrophysics Data System (ADS)

    Lindsey, Adam C.; Zhuravleva, Mariya; Stand, Luis; Wu, Yuntao; Melcher, Charles L.

    2015-10-01

    The presented study reports on the spectroscopic characteristics of a new high performance scintillation material KCaI3:Eu. The growth of ∅ 17 mm boules using the Bridgman-Stockbarger method in fused silica ampoules is demonstrated to produce yellow tinted, yet transparent single crystals suitable for use in spectroscopic applications due to very promising performance. Scintillation light yield of 72,000 ± 3000 ph/MeV and energy resolution of 3% (FWHM) at 662 keV and 6.1% at 122 keV was obtained from small single crystals of approximately 15 mm3. For a much larger 3.8 cm3 detector, 4.4% and 7.3% for the same energy. Proportionality of the scintillation response to the energy of ionizing radiation is within 96% of the ideal response over an energy range of 14-662 keV. The high light yield and energy resolution of KCaI3:Eu make it suitable for potential use in domestic security applications requiring radionuclide identification.

  16. Yield model development project implementation plan

    NASA Technical Reports Server (NTRS)

    Ambroziak, R. A.

    1982-01-01

    Tasks remaining to be completed are summarized for the following major project elements: (1) evaluation of crop yield models; (2) crop yield model research and development; (3) data acquisition processing, and storage; (4) related yield research: defining spectral and/or remote sensing data requirements; developing input for driving and testing crop growth/yield models; real time testing of wheat plant process models) and (5) project management and support.

  17. Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections.

    PubMed

    Huang, Lihan; Hwang, Andy; Phillips, John

    2011-10-01

    The objective of this work is to develop a mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combination and modification of the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for both suboptimal and the entire growth temperature ranges, was validated using a collection of 23 selected temperature-growth rate curves belonging to 5 groups of microorganisms, including Pseudomonas spp., Listeria monocytogenes, Salmonella spp., Clostridium perfringens, and Escherichia coli, from the published literature. The curve fitting is accomplished by nonlinear regression using the Levenberg-Marquardt algorithm. The resulting estimated growth rate (μ) values are highly correlated to the data collected from the literature (R(2) = 0.985, slope = 1.0, intercept = 0.0). The bias factor (B(f) ) of the new model is very close to 1.0, while the accuracy factor (A(f) ) ranges from 1.0 to 1.22 for most data sets. The new model is compared favorably with the Ratkowsky square root model and the Eyring equation. Even with more parameters, the Akaike information criterion, Bayesian information criterion, and mean square errors of the new model are not statistically different from the square root model and the Eyring equation, suggesting that the model can be used to describe the inherent relationship between temperature and microbial growth rates. The results of this work show that the new growth rate model is suitable for describing the effect of temperature on microbial growth rate. Practical Application:  Temperature is one of the most significant factors affecting the growth of microorganisms in foods. This study attempts to develop and validate a mathematical model to describe the temperature dependence of microbial growth rate. The findings show that the new model is accurate and can be used to describe the effect of temperature on microbial growth rate in foods

  18. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.

    PubMed

    Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis

    2012-08-01

    The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Influences of strain rate on yield strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Rizal, Samsul; Firdaus, Hamdani Teuku; Thaib, Razali; Homma, Hiroomi

    2005-04-01

    The simulation of aircraft has often been performing by implementing finite element code on supercomputers. The reliability an accuracy of simulation depends mainly on the material model as well as on structural model used in calculations. Consequently, an accurate knowledge of mechanical behavior of materials under impact loading is essential for safety performance evaluation of structure. Impact tension tests on specimens for aircrafts and automotive structural applications are conduct by means of the split Hopkinson bar apparatus. Small specimens having diameter 4 mm are use in the test. Tensile stress-strain relations at strain rates of 102 s-1 to over 103 s-1 are present and compared with those obtained at quasi-static strain rates. The limitations on the applicability of apparatus are also discusses. The other importance of the reference of strain, while studying void growth in elastic-viscoplastic material, is emphasized. In the present paper, a simplified plane-symmetrical two-dimensional finite element model for a SHPB with a plate specimen made of an elastic material is first established. The used of strain gage mounted at the specimens to be monitored strain during the course of impact test. Comparisons may then be made between the numerical predicted and experimentally observed of load and a specimen strain. This report also describes the apparatus and instrumentation, and also be discusses the advantages and limitations of experimental technique. Fractograph is taken by scanning electron microscope on the center of the specimens for judgment of the fracture mechanism and strain rates influences on the materials.

  20. Changes in the germination process and growth of pea in effect of laser seed irradiation

    NASA Astrophysics Data System (ADS)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  1. Inferring time derivatives including cell growth rates using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  2. Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China.

    PubMed

    Wu, Lilian; Yuan, Shen; Huang, Liying; Sun, Fan; Zhu, Guanglong; Li, Guohui; Fahad, Shah; Peng, Shaobing; Wang, Fei

    2016-01-01

    Selecting rice varieties with a high nitrogen (N) use efficiency (NUE) is the best approach to reduce N fertilizer application in rice production and is one of the objectives of the Green Super Rice (GSR) Project in China. However, the performance of elite candidate GSR varieties under low N supply remains unclear. In the present study, differences in the grain yield and NUE of 13 and 14 candidate varieties with two controls were determined at a N rate of 100 kg ha(-1) in field experiments in 2014 and 2015, respectively. The grain yield for all of the rice varieties ranged from 8.67 to 11.09 t ha(-1), except for a japonica rice variety YG29, which had a grain yield of 6.42 t ha(-1). HY549 and YY4949 produced the highest grain yield, reflecting a higher biomass production and harvest index in 2014 and 2015, respectively. Total N uptake at maturity (TNPM) ranged from 144 to 210 kg ha(-1), while the nitrogen use efficiency for grain production (NUEg) ranged from 35.2 to 62.0 kg kg(-1). Both TNPM and NUEg showed a significant quadratic correlation with grain yield, indicating that it is possible to obtain high grain yield and NUEg with the reduction of TNPM. The correlation between N-related parameters and yield-related traits suggests that promoting pre-heading growth could increase TNPM, while high biomass accumulation during the grain filling period and large panicles are important for a higher NUEg. In addition, there were significant and negative correlations between the NUEg and N concentrations in leaf, stem, and grain tissues at maturity. Further improvements in NUEg require a reduction in the stem N concentration but not the leaf N concentration. The daily grain yield was the only parameter that significantly and positively correlated with both TNPMand NUEg. This study determined variations in the grain yield and NUE of elite candidate GSR rice varieties and provided plant traits that could be used as selection criteria in breeding N-efficient rice varieties.

  3. Growth rate models for short surface cracks in AI 2219-T851

    NASA Astrophysics Data System (ADS)

    Morris, W. L.; James, M. R.; Buck, O.

    1981-01-01

    Rates of fatigue propagation of short Mode I surface cracks in Al 2219-T851 are measured as a function of crack length and of the location of the surface crack tips relative to the grain boundaries. The measured rates are then compared to values predicted from crack growth models. The crack growth rate is modeled with an underlying assumption that slip responsible for early propagation does not extend in significant amounts beyond the next grain boundary in the direction of crack propagation. Two models that contain this assumption are combined: 1) cessation of propagation into a new grain until a mature plastic zone is developed; 2) retardation of propagation by crack closure stress, with closure stress calculated from the location of a crack tip relative to the grain boundary. The transition from short to long crack growth behavior is also discussed.

  4. Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer.

    PubMed

    Tewolde, Fasil T; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2016-01-01

    Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also

  5. Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer

    PubMed Central

    Tewolde, Fasil T.; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2016-01-01

    Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m-2 s-1 measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more

  6. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of <0.5 m3 s-1, while endogenous dome growth is predicted at higher flow rates (Qout > 3 m3 s-1) for magma with lower relative yield strengths (<1 MPa). At moderately high flow rates (Qout = 4 m3 s-1), the extrusion of magma with lower crystal content (62 per cent) and low interparticulate yield strength (0.6 MPa) results in the development of endogenous shear lobes. Our simulations model the periodic extrusion history at Mount St. Helens (1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τp = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 < Qout < 12 m3 s-1). The size of the endogenous viscous plug and the occurrence of exogenous growth depend on magma yield strength and the magma chamber volume, which control the periodicity of the effusion. Our simulations generate dome morphologies similar to those observed at Mount St Helens, and demonstrate the degree to which domes can sag and spread during and following extrusion pulses. This process, which has been observed at Mount St. Helens and other

  7. Biogeochemistry of Stinking Springs, Utah. Part II: Microbial Diversity and Photo- and Chemo-Autotrophic Growth Rates in a Layered Microbial Mat

    NASA Astrophysics Data System (ADS)

    Monteverde, D.; Metzger, J. G.; Bournod, C.; Kelly, H.; Johnson, H.; Sessions, A. L.; Osburn, M.; Shapiro, R. S.; Rideout, J.; Johnston, D. T.; Stevenson, B.; Stamps, B. W.; Vuono, D.; Hanselmann, K.; Spear, J. R.

    2013-12-01

    rates (bicarbonate uptake; 0-0.16%/day) under both dark and light conditions. Light conditions yielded higher growth rates for both heterotrophs and autotrophs and the highest rates were consistently found in the top mat layer and decreased with depth. The addition of 13C-acetate and concomitant high uptake is a measure of potential heterotrophy since in situ acetate concentrations are unlikely to be as high. 13C-bicarbonate uptake, on the other hand, should quantitatively represent the autotrophic growth rate. The Stinking Spring layered microbial mats display high taxonomic diversity, which is conserved horizontally across distances of meters and varies significantly with depth. Mats experience highest growth in the surface layer likely driven by phototrophs; high rates of bicarbonate uptake in the dark indicate considerable chemoautotrophy. Covariation in the heterotroph growth rates and 16S rRNA heterotroph abundance with mat depth indicates that heterotrophy may play an important role in the growth of these layered mats.

  8. Effects of Combinations of Substrates on Maximum Growth Rates of Several Rumen Bacteria

    PubMed Central

    Russell, James B.; Delfino, Frank J.; Baldwin, R. L.

    1979-01-01

    Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Butyrivibrio fibrisolvens, and Streptococcus bovis were grown in media containing nonlimiting concentrations of glucose, sucrose, maltose, cellobiose, xylose and/or lactate. Each bacterium was grown with every substrate that it could ferment in every possible two-way combination. Only once did a combination of substrates result in a higher maximum growth rate than that observed with either substrate alone. Such stimulations of growth rate would be expected if specific factors unique to individual substrates (transport proteins and/or enzymes) were limiting. Since such synergisms were rare, it was concluded that more general factors limit maximum growth rates in these five bacteria. PMID:16345360

  9. Effect of cost-effective substrates on growth cycle and yield of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) from Northwestern Himalaya (India).

    PubMed

    Mehta, Sheetal; Jandaik, Savita; Gupta, Dharmesh

    2014-01-01

    To find a cost-effective alternative substrate, the medicinal mushroom Ganoderma lucidum was grown on sawdusts of sheesham, mango, and poplar. Optimum spawn level was determined by spawning in substrates at various levels (1, 2, 3, and 4%). To determine the effect of supplementation, substrates were supplemented with wheat bran, rice bran and corn flour at different concentrations (10, 20, and 30%). Duration of growth cycle, mushroom yield, and biological efficiency data were recorded. Among substrates, mango sawdust was superior, with 1.5-fold higher yields than poplar sawdust, which was the least suitable. However with respect to fructification, mango sawdust produced the first primordia earlier (21±1 days) compared with the other investigated substrates. 3% spawn level was found to be optimal irrespective of the substrate. Yield and biological efficiency (BE) were maximally enhanced by supplementation with wheat bran, whereas rice bran was the least suitable supplement among those tested. Growth cycle shortened and mushroom yield increased to a maximum at the 20% level of supplements. Mango sawdust in combination with 20% wheat bran, if spawned at the 3% level, resulted in a high yield (BE = 58.57%).

  10. Colorimetry provides a rapid objective measurement of de novo hair growth rate in mice.

    PubMed

    Tzung, Tien-Yi; Yang, Chia-Yi; Huang, Yung-Chang; Kao, Fu-Jen

    2009-11-01

    Depilated mice have been used as a test platform for hair growth-regulating agents. However, currently available assessment tools for hair growth in mice are less than ideal. Tristimulus colorimetry of the fur color of depilated agouti, albino, and black mice with L*, a*, and b* values were performed daily until the full growth of pelage. Using light-emitting diode (LED) irradiation (650 and 890 nm) with a daily dose of 3.5 J/cm(2) as hair growth regulators, the hair growth rates observed by the global assessment were compared with those derived from colorimetry. In contrast to a* and b* values, L* values changed more drastically over time in the anagen phase regardless of fur color. Unlike the inhibitory effect of 650 nm irradiation, LED of 890 nm promoted de novo hair regrowth in mice. The difference in hair growth rates detected by colorimetry paralleled the observation made by the global assessment. The L* value of fur color obtained by tristimulus colorimetry was a sensitive yet quantitative indicator of de novo hair growth, and could be used to project the hair growth rate in mice.

  11. On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity.

    PubMed

    Zhu, Manlu; Dai, Xiongfeng

    2018-01-15

    In nature, the maximal growth rates vary widely among different bacteria species. Fast-growing bacteria species such as Escherichia coli can have a shortest generation time of 20 min. Slow-growing bacteria species are perhaps best known for Mycobacterium tuberculosis, a human pathogen with a generation time being no less than 16 h. Despite of the significant progress made on understanding the pathogenesis of M. tuberculosis, we know little on the origin of its intriguingly slow growth. From a global view, the intrinsic constraint of the maximal growth rate of bacteria remains to be a fundamental question in microbiology. In this review, we analyze and discuss this issue from the angle of protein translation capacity, which is the major demand for cell growth. Based on quantitative analysis, we propose four parameters: rRNA chain elongation rate, abundance of RNA polymerase engaged in rRNA synthesis, polypeptide chain elongation rate, and active ribosome fraction, which potentially limit the maximal growth rate of bacteria. We further discuss the relation of these parameters with the growth rate for M. tuberculosis as well as other bacterial species. We highlight future comprehensive investigation of these parameters for different bacteria species to understand how bacteria set their own specific growth rates.

  12. The Modellers' Halting Foray into Ecological Theory: Or, What is This Thing Called 'Growth Rate'?

    PubMed

    Deveau, Michael; Karsten, Richard; Teismann, Holger

    2015-06-01

    This discussion paper describes the attempt of an imagined group of non-ecologists ("Modellers") to determine the population growth rate from field data. The Modellers wrestle with the multiple definitions of the growth rate available in the literature and the fact that, in their modelling, it appears to be drastically model-dependent, which seems to throw into question the very concept itself. Specifically, they observe that six representative models used to capture the data produce growth-rate values, which differ significantly. Almost ready to concede that the problem they set for themselves is ill-posed, they arrive at an alternative point of view that not only preserves the identity of the concept of the growth rate, but also helps discriminate between competing models for capturing the data. This is accomplished by assessing how robustly a given model is able to generate growth-rate values from randomized time-series data. This leads to the proposal of an iterative approach to ecological modelling in which the definition of theoretical concepts (such as the growth rate) and model selection complement each other. The paper is based on high-quality field data of mites on apple trees and may be called a "data-driven opinion piece".

  13. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    PubMed

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Impact of growth rate on graphene lattice-defect formation within a single crystalline domain.

    PubMed

    Chin, Hao-Ting; Lee, Jian-Jhang; Hofmann, Mario; Hsieh, Ya-Ping

    2018-03-06

    Chemical vapor deposition (CVD) is promising for the large scale production of graphene and other two-dimensional materials. Optimization of the CVD process for enhancing their quality is a focus of ongoing effort and significant progress has been made in decreasing the defectiveness associated with grain boundaries and nucleation spots. However, little is known about the quality and origin of structural defects in the outgrowing lattice which are present even in single-crystalline material and represent the limit of current optimization efforts. We here investigate the formation kinetics of such defects by controlling graphene's growth rate over a wide range using nanoscale confinements. Statistical analysis of Raman spectroscopic results shows a clear trend between growth rate and defectiveness that is in quantitative agreement with a model where defects are healed preferentially at the growth front. Our results suggest that low growth rates are required to avoid the freezing of lattice defects and form high quality material. This conclusion is confirmed by a fourfold enhancement in graphene's carrier mobility upon optimization of the growth rate.

  15. An evaluation of three growth and yield simulators for even-aged hardwood forests of the mid-Appalachian region

    Treesearch

    John R. Brooks; Gary W. Miller

    2011-01-01

    Data from even-aged hardwood stands in four ecoregions across the mid-Appalachian region were used to test projection accuracy for three available growth and yield software systems: SILVAH, the Forest Vegetation Simulator, and the Stand Damage Model. Average root mean squared error (RMSE) ranged from 20 to 140 percent of actual trees per acre while RMSE ranged from 2...

  16. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.

    PubMed

    Chenu, Karine; Chapman, Scott C; Hammer, Graeme L; McLean, Greg; Salah, Halim Ben Haj; Tardieu, François

    2008-03-01

    Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.

  17. Growth rates and energy intake of hand-reared cheetah cubs (Acinonyx jubatus) in South Africa.

    PubMed

    Bell, K M; Rutherfurd, S M; Morton, R H

    2012-04-01

    Growth rate is an important factor in neonatal survival. The aim of this study was to determine growth rates in hand-reared cheetah cubs in South Africa fed a prescribed energy intake, calculated for growth in the domestic cat. Growth was then compared with previously published data from hand-reared cubs in North America and the relationship between growth and energy intake explored. Daily body weight (BW) gain, feed and energy intake data was collected from 18 hand-reared cheetah cubs up to 120 days of age. The average pre-weaning growth rate was 32 g/day, which is lower than reported in mother-reared cubs and hand-reared cubs in North American facilities. However, post-weaning growth increased to an average of 55 g/day. Growth was approximately linear prior to weaning, but over the entire age range it exhibited a sigmoidal shape with an asymptotic plateau averaging 57 kg. Energy intake associated with pre-weaning growth was 481 kJ ME/kg BW(0.75). Regression analysis described the relationship between metabolic BW, metabolisable energy (ME) intake, and hence daily weight gain. This relationship may be useful in predicting energy intake required to achieve growth rates in hand-reared cheetah cubs similar to those observed for their mother-reared counterparts. © 2011 Blackwell Verlag GmbH.

  18. The dependence of the growth rate and meat content of young boars on semen parameters and conception rate.

    PubMed

    Knecht, D; Jankowska-Mąkosa, A; Duziński, K

    2017-05-01

    Boars have a decisive impact on the progress in pig production, however, there is no recent information about the optimal growth parameters during the rearing period for modern breed later used in artificial insemination (AI) stations. Therefore, the objective of the research was to conduct semen parameter and conception rate analyses on the basis of growth rate and meat content assessments made during the rearing of AI boars of different genotypes. The study was carried out between 2010 and 2014 and included 184 boars in five breed combinations: 46 Polish Large White, 50 Polish Landrace, 27 Pietrain, 36 Duroc×Pietrain and 25 Hampshire×Pietrain. Boars were qualified by daily gains and meat content assessment (between 170 and 210 days of life). A total number of 38 272 ejaculates were examined (semen volume (ml), spermatozoa concentration (×106 ml-1), total number of spermatozoa (×109) and number of insemination doses from one ejaculate (n)). The fertility was determined by the conception rate (%). Semen volume, spermatozoa concentration and conception rate (P<0.01), followed by the total number of spermatozoa and insemination doses (P<0.05) were characterized by the highest variability in relation to breed of boars. The effect of daily gains was reported for spermatozoa concentration, number of insemination doses, conception rate (all P<0.01) and total number of spermatozoa (P<0.05). The peak of growth for spermatozoa concentration, total number of spermatozoa, insemination doses and conception rate was achieved for 800 to 850 g gains. Meat content affected semen volume, number of insemination doses and conception rate (P<0.05). Rearing boars while maintaining daily gains at the 800 to 850 g level and 62.5% to 65% meat content helps AI stations to increase the efficiency and economic profitability, and the number of insemination doses to increase by up to 300 doses/boar within a year. The analyses of growth parameters may help increase the efficiency and

  19. Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition.

    PubMed

    Schram, Caitlin J; Taylor, Lynne S; Beaudoin, Stephen P

    2015-10-20

    The bioavailability of orally administered drugs that exhibit poor aqueous solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of these forms by preventing or inhibiting crystallization in solution is an important area of study. Polymers can be used to stabilize supersaturated systems; however, the properties that impact their effectiveness as crystal growth rate inhibitors are not yet fully understood. In this study, the impact of various polymers on the crystal growth rate of felodipine and the conformation of these polymers adsorbed to crystalline felodipine was investigated in order to gain a mechanistic understanding of crystal growth inhibition. It was determined that polymer hydrophobicity impacted polymer adsorption as well as adsorbed polymer conformation. Polymer conformation impacts its surface coverage, which was shown to directly correlate to the polymer's effectiveness as a growth rate inhibitor. By modeling this correlation, it is possible to predict polymer effectiveness given the surface coverage of the polymer.

  20. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean