Sample records for yield important constraints

  1. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    PubMed

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-05-01

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small

  2. Shifting relative importance of climatic constraints on land surface phenology

    NASA Astrophysics Data System (ADS)

    Garonna, Irene; de Jong, Rogier; Stöckli, Reto; Schmid, Bernhard; Schenkel, David; Schimel, David; Schaepman, Michael E.

    2018-02-01

    Land surface phenology (LSP), the study of seasonal dynamics of vegetated land surfaces from remote sensing, is a key indicator of global change, that both responds to and influences weather and climate. The effects of climatic changes on LSP depend on the relative importance of climatic constraints in specific regions—which are not well understood at global scale. Understanding the climatic constraints that underlie LSP is crucial for explaining climate change effects on global vegetation phenology. We used a combination of modelled and remotely-sensed vegetation activity records to quantify the interplay of three climatic constraints on land surface phenology (namely minimum temperature, moisture availability, and photoperiod), as well as the dynamic nature of these constraints. Our study examined trends and the relative importance of the three constrains at the start and the end of the growing season over eight global environmental zones, for the past three decades. Our analysis revealed widespread shifts in the relative importance of climatic constraints in the temperate and boreal biomes during the 1982-2011 period. These changes in the relative importance of the three climatic constraints, which ranged up to 8% since 1982 levels, varied with latitude and between start and end of the growing season. We found a reduced influence of minimum temperature on start and end of season in all environmental zones considered, with a biome-dependent effect on moisture and photoperiod constraints. For the end of season, we report that the influence of moisture has on average increased for both the temperate and boreal biomes over 8.99 million km2. A shifting relative importance of climatic constraints on LSP has implications both for understanding changes and for improving how they may be modelled at large scales.

  3. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  4. Cross-Cultural Comparisons of the Perceived Importance of Conversational Constraints.

    ERIC Educational Resources Information Center

    Kim, Min-Sun

    1994-01-01

    Investigates how cultural groups differ in the relative importance they attach to conversational constraints. Suggests that the perceived importance of clarity is higher in the more individualistic cultures but that the perceived importance of avoiding hurting the hearer's feelings and of minimizing imposition is higher in the more collectivistic…

  5. Importance of parametrizing constraints in quantum-mechanical variational calculations

    NASA Technical Reports Server (NTRS)

    Chung, Kwong T.; Bhatia, A. K.

    1992-01-01

    In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.

  6. Redefining yield gaps at various spatial scales

    NASA Astrophysics Data System (ADS)

    Meng, K.; Fishman, R.; Norstrom, A. V.; Diekert, F. K.; Engstrom, G.; Gars, J.; McCarney, G. R.; Sjostedt, M.

    2013-12-01

    Recent research has highlighted the prevalence of 'yield gaps' around the world and the importance of closing them for global food security. However, the traditional concept of yield gap -defined as the difference between observed and optimal yield under biophysical conditions - omit relevant socio-economic and ecological constraints and thus offer limited guidance on potential policy interventions. This paper proposes alternative definitions of yield gaps by incorporating rich, high resolution, national and sub-national agricultural datasets. We examine feasible efforts to 'close yield gaps' at various spatial scales and across different socio-economic and ecological domains.

  7. Spatio-temporal dynamics of maize yield water constraints under climate change in Spain.

    PubMed

    Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis

    2014-01-01

    Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent "hot-spots" in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity.

  8. Spatio-Temporal Dynamics of Maize Yield Water Constraints under Climate Change in Spain

    PubMed Central

    Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis

    2014-01-01

    Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent “hot-spots” in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity. PMID:24878747

  9. Evaluation of Selected Model Constraints and Variables on Simulated Sustainable Yield from the Mississippi River Valley Alluvial Aquifer System in Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2008-01-01

    An existing conjunctive use optimization model of the Mississippi River Valley alluvial aquifer was used to evaluate the effect of selected constraints and model variables on ground-water sustainable yield. Modifications to the optimization model were made to evaluate the effects of varying (1) the upper limit of ground-water withdrawal rates, (2) the streamflow constraint associated with the White River, and (3) the specified stage of the White River. Upper limits of ground-water withdrawal rates were reduced to 75, 50, and 25 percent of the 1997 ground-water withdrawal rates. As the upper limit is reduced, the spatial distribution of sustainable pumping increases, although the total sustainable pumping from the entire model area decreases. In addition, the number of binding constraint points decreases. In a separate analysis, the streamflow constraint associated with the White River was optimized, resulting in an estimate of the maximum sustainable streamflow at DeValls Bluff, Arkansas, the site of potential surface-water withdrawals from the White River for the Grand Prairie Area Demonstration Project. The maximum sustainable streamflow, however, is less than the amount of streamflow allocated in the spring during the paddlefish spawning period. Finally, decreasing the specified stage of the White River was done to evaluate a hypothetical river stage that might result if the White River were to breach the Melinda Head Cut Structure, one of several manmade diversions that prevents the White River from permanently joining the Arkansas River. A reduction in the stage of the White River causes reductions in the sustainable yield of ground water.

  10. Identification of saline soils with multi-year remote sensing of crop yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Ortiz-Monasterio, I; Gurrola, F C

    2006-10-17

    Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65).more » Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.« less

  11. Proximate effects of temperature versus evolved intrinsic constraints for embryonic development times among temperate and tropical songbirds

    USGS Publications Warehouse

    Ton, Riccardo; Martin, Thomas E.

    2017-01-01

    The relative importance of intrinsic constraints imposed by evolved physiological trade-offs versus the proximate effects of temperature for interspecific variation in embryonic development time remains unclear. Understanding this distinction is important because slow development due to evolved trade-offs can yield phenotypic benefits, whereas slow development from low temperature can yield costs. We experimentally increased embryonic temperature in free-living tropical and north temperate songbird species to test these alternatives. Warmer temperatures consistently shortened development time without costs to embryo mass or metabolism. However, proximate effects of temperature played an increasingly stronger role than intrinsic constraints for development time among species with colder natural incubation temperatures. Long development times of tropical birds have been thought to primarily reflect evolved physiological trade-offs that facilitate their greater longevity. In contrast, our results indicate a much stronger role of temperature in embryonic development time than currently thought.

  12. Measuring B{sup {+-}}{yields}{tau}{sup {+-}}{nu} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu} at the Z peak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akeroyd, A. G.; Chen, C.H.; National Center for Theoretical Sciences, Taiwan

    2008-06-01

    The measurement of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} at the B factories provides important constraints on the parameter tan{beta}/m{sub H{sup {+-}}} in the context of models with two Higgs doublets. Limits on this decay from e{sup +}e{sup -} collisions at the Z peak were sensitive to the sum of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}}. Because of the possibly sizeable contribution from B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} we suggest that a signal for this combination might be observed if the CERN LEP L3 Collaboration used its total data of {approx}3.6x10{sup 6} hadronic decays of the Z boson.more » Moreover, we point out that a future linear collider operating at the Z peak (Giga Z option) could constrain tan{beta}/m{sub H{sup {+-}}} from the sum of these processes with a precision comparable to that anticipated at proposed high luminosity B factories from B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} alone.« less

  13. Credit Constraints in Education

    ERIC Educational Resources Information Center

    Lochner, Lance; Monge-Naranjo, Alexander

    2012-01-01

    We review studies of the impact of credit constraints on the accumulation of human capital. Evidence suggests that credit constraints have recently become important for schooling and other aspects of households' behavior. We highlight the importance of early childhood investments, as their response largely determines the impact of credit…

  14. Descriptive study of important energy-conservation content for industrial arts in North Carolina and potential constraints to implementation of the content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.D.

    The purpose of this study was to determine the important energy-conservation content for industrial arts in North Carolina. The continuing purpose was to identify constraints to implementation of the identified important content. Fifty-three energy-conservation-content items were identified from the literature. This content was rated on importance by seven industrial arts/energy-conservation specialists in North Carolina. An analysis of the specialists scores resulted in the identification of the 20 most important energy-conservation-content items for industrial arts in North Carolina. Identification of possible constraints to the implementation of the important content was accomplished by surveying the certified industrial arts teachers in North Carolina.more » On the survey, teachers rated each content item in relation to their instructional practices, knowledge level, and perception of content appropriateness. Almost 67% of the industrial arts teachers in North Carolina responded to the survey. The study revealed that overall, industrial arts teachers believed energy conservation was moderately to highly appropriate for industrial arts. Knowledge of energy conservation was at a comparatively lower level, and was considered a possible constraint to content implementation. Although energy-conservation instructional practices were at a low level, 88% of the teachers in the survey sample included at least one of the energy-conservation-content items in their curriculum.« less

  15. The Effects of Constraint-Induced Movement Therapy on Activities Important to Independent School Participation of Children with Hemiparesis

    ERIC Educational Resources Information Center

    Carney, Joan

    2012-01-01

    This study investigated the efficacy of constraint-induced movement therapy (CI therapy) on activities important to school participation in children with hemiparesis. Four children, ages 4-0 to 7-10 participated in an intensive CI therapy program in a clinical setting. Constraining casts were worn 24 hours daily. Therapy was delivered 6 hours…

  16. Variational second order density matrix study of F3-: importance of subspace constraints for size-consistency.

    PubMed

    van Aggelen, Helen; Verstichel, Brecht; Bultinck, Patrick; Van Neck, Dimitri; Ayers, Paul W; Cooper, David L

    2011-02-07

    Variational second order density matrix theory under "two-positivity" constraints tends to dissociate molecules into unphysical fractionally charged products with too low energies. We aim to construct a qualitatively correct potential energy surface for F(3)(-) by applying subspace energy constraints on mono- and diatomic subspaces of the molecular basis space. Monoatomic subspace constraints do not guarantee correct dissociation: the constraints are thus geometry dependent. Furthermore, the number of subspace constraints needed for correct dissociation does not grow linearly with the number of atoms. The subspace constraints do impose correct chemical properties in the dissociation limit and size-consistency, but the structure of the resulting second order density matrix method does not exactly correspond to a system of noninteracting units.

  17. Differential stemflow yield from European beech saplings: the role and respective importance of individual canopy structure metrics

    NASA Astrophysics Data System (ADS)

    Levia, Delphis; Michalzik, Beate

    2013-04-01

    Stemflow yield from individual trees varies as a function of both meteorological conditions and canopy structure. The importance and differential effects of various metrics of canopy structure in relation to stemflow yield is inadequately understood and the subject of debate among forest hydrologists. It is possible to evaluate the role and respective importance of individual canopy structure metrics by holding meteorological conditions constant. Twelve isolated experimental European beech (Fagus sylvatica L.) saplings in Jena, Germany were exposed to identical meteorological conditions to examine the effects of canopy structure on stemflow production during the 2012 growing season. The canopy structure metrics being evaluated include: trunk diameter, trunk lean, tree height, projected crown area, branch inclination angle, branch count, and biomass (foliar and woody). Principal components analysis and multiple regression are utilized to determine the relative importance of different canopy structure metrics on stemflow yield. Experimental results will provide insight as to which metrics of canopy structure most strongly govern stemflow production. Ultimately, with a more thorough understanding of the unique contributions of various canopy structural metrics to stemflow yield, a useful conceptual guide of stemflow generation can be formulated on the basis of canopy structure for management purposes. Sponsor note: This research was funded by the Alexander von Humboldt Foundation.

  18. The Importance of Juvenile Root Traits for Crop Yields

    NASA Astrophysics Data System (ADS)

    White, Philip; Adu, Michael; Broadley, Martin; Brown, Lawrie; Dupuy, Lionel; George, Timothy; Graham, Neil; Hammond, John; Hayden, Rory; Neugebauer, Konrad; Nightingale, Mark; Ramsay, Gavin; Thomas, Catherine; Thompson, Jacqueline; Wishart, Jane; Wright, Gladys

    2014-05-01

    Genetic variation in root system architecture (RSA) is an under-exploited breeding resource. This is partly a consequence of difficulties in the rapid and accurate assessment of subterranean root systems. However, although the characterisation of root systems of large plants in the field are both time-consuming and labour-intensive, high-throughput (HTP) screens of root systems of juvenile plants can be performed in the field, glasshouse or laboratory. It is hypothesised that improving the root systems of juvenile plants can accelerate access to water and essential mineral elements, leading to rapid crop establishment and, consequently, greater yields. This presentation will illustrate how aspects of the juvenile root systems of potato (Solanum tuberosum L.) and oilseed rape (OSR; Brassica napus L.) correlate with crop yields and examine the reasons for such correlations. It will first describe the significant positive relationships between early root system development, phosphorus acquisition, canopy establishment and eventual yield among potato genotypes. It will report the development of a glasshouse assay for root system architecture (RSA) of juvenile potato plants, the correlations between root system architectures measured in the glasshouse and field, and the relationships between aspects of the juvenile root system and crop yields under drought conditions. It will then describe the development of HTP systems for assaying RSA of OSR seedlings, the identification of genetic loci affecting RSA in OSR, the development of mathematical models describing resource acquisition by OSR, and the correlations between root traits recorded in the HTP systems and yields of OSR in the field.

  19. Two important publications on Douglas fir yields

    Treesearch

    R.E. McArdle; W.H. Meyer

    1931-01-01

    Two publications, resulting from years of study by the Forest Experiment Station of the growth and yield of Douglas fir forests, have just been distributed. Both are of signal value to foresters and timberland owners of western Oregon and Washington who are interested in knowing what wood volume forest lands of various qualities are capable of producing under both...

  20. Drought Tolerance during Reproductive Development is Important for Increasing wheat yield Potential under Climate change in Europe.

    PubMed

    Senapati, Nimai; Stratonovitch, Pierre; Paul, Matthew J; Semenov, Mikhail A

    2018-06-12

    Drought stress during reproductive development could drastically reduce grain number and wheat yield, but quantitative evaluation of such effect is unknown under climate change. The objectives of this study were to a) evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and b) identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimise drought tolerant (DT) and drought sensitive (DS) wheat ideotypes under future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared to DS, with the double yield stability for DT. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared to DS in southern Europe. In contrast, no yield difference (≤ 1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.

  1. Constraint algebra in Smolin's G →0 limit of 4D Euclidean gravity

    NASA Astrophysics Data System (ADS)

    Varadarajan, Madhavan

    2018-05-01

    Smolin's generally covariant GNewton→0 limit of 4d Euclidean gravity is a useful toy model for the study of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First, Smolin's remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the construction only yields the action of a single Hamiltonian constraint together with the action of its commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics through structural modifications in the choice of discrete approximants to the quantum Hamiltonian constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint algebra of the model in the context of these structural changes and show that the continuum limit action of multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant. Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.

  2. Geometric derivations of minimal sets of sufficient multiview constraints

    USGS Publications Warehouse

    Thomas, Orrin H.; Oshel, Edward R.

    2012-01-01

    Geometric interpretations of four of the most common determinant formulations of multiview constraints are given, showing that they all enforce the same geometry and that all of the forms commonly in use in the machine vision community are a subset of a more general form. Generalising the work of Yi Ma yields a new general 2 x 2 determinant trilinear and 3 x 3 determinant quadlinear. Geometric descriptions of degenerate multiview constraints are given, showing that it is necessary, but insufficient, that the determinant equals zero. Understanding the degeneracies leads naturally into proofs for minimum sufficient sets of bilinear, trilinear and quadlinear constraints for arbitrary numbers of conjugate observations.

  3. Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Brizard, Alain J.

    A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation method, with terms up to second order in magnetic-field nonuniformity. Consistency is demonstrated by showing that the guiding-center transformation presented here satisfies separate Jacobian and Lagrangian constraints that have not been explored before. A new first-order term appearing in the guiding-center phase-space Lagrangian is identified through a calculation of the guiding-center polarization. It is shown that this new polarization term also yields a simpler expression of the guiding-center toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric magnetic geometries. Finally, an application of the guiding-center Lagrangian constraint onmore » the guiding-center Hamiltonian yields a natural interpretation for its higher-order corrections.« less

  4. Constraint-based Data Mining

    NASA Astrophysics Data System (ADS)

    Boulicaut, Jean-Francois; Jeudy, Baptiste

    Knowledge Discovery in Databases (KDD) is a complex interactive process. The promising theoretical framework of inductive databases considers this is essentially a querying process. It is enabled by a query language which can deal either with raw data or patterns which hold in the data. Mining patterns turns to be the so-called inductive query evaluation process for which constraint-based Data Mining techniques have to be designed. An inductive query specifies declaratively the desired constraints and algorithms are used to compute the patterns satisfying the constraints in the data. We survey important results of this active research domain. This chapter emphasizes a real breakthrough for hard problems concerning local pattern mining under various constraints and it points out the current directions of research as well.

  5. Constraint-Free Theories of Gravitation

    NASA Technical Reports Server (NTRS)

    Estabrook, Frank B.; Robinson, R. Steve; Wahlquist, Hugo D.

    1998-01-01

    Lovelock actions (more precisely, extended Gauss-Bonnet forms) when varied as Cartan forms on subspaces of higher dimensional flat Riemannian manifolds, generate well set, causal exterior differential systems. In particular, the Einstein- Hilbert action 4-form, varied on a 4 dimensional subspace of E(sub 10) yields a well set generalized theory of gravity having no constraints. Rcci-flat solutions are selected by initial conditions on a bounding 3-space.

  6. Photosynthetic Diffusional Constraints Affect Yield in Drought Stressed Rice Cultivars during Flowering

    PubMed Central

    Lauteri, Marco; Haworth, Matthew; Serraj, Rachid; Monteverdi, Maria Cristina; Centritto, Mauro

    2014-01-01

    Global production of rice (Oryza sativa) grain is limited by water availability and the low ‘leaf-level’ photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productive and drought tolerant cultivars. We investigated the underlying physiological, isotopic and morphological responses to water-deficit in seven common varieties of O. sativa, subjected to prolonged drought of varying intensities, for phenotyping purposes in open field conditions. Significant variation was observed in leaf-level photosynthesis rates (A) under both water treatments. Yield and A were influenced by the conductance of the mesophyll layer to CO2 (g m) and not by stomatal conductance (g s). Mesophyll conductance declined during drought to differing extents among the cultivars; those varieties that maintained g m during water-deficit sustained A and yield to a greater extent. However, the variety with the highest g m and yield under well-watered conditions (IR55419-04) was distinct from the most effective cultivar under drought (Vandana). Mesophyll conductance most effectively characterises the photosynthetic capacity and yield of O. sativa cultivars under both well-watered and water-deficit conditions; however, the desired attributes of high g m during optimal growth conditions and the capacity for g m to remain constant during water-deficit may be mutually exclusive. Nonetheless, future genetic and physiological studies aimed at enhancing O. sativa yield and drought stress tolerance should investigate the biochemistry and morphology of the interface between the sub-stomatal pore and mesophyll layer. PMID:25275452

  7. Constraints on the Lee-Wick Higgs sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carone, Christopher D.; Primulando, Reinard

    2009-09-01

    Lee-Wick partners to the standard model Higgs doublet may appear at a mass scale that is significantly lower than that of the remaining Lee-Wick partner states. The relevant effective theory is a two-Higgs doublet model in which one doublet has wrong-sign kinetic and mass terms. We determine bounds on this effective theory, including those from neutral B-meson mixing, b{yields}X{sub s}{gamma}, and Z{yields}bb. The results differ from those of conventional two-Higgs doublet models and lead to meaningful constraints on the Lee-Wick Higgs sector.

  8. In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories

    PubMed Central

    Maia, Paulo; Rocha, Miguel

    2015-01-01

    SUMMARY Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed. PMID:26609052

  9. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    PubMed

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  10. Constraints on Mercury's Core-Mantle Boundary Region

    NASA Astrophysics Data System (ADS)

    Hauck, S. A., II; Chabot, N. L.; Sun, P.; Jing, Z.; Johnson, C. L.; Margot, J. L.; Padovan, S.; Peale, S. J.; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Understanding the boundary between a planet's metallic core and silicate mantle is important for constraining processes that dominate on either side of this boundary. Geophysical measurements of the planet Mercury by the MESSENGER spacecraft have provided evidence of a core larger than earlier, less-constrained estimates. Further, these results, taken in concert with measurements of the elemental composition of the surface by MESSENGER, have led to the suggestion that the uppermost layer of the outer core may be highly enriched in sulfur, and the top of the core may consist of a solid sulfide layer. The low iron and relatively large sulfur contents of the surface indicate highly reducing conditions during planet formation, placing constraints on the potential composition of Mercury's core. Recent metal-silicate partitioning experiments have developed new limits on the amount of sulfur and silicon that may partition into the core as a function of sulfur abundance at the surface. Models for the planet's internal structure constrained by the current best estimates of the bulk density, normalized polar moment of inertia, and fraction of the polar moment of inertia of the solid layer that extends from the surface to the top of the liquid outer core provide an important view of the layering and bulk composition of Mercury. By combining the results of these internal structure models with the experimental relationship between core and mantle composition we place new limits on core composition and structure. Further, imposing measured compositional constraints on the miscibility of iron-sulfur-silicon alloys yields important limits on the presence or absence of an immiscible sulfur-rich liquid layer or a solid sulfide layer at the top of the core.

  11. Performance constraints and compensation for teleoperation with delay

    NASA Technical Reports Server (NTRS)

    Mclaughlin, J. S.; Staunton, B. D.

    1989-01-01

    A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.

  12. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety

    PubMed Central

    Curtis, T; Halford, N G

    2014-01-01

    Current wheat yield and consumption is considered in the context of the historical development of wheat, from early domestication through to modern plant breeding, the Green Revolution and wheat’s place as one of the world’s most productive and important crops in the 21st Century. The need for further improvement in the yield potential of wheat in order to meet current and impending challenges is discussed, including rising consumption and the demand for grain for fuel as well as food. Research on the complex genetics underlying wheat yield is described, including the identification of quantitative trait loci and individual genes, and the prospects of biotechnology playing a role in wheat improvement in the future are discussed. The challenge of preparing wheat to meet the problems of drought, high temperature and increasing carbon dioxide concentration that are anticipated to come about as a result of climate change is also reviewed. Wheat yield must be increased while not compromising food safety, and the emerging problem of processing contaminants is reviewed, focussing in particular on acrylamide, a contaminant that forms from free asparagine and reducing sugars during high temperature cooking and processing. Wheat breeders are strongly encouraged to consider the contaminant issue when breeding for yield. PMID:25540461

  13. Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures

    EPA Pesticide Factsheets

    This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics

  14. Cultivating Discontinuity: Pentecostal Pedagogies of Yielding and Control

    ERIC Educational Resources Information Center

    Brahinsky, Josh

    2013-01-01

    Exploring missionary study at an Assemblies of God Bible college through ethnography and training manuals demonstrates systematic pedagogies that cultivate sensory capabilities encouraging yielding, opening to rupture, and constraint. Ritual theory and the Anthropology of Christianity shift analytic scales to include "cultivation," a…

  15. Credit Constraints for Higher Education

    ERIC Educational Resources Information Center

    Solis, Alex

    2012-01-01

    This paper exploits a natural experiment that produces exogenous variation on credit access to determine the effect on college enrollment. The paper assess how important are credit constraints to explain the gap in college enrollment by family income, and what would be the gap if credit constraints are eliminated. Progress in college and dropout…

  16. Impact of perceived importance of ecosystem services and stated financial constraints on willingness to pay for riparian meadow restoration in Flanders (Belgium).

    PubMed

    Chen, Wendy Y; Aertsens, Joris; Liekens, Inge; Broekx, Steven; De Nocker, Leo

    2014-08-01

    The strategic importance of ecosystem service valuation as an operational basis for policy decisions on natural restoration has been increasingly recognized in order to align the provision of ecosystem services with the expectation of human society. The contingent valuation method (CVM) is widely used to quantify various ecosystem services. However, two areas of concern arise: (1) whether people value specific functional ecosystem services and overlook some intrinsic aspects of natural restoration, and (2) whether people understand the temporal dimension of ecosystem services and payment schedules given in the contingent scenarios. Using a peri-urban riparian meadow restoration project in Flanders, Belgium as a case, we explored the impacts of residents' perceived importance of various ecosystem services and stated financial constraints on their willingness-to-pay for the proposed restoration project employing the CVM. The results indicated that people tended to value all the benefits of riparian ecosystem restoration concurrently, although they accorded different importances to each individual category of ecosystem services. A longer payment scheme can help the respondents to think more about the flow of ecosystem services into future generations. A weak temporal embedding effect can be detected, which might be attributed to respondents' concern about current financial constraints, rather than financial bindings associated with their income and perceived future financial constraints. This demonstrates the multidimensionality of respondents' financial concerns in CV. This study sheds light on refining future CV studies, especially with regard to public expectation of ecosystem services and the temporal dimension of ecosystem services and payment schedules.

  17. Impact of Perceived Importance of Ecosystem Services and Stated Financial Constraints on Willingness to Pay for Riparian Meadow Restoration in Flanders (Belgium)

    NASA Astrophysics Data System (ADS)

    Chen, Wendy Y.; Aertsens, Joris; Liekens, Inge; Broekx, Steven; De Nocker, Leo

    2014-08-01

    The strategic importance of ecosystem service valuation as an operational basis for policy decisions on natural restoration has been increasingly recognized in order to align the provision of ecosystem services with the expectation of human society. The contingent valuation method (CVM) is widely used to quantify various ecosystem services. However, two areas of concern arise: (1) whether people value specific functional ecosystem services and overlook some intrinsic aspects of natural restoration, and (2) whether people understand the temporal dimension of ecosystem services and payment schedules given in the contingent scenarios. Using a peri-urban riparian meadow restoration project in Flanders, Belgium as a case, we explored the impacts of residents' perceived importance of various ecosystem services and stated financial constraints on their willingness-to-pay for the proposed restoration project employing the CVM. The results indicated that people tended to value all the benefits of riparian ecosystem restoration concurrently, although they accorded different importances to each individual category of ecosystem services. A longer payment scheme can help the respondents to think more about the flow of ecosystem services into future generations. A weak temporal embedding effect can be detected, which might be attributed to respondents' concern about current financial constraints, rather than financial bindings associated with their income and perceived future financial constraints. This demonstrates the multidimensionality of respondents' financial concerns in CV. This study sheds light on refining future CV studies, especially with regard to public expectation of ecosystem services and the temporal dimension of ecosystem services and payment schedules.

  18. Pareto-optimal reversed-phase chromatography separation of three insulin variants with a solubility constraint.

    PubMed

    Arkell, Karolina; Knutson, Hans-Kristian; Frederiksen, Søren S; Breil, Martin P; Nilsson, Bernt

    2018-01-12

    With the shift of focus of the regulatory bodies, from fixed process conditions towards flexible ones based on process understanding, model-based optimization is becoming an important tool for process development within the biopharmaceutical industry. In this paper, a multi-objective optimization study of separation of three insulin variants by reversed-phase chromatography (RPC) is presented. The decision variables were the load factor, the concentrations of ethanol and KCl in the eluent, and the cut points for the product pooling. In addition to the purity constraints, a solubility constraint on the total insulin concentration was applied. The insulin solubility is a function of the ethanol concentration in the mobile phase, and the main aim was to investigate the effect of this constraint on the maximal productivity. Multi-objective optimization was performed with and without the solubility constraint, and visualized as Pareto fronts, showing the optimal combinations of the two objectives productivity and yield for each case. Comparison of the constrained and unconstrained Pareto fronts showed that the former diverges when the constraint becomes active, because the increase in productivity with decreasing yield is almost halted. Consequently, we suggest the operating point at which the total outlet concentration of insulin reaches the solubility limit as the most suitable one. According to the results from the constrained optimizations, the maximal productivity on the C 4 adsorbent (0.41 kg/(m 3  column h)) is less than half of that on the C 18 adsorbent (0.87 kg/(m 3  column h)). This is partly caused by the higher selectivity between the insulin variants on the C 18 adsorbent, but the main reason is the difference in how the solubility constraint affects the processes. Since the optimal ethanol concentration for elution on the C 18 adsorbent is higher than for the C 4 one, the insulin solubility is also higher, allowing a higher pool concentration

  19. Yield Potential of Sugar Beet – Have We Hit the Ceiling?

    PubMed Central

    Hoffmann, Christa M.; Kenter, Christine

    2018-01-01

    The yield of sugar beet has continuously increased in the past decades. The question arises, whether this progress will continue in the future. A key factor for increasing yield potential of the crop is breeding progress. It was related to a shift in assimilate partitioning in the plant toward more storage carbohydrates (sucrose), whereas structural carbohydrates (leaves, cell wall compounds) unintendedly declined. The yield potential of sugar beet was estimated at 24 t sugar ha-1. For maximum yield, sufficient growth factors have to be available and the crop has to be able to fully utilize them. In sugar beet, limitations result from the lacking coincidence of maximum irradiation rates and full canopy cover, sink strength for carbon assimilation and high water demand, which cannot be met by rainfall alone. After harvest, sugar losses during storage occur. The paper discusses options for a further increase in yield potential, like autumn sowing of sugar beet, increasing sink strength and related constraints. It is prospected that yield increase by further widening the ratio of storage and structural carbohydrates will come to its natural limit as a certain cell wall stability is necessary. New challenges caused by climate change and by prolonged processing campaigns will occur. Thus breeding for improved pathogen resistance and storage properties will be even more important for successful sugar beet production than a further increase in yield potential itself. PMID:29599787

  20. Solar electric geocentric transfer with attitude constraints: Analysis

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Malchow, H. L.; Delbaum, T. N.

    1975-01-01

    A time optimal or nearly time optimal trajectory program was developed for solar electric geocentric transfer with or without attitude constraints and with an optional initial high thrust stage. The method of averaging reduces computation time. A nonsingular set of orbital elements is used. The constraints, which are those of one of the SERT-C designs, introduce complexities into the analysis and the solution yields possible discontinuous changes in thrust direction. The power degradation due to VanAllen radiation is modeled analytically. A wide range of solar cell characteristics is assumed. Effects such as oblateness and shadowing are included. The analysis and the results of many example runs are included.

  1. Maximal yields from multispecies fisheries systems: rules for systems with multiple trophic levels.

    PubMed

    Matsuda, Hiroyuki; Abrams, Peter A

    2006-02-01

    Increasing centralization of the control of fisheries combined with increased knowledge of food-web relationships is likely to lead to attempts to maximize economic yield from entire food webs. With the exception of predator-prey systems, we lack any analysis of the nature of such yield-maximizing strategies. We use simple food-web models to investigate the nature of yield- or profit-maximizing exploitation of communities including two types of three-species food webs and a variety of six-species systems with as many as five trophic levels. These models show that, for most webs, relatively few species are harvested at equilibrium and that a significant fraction of the species is lost from the web. These extinctions occur for two reasons: (1) indirect effects due to harvesting of species that had positive effects on the extinct species, and (2) intentional eradication of species that are not themselves valuable, but have negative effects on more valuable species. In most cases, the yield-maximizing harvest involves taking only species from one trophic level. In no case was an unharvested top predator part of the yield-maximizing strategy. Analyses reveal that the existence of direct density dependence in consumers has a large effect on the nature of the optimal harvest policy, typically resulting in harvest of a larger number of species. A constraint that all species must be retained in the system (a "constraint of biodiversity conservation") usually increases the number of species and trophic levels harvested at the yield-maximizing policy. The reduction in total yield caused by such a constraint is modest for most food webs but can be over 90% in some cases. Independent harvesting of species within the web can also cause extinctions but is less likely to do so.

  2. Constraints on B and Higgs physics in minimal low energy supersymmetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; /Fermilab; Menon, A.

    2006-03-01

    We study the implications of minimal flavor violating low energy supersymmetry scenarios for the search of new physics in the B and Higgs sectors at the Tevatron collider and the LHC. We show that the already stringent Tevatron bound on the decay rate B{sub s} {yields} {mu}{sup +}{mu}{sup -} sets strong constraints on the possibility of generating large corrections to the mass difference {Delta} M{sub s} of the B{sub s} eigenstates. We also show that the B{sub s} {yields} {mu}{sup +}{mu}{sup -} bound together with the constraint on the branching ratio of the rare decay b {yields} s{gamma} has strongmore » implications for the search of light, non-standard Higgs bosons at hadron colliders. In doing this, we demonstrate that the former expressions derived for the analysis of the double penguin contributions in the Kaon sector need to be corrected by additional terms for a realistic analysis of these effects. We also study a specific non-minimal flavor violating scenario, where there are flavor changing gluino-squark-quark interactions, governed by the CKM matrix elements, and show that the B and Higgs physics constraints are similar to the ones in the minimal flavor violating case. Finally we show that, in scenarios like electroweak baryogenesis which have light stops and charginos, there may be enhanced effects on the B and K mixing parameters, without any significant effect on the rate of B{sub s} {yields} {mu}{sup +}{mu}{sup -}.« less

  3. Dynamic Constraint Satisfaction with Reasonable Global Constraints

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2003-01-01

    Previously studied theoretical frameworks for dynamic constraint satisfaction problems (DCSPs) employ a small set of primitive operators to modify a problem instance. They do not address the desire to model problems using sophisticated global constraints, and do not address efficiency questions related to incremental constraint enforcement. In this paper, we extend a DCSP framework to incorporate global constraints with flexible scope. A simple approach to incremental propagation after scope modification can be inefficient under some circumstances. We characterize the cases when this inefficiency can occur, and discuss two ways to alleviate this problem: adding rejection variables to the scope of flexible constraints, and adding new features to constraints that permit increased control over incremental propagation.

  4. Structure Constraints in a Constraint-Based Planner

    NASA Technical Reports Server (NTRS)

    Pang, Wan-Lin; Golden, Keith

    2004-01-01

    In this paper we report our work on a new constraint domain, where variables can take structured values. Earth-science data processing (ESDP) is a planning domain that requires the ability to represent and reason about complex constraints over structured data, such as satellite images. This paper reports on a constraint-based planner for ESDP and similar domains. We discuss our approach for translating a planning problem into a constraint satisfaction problem (CSP) and for representing and reasoning about structured objects and constraints over structures.

  5. Constraints and stability in vector theories with spontaneous Lorentz violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus

    2008-06-15

    Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stabilitymore » of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.« less

  6. Credit Constraints in Education. NBER Working Paper No. 17435

    ERIC Educational Resources Information Center

    Lochner, Lance; Monge-Naranjo, Alexander

    2011-01-01

    We review studies of the impact of credit constraints on the accumulation of human capital. Evidence suggests that credit constraints are increasingly important for schooling and other aspects of households' behavior. We highlight the importance of early childhood investments, since their response largely determines the impact of credit…

  7. Kinetically accessible yield (KAY) for redirection of metabolism to produce exo-metabolites

    DOE PAGES

    Lafontaine Rivera, Jimmy G.; Theisen, Matthew K.; Chen, Po-Wei; ...

    2017-04-05

    The product formation yield (product formed per unit substrate consumed) is often the most important performance indicator in metabolic engineering. Until now, the actual yield cannot be predicted, but it can be bounded by its maximum theoretical value. The maximum theoretical yield is calculated by considering the stoichiometry of the pathways and cofactor regeneration involved. Here in this paper we found that in many cases, dynamic stability becomes an issue when excessive pathway flux is drawn to a product. This constraint reduces the yield and renders the maximal theoretical yield too loose to be predictive. We propose a more realisticmore » quantity, defined as the kinetically accessible yield (KAY) to predict the maximum accessible yield for a given flux alteration. KAY is either determined by the point of instability, beyond which steady states become unstable and disappear, or a local maximum before becoming unstable. Thus, KAY is the maximum flux that can be redirected for a given metabolic engineering strategy without losing stability. Strictly speaking, calculation of KAY requires complete kinetic information. With limited or no kinetic information, an Ensemble Modeling strategy can be used to determine a range of likely values for KAY, including an average prediction. We first apply the KAY concept with a toy model to demonstrate the principle of kinetic limitations on yield. We then used a full-scale E. coli model (193 reactions, 153 metabolites) and this approach was successful in E. coli for predicting production of isobutanol: the calculated KAY values are consistent with experimental data for three genotypes previously published.« less

  8. Reformulating Constraints for Compilability and Efficiency

    NASA Technical Reports Server (NTRS)

    Tong, Chris; Braudaway, Wesley; Mohan, Sunil; Voigt, Kerstin

    1992-01-01

    KBSDE is a knowledge compiler that uses a classification-based approach to map solution constraints in a task specification onto particular search algorithm components that will be responsible for satisfying those constraints (e.g., local constraints are incorporated in generators; global constraints are incorporated in either testers or hillclimbing patchers). Associated with each type of search algorithm component is a subcompiler that specializes in mapping constraints into components of that type. Each of these subcompilers in turn uses a classification-based approach, matching a constraint passed to it against one of several schemas, and applying a compilation technique associated with that schema. While much progress has occurred in our research since we first laid out our classification-based approach [Ton91], we focus in this paper on our reformulation research. Two important reformulation issues that arise out of the choice of a schema-based approach are: (1) compilability-- Can a constraint that does not directly match any of a particular subcompiler's schemas be reformulated into one that does? and (2) Efficiency-- If the efficiency of the compiled search algorithm depends on the compiler's performance, and the compiler's performance depends on the form in which the constraint was expressed, can we find forms for constraints which compile better, or reformulate constraints whose forms can be recognized as ones that compile poorly? In this paper, we describe a set of techniques we are developing for partially addressing these issues.

  9. Acquiring Constraints on Morphosyntactic Variation: Children's Spanish Subject Pronoun Expression

    ERIC Educational Resources Information Center

    Shin, Naomi Lapidus

    2016-01-01

    Constraints on linguistic variation are consistent across adult speakers, yielding probabilistic and systematic patterns. Yet, little is known about the development of such patterns during childhood. This study investigates Spanish subject pronoun expression in naturalistic data from 154 monolingual children in Mexico, divided into four age…

  10. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  11. Quantum centipedes with strong global constraint

    NASA Astrophysics Data System (ADS)

    Grange, Pascal

    2017-06-01

    A centipede made of N quantum walkers on a one-dimensional lattice is considered. The distance between two consecutive legs is either one or two lattice spacings, and a global constraint is imposed: the maximal distance between the first and last leg is N  +  1. This is the strongest global constraint compatible with walking. For an initial value of the wave function corresponding to a localized configuration at the origin, the probability law of the first leg of the centipede can be expressed in closed form in terms of Bessel functions. The dispersion relation and the group velocities are worked out exactly. Their maximal group velocity goes to zero when N goes to infinity, which is in contrast with the behaviour of group velocities of quantum centipedes without global constraint, which were recently shown by Krapivsky, Luck and Mallick to give rise to ballistic spreading of extremal wave-front at non-zero velocity in the large-N limit. The corresponding Hamiltonians are implemented numerically, based on a block structure of the space of configurations corresponding to compositions of the integer N. The growth of the maximal group velocity when the strong constraint is gradually relaxed is explored, and observed to be linear in the density of gaps allowed in the configurations. Heuristic arguments are presented to infer that the large-N limit of the globally constrained model can yield finite group velocities provided the allowed number of gaps is a finite fraction of N.

  12. Using artificial neural network and satellite data to predict rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-09-01

    Rice production in Bangladesh is a crucial part of the national economy and providing about 70 percent of an average citizen's total calorie intake. The demand for rice is constantly rising as the new populations are added in every year in Bangladesh. Due to the increase in population, the cultivation land decreases. In addition, Bangladesh is faced with production constraints such as drought, flooding, salinity, lack of irrigation facilities and lack of modern technology. To maintain self sufficiency in rice, Bangladesh will have to continue to expand rice production by increasing yield at a rate that is at least equal to the population growth until the demand of rice has stabilized. Accurate rice yield prediction is one of the most important challenges in managing supply and demand of rice as well as decision making processes. Artificial Neural Network (ANN) is used to construct a model to predict Aus rice yield in Bangladesh. Advanced Very High Resolution Radiometer (AVHRR)-based remote sensing satellite data vegetation health (VH) indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used as input variables and official statistics of Aus rice yield is used as target variable for ANN prediction model. The result obtained with ANN method is encouraging and the error of prediction is less than 10%. Therefore, prediction can play an important role in planning and storing of sufficient rice to face in any future uncertainty.

  13. A Framework for Dynamic Constraint Reasoning Using Procedural Constraints

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Frank, Jeremy D.

    1999-01-01

    Many complex real-world decision and control problems contain an underlying constraint reasoning problem. This is particularly evident in a recently developed approach to planning, where almost all planning decisions are represented by constrained variables. This translates a significant part of the planning problem into a constraint network whose consistency determines the validity of the plan candidate. Since higher-level choices about control actions can add or remove variables and constraints, the underlying constraint network is invariably highly dynamic. Arbitrary domain-dependent constraints may be added to the constraint network and the constraint reasoning mechanism must be able to handle such constraints effectively. Additionally, real problems often require handling constraints over continuous variables. These requirements present a number of significant challenges for a constraint reasoning mechanism. In this paper, we introduce a general framework for handling dynamic constraint networks with real-valued variables, by using procedures to represent and effectively reason about general constraints. The framework is based on a sound theoretical foundation, and can be proven to be sound and complete under well-defined conditions. Furthermore, the framework provides hybrid reasoning capabilities, as alternative solution methods like mathematical programming can be incorporated into the framework, in the form of procedures.

  14. Evaluation of constraint stabilization procedures for multibody dynamical systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.

    1987-01-01

    Comparative numerical studies of four constraint treatment techniques for the simulation of general multibody dynamic systems are presented, and results are presented for the example of a classical crank mechanism and for a simplified version of the seven-link manipulator deployment problem. The staggered stabilization technique (Park, 1986) is found to yield improved accuracy and robustness over Baumgarte's (1972) technique, the singular decomposition technique (Walton and Steeves, 1969), and the penalty technique (Lotstedt, 1979). Furthermore, the staggered stabilization technique offers software modularity, and the only data each solution module needs to exchange with the other is a set of vectors plus a common module to generate the gradient matrix of the constraints, B.

  15. A Consideration of Constraints on Aircraft Departure Operations

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Morello, Samuel A.; Shay, Richard F.; Lemos, Katherine A.; Jacobsen, Robert

    2009-01-01

    This paper presents a system-level perspective on the operational issues and constraints that limit departure capacity at large metropolitan airports in today's air transportation system. It examines the influence of constraints evident in en route airspace, in metroplex operations, and at individual airports from today's perspective and with a view toward future gate-to-cruise operations. Cross cutting organizational and technological challenges are discussed in relation to their importance in addressing the constraints.

  16. Evaluating Emergent Constraints for Equilibrium Climate Sensitivity

    DOE PAGES

    Caldwell, Peter M.; Zelinka, Mark D.; Klein, Stephen A.

    2018-04-23

    Emergent constraints are quantities that are observable from current measurements and have skill predicting future climate. Here, this study explores 19 previously proposed emergent constraints related to equilibrium climate sensitivity (ECS; the global-average equilibrium surface temperature response to CO 2 doubling). Several constraints are shown to be closely related, emphasizing the importance for careful understanding of proposed constraints. A new method is presented for decomposing correlation between an emergent constraint and ECS into terms related to physical processes and geographical regions. Using this decomposition, one can determine whether the processes and regions explaining correlation with ECS correspond to the physicalmore » explanation offered for the constraint. Shortwave cloud feedback is generally found to be the dominant contributor to correlations with ECS because it is the largest source of intermodel spread in ECS. In all cases, correlation results from interaction between a variety of terms, reflecting the complex nature of ECS and the fact that feedback terms and forcing are themselves correlated with each other. For 4 of the 19 constraints, the originally proposed explanation for correlation is borne out by our analysis. These four constraints all predict relatively high climate sensitivity. The credibility of six other constraints is called into question owing to correlation with ECS coming mainly from unexpected sources and/or lack of robustness to changes in ensembles. Another six constraints lack a testable explanation and hence cannot be confirmed. Lastly, the fact that this study casts doubt upon more constraints than it confirms highlights the need for caution when identifying emergent constraints from small ensembles.« less

  17. Evaluating Emergent Constraints for Equilibrium Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Peter M.; Zelinka, Mark D.; Klein, Stephen A.

    Emergent constraints are quantities that are observable from current measurements and have skill predicting future climate. Here, this study explores 19 previously proposed emergent constraints related to equilibrium climate sensitivity (ECS; the global-average equilibrium surface temperature response to CO 2 doubling). Several constraints are shown to be closely related, emphasizing the importance for careful understanding of proposed constraints. A new method is presented for decomposing correlation between an emergent constraint and ECS into terms related to physical processes and geographical regions. Using this decomposition, one can determine whether the processes and regions explaining correlation with ECS correspond to the physicalmore » explanation offered for the constraint. Shortwave cloud feedback is generally found to be the dominant contributor to correlations with ECS because it is the largest source of intermodel spread in ECS. In all cases, correlation results from interaction between a variety of terms, reflecting the complex nature of ECS and the fact that feedback terms and forcing are themselves correlated with each other. For 4 of the 19 constraints, the originally proposed explanation for correlation is borne out by our analysis. These four constraints all predict relatively high climate sensitivity. The credibility of six other constraints is called into question owing to correlation with ECS coming mainly from unexpected sources and/or lack of robustness to changes in ensembles. Another six constraints lack a testable explanation and hence cannot be confirmed. Lastly, the fact that this study casts doubt upon more constraints than it confirms highlights the need for caution when identifying emergent constraints from small ensembles.« less

  18. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    PubMed

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  19. On the Emergent Constraints of Climate Sensitivity [On proposed emergent constraints of climate sensitivity

    DOE PAGES

    Qu, Xin; Hall, Alex; DeAngelis, Anthony M.; ...

    2018-01-11

    Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable tomore » a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. Additionally, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.« less

  20. On the Emergent Constraints of Climate Sensitivity [On proposed emergent constraints of climate sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Xin; Hall, Alex; DeAngelis, Anthony M.

    Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable tomore » a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. Additionally, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.« less

  1. Using normalized difference vegetation index (NDVI) to estimate sugarcane yield and yield components

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) yield and yield components are important traits for growers and scientists to evaluate and select cultivars. Collection of these yield data would be labor intensive and time consuming in the early selection stages of sugarcane breeding cultivar development programs with a ...

  2. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    NASA Technical Reports Server (NTRS)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  3. Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, M.T., E-mail: pignimt@ornl.gov; Francis, M.W.; Gauld, I.C.

    A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {supmore » 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  4. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  5. Top ten models constrained by b {yields} s{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.

    1994-12-01

    The radiative decay b {yields} s{gamma} is examined in the Standard Model and in nine classes of models which contain physics beyond the Standard Model. The constraints which may be placed on these models from the recent results of the CLEO Collaboration on both inclusive and exclusive radiative B decays is summarized. Reasonable bounds are found for the parameters in some cases.

  6. On Using Homogeneous Polynomials To Design Anisotropic Yield Functions With Tension/Compression Symmetry/Assymetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soare, S.; Cazacu, O.; Yoon, J. W.

    With few exceptions, non-quadratic homogeneous polynomials have received little attention as possible candidates for yield functions. One reason might be that not every such polynomial is a convex function. In this paper we show that homogeneous polynomials can be used to develop powerful anisotropic yield criteria, and that imposing simple constraints on the identification process leads, aposteriori, to the desired convexity property. It is shown that combinations of such polynomials allow for modeling yielding properties of metallic materials with any crystal structure, i.e. both cubic and hexagonal which display strength differential effects. Extensions of the proposed criteria to 3D stressmore » states are also presented. We apply these criteria to the description of the aluminum alloy AA2090T3. We prove that a sixth order orthotropic homogeneous polynomial is capable of a satisfactory description of this alloy. Next, applications to the deep drawing of a cylindrical cup are presented. The newly proposed criteria were implemented as UMAT subroutines into the commercial FE code ABAQUS. We were able to predict six ears on the AA2090T3 cup's profile. Finally, we show that a tension/compression asymmetry in yielding can have an important effect on the earing profile.« less

  7. On Using Homogeneous Polynomials To Design Anisotropic Yield Functions With Tension/Compression Symmetry/Assymetry

    NASA Astrophysics Data System (ADS)

    Soare, S.; Yoon, J. W.; Cazacu, O.

    2007-05-01

    With few exceptions, non-quadratic homogeneous polynomials have received little attention as possible candidates for yield functions. One reason might be that not every such polynomial is a convex function. In this paper we show that homogeneous polynomials can be used to develop powerful anisotropic yield criteria, and that imposing simple constraints on the identification process leads, aposteriori, to the desired convexity property. It is shown that combinations of such polynomials allow for modeling yielding properties of metallic materials with any crystal structure, i.e. both cubic and hexagonal which display strength differential effects. Extensions of the proposed criteria to 3D stress states are also presented. We apply these criteria to the description of the aluminum alloy AA2090T3. We prove that a sixth order orthotropic homogeneous polynomial is capable of a satisfactory description of this alloy. Next, applications to the deep drawing of a cylindrical cup are presented. The newly proposed criteria were implemented as UMAT subroutines into the commercial FE code ABAQUS. We were able to predict six ears on the AA2090T3 cup's profile. Finally, we show that a tension/compression asymmetry in yielding can have an important effect on the earing profile.

  8. Quantifying Wheat Sensitivities to Environmental Constraints to Dissect Genotype × Environment Interactions in the Field.

    PubMed

    Parent, Boris; Bonneau, Julien; Maphosa, Lance; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2017-07-01

    Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat ( Triticum aestivum ) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Constraint reasoning in deep biomedical models.

    PubMed

    Cruz, Jorge; Barahona, Pedro

    2005-05-01

    Deep biomedical models are often expressed by means of differential equations. Despite their expressive power, they are difficult to reason about and make decisions, given their non-linearity and the important effects that the uncertainty on data may cause. The objective of this work is to propose a constraint reasoning framework to support safe decisions based on deep biomedical models. The methods used in our approach include the generic constraint propagation techniques for reducing the bounds of uncertainty of the numerical variables complemented with new constraint reasoning techniques that we developed to handle differential equations. The results of our approach are illustrated in biomedical models for the diagnosis of diabetes, tuning of drug design and epidemiology where it was a valuable decision-supporting tool notwithstanding the uncertainty on data. The main conclusion that follows from the results is that, in biomedical decision support, constraint reasoning may be a worthwhile alternative to traditional simulation methods, especially when safe decisions are required.

  10. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  11. Joint cosmic microwave background and weak lensing analysis: constraints on cosmological parameters.

    PubMed

    Contaldi, Carlo R; Hoekstra, Henk; Lewis, Antony

    2003-06-06

    We use cosmic microwave background (CMB) observations together with the red-sequence cluster survey weak lensing results to derive constraints on a range of cosmological parameters. This particular choice of observations is motivated by their robust physical interpretation and complementarity. Our combined analysis, including a weak nucleosynthesis constraint, yields accurate determinations of a number of parameters including the amplitude of fluctuations sigma(8)=0.89+/-0.05 and matter density Omega(m)=0.30+/-0.03. We also find a value for the Hubble parameter of H(0)=70+/-3 km s(-1) Mpc(-1), in good agreement with the Hubble Space Telescope key-project result. We conclude that the combination of CMB and weak lensing data provides some of the most powerful constraints available in cosmology today.

  12. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zeng, Huidan; Jiang, Qi; Zhao, Donghui; Chen, Guorong; Wang, Zhaofeng; Sun, Luyi; Chen, Jianding

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  13. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order tomore » provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  14. Near-optimal, asymptotic tracking in control problems involving state-variable inequality constraints

    NASA Technical Reports Server (NTRS)

    Markopoulos, N.; Calise, A. J.

    1993-01-01

    The class of all piecewise time-continuous controllers tracking a given hypersurface in the state space of a dynamical system can be split by the present transformation technique into two disjoint classes; while the first of these contains all controllers which track the hypersurface in finite time, the second contains all controllers that track the hypersurface asymptotically. On this basis, a reformulation is presented for optimal control problems involving state-variable inequality constraints. If the state constraint is regarded as 'soft', there may exist controllers which are asymptotic, two-sided, and able to yield the optimal value of the performance index.

  15. Route constraints model based on polychromatic sets

    NASA Astrophysics Data System (ADS)

    Yin, Xianjun; Cai, Chao; Wang, Houjun; Li, Dongwu

    2018-03-01

    With the development of unmanned aerial vehicle (UAV) technology, the fields of its application are constantly expanding. The mission planning of UAV is especially important, and the planning result directly influences whether the UAV can accomplish the task. In order to make the results of mission planning for unmanned aerial vehicle more realistic, it is necessary to consider not only the physical properties of the aircraft, but also the constraints among the various equipment on the UAV. However, constraints among the equipment of UAV are complex, and the equipment has strong diversity and variability, which makes these constraints difficult to be described. In order to solve the above problem, this paper, referring to the polychromatic sets theory used in the advanced manufacturing field to describe complex systems, presents a mission constraint model of UAV based on polychromatic sets.

  16. Quantifying Wheat Sensitivities to Environmental Constraints to Dissect Genotype × Environment Interactions in the Field1[OPEN

    PubMed Central

    Maphosa, Lance; Kovalchuk, Alex

    2017-01-01

    Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat (Triticum aestivum) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. PMID:28546436

  17. Cognitive dissonance reduction as constraint satisfaction.

    PubMed

    Shultz, T R; Lepper, M R

    1996-04-01

    A constraint satisfaction neural network model (the consonance model) simulated data from the two major cognitive dissonance paradigms of insufficient justification and free choice. In several cases, the model fit the human data better than did cognitive dissonance theory. Superior fits were due to the inclusion of constraints that were not part of dissonance theory and to the increased precision inherent to this computational approach. Predictions generated by the model for a free choice between undesirable alternatives were confirmed in a new psychological experiment. The success of the consonance model underscores important, unforeseen similarities between what had been formerly regarded as the rather exotic process of dissonance reduction and a variety of other, more mundane psychological processes. Many of these processes can be understood as the progressive application of constraints supplied by beliefs and attitudes.

  18. [The Nature and Issues of Drug Addiction Treatment under Constraint].

    PubMed

    Quirion, Bastien

    This article is exploring different forms of constraint that are exerted in the field of drug addiction treatment. The objective of this article is to establish benchmarks and to stimulate reflection about the ethical and clinical implications of those constraints in the field of drug addiction treatment. This article is presenting a critical review of different forms of constraint that can be exerted in Canada in regard to the treatment of drug addiction. In the first section of the article, a definition of therapeutic intervention is proposed, that includes the dimension of power, which justifies the importance of considering the coercive aspects of treatment. The second section, which represents the core section of the paper, is devoted to the presentation of different levels of constraint that can be distinguished in regard to drug addicts who are under treatment. Three levels of constraint are exposed: judicial constraint, institutional constraint and relational constraint. The coercive aspect of treatment can then be recognized as a combination of all tree levels of constraint. Judicial constraint refers to any form of constraint in which the court or the judge is imposing or recommending treatment. This particular level of constraint can take different forms, such as therapeutic remands, conditions of a probation order, conditions of a conditional sentence of imprisonment, and coercive treatment such as the ones provided through drug courts. Institutional constraint refers to any form of constraint exerted within any institutional setting, such as correctional facilities and programs offered in community. Correctional facilities being limited by their own specific mission, it might have a major impact on the way the objectives of treatment are defined. Those limitations can then be considered as a form of constraint, in which drug users don't have much space to express their personal needs. Finally, relational constraint refers to any form of constraint in

  19. Quantitative ptychographic reconstruction by applying a probe constraint

    NASA Astrophysics Data System (ADS)

    Reinhardt, J.; Schroer, C. G.

    2018-04-01

    The coherent scanning technique X-ray ptychography has become a routine tool for high-resolution imaging and nanoanalysis in various fields of research such as chemistry, biology or materials science. Often the ptychographic reconstruction results are analysed in order to yield absolute quantitative values for the object transmission and illuminating probe function. In this work, we address a common ambiguity encountered in scaling the object transmission and probe intensity via the application of an additional constraint to the reconstruction algorithm. A ptychographic measurement of a model sample containing nanoparticles is used as a test data set against which to benchmark in the reconstruction results depending on the type of constraint used. Achieving quantitative absolute values for the reconstructed object transmission is essential for advanced investigation of samples that are changing over time, e.g., during in-situ experiments or in general when different data sets are compared.

  20. The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Samaniego, Luis; Mai, Juliane; Kumar, Rohini; Thober, Stephan; Zink, Matthias; Schäfer, David; Savenije, Hubert H. G.; Hrachowitz, Markus

    2016-03-01

    Heterogeneity of landscape features like terrain, soil, and vegetation properties affects the partitioning of water and energy. However, it remains unclear to what extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated into the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge-based model constraints reduces model uncertainty, and whether (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge-based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as an overall measure of model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19

  1. Constraint Embedding Technique for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  2. Uncertainty as Knowledge: Constraints on Policy Choices Provided by Analysis of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lewandowsky, S.; Risbey, J.; Smithson, M.; Newell, B. R.

    2012-12-01

    Uncertainty forms an integral part of climate science, and it is often cited in connection with arguments against mitigative action. We argue that an analysis of uncertainty must consider existing knowledge as well as uncertainty, and the two must be evaluated with respect to the outcomes and risks associated with possible policy options. Although risk judgments are inherently subjective, an analysis of the role of uncertainty within the climate system yields two constraints that are robust to a broad range of assumptions. Those constraints are that (a) greater uncertainty about the climate system is necessarily associated with greater expected damages from warming, and (b) greater uncertainty translates into a greater risk of the failure of mitigation efforts. These ordinal constraints are unaffected by subjective or cultural risk-perception factors, they are independent of the discount rate, and they are independent of the magnitude of the estimate for climate sensitivity. The constraints mean that any appeal to uncertainty must imply a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.

  3. The important but weakening maize yield benefit of grain filling prolongation in the US Midwest.

    PubMed

    Zhu, Peng; Jin, Zhenong; Zhuang, Qianlai; Ciais, Philippe; Bernacchi, Carl; Wang, Xuhui; Makowski, David; Lobell, David

    2018-06-14

    A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed. By using satellite data from 2000 to 2015, an average lengthening of GFP of 0.37 days per year was found over the region, which probably results from variety renewal. Statistical analysis suggests that longer GFP accounted for roughly one-quarter (23%) of the yield increase trend by promoting kernel dry matter accumulation, yet had less yield benefit in hotter counties. Both official survey data and crop model simulations estimated a similar contribution of GFP trend to yield. If growing degree days that determines the GFP continues to prolong at the current rate for the next 50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress is insufficient to offset yield losses in future climates, because drought and heat stress during the GFP will become more prevalent and severe. This study highlights the need to devise multiple effective adaptation strategies to withstand the upcoming challenges in food security. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Constraints, Trade-offs and the Currency of Fitness.

    PubMed

    Acerenza, Luis

    2016-03-01

    Understanding evolutionary trajectories remains a difficult task. This is because natural evolutionary processes are simultaneously affected by various types of constraints acting at the different levels of biological organization. Of particular importance are constraints where correlated changes occur in opposite directions, called trade-offs. Here we review and classify the main evolutionary constraints and trade-offs, operating at all levels of trait hierarchy. Special attention is given to life history trade-offs and the conflict between the survival and reproduction components of fitness. Cellular mechanisms underlying fitness trade-offs are described. At the metabolic level, a linear trade-off between growth and flux variability was found, employing bacterial genome-scale metabolic reconstructions. Its analysis indicates that flux variability can be considered as the currency of fitness. This currency is used for fitness transfer between fitness components during adaptations. Finally, a discussion is made regarding the constraints which limit the increase in the amount of fitness currency during evolution, suggesting that occupancy constraints are probably the main restrictions.

  5. Evolutionary stability for matrix games under time constraints.

    PubMed

    Garay, József; Csiszár, Villő; Móri, Tamás F

    2017-02-21

    Game theory focuses on payoffs and typically ignores time constraints that play an important role in evolutionary processes where the repetition of games can depend on the strategies, too. We introduce a matrix game under time constraints, where each pairwise interaction has two consequences: both players receive a payoff and they cannot play the next game for a specified time duration. Thus our model is defined by two matrices: a payoff matrix and an average time duration matrix. Maynard Smith's concept of evolutionary stability is extended to this class of games. We illustrate the effect of time constraints by the well-known prisoner's dilemma game, where additional time constraints can ensure the existence of unique evolutionary stable strategies (ESS), both pure and mixed, or the coexistence of two pure ESS. Our general results may be useful in several fields of biology where evolutionary game theory is applied, principally in ecological games, where time constraints play an inevitable role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.

    PubMed

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney J

    2018-05-01

    Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.

  7. Genetic constraints predict evolutionary divergence in Dalechampia blossoms.

    PubMed

    Bolstad, Geir H; Hansen, Thomas F; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W Scott

    2014-08-19

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.

  8. Balancing Flexible Constraints and Measurement Precision in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Moyer, Eric L.; Galindo, Jennifer L.; Dodd, Barbara G.

    2012-01-01

    Managing test specifications--both multiple nonstatistical constraints and flexibly defined constraints--has become an important part of designing item selection procedures for computerized adaptive tests (CATs) in achievement testing. This study compared the effectiveness of three procedures: constrained CAT, flexible modified constrained CAT,…

  9. Study of the strong {sigma}{sub c}{yields}{lambda}{sub c}{pi},{sigma}{sub c}*{yields}{lambda}{sub c}{pi} and {xi}{sub c}*{yields}{xi}{sub c}{pi} decays in a nonrelativistic quark model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertus, C.; Nieves, J.; Hernandez, E.

    We present results for the strong widths corresponding to the {sigma}{sub c}{yields}{lambda}{sub c}{pi}, {sigma}{sub c}*{yields}{lambda}{sub c}{pi} and {xi}{sub c}*{yields}{xi}{sub c}{pi} decays. The calculations have been done in a nonrelativistic constituent quark model with wave functions that take advantage of the constraints imposed by heavy quark symmetry. Partial conservation of axial current hypothesis allows us to determine the strong vertices from an analysis of the axial current matrix elements. Our results {gamma}({sigma}{sub c}{sup ++}{yields}{lambda}{sub c}{sup +}{pi}{sup +})=2.41{+-}0.07{+-}0.02 MeV, {gamma}({sigma}{sub c}{sup +}{yields}{lambda}{sub c}{sup +}{pi}{sup 0})=2.79{+-}0.08{+-}0.02 MeV, {gamma}({sigma}{sub c}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})=2.37{+-}0.07{+-}0.02 MeV, {gamma}({sigma}{sub c}*{sup ++}{yields}{lambda}{sub c}{sup +}{pi}{sup +})=17.52{+-}0.74{+-}0.12 MeV, {gamma}({sigma}{sub c}*{supmore » +}{yields}{lambda}{sub c}{sup +}{pi}{sup 0})=17.31{+-}0.73{+-}0.12 MeV, {gamma}({sigma}{sub c}*{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})=16.90{+-}0.71{+-}0.12 MeV, {gamma}({xi}{sub c}*{sup +}{yields}{xi}{sub c}{sup 0}{pi}{sup +}+{xi}{sub c}{sup +}{pi}{sup 0})=3.18{+-}0.10{+-}0.01 MeV, and {gamma}({xi}{sub c}*{sup 0}{yields}{xi}{sub c}{sup +}{pi}{sup -}+{xi}{sub c}{sup 0}{pi}{sup 0})=3.03{+-}0.10{+-}0.01 MeV are in good agreement with experimental determinations.« less

  10. Beyond mechanistic interaction: value-based constraints on meaning in language.

    PubMed

    Rączaszek-Leonardi, Joanna; Nomikou, Iris

    2015-01-01

    According to situated, embodied, and distributed approaches to cognition, language is a crucial means for structuring social interactions. Recent approaches that emphasize this coordinative function treat language as a system of replicable constraints on individual and interactive dynamics. In this paper, we argue that the integration of the replicable-constraints approach to language with the ecological view on values allows for a deeper insight into processes of meaning creation in interaction. Such a synthesis of these frameworks draws attention to important sources of structuring interactions beyond the sheer efficiency of a collective system in its current task situation. Most importantly, the workings of linguistic constraints will be shown as embedded in more general fields of values, which are realized on multiple timescales. Because the ontogenetic timescale offers a convenient window into the emergence of linguistic constraints, we present illustrations of concrete mechanisms through which values may become embodied in language use in development.

  11. Constraints to cattle production in a semiarid pastoral system in Kenya.

    PubMed

    Onono, Joshua Orungo; Wieland, Barbara; Rushton, Jonathan

    2013-08-01

    Livestock keeping is the mainstay for the pastoral community while also providing social and cultural value. This study ranked main production constraints and cattle diseases that impacted livelihood and estimated herd prevalence, incidence rate, and impact of diseases on production parameters in a semiarid pastoral district of Narok in Kenya. Data collection employed participatory techniques including listing, pairwise ranking, disease incidence scoring, proportional piling, and disease impact matrix scoring and this was disaggregated by gender. Production constraints with high scores for impact on livelihood included scarcity of water (19%), lack of extension services (15%), presence of diseases (12%), lack of market for cattle and their products (10%), and recurrent cycle of drought (9%). Diseases with high scores for impact on livelihood were East Coast fever (ECF) (22%) and foot and mouth disease (FMD) (21%). High estimated incidence rates were reported for FMD (67%), trypanosomosis (28%), and ECF (15%), while contagious bovine pleuropneumonia (CBPP) had an incidence rate <1%. Milk yield was affected by FMD, ECF, and trypanosomosis, while ECF was the cause of increased mortality. FMD, ECF, CBPP, and brucellosis caused increased abortion, while effect of gender and location of study was not significant. Despite CBPP being regarded as an important disease affecting cattle production in sub-Sahara Africa, its estimated incidence rate in herds was low. This study indicates what issues should be prioritized by livestock policy for pastoral areas.

  12. Constraint Optimization Literature Review

    DTIC Science & Technology

    2015-11-01

    COPs. 15. SUBJECT TERMS high-performance computing, mobile ad hoc network, optimization, constraint, satisfaction 16. SECURITY CLASSIFICATION OF: 17...Optimization Problems 1 2.1 Constraint Satisfaction Problems 1 2.2 Constraint Optimization Problems 3 3. Constraint Optimization Algorithms 9 3.1...Constraint Satisfaction Algorithms 9 3.1.1 Brute-Force search 9 3.1.2 Constraint Propagation 10 3.1.3 Depth-First Search 13 3.1.4 Local Search 18

  13. Producing Satisfactory Solutions to Scheduling Problems: An Iterative Constraint Relaxation Approach

    NASA Technical Reports Server (NTRS)

    Chien, S.; Gratch, J.

    1994-01-01

    One drawback to using constraint-propagation in planning and scheduling systems is that when a problem has an unsatisfiable set of constraints such algorithms typically only show that no solution exists. While, technically correct, in practical situations, it is desirable in these cases to produce a satisficing solution that satisfies the most important constraints (typically defined in terms of maximizing a utility function). This paper describes an iterative constraint relaxation approach in which the scheduler uses heuristics to progressively relax problem constraints until the problem becomes satisfiable. We present empirical results of applying these techniques to the problem of scheduling spacecraft communications for JPL/NASA antenna resources.

  14. Genetic constraints predict evolutionary divergence in Dalechampia blossoms

    PubMed Central

    Bolstad, Geir H.; Hansen, Thomas F.; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W. Scott

    2014-01-01

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700

  15. Implications of water constraints for electricity capacity expansion in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.; Hejazi, M. I.; Iyer, G.; Forman, B. A.

    2017-12-01

    U.S. electricity generation is vulnerable to water supply since water is required for cooling. Constraints on the availability of water will therefore necessitate adaptive planning by the power generation sector. Hence, it is important to integrate restrictions in water availability in electricity capacity planning in order to better understand the economic viability of alternative capacity planning options. The study of the implications of water constraints for the U.S. power generation system is limited in terms of scale and robustness. We extend previous studies by including physical water constraints in a state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA). We focus on the implications of such constraints for the U.S. electricity capacity expansion, integrating both supply and demand effects under a consistent framework. Constraints on the availability of water have two general effects across the U.S. First, water availability constraints increase the cost of electricity generation, resulting in reduced electrification of end-use sectors. Second, water availability constraints result in forced retirements of water-intensive technologies such as thermoelectric coal- and gas- fired technologies before the end of their natural lifetimes. The demand for electricity is then met by an increase in investments in less water-dependent technologies such as wind and solar photovoltaic. Our results show that the regional patterns of the above effects are heterogeneous across the U.S. In general, the impacts of water constraints on electricity capacity expansion are more pronounced in the West than in the East. This is largely because of lower water availability in the West compared to the East due to lower precipitation in the Western states. Constraints on the availability of water might also have important implications for U.S. electricity trade. For example, under severe constraints on the availability of water

  16. Constraint-Muse: A Soft-Constraint Based System for Music Therapy

    NASA Astrophysics Data System (ADS)

    Hölzl, Matthias; Denker, Grit; Meier, Max; Wirsing, Martin

    Monoidal soft constraints are a versatile formalism for specifying and solving multi-criteria optimization problems with dynamically changing user preferences. We have developed a prototype tool for interactive music creation, called Constraint Muse, that uses monoidal soft constraints to ensure that a dynamically generated melody harmonizes with input from other sources. Constraint Muse provides an easy to use interface based on Nintendo Wii controllers and is intended to be used in music therapy for people with Parkinson’s disease and for children with high-functioning autism or Asperger’s syndrome.

  17. Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating least squares with penalty functions.

    PubMed

    Gemperline, Paul J; Cash, Eric

    2003-08-15

    A new algorithm for self-modeling curve resolution (SMCR) that yields improved results by incorporating soft constraints is described. The method uses least squares penalty functions to implement constraints in an alternating least squares algorithm, including nonnegativity, unimodality, equality, and closure constraints. By using least squares penalty functions, soft constraints are formulated rather than hard constraints. Significant benefits are (obtained using soft constraints, especially in the form of fewer distortions due to noise in resolved profiles. Soft equality constraints can also be used to introduce incomplete or partial reference information into SMCR solutions. Four different examples demonstrating application of the new method are presented, including resolution of overlapped HPLC-DAD peaks, flow injection analysis data, and batch reaction data measured by UV/visible and near-infrared spectroscopy (NIR). Each example was selected to show one aspect of the significant advantages of soft constraints over traditionally used hard constraints. Incomplete or partial reference information into self-modeling curve resolution models is described. The method offers a substantial improvement in the ability to resolve time-dependent concentration profiles from mixture spectra recorded as a function of time.

  18. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    PubMed

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. An event-based architecture for solving constraint satisfaction problems

    PubMed Central

    Mostafa, Hesham; Müller, Lorenz K.; Indiveri, Giacomo

    2015-01-01

    Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed. PMID:26642827

  20. Individuals' interpretation of constraints: a new perspective on existing theory

    Treesearch

    Po-Ju Chen; Deborah Kerstetter; Linda Caldwell

    2001-01-01

    The travel decision-making process is influenced by a number of factors. One of the most important yet infrequently studied factors is "perceived constraints." Nearly a decade ago Crawford, Jackson and Godbey (1991) developed a framework to guide constraints research. Numerous authors have utilized this framework but results have suggested that individuals...

  1. Participatory evaluation of chicken health and production constraints in Ethiopia

    PubMed Central

    Sambo, Emmanuel; Bettridge, Judy; Dessie, Tadelle; Amare, Alemayehu; Habte, Tadiose; Wigley, Paul; Christley, Robert M.

    2015-01-01

    Chicken production has a major role in the economy of developing countries and backyard production is particularly important to women. Several programmes, in Ethiopia and elsewhere, have attempted to improve chicken production as a means to reduce poverty. A key constraint to chicken production identified by farmers is disease. This study used participatory rural appraisal methods to work with chicken-keepers in order to prioritise chicken diseases, place these within the context of other production constraints, and to explore perceptions of disease risk factors and biosecurity measures. The study, focused on Debre Zeit, Ethiopia, included 71 poultry keepers (41 backyard and 30 semi-intensive chicken producers). Although women played an important role in backyard production systems, semi-intensive farms were more likely to be controlled by men. Participants identified 9 constraints to production: 7 of 8 groups of backyard producers and 15/31 semi-intensive producers ranked diseases as the most important constraint to chicken production. In contrast to previous reports, farmers in both groups had considerable knowledge of diseases and of factors affecting disease risk. Both groups, but particularly semi-intensive producers, highlighted access to feed as a constraint. Many of the challenges faced by both groups were associated with difficulty accessing agricultural and veterinary inputs and expertise. Whilst many of the constraints identified by farmers could be viewed as simply technical issues to be overcome, we believe it is important to recognise the social factors underpinning what are, in reality, relatively modest technical challenges. The low involvement of women in semi-intensive production needs to be recognised by poultry development schemes. Provision needs to be made to allow access to inputs for a wide range of business models, particularly for those, such as women, who have limited access to the capital to allow them to make the jump from backyard to

  2. Constraints on the yields of the first supernovae in the Universe

    NASA Astrophysics Data System (ADS)

    Cayrel, Roger

    The study of the chemical composition of the most primitive stars of the galactic halo has been made possible with the help of large surveys aimed at finding such stars, and by powerful new instruments, as the Keck telescopes, the Subaru telescope, and the ESO Very Large Telescope. The atmospheres of these primitive stars possess, per hydrogen atom, from 1/1000th to 1/10000th less supernovae-made elements than the Sun, and reflect the yields of the first supernovae. It was once expected that these yields would show a larger scatter than those in the more metal-rich Population II stars, which have been enriched by many more supernovae explosions than the earlier generations. If we leave aside one class of objects, the Carbon-Enhanced Metal-Poor (CEMP) stars, which is the topic of another talk at this conference, a rather well-defined set of abundance ratios emerge for C to Zn amongst the most primitive population, with a scatter that is surprisingly small. The quality of the high-resolution spectroscopic data is such that the observed level of scatter in the measured elemental abundances for these species is no longer limited by accuracy of the observations, nor by other errors inherent to the analysis of the data. By way of contrast, amongst the neutron-capture elements produced by the r-process, at a given metallicity a spread reaching a factor of over 1000 exists for elements such as Ba. The stable portion of the r-process pattern observed in such stars is the second peak (Z = 56 to 72), in which the relative abundances of these elements in very metal-poor stars are almost indistinguishable from their inferred proportions in solar-system material. Recent observations have permitted the determination of the abundances of uranium, tho- rium, and lead produced by the r-process in extremely metal-poor stars, and indicate that lead is mainly produced by radioactive decay of the actinides (as opposed to other direct channels). In addition, the observed U/Th ratio has

  3. Learning metathesis: Evidence for syllable structure constraints.

    PubMed

    Finley, Sara

    2017-02-01

    One of the major questions in the cognitive science of language is whether the perceptual and phonological motivations for the rules and patterns that govern the sounds of language are a part of the psychological reality of grammatical representations. This question is particularly important in the study of phonological patterns - systematic constraints on the representation of sounds, because phonological patterns tend to be grounded in phonetic constraints. This paper focuses on phonological metathesis, which occurs when two adjacent sounds switch positions (e.g., ca st pronounced as ca ts ). While many cases of phonological metathesis appear to be motivated by constraints on syllable structure, it is possible that these metathesis patterns are merely artifacts of historical change, and do not represent the linguistic knowledge of the speaker (Blevins & Garrett, 1998). Participants who were exposed to a metathesis pattern that can be explained in terms of structural or perceptual improvement were less likely to generalize to metathesis patterns that did not show the same improvements. These results support a substantively biased theory in which phonological patterns are encoded in terms of structurally motivated constraints.

  4. Constraint Logic Programming approach to protein structure prediction.

    PubMed

    Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico

    2004-11-30

    The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.

  5. Acid soil infertility effects on peanut yields and yield components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blamey, F.P.C.

    1983-01-01

    The interpretation of soil amelioration experiments with peanuts is made difficult by the unpredictibility of the crop and by the many factors altered when ameliorating acid soils. The present study was conducted to investigate the effects of lime and gypsum applications on peanut kernel yield via the three first order yield components, pods per ha, kernels per pod, and kernel mass. On an acid medium sandy loam soil (typic Plinthustult), liming resulted in a highly significant kernel yield increase of 117% whereas gypsum applications were of no significant benefit. As indicated by path coefficient analysis, an increase in the numbermore » of pods per ha was markedly more important in increasing yield than an increase in either the number of kernels per pod or kernel mass. Furthermore, exch. Al was found to be particularly detrimental to pod number. It was postulated that poor peanut yields resulting from acid soil infertility were mainly due to the depressive effect of exch. Al on pod number. Exch. Ca appeared to play a secondary role by ameliorating the adverse effects of exch. Al.« less

  6. Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model.

    PubMed

    Yang, Liang; Ge, Meng; Jin, Di; He, Dongxiao; Fu, Huazhu; Wang, Jing; Cao, Xiaochun

    2017-01-01

    Due to the demand for performance improvement and the existence of prior information, semi-supervised community detection with pairwise constraints becomes a hot topic. Most existing methods have been successfully encoding the must-link constraints, but neglect the opposite ones, i.e., the cannot-link constraints, which can force the exclusion between nodes. In this paper, we are interested in understanding the role of cannot-link constraints and effectively encoding pairwise constraints. Towards these goals, we define an integral generative process jointly considering the network topology, must-link and cannot-link constraints. We propose to characterize this process as a Multi-variance Mixed Gaussian Generative (MMGG) Model to address diverse degrees of confidences that exist in network topology and pairwise constraints and formulate it as a weighted nonnegative matrix factorization problem. The experiments on artificial and real-world networks not only illustrate the superiority of our proposed MMGG, but also, most importantly, reveal the roles of pairwise constraints. That is, though the must-link is more important than cannot-link when either of them is available, both must-link and cannot-link are equally important when both of them are available. To the best of our knowledge, this is the first work on discovering and exploring the importance of cannot-link constraints in semi-supervised community detection.

  7. Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model

    PubMed Central

    Ge, Meng; Jin, Di; He, Dongxiao; Fu, Huazhu; Wang, Jing; Cao, Xiaochun

    2017-01-01

    Due to the demand for performance improvement and the existence of prior information, semi-supervised community detection with pairwise constraints becomes a hot topic. Most existing methods have been successfully encoding the must-link constraints, but neglect the opposite ones, i.e., the cannot-link constraints, which can force the exclusion between nodes. In this paper, we are interested in understanding the role of cannot-link constraints and effectively encoding pairwise constraints. Towards these goals, we define an integral generative process jointly considering the network topology, must-link and cannot-link constraints. We propose to characterize this process as a Multi-variance Mixed Gaussian Generative (MMGG) Model to address diverse degrees of confidences that exist in network topology and pairwise constraints and formulate it as a weighted nonnegative matrix factorization problem. The experiments on artificial and real-world networks not only illustrate the superiority of our proposed MMGG, but also, most importantly, reveal the roles of pairwise constraints. That is, though the must-link is more important than cannot-link when either of them is available, both must-link and cannot-link are equally important when both of them are available. To the best of our knowledge, this is the first work on discovering and exploring the importance of cannot-link constraints in semi-supervised community detection. PMID:28678864

  8. Energetic and ecological constraints on population density of reef fishes.

    PubMed

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).

  9. Energetic and ecological constraints on population density of reef fishes

    PubMed Central

    Barneche, D. R.; Kulbicki, M.; Floeter, S. R.; Friedlander, A. M.; Allen, A. P.

    2016-01-01

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. PMID:26791611

  10. Constraint Maintenance with Preferences and Underlying Flexible Solution

    NASA Technical Reports Server (NTRS)

    Bresina, John; Jonsson, Ari; Morris, Paul; Rajan, Kanna

    2003-01-01

    This paper describes an aspect of the constraint reasoning mechanism. that is part of a ground planning system slated to be used for the Mars Exploration Rovers mission, where two rovers are scheduled to land on Mars in January of 2003. The planning system combines manual planning software from JPL with an automatic planning/scheduling system from NASA Ames Research Center, and is designed to be used in a mixed-initiative mode. Among other things, this means that after a plan has been produced, the human operator can perform extensive modifications under the supervision of the automated. system. For each modification to an activity, the automated system must adjust other activities as needed to ensure that constraints continue to be satisfied. Thus, the system must accommodate change in an interactive setting. Performance is of critical importance for interactive use. This is achieved by maintaining an underlying flexible solution to the temporal constraints, while the system presents a fixed schedule to the user. Adjustments are then a matter of constraint propagation rather than completely re-solving the problem. However, this begs the important question of which fixed schedule (among the ones sanctioned by the underlying flexible solution) should be presented to the user.Our approach uses least-change and other preferences as a prism through which the user views the flexible solution.

  11. Dynamical aspects of behavior generation under constraints

    PubMed Central

    Harter, Derek; Achunala, Srinivas

    2007-01-01

    Dynamic adaptation is a key feature of brains helping to maintain the quality of their performance in the face of increasingly difficult constraints. How to achieve high-quality performance under demanding real-time conditions is an important question in the study of cognitive behaviors. Animals and humans are embedded in and constrained by their environments. Our goal is to improve the understanding of the dynamics of the interacting brain–environment system by studying human behaviors when completing constrained tasks and by modeling the observed behavior. In this article we present results of experiments with humans performing tasks on the computer under variable time and resource constraints. We compare various models of behavior generation in order to describe the observed human performance. Finally we speculate on mechanisms how chaotic neurodynamics can contribute to the generation of flexible human behaviors under constraints. PMID:19003514

  12. Constraint monitoring in TOSCA

    NASA Technical Reports Server (NTRS)

    Beck, Howard

    1992-01-01

    The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.

  13. Constraints on water use efficiency of drought tolerant maize grown in a semi-arid environment

    USDA-ARS?s Scientific Manuscript database

    Identifying the constraints on crop water use efficiency (WUE) will help develop strategies to mitigate these limitations. The objectives of this research were to 1) develop a boundary function for maize using data (n=260) from research projects conducted at Bushland, TX, and 2) compare the yields o...

  14. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  15. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  16. A comparison of Heuristic method and Llewellyn’s rules for identification of redundant constraints

    NASA Astrophysics Data System (ADS)

    Estiningsih, Y.; Farikhin; Tjahjana, R. H.

    2018-03-01

    Important techniques in linear programming is modelling and solving practical optimization. Redundant constraints are consider for their effects on general linear programming problems. Identification and reduce redundant constraints are for avoidance of all the calculations associated when solving an associated linear programming problems. Many researchers have been proposed for identification redundant constraints. This paper a compararison of Heuristic method and Llewellyn’s rules for identification of redundant constraints.

  17. Learning metathesis: Evidence for syllable structure constraints

    PubMed Central

    Finley, Sara

    2016-01-01

    One of the major questions in the cognitive science of language is whether the perceptual and phonological motivations for the rules and patterns that govern the sounds of language are a part of the psychological reality of grammatical representations. This question is particularly important in the study of phonological patterns – systematic constraints on the representation of sounds, because phonological patterns tend to be grounded in phonetic constraints. This paper focuses on phonological metathesis, which occurs when two adjacent sounds switch positions (e.g., cast pronounced as cats). While many cases of phonological metathesis appear to be motivated by constraints on syllable structure, it is possible that these metathesis patterns are merely artifacts of historical change, and do not represent the linguistic knowledge of the speaker (Blevins & Garrett, 1998). Participants who were exposed to a metathesis pattern that can be explained in terms of structural or perceptual improvement were less likely to generalize to metathesis patterns that did not show the same improvements. These results support a substantively biased theory in which phonological patterns are encoded in terms of structurally motivated constraints. PMID:28082764

  18. Quantifying yield gaps in wheat production in Russia

    NASA Astrophysics Data System (ADS)

    Schierhorn, Florian; Faramarzi, Monireh; Prishchepov, Alexander V.; Koch, Friedrich J.; Müller, Daniel

    2014-08-01

    Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia’s widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.51-2.10 t ha-1, or 44-52% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.14-3.30 t ha-1, or 62-63% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha-1) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets.

  19. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  20. About some types of constraints in problems of routing

    NASA Astrophysics Data System (ADS)

    Petunin, A. A.; Polishuk, E. G.; Chentsov, A. G.; Chentsov, P. A.; Ukolov, S. S.

    2016-12-01

    Many routing problems arising in different applications can be interpreted as a discrete optimization problem with additional constraints. The latter include generalized travelling salesman problem (GTSP), to which task of tool routing for CNC thermal cutting machines is sometimes reduced. Technological requirements bound to thermal fields distribution during cutting process are of great importance when developing algorithms for this task solution. These requirements give rise to some specific constraints for GTSP. This paper provides a mathematical formulation for the problem of thermal fields calculating during metal sheet thermal cutting. Corresponding algorithm with its programmatic implementation is considered. The mathematical model allowing taking such constraints into account considering other routing problems is discussed either.

  1. Generalizing Backtrack-Free Search: A Framework for Search-Free Constraint Satisfaction

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Frank, Jeremy

    2000-01-01

    Tractable classes of constraint satisfaction problems are of great importance in artificial intelligence. Identifying and taking advantage of such classes can significantly speed up constraint problem solving. In addition, tractable classes are utilized in applications where strict worst-case performance guarantees are required, such as constraint-based plan execution. In this work, we present a formal framework for search-free (backtrack-free) constraint satisfaction. The framework is based on general procedures, rather than specific propagation techniques, and thus generalizes existing techniques in this area. We also relate search-free problem solving to the notion of decision sets and use the result to provide a constructive criterion that is sufficient to guarantee search-free problem solving.

  2. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    PubMed Central

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  3. Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign

    PubMed Central

    2007-01-01

    Background Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. Results The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. Conclusion Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction

  4. Knowledge-based versus experimentally acquired distance and angle constraints for NMR structure refinement.

    PubMed

    Cui, Feng; Jernigan, Robert; Wu, Zhijun

    2008-04-01

    Nuclear Overhauser effects (NOE) distance constraints and torsion angle constraints are major conformational constraints for nuclear magnetic resonance (NMR) structure refinement. In particular, the number of NOE constraints has been considered as an important determinant for the quality of NMR structures. Of course, the availability of torsion angle constraints is also critical for the formation of correct local conformations. In our recent work, we have shown how a set of knowledge-based short-range distance constraints can also be utilized for NMR structure refinement, as a complementary set of conformational constraints to the NOE and torsion angle constraints. In this paper, we show the results from a series of structure refinement experiments by using different types of conformational constraints--NOE, torsion angle, or knowledge-based constraints--or their combinations, and make a quantitative assessment on how the experimentally acquired constraints contribute to the quality of structural models and whether or not they can be combined with or substituted by the knowledge-based constraints. We have carried out the experiments on a small set of NMR structures. Our preliminary calculations have revealed that the torsion angle constraints contribute substantially to the quality of the structures, but require to be combined with the NOE constraints to be fully effective. The knowledge-based constraints can be functionally as crucial as the torsion angle constraints, although they are statistical constraints after all and are not meant to be able to replace the latter.

  5. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.

    PubMed

    Dixit, Prakash N; Telleria, Roberto

    2015-04-01

    Inter-annual and seasonal variability in climatic parameters, most importantly rainfall, have potential to cause climate-induced risk in long-term crop production. Short-term field studies do not capture the full nature of such risk and the extent to which modifications to crop, soil and water management recommendations may be made to mitigate the extent of such risk. Crop modeling studies driven by long-term daily weather data can predict the impact of climate-induced risk on crop growth and yield however, the availability of long-term daily weather data can present serious constraints to the use of crop models. To tackle this constraint, two weather generators namely, LARS-WG and MarkSim, were evaluated in order to assess their capabilities of reproducing frequency distributions, means, variances, dry spell and wet chains of observed daily precipitation, maximum and minimum temperature, and solar radiation for the eight locations across cropping areas of Northern Syria and Lebanon. Further, the application of generated long-term daily weather data, with both weather generators, in simulating barley growth and yield was also evaluated. We found that overall LARS-WG performed better than MarkSim in generating daily weather parameters and in 50 years continuous simulation of barley growth and yield. Our findings suggest that LARS-WG does not necessarily require long-term e.g., >30 years observed weather data for calibration as generated results proved to be satisfactory with >10 years of observed data except in area with higher altitude. Evaluating these weather generators and the ability of generated weather data to perform long-term simulation of crop growth and yield is an important first step to assess the impact of future climate on yields, and to identify promising technologies to make agricultural systems more resilient in the given region. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Abundance Patterns in S-type AGB Stars: Setting Constraints on Nucleosynthesis and Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Neyskens, P.; van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A.

    2011-09-01

    During evolution on the AGB, stars of type S are the first to experience s-process nucleosynthesis and the third dredge-up, and therefore to exhibit s-process signatures in their atmospheres. Their high mass-loss rates (10-7 to 10-6 M⊙/year) make them major contributors to the AGB nucleosynthesis yields at solar metallicity. Precise abundance determinations in S stars are of the utmost importance for constraining e.g. the third dredge-up luminosity and efficiency (which has been only crudely parameterized in current nucleosynthetic models so far). Here, dedicated S-star model atmospheres are used to determine precise abundances of key s-process elements, and to set constraints on nucleosynthesis and stellar evolution models. Special interest is paid to technetium, an element with no stable isotopes. Its detection is considered the best signature that the star effectively populates the thermally-pulsing AGB phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The [Zr/Fe] overabundances are in good agreement with model predictions, while the Tc/Zr abundances are slightly overpredicted. This discrepancy can help to set better constraints on nucleosynthesis and stellar evolution models of AGB stars.

  7. Closing Yield Gaps: How Sustainable Can We Be?

    PubMed

    Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E; Kropp, Juergen P

    2015-01-01

    Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way

  8. Experimental constraints on the sulfur content in the Earth's core

    NASA Astrophysics Data System (ADS)

    Fei, Y.; Huang, H.; Leng, C.; Hu, X.; Wang, Q.

    2015-12-01

    Any core formation models would lead to the incorporation of sulfur (S) into the Earth's core, based on the cosmochemical/geochemical constraints, sulfur's chemical affinity for iron (Fe), and low eutectic melting temperature in the Fe-FeS system. Preferential partitioning of S into the melt also provides petrologic constraint on the density difference between the liquid outer and solid inner cores. Therefore, the center issue is to constrain the amount of sulfur in the core. Geochemical constraints usually place 2-4 wt.% S in the core after accounting for its volatility, whereas more S is allowed in models based on mineral physics data. Here we re-examine the constraints on the S content in the core by both petrologic and mineral physics data. We have measured S partitioning between solid and liquid iron in the multi-anvil apparatus and the laser-heated diamond anvil cell, evaluating the effect of pressure on melting temperature and partition coefficient. In addition, we have conducted shockwave experiments on Fe-11.8wt%S using a two-stage light gas gun up to 211 GPa. The new shockwave experiments yield Hugoniot densities and the longitudinal sound velocities. The measurements provide the longitudinal sound velocity before melting and the bulk sound velocity of liquid. The measured sound velocities clearly show melting of the Fe-FeS mix with 11.8wt%S at a pressure between 111 and 129 GPa. The sound velocities at pressures above 129GPa represent the bulk sound velocities of Fe-11.8wt%S liquid. The combined data set including density, sound velocity, melting temperature, and S partitioning places a tight constraint on the required sulfur partition coefficient to produce the density and velocity jumps and the bulk sulfur content in the core.

  9. Automatic Constraint Detection for 2D Layout Regularization.

    PubMed

    Jiang, Haiyong; Nan, Liangliang; Yan, Dong-Ming; Dong, Weiming; Zhang, Xiaopeng; Wonka, Peter

    2016-08-01

    In this paper, we address the problem of constraint detection for layout regularization. The layout we consider is a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important in digitizing plans or images, such as floor plans and facade images, and in the improvement of user-created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm that automatically detects constraints. We evaluate the proposed framework using a variety of input layouts from different applications. Our results demonstrate that our method has superior performance to the state of the art.

  10. Learning Artificial Phonotactic Constraints: Time Course, Durability, and Relationship to Natural Constraints

    ERIC Educational Resources Information Center

    Taylor, Conrad F.; Houghton, George

    2005-01-01

    G. S. Dell, K. D. Reed, D. R. Adams, and A. S. Meyer (2000) proposed a "breadth-of-constraint" continuum on phoneme errors, using artificial experiment-wide constraints to investigate a putative middle ground between local and language-wide constraints. The authors report 5 experiments that test the idea of the continuum and the location of the…

  11. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly.

    PubMed

    Dwyer, John M; Laughlin, Daniel C

    2017-07-01

    Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Recent development in low-constraint fracture toughness testing for structural integrity assessment of pipelines

    NASA Astrophysics Data System (ADS)

    Kang, Jidong; Gianetto, James A.; Tyson, William R.

    2018-03-01

    Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edgenotched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.

  13. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  14. Constraints complicate centrifugal compressor depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, B.; Colbert, F.L.

    1993-05-10

    Blowdown of a centrifugal compressor is complicated by process constraints that might require slowing the depressurization rate and by mechanical constraints for which a faster rate might be preferred. The paper describes design constraints such as gas leaks; thrust-bearing overload; system constraints; flare extinguishing; heat levels; and pressure drop.

  15. Phonological Constraint Induction in a Connectionist Network: Learning OCP-Place Constraints from Data

    ERIC Educational Resources Information Center

    Alderete, John; Tupper, Paul; Frisch, Stefan A.

    2013-01-01

    A significant problem in computational language learning is that of inferring the content of well-formedness constraints from input data. In this article, we approach the constraint induction problem as the gradual adjustment of subsymbolic constraints in a connectionist network. In particular, we develop a multi-layer feed-forward network that…

  16. A new UK fission yield evaluation UKFY3.7

    NASA Astrophysics Data System (ADS)

    Mills, Robert William

    2017-09-01

    The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.

  17. ROI on yield data analysis systems through a business process management strategy

    NASA Astrophysics Data System (ADS)

    Rehani, Manu; Strader, Nathan; Hanson, Jeff

    2005-05-01

    The overriding motivation for yield engineering is profitability. This is achieved through application of yield management. The first application is to continually reduce waste in the form of yield loss. New products, new technologies and the dynamic state of the process and equipment keep introducing new ways to cause yield loss. In response, the yield management efforts have to continually come up with new solutions to minimize it. The second application of yield engineering is to aid in accurate product pricing. This is achieved through predicting future results of the yield engineering effort. The more accurate the yield prediction, the more accurate the wafer start volume, the more accurate the wafer pricing. Another aspect of yield prediction pertains to gauging the impact of a yield problem and predicting how long that will last. The ability to predict such impacts again feeds into wafer start calculations and wafer pricing. The question then is that if the stakes on yield management are so high why is it that most yield management efforts are run like science and engineering projects and less like manufacturing? In the eighties manufacturing put the theory of constraints1 into practice and put a premium on stability and predictability in manufacturing activities, why can't the same be done for yield management activities? This line of introspection led us to define and implement a business process to manage the yield engineering activities. We analyzed the best known methods (BKM) and deployed a workflow tool to make them the standard operating procedure (SOP) for yield managment. We present a case study in deploying a Business Process Management solution for Semiconductor Yield Engineering in a high-mix ASIC environment. We will present a description of the situation prior to deployment, a window into the development process and a valuation of the benefits.

  18. Societal constraints related to environmental remediation and decommissioning programmes.

    PubMed

    Perko, Tanja; Monken-Fernandes, Horst; Martell, Meritxell; Zeleznik, Nadja; O'Sullivan, Patrick

    2017-06-20

    The decisions related to decommissioning or environmental remediation projects (D/ER) cannot be isolated from the socio-political and cultural environment. Experiences of the IAEA Member States point out the importance of giving due attention to the societal aspects in project planning and implementation. The purpose of this paper is threefold: i) to systematically review societal constraints that some organisations in different IAEA Member States encounter when implementing D/ER programmes, ii) to identify different approaches to overcome these constraints and iii) to collect examples of existing practices related to the integration of societal aspects in D/ER programmes worldwide. The research was conducted in the context of the IAEA project Constraints to Decommissioning and Environmental Remediation (CIDER). The research results show that societal constraints arise mostly as a result of the different perceptions, attitudes, opinions and concerns of stakeholders towards the risks and benefits of D/ER programmes and due to the lack of stakeholder involvement in planning. There are different approaches to address these constraints, however all approaches have common points: early involvement, respect for different views, mutual understanding and learning. These results are relevant for all on-going and planned D/ER programmes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Forensic Seismology: constraints on terrorist bombings

    NASA Astrophysics Data System (ADS)

    Wallace, T. C.; Koper, K. D.

    2002-05-01

    Seismology has long been used as a tool to monitor and investigate explosions, both accidental and intentional. Seismic records can be used to provide a precise chronology of events, estimate the energy release in explosions and produce constraints to test various scenarios for the explosions. Truck bombs are a popular tool of terrorists, and at least two such attacks have been recorded seismically. On August 7, 1998 a truck bomb was detonated near the US embassy in Nairobi, Kenya. The bomb seriously damaging a dozen buildings, injuring more than 4000 people and causing 220 fatalities. The explosion was recorded on a short-period seismometer located north of the blast site; the blast seismogram contained body waves, Rayleigh waves and vibrations associated with the air blast. Modeling of the body and surfaces wave allowed an estimate of the origin time of the bombing, which it turn could be used as a constraint the timing of the air blasts. The speed of the air waves from an explosion depend on the air temperature and the size, or yield, of the explosion. In an effort to fully utilize the seismic recordings from such attacks, we analyzed the seismic records from a series of controlled truck bomb explosions carried out at White Sand Missile Range in New Mexico. We developed a new set of scaling laws that relate seismic and acoustic observations directly to the explosive mass (yield). These relationships give a yield of approximately 3000 kg of TNT equivalent for the Nairobi bomb. The terrorist bombing of the Murrah Federal Building in Oklahoma City in 1995 was also recorded on seismometers. One of these records showed 2 discrete surface wavetrains separated by approximately 10 seconds. Some groups seized on the seismic recordings as evidence that there were 2 explosions, and that the US government was actually behind the bombing. However, the USGS monitored the demolition of the remainder of the Murrah Building and showed that the collapse also produced 2 surface

  20. Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS

    NASA Astrophysics Data System (ADS)

    Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel

    2016-01-01

    The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.

  1. Improving yield of PZT piezoelectric devices on glass substrates

    NASA Astrophysics Data System (ADS)

    Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan

    2012-10-01

    The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be < 90%. For this work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.

  2. Giant Panda Maternal Care: A Test of the Experience Constraint Hypothesis

    PubMed Central

    Snyder, Rebecca J.; Perdue, Bonnie M.; Zhang, Zhihe; Maple, Terry L.; Charlton, Benjamin D.

    2016-01-01

    The body condition constraint and the experience condition constraint hypotheses have both been proposed to account for differences in reproductive success between multiparous (experienced) and primiparous (first-time) mothers. However, because primiparous mothers are typically characterized by both inferior body condition and lack of experience when compared to multiparous mothers, interpreting experience related differences in maternal care as support for either the body condition constraint hypothesis or the experience constraint hypothesis is extremely difficult. Here, we examined maternal behaviour in captive giant pandas, allowing us to simultaneously control for body condition and provide a rigorous test of the experience constraint hypothesis in this endangered animal. We found that multiparous mothers spent more time engaged in key maternal behaviours (nursing, grooming, and holding cubs) and had significantly less vocal cubs than primiparous mothers. This study provides the first evidence supporting the experience constraint hypothesis in the order Carnivora, and may have utility for captive breeding programs in which it is important to monitor the welfare of this species’ highly altricial cubs, whose survival is almost entirely dependent on receiving adequate maternal care during the first few weeks of life. PMID:27272352

  3. Giant Panda Maternal Care: A Test of the Experience Constraint Hypothesis.

    PubMed

    Snyder, Rebecca J; Perdue, Bonnie M; Zhang, Zhihe; Maple, Terry L; Charlton, Benjamin D

    2016-06-07

    The body condition constraint and the experience condition constraint hypotheses have both been proposed to account for differences in reproductive success between multiparous (experienced) and primiparous (first-time) mothers. However, because primiparous mothers are typically characterized by both inferior body condition and lack of experience when compared to multiparous mothers, interpreting experience related differences in maternal care as support for either the body condition constraint hypothesis or the experience constraint hypothesis is extremely difficult. Here, we examined maternal behaviour in captive giant pandas, allowing us to simultaneously control for body condition and provide a rigorous test of the experience constraint hypothesis in this endangered animal. We found that multiparous mothers spent more time engaged in key maternal behaviours (nursing, grooming, and holding cubs) and had significantly less vocal cubs than primiparous mothers. This study provides the first evidence supporting the experience constraint hypothesis in the order Carnivora, and may have utility for captive breeding programs in which it is important to monitor the welfare of this species' highly altricial cubs, whose survival is almost entirely dependent on receiving adequate maternal care during the first few weeks of life.

  4. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.

    PubMed

    Cotten, Cameron; Reed, Jennifer L

    2013-01-30

    Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the

  5. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models

    PubMed Central

    2013-01-01

    Background Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential

  6. Games and teams with shared constraints.

    PubMed

    Kulkarni, Ankur A

    2017-08-13

    Energy systems of the future are envisaged to encompass multiple interacting autonomous entities. The theory of games provides the foundations for the design and analysis of such systems. This paper reviews models and results that would be of use for such analysis. Classically, games have involved players whose strategies are coupled only through the dependence of utility functions on strategies of other players. However, in many practical settings in the energy domain, system-level limitations bind the choices players can make. In 1965, Rosen ( Econometrica 33 , 520-534 (doi:10.2307/1911749)) pioneered the study of a class of games where there is a common constraint, called a shared constraint , that couples the strategies available to the players. We discuss how this seemingly benign extension has important ramifications, ranging from the very definition of an equilibrium concept, to other key issues such as existence, uniqueness and efficiency of equilibria. We show how the presence of a shared constraint naturally leads to notions of a price and forms the motivations for more recent models. Although most of the paper has the character of a survey, occasionally we also prove new results.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  7. Regional crop yield forecasting: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    de Wit, A.; van Diepen, K.; Boogaard, H.

    2009-04-01

    Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.

  8. Finite element solution of optimal control problems with state-control inequality constraints

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1992-01-01

    It is demonstrated that the weak Hamiltonian finite-element formulation is amenable to the solution of optimal control problems with inequality constraints which are functions of both state and control variables. Difficult problems can be treated on account of the ease with which algebraic equations can be generated before having to specify the problem. These equations yield very accurate solutions. Owing to the sparse structure of the resulting Jacobian, computer solutions can be obtained quickly when the sparsity is exploited.

  9. Closing Yield Gaps: How Sustainable Can We Be?

    PubMed Central

    Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E.; Kropp, Juergen P.

    2015-01-01

    Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way

  10. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  11. Searching for quantum optimal controls under severe constraints

    DOE PAGES

    Riviello, Gregory; Tibbetts, Katharine Moore; Brif, Constantin; ...

    2015-04-06

    The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, butmore » certain control constraints can still prevent successful optimization of the objective. Using optimal control simulations, we show that the most severe field constraints are those that limit essential control resources, such as the number of control variables, the control duration, and the field strength. Proper management of these resources is an issue of great practical importance for optimization in the laboratory. For each resource, we show that constraints exceeding quantifiable limits can introduce artificial traps to the control landscape and prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitate successful optimization.« less

  12. Open innovation in the European space sector: Existing practices, constraints and opportunities

    NASA Astrophysics Data System (ADS)

    van Burg, Elco; Giannopapa, Christina; Reymen, Isabelle M. M. J.

    2017-12-01

    To enhance innovative output and societal spillover of the European space sector, the open innovation approach is becoming popular. Yet, open innovation, referring to innovation practices that cross borders of individual firms, faces constraints. To explore these constraints and identify opportunities, this study performs interviews with government/agency officials and space technology entrepreneurs. The interviews highlight three topic areas with constraints and opportunities: 1) mainly one-directional knowledge flows (from outside the space sector to inside), 2) knowledge and property management, and 3) the role of small- and medium sized companies. These results bear important implications for innovation practices in the space sector.

  13. Young Children's Understanding of Belief Constraints on Intention.

    ERIC Educational Resources Information Center

    Moses, Louis J.

    1993-01-01

    One important characteristic of rational action is that intentions should be consistent with beliefs. Two studies examined whether three year olds understand belief constraints on intention. In both studies, subjects' understanding of unfulfilled intentions was excellent and significantly better than their understanding of false beliefs, but…

  14. The algebraic-hyperbolic approach to the linearized gravitational constraints on a Minkowski background

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey

    2017-08-01

    An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.

  15. Control of articulated snake robot under dynamic active constraints.

    PubMed

    Kwok, Ka-Wai; Vitiello, Valentina; Yang, Guang-Zhong

    2010-01-01

    Flexible, ergonomically enhanced surgical robots have important applications to transluminal endoscopic surgery, for which path-following and dynamic shape conformance are essential. In this paper, kinematic control of a snake robot for motion stabilisation under dynamic active constraints is addressed. The main objective is to enable the robot to track the visual target accurately and steadily on deforming tissue whilst conforming to pre-defined anatomical constraints. The motion tracking can also be augmented with manual control. By taking into account the physical limits in terms of maximum frequency response of the system (manifested as a delay between the input of the manipulator and the movement of the end-effector), we show the importance of visual-motor synchronisation for performing accurate smooth pursuit movements. Detailed user experiments are performed to demonstrate the practical value of the proposed control mechanism.

  16. Thermodynamic Constraints Improve Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2017-08-08

    In pursuit of establishing a realistic metabolic phenotypic space, the reversibility of reactions is thermodynamically constrained in modern metabolic networks. The reversibility constraints follow from heuristic thermodynamic poise approximations that take anticipated cellular metabolite concentration ranges into account. Because constraints reduce the feasible space, draft metabolic network reconstructions may need more extensive reconciliation, and a larger number of genes may become essential. Notwithstanding ubiquitous application, the effect of reversibility constraints on the predictive capabilities of metabolic networks has not been investigated in detail. Instead, work has focused on the implementation and validation of the thermodynamic poise calculation itself. With the advance of fast linear programming-based network reconciliation, the effects of reversibility constraints on network reconciliation and gene essentiality predictions have become feasible and are the subject of this study. Networks with thermodynamically informed reversibility constraints outperformed gene essentiality predictions compared to networks that were constrained with randomly shuffled constraints. Unconstrained networks predicted gene essentiality as accurately as thermodynamically constrained networks, but predicted substantially fewer essential genes. Networks that were reconciled with sequence similarity data and strongly enforced reversibility constraints outperformed all other networks. We conclude that metabolic network analysis confirmed the validity of the thermodynamic constraints, and that thermodynamic poise information is actionable during network reconciliation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Emergent constraint on equilibrium climate sensitivity from global temperature variability.

    PubMed

    Cox, Peter M; Huntingford, Chris; Williamson, Mark S

    2018-01-17

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  18. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    NASA Astrophysics Data System (ADS)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  19. Optimal placement of multiple types of communicating sensors with availability and coverage redundancy constraints

    NASA Astrophysics Data System (ADS)

    Vecherin, Sergey N.; Wilson, D. Keith; Pettit, Chris L.

    2010-04-01

    Determination of an optimal configuration (numbers, types, and locations) of a sensor network is an important practical problem. In most applications, complex signal propagation effects and inhomogeneous coverage preferences lead to an optimal solution that is highly irregular and nonintuitive. The general optimization problem can be strictly formulated as a binary linear programming problem. Due to the combinatorial nature of this problem, however, its strict solution requires significant computational resources (NP-complete class of complexity) and is unobtainable for large spatial grids of candidate sensor locations. For this reason, a greedy algorithm for approximate solution was recently introduced [S. N. Vecherin, D. K. Wilson, and C. L. Pettit, "Optimal sensor placement with terrain-based constraints and signal propagation effects," Unattended Ground, Sea, and Air Sensor Technologies and Applications XI, SPIE Proc. Vol. 7333, paper 73330S (2009)]. Here further extensions to the developed algorithm are presented to include such practical needs and constraints as sensor availability, coverage by multiple sensors, and wireless communication of the sensor information. Both communication and detection are considered in a probabilistic framework. Communication signal and signature propagation effects are taken into account when calculating probabilities of communication and detection. Comparison of approximate and strict solutions on reduced-size problems suggests that the approximate algorithm yields quick and good solutions, which thus justifies using that algorithm for full-size problems. Examples of three-dimensional outdoor sensor placement are provided using a terrain-based software analysis tool.

  20. Enforcement of entailment constraints in distributed service-based business processes.

    PubMed

    Hummer, Waldemar; Gaubatz, Patrick; Strembeck, Mark; Zdun, Uwe; Dustdar, Schahram

    2013-11-01

    A distributed business process is executed in a distributed computing environment. The service-oriented architecture (SOA) paradigm is a popular option for the integration of software services and execution of distributed business processes. Entailment constraints, such as mutual exclusion and binding constraints, are important means to control process execution. Mutually exclusive tasks result from the division of powerful rights and responsibilities to prevent fraud and abuse. In contrast, binding constraints define that a subject who performed one task must also perform the corresponding bound task(s). We aim to provide a model-driven approach for the specification and enforcement of task-based entailment constraints in distributed service-based business processes. Based on a generic metamodel, we define a domain-specific language (DSL) that maps the different modeling-level artifacts to the implementation-level. The DSL integrates elements from role-based access control (RBAC) with the tasks that are performed in a business process. Process definitions are annotated using the DSL, and our software platform uses automated model transformations to produce executable WS-BPEL specifications which enforce the entailment constraints. We evaluate the impact of constraint enforcement on runtime performance for five selected service-based processes from existing literature. Our evaluation demonstrates that the approach correctly enforces task-based entailment constraints at runtime. The performance experiments illustrate that the runtime enforcement operates with an overhead that scales well up to the order of several ten thousand logged invocations. Using our DSL annotations, the user-defined process definition remains declarative and clean of security enforcement code. Our approach decouples the concerns of (non-technical) domain experts from technical details of entailment constraint enforcement. The developed framework integrates seamlessly with WS-BPEL and the Web

  1. Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chiou, Jin-Chern

    1990-01-01

    Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.

  2. Generalizing Atoms in Constraint Logic

    NASA Technical Reports Server (NTRS)

    Page, C. David, Jr.; Frisch, Alan M.

    1991-01-01

    This paper studies the generalization of atomic formulas, or atoms, that are augmented with constraints on or among their terms. The atoms may also be viewed as definite clauses whose antecedents express the constraints. Atoms are generalized relative to a body of background information about the constraints. This paper first examines generalization of atoms with only monadic constraints. The paper develops an algorithm for the generalization task and discusses algorithm complexity. It then extends the algorithm to apply to atoms with constraints of arbitrary arity. The paper also presents semantic properties of the generalizations computed by the algorithms, making the algorithms applicable to such problems as abduction, induction, and knowledge base verification. The paper emphasizes the application to induction and presents a pac-learning result for constrained atoms.

  3. Constraint Embedding for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  4. Optimization of structures to satisfy a flutter velocity constraint by use of quadratic equation fitting. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Motiwalla, S. K.

    1973-01-01

    Using the first and the second derivative of flutter velocity with respect to the parameters, the velocity hypersurface is made quadratic. This greatly simplifies the numerical procedure developed for determining the values of the design parameters such that a specified flutter velocity constraint is satisfied and the total structural mass is near a relative minimum. A search procedure is presented utilizing two gradient search methods and a gradient projection method. The procedure is applied to the design of a box beam, using finite-element representation. The results indicate that the procedure developed yields substantial design improvement satisfying the specified constraint and does converge to near a local optimum.

  5. Extensively Parameterized Mutation-Selection Models Reliably Capture Site-Specific Selective Constraint.

    PubMed

    Spielman, Stephanie J; Wilke, Claus O

    2016-11-01

    The mutation-selection model of coding sequence evolution has received renewed attention for its use in estimating site-specific amino acid propensities and selection coefficient distributions. Two computationally tractable mutation-selection inference frameworks have been introduced: One framework employs a fixed-effects, highly parameterized maximum likelihood approach, whereas the other employs a random-effects Bayesian Dirichlet Process approach. While both implementations follow the same model, they appear to make distinct predictions about the distribution of selection coefficients. The fixed-effects framework estimates a large proportion of highly deleterious substitutions, whereas the random-effects framework estimates that all substitutions are either nearly neutral or weakly deleterious. It remains unknown, however, how accurately each method infers evolutionary constraints at individual sites. Indeed, selection coefficient distributions pool all site-specific inferences, thereby obscuring a precise assessment of site-specific estimates. Therefore, in this study, we use a simulation-based strategy to determine how accurately each approach recapitulates the selective constraint at individual sites. We find that the fixed-effects approach, despite its extensive parameterization, consistently and accurately estimates site-specific evolutionary constraint. By contrast, the random-effects Bayesian approach systematically underestimates the strength of natural selection, particularly for slowly evolving sites. We also find that, despite the strong differences between their inferred selection coefficient distributions, the fixed- and random-effects approaches yield surprisingly similar inferences of site-specific selective constraint. We conclude that the fixed-effects mutation-selection framework provides the more reliable software platform for model application and future development. © The Author 2016. Published by Oxford University Press on behalf of the

  6. Incorporation of physical constraints in optimal surface search for renal cortex segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie

    2012-02-01

    In this paper, we propose a novel approach for multiple surfaces segmentation based on the incorporation of physical constraints in optimal surface searching. We apply our new approach to solve the renal cortex segmentation problem, an important but not sufficiently researched issue. In this study, in order to better restrain the intensity proximity of the renal cortex and renal column, we extend the optimal surface search approach to allow for varying sampling distance and physical separation constraints, instead of the traditional fixed sampling distance and numerical separation constraints. The sampling distance of each vertex-column is computed according to the sparsity of the local triangular mesh. Then the physical constraint learned from a priori renal cortex thickness is applied to the inter-surface arcs as the separation constraints. Appropriate varying sampling distance and separation constraints were learnt from 6 clinical CT images. After training, the proposed approach was tested on a test set of 10 images. The manual segmentation of renal cortex was used as the reference standard. Quantitative analysis of the segmented renal cortex indicates that overall segmentation accuracy was increased after introducing the varying sampling distance and physical separation constraints (the average true positive volume fraction (TPVF) and false positive volume fraction (FPVF) were 83.96% and 2.80%, respectively, by using varying sampling distance and physical separation constraints compared to 74.10% and 0.18%, respectively, by using fixed sampling distance and numerical separation constraints). The experimental results demonstrated the effectiveness of the proposed approach.

  7. Comparative timber-yields

    Treesearch

    I. T. Haig

    1932-01-01

    During the last decade the U. S. Forest Service and several of the forest schools have completed rather comprehensive studies of the growth and yield of a number of commercially important native conifers. As the majority of these studies show the volumes obtainable in fully-stocked stands to very similar standards of utilization, they furnish an excellent opportunity...

  8. Constraint-based stereo matching

    NASA Technical Reports Server (NTRS)

    Kuan, D. T.

    1987-01-01

    The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.

  9. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration.

    PubMed

    Parkyn, Stephanie M; Smith, Brian J

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  10. Dispersal Constraints for Stream Invertebrates: Setting Realistic Timescales for Biodiversity Restoration

    NASA Astrophysics Data System (ADS)

    Parkyn, Stephanie M.; Smith, Brian J.

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  11. 'Constraint consistency' at all orders in cosmological perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in

    2015-08-01

    We study the equivalence of two—order-by-order Einstein's equation and Reduced action—approaches to cosmological perturbation theory at all orders for different models of inflation. We point out a crucial consistency check which we refer to as 'Constraint consistency' condition that needs to be satisfied in order for the two approaches to lead to identical single variable equation of motion. The method we propose here is quick and efficient to check the consistency for any model including modified gravity models. Our analysis points out an important feature which is crucial for inflationary model building i.e., all 'constraint' inconsistent models have higher ordermore » Ostrogradsky's instabilities but the reverse is not true. In other words, one can have models with constraint Lapse function and Shift vector, though it may have Ostrogradsky's instabilities. We also obtain single variable equation for non-canonical scalar field in the limit of power-law inflation for the second-order perturbed variables.« less

  12. Kinematics and constraints associated with swashplate blade pitch control

    NASA Technical Reports Server (NTRS)

    Leyland, Jane A.

    1993-01-01

    An important class of techniques to reduce helicopter vibration is based on using a Higher Harmonic controller to optimally define the Higher Harmonic blade pitch. These techniques typically require solution of a general optimization problem requiring the determination of a control vector which minimizes a performance index where functions of the control vector are subject to inequality constraints. Six possible constraint functions associated with swashplate blade pitch control were identified and defined. These functions constrain: (1) blade pitch Fourier Coefficients expressed in the Rotating System, (2) blade pitch Fourier Coefficients expressed in the Nonrotating System, (3) stroke of the individual actuators expressed in the Nonrotating System, (4) blade pitch expressed as a function of blade azimuth and actuator stroke, (5) time rate-of-change of the aforementioned parameters, and (6) required actuator power. The aforementioned constraints and the associated kinematics of swashplate blade pitch control by means of the strokes of the individual actuators are documented.

  13. Constraints and Approach for Selecting the Mars Surveyor '01 Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Bridges, N.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Weitz, C.

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.

  14. Constraints, Approach, and Status of Mars Surveyor 2001 Landing Site Selection

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Bridges, N.; Briggs, G.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Soderblom, L.

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities. Additional information is contained in the original extended abstract.

  15. Primary care practices' perceived constraints to engaging in research: the importance of context and 'Flow'.

    PubMed

    Michalec, Barret; Fagan, Heather Bittner; Rahmer, Brian

    2014-01-01

    The primary purpose of this study is to understand primary care practices' perceived constraints to engaging in research from micro-, meso-, and macro-level perspectives. Past research has spotlighted various barriers and hurdles that primary care practices face when attempting to engage in research efforts; yet a majority of this research has focused exclusively on micro- (physician-specific) and meso-level (practice-specific) factors. Minimal attention has been paid to the context - the more macro-level issues such as how these barriers relate to primary care practices' role within the dominant payment/reimbursement model of U.S. health-care system. Semi-structured focus groups were conducted in five U.S. practices, all owned by an independent academic medical center. Each had participated in at least one research study but were not part of a practice-based research network or affiliated with a medical school. Data were analyzed using NVIVO-9 by using a multistep coding process. Findings The perceived constraints offered by the participants echoed those featured in previous studies. Secondary analyses of the interconnected nature of these factors highlighted a valuable and sensitive 'Flow' that is evident at the individual, interaction, and organizational levels of primary care practice. Engaging in research appears to pose a significant threat to the outcomes of Flow (i.e., revenue, patient health outcomes, and the overall well-being of the practice). It is posited that the risk of not meeting expected productivity-based outcomes, which appear to be dictated by current dominant reimbursement models, frames the overall process of research-related decision making in primary care. Within the funding/reimbursement models of the US health-care system, engaging in research does not appear to be advantageous for primary care practices.

  16. State estimation with incomplete nonlinear constraint

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Wang, Xueying; An, Wei

    2017-10-01

    A problem of state estimation with a new constraints named incomplete nonlinear constraint is considered. The targets are often move in the curve road, if the width of road is neglected, the road can be considered as the constraint, and the position of sensors, e.g., radar, is known in advance, this info can be used to enhance the performance of the tracking filter. The problem of how to incorporate the priori knowledge is considered. In this paper, a second-order sate constraint is considered. A fitting algorithm of ellipse is adopted to incorporate the priori knowledge by estimating the radius of the trajectory. The fitting problem is transformed to the nonlinear estimation problem. The estimated ellipse function is used to approximate the nonlinear constraint. Then, the typical nonlinear constraint methods proposed in recent works can be used to constrain the target state. Monte-Carlo simulation results are presented to illustrate the effectiveness proposed method in state estimation with incomplete constraint.

  17. Immediate sensitivity to structural constraints in pronoun resolution

    PubMed Central

    Chow, Wing-Yee; Lewis, Shevaun; Phillips, Colin

    2014-01-01

    Real-time interpretation of pronouns is sometimes sensitive to the presence of grammatically-illicit antecedents and sometimes not. This occasional sensitivity has been taken as evidence that structural constraints do not immediately impact the initial antecedent retrieval for pronoun interpretation. We argue that it is important to separate effects that reflect the initial antecedent retrieval process from those that reflect later processes. We present results from five reading comprehension experiments. Both the current results and previous evidence support the hypothesis that agreement features and structural constraints immediately constrain the antecedent retrieval process for pronoun interpretation. Occasional sensitivity to grammatically-illicit antecedents may be due to repair processes triggered when the initial retrieval fails to return a grammatical antecedent. PMID:25018739

  18. Trimodal interpretation of constraints for planning

    NASA Technical Reports Server (NTRS)

    Krieger, David; Brown, Richard

    1987-01-01

    Constraints are used in the CAMPS knowledge based planning system to represent those propositions that must be true for a plan to be acceptable. CAMPS introduces the make-mode for interpreting a constraint. Given an unsatisfied constraint, make evaluation mode suggests planning actions which, if taken, would result in a modified plan in which the constraint in question may be satisfied. These suggested planning actions, termed delta-tuples, are the raw material of intelligent plan repair. They are used both in debugging an almost-right plan and in replanning due to changing situations. Given a defective plan in which some set of constraints are violated, a problem solving strategy selects one or more constraints as a focus of attention. These selected constraints are evaluated in the make-mode to produce delta-tuples. The problem solving strategy then reviews the delta-tuples according to its application and problem-specific criteria to find the most acceptable change in terms of success likelihood and plan disruption. Finally, the problem solving strategy makes the suggested alteration to the plan and then rechecks constraints to find any unexpected consequences.

  19. A Hybrid Constraint Representation and Reasoning Framework

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin

    2003-01-01

    This paper introduces JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint reasoner with a run- time software environment. Attachments in JNET are constraints over arbitrary Java objects, which are defined using Java code, at runtime, with no changes to the JNET source code.

  20. Environmental constraints and call evolution in torrent-dwelling frogs.

    PubMed

    Goutte, Sandra; Dubois, Alain; Howard, Samuel D; Marquez, Rafael; Rowley, Jodi J L; Dehling, J Maximilian; Grandcolas, Philippe; Rongchuan, Xiong; Legendre, Frédéric

    2016-04-01

    Although acoustic signals are important for communication in many taxa, signal propagation is affected by environmental properties. Strong environmental constraints should drive call evolution, favoring signals with greater transmission distance and content integrity in a given calling habitat. Yet, few empirical studies have verified this prediction, possibly due to a shortcoming in habitat characterization, which is often too broad. Here we assess the potential impact of environmental constraints on the evolution of advertisement call in four groups of torrent-dwelling frogs in the family Ranidae. We reconstruct the evolution of calling site preferences, both broadly categorized and at a finer scale, onto a phylogenetic tree for 148 species with five markers (∼3600 bp). We test models of evolution for six call traits for 79 species with regard to the reconstructed history of calling site preferences and estimate their ancestral states. We find that in spite of existing morphological constraints, vocalizations of torrent-dwelling species are most probably constrained by the acoustic specificities of torrent habitats and particularly their high level of ambient noise. We also show that a fine-scale characterization of calling sites allows a better perception of the impact of environmental constraints on call evolution. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  1. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    PubMed

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-07-01

    With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

  2. New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantz, A.; Allen, S.W.; Ebeling, H.

    We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} andmore » {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.« less

  3. Redshift drift constraints on holographic dark energy

    NASA Astrophysics Data System (ADS)

    He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin

    2017-03-01

    The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.

  4. Radar Evaluation of Optical Cloud Constraints to Space Launch Operations

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Short, David A.; Ward, Jennifer G.

    2005-01-01

    Weather constraints to launching space vehicles are designed to prevent loss of the vehicle or mission due to weather hazards (See, e.g., Ref 1). Constraints include Lightning Launch Commit Criteria (LLCC) designed to avoid natural and triggered lightning. The LLCC currently in use at most American launch sites including the Eastern Range and Kennedy Space Center require the Launch Weather Officer to determine the height of cloud bases and tops, the location of cloud edges, and cloud transparency. The preferred method of making these determinations is visual observation, but when that isn't possible due to darkness or obscured vision, it is permissible to use radar. This note examines the relationship between visual and radar observations in three ways: A theoretical consideration of the relationship between radar reflectivity and optical transparency. An observational study relating radar reflectivity to cloud edge determined from in-situ measurements of cloud particle concentrations that determine the visible cloud edge. An observational study relating standard radar products to anvil cloud transparency. It is shown that these three approaches yield results consistent with each other and with the radar threshold specified in Reference 2 for LLCC evaluation.

  5. Constraint Reasoning Over Strings

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin

    2003-01-01

    This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.

  6. Private sector involvement in times of armed conflict: What are the constraints for trading medical equipment?

    PubMed

    Schmidt, Georg

    Today, healthcare facilities are highly dependent on the private sector to keep their medical equipment functioning. Moreover, private sector involvement becomes particularly important for the supply of spare parts and consumables. However, in times of armed conflict, the capacity of the corporate world appears to be seriously hindered. Subsequently, this study researches the influence of armed conflict on the private medical equipment sector. This study follows a qualitative approach by conducting 19 interviews with representatives of the corporate world in an active conflict zone. A semistructured interview guide, consisting of 10 questions, was used to examine the constraints of this sector. The results reveal that the lack of skilled personnel, complicated importation procedures, and a decrease in financial capacity are the major constraints faced by private companies dealing in medical equipment in conflict zones. Even when no official sanctions and embargoes for medical items exist, constraints for trading medical equipment are clearly recognizable. Countries at war would benefit from a centralized structure that deals with the importation procedures for medical items, to assist local companies in their purchasing procedures. A high degree of adaption is needed to continue operating, despite the emerging constraints of armed conflict. Future studies might research the constraints for manufacturers outside the conflict to export medical items to the country of war.

  7. The Relationship Between Constraint and Ductile Fracture Initiation as Defined by Micromechanical Analyses

    NASA Technical Reports Server (NTRS)

    Panontin, Tina L.; Sheppard, Sheri D.

    1994-01-01

    The use of small laboratory specimens to predict the integrity of large, complex structures relies on the validity of single parameter fracture mechanics. Unfortunately, the constraint loss associated with large scale yielding, whether in a laboratory specimen because of its small size or in a structure because it contains shallow flaws loaded in tension, can cause the breakdown of classical fracture mechanics and the loss of transferability of critical, global fracture parameters. Although the issue of constraint loss can be eliminated by testing actual structural configurations, such an approach can be prohibitively costly. Hence, a methodology that can correct global fracture parameters for constraint effects is desirable. This research uses micromechanical analyses to define the relationship between global, ductile fracture initiation parameters and constraint in two specimen geometries (SECT and SECB with varying a/w ratios) and one structural geometry (circumferentially cracked pipe). Two local fracture criteria corresponding to ductile fracture micromechanisms are evaluated: a constraint-modified, critical strain criterion for void coalescence proposed by Hancock and Cowling and a critical void ratio criterion for void growth based on the Rice and Tracey model. Crack initiation is assumed to occur when the critical value in each case is reached over some critical length. The primary material of interest is A516-70, a high-hardening pressure vessel steel sensitive to constraint; however, a low-hardening structural steel that is less sensitive to constraint is also being studied. Critical values of local fracture parameters are obtained by numerical analysis and experimental testing of circumferentially notched tensile specimens of varying constraint (e.g., notch radius). These parameters are then used in conjunction with large strain, large deformation, two- and three-dimensional finite element analyses of the geometries listed above to predict crack

  8. Exploring the Constraint Profile of Winter Sports Resort Tourist Segments.

    PubMed

    Priporas, Constantinos-Vasilios; Vassiliadis, Chris A; Bellou, Victoria; Andronikidis, Andreas

    2015-09-01

    Many studies have confirmed the importance of market segmentation both theoretically and empirically. Surprisingly though, no study has so far addressed the issue from the perspective of leisure constraints. Since different consumers face different barriers, we look at participation in leisure activities as an outcome of the negotiation process that winter sports resort tourists go through, to balance between related motives and constraints. This empirical study reports the findings on the applicability of constraining factors in segmenting the tourists who visit winter sports resorts. Utilizing data from 1,391 tourists of winter sports resorts in Greece, five segments were formed based on their constraint, demographic, and behavioral profile. Our findings indicate that such segmentation sheds light on factors that could potentially limit the full utilization of the market. To maximize utilization, we suggest customizing marketing to the profile of each distinct winter sports resort tourist segment that emerged.

  9. Exploring the Constraint Profile of Winter Sports Resort Tourist Segments

    PubMed Central

    Priporas, Constantinos-Vasilios; Vassiliadis, Chris A.; Bellou, Victoria; Andronikidis, Andreas

    2014-01-01

    Many studies have confirmed the importance of market segmentation both theoretically and empirically. Surprisingly though, no study has so far addressed the issue from the perspective of leisure constraints. Since different consumers face different barriers, we look at participation in leisure activities as an outcome of the negotiation process that winter sports resort tourists go through, to balance between related motives and constraints. This empirical study reports the findings on the applicability of constraining factors in segmenting the tourists who visit winter sports resorts. Utilizing data from 1,391 tourists of winter sports resorts in Greece, five segments were formed based on their constraint, demographic, and behavioral profile. Our findings indicate that such segmentation sheds light on factors that could potentially limit the full utilization of the market. To maximize utilization, we suggest customizing marketing to the profile of each distinct winter sports resort tourist segment that emerged. PMID:29708114

  10. Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Andrews, Sydney; Even, Wesley; Heger, Alex; Safi-Harb, Samar

    2018-03-01

    Core-collapse supernova science is now entering an era in which engine models are beginning to make both qualitative and, in some cases, quantitative predictions. Although the evidence in support of the convective engine for core-collapse supernova continues to grow, it is difficult to place quantitative constraints on this engine. Some studies have made specific predictions for the remnant distribution from the convective engine, but the results differ between different groups. Here we use a broad parameterization for the supernova engine to understand the differences between distinct studies. With this broader set of models, we place error bars on the remnant mass and basic yields from the uncertainties in the explosive engine. We find that, even with only three progenitors and a narrow range of explosion energies, we can produce a wide range of remnant masses and nucleosynthetic yields.

  11. Physical constraints of cultural evolution of dialects in killer whales.

    PubMed

    Filatova, Olga A; Samarra, Filipa I P; Barrett-Lennard, Lance G; Miller, Patrick J O; Ford, John K B; Yurk, Harald; Matkin, Craig O; Hoyt, Erich

    2016-11-01

    Odontocete sounds are produced by two pairs of phonic lips situated in soft nares below the blowhole; the right pair is larger and is more likely to produce clicks, while the left pair is more likely to produce whistles. This has important implications for the cultural evolution of delphinid sounds: the greater the physical constraints, the greater the probability of random convergence. In this paper the authors examine the call structure of eight killer whale populations to identify structural constraints and to determine if they are consistent among all populations. Constraints were especially pronounced in two-voiced calls. In the calls of all eight populations, the lower component of two-voiced (biphonic) calls was typically centered below 4 kHz, while the upper component was typically above that value. The lower component of two-voiced calls had a narrower frequency range than single-voiced calls in all populations. This may be because some single-voiced calls are homologous to the lower component, while others are homologous to the higher component of two-voiced calls. Physical constraints on the call structure reduce the possible variation and increase the probability of random convergence, producing similar calls in different populations.

  12. Growth inhibition, turgor maintenance, and changes in yield threshold after cessation of solute import in pea epicotyls

    NASA Technical Reports Server (NTRS)

    Schmalstig, J. G.; Cosgrove, D. J.

    1988-01-01

    The dependence of stem elongation on solute import was investigated in etiolated pea seedlings (Pisum sativum L. var Alaska) by excising the cotyledons. Stem elongation was inhibited by 60% within 5 hours of excision. Dry weight accumulation into the growing region stopped and osmotic pressure of the cell sap declined by 0.14 megapascal over 5 hours. Attempts to assay phloem transport via ethylenediaminetetraacetate-enhanced exudation from cut stems revealed no effect of cotyledon excision, indicating that the technique measured artifactual leakage from cells. Despite the drop in cell osmotic pressure, turgor pressure (measured directly via a pressure probe) did not decline. Turgor maintenance is postulated to occur via uptake of solutes from the free space, thereby maintaining the osmotic pressure difference across the cell membrane. Cell wall properties were measured by the pressure-block stress relaxation technique. Results indicate that growth inhibition after cotyledon excision was mediated primarily via an increase in the wall yield threshold.

  13. Information constraints in medical encounters.

    PubMed

    Hollander, R D

    1984-01-01

    This article describes three kinds of information constraints in medical encounters that have not been discussed at length in the medical ethics literature: constraints from the concept of a disease, from the diffusion of medical innovation, and from withholding information. It describes how these limit the reliance rational people can justifiably put in their doctors, and even the reliance doctors can have on their own advice. It notes the implications of these constraints for the value of informed consent, identifies several procedural steps that could increase the value of the latter and improve diffusion of innovation, and argues that recognition of these constraints should lead us to devise protections which intrude on but can improve these encounters.

  14. Topological constraints and the existence of force-free fields

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1986-01-01

    A fundamental problem in plasma theory is the question of the existence of MHD equilibria. The issue of topological constraints is of crucial importance for the problem of the existence of equilibria. Heuristic methods are used to discuss the coronal wrapping pattern. It is concluded that for a given set of footpoint positions the wrapping pattern in the corona is completely fixed. The topological constraints are included in the boundary conditions on the Euler potentials and impost no additional restrictions on possible equilibria. Although this does not prove that equilibria always exist, it does show that the force-free problem is not overdetermined and that existence of equilibria is still an open question.

  15. Lu-Hf CONSTRAINTS ON THE EVOLUTION OF LUNAR BASALTS.

    USGS Publications Warehouse

    Fujimaki, Hirokazu; Tatsumoto, Mistunobu

    1984-01-01

    The authors show that a cumulate-remelting model best explains the recently acquired data on the Lu-Hf systematics of lunar mare basalts. The authors model is first constructed using the Lu and Hf concentration data and it is then further strengthened by the Hf isotopic evidence. The authors also show that the similarity of MgO/FeO ratios and the Cr//2O//3 contents between high-Ti and low-Ti basalts, which have been given significance by A. E. Ringwood and D. H. Green are not important constraints for lunar basalt petrogenesis. The authors principal aim is to revive the remelting model for further consideration with the powerful constraints of Lu-Hf systematics of lunar basalts.

  16. Cosmological constraints with clustering-based redshifts

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi

    2017-07-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.

  17. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    PubMed Central

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  18. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply.

    PubMed

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  19. Time-of-Flight Measurements of Neutron Yields from Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Caggaino, Joseph

    2014-10-01

    Three 20-m time-of-flight detectors measure neutron spectra from implosions of deuterium-tritium targets at the National Ignition Facility. Two prominent peaks appear in the spectra from the T(d, n) and D(d, n) reactions. The ratio of yields extracted from the peaks depend on the DT and DD reaction rates and attenuation from the compressed DT fuel, which makes the ratio a diagnostic of the hotspot thermodynamics and fuel areal density. The measured peak widths provide additional constraints on reactant temperature. Recent measurements from a high-yield campaign will be presented and compared to radiation-hydrodynamic simulations of similar implosions. This research is supported by the Department of Energy National Nuclear Security Administration under Contract DE-NA0001944.

  20. Relative Packing Groups in Template-Based Structure Prediction: Cooperative Effects of True Positive Constraints

    PubMed Central

    Day, Ryan; Qu, Xiaotao; Swanson, Rosemarie; Bohannan, Zach; Bliss, Robert

    2011-01-01

    Abstract Most current template-based structure prediction methods concentrate on finding the correct backbone conformation and then packing sidechains within that backbone. Our packing-based method derives distance constraints from conserved relative packing groups (RPGs). In our refinement approach, the RPGs provide a level of resolution that restrains global topology while allowing conformational sampling. In this study, we test our template-based structure prediction method using 51 prediction units from CASP7 experiments. RPG-based constraints are able to substantially improve approximately two-thirds of starting templates. Upon deeper investigation, we find that true positive spatial constraints, especially those non-local in sequence, derived from the RPGs were important to building nearer native models. Surprisingly, the fraction of incorrect or false positive constraints does not strongly influence the quality of the final candidate. This result indicates that our RPG-based true positive constraints sample the self-consistent, cooperative interactions of the native structure. The lack of such reinforcing cooperativity explains the weaker effect of false positive constraints. Generally, these findings are encouraging indications that RPGs will improve template-based structure prediction. PMID:21210729

  1. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.

    PubMed

    Berkhout, Jan; Bosdriesz, Evert; Nikerel, Emrah; Molenaar, Douwe; de Ridder, Dick; Teusink, Bas; Bruggeman, Frank J

    2013-06-01

    Evolutionary adaptations in metabolic networks are fundamental to evolution of microbial growth. Studies on unneeded-protein synthesis indicate reductions in fitness upon nonfunctional protein synthesis, showing that cell growth is limited by constraints acting on cellular protein content. Here, we present a theory for optimal metabolic enzyme activity when cells are selected for maximal growth rate given such growth-limiting biochemical constraints. We show how optimal enzyme levels can be understood to result from an enzyme benefit minus cost optimization. The constraints we consider originate from different biochemical aspects of microbial growth, such as competition for limiting amounts of ribosomes or RNA polymerases, or limitations in available energy. Enzyme benefit is related to its kinetics and its importance for fitness, while enzyme cost expresses to what extent resource consumption reduces fitness through constraint-induced reductions of other enzyme levels. A metabolic fitness landscape is introduced to define the fitness potential of an enzyme. This concept is related to the selection coefficient of the enzyme and can be expressed in terms of its fitness benefit and cost.

  2. A Meta-Analysis of the Relationship between Social Constraints and Distress in Cancer Patients

    PubMed Central

    Adams, Rebecca N.; Winger, Joseph G.; Mosher, Catherine E.

    2014-01-01

    Social constraints on cancer-related disclosure have been associated with increased distress among cancer patients. The goals of this meta-analysis were: (1) to quantify the average strength of the relationships between social constraints and general and cancer-specific distress in cancer patients; and (2) to examine potential moderators of these relationships. A literature search was conducted using electronic databases, and 30 studies met inclusion criteria. Moderate, significant relationships were found between social constraints and both general distress (r=0.37; 95% CI: 0.31-0.43) and cancer-specific distress (r=0.37; 95% CI: 0.31-0.44). The relationship between social constraints and cancer-specific distress was stronger for studies of patients who, on average, had been diagnosed more recently. Relationships between social constraints and both general and cancer-specific distress did not vary by age or gender. Findings suggest that social constraints may be important to target in interventions to reduce distress in cancer patients, especially those who have been recently diagnosed. PMID:25262383

  3. Constraints on holographic cosmologies from strong lensing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas, Víctor H.; Bonilla, Alexander; Motta, Verónica

    We use strongly gravitationally lensed (SGL) systems to put additional constraints on a set of holographic dark energy models. Data available in the literature (redshift and velocity dispersion) is used to obtain the Einstein radius and compare it with model predictions. We found that the ΛCDM is the best fit to the data. Although a preliminary statistical analysis seems to indicate that two of the holographic models studied show interesting agreement with observations, a stringent test lead us to the result that neither of the holographic models are competitive with the ΛCDM. These results highlight the importance of Strong Lensingmore » measurements to provide additional observational constraints to alternative cosmological models, which are necessary to shed some light into the dark universe.« less

  4. REDUCTION OF CONSTRAINTS FOR COUPLED OPERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raszewski, F.; Edwards, T.

    2009-12-15

    The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated muchmore » of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al{sub 2}O{sub 3} {ge} 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% ({Sigma}M{sub 2}O < 19.3 wt%), or (2) adjust the lower limit on the Al{sub 2}O{sub 3} constraint to 4 wt% (Al{sub 2}O{sub 3} {ge} 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al{sub 2}O{sub 3} and

  5. Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials

    NASA Astrophysics Data System (ADS)

    Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.

    2018-05-01

    Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination () for an amorphous solid. The combined analysis allows the trends and plateaus in the RIE rate to be ultimately reinterpreted in terms of the atomic structure of the target material through a consideration of . These findings establish the important underlying role of mechanical rigidity and network topology in ion-solid interactions and provide additional considerations for the design and optimization of radiation-hard materials in nuclear and outer space environments.

  6. The Betelgeuse Project: Constraints from Rotation

    NASA Astrophysics Data System (ADS)

    Diaz, Manuel; Nance, Sarafina; Sullivan, James; Wheeler, J. Craig

    2017-01-01

    In order to constrain the evolutionary state of the red supergiant Betelgeuse, we have produced a suite of models with ZAMS masses from 15 to 25 Msun in intervals of 1 Msun including the effects of rotation computed with the stellar evolutionary code MESA. For non--rotating models we find results that are similar to other work. It is somewhat difficult to find models that agree within 1 σ of the observed values of R, Teff and L, but modestly easy within 3 σ uncertainty. Incorporating the nominal observed rotational velocity, ~15 km/s, yields significantly different, and challenging, constraints. This velocity constraint is only matched when the models first approach the base of the red supergiant branch (RSB), having crossed the Hertzsprung gap, but not yet having ascended the RSB and most violate even generous error bars on R, Teff and L. Models at the tip of the RSB typically rotate at only ~0.1 km/s, independent of any reasonable choice of initial rotation. We discuss the possible uncertainties in our modeling and the observations, including the distance to Betelgeuse, the rotation velocity, and model parameters. We summarize various options to account for the rotational velocity and suggest that one possibility is that Betelgeuse merged with a companion star of about 1 Msun as it ascended the RSB, in the process producing the ring structure observed at about 7' away. A past coalescence would complicate attempts to understand the evolutionary history and future of Betelgeuse. To that end, we also present asteroseismology models with acoustic waves driven by inner convective regions that could elucidate the inner structure and evolutionary state.

  7. Identifying seedling root architectural traits associated with yield and yield components in wheat.

    PubMed

    Xie, Quan; Fernando, Kurukulasuriya M C; Mayes, Sean; Sparkes, Debbie L

    2017-05-01

    root length, is important to improve yield potential, and should be incorporated into wheat ideotypes in breeding. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Causality constraints in conformal field theory

    DOE PAGES

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well knownmore » sign constraint on the (Φ) 4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators« less

  9. Association Mapping in Scandinavian Winter Wheat for Yield, Plant Height, and Traits Important for Second-Generation Bioethanol Production

    PubMed Central

    Bellucci, Andrea; Torp, Anna Maria; Bruun, Sander; Magid, Jakob; Andersen, Sven B.; Rasmussen, Søren K.

    2015-01-01

    A collection of 100 wheat varieties representing more than 100 years of wheat-breeding history in Scandinavia was established in order to identify marker-trait associations for plant height (PH), grain yield (GY), and biomass potential for bioethanol production. The field-grown material showed variations in PH from 54 to 122 cm and in GY from 2 to 6.61 t ha-1. The release of monomeric sugars was determined by high-throughput enzymatic treatment of ligno-cellulosic material and varied between 0.169 and 0.312 g/g dm for glucose (GLU) and 0.146 and 0.283 g/g dm for xylose (XYL). As expected, PH and GY showed to be highly influenced by genetic factors with repeatability (R) equal to 0.75 and 0.53, respectively, while this was reduced for GLU and XYL (R = 0.09 for both). The study of trait correlations showed how old, low-yielding, tall varieties released higher amounts of monomeric sugars after straw enzymatic hydrolysis, showing reduced recalcitrance to bioconversion compared to modern varieties. Ninety-three lines from the collection were genotyped with the DArTseq® genotypic platform and 5525 markers were used for genome-wide association mapping. Six quantitative trait loci (QTLs) for GY, PH, and GLU released from straw were mapped. One QTL for PH was previously reported, while the remaining QTLs constituted new genomic regions linked to trait variation. This paper is one of the first studies in wheat to identify QTLs that are important for bioethanol production based on a genome-wide association approach. PMID:26635859

  10. Learning and Parallelization Boost Constraint Search

    ERIC Educational Resources Information Center

    Yun, Xi

    2013-01-01

    Constraint satisfaction problems are a powerful way to abstract and represent academic and real-world problems from both artificial intelligence and operations research. A constraint satisfaction problem is typically addressed by a sequential constraint solver running on a single processor. Rather than construct a new, parallel solver, this work…

  11. Collective input/output under memory constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yin; Chen, Yong; Zhuang, Yu

    2014-12-18

    Compared with current high-performance computing (HPC) systems, exascale systems are expected to have much less memory per node, which can significantly reduce necessary collective input/output (I/O) performance. In this study, we introduce a memory-conscious collective I/O strategy that takes into account memory capacity and bandwidth constraints. The new strategy restricts aggregation data traffic within disjointed subgroups, coordinates I/O accesses in intranode and internode layers, and determines I/O aggregators at run time considering memory consumption among processes. We have prototyped the design and evaluated it with commonly used benchmarks to verify its potential. The evaluation results demonstrate that this strategy holdsmore » promise in mitigating the memory pressure, alleviating the contention for memory bandwidth, and improving the I/O performance for projected extreme-scale systems. Given the importance of supporting increasingly data-intensive workloads and projected memory constraints on increasingly larger scale HPC systems, this new memory-conscious collective I/O can have a significant positive impact on scientific discovery productivity.« less

  12. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  13. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  14. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  15. Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing

    NASA Astrophysics Data System (ADS)

    Carvalho, Schubert R.; Boulic, Ronan; Thalmann, Daniel

    The growth of motion capture systems have contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the captured motions normally attend specific needs. As an effort for adapting and reusing captured human motions in new tasks and environments and improving the animator's work, we present and discuss a new data-driven constraint-based animation system for interactive human motion editing. This method offers the compelling advantage that it provides faster deformations and more natural-looking motion results compared to goal-directed constraint-based methods found in the literature.

  16. Systematic Constraint Selection Strategy for Rate-Controlled Constrained-Equilibrium Modeling of Complex Nonequilibrium Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo; Rivadossi, Luca; Janbozorgi, Mohammad

    2018-04-01

    Rate-Controlled Constrained-Equilibrium (RCCE) modeling of complex chemical kinetics provides acceptable accuracies with much fewer differential equations than for the fully Detailed Kinetic Model (DKM). Since its introduction by James C. Keck, a drawback of the RCCE scheme has been the absence of an automatable, systematic procedure to identify the constraints that most effectively warrant a desired level of approximation for a given range of initial, boundary, and thermodynamic conditions. An optimal constraint identification has been recently proposed. Given a DKM with S species, E elements, and R reactions, the procedure starts by running a probe DKM simulation to compute an S-vector that we call overall degree of disequilibrium (ODoD) because its scalar product with the S-vector formed by the stoichiometric coefficients of any reaction yields its degree of disequilibrium (DoD). The ODoD vector evolves in the same (S-E)-dimensional stoichiometric subspace spanned by the R stoichiometric S-vectors. Next we construct the rank-(S-E) matrix of ODoD traces obtained from the probe DKM numerical simulation and compute its singular value decomposition (SVD). By retaining only the first C largest singular values of the SVD and setting to zero all the others we obtain the best rank-C approximation of the matrix of ODoD traces whereby its columns span a C-dimensional subspace of the stoichiometric subspace. This in turn yields the best approximation of the evolution of the ODoD vector in terms of only C parameters that we call the constraint potentials. The resulting order-C RCCE approximate model reduces the number of independent differential equations related to species, mass, and energy balances from S+2 to C+E+2, with substantial computational savings when C ≪ S-E.

  17. Constraint and loneliness in agoraphobia: an empirical investigation.

    PubMed

    Pehlivanidis, A; Koulis, S; Papakostas, Y

    2014-01-01

    While progress in the aetiopathology and treatment of panic disorder is indisputable, research regarding agoraphobia lacks behind. One significant-yet untested- theory by Guidano and Liotti, suggests the existence of inner representations of fear of "constraint" and fear of "loneliness" as two major schemata, important in the pathogenesis and manifestation of agoraphobia. Activation of these schemata may occur in situations in which the patient: (a) feels as in an inescapable trap (constraint) or (b) alone, unprotected and helpless (loneliness). Upon activation, the "constraint" schema elicits such symptoms as asphyxiation, chest pain, difficult breathing, motor agitation and muscular tension, while the "loneliness" schema elicits such symptoms as sensation of tachycardia, weakness of limbs, trembling or fainting. Activation of these schemata by content-compatible stimuli is expected to trigger various, yet distinct, response patterns, both of which are indiscriminately described within the term "agoraphobia". In order to investigate this hypothesis and its possible clinical applications, several mental and physical probes were applied to 20 patients suffering primarily from agoraphobia, and their responses and performance were recorded. Subjects also completed the "10-item Agoraphobia Questionnaire" prepared by our team aiming at assessing cognitions related to Guidano and Liotti's notion of "loneliness" and "constraint". Breath holding (BH) and Hyperventilation (HV) were selected as physical probes. BH was selected as an easily administered hypercapnea - induced clinical procedure, because of its apparent resemblance to the concept of "constraint". Subjects were instructed to hold their breath for as long as they could and stop at will. Similarly, it was hypothesized that HV might represent a physical "loneliness" probe, since it can elicit such symptoms as dizziness, paraesthesias, stiff muscles, cold hands or feet and trembling, reminiscent of a "collapsing

  18. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  19. Earthflow yield strength constrained by lateral levee morphology

    NASA Astrophysics Data System (ADS)

    Nereson, A. L.; Finnegan, N. J.

    2015-12-01

    Slow-moving landslides, or earthflows, are characterized by persistent, flow-like motion that is commonly modeled using various viscous and viscoplastic rheologies. One of the manifestations of viscoplastic flow down a slope is the emergence of stationary bodies of fluid at the margins of the flow (i.e. lateral levees). These levees are common signatures of earthflow morphology and, while they are frequently used to outline boundaries for mapping purposes, they have received little attention for what they may indicate about the history and properties of the flow itself. In contrast, lateral levees along lava flows have long been used by physical volcanologists as tools to learn about their non-Newtonian rheologies and chemical compositions. Hulme (1974) was the first to note that, for a given slope, levee width may be characteristic of a fluids's yield strength and his methodology has been subsequently used to infer properties of lavas on the Earth, the Moon, and Mars. Using these lavas as analogies, we apply Hulme's approach to earthflows in a variety of settings globally. We find that calculated yield strengths for individual earthflows fall within a relatively narrow range between 101-102 kPa. In addition, individual earthflow complexes often preserve multiple generations of levees, which in some cases may record apparent reductions in yield strength over time for a given flow, possibly from weakening of previously failed material. Knowledge of earthflow yield strength permits the calculation of a critical earthflow thickness below which there will be no downslope motion for a given slope angle. Thicknesses calculated in this manner could thus be used to estimate the flux of landslide material for earthflows without direct depth constraints, provided that surface velocity measurements are obtained by other methods (e.g. InSAR, GPS, manual feature tracking).

  20. Rice Research to Break Yield Barriers

    NASA Astrophysics Data System (ADS)

    Verma, Vivek; Ramamoorthy, Rengasamy; Kohli, Ajay; Kumar, Prakash P.

    2015-10-01

    The world’s population continues to expand and it is expected to cross 9 billion by 2050. This would significantly amplify the demand for food, which will pose serious threats to global food security. Additional challenges are being imposed due to a gradual decrease in the total arable land and global environmental changes. Hence, it is of utmost importance to review and revise the existing food production strategies by incorporating novel biotechnological approaches that can help to break the crop yield barriers in the near future. In this review, we highlight some of the concerns hampering crop yield enhancements. The review also focuses on modern breeding techniques based on genomics as well as proven biotechnological approaches that enable identification and utilization of candidate genes. Another aspect of discussion is the important area of research, namely hormonal regulation of plant development, which is likely to yield valuable regulatory genes for such crop improvement efforts in the future. These strategies can serve as potential tools for developing elite crop varieties for feeding the growing billions.

  1. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress

    PubMed Central

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association (r2 = 0.3–0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association (P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H9 will help us to identify significant loci and alleles that made H9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions. PMID:28878785

  2. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress.

    PubMed

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H 9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association ( r 2 = 0.3-0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association ( P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H 9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H 9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H 9 will help us to identify significant loci and alleles that made H 9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions.

  3. Impacts of El Nino Southern Oscillation on the Global Yields of Major Crops

    NASA Technical Reports Server (NTRS)

    Iizumi, Toshichika; Luo, Jing-Jia; Challinor, Andrew J.; Sakurai, Gen; Yokozawa, Masayuki; Sakuma, Hirofumi; Brown, Molly Elizabeth; Yamagata, Toshio

    2014-01-01

    The monitoring and prediction of climate-induced variations in crop yields, production and export prices in major food-producing regions have become important to enable national governments in import-dependent countries to ensure supplies of affordable food for consumers. Although the El Nino/Southern Oscillation (ENSO) often affects seasonal temperature and precipitation, and thus crop yields in many regions, the overall impacts of ENSO on global yields are uncertain. Here we present a global map of the impacts of ENSO on the yields of major crops and quantify its impacts on their global-mean yield anomalies. Results show that El Nino likely improves the global-mean soybean yield by 2.15.4 but appears to change the yields of maize, rice and wheat by -4.3 to +0.8. The global-mean yields of all four crops during La Nina years tend to be below normal (-4.5 to 0.0).Our findings highlight the importance of ENSO to global crop production.

  4. Benefits of seasonal forecasts of crop yields

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  5. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  6. Why don't zebras have machine guns? Adaptation, selection, and constraints in evolutionary theory.

    PubMed

    Shanahan, Timothy

    2008-03-01

    In an influential paper, Stephen Jay Gould and Richard Lewontin (1979) contrasted selection-driven adaptation with phylogenetic, architectural, and developmental constraints as distinct causes of phenotypic evolution. In subsequent publications Gould (e.g., 1997a,b, 2002) has elaborated this distinction into one between a narrow "Darwinian Fundamentalist" emphasis on "external functionalist" processes, and a more inclusive "pluralist" emphasis on "internal structuralist" principles. Although theoretical integration of functionalist and structuralist explanations is the ultimate aim, natural selection and internal constraints are treated as distinct causes of evolutionary change. This distinction is now routinely taken for granted in the literature in evolutionary biology. I argue that this distinction is problematic because the effects attributed to non-selective constraints are more parsimoniously explained as the ordinary effects of selection itself. Although it may still be a useful shorthand to speak of phylogenetic, architectural, and developmental constraints on phenotypic evolution, it is important to understand that such "constraints" do not constitute an alternative set of causes of evolutionary change. The result of this analysis is a clearer understanding of the relationship between adaptation, selection and constraints as explanatory concepts in evolutionary theory.

  7. Developmental constraints on behavioural flexibility.

    PubMed

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  8. Learning With Mixed Hard/Soft Pointwise Constraints.

    PubMed

    Gnecco, Giorgio; Gori, Marco; Melacci, Stefano; Sanguineti, Marcello

    2015-09-01

    A learning paradigm is proposed and investigated, in which the classical framework of learning from examples is enhanced by the introduction of hard pointwise constraints, i.e., constraints imposed on a finite set of examples that cannot be violated. Such constraints arise, e.g., when requiring coherent decisions of classifiers acting on different views of the same pattern. The classical examples of supervised learning, which can be violated at the cost of some penalization (quantified by the choice of a suitable loss function) play the role of soft pointwise constraints. Constrained variational calculus is exploited to derive a representer theorem that provides a description of the functional structure of the optimal solution to the proposed learning paradigm. It is shown that such an optimal solution can be represented in terms of a set of support constraints, which generalize the concept of support vectors and open the doors to a novel learning paradigm, called support constraint machines. The general theory is applied to derive the representation of the optimal solution to the problem of learning from hard linear pointwise constraints combined with soft pointwise constraints induced by supervised examples. In some cases, closed-form optimal solutions are obtained.

  9. Momentum constraints as integrability conditions for the Hamiltonian constraint in general relativity.

    NASA Technical Reports Server (NTRS)

    Moncrief, V.; Teitelboim, C.

    1972-01-01

    It is shown that if the Hamiltonian constraint of general relativity is imposed as a restriction on the Hamilton principal functional in the classical theory, or on the state functional in the quantum theory, then the momentum constraints are automatically satisfied. This result holds both for closed and open spaces and it means that the full content of the theory is summarized by a single functional equation of the Tomonaga-Schwinger type.

  10. Integrated Analysis of Airport Capacity and Environmental Constraints

    NASA Technical Reports Server (NTRS)

    Hasan, Shahab; Long, Dou; Hart, George; Eckhause, Jeremy; Hemm, Robert; Busick, Andrew; Graham, Michael; Thompson, Terry; Murphy, Charles; Poage, James

    2010-01-01

    LMI conducted an integrated analysis of airport capacity and environmental constraints. identifying and ranking the key factors limiting achievement of NextGen capacity goals. The primary metric used was projected throughput, which was estimated for the years 2015 and 2025 based on the unconstrained demand forecast from the Federal Aviation Administration, and planned improvements including those proposed in the NextGen plan. A set of 310 critical airports was identified.. collectively accounting for more than 99 percent of domestic air traffic volume; a one-off analytical approach was used to isolate the constraint being assessed. The study considered three capacity constraints (runway.. taxiway, and gate) and three environmental constraints (fuel, NO(x) emissions, and noise). For the ten busiest airports, runway and noise are the primary and secondary constraints in both 2015 and 2025. For the OEP 35 airports and overall for the remaining airports, the most binding constraint is noise. Six of the 10 busiest airports, will face runway constraints in 2025, and 95 will face gate constraints. Nearly every airport will be subject to constraints due to emissions and NOx. Runway and taxi constraints are more concentrated in the large airports: environmental constraints are present at almost every airport regardless of size.

  11. On the Yield Strength of Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Jain, C.; Korenaga, J.; Karato, S. I.

    2017-12-01

    The origin of plate tectonic convection on Earth is intrinsically linked to the reduction in the strength of oceanic lithosphere at plate boundaries. A few mechanisms, such as deep thermal cracking [Korenaga, 2007] and strain localization due to grain-size reduction [e.g., Ricard and Bercovici, 2009], have been proposed to explain this reduction in lithospheric strength, but the significance of these mechanisms can be assessed only if we have accurate estimates on the strength of the undamaged oceanic lithosphere. The Peierls mechanism is likely to govern the rheology of old oceanic lithosphere [Kohlstedt et al., 1995], but the flow-law parameters for the Peierls mechanism suggested by previous studies do not agree with each other. We thus reanalyze the relevant experimental deformation data of olivine aggregates using Markov chain Monte Carlo inversion, which can handle the highly nonlinear constitutive equation of the Peierls mechanism [Korenaga and Karato, 2008; Mullet et al., 2015]. Our inversion results indicate nontrivial nonuniqueness in every flow-law parameter for the Peierls mechanism. Moreover, the resultant flow laws, all of which are consistent with the same experimental data, predict substantially different yield stresses under lithospheric conditions and could therefore have different implications for the origin of plate tectonics. We discuss some future directions to improve our constraints on lithospheric yield strength.

  12. Modeling Multivalent Ligand-Receptor Interactions with Steric Constraints on Configurations of Cell-Surface Receptor Aggregates

    PubMed Central

    Monine, Michael I.; Posner, Richard G.; Savage, Paul B.; Faeder, James R.; Hlavacek, William S.

    2010-01-01

    Abstract We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcεRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important. PMID:20085718

  13. Evaluation of pig production practices, constraints and opportunities for improvement in smallholder production systems in Kenya.

    PubMed

    Mbuthia, Jackson Mwenda; Rewe, Thomas Odiwuor; Kahi, Alexander Kigunzu

    2015-02-01

    This study evaluated pig production practices by smallholder farmers in two distinct production systems geared towards addressing their constraints and prospects for improvement. The production systems evaluated were semi-intensive and extensive and differed in remoteness, market access, resource availability and pig production intensity. Data were collected using structured questionnaires where a total of 102 pig farmers were interviewed. Qualitative and quantitative research methods were employed to define the socioeconomic characteristics of the production systems, understanding the different roles that pigs play, marketing systems and constraints to production. In both systems, regular cash income and insurance against emergencies were ranked as the main reasons for rearing pigs. Marketing of pigs was mainly driven by the type of production operation. Finances, feeds and housing were identified as the major constraints to production. The study provides important parameters and identifies constraints important for consideration in design of sustainable production improvement strategies. Feeding challenges can be improved through understanding the composition and proper utilization of local feed resources. Provision of adequate housing would improve the stocking rates and control mating.

  14. Can We Finish the Revolution? Gender, Work-Family Ideals, and Institutional Constraint.

    PubMed

    Pedulla, David S; Thébaud, Sarah

    2015-02-01

    Why has progress toward gender equality in the workplace and at home stalled in recent decades? A growing body of scholarship suggests that persistently gendered workplace norms and policies limit men's and women's ability to create gender egalitarian relationships at home. In this article, we build on and extend prior research by examining the extent to which institutional constraints, including workplace policies, affect young, unmarried men's and women's preferences for their future work-family arrangements. We also examine how these effects vary across levels of education. Drawing on original survey-experimental data, we ask respondents how they would like to structure their future relationships while experimentally manipulating the degree of institutional constraint under which they state their preferences. Two clear patterns emerge. First, as constraints are removed and men and women can opt for an egalitarian relationship, the majority of them choose this option, regardless of gender or education level. Second, women's relationship structure preferences are more malleable to the removal of institutional constraints via supportive work-family policy interventions than are men's. These findings shed light on important questions about the role of institutions in shaping work-family preferences, underscoring the notion that seemingly gender-traditional work-family decisions are largely contingent on the constraints of current workplaces.

  15. Can We Finish the Revolution? Gender, Work-Family Ideals, and Institutional Constraint

    PubMed Central

    Pedulla, David S.; Thébaud, Sarah

    2015-01-01

    Why has progress toward gender equality in the workplace and at home stalled in recent decades? A growing body of scholarship suggests that persistently gendered workplace norms and policies limit men's and women's ability to create gender egalitarian relationships at home. In this article, we build on and extend prior research by examining the extent to which institutional constraints, including workplace policies, affect young, unmarried men's and women's preferences for their future work-family arrangements. We also examine how these effects vary across levels of education. Drawing on original survey-experimental data, we ask respondents how they would like to structure their future relationships while experimentally manipulating the degree of institutional constraint under which they state their preferences. Two clear patterns emerge. First, as constraints are removed and men and women can opt for an egalitarian relationship, the majority of them choose this option, regardless of gender or education level. Second, women's relationship structure preferences are more malleable to the removal of institutional constraints via supportive work-family policy interventions than are men's. These findings shed light on important questions about the role of institutions in shaping work-family preferences, underscoring the notion that seemingly gender-traditional work-family decisions are largely contingent on the constraints of current workplaces. PMID:26365994

  16. The importance of ecological constraints on the control of multi-species treeline dynamics in eastern Nunavik, Quebec.

    PubMed

    Dufour-Tremblay, Geneviève; De Vriendt, Laurent; Lévesque, Esther; Boudreau, Stéphane

    2012-10-01

    Treelines are temperature-sensitive ecotones that should be able to expand in response to global warming; however, they are also controlled by ecological constraints. These constraints can create bottlenecks for tree regeneration, hindering treeline advances. Near Kangiqsualujjuaq (Nunavik, subarctic Québec), previous studies suggested successful recruitment of Larix laricina above the altitudinal treeline, while Picea mariana establishment remains scarce. We studied regeneration of both species to identify factors responsible for such contrasting responses. • We measured seeds and wings to evaluate species dispersal potential. We compared seed viability and tolerance to shrub leachates with germination trials. To evaluate seedbed preferences, we compared seedling occurrence on the different seedbeds with seedbed relative abundance in the field. • Seed germination was similar between L. laricina and P. mariana, whereas dispersal potential was higher for the latter. Germination of P. mariana seeds was more strongly inhibited by shrub leachates than were L. laricina seeds. In the field, we found only a few Picea seedlings, but numerous seedlings of Larix had established disproportionally on several seedbeds. While Betula glandulosa, mosses, and Vaccinium uliginosim impeded Larix establishment, numerous seedlings were found on lichens, mineral soil, and liverworts. The low occurrence of suitable seedbeds for Picea, mainly mineral soil, could explain the seedling scarcity of this species. • This study highlighted that allelopathy and unsuitable seedbeds could contribute to regeneration failure of P. mariana in eastern Nunavik and emphasizes the need to consider ecological preferences of species before predicting treeline expansion under a warmer climate.

  17. Analysis of Production Constraints at NADEP Alameda; A TQL Approach

    DTIC Science & Technology

    1993-06-01

    they will be worth. B. RESEARCH QUESTIONS Can production systems currently using TQL theory and Theory of Constraints (TOC) be improved strategically ...This thesis will have a broad scope in following a systems approach to TQL. Any element of the system that is strategically important to improve...point in time. Since time and money are finite, focusing on those issues that are strategically important, first, is the most successful way of employing

  18. Hyperspectral imagery for mapping crop yield for precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Crop yield is perhaps the most important piece of information for crop management in precision agriculture. It integrates the effects of various spatial variables such as soil properties, topographic attributes, tillage, plant population, fertilization, irrigation, and pest infestations. A yield map...

  19. Generalized Pauli constraints in small atoms

    NASA Astrophysics Data System (ADS)

    Schilling, Christian; Altunbulak, Murat; Knecht, Stefan; Lopes, Alexandre; Whitfield, James D.; Christandl, Matthias; Gross, David; Reiher, Markus

    2018-05-01

    The natural occupation numbers of fermionic systems are subject to nontrivial constraints, which include and extend the original Pauli principle. A recent mathematical breakthrough has clarified their mathematical structure and has opened up the possibility of a systematic analysis. Early investigations have found evidence that these constraints are exactly saturated in several physically relevant systems, e.g., in a certain electronic state of the beryllium atom. It has been suggested that, in such cases, the constraints, rather than the details of the Hamiltonian, dictate the system's qualitative behavior. Here, we revisit this question with state-of-the-art numerical methods for small atoms. We find that the constraints are, in fact, not exactly saturated, but that they lie much closer to the surface defined by the constraints than the geometry of the problem would suggest. While the results seem incompatible with the statement that the generalized Pauli constraints drive the behavior of these systems, they suggest that the qualitatively correct wave-function expansions can in some systems already be obtained on the basis of a limited number of Slater determinants, which is in line with numerical evidence from quantum chemistry.

  20. Constraints, Approach and Present Status for Selecting the Mars Surveyor 2001 Landing Site

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Anderson, F.; Bridges, N.; Briggs, G.; Gilmore, M.; Gulick, V.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; hide

    1999-01-01

    There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough, defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.

  1. Combining satellite remote sensing and surveys to understand persistent yield variation--- a case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Lobell, D. B.; Chen, X.

    2015-12-01

    A large gap between maize yields on average farmers' fields and the highest yields achieved by either experiment or farmers is typical throughout the developing world, including in the North China Plain (NCP). This maize yield gap as identified by previous studies indicates large opportunities for raising yield by improving agronomy. Quzhou county is typical of the winter-wheat summer-maize system in NCP where the average plot size is as small as 0.25 hectares. To analyze this cropping system amidst the challenge of substantial heterogeneity, we identified fields that were either persistently higher or lower yielding according to the remote sensing yield estimates, and then conducted detailed field surveys. We found irrigation facility to be a major constraint to yield both in terms of irrigation water quality and farmers' access to wells. In total, improving the access to unsalty water would be associated with a 0.32t/ha (4.2%) increase in multi-year average yield. In addition, farmers' method of choosing cultivar, which likely relates to their overall knowledge level, significantly explained yield variation. In particular, those choosing cultivars according to technician advice, personal experiences and high yielding neighbors' advice had on average higher yield than farmers that either followed seed sellers' advice or collectively purchased seeds. Overall, the study presents a generalizable methodology of assessing yield gap as well as its persistent factors using a combination of satellite and survey data.

  2. Light- and water-use efficiency model synergy: a revised look at crop yield estimation for agricultural decision-making

    NASA Astrophysics Data System (ADS)

    Marshall, M.; Tu, K. P.

    2015-12-01

    Large-area crop yield models (LACMs) are commonly employed to address climate-driven changes in crop yield and inform policy makers concerned with climate change adaptation. Production efficiency models (PEMs), a class of LACMs that rely on the conservative response of carbon assimilation to incoming solar radiation absorbed by a crop contingent on environmental conditions, have increasingly been used over large areas with remote sensing spectral information to improve the spatial resolution of crop yield estimates and address important data gaps. Here, we present a new PEM that combines model principles from the remote sensing-based crop yield and evapotranspiration (ET) model literature. One of the major limitations of PEMs is that they are evaluated using data restricted in both space and time. To overcome this obstacle, we first validated the model using 2009-2014 eddy covariance flux tower Gross Primary Production data in a rice field in the Central Valley of California- a critical agro-ecosystem of the United States. This evaluation yielded a Willmot's D and mean absolute error of 0.81 and 5.24 g CO2/d, respectively, using CO2, leaf area, temperature, and moisture constraints from the MOD16 ET model, Priestley-Taylor ET model, and the Global Production Efficiency Model (GLOPEM). A Monte Carlo simulation revealed that the model was most sensitive to the Enhanced Vegetation Index (EVI) input, followed by Photosynthetically Active Radiation, vapor pressure deficit, and air temperature. The model will now be evaluated using 30 x 30m (Landsat resolution) biomass transects developed in 2011 and 2012 from spectroradiometric and other non-destructive in situ metrics for several cotton, maize, and rice fields across the Central Valley. Finally, the model will be driven by Daymet and MODIS data over the entire State of California and compared with county-level crop yield statistics. It is anticipated that the new model will facilitate agro-climatic decision-making in

  3. Some potential material supply constraints in solar systems for heating and cooling of buildings and process heat. (A preliminary screening to identify critical materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, R.L.; Gurwell, W.E.; Nelson, T.A.

    1979-06-01

    Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billionmore » m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.« less

  4. New bounds on the Cabibbo-Kobayashi-Maskawa matrix from B{yields}K{pi}{pi} Dalitz plot analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciuchini, M.; Pierini, M.; Silvestrini, L.

    2006-09-01

    We present a new technique to extract information on the unitarity triangle from the study of B{yields}K{pi}{pi} Dalitz plots. Using the sensitivity of Dalitz analyses to the absolute values and the phases of decay amplitudes and isospin symmetry, we obtain a new constraint on the elements of the CKM matrix. We discuss in detail the role of electroweak penguin contributions and outline future prospects.

  5. Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it

    We phenomenologically put local constraints on the rotation of distant masses by using the planets of the solar system. First, we analytically compute the orbital secular precessions induced on the motion of a test particle about a massive primary by a Coriolis-like force, treated as a small perturbation, in the case of a constant angular velocity vector Ψ directed along a generic direction in space. The semimajor axis a and the eccentricity e of the test particle do not secularly change, contrary to the inclination I, the longitude of the ascending node Ω, the longitude of the pericenter varpi andmore » the mean anomaly M. Then, we compare our prediction for (dot varpi) with the corrections Δdot varpi to the usual perihelion precessions of the inner planets recently estimated by fitting long data sets with different versions of the EPM ephemerides. We obtain as preliminary upper bounds |Ψ{sub z}| ≤ 0.0006−0.013 arcsec cty{sup −1}, |Ψ{sub x}| ≤ 0.1−2.7 arcsec cty{sup −1}, |Ψ{sub y}| ≤ 0.3−2.3 arcsec cty{sup −1}. Interpreted in terms of models of space-time involving cosmic rotation, our results are able to yield constraints on cosmological parameters like the cosmological constant Λ and the Hubble parameter H{sub 0} not too far from their values determined with cosmological observations and, in some cases, several orders of magnitude better than the constraints usually obtained so far from space-time models not involving rotation. In the case of the rotation of the solar system throughout the Galaxy, occurring clockwise about the North Galactic Pole, our results for Ψ{sub z} are in disagreement with the expected value of it at more than 3−σ level. Modeling the Oort cloud as an Einstein-Thirring slowly rotating massive shell inducing Coriolis-type forces inside yields unphysical results for its putative rotation.« less

  6. Analytical design of an industrial two-term controller for optimal regulatory control of open-loop unstable processes under operational constraints.

    PubMed

    Tchamna, Rodrigue; Lee, Moonyong

    2018-01-01

    This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Universal Quantification in a Constraint-Based Planner

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Frank, Jeremy; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Constraints and universal quantification are both useful in planning, but handling universally quantified constraints presents some novel challenges. We present a general approach to proving the validity of universally quantified constraints. The approach essentially consists of checking that the constraint is not violated for all members of the universe. We show that this approach can sometimes be applied even when variable domains are infinite, and we present some useful special cases where this can be done efficiently.

  8. A Hybrid Constraint Representation and Reasoning Framework

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wanlin

    2004-01-01

    In this paper, we introduce JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint system with a runtime software environment and improving its applicability. We describe how JNET is applied to a real-world problem - NASA's Earth-science data processing domain, and demonstrate how JNET can be extended, without any knowledge of how it is implemented, to meet the growing demands of real-world applications.

  9. Facilitators and constraints at each stage of the migration decision process.

    PubMed

    Kley, Stefanie

    2017-10-01

    Behavioural models of migration emphasize the importance of migration decision-making for the explanation of subsequent behaviour. But empirical migration research regularly finds considerable gaps between those who intend to migrate and those who actually realize their intention. This paper applies the Theory of Planned Behaviour, enriched by the Rubicon model, to test specific hypotheses about distinct effects of facilitators and constraints on specific stages of migration decision-making and behaviour. The data come from a tailor-made panel survey based on random samples of people drawn from two German cities in 2006-07. The results show that in conventional models the effects of facilitators and constraints on migration decision-making are likely to be underestimated. Splitting the process of migration decision-making into a pre-decisional and a pre-actional phase helps to avoid bias in the estimated effects of facilitators and constraints on both migration decision-making and migration behaviour.

  10. Uncertainty management by relaxation of conflicting constraints in production process scheduling

    NASA Technical Reports Server (NTRS)

    Dorn, Juergen; Slany, Wolfgang; Stary, Christian

    1992-01-01

    Mathematical-analytical methods as used in Operations Research approaches are often insufficient for scheduling problems. This is due to three reasons: the combinatorial complexity of the search space, conflicting objectives for production optimization, and the uncertainty in the production process. Knowledge-based techniques, especially approximate reasoning and constraint relaxation, are promising ways to overcome these problems. A case study from an industrial CIM environment, namely high-grade steel production, is presented to demonstrate how knowledge-based scheduling with the desired capabilities could work. By using fuzzy set theory, the applied knowledge representation technique covers the uncertainty inherent in the problem domain. Based on this knowledge representation, a classification of jobs according to their importance is defined which is then used for the straightforward generation of a schedule. A control strategy which comprises organizational, spatial, temporal, and chemical constraints is introduced. The strategy supports the dynamic relaxation of conflicting constraints in order to improve tentative schedules.

  11. Radial vorticity constraint in core flow modeling

    NASA Astrophysics Data System (ADS)

    Asari, S.; Lesur, V.

    2011-11-01

    We present a new method for estimating core surface flows by relaxing the tangentially geostrophic (TG) constraint. Ageostrophic flows are allowed if they are consistent with the radial component of the vorticity equation under assumptions of the magnetostrophic force balance and an insulating mantle. We thus derive a tangentially magnetostrophic (TM) constraint for flows in the spherical harmonic domain and implement it in a least squares inversion of GRIMM-2, a recently proposed core field model, for temporally continuous core flow models (2000.0-2010.0). Comparing the flows calculated using the TG and TM constraints, we show that the number of degrees of freedom for the poloidal flows is notably increased by admitting ageostrophic flows compatible with the TM constraint. We find a significantly improved fit to the GRIMM-2 secular variation (SV) by including zonal poloidal flow in TM flow models. Correlations between the predicted and observed length-of-day variations are equally good under the TG and TM constraints. In addition, we estimate flow models by imposing the TM constraint together with other dynamical constraints: either purely toroidal (PT) flow or helical flow constraint. For the PT case we cannot find any flow which explains the observed SV, while for the helical case the SV can be fitted. The poor compatibility between the TM and PT constraints seems to arise from the absence of zonal poloidal flows. The PT flow assumption is likely to be negated when the radial magnetostrophic vorticity balance is taken into account, even if otherwise consistent with magnetic observations.

  12. Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data

    NASA Astrophysics Data System (ADS)

    Miller, Christopher Chan; Jacob, Daniel J.; Marais, Eloise A.; Yu, Karen; Travis, Katherine R.; Kim, Patrick S.; Fisher, Jenny A.; Zhu, Lei; Wolfe, Glenn M.; Hanisco, Thomas F.; Keutsch, Frank N.; Kaiser, Jennifer; Min, Kyung-Eun; Brown, Steven S.; Washenfelder, Rebecca A.; González Abad, Gonzalo; Chance, Kelly

    2017-07-01

    Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds (VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the SENEX campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NOx ≡ NO + NO2), the behavior of the CHOCHO-HCHO relationship, the quality of OMI CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOS-Chem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NOx conditions following the isomerization of the isoprene peroxy radical (ISOPO2). The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NOx conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt

  13. Glyoxal Yield from Isoprene Oxidation and Relation to Formaldehyde: Chemical Mechanism, Constraints from SENEX Aircraft Observations, and Interpretation of OMI Satellite Data

    NASA Technical Reports Server (NTRS)

    Miller, Christopher Chan; Jacob, Daniel J.; Marais, Eloise A.; Yu, Karen; Travis, Katherine R.; Kim, Patrick S.; Fisher, Jenny A.; Zhu, Lei; Wolfe, Glenn M.; Hanisco, Thomas F.; hide

    2017-01-01

    Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds(VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the Southeast Nexus (SENEX) campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NO (sub x) triple bonded to NO plus NO2), the behavior of the CHOCHO-HCHO relationship, the quality of Ozone Monitoring Instrument (OMI) CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOSChem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NO (sub x) conditions following the isomerization of the isoprene peroxy radical (ISOPO2).The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NO (sub x) conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in

  14. Market segmentation using perceived constraints

    Treesearch

    Jinhee Jun; Gerard Kyle; Andrew Mowen

    2008-01-01

    We examined the practical utility of segmenting potential visitors to Cleveland Metroparks using their constraint profiles. Our analysis identified three segments based on their scores on the dimensions of constraints: Other priorities--visitors who scored the highest on 'other priorities' dimension; Highly Constrained--visitors who scored relatively high on...

  15. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  16. Constraints on Primordial Non-Gaussianity from 800 000 Photometric Quasars.

    PubMed

    Leistedt, Boris; Peiris, Hiranya V; Roth, Nina

    2014-11-28

    We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of 800 000 photometric quasars from the Sloan Digital Sky Survey in the redshift range 0.5constraints lead to -105constraints obtained to date on PNG using a single population of large-scale structure tracers, and are already at the level of pre-Planck constraints from the cosmic microwave background. A conservative forecast for a Large Synoptic Survey Telescope (LSST)-like survey incorporating mode projection yields σ(f_{NL})∼5-competitive with the Planck result-highlighting the power of upcoming large scale structure surveys to probe the initial conditions of the Universe.

  17. In Situ Observational Constraints on GIA in Antarctica

    NASA Astrophysics Data System (ADS)

    Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Konfal, S.; Dalziel, I. W.; Smalley, R.; Willis, M. J.; Wiens, D. A.; Heeszel, D. S.

    2012-12-01

    Geodetic and seismologic data sets have been acquired across a significant portion of Antarctica through deployment of autonomous, remote instrumentation by the Antarctic Network (ANET) project of the Polar Earth Observing Network (POLENET). Continuous GPS measurements of bedrock crustal motions are yielding a synoptic picture of vertical and horizontal crustal motion patterns from the Transantarctic Mountains to the Ellsworth-Whitmore Mountains and Marie Byrd Land regions. Vertical motion patterns are broadly compatible with predictions from current GIA models, but the magnitudes of the vertical motions are substantially lower than predicted. Slower rates of uplift due to GIA can be attributed to factors including errors in ice history, a superposed solid earth response to modern ice mass change, and/or the influence of laterally varying earth properties on the GIA response. Patterns of horizontal motions measured by ANET show that the role of laterally varying earth rheology is extremely important in Antarctica. Crustal motion vectors are closely aligned and document motion from East toward West Antarctica, in contradiction to ice sheet reconstructions placing maximum LGM ice mass loss in West Antarctica and GIA models that predict motions in the opposite direction. When compared to earth structure mapped by seismology, the horizontal crustal motions are consistently near-perpendicular to the very strong gradient in crust and mantle properties, perhaps the first confirmation of predictions from modeling studies that horizontal motions can be deflected or even reversed where such a lateral earth property exists. Accurate GIA models for Antarctica clearly require a laterally-varying earth model and tuning based on these new GPS and seismological constraints.

  18. The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Baker, P. T.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cordes, J. M.; Cornish, N. J.; Crawford, F.; Thankful Cromartie, H.; Crowter, K.; DeCesar, M.; Demorest, P. B.; Dolch, T.; Ellis, J. A.; Ferdman, R. D.; Ferrara, E.; Folkner, W. M.; Fonseca, E.; Garver-Daniels, N.; Gentile, P. A.; Haas, R.; Hazboun, J. S.; Huerta, E. A.; Islo, K.; Jones, G.; Jones, M. L.; Kaplan, D. L.; Kaspi, V. M.; Lam, M. T.; Lazio, T. J. W.; Levin, L.; Lommen, A. N.; Lorimer, D. R.; Luo, J.; Lynch, R. S.; Madison, D. R.; McLaughlin, M. A.; McWilliams, S. T.; Mingarelli, C. M. F.; Ng, C.; Nice, D. J.; Park, R. S.; Pennucci, T. T.; Pol, N. S.; Ransom, S. M.; Ray, P. S.; Rasskazov, A.; Siemens, X.; Simon, J.; Spiewak, R.; Stairs, I. H.; Stinebring, D. R.; Stovall, K.; Swiggum, J.; Taylor, S. R.; Vallisneri, M.; van Haasteren, R.; Vigeland, S.; Zhu, W. W.; The NANOGrav Collaboration

    2018-05-01

    We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of A GWB < 1.45 × 10‑15 at a frequency of f = 1 yr‑1 for a fiducial f ‑2/3 power-law spectrum and with interpulsar correlations modeled. This is a factor of ∼2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH–galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gμ < 5.3 × 10‑11—a factor of ∼2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is ΩGWB(f) h 2 < 3.4 × 10‑10.

  19. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Connectionism, parallel constraint satisfaction processes, and gestalt principles: (re) introducing cognitive dynamics to social psychology.

    PubMed

    Read, S J; Vanman, E J; Miller, L C

    1997-01-01

    We argue that recent work in connectionist modeling, in particular the parallel constraint satisfaction processes that are central to many of these models, has great importance for understanding issues of both historical and current concern for social psychologists. We first provide a brief description of connectionist modeling, with particular emphasis on parallel constraint satisfaction processes. Second, we examine the tremendous similarities between parallel constraint satisfaction processes and the Gestalt principles that were the foundation for much of modem social psychology. We propose that parallel constraint satisfaction processes provide a computational implementation of the principles of Gestalt psychology that were central to the work of such seminal social psychologists as Asch, Festinger, Heider, and Lewin. Third, we then describe how parallel constraint satisfaction processes have been applied to three areas that were key to the beginnings of modern social psychology and remain central today: impression formation and causal reasoning, cognitive consistency (balance and cognitive dissonance), and goal-directed behavior. We conclude by discussing implications of parallel constraint satisfaction principles for a number of broader issues in social psychology, such as the dynamics of social thought and the integration of social information within the narrow time frame of social interaction.

  1. Genotypic diversity in the responses of yield and yield components to elevated ozone of diverse inbred and hybrid maize

    USDA-ARS?s Scientific Manuscript database

    Current tropospheric ozone concentrations ([O3]), an important air pollutant, are phytotoxic and detrimental to crop yield causing significant losses of ~14-26 billion in 4 of the world’s major crops. Until recent years, it was believed that agricultural and economically important C4 plants, such as...

  2. Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints.

    PubMed

    König, Lars; Derksen, Alexander; Papenberg, Nils; Haas, Benjamin

    2016-09-20

    Deformable image registration (DIR) is a key component in many radiotherapy applications. However, often resulting deformations are not satisfying, since varying deformation properties of different anatomical regions are not considered. To improve the plausibility of DIR in adaptive radiotherapy in the male pelvic area, this work integrates a local rigidity deformation model into a DIR algorithm. A DIR framework is extended by constraints, enforcing locally rigid deformation behavior for arbitrary delineated structures. The approach restricts those structures to rigid deformations, while surrounding tissue is still allowed to deform elastically. The algorithm is tested on ten CT/CBCT male pelvis datasets with active rigidity constraints on bones and prostate and compared to the Varian SmartAdapt deformable registration (VSA) on delineations of bladder, prostate and bones. The approach with no rigid structures (REG0) obtains an average dice similarity coefficient (DSC) of 0.87 ± 0.06 and a Hausdorff-Distance (HD) of 8.74 ± 5.95 mm. The new approach with rigid bones (REG1) yields a DSC of 0.87 ± 0.07, HD 8.91 ± 5.89 mm. Rigid deformation of bones and prostate (REG2) obtains 0.87 ± 0.06, HD 8.73 ± 6.01 mm, while VSA yields a DSC of 0.86 ± 0.07, HD 10.22 ± 6.62 mm. No deformation grid foldings are observed for REG0 and REG1 in 7 of 10 cases; for REG2 in 8 of 10 cases, with no grid foldings in prostate, an average of 0.08 % in bladder (REG2: no foldings) and 0.01 % inside the body contour. VSA exhibits grid foldings in each case, with an average percentage of 1.81 % for prostate, 1.74 % for bladder and 0.12 % for the body contour. While REG1 and REG2 keep bones rigid, elastic bone deformations are observed with REG0 and VSA. An average runtime of 26.2 s was achieved with REG1; 31.1 s with REG2, compared to 10.5 s with REG0 and 10.7 s with VMS. With accuracy in the range of VSA, the new approach with constraints delivers physically more plausible deformations in

  3. The importance of environmental variability and management control error to optimal harvest policies

    USGS Publications Warehouse

    Hunter, C.M.; Runge, M.C.

    2004-01-01

    State-dependent strategies (SDSs) are the most general form of harvest policy because they allow the harvest rate to depend, without constraint, on the state of the system. State-dependent strategies that provide an optimal harvest rate for any system state can be calculated, and stochasticity can be appropriately accommodated in this optimization. Stochasticity poses 2 challenges to harvest policies: (1) the population will never be at the equilibrium state; and (2) stochasticity induces uncertainty about future states. We investigated the effects of 2 types of stochasticity, environmental variability and management control error, on SDS harvest policies for a white-tailed deer (Odocoileus virginianus) model, and contrasted these with a harvest policy based on maximum sustainable yield (MSY). Increasing stochasticity resulted in more conservative SDSs; that is, higher population densities were required to support the same harvest rate, but these effects were generally small. As stochastic effects increased, SDSs performed much better than MSY. Both deterministic and stochastic SDSs maintained maximum mean annual harvest yield (AHY) and optimal equilibrium population size (Neq) in a stochastic environment, whereas an MSY policy could not. We suggest 3 rules of thumb for harvest management of long-lived vertebrates in stochastic systems: (1) an SDS is advantageous over an MSY policy, (2) using an SDS rather than an MSY is more important than whether a deterministic or stochastic SDS is used, and (3) for SDSs, rankings of the variability in management outcomes (e.g., harvest yield) resulting from parameter stochasticity can be predicted by rankings of the deterministic elasticities.

  4. Yield gaps and yield relationships in US soybean production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...

  5. Intelligence Constraints on Terrorist Network Plots

    NASA Astrophysics Data System (ADS)

    Woo, Gordon

    Since 9/11, the western intelligence and law enforcement services have managed to interdict the great majority of planned attacks against their home countries. Network analysis shows that there are important intelligence constraints on the number and complexity of terrorist plots. If two many terrorists are involved in plots at a given time, a tipping point is reached whereby it becomes progressively easier for the dots to be joined and for the conspirators to be arrested, and for the aggregate evidence to secure convictions. Implications of this analysis are presented for the campaign to win hearts and minds.

  6. Constraint-based Attribute and Interval Planning

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari; Frank, Jeremy

    2013-01-01

    In this paper we describe Constraint-based Attribute and Interval Planning (CAIP), a paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjunctive preconditions and conditional effects. We provide a theoretical foundation for the paradigm, based on temporal intervals and attributes. We then show how the plans are naturally expressed by networks of constraints, and show that the process of planning maps directly to dynamic constraint reasoning. In addition, we de ne compatibilities, a compact mechanism for describing planning domains. We describe how this framework can incorporate the use of constraint reasoning technology to improve planning. Finally, we describe EUROPA, an implementation of the CAIP framework.

  7. Acceleration constraints in modeling and control of nonholonomic systems

    NASA Astrophysics Data System (ADS)

    Bajodah, Abdulrahman H.

    2003-10-01

    Acceleration constraints are used to enhance modeling techniques for dynamical systems. In particular, Kane's equations of motion subjected to bilateral constraints, unilateral constraints, and servo-constraints are modified by utilizing acceleration constraints for the purpose of simplifying the equations and increasing their applicability. The tangential properties of Kane's method provide relationships between the holonomic and the nonholonomic partial velocities, and hence allow one to describe nonholonomic generalized active and inertia forces in terms of their holonomic counterparts, i.e., those which correspond to the system without constraints. Therefore, based on the modeling process objectives, the holonomic and the nonholonomic vector entities in Kane's approach are used interchangeably to model holonomic and nonholonomic systems. When the holonomic partial velocities are used to model nonholonomic systems, the resulting models are full-order (also called nonminimal or unreduced) and separated in accelerations. As a consequence, they are readily integrable and can be used for generic system analysis. Other related topics are constraint forces, numerical stability of the nonminimal equations of motion, and numerical constraint stabilization. Two types of unilateral constraints considered are impulsive and friction constraints. Impulsive constraints are modeled by means of a continuous-in-velocities and impulse-momentum approaches. In controlled motion, the acceleration form of constraints is utilized with the Moore-Penrose generalized inverse of the corresponding constraint matrix to solve for the inverse dynamics of servo-constraints, and for the redundancy resolution of overactuated manipulators. If control variables are involved in the algebraic constraint equations, then these tools are used to modify the controlled equations of motion in order to facilitate control system design. An illustrative example of spacecraft stabilization is presented.

  8. Constraints on Ho from Time-Delay Measurements of PG1115+080

    NASA Technical Reports Server (NTRS)

    Chartas, George

    2003-01-01

    The observations that were performed as part of the award titled: Constraints on Ho From Time-Delay Measurements of PG1115+080 resulted in several scientific publications and presentations. We list these publications and presentations and provide brief description of the important science presented in them.

  9. Yield responses of wild C3 and C4 crop progenitors to subambient CO2 : a test for the role of CO2 limitation in the origin of agriculture.

    PubMed

    Cunniff, Jennifer; Jones, Glynis; Charles, Michael; Osborne, Colin P

    2017-01-01

    Limitation of plant productivity by the low partial pressure of atmospheric CO 2 (C a ) experienced during the last glacial period is hypothesized to have been an important constraint on the origins of agriculture. In support of this hypothesis, previous work has shown that glacial C a limits vegetative growth in the wild progenitors of both C 3 and C 4 founder crops. Here, we present data showing that glacial C a also reduces grain yield in both crop types. We grew four wild progenitors of C 3 (einkorn wheat and barley) and C 4 crops (foxtail and broomcorn millets) at glacial and postglacial C a , measuring grain yield and the morphological and physiological components contributing to these yield changes. The C 3 species showed a significant increase in unthreshed grain yield of ~50% with the glacial to postglacial increase in C a , which matched the stimulation of photosynthesis, suggesting that increases in photosynthesis are directly translated into yield at subambient levels of C a . Increased yield was controlled by a higher rate of tillering, leading to a larger number of tillers bearing fertile spikes, and increases in seed number and size. The C 4 species showed smaller, but significant, increases in grain yield of 10-15%, arising from larger seed numbers and sizes. Photosynthesis was enhanced by C a in only one C 4 species and the effect diminished during development, suggesting that an indirect mechanism mediated by plant water relations could also be playing a role in the yield increase. Interestingly, the C 4 species at glacial C a showed some evidence that photosynthetic capacity was upregulated to enhance carbon capture. Development under glacial C a also impacted negatively on the subsequent germination and viability of seeds. These results suggest that the grain production of both C 3 and C 4 crop progenitors was limited by the atmospheric conditions of the last glacial period, with important implications for the origins of agriculture. © 2016

  10. Measuring Constraint-Set Utility for Partitional Clustering Algorithms

    NASA Technical Reports Server (NTRS)

    Davidson, Ian; Wagstaff, Kiri L.; Basu, Sugato

    2006-01-01

    Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged over different randomly chosen constraint sets from a given set of labels, thereby masking interesting properties of individual sets. We demonstrate that constraint sets vary significantly in how useful they are for constrained clustering; some constraint sets can actually decrease algorithm performance. We create two quantitative measures, informativeness and coherence, that can be used to identify useful constraint sets. We show that these measures can also help explain differences in performance for four particular constrained clustering algorithms.

  11. Cosmological constraints on Brans-Dicke theory.

    PubMed

    Avilez, A; Skordis, C

    2014-07-04

    We report strong cosmological constraints on the Brans-Dicke (BD) theory of gravity using cosmic microwave background data from Planck. We consider two types of models. First, the initial condition of the scalar field is fixed to give the same effective gravitational strength Geff today as the one measured on Earth, GN. In this case, the BD parameter ω is constrained to ω>692 at the 99% confidence level, an order of magnitude improvement over previous constraints. In the second type, the initial condition for the scalar is a free parameter leading to a somewhat stronger constraint of ω>890, while Geff is constrained to 0.981constraints have greater validity than for the BD theory and are valid for any Horndeski theory, the most general second-order scalar-tensor theory, which approximates the BD theory on cosmological scales. In this sense, our constraints place strong limits on possible modifications of gravity that might explain cosmic acceleration.

  12. The Role of Motivation, Perceived Constraints, and Constraint Negotiation Strategies in Students' Internship Selection Experience

    ERIC Educational Resources Information Center

    Batty, Kimberly A.

    2011-01-01

    The purpose of this study was to document the factors (i.e., motivation and perceived constraints) and processes (i.e., constraint negotiation) that influence students' selection of and satisfaction with their internship choice. The study was conducted using a quantitative approach, which included a focus group, a pilot study, and a…

  13. Global evidence of positive impacts of freshwater biodiversity on fishery yields.

    PubMed

    Brooks, Emma Grace Elizabeth; Holland, Robert Alan; Darwall, William Robert Thomas; Eigenbrod, Felix; Tittensor, Derek

    2016-05-01

    An often-invoked benefit of high biodiversity is the provision of ecosystem services. However, evidence for this is largely based on data from small-scale experimental studies of relationships between biodiversity and ecosystem function that may have little relevance to real-world systems. Here, large-scale biodiversity datasets are used to test the relationship between the yield of inland capture fisheries and species richness from 100 countries. Inland waters of Africa, Europe and parts of Asia. A multimodel inference approach was used to assess inland fishery yields at the country level against species richness, waterside human population, area, elevation and various climatic variables, to determine the relative importance of species richness to fisheries yields compared with other major large-scale drivers. Secondly, the mean decadal variation in fishery yields at the country level for 1981-2010 was regressed against species richness to assess if greater diversity reduces the variability in yields over time. Despite a widespread reliance on targeting just a few species of fish, freshwater fish species richness is highly correlated with yield ( R 2  = 0.55) and remains an important and statistically significant predictor of yield once other macroecological drivers are controlled for. Freshwater richness also has a significant negative relationship with variability of yield over time in Africa ( R 2  = 0.16) but no effect in Europe. The management of inland waters should incorporate the protection of freshwater biodiversity, particularly in countries with the highest-yielding inland fisheries as these also tend to have high freshwater biodiversity. As these results suggest a link between biodiversity and stable, high-yielding fisheries, an important win-win outcome may be possible for food security and conservation of freshwater ecosystems. However, findings also highlight the urgent need for more data to fully understand and monitor the contribution of

  14. Direct handling of equality constraints in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Gabriele, Gary A.

    1990-01-01

    In recent years there have been several hierarchic multilevel optimization algorithms proposed and implemented in design studies. Equality constraints are often imposed between levels in these multilevel optimizations to maintain system and subsystem variable continuity. Equality constraints of this nature will be referred to as coupling equality constraints. In many implementation studies these coupling equality constraints have been handled indirectly. This indirect handling has been accomplished using the coupling equality constraints' explicit functional relations to eliminate design variables (generally at the subsystem level), with the resulting optimization taking place in a reduced design space. In one multilevel optimization study where the coupling equality constraints were handled directly, the researchers encountered numerical difficulties which prevented their multilevel optimization from reaching the same minimum found in conventional single level solutions. The researchers did not explain the exact nature of the numerical difficulties other than to associate them with the direct handling of the coupling equality constraints. The coupling equality constraints are handled directly, by employing the Generalized Reduced Gradient (GRG) method as the optimizer within a multilevel linear decomposition scheme based on the Sobieski hierarchic algorithm. Two engineering design examples are solved using this approach. The results show that the direct handling of coupling equality constraints in a multilevel optimization does not introduce any problems when the GRG method is employed as the internal optimizer. The optimums achieved are comparable to those achieved in single level solutions and in multilevel studies where the equality constraints have been handled indirectly.

  15. Magnetotail dynamics under isobaric constraints

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael

    1994-01-01

    Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.

  16. The roles of constraint-based and dedication-based influences on user's continued online shopping behavior.

    PubMed

    Chang, Su-Chao; Chou, Chi-Min

    2012-11-01

    The objective of this study was to determine empirically the role of constraint-based and dedication-based influences as drivers of the intention to continue using online shopping websites. Constraint-based influences consist of two variables: trust and perceived switching costs. Dedication-based influences consist of three variables: satisfaction, perceived usefulness, and trust. The current results indicate that both constraint-based and dedication-based influences are important drivers of the intention to continue using online shopping websites. The data also shows that trust has the strongest total effect on online shoppers' intention to continue using online shopping websites. In addition, the results indicate that the antecedents of constraint-based influences, technical bonds (e.g., perceived operational competence and perceived website interactivity) and social bonds (e.g., perceived relationship investment, community building, and intimacy) have indirect positive effects on the intention to continue using online shopping websites. Based on these findings, this research suggests that online shopping websites should build constraint-based and dedication-based influences to enhance user's continued online shopping behaviors simultaneously.

  17. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  18. Experiential Learning as a Constraint-Led Process: An Ecological Dynamics Perspective

    ERIC Educational Resources Information Center

    Brymer, Eric; Davids, Keith

    2014-01-01

    In this paper we present key ideas for an ecological dynamics approach to learning that reveal the importance of learner-environment interactions to frame outdoor experiential learning. We propose that ecological dynamics provides a useful framework for understanding the interacting constraints of the learning process and for designing learning…

  19. Fixed Costs and Hours Constraints

    ERIC Educational Resources Information Center

    Johnson, William R.

    2011-01-01

    Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…

  20. Improved constraints on supersymmetric dark matter from muon g-2

    NASA Astrophysics Data System (ADS)

    Baltz, E. A.; Gondolo, P.

    2003-03-01

    The new measurement of the anomalous magnetic moment of the muon by the Brookhaven AGS experiment 821 again shows a discrepancy with the standard model value. We investigate the consequences of these new data for neutralino dark matter, updating and extending our previous work [E. A. Baltz and P. Gondolo, Phys. Rev. Lett. 86, 5004 (2001)]. The measurement excludes the standard model value at 3.0σ confidence, assuming the evaluation using the hadronic e+e- cross section (the τ decay evaluation yields only a 1.6σ discrepancy). We analyze a phenomenological set of supersymmetric models with gaugino mass unification imposed but without a priori constraints on the Higgs sector. Taking the discrepancy as a sign of supersymmetry, we find that the lightest superpartner must be relatively light and it must have a relatively high elastic scattering cross section with nucleons, which brings it almost within reach of proposed direct dark matter searches. The SUSY signal from neutrino telescopes correlates fairly well with the elastic scattering cross section. The rate of cosmic ray antideuterons tends to be large in the allowed models, but the constraint has little effect on the rate of gamma ray lines. We stress that being more conservative may eliminate the discrepancy, but it does not eliminate the possibility of high astrophysical detection rates.

  1. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia

    2017-11-01

    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  2. Future Cosmological Constraints From Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Walters, Anthony; Weltman, Amanda; Gaensler, B. M.; Ma, Yin-Zhe; Witzemann, Amadeus

    2018-03-01

    We consider the possible observation of fast radio bursts (FRBs) with planned future radio telescopes, and investigate how well the dispersions and redshifts of these signals might constrain cosmological parameters. We construct mock catalogs of FRB dispersion measure (DM) data and employ Markov Chain Monte Carlo analysis, with which we forecast and compare with existing constraints in the flat ΛCDM model, as well as some popular extensions that include dark energy equation of state and curvature parameters. We find that the scatter in DM observations caused by inhomogeneities in the intergalactic medium (IGM) poses a big challenge to the utility of FRBs as a cosmic probe. Only in the most optimistic case, with a high number of events and low IGM variance, do FRBs aid in improving current constraints. In particular, when FRBs are combined with CMB+BAO+SNe+H 0 data, we find the biggest improvement comes in the {{{Ω }}}{{b}}{h}2 constraint. Also, we find that the dark energy equation of state is poorly constrained, while the constraint on the curvature parameter, Ω k , shows some improvement when combined with current constraints. When FRBs are combined with future baryon acoustic oscillation (BAO) data from 21 cm Intensity Mapping, we find little improvement over the constraints from BAOs alone. However, the inclusion of FRBs introduces an additional parameter constraint, {{{Ω }}}{{b}}{h}2, which turns out to be comparable to existing constraints. This suggests that FRBs provide valuable information about the cosmological baryon density in the intermediate redshift universe, independent of high-redshift CMB data.

  3. Combining parallel detection of proton echo planar spectroscopic imaging (PEPSI) measurements with a data-consistency constraint improves SNR.

    PubMed

    Tsai, Shang-Yueh; Hsu, Yi-Cheng; Chu, Ying-Hua; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2015-12-01

    One major challenge of MRSI is the poor signal-to-noise ratio (SNR), which can be improved by using a surface coil array. Here we propose to exploit the spatial sensitivity of different channels of a coil array to enforce the k-space data consistency (DC) in order to suppress noise and consequently to improve MRSI SNR. MRSI data were collected using a proton echo planar spectroscopic imaging (PEPSI) sequence at 3 T using a 32-channel coil array and were averaged with one, two and eight measurements (avg-1, avg-2 and avg-8). The DC constraint was applied using a regularization parameter λ of 1, 2, 3, 5 or 10. Metabolite concentrations were quantified using LCModel. Our results show that the suppression of noise by applying the DC constraint to PEPSI reconstruction yields up to 32% and 27% SNR gain for avg-1 and avg-2 data with λ = 5, respectively. According to the reported Cramer-Rao lower bounds, the improvement in metabolic fitting was significant (p < 0.01) when the DC constraint was applied with λ ≥ 2. Using the DC constraint with λ = 3 or 5 can minimize both root-mean-square errors and spatial variation for all subjects using the avg-8 data set as reference values. Our results suggest that MRSI reconstructed with a DC constraint can save around 70% of scanning time to obtain images and spectra with similar SNRs using λ = 5. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Partitioning potential fish yields from the Great Lakes

    USGS Publications Warehouse

    Loftus, D.H.; Olver, C.H.; Brown, Edward H.; Colby, P.J.; Hartman, Wilbur L.; Schupp, D.H.

    1987-01-01

    We proposed and implemented procedures for partitioning future fish yields from the Great Lakes into taxonomic components. These projections are intended as guidelines for Great Lakes resource managers and scientists. Attainment of projected yields depends on restoration of stable fish communities containing some large piscivores that will use prey efficiently, continuation of control of the sea lamprey (Petromyzon marinus), and restoration of high-quality fish habitat. Because Great Lakes fish communities were harmonic before their collapse, we used their historic yield properties as part of the basis for projecting potential yields of rehabilitated communities. This use is qualified, however, because of possible inaccuracies in the wholly commercial yield data, the presence now of greatly expanded sport fisheries that affect yield composition and magnitude, and some possibly irreversible changes since the 1950s in the various fish communities themselves. We predict that total yields from Lakes Superior, Huron, and Ontario will be increased through rehabilitation, while those from Lakes Michigan and Erie will decline. Salmonines and coregonines will dominate future yields from the upper lakes. The Lake Erie fishery will continue to yield mostly rainbow smelt (Osmerus mordax), but the relative importance of percids, especially of walleye (Stizostedion vitreum vitreum) will increase. In Lake Ontario, yields of salmonines will be increased. Managers will have to apply the most rigorous management strictures to major predator species.

  5. Constraints and Tests of the OPERA Superluminal Neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi Xiaojun; Yin Pengfei; Yu Zhaohuan

    The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10{sup -5}. We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process {pi}{yields}{mu}+{nu}{sub {mu}} kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3x10{sup -7}. Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured bymore » the IceCube Collaboration can constrain the LIV parameter to the level of 10{sup -12}. The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.« less

  6. Planning a sports training program using Adaptive Particle Swarm Optimization with emphasis on physiological constraints.

    PubMed

    Kumyaito, Nattapon; Yupapin, Preecha; Tamee, Kreangsak

    2018-01-08

    An effective training plan is an important factor in sports training to enhance athletic performance. A poorly considered training plan may result in injury to the athlete, and overtraining. Good training plans normally require expert input, which may have a cost too great for many athletes, particularly amateur athletes. The objectives of this research were to create a practical cycling training plan that substantially improves athletic performance while satisfying essential physiological constraints. Adaptive Particle Swarm Optimization using ɛ-constraint methods were used to formulate such a plan and simulate the likely performance outcomes. The physiological constraints considered in this study were monotony, chronic training load ramp rate and daily training impulse. A comparison of results from our simulations against a training plan from British Cycling, which we used as our standard, showed that our training plan outperformed the benchmark in terms of both athletic performance and satisfying all physiological constraints.

  7. Green Lumber Grade Yields for Subfactory Class Hardwood Logs

    Treesearch

    Leland F. Hanks; Leland F. Hanks

    1973-01-01

    Data on lumber grade yields for subfactory class logs are presented for ten species of hardwoods. Eogs of this type are expected to assume greater importance in the market. The yields, when coupled with lumber prices, will be useful to sawmill operators for developing log prices in terms of standard factory lumber.

  8. Model-based metabolism design: constraints for kinetic and stoichiometric models

    PubMed Central

    Stalidzans, Egils; Seiman, Andrus; Peebo, Karl; Komasilovs, Vitalijs; Pentjuss, Agris

    2018-01-01

    The implementation of model-based designs in metabolic engineering and synthetic biology may fail. One of the reasons for this failure is that only a part of the real-world complexity is included in models. Still, some knowledge can be simplified and taken into account in the form of optimization constraints to improve the feasibility of model-based designs of metabolic pathways in organisms. Some constraints (mass balance, energy balance, and steady-state assumption) serve as a basis for many modelling approaches. There are others (total enzyme activity constraint and homeostatic constraint) proposed decades ago, but which are frequently ignored in design development. Several new approaches of cellular analysis have made possible the application of constraints like cell size, surface, and resource balance. Constraints for kinetic and stoichiometric models are grouped according to their applicability preconditions in (1) general constraints, (2) organism-level constraints, and (3) experiment-level constraints. General constraints are universal and are applicable for any system. Organism-level constraints are applicable for biological systems and usually are organism-specific, but these constraints can be applied without information about experimental conditions. To apply experimental-level constraints, peculiarities of the organism and the experimental set-up have to be taken into account to calculate the values of constraints. The limitations of applicability of particular constraints for kinetic and stoichiometric models are addressed. PMID:29472367

  9. Primordial 4He constraints on inelastic macro dark matter revisited

    NASA Astrophysics Data System (ADS)

    Jacobs, David M.; Allwright, Gwyneth; Mafune, Mpho; Manikumar, Samyukta; Weltman, Amanda

    2016-11-01

    At present, the best model for the evolution of the cosmos requires that dark matter make up approximately 25% of the energy content of the Universe. Most approaches to explain the microscopic nature of dark matter, to date, have assumed its composition to be of intrinsically weakly interacting particles; however, this need not be the case to have consistency with all extant observations. Given decades of inconclusive evidence to support any dark matter candidate, there is strong motivation to consider alternatives to the standard particle scenario. One such example is macro dark matter, a class of candidates (macros) that could interact strongly with the particles of the Standard Model, have large masses and physical sizes, and yet behave as dark matter. Macros that scatter completely inelastically could have altered the primordial production of the elements, and macro charge-dependent constraints have been obtained previously. Here we reconsider the phenomenology of inelastically interacting macros on the abundance of primordially produced 4He and revise previous constraints by also taking into account improved measurements of the primordial 4He abundance. The constraints derived here are limited in applicability to only leptophobic macros that have a surface potential V (RX)≳0.5 MeV . However, an important conclusion from our analysis is that even neutral macros would likely affect the abundance of the light elements. Therefore, constraints on that scenario are possible and are currently an open question.

  10. Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic demons.

    PubMed

    Peyrat, Jean-Marc; Delingette, Hervé; Sermesant, Maxime; Xu, Chenyang; Ayache, Nicholas

    2010-07-01

    We propose a framework for the nonlinear spatiotemporal registration of 4D time-series of images based on the Diffeomorphic Demons (DD) algorithm. In this framework, the 4D spatiotemporal registration is decoupled into a 4D temporal registration, defined as mapping physiological states, and a 4D spatial registration, defined as mapping trajectories of physical points. Our contribution focuses more specifically on the 4D spatial registration that should be consistent over time as opposed to 3D registration that solely aims at mapping homologous points at a given time-point. First, we estimate in each sequence the motion displacement field, which is a dense representation of the point trajectories we want to register. Then, we perform simultaneously 3D registrations of corresponding time-points with the constraints to map the same physical points over time called the trajectory constraints. Under these constraints, we show that the 4D spatial registration can be formulated as a multichannel registration of 3D images. To solve it, we propose a novel version of the Diffeomorphic Demons (DD) algorithm extended to vector-valued 3D images, the Multichannel Diffeomorphic Demons (MDD). For evaluation, this framework is applied to the registration of 4D cardiac computed tomography (CT) sequences and compared to other standard methods with real patient data and synthetic data simulated from a physiologically realistic electromechanical cardiac model. Results show that the trajectory constraints act as a temporal regularization consistent with motion whereas the multichannel registration acts as a spatial regularization. Finally, using these trajectory constraints with multichannel registration yields the best compromise between registration accuracy, temporal and spatial smoothness, and computation times. A prospective example of application is also presented with the spatiotemporal registration of 4D cardiac CT sequences of the same patient before and after radiofrequency

  11. Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Blanton, Michael R.; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, wp (rp ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our wp (rp ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both wp (rp ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using wp (rp ) and M/N alone, we find Ω0.5 m σ8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  12. PAY1 improves plant architecture and enhances grain yield in rice.

    PubMed

    Zhao, Lei; Tan, Lubin; Zhu, Zuofeng; Xiao, Langtao; Xie, Daoxin; Sun, Chuanqing

    2015-08-01

    Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over-expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole-3-acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker-assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high-yielding rice varieties. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  13. Does a time constraint modify results from rating-based conjoint analysis? Case study with orange/pomegranate juice bottles.

    PubMed

    Reis, Felipe; Machín, Leandro; Rosenthal, Amauri; Deliza, Rosires; Ares, Gastón

    2016-12-01

    People do not usually process all the available information on packages for making their food choices and rely on heuristics for making their decisions, particularly when having limited time. However, in most consumer studies encourage participants to invest a lot of time for making their choices. Therefore, imposing a time-constraint in consumer studies may increase their ecological validity. In this context, the aim of the present work was to evaluate the influence of a time-constraint on consumer evaluation of pomegranate/orange juice bottles using rating-based conjoint task. A consumer study with 100 participants was carried out, in which they had to evaluate 16 pomegranate/orange fruit juice bottles, differing in bottle design, front-of-pack nutritional information, nutrition claim and processing claim, and to rate their intention to purchase. Half of the participants evaluated the bottle images without time constraint and the other half had a time-constraint of 3s for evaluating each image. Eye-movements were recorded during the evaluation. Results showed that time-constraint when evaluating intention to purchase did not largely modify the way in which consumers visually processed bottle images. Regardless of the experimental condition (with or without time constraint), they tended to evaluate the same product characteristics and to give them the same relative importance. However, a trend towards a more superficial evaluation of the bottles that skipped complex information was observed. Regarding the influence of product characteristics on consumer intention to purchase, bottle design was the variable with the largest relative importance in both conditions, overriding the influence of nutritional or processing characteristics, which stresses the importance of graphic design in shaping consumer perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stochastic population dynamics under resource constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavane, Ajinkya S., E-mail: ajinkyagavane@gmail.com; Nigam, Rahul, E-mail: rahul.nigam@hyderabad.bits-pilani.ac.in

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations formore » such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.« less

  15. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobell, D; Field, C; Cahill, K

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiplemore » climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.« less

  16. EAST kinetic equilibrium reconstruction combining with Polarimeter-Interferometer internal measurement constraints

    NASA Astrophysics Data System (ADS)

    Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team

    2017-12-01

    Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.

  17. Measurement of CP observables in B{sup {+-}{yields}D}{sub CP}K{sup {+-}}decays and constraints on the CKM angle {gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amo Sanchez, P. del; Lees, J. P.; Poireau, V.

    Using the entire sample of 467x10{sup 6} {Upsilon}(4S){yields}BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the SLAC National Accelerator Laboratory, we perform an analysis of B{sup {+-}}{yields}DK{sup {+-}}decays, using decay modes in which the neutral D meson decays to either CP-eigenstates or non-CP-eigenstates. We measure the partial decay rate charge asymmetries for CP-even and CP-odd D final states to be A{sub CP+}=0.25{+-}0.06{+-}0.02 and A{sub CP-}=-0.09{+-}0.07{+-}0.02, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter A{sub CP+} is different from zero with a significance of 3.6 standardmore » deviations, constituting evidence for direct CP violation. We also measure the ratios of the charged-averaged B partial decay rates in CP and non-CP decays, R{sub CP+}=1.18{+-}0.09{+-}0.05 and R{sub CP-}=1.07{+-}0.08{+-}0.04. We infer frequentist confidence intervals for the angle {gamma} of the unitarity triangle, for the strong phase difference {delta}{sub B}, and for the amplitude ratio r{sub B}, which are related to the B{sup -}{yields}DK{sup -} decay amplitude by r{sub B}e{sup i({delta}{sub B}-{gamma})}=A(B{sup -}{yields}D{sup 0}K{sup -})/A(B{sup -}{yields}D{sup 0}K{sup -}). Including statistical and systematic uncertainties, we obtain 0.24

  18. Solar system constraints on disformal gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy, E-mail: iphys@mpa-garching.mpg.de, E-mail: jeremy.sakstein@port.ac.uk, E-mail: fabians@mpa-garching.mpg.de

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve uponmore » the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology.« less

  19. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).

    PubMed

    Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C

    2014-02-28

    Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.

  20. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct

  1. Integrated model for predicting rice yield with climate change

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa

    2018-04-01

    Rice is the chief agricultural product and one of the primary food source. For this reason, it is of pivotal importance for worldwide economy and development. Therefore, in a decision-support-system both for the farmers and in the planning and management of the country's economy, forecasting yield is vital. However, crop yield, which is a dependent of the soil-bio-atmospheric system, is difficult to represent in statistical language. This paper describes a novel approach for predicting rice yield using artificial neural network, spatial interpolation, remote sensing and GIS methods. Herein, the variation in the yield is attributed to climatic parameters and crop health, and the normalized difference vegetation index from MODIS is used as an indicator of plant health and growth. Due importance was given to scaling up the input parameters using spatial interpolation and GIS and minimising the sources of error in every step of the modelling. The low percentage error (2.91) and high correlation (0.76) signifies the robust performance of the proposed model. This simple but effective approach is then used to estimate the influence of climate change on South Korean rice production. As proposed in the RCP8.5 scenario, an upswing in temperature may increase the rice yield throughout South Korea.

  2. Constraints for the Trifocal Tensor

    NASA Astrophysics Data System (ADS)

    Alzati, Alberto; Tortora, Alfonso

    In this chapter we give an account of two different methods to find constraints for the trifocal tensor Т, used in geometric computer vision. We also show how to single out a set of only eight equations that are generically complete, i.e. for a generic choice of Т, they suffice to decide whether Т is indeed trifocal. Note that eight is minimum possible number of constraints.

  3. Distance measurements from supernovae and dark energy constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yun

    2009-12-15

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, themore » data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z){identical_to}{rho}{sub X}(z)/{rho}{sub X}(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at {approx}95% confidence level at 0 < or apporx. z < or approx. 0.8; they are consistent with a cosmological constant at {approx}68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z{<=}0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z{>=}1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.« less

  4. Specific yield: compilation of specific yields for various materials

    USGS Publications Warehouse

    Johnson, A.I.

    1967-01-01

    Specific yield is defined as the ratio of (1) the volume of water that a saturated rock or soil will yield by gravity to (2) the total volume of the rock or soft. Specific yield is usually expressed as a percentage. The value is not definitive, because the quantity of water that will drain by gravity depends on variables such as duration of drainage, temperature, mineral composition of the water, and various physical characteristics of the rock or soil under consideration. Values of specific yields nevertheless offer a convenient means by which hydrologists can estimate the water-yielding capacities of earth materials and, as such, are very useful in hydrologic studies. The present report consists mostly of direct or modified quotations from many selected reports that present and evaluate methods for determining specific yield, limitations of those methods, and results of the determinations made on a wide variety of rock and soil materials. Although no particular values are recommended in this report, a table summarizes values of specific yield, and their averages, determined for 10 rock textures. The following is an abstract of the table. [Table

  5. [Winter wheat yield gap between field blocks based on comparative performance analysis].

    PubMed

    Chen, Jian; Wang, Zhong-Yi; Li, Liang-Tao; Zhang, Ke-Feng; Yu, Zhen-Rong

    2008-09-01

    Based on a two-year household survey data, the yield gap of winter wheat in Quzhou County of Hebei Province, China in 2003-2004 was studied through comparative performance analysis (CPA). The results showed that there was a greater yield gap (from 4.2 to 7.9 t x hm(-2)) between field blocks, with a variation coefficient of 0.14. Through stepwise forward linear multiple regression, it was found that the yield model with 8 selected variables could explain 63% variability of winter wheat yield. Among the variables selected, soil salinity, soil fertility, and irrigation water quality were the most important limiting factors, accounting for 52% of the total yield gap. Crop variety was another important limiting factor, accounting for 14%; while planting date, fertilizer type, disease and pest, and water press accounted for 7%, 14%, 10%, and 3%, respectively. Therefore, besides soil and climate conditions, management practices occupied the majority of yield variability in Quzhou County, suggesting that the yield gap could be reduced significantly through optimum field management.

  6. Yield and yield gaps in central U.S. corn production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield. Quantile regression analysis was applied to county maize (Zea mays L.) yields (1972 – 2011) from Kentucky, Iowa and Nebraska (irrigated) (total of 115 counties) to e...

  7. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    DOE PAGES

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model errormore » that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.« less

  8. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  9. Physical constraints on biological integral control design for homeostasis and sensory adaptation.

    PubMed

    Ang, Jordan; McMillen, David R

    2013-01-22

    Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint.

    PubMed

    Bacanin, Nebojsa; Tuba, Milan

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  11. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    PubMed Central

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645

  12. Effects of Constraints and Consequences on Plan Complexity in Conversations About End-of-Life Care.

    PubMed

    Russell, Jessica

    2015-01-01

    The current study assessed the role of health care provider constraints and perceived consequences on plan complexity for conversations with patients about end-of-life care. Meta-goal constraints, perceived consequences associated with conversational engagement and planning theory provides the basis for research questions and hypotheses posed. Findings suggested that while the meta-goals of efficiency and politeness were each recognized as important, providers indicated greater concern for politeness during patient interactions concerning treatment options. Reported constraints had no impact on plan complexity. Perceived consequences of conversational engagement were predominantly positive and concerned the patient. Findings may enhance the understanding of social workers in their educational role regarding the potential training needs of health care team members in palliative care contexts.

  13. Fluid convection, constraint and causation

    PubMed Central

    Bishop, Robert C.

    2012-01-01

    Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955

  14. Domain General Constraints on Statistical Learning

    ERIC Educational Resources Information Center

    Thiessen, Erik D.

    2011-01-01

    All theories of language development suggest that learning is constrained. However, theories differ on whether these constraints arise from language-specific processes or have domain-general origins such as the characteristics of human perception and information processing. The current experiments explored constraints on statistical learning of…

  15. On classical mechanical systems with non-linear constraints

    NASA Astrophysics Data System (ADS)

    Terra, Gláucio; Kobayashi, Marcelo H.

    2004-03-01

    In the present work, we analyze classical mechanical systems with non-linear constraints in the velocities. We prove that the d'Alembert-Chetaev trajectories of a constrained mechanical system satisfy both Gauss' principle of least constraint and Hölder's principle. In the case of a free mechanics, they also satisfy Hertz's principle of least curvature if the constraint manifold is a cone. We show that the Gibbs-Maggi-Appell (GMA) vector field (i.e. the second-order vector field which defines the d'Alembert-Chetaev trajectories) conserves energy for any potential energy if, and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint manifold). We introduce the Jacobi-Carathéodory metric tensor and prove Jacobi-Carathéodory's theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville's theorem on the conservation of volume for the flow of the GMA vector field.

  16. Reconstructing cerebrovascular networks under local physiological constraints by integer programming

    DOE PAGES

    Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; ...

    2015-04-23

    We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less

  17. Impacts of climate change on rice production in Africa and causes of simulated yield changes.

    PubMed

    van Oort, Pepijn A J; Zwart, Sander J

    2018-03-01

    This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  18. [Environmental efficiency evaluation under carbon emission constraint in Western China].

    PubMed

    Rong, Jian-bo; Yan, Li-jiao; Huang, Shao-rong; Zhang, Ge

    2015-06-01

    This research used the SBM model based on undesirable outputs to measure the static environmental efficiency of Western China under carbon emission constraint from 2000 to 2012. The researchers also utilized the Malmquist index to further analyze the change tendency of environmental efficiency. Additionally, Tobit regression analysis was used to study the factors relevant to environmental efficiency. Practical solutions to improve environmental quality in Western China were put forward. The study showed that in Western China, environmental efficiency with carbon emission constraint was significantly lower than that without carbon emission constraint, and the difference could be described as an inverse U-shaped curve which increased at first and then decreased. Guang-xi and Inner Mongolia, the two provinces met the effective environmental efficiency levels all the time under carbon emission constraint. However, the five provinces of Guizhou, Gansu, Qinghai, Ningxia and Xinjiang did not. Furthermore, Ningxia had the lowest level of environmental efficiency, with a score between 0.281-0.386. Although the environmental efficiency of most provinces was currently at an ineffective level, the environmental efficiency quality was gradually improving at an average speed of 6.6%. Excessive CO2 emission and a large amount of energy consumption were the primary factors causing environmental inefficiency in Western China, and energy intensity had the most negative impact on the environmental efficiency. The increase of import and export trade reduced the environmental efficiency significantly in Western China, while the increase of foreign direct investment had a positive effect on its environmental efficiency.

  19. Coverage-based constraints for IMRT optimization

    NASA Astrophysics Data System (ADS)

    Mescher, H.; Ulrich, S.; Bangert, M.

    2017-09-01

    Radiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities q(\\hat{d}, \\hat{v}) of covering a specific target volume fraction \\hat{v} with a certain dose \\hat{d} . Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target volume objectives.

  20. Satellite-based assessment of grassland yields

    NASA Astrophysics Data System (ADS)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  1. Strong optimized conservative Fermi-LAT constraints on dark matter models from the inclusive photon spectrum

    DOE PAGES

    Massari, Andrea; Izaguirre, Eder; Essig, Rouven; ...

    2015-04-29

    Here, we set conservative, robust constraints on the annihilation and decay of dark matter into various Standard Model final states under various assumptions about the distribution of the dark matter in the Milky Way halo. We use the inclusive photon spectrum observed by the Fermi Gamma-ray Space Telescope through its main instrument, the Large Area Telescope. We use simulated data to first find the “optimal” regions of interest in the γ-ray sky, where the expected dark matter signal is largest compared with the expected astrophysical foregrounds. We then require the predicted dark matter signal to be less than the observedmore » photon counts in the a priori optimal regions. This yields a very conservative constraint as we do not attempt to model or subtract astrophysical foregrounds. The resulting limits are competitive with other existing limits and, for some final states with cuspy dark-matter distributions in the Galactic Center region, disfavor the typical cross section required during freeze-out for a weakly interacting massive particle to obtain the observed relic abundance.« less

  2. Estimation of rice yield affected by drought and relation between rice yield and TVDI

    NASA Astrophysics Data System (ADS)

    Hongo, C.; Tamura, E.; Sigit, G.

    2016-12-01

    Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.

  3. Automated Derivation of Complex System Constraints from User Requirements

    NASA Technical Reports Server (NTRS)

    Muery, Kim; Foshee, Mark; Marsh, Angela

    2006-01-01

    International Space Station (ISS) payload developers submit their payload science requirements for the development of on-board execution timelines. The ISS systems required to execute the payload science operations must be represented as constraints for the execution timeline. Payload developers use a software application, User Requirements Collection (URC), to submit their requirements by selecting a simplified representation of ISS system constraints. To fully represent the complex ISS systems, the constraints require a level of detail that is beyond the insight of the payload developer. To provide the complex representation of the ISS system constraints, HOSC operations personnel, specifically the Payload Activity Requirements Coordinators (PARC), manually translate the payload developers simplified constraints into detailed ISS system constraints used for scheduling the payload activities in the Consolidated Planning System (CPS). This paper describes the implementation for a software application, User Requirements Integration (URI), developed to automate the manual ISS constraint translation process.

  4. Balancing healthy meals and busy lives: associations between work, school, and family responsibilities and perceived time constraints among young adults.

    PubMed

    Pelletier, Jennifer E; Laska, Melissa N

    2012-01-01

    To characterize associations between perceived time constraints for healthy eating and work, school, and family responsibilities among young adults. Cross-sectional survey. A large, Midwestern metropolitan region. A diverse sample of community college (n = 598) and public university (n = 603) students. Time constraints in general, as well as those specific to meal preparation/structure, and perceptions of a healthy life balance. Chi-square tests and multivariate logistic regression (α = .005). Women, 4-year students, and students with lower socioeconomic status perceived more time constraints (P < .001-.002); students with lower socioeconomic status were less likely to have a healthy balance (P ≤ .003). Having a heavy course load and working longer hours were important predictors of time constraints among men (P < .001-.004), whereas living situation and being in a relationship were more important among women (P = .002-.003). Most young adults perceive time constraints on healthy dietary behaviors, yet some young adults appear able to maintain a healthy life balance despite multiple time demands. Interventions focused on improved time management strategies and nutrition-related messaging to achieve healthy diets on a low time budget may be more successful if tailored to the factors that contribute to time constraints separately among men and women. Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  5. Hard and Soft Constraints in Reliability-Based Design Optimization

    NASA Technical Reports Server (NTRS)

    Crespo, L.uis G.; Giesy, Daniel P.; Kenny, Sean P.

    2006-01-01

    This paper proposes a framework for the analysis and design optimization of models subject to parametric uncertainty where design requirements in the form of inequality constraints are present. Emphasis is given to uncertainty models prescribed by norm bounded perturbations from a nominal parameter value and by sets of componentwise bounded uncertain variables. These models, which often arise in engineering problems, allow for a sharp mathematical manipulation. Constraints can be implemented in the hard sense, i.e., constraints must be satisfied for all parameter realizations in the uncertainty model, and in the soft sense, i.e., constraints can be violated by some realizations of the uncertain parameter. In regard to hard constraints, this methodology allows (i) to determine if a hard constraint can be satisfied for a given uncertainty model and constraint structure, (ii) to generate conclusive, formally verifiable reliability assessments that allow for unprejudiced comparisons of competing design alternatives and (iii) to identify the critical combination of uncertain parameters leading to constraint violations. In regard to soft constraints, the methodology allows the designer (i) to use probabilistic uncertainty models, (ii) to calculate upper bounds to the probability of constraint violation, and (iii) to efficiently estimate failure probabilities via a hybrid method. This method integrates the upper bounds, for which closed form expressions are derived, along with conditional sampling. In addition, an l(sub infinity) formulation for the efficient manipulation of hyper-rectangular sets is also proposed.

  6. Molecular dynamics simulations on PGLa using NMR orientational constraints.

    PubMed

    Sternberg, Ulrich; Witter, Raiker

    2015-11-01

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  7. Chance-Constrained Guidance With Non-Convex Constraints

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro

    2011-01-01

    Missions to small bodies, such as comets or asteroids, require autonomous guidance for descent to these small bodies. Such guidance is made challenging by uncertainty in the position and velocity of the spacecraft, as well as the uncertainty in the gravitational field around the small body. In addition, the requirement to avoid collision with the asteroid represents a non-convex constraint that means finding the optimal guidance trajectory, in general, is intractable. In this innovation, a new approach is proposed for chance-constrained optimal guidance with non-convex constraints. Chance-constrained guidance takes into account uncertainty so that the probability of collision is below a specified threshold. In this approach, a new bounding method has been developed to obtain a set of decomposed chance constraints that is a sufficient condition of the original chance constraint. The decomposition of the chance constraint enables its efficient evaluation, as well as the application of the branch and bound method. Branch and bound enables non-convex problems to be solved efficiently to global optimality. Considering the problem of finite-horizon robust optimal control of dynamic systems under Gaussian-distributed stochastic uncertainty, with state and control constraints, a discrete-time, continuous-state linear dynamics model is assumed. Gaussian-distributed stochastic uncertainty is a more natural model for exogenous disturbances such as wind gusts and turbulence than the previously studied set-bounded models. However, with stochastic uncertainty, it is often impossible to guarantee that state constraints are satisfied, because there is typically a non-zero probability of having a disturbance that is large enough to push the state out of the feasible region. An effective framework to address robustness with stochastic uncertainty is optimization with chance constraints. These require that the probability of violating the state constraints (i.e., the probability of

  8. A mathematical formulation for interface-based modular product design with geometric and weight constraints

    NASA Astrophysics Data System (ADS)

    Jung-Woon Yoo, John

    2016-06-01

    Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.

  9. Biophysical constraints on leaf expansion in a tall conifer.

    PubMed

    Meinzer, Frederick C; Bond, Barbara J; Karanian, Jennifer A

    2008-02-01

    The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water (Psi(L)) and osmotic (Psi(pi)) potential, bulk tissue yield threshold and final needle length were characterized along a height gradient in crowns of > 50-m-tall trees during the period between bud break and full expansion (May to June). Although needle length decreased with increasing height, there was no height-related trend in leaf plastic extensibility, which was highest immediately after bud break (2.9%) and declined rapidly to a stable minimum value (0.3%) over a 3-week period during which leaf expansion was completed. There was a significant positive linear relationship between needle elongation rates and plastic extensibility. Yield thresholds were consistently lower at the upper and middle crown sampling heights. The mean yield threshold across all sampling heights was 0.12 +/- 0.03 MPa on June 8, rising to 0.34 +/- 0.03 MPa on June 15 and 0.45 +/- 0.05 MPa on June 24. Bulk leaf Psi(pi) decreased linearly with increasing height at a rate of 0.004 MPa m(-1) during the period of most rapid needle elongation, but the vertical osmotic gradient was not sufficient to fully compensate for the 0.015 MPa m(-1) vertical gradient in Psi(L), implying that bulk leaf turgor declined at a rate of about 0.011 MPa m(-1) increase in height. Although height-dependent reductions in turgor appeared to constrain leaf expansion, it is possible that the impact of reduced turgor was mitigated by delayed phenological development with increasing height, which resulted in an increase with height in the temperature during leaf expansion.

  10. Geomagnetic main field modeling using magnetohydrodynamic constraints

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1985-01-01

    The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.

  11. Guidelines for Estimating Cone and Seed Yields of Southern Pines

    Treesearch

    James P. Barnett

    1999-01-01

    Our ability to predict cone and seed yields of southern pines (Pinus spp.) prior to collection is important when scheduling and allocating resources. Many managers have enough historical data to predict their orchards' yield; but such data are generally unavailable for some species and for collections outside of orchards. Guidelines are...

  12. SU-F-T-128: Dose-Volume Constraints for Particle Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, R; Smith, W; Hendrickson, K

    2016-06-15

    Purpose: Determine equivalent Organ at Risk (OAR) tolerance dose (TD) constraints for MV x-rays and particle therapy. Methods: Equivalent TD estimates for MV x-rays are determined from an isoeffect, regression-analysis of published and in-house constraints for various fractionation schedules (n fractions). The analysis yields an estimate of (α/β) for an OAR. To determine equivalent particle therapy constraints, the MV x-ray TD(n) values are divided by the RBE for DSB induction (RBE{sub DSB}) or cell survival (RBE{sub S}). Estimates of (RBE{sub DSB}) are computed using the Monte Carlo Damage Simulation, and estimates of RBES are computed using the Repair-Misrepair-Fixation (RMF) model.more » A research build of the RayStation™ treatment planning system implementing the above model is used to estimate (RBE{sub DSB}) for OARs of interest in 16 proton therapy patient plans (head and neck, thorax, prostate and brain). Results: The analysis gives an (α/β) estimate of about 20 Gy for the trachea and heart and 2–4 Gy for the esophagus, spine, and brachial plexus. Extrapolation of MV x-ray constraints (n = 1) to fast neutrons using RBE{sub DSB} = 2.7 are in excellent agreement with clinical experience (n = 10 to 20). When conventional (n > 30) x-ray treatments are used as the reference radiation, fast neutron RBE increased to a maximum of 6. For comparison to a constant RBE of 1.1, the RayStation™ analysis gave estimates of proton RBE{sub DSB} from 1.03 to 1.33 for OARs of interest. Conclusion: The presented system of models is a convenient formalism to synthesize from multiple sources of information a set of self-consistent plan constraints for MV x-ray and hadron therapy treatments. Estimates of RBE{sub DSB} from the RayStation™ analysis differ substantially from 1.1 and vary among patients and treatment sites. A treatment planning system that incorporates patient and anatomy-specific corrections in proton RBE would create opportunities to increase the

  13. What Your Yield Says about You

    ERIC Educational Resources Information Center

    Hoover, Eric

    2009-01-01

    The recession has turned Americans into numbers addicts. Seemingly endless supplies of statistics--stock prices, retail sales, and the gross domestic product--offer various views about the health of the nation's economy. Higher education has its own economic indicators. Among the most important is "yield," the percentage of admitted students who…

  14. Topological Constraints in Directed Polymer Melts

    NASA Astrophysics Data System (ADS)

    Serna, Pablo; Bunin, Guy; Nahum, Adam

    2015-11-01

    Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (ln L )ζ with ζ ≃1.5 . This is strongly suppressed in comparison with the Brownian L1 /2 scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches—in particular the L1 /4 of a mean-field-like "array of obstacles" model—so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.

  15. Topological Constraints in Directed Polymer Melts.

    PubMed

    Serna, Pablo; Bunin, Guy; Nahum, Adam

    2015-11-27

    Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (lnL)^{ζ} with ζ≃1.5. This is strongly suppressed in comparison with the Brownian L^{1/2} scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches-in particular the L^{1/4} of a mean-field-like "array of obstacles" model-so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.

  16. Modulus and yield stress of drawn LDPE

    NASA Astrophysics Data System (ADS)

    Thavarungkul, Nandh

    Modulus and yield stress were investigated in drawn low density polyethylene (LDPE) film. Uniaxially drawn polymeric films usually show high values of modulus and yield stress, however, studies have normally only been conducted to identify the structural features that determine modulus. In this study small-angle x-ray scattering (SAXS), thermal shrinkage, birefringence, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) were used to examine, directly and indirectly, the structural features that determine both modulus and yield stress, which are often closely related in undrawn materials. Shish-kebab structures are proposed to account for the mechanical properties in drawn LDPE. The validity of this molecular/morphological model was tested using relationships between static mechanical data and structural and physical parameters. In addition, dynamic mechanical results are also in line with static data in supporting the model. In the machine direction (MD), "shish" and taut tie molecules (TTM) anchored in the crystalline phase account for E; whereas crystal lamellae with contributions from "shish" and TTM determine yield stress. In the transverse direction (TD), the crystalline phase plays an important roll in both modulus and yield stress. Modulus is determined by crystal lamellae functioning as platelet reinforcing elements in the amorphous matrix with an additional contributions from TTM and yield stress is determined by the crystal lamellae's resistance to deformation.

  17. Comparison of multiobjective evolutionary algorithms for operations scheduling under machine availability constraints.

    PubMed

    Frutos, M; Méndez, M; Tohmé, F; Broz, D

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.

  18. Comparison of Multiobjective Evolutionary Algorithms for Operations Scheduling under Machine Availability Constraints

    PubMed Central

    Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502

  19. Measurement of fission yields and isomeric yield ratios at IGISOL

    NASA Astrophysics Data System (ADS)

    Pomp, Stephan; Mattera, Andrea; Rakopoulos, Vasileios; Al-Adili, Ali; Lantz, Mattias; Solders, Andreas; Jansson, Kaj; Prokofiev, Alexander V.; Eronen, Tommi; Gorelov, Dimitri; Jokinen, Ari; Kankainen, Anu; Moore, Iain D.; Penttilä, Heikki; Rinta-Antila, Sami

    2018-03-01

    Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyväskylä, Finland, for such measurements on 232Th and natU targets. Previously published fission yield data from IGISOL concern the 232Th(p,f) and 238U(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range from natU(n,f) based on γ-spectrometry. We find a staggering behaviour in the cumulative yields for Sn and a shift in the independent fission yields for Sb as compared to current evaluations. Plans for the future experimental program on fission yields and IYR measurements are discussed.

  20. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee

    PubMed Central

    Gary, Christian; Tixier, Philippe; Lechevallier, Esther

    2017-01-01

    The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013–2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses. PMID:28046054

  1. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee.

    PubMed

    Cerda, Rolando; Avelino, Jacques; Gary, Christian; Tixier, Philippe; Lechevallier, Esther; Allinne, Clémentine

    2017-01-01

    The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013-2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses.

  2. A New Empirical Constraint on the Prevalence of Technological Species in the Universe

    NASA Astrophysics Data System (ADS)

    Frank, A.; Sullivan, W. T., III

    2016-05-01

    In this article, we address the cosmic frequency of technological species. Recent advances in exoplanet studies provide strong constraints on all astrophysical terms in the Drake equation. Using these and modifying the form and intent of the Drake equation, we set a firm lower bound on the probability that one or more technological species have evolved anywhere and at any time in the history of the observable Universe. We find that as long as the probability that a habitable zone planet develops a technological species is larger than ˜10-24, humanity is not the only time technological intelligence has evolved. This constraint has important scientific and philosophical consequences.

  3. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  4. Social cognition on the Internet: testing constraints on social network size

    PubMed Central

    Dunbar, R. I. M.

    2012-01-01

    The social brain hypothesis (an explanation for the evolution of brain size in primates) predicts that humans typically cannot maintain more than 150 relationships at any one time. The constraint is partly cognitive (ultimately determined by some aspect of brain volume) and partly one of time. Friendships (but not necessarily kin relationships) are maintained by investing time in them, and failure to do so results in an inexorable deterioration in the quality of a relationship. The Internet, and in particular the rise of social networking sites (SNSs), raises the possibility that digital media might allow us to circumvent some or all of these constraints. This allows us to test the importance of these constraints in limiting human sociality. Although the recency of SNSs means that there have been relatively few studies, those that are available suggest that, in general, the ability to broadcast to many individuals at once, and the possibilities this provides in terms of continuously updating our understanding of network members’ behaviour and thoughts, do not allow larger networks to be maintained. This may be because only relatively weak quality relationships can be maintained without face-to-face interaction. PMID:22734062

  5. Social cognition on the Internet: testing constraints on social network size.

    PubMed

    Dunbar, R I M

    2012-08-05

    The social brain hypothesis (an explanation for the evolution of brain size in primates) predicts that humans typically cannot maintain more than 150 relationships at any one time. The constraint is partly cognitive (ultimately determined by some aspect of brain volume) and partly one of time. Friendships (but not necessarily kin relationships) are maintained by investing time in them, and failure to do so results in an inexorable deterioration in the quality of a relationship. The Internet, and in particular the rise of social networking sites (SNSs), raises the possibility that digital media might allow us to circumvent some or all of these constraints. This allows us to test the importance of these constraints in limiting human sociality. Although the recency of SNSs means that there have been relatively few studies, those that are available suggest that, in general, the ability to broadcast to many individuals at once, and the possibilities this provides in terms of continuously updating our understanding of network members' behaviour and thoughts, do not allow larger networks to be maintained. This may be because only relatively weak quality relationships can be maintained without face-to-face interaction.

  6. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  7. Biological constraints do not entail cognitive closure.

    PubMed

    Vlerick, Michael

    2014-12-01

    From the premise that our biology imposes cognitive constraints on our epistemic activities, a series of prominent authors--most notably Fodor, Chomsky and McGinn--have argued that we are cognitively closed to certain aspects and properties of the world. Cognitive constraints, they argue, entail cognitive closure. I argue that this is not the case. More precisely, I detect two unwarranted conflations at the core of arguments deriving closure from constraints. The first is a conflation of what I will refer to as 'representation' and 'object of representation'. The second confuses the cognitive scope of the assisted mind for that of the unassisted mind. Cognitive closure, I conclude, cannot be established from pointing out the (uncontroversial) existence of cognitive constraints. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Constraints on the invariant functions of axisymmetric turbulence

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.

    1983-01-01

    Constraints are derived for the two invariant functions Q1 and Q2 that occur in Chandrasekhar's (1950) development of the axisymmetric turbulence theory. These constraints must be satisfied for the correlation tensor derived from Q1 and Q2 to be that of a stationary random process, i.e., for the turbulence to be realizable. The equivalent results in spectrum space are also developed. Applications of the constraints in aerodynamic noise modeling are discussed. It is shown that significant errors in prediction can be introduced by the use of turbulence models which violate the constraints.

  9. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages.

    PubMed

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-12

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results

  10. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages

    NASA Astrophysics Data System (ADS)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-01

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest

  11. Temporal Constraint Reasoning With Preferences

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca

    2001-01-01

    A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time (specifically, associated with durations or orderings of events) on the basis of preferences. For example. a pair of events might be constrained to occur in a certain order, and, in addition. it might be preferable that the delay between them be as large, or as small, as possible. This paper explores problems in which a set of temporal constraints is specified, where each constraint is associated with preference criteria for making local decisions about the events involved in the constraint, and a reasoner must infer a complete solution to the problem such that, to the extent possible, these local preferences are met in the best way. A constraint framework for reasoning about time is generalized to allow for preferences over event distances and durations, and we study the complexity of solving problems in the resulting formalism. It is shown that while in general such problems are NP-hard, some restrictions on the shape of the preference functions, and on the structure of the preference set, can be enforced to achieve tractability. In these cases, a simple generalization of a single-source shortest path algorithm can be used to compute a globally preferred solution in polynomial time.

  12. Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity

    PubMed Central

    Mustoe, Anthony M.; Brooks, Charles L.; Al-Hashimi, Hashim M.

    2014-01-01

    Recent studies have shown that basic steric and connectivity constraints encoded at the secondary structure level are key determinants of 3D structure and dynamics in simple two-way RNA junctions. However, the role of these topological constraints in higher order RNA junctions remains poorly understood. Here, we use a specialized coarse-grained molecular dynamics model to directly probe the thermodynamic contributions of topological constraints in defining the 3D architecture and dynamics of transfer RNA (tRNA). Topological constraints alone restrict tRNA's allowed conformational space by over an order of magnitude and strongly discriminate against formation of non-native tertiary contacts, providing a sequence independent source of folding specificity. Topological constraints also give rise to long-range correlations between the relative orientation of tRNA's helices, which in turn provides a mechanism for encoding thermodynamic cooperativity between distinct tertiary interactions. These aspects of topological constraints make it such that only several tertiary interactions are needed to confine tRNA to its native global structure and specify functionally important 3D dynamics. We further show that topological constraints are conserved across tRNA's different naturally occurring secondary structures. Taken together, our results emphasize the central role of secondary-structure-encoded topological constraints in defining RNA 3D structure, dynamics and folding. PMID:25217593

  13. Trade-off between Multiple Constraints Enables Simultaneous Formation of Modules and Hubs in Neural Systems

    PubMed Central

    Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C.; Zhou, Changsong

    2013-01-01

    The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy

  14. QCD unitarity constraints on Reggeon Field Theory

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; Levin, Eugene; Lublinsky, Michael

    2016-08-01

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  15. A study of the relationships of deer hunters participation intensity and constraints

    Treesearch

    Melissa S. Weddell; Denise M. Anderson; Ellen D. Rodgers; Brett A. Wright

    2007-01-01

    Declines in hunting participation are of concern to wildlife agencies and their ability to fund and manage wildlife populations as well as sustain local hunting traditions. To understand declines in participation, it is important to understand current hunters' perceptions of barriers and constraints that could lead to hunting desertion. This study examined hunting...

  16. Cosmic shear results from the deep lens survey. II. Full cosmological parameter constraints from tomography

    DOE PAGES

    Jee, M. James; Tyson, J. Anthony; Hilbert, Stefan; ...

    2016-06-15

    Here, we present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitudemore » $${r}_{\\mathrm{lim}}\\sim 27$$ ($$5\\sigma $$), is designed as a precursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing $$\\gt 10$$ deg2 cosmic shear surveys. Combining the DLS tomography with the 9 yr results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives $${{\\rm{\\Omega }}}_{m}={0.293}_{-0.014}^{+0.012}$$, $${\\sigma }_{8}={0.833}_{-0.018}^{+0.011}$$, $${H}_{0}={68.6}_{-1.2}^{+1.4}\\;{\\text{km s}}^{-1}\\;{{\\rm{Mpc}}}^{-1}$$, and $${{\\rm{\\Omega }}}_{b}=0.0475\\pm 0.0012$$ for ΛCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for ΛCDM, we obtain the curvature constraint $${{\\rm{\\Omega }}}_{k}=-{0.010}_{-0.015}^{+0.013}$$ from the DLS+WMAP9 combination, which, however, is not well constrained when WMAP9 is used alone. The dark energy equation-of-state parameter w is tightly constrained when baryonic acoustic oscillation (BAO) data are added, yielding $$w=-{1.02}_{-0.09}^{+0.10}$$ with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to $$w=-1.03\\pm 0.03$$. Our joint constraints are fully consistent with the final Planck results and also with the predictions of a ΛCDM universe.« less

  17. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution.

    PubMed

    Cunnane, Stephen C; Crawford, Michael A

    2014-12-01

    The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cosmology with photometric weak lensing surveys: Constraints with redshift tomography of convergence peaks and moments

    NASA Astrophysics Data System (ADS)

    Petri, Andrea; May, Morgan; Haiman, Zoltán

    2016-09-01

    Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.

  19. The role of social support, family identification, and family constraints in predicting posttraumatic stress after cancer.

    PubMed

    Swartzman, Samantha; Sani, Fabio; Munro, Alastair J

    2017-09-01

    We compared social support with other potential psychosocial predictors of posttraumatic stress after cancer. These included family identification, or a sense of belonging to and commonality with family members, and family constraints, or the extent to which family members are closed, judgmental, or unreceptive in conversations about cancer. We also tested the hypothesis that family constraints mediate the relationship between family identification and cancer-related posttraumatic stress. We used a cross-sectional design. Surveys were collected from 205 colorectal cancer survivors in Tayside, Scotland. Both family identification and family constraints were stronger independent predictors of posttraumatic stress than social support. In multivariate analyses, social support was not a significant independent predictor of posttraumatic stress. In addition, there was a significant indirect effect of family identification on posttraumatic stress through family constraints. Numerous studies demonstrate a link between social support and posttraumatic stress. However, experiences within the family may be more important in predicting posttraumatic stress after cancer. Furthermore, a sense of belonging to and commonality with the family may reduce the extent to which cancer survivors experience constraints on conversations about cancer; this may, in turn, reduce posttraumatic stress. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Implicit Motives and Men’s Perceived Constraint in Fatherhood

    PubMed Central

    Ruppen, Jessica; Waldvogel, Patricia; Ehlert, Ulrike

    2016-01-01

    Research shows that implicit motives influence social relationships. However, little is known about their role in fatherhood and, particularly, how men experience their paternal role. Therefore, this study examined the association of implicit motives and fathers’ perceived constraint due to fatherhood. Furthermore, we explored their relation to fathers’ life satisfaction. Participants were fathers with biological children (N = 276). They were asked to write picture stories, which were then coded for implicit affiliation and power motives. Perceived constraint and life satisfaction were assessed on a visual analog scale. A higher implicit need for affiliation was significantly associated with lower perceived constraint, whereas the implicit need for power had the opposite effect. Perceived constraint had a negative influence on life satisfaction. Structural equation modeling revealed significant indirect effects of implicit affiliation and power motives on life satisfaction mediated by perceived constraint. Our findings indicate that men with a higher implicit need for affiliation experience less constraint due to fatherhood, resulting in higher life satisfaction. The implicit need for power, however, results in more perceived constraint and is related to decreased life satisfaction. PMID:27933023

  1. Methane Yield Database: Online infrastructure and bioresource for methane yield data and related metadata.

    PubMed

    Murovec, Boštjan; Kolbl, Sabina; Stres, Blaž

    2015-01-01

    The aim of this study was to develop and validate a community supported online infrastructure and bioresource for methane yield data and accompanying metadata collected from published literature. In total, 1164 entries described by 15,749 data points were assembled. Analysis of data collection showed little congruence in reporting of methodological approaches. The largest identifiable source of variation in reported methane yields was represented by authorship (i.e. substrate batches within particular substrate class) within which experimental scales (volumes (0.02-5l), incubation temperature (34-40 °C) and % VS of substrate played an important role (p < 0.05, npermutations = 999) as well. The largest fraction of variability, however, remained unaccounted for and thus unexplained (> 63%). This calls for reconsideration of accepted approaches to reporting data in currently published literature to increase capacity to service industrial decision making to a greater extent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Meteoritic and Asteroidal Constraints on the Identification and Collisional Evolution of Asteroid Families

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.; Kelley, Michael S.; Hardersen, Paul S.

    2002-01-01

    Studies of meteorites and observations of asteroids can provide important constraints on the formation and evolution of asteroid families. The iron meteorites alone require the disruption of 85 differentiated asteroids, and the potential formation of 85 families. Additional information is contained in the original extended abstract.

  3. Why the Constraints-Led Approach Is Not Teaching Games for Understanding: A Clarification

    ERIC Educational Resources Information Center

    Renshaw, Ian; Araújo, Duarte; Button, Chris; Chow, Jia Yi; Davids, Keith; Moy, Brendan

    2016-01-01

    Background: There is some apparent confusion regarding similarities and differences between two popular physical education (PE) pedagogical frameworks, that is, the Constraints-Led Approach (CLA) and Teaching Games for Understanding (TGfU). Purpose: Our aim in this commentary is to detail important theoretical and pedagogical concepts that…

  4. Pair Production Constraints on Superluminal Neutrinos Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC; Gardner, Susan

    2012-02-16

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p{sup 2} can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainlymore » makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.« less

  5. Effects of capillarity and microtopography on wetland specific yield

    USGS Publications Warehouse

    Sumner, D.M.

    2007-01-01

    Hydrologic models aid in describing water flows and levels in wetlands. Frequently, these models use a specific yield conceptualization to relate water flows to water level changes. Traditionally, a simple conceptualization of specific yield is used, composed of two constant values for above- and below-surface water levels and neglecting the effects of soil capillarity and land surface microtopography. The effects of capiltarity and microtopography on specific yield were evaluated at three wetland sites in the Florida Everglades. The effect of capillarity on specific yield was incorporated based on the fillable pore space within a soil moisture profile at hydrostatic equilibrium with the water table. The effect of microtopography was based on areal averaging of topographically varying values of specific yield. The results indicate that a more physically-based conceptualization of specific yield incorporating capillary and microtopographic considerations can be substantially different from the traditional two-part conceptualization, and from simpler conceptualizations incorporating only capillarity or only microtopography. For the sites considered, traditional estimates of specific yield could under- or overestimate the more physically based estimates by a factor of two or more. The results suggest that consideration of both capillarity and microtopography is important to the formulation of specific yield in physically based hydrologic models of wetlands. ?? 2007, The Society of Wetland Scientists.

  6. Model-assisted forest yield estimation with light detection and ranging

    Treesearch

    Jacob L. Strunk; Stephen E. Reutebuch; Hans-Erik Andersen; Peter J. Gould; Robert J. McGaughey

    2012-01-01

    Previous studies have demonstrated that light detection and ranging (LiDAR)-derived variables can be used to model forest yield variables, such as biomass, volume, and number of stems. However, the next step is underrepresented in the literature: estimation of forest yield with appropriate confidence intervals. It is of great importance that the procedures required for...

  7. Balancing healthy meals and busy lives: Associations between work, school and family responsibilities and perceived time constraints among young adults

    PubMed Central

    Laska, Melissa N.

    2012-01-01

    Objective To characterize associations between perceived time constraints for healthy eating and work, school, and family responsibilities among young adults. Design Cross-sectional survey. Setting A large, Midwestern metropolitan region. Participants A diverse sample of community college (n=598) and public university (n=603) students. Main Outcome Measures Time constraints in general, as well as those specific to meal preparation/structure, and perceptions of a healthy life balance. Analysis Chi-square tests and multivariate logistic regression (α=0.005). Results Women, four-year students, and students with lower socio-economic status perceived more time constraints (P<0.001–0.002); students with lower socio-economic status were less likely to have a healthy balance (P<0.001–0.003). Having a heavy course load and working longer hours were important predictors of time constraints among men (P<0.001–0.004), whereas living situation and being in a relationship were more important among women (P=0.002–0.003). Conclusions and Implications Most young adults perceive time constraints on healthy dietary behaviors, yet some young adults appear able to maintain a healthy life balance despite multiple time demands. Interventions focused on improved time management strategies and nutrition-related messaging to achieve healthy diets on a low time budget may be more successful if tailored to the factors that contribute to time constraints among men and women separately. PMID:23017891

  8. Conjunctive-use optimization model and sustainable-yield estimation for the Sparta aquifer of southeastern Arkansas and north-central Louisiana

    USGS Publications Warehouse

    McKee, Paul W.; Clark, Brian R.; Czarnecki, John B.

    2004-01-01

    Conjunctive-use optimization modeling was done to assist water managers and planners by estimating the maximum amount of ground water that hypothetically could be withdrawn from wells within the Sparta aquifer indefinitely without violating hydraulic-head or stream-discharge constraints. The Sparta aquifer is largely a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. In 2000, more than 35.4 million cubic feet per day (Mft3/d) of water were withdrawn from the aquifer by more than 900 wells, primarily for industry, municipal supply, and crop irrigation in Arkansas. Continued, heavy withdrawals from the aquifer have caused several large cones of depression, lowering hydraulic heads below the top of the Sparta Sand in parts of Union and Columbia Counties and several areas in north-central Louisiana. Problems related to overdraft in the Sparta aquifer can result in increased drilling and pumping costs, reduced well yields, and degraded water quality in areas of large drawdown. A finite-difference ground-water flow model was developed for the Sparta aquifer using MODFLOW, primarily in eastern and southeastern Arkansas and north-central Louisiana. Observed aquifer conditions in 1997 supported by numerical simulations of ground-water flow show that continued pumping at withdrawal rates representative of 1990 - 1997 rates cannot be sustained indefinitely without causing hydraulic heads to drop substantially below the top of the Sparta Sand in southern Arkansas and north-central Louisiana. Areas of ground-water levels below the top of the Sparta Sand have been designated as Critical Ground-Water Areas by the State of Arkansas. A steady-state conjunctive-use optimization model was developed to simulate optimized surface-water and ground-water withdrawals while maintaining hydraulic-head and streamflow constraints, thus determining the 'sustainable yield' for the aquifer. Initial attempts

  9. Impacts of variability in cellulosic biomass yields on energy security.

    PubMed

    Mullins, Kimberley A; Matthews, H Scott; Griffin, W Michael; Anex, Robert

    2014-07-01

    The practice of modeling biomass yields on the basis of deterministic point values aggregated over space and time obscures important risks associated with large-scale biofuel use, particularly risks related to drought-induced yield reductions that may become increasingly frequent under a changing climate. Using switchgrass as a case study, this work quantifies the variability in expected yields over time and space through switchgrass growth modeling under historical and simulated future weather. The predicted switchgrass yields across the United States range from about 12 to 19 Mg/ha, and the 80% confidence intervals range from 20 to 60% of the mean. Average yields are predicted to decrease with increased temperatures and weather variability induced by climate change. Feedstock yield variability needs to be a central part of modeling to ensure that policy makers acknowledge risks to energy supplies and develop strategies or contingency plans that mitigate those risks.

  10. Characterizing bias correction uncertainty in wheat yield predictions

    NASA Astrophysics Data System (ADS)

    Ortiz, Andrea Monica; Jones, Julie; Freckleton, Robert; Scaife, Adam

    2017-04-01

    Farming systems are under increased pressure due to current and future climate change, variability and extremes. Research on the impacts of climate change on crop production typically rely on the output of complex Global and Regional Climate Models, which are used as input to crop impact models. Yield predictions from these top-down approaches can have high uncertainty for several reasons, including diverse model construction and parameterization, future emissions scenarios, and inherent or response uncertainty. These uncertainties propagate down each step of the 'cascade of uncertainty' that flows from climate input to impact predictions, leading to yield predictions that may be too complex for their intended use in practical adaptation options. In addition to uncertainty from impact models, uncertainty can also stem from the intermediate steps that are used in impact studies to adjust climate model simulations to become more realistic when compared to observations, or to correct the spatial or temporal resolution of climate simulations, which are often not directly applicable as input into impact models. These important steps of bias correction or calibration also add uncertainty to final yield predictions, given the various approaches that exist to correct climate model simulations. In order to address how much uncertainty the choice of bias correction method can add to yield predictions, we use several evaluation runs from Regional Climate Models from the Coordinated Regional Downscaling Experiment over Europe (EURO-CORDEX) at different resolutions together with different bias correction methods (linear and variance scaling, power transformation, quantile-quantile mapping) as input to a statistical crop model for wheat, a staple European food crop. The objective of our work is to compare the resulting simulation-driven hindcasted wheat yields to climate observation-driven wheat yield hindcasts from the UK and Germany in order to determine ranges of yield

  11. Yield gap analyses to estimate attainable bovine milk yields and evaluate options to increase production in Ethiopia and India.

    PubMed

    Mayberry, Dianne; Ash, Andrew; Prestwidge, Di; Godde, Cécile M; Henderson, Ben; Duncan, Alan; Blummel, Michael; Ramana Reddy, Y; Herrero, Mario

    2017-07-01

    Livestock provides an important source of income and nourishment for around one billion rural households worldwide. Demand for livestock food products is increasing, especially in developing countries, and there are opportunities to increase production to meet local demand and increase farm incomes. Estimating the scale of livestock yield gaps and better understanding factors limiting current production will help to define the technological and investment needs in each livestock sector. The aim of this paper is to quantify livestock yield gaps and evaluate opportunities to increase dairy production in Sub-Saharan Africa and South Asia, using case studies from Ethiopia and India. We combined three different methods in our approach. Benchmarking and a frontier analysis were used to estimate attainable milk yields based on survey data. Household modelling was then used to simulate the effects of various interventions on dairy production and income. We tested interventions based on improved livestock nutrition and genetics in the extensive lowland grazing zone and highland mixed crop-livestock zones of Ethiopia, and the intensive irrigated and rainfed zones of India. Our analyses indicate that there are considerable yield gaps for dairy production in both countries, and opportunities to increase production using the interventions tested. In some cases, combined interventions could increase production past currently attainable livestock yields.

  12. Gold-Catalyzed Solid-Phase Synthesis of 3,4-Dihydropyrazin-2(1H)-ones: Relevant Pharmacophores and Peptide Backbone Constraints.

    PubMed

    Přibylka, Adam; Krchňák, Viktor

    2017-11-13

    Here, we report the efficient solid-phase synthesis of N-propargyl peptides using Fmoc-amino acids and propargyl alcohol as key building blocks. Gold-catalyzed nucleophilic addition to the triple bond induced C-N bond formation, which triggered intramolecular cyclization, yielding 1,3,4-trisubstituted-5-methyl-3,4-dihydropyrazin-2(1H)-ones. Conformations of acyclic and constrained peptides were compared using a two-step conformer distribution analysis at the molecular mechanics level and density functional theory. The results indicated that the incorporation of heterocyclic molecular scaffold into a short peptide sequence adopted extended conformation of peptide chain. The amide bond adjacent to the constraint did not show significant preference for either cis or trans isomerism. Prepared model compounds demonstrate a proof of concept for gold-catalyzed polymer-supported synthesis of variously substituted 3,4-dihydropyrazin-2(1H)-ones for applications in drug discovery and peptide backbone constraints.

  13. Groundwater subsidies and penalties to corn yield

    NASA Astrophysics Data System (ADS)

    Zipper, S. C.; Booth, E.; Loheide, S. P.

    2013-12-01

    Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are

  14. Effect of the Yield Stress and r-value Distribution on the Earing Profile of Cup Drawing with Yld2000-2d Yield Function

    NASA Astrophysics Data System (ADS)

    Lou, Yanshan; Bae, Gihyun; Lee, Changsoo; Huh, Hoon

    2010-06-01

    This paper deals with the effect of the yield stress and r-value distribution on the earing in the cup drawing. The anisotropic yield function, Yld2000-2d yield function, is selected to describe the anisotropy of two metal sheets, 719B and AA5182-O. The tool dimension is referred from the Benchmark problem of NUMISHEET'2002. The Downhill Simplex method is applied to identify the anisotropic coefficients in Yld2000-2d yield function. Simulations of the drawing process are performed to investigate the earing profile of two materials. The earing profiles obtained from simulations are compared with the analytical model developed by Hosford and Caddell. Simulations are conducted with respect to the change of the yield stress and r-value distribution, respectively. The correlation between the anisotropy and the earing tendency is investigated based on simulation data. Finally, the earing mechanism is analyzed through the deformation process of the blank during the cup deep drawing. It can be concluded that ears locate at angular positions with lower yield stress and higher r-value while the valleys appear at the angular position with higher yield stress and lower r-value. The effect of the yield stress distribution is more important for the cup height distribution than that of the r-value distribution.

  15. Dimension yields from yellow-poplar lumber

    Treesearch

    R. C. Gilmore; J. D. Danielson

    1984-01-01

    The available supply of yellow poplar (Liriodendron tulipifera L.), its potential for new uses, and its continuing importance to the furniture industry have created a need to accumulate additional information about this species. As an aid to better utilization of this species, charts for determining cutting stock yields from yellow poplar lumber are presented for each...

  16. Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-07-17

    The measurements of the ZZ and WW final states in the mass range above the \\(2m_Z\\) and \\(2m_W\\) thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the \\(ZZ \\rightarrow 4\\ell \\), \\(ZZ\\rightarrow 2\\ell 2\

  17. Efficient SRAM yield optimization with mixture surrogate modeling

    NASA Astrophysics Data System (ADS)

    Zhongjian, Jiang; Zuochang, Ye; Yan, Wang

    2016-12-01

    Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a moderate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algorithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.

  18. The Relationship between Leisure Constraints, Constraint Negotiation Strategies and Facilitators with Recreational Sport Activity Participation of College Students

    ERIC Educational Resources Information Center

    Kocak, Funda

    2017-01-01

    The aim of this study is to determine the constraints in participating the leisure activities for college students, the strategies of negotiation regarding these constraints and the relationship between the facilitators and activity participation. The population of the study consists of currently registered students from Ankara University.…

  19. Eliminating Size-Associated Diffusion Constraints for Rapid On-Surface Bioassays with Nanoparticle Probes.

    PubMed

    Li, Junwei; Zrazhevskiy, Pavel; Gao, Xiaohu

    2016-02-24

    Nanoparticle probes enable implementation of advanced on-surface assay formats, but impose often underappreciated size-associated constraints, in particular on assay kinetics and sensitivity. The present study highlights substantially slower diffusion-limited assay kinetics due to the rapid development of a nanoprobe depletion layer next to the surface, which static incubation and mixing of bulk solution employed in conventional assay setups often fail to disrupt. In contrast, cyclic solution draining and replenishing yields reaction-limited assay kinetics irrespective of the probe size. Using common surface bioassays, enzyme-linked immunosorbent assays and immunofluorescence, this study shows that this conceptually distinct approach effectively "erases" size-dependent diffusion constraints, providing a straightforward route to rapid on-surface bioassays employing bulky probes and procedures involving multiple labeling cycles, such as multicycle single-cell molecular profiling. For proof-of-concept, the study demonstrates that the assay time can be shortened from hours to minutes with the same probe concentration and, at a typical incubation time, comparable target labeling can be achieved with up to eight times lower nanoprobe concentration. The findings are expected to enable realization of novel assay formats and stimulate development of rapid on-surface bioassays with nanoparticle probes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimization of the yield of dark microaerobic production of hydrogen from lactate by Rhodopseudomonas palustris.

    PubMed

    Lazaro, Carolina Zampol; Hitit, Zeynep Yilmazer; Hallenbeck, Patrick C

    2017-12-01

    Hydrogen yields of dark fermentation are limited due to the need to also produce reduced side products, and photofermentation, an alternative, is limited by the need for light. A relatively new strategy, dark microaerobic fermentation, could potentially overcome both these constraints. Here, application of this strategy demonstrated for the first time significant hydrogen production from lactate by a single organism in the dark. Response surface methodology (RSM) was used to optimize substrate and oxygen concentration as well as inoculum using both (1) regular batch and (2) O 2 fed batch cultures. The highest hydrogen yield (HY) was observed under regular batch (1.4±0.1molH 2 /mollactate) and the highest hydrogen production (HP) (173.5µmolH 2 ) was achieved using O 2 fed batch. This study has provided proof of principal for the ability of microaerobic fermentation to drive thermodynamically difficult reactions, such as the conversion of lactate to hydrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mission Implementation Constraints on Planetary Muon Radiography

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  2. Effects of spatial constraints on channel network topology: Implications for geomorphological inference

    NASA Astrophysics Data System (ADS)

    Cabral, Mariza Castanheira De Moura Da Costa

    In the fifty-two years since Robert Horton's 1945 pioneering quantitative description of channel network planform (or plan view morphology), no conclusive findings have been presented that permit inference of geomorphological processes from any measures of network planform. All measures of network planform studied exhibit limited geographic variability across different environments. Horton (1945), Langbein et al. (1947), Schumm (1956), Hack (1957), Melton (1958), and Gray (1961) established various "laws" of network planform, that is, statistical relationships between different variables which have limited variability. A wide variety of models which have been proposed to simulate the growth of channel networks in time over a landsurface are generally also in agreement with the above planform laws. An explanation is proposed for the generality of the channel network planform laws. Channel networks must be space filling, that is, they must extend over the landscape to drain every hillslope, leaving no large undrained areas, and with no crossing of channels, often achieving a roughly uniform drainage density in a given environment. It is shown that the space-filling constraint can reduce the sensitivity of planform variables to different network growth models, and it is proposed that this constraint may determine the planform laws. The "Q model" of network growth of Van Pelt and Verwer (1985) is used to generate samples of networks. Sensitivity to the model parameter Q is markedly reduced when the networks generated are required to be space filling. For a wide variety of Q values, the space-filling networks are in approximate agreement with the various channel network planform laws. Additional constraints, including of energy efficiency, were not studied but may further reduce the variability of planform laws. Inference of model parameter Q from network topology is successful only in networks not subject to spatial constraints. In space-filling networks, for a wide

  3. A New Empirical Constraint on the Prevalence of Technological Species in the Universe.

    PubMed

    Frank, A; Sullivan, W T

    2016-05-01

    In this article, we address the cosmic frequency of technological species. Recent advances in exoplanet studies provide strong constraints on all astrophysical terms in the Drake equation. Using these and modifying the form and intent of the Drake equation, we set a firm lower bound on the probability that one or more technological species have evolved anywhere and at any time in the history of the observable Universe. We find that as long as the probability that a habitable zone planet develops a technological species is larger than ∼10(-24), humanity is not the only time technological intelligence has evolved. This constraint has important scientific and philosophical consequences. Life-Intelligence-Extraterrestrial life. Astrobiology 2016, 359-362.

  4. Clustering by soft-constraint affinity propagation: applications to gene-expression data.

    PubMed

    Leone, Michele; Sumedha; Weigt, Martin

    2007-10-15

    Similarity-measure-based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck (2007a). In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, e.g. in analyzing gene expression data. This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new a priori free parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.

  5. Constraints on muon-specific dark forces

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; McKeen, David; Pospelov, Maxim

    2014-10-01

    The recent measurement of the Lamb shift in muonic hydrogen allows for the most precise extraction of the charge radius of the proton which is currently in conflict with other determinations based on e-p scattering and hydrogen spectroscopy. This discrepancy could be the result of some new muon-specific force with O(1-100) MeV force carrier—in this paper we concentrate on vector mediators. Such an explanation faces challenges from the constraints imposed by the g-2 of the muon and electron as well as precision spectroscopy of muonic atoms. In this work we complement the family of constraints by calculating the contribution of hypothetical forces to the muonium hyperfine structure. We also compute the two-loop contribution to the electron parity-violating amplitude due to a muon loop, which is sensitive to the muon axial-vector coupling. Overall, we find that the combination of low-energy constraints favors the mass of the mediator to be below 10 MeV and that a certain degree of tuning is required between vector and axial-vector couplings of new vector particles to muons in order to satisfy constraints from muon g-2. However, we also observe that in the absence of a consistent standard model embedding high-energy weak-charged processes accompanied by the emission of new vector particles are strongly enhanced by (E/mV)2, with E a characteristic energy scale and mV the mass of the mediator. In particular, leptonic W decays impose the strongest constraints on such models completely disfavoring the remainder of the parameter space.

  6. Oil Dependence, Climate Change and Energy Security: Will Constraints on Oil Shape our Climate Future or Vice Versa?

    NASA Astrophysics Data System (ADS)

    Mignone, B. K.

    2008-12-01

    Threats to US and global energy security take several forms. First, the overwhelming dependence on oil in the transport sector leaves the US economy (and others) vulnerable to supply shocks and price volatility. Secondly, the global dependence on oil inflates prices and enhances the transfer of wealth to authoritarian regimes. Finally, the global reliance on fossil fuels more generally jeopardizes the stability of the climate system. These three threats - economic, strategic and environmental - can only be mitigated through a gradual substitution away from fossil fuels (both coal and oil) on a global scale. Such large-scale substitution could occur in response to potential resource constraints or in response to coordinated government policies in which these externalities are explicitly internalized. Here, I make use of a well-known integrated assessment model (MERGE) to examine both possibilities. When resource limits are considered alone, global fuel use tends to shift toward even more carbon-intensive resources, like oil shale or liquids derived from coal. On the other hand, when explicit carbon constraints are imposed, the fuel sector response is more complex. Generally, less stringent climate targets can be satisfied entirely through reductions in global coal consumption, while more stringent targets require simultaneous reductions in both coal and oil consumption. Taken together, these model results suggest that resource constraints alone will only exacerbate the climate problem, while a subset of policy-driven carbon constraints may yield tangible security benefits (in the form of reduced global oil consumption) in addition to the intended environmental outcome.

  7. Structural constraints to wilderness: Impacts on visitation and experience

    Treesearch

    Ingrid E. Schneider; Sierra L. Schroeder; Ann. Schwaller

    2011-01-01

    A significant research body on recreation constraints exists, but wilderness constraints research is limited. Like other recreationists, wilderness visitors likely experience a number of constraints, factors that limit leisure preference formation or participation and enjoyment. This project explored how visitors' experiences with and in wilderness are constrained...

  8. Sensitivity of Lumped Constraints Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Akgun, Mehmet A.; Haftka, Raphael T.; Wu, K. Chauncey; Walsh, Joanne L.

    1999-01-01

    Adjoint sensitivity calculation of stress, buckling and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. Adjoint stress and displacement sensitivities are available in the literature. Expressions for local buckling sensitivity of isotropic plate elements are derived in this study. Computational efficiency of the adjoint method is sensitive to the number of constraints and, therefore, the method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser (KS) function is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a simple HSCT wing model, and a large HSCT model. These sensitivity derivatives are then used in optimization.

  9. Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle

    NASA Astrophysics Data System (ADS)

    Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.

    2017-12-01

    Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).

  10. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  11. Managment oriented analysis of sediment yield time compression

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in

  12. Forces Associated with Nonlinear Nonholonomic Constraint Equations

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Hodges, Dewey H.

    2010-01-01

    A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.

  13. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE PAGES

    Bakosi, J.; Ristorcelli, J. R.

    2014-03-04

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  14. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, J.; Ristorcelli, J. R.

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  15. Theoretical constraints in the design of multivariable control systems

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Mook, D. Joseph; Depena, Juan

    1991-01-01

    The research being performed under NASA Grant NAG1-1361 involves a more clear understanding and definition of the constraints involved in the pole-zero placement or assignment process for multiple input, multiple output systems. Complete state feedback to more than a single controller under conditions of complete controllability and observability is redundant if pole placement alone is the design objective. The additional feedback gains, above and beyond those required for pole placement can be used for eignevalue assignment or zero placement of individual closed loop transfer functions. Because both poles and zeros of individual closed loop transfer functions strongly affect the dynamic response to a pilot command input, the pole-zero placement problem is important. When fewer controllers than degrees of freedom of motion are available, complete design freedom is not possible, the transmission zeros constrain the regions of possible pole-zero placement. The effect of transmission zero constraints on the design possibilities, selection of transmission zeros and the avoidance of producing non-minimum phase transfer functions is the subject of the research being performed under this grant.

  16. Real-time yield estimation based on deep learning

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Sheppard, Clay

    2017-05-01

    Crop yield estimation is an important task in product management and marketing. Accurate yield prediction helps farmers to make better decision on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits is very time consuming and expensive process and it is not practical for big fields. Robotic systems including Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), provide an efficient, cost-effective, flexible, and scalable solution for product management and yield prediction. Recently huge data has been gathered from agricultural field, however efficient analysis of those data is still a challenging task. Computer vision approaches currently face diffident challenges in automatic counting of fruits or flowers including occlusion caused by leaves, branches or other fruits, variance in natural illumination, and scale. In this paper a novel deep convolutional network algorithm was developed to facilitate the accurate yield prediction and automatic counting of fruits and vegetables on the images. Our method is robust to occlusion, shadow, uneven illumination and scale. Experimental results in comparison to the state-of-the art show the effectiveness of our algorithm.

  17. Research ethics and Institutional Review Boards. The influence of moral constraints on emotion research.

    PubMed

    Sontag, Michael

    2012-01-01

    Researchers in the twenty-first century face a set of challenges unknown to researchers a half century ago--the need to justify the moral acceptability of their research methods through formal review processes. However, the role that moral constraints play in the development and demise of scientific theories has largely gone unappreciated. The rise of Institutional Review Boards (IRB) in the 1960s compounded the impact of moral constraints on scientific research and on the theories that develop out of such highly monitored research. To demonstrate the effects of moral constraints on scientific theory and research, this paper offers a history and analysis of the interaction between evolving moral standards and twentieth century emotion theory. Recommendations regarding IRB reform are also reviewed. The paper concludes by arguing that, while appropriate IRB reform is important, it cannot eliminate the need for careful reflection on the broader forces that shape scientific practice and understanding.

  18. Two-agent cooperative search using game models with endurance-time constraints

    NASA Astrophysics Data System (ADS)

    Sujit, P. B.; Ghose, Debasish

    2010-07-01

    In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.

  19. Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals

    PubMed Central

    García-Mier, Lina; Guevara-González, Ramón G.; Mondragón-Olguín, Víctor M.; Verduzco-Cuellar, Beatriz del Rocío; Torres-Pacheco, Irineo

    2013-01-01

    Plants are fundamental elements of the human diet, either as direct sources of nutrients or indirectly as feed for animals. During the past few years, the main goal of agriculture has been to increase yield in order to provide the food that is needed by a growing world population. As important as yield, but commonly forgotten in conventional agriculture, is to keep and, if it is possible, to increase the phytochemical content due to their health implications. Nowadays, it is necessary to go beyond this, reconciling yield and phytochemicals that, at first glance, might seem in conflict. This can be accomplished through reviewing food requirements, plant consumption with health implications, and farming methods. The aim of this work is to show how both yield and phytochemicals converge into a new vision of agricultural management in a framework of integrated agricultural practices. PMID:23429238

  20. Interpreting HSE Contents of Planetary Basalts: The Importance of Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2000-01-01

    Highly siderophile elements provide important constraints on planetary differentiation due to their siderophile behavior. Their interpretation in terms of planetary differentiation models has so far overlooked the importance of sulfide saturation and under-saturation.

  1. Regional-scale yield simulations using crop and climate models: assessing uncertainties, sensitivity to temperature and adaptation options

    NASA Astrophysics Data System (ADS)

    Challinor, A. J.

    2010-12-01

    Recent progress in assessing the impacts of climate variability and change on crops using multiple regional-scale simulations of crop and climate (i.e. ensembles) is presented. Simulations for India and China used perturbed responses to elevated carbon dioxide constrained using observations from FACE studies and controlled environments. Simulations with crop parameter sets representing existing and potential future adapted varieties were also carried out. The results for India are compared to sensitivity tests on two other crop models. For China, a parallel approach used socio-economic data to account for autonomous farmer adaptation. Results for the USA analysed cardinal temperatures under a range of local warming scenarios for 2711 varieties of spring wheat. The results are as follows: 1. Quantifying and reducing uncertainty. The relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes is examined. The observational constraints from FACE and controlled environment studies are shown to be the likely critical factor in maintaining relatively low crop parameter uncertainty. Without these constraints, crop simulation uncertainty in a doubled CO2 environment would likely be greater than uncertainty in simulating climate. However, consensus across crop models in India varied across different biophysical processes. 2. The response of yield to changes in local mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. 3. Implications for adaptation. China. The simulations of spring wheat in China show the relative importance of tolerance to water and heat stress in avoiding future crop failures. The greatest potential for reducing the number of harvests less than one standard deviation below the baseline mean yield value comes from alleviating water stress; the greatest potential for reducing harvests less than two

  2. The anomalous yield behavior of fused silica glass

    NASA Astrophysics Data System (ADS)

    Schill, W.; Heyden, S.; Conti, S.; Ortiz, M.

    2018-04-01

    We develop a critical-state model of fused silica plasticity on the basis of data mined from molecular dynamics (MD) calculations. The MD data is suggestive of an irreversible densification transition in volumetric compression resulting in permanent, or plastic, densification upon unloading. The MD data also reveals an evolution towards a critical state of constant volume under pressure-shear deformation. The trend towards constant volume is from above, when the glass is overconsolidated, or from below, when it is underconsolidated. We show that these characteristic behaviors are well-captured by a critical state model of plasticity, where the densification law for glass takes the place of the classical consolidation law of granular media and the locus of constant-volume states defines the critical-state line. A salient feature of the critical-state line of fused silica, as identified from the MD data, that renders its yield behavior anomalous is that it is strongly non-convex, owing to the existence of two well-differentiated phases at low and high pressures. We argue that this strong non-convexity of yield explains the patterning that is observed in molecular dynamics calculations of amorphous solids deforming in shear. We employ an explicit and exact rank-2 envelope construction to upscale the microscopic critical-state model to the macroscale. Remarkably, owing to the equilibrium constraint the resulting effective macroscopic behavior is still characterized by a non-convex critical-state line. Despite this lack of convexity, the effective macroscopic model is stable against microstructure formation and defines well-posed boundary-value problems.

  3. Isocurvature constraints on portal couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kainulainen, Kimmo; Nurmi, Sami; Vaskonen, Ville

    2016-06-01

    We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We thenmore » use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: m {sub DM}/GeV ∼< 0.2λ{sub s}{sup 3/8} ( H {sub *}/10{sup 11} GeV){sup −3/2}. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.« less

  4. Constraint programming based biomarker optimization.

    PubMed

    Zhou, Manli; Luo, Youxi; Sun, Guoquan; Mai, Guoqin; Zhou, Fengfeng

    2015-01-01

    Efficient and intuitive characterization of biological big data is becoming a major challenge for modern bio-OMIC based scientists. Interactive visualization and exploration of big data is proven to be one of the successful solutions. Most of the existing feature selection algorithms do not allow the interactive inputs from users in the optimizing process of feature selection. This study investigates this question as fixing a few user-input features in the finally selected feature subset and formulates these user-input features as constraints for a programming model. The proposed algorithm, fsCoP (feature selection based on constrained programming), performs well similar to or much better than the existing feature selection algorithms, even with the constraints from both literature and the existing algorithms. An fsCoP biomarker may be intriguing for further wet lab validation, since it satisfies both the classification optimization function and the biomedical knowledge. fsCoP may also be used for the interactive exploration of bio-OMIC big data by interactively adding user-defined constraints for modeling.

  5. Hemispheric symmetry of the Earth's Energy Balance as a fundamental constraint on the Earth's climate

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Webster, P. J.; OBrien, D. M.

    2013-12-01

    We currently lack a quantitative understanding of how the Earth's energy balance and the poleward energy transport adjust to different forcings that determine climate change. Currently, there are no constraints that guide this understanding. We will demonstrate that the Earth's energy balance exhibits a remarkable symmetry about the equator, and that this symmetry is a necessary condition of a steady state climate. Our analysis points to clouds as the principal agent that highly regulates this symmetry and sets the steady state. The existence of this thermodynamic steady-state constraint on climate and the symmetry required to sustain it leads to important inferences about the synchronous nature of climate changes between hemispheres, offering for example insights on mechanisms that can sustain global ice ages forced by asymmetric hemispheric solar radiation variations or how climate may respond to increases in greenhouse gas concentration. Further inferences regarding cloud effects on climate can also be deduced without resorting to the complex and intricate processes of cloud formation, whose representation continues to challenge the climate modeling community. The constraint suggests cloud feedbacks must be negative buffering the system against change. We will show that this constraint doesn't exist in the current CMIP5 model experiments and the lack of such a constraint suggests there is insufficient buffering in models in response to external forcings

  6. The role of logistic constraints in termite construction of chambers and tunnels.

    PubMed

    Ladley, Dan; Bullock, Seth

    2005-06-21

    In previous models of the building behaviour of termites, physical and logistic constraints that limit the movement of termites and pheromones have been neglected. Here, we present an individual-based model of termite construction that includes idealized constraints on the diffusion of pheromones, the movement of termites, and the integrity of the architecture that they construct. The model allows us to explore the extent to which the results of previous idealized models (typically realised in one or two dimensions via a set of coupled partial differential equations) generalize to a physical, 3-D environment. Moreover we are able to investigate new processes and architectures that rely upon these features. We explore the role of stigmergic recruitment in pillar formation, wall building, and the construction of royal chambers, tunnels and intersections. In addition, for the first time, we demonstrate the way in which the physicality of partially built structures can help termites to achieve efficient tunnel structures and to establish and maintain entrances in royal chambers. As such we show that, in at least some cases, logistic constraints can be important or even necessary in order for termites to achieve efficient, effective constructions.

  7. Constraint processing in our extensible language for cooperative imaging system

    NASA Astrophysics Data System (ADS)

    Aoki, Minoru; Murao, Yo; Enomoto, Hajime

    1996-02-01

    The extensible WELL (Window-based elaboration language) has been developed using the concept of common platform, where both client and server can communicate with each other with support from a communication manager. This extensible language is based on an object oriented design by introducing constraint processing. Any kind of services including imaging in the extensible language is controlled by the constraints. Interactive functions between client and server are extended by introducing agent functions including a request-respond relation. Necessary service integrations are satisfied with some cooperative processes using constraints. Constraints are treated similarly to data, because the system should have flexibilities in the execution of many kinds of services. The similar control process is defined by using intentional logic. There are two kinds of constraints, temporal and modal constraints. Rendering the constraints, the predicate format as the relation between attribute values can be a warrant for entities' validity as data. As an imaging example, a processing procedure of interaction between multiple objects is shown as an image application for the extensible system. This paper describes how the procedure proceeds in the system, and that how the constraints work for generating moving pictures.

  8. Robustness of dark matter constraints and interplay with collider searches for New Physics

    NASA Astrophysics Data System (ADS)

    Arbey, A.; Boudaud, M.; Mahmoudi, F.; Robbins, G.

    2017-11-01

    We study the implications of dark matter searches, together with collider constraints, on the phenomenological MSSM with neutralino dark matter and focus on the consequences of the related uncertainties in some detail. We consider, inter alia, the latest results from AMS-02, Fermi-LAT and XENON1T. In particular, we examine the impact of the choice of the dark matter halo profile, as well as the propagation model for cosmic rays, for dark matter indirect detection and show that the constraints on the MSSM differ by one to two orders of magnitude depending on the astrophysical hypotheses. On the other hand, our limited knowledge of the local relic density in the vicinity of the Earth and the velocity of Earth in the dark matter halo leads to a factor 3 in the exclusion limits obtained by direct detection experiments. We identified the astrophysical models leading to the most conservative and the most stringent constraints and for each case studied the complementarities with the latest LHC measurements and limits from Higgs, SUSY and monojet searches. We show that combining all data from dark matter searches and colliders, a large fraction of our supersymmetric sample could be probed. Whereas the direct detection constraints are rather robust under the astrophysical assumptions, the uncertainties related to indirect detection can have an important impact on the number of the excluded points.

  9. Yield physiology of short rotation intensively cultured poplars

    Treesearch

    J. G. Isebrands; N. D. Nelson; D. I. Dickmann; D. A. Michael

    1983-01-01

    An integrated research approach is described for studying yield physiology of short rotation intensively cultured (SRIC) poplar plantations. Branch architecture differs with clone and stand density, but the clonal ranking of important branch characteristics does not change with spacing.

  10. Brain evolution and development: adaptation, allometry and constraint

    PubMed Central

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  11. Constraints in distortion-invariant target recognition system simulation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Razzaque, Md A.

    2000-11-01

    Automatic target recognition (ATR) is a mature but active research area. In an earlier paper, we proposed a novel ATR approach for recognition of targets varying in fine details, rotation, and translation using a Learning Vector Quantization (LVQ) Neural Network (NN). The proposed approach performed segmentation of multiple objects and the identification of the objects using LVQNN. In this current paper, we extend the previous approach for recognition of targets varying in rotation, translation, scale, and combination of all three distortions. We obtain the analytical results of the system level design to show that the approach performs well with some constraints. The first constraint determines the size of the input images and input filters. The second constraint shows the limits on amount of rotation, translation, and scale of input objects. We present the simulation verification of the constraints using DARPA's Moving and Stationary Target Recognition (MSTAR) images with different depression and pose angles. The simulation results using MSTAR images verify the analytical constraints of the system level design.

  12. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  13. Black hole thermodynamics from Euclidean horizon constraints.

    PubMed

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints.

  14. Differential effects of constraints in the processing of Russian cataphora.

    PubMed

    Kazanina, Nina; Phillips, Colin

    2010-02-01

    Anaphoric relations between pronouns and their antecedents are subject to a number of different linguistic constraints, which exclude the possibility of coreference in specific syntactic or discourse contexts. Constraints on anaphora may, in principle, impact online sentence processing in a couple of different ways. They may act as constraints on the generation of interpretations, preventing illicit anaphoric relations from ever being considered. Alternatively, they may act as later filters on interpretations, rejecting candidate interpretations after initial consideration. A number of previous studies have sought to determine which of these mechanisms accurately describes the online impact of constraints on anaphora. The current studies present evidence that there is no uniform answer to this question, and that the two mechanisms are both used, for different constraints. Evidence for this is drawn from studies on the processing of two constraints on backwards anaphora or cataphora in Russian that apply in superficially similar contexts but that differ in a number of respects. One self-paced reading study and two judgement studies are reported. The self-paced reading study manipulates the gender congruency between a pronoun and a following name in three pairs of conditions. In conditions where the pronoun-name configuration violates no constraints on anaphora a gender mismatch effect was observed following the name, as in previous studies, suggesting that comprehenders actively search for an antecedent following a cataphoric pronoun. In conditions where the pronoun-name configuration violates Principle C of the classical binding theory no effect of the gender manipulation was observed, suggesting that comprehenders do not even consider the possibility of interpretations that violate this constraint. In conditions where the pronoun-name configuration violates a Russian-specific constraint on cataphora a gender match effect was observed following the name, the

  15. The "No Crossing Constraint" in Autosegmental Phonology.

    ERIC Educational Resources Information Center

    Coleman, John; Local, John

    A discussion of autosegmental phonology (AP), a theory of phonological representation that uses graphs rather than strings as the central data structure, considers its principal constraint, the "No Crossing Constraint" (NCC). The NCC is the statement that in a well-formed autosegmental diagram, lines of association may not cross. After…

  16. Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç

    2017-01-01

    This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.

  17. [An unusual hospitalization under constraint].

    PubMed

    Azmani, H; Bier, J C; Lotstra, F

    2009-01-01

    The case report describes a 45-year old man presenting of the behavioral problems and an aphasia of Wernicke, hospitalized under constraint. The urinary screening in the search of psychotropic substances is positive for the cannabis and the amphetamines. The neurological localization is confirmed by cerebral CT-scan. The discussion relates on the differential diagnosis between a schizophasia and an aphasia of Wernicke, on the difficulty of a somatic diagnosis among patients agitated under the effect of a drug and to the tendency to hospitalize those too quickly under constraint, on the noxious effect of drugs on the brain.

  18. Further constraints for the Plio-Pleistocene geomagnetic field strength: New results from the Los Tuxtlas volcanic field (Mexico)

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.

    2001-09-01

    A rock-magnetic, paleomagnetic and paleointensity study was carried out on 13 Plio-Pleistocene volcanic flows from the Los Tuxtlas volcanic field (Trans Mexican Volcanic Belt) in order to obtain some decisive constraints for the geomagnetic field strength during the Plio-Pleistocene time. The age of the volcanic units, which yielded reliable paleointensity estimates, lies between 2.2 and 0.8 Ma according to the available K/Ar radiometric data. Thermomagnetic investigations reveal that remanence is carried in most cases by Ti-poor titanomagnetite, resulting from oxy-exsolution that probably occurred during the initial flow cooling. Unblocking temperature spectra and relatively high coercivity point to 'small' pseudo-single domain magnetic grains for these (titano)magnetites. Single-component, linear demagnetization plots were observed in most cases. Six flows yield reverse polarity magnetization, five flows are normally magnetized, and one flow shows intermediate polarity magnetization. Evidence of a strong lightning-produced magnetization overprint was detected for one site. The mean pole position obtained in this study is Plat = 83.7°, Plong = 178.1°, K = 36, A95 = 8.1°, N =10 and the corresponding mean paleodirection is I = 31.3°, D = 352°, k = 37, a95 = 8.2°, which is not significantly different from the expected direction estimated from the North American apparent polar wander path. Thirty-nine samples were pre-selected for Thellier palaeointensity experiments because of their stable remanent magnetization and relatively weak-within-site dispersion. Only 21 samples, coming from four individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 6.4 to 9.1 × 1022 Am2. Combining the coeval Mexican data with the available comparable quality Pliocene paleointensity results yield a mean VDM of 6.4 × 1022 Am2, which is almost 80% of the present geomagnetic axial dipole. Reliable

  19. Mapping the developmental constraints on working memory span performance.

    PubMed

    Bayliss, Donna M; Jarrold, Christopher; Baddeley, Alan D; Gunn, Deborah M; Leigh, Eleanor

    2005-07-01

    This study investigated the constraints underlying developmental improvements in complex working memory span performance among 120 children of between 6 and 10 years of age. Independent measures of processing efficiency, storage capacity, rehearsal speed, and basic speed of processing were assessed to determine their contribution to age-related variance in complex span. Results showed that developmental improvements in complex span were driven by 2 age-related but separable factors: 1 associated with general speed of processing and 1 associated with storage ability. In addition, there was an age-related contribution shared between working memory, processing speed, and storage ability that was important for higher level cognition. These results pose a challenge for models of complex span performance that emphasize the importance of processing speed alone.

  20. Barriers and constraints: women physicists' perceptions of career progress

    NASA Astrophysics Data System (ADS)

    Hodgson, Barbara; Scanlon, Eileen; Whitelegg, Elizabeth

    2000-11-01

    Researchers in the area of women in science are trying to understand how the participation of women in science can be increased and also what prevents women from developing scientific careers. Past influential work supports the importance of taking the perspective of women's education and career paths as a whole, emphasizing the importance of structural and social factors in career progress. This paper reports some outcomes from an interview study with women PhD physicists working in a variety of science-related careers. Our aim is to explore and document the career experience of women scientists and to identify barriers and constraints to women's participation in science careers and to investigate ways in which educational experiences contribute to career progress.

  1. Cosmology with photometric weak lensing surveys: Constraints with redshift tomography of convergence peaks and moments

    DOE PAGES

    Petri, Andrea; May, Morgan; Haiman, Zoltán

    2016-09-30

    Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w. When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ω m,w,σ 8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. Here we find that redshift tomography with the power spectrum reduces the area of the 1σ confidence interval in (Ω m,w) space by a factor ofmore » 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ω m,w) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. In conclusion, we find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.« less

  2. The yield and post-yield behavior of high-density polyethylene

    NASA Technical Reports Server (NTRS)

    Semeliss, M. A.; Wong, R.; Tuttle, M. E.

    1990-01-01

    An experimental and analytical evaluation was made of the yield and post-yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was selected for study because it is very inexpensive and readily available in the form of thin-walled tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress rate was imposed during all tests. The measured yield and post-yield behavior was compared with predictions based on both isotropic and anisotropic models. Of particular interest was whether inelastic behavior was sensitive to the hydrostatic stress level. The major achievements and conclusions reached are discussed.

  3. The global technical potential of bio-energy in 2050 considering sustainability constraints

    PubMed Central

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-01-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets (‘technical potential’). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160–270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization (‘cascade utilization’) of biomass flows. PMID:24069093

  4. Cognitive constraints on high school students' representations of real environmental problems

    NASA Astrophysics Data System (ADS)

    Barnes, Ervin Kenneth

    One class of juniors and seniors was studied through one semester in the investigation of how students think about, learn from, and solve real environmental problems. The intention was to listen to student voices while researching the features of their representations of these problems, the beliefs they held (tenets), the cognitive processes they employed, and the principles of science, ecology, problem solving, and ethics they held as tenets. The focus was upon two self-selected groups as they perceived, engaged, analyzed, and proposed solutions for problems. Analysis of the student representations involved interpretation of the features to include both the perspective tenets and the envisioning processes. These processes included the intentive and attentive constraints as tenet acquisition and volitive and agential constraints as tenet affirmation. The perspective tenets included a variety of conceptual (basic science, ecological, ethical, and problem-solving) constraints as well as ontological, epistemological, and other cultural (role, status, power, and community) constraints. The perspective tenets were interpreted thematically including the ways populations of people cause and care about environmental problems, the magnitude of environmental problems and the science involved, the expectations and limitations students perceive for themselves, and the importance of community awareness and cooperation to addressing these problems. Some of these tenets were interpreted to be principles in that they were rules that were accepted by some people as true. The perspective tenets, along with the envisioning processes, were perceived to be the constraints that determined the environmental problems and limited the solution possibilities. The students thought about environmental problems in mature and principled ways using a repertoire of cognitive processes. They learned from them as they acquired and affirmed tenets. They solved them through personal choices and

  5. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    PubMed

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  6. Genomic architecture of heterosis for yield traits in rice.

    PubMed

    Huang, Xuehui; Yang, Shihua; Gong, Junyi; Zhao, Qiang; Feng, Qi; Zhan, Qilin; Zhao, Yan; Li, Wenjun; Cheng, Benyi; Xia, Junhui; Chen, Neng; Huang, Tao; Zhang, Lei; Fan, Danlin; Chen, Jiaying; Zhou, Congcong; Lu, Yiqi; Weng, Qijun; Han, Bin

    2016-09-29

    Increasing grain yield is a long-term goal in crop breeding to meet the demand for global food security. Heterosis, when a hybrid shows higher performance for a trait than both parents, offers an important strategy for crop breeding. To examine the genetic basis of heterosis for yield in rice, here we generate, sequence and record the phenotypes of 10,074 F 2 lines from 17 representative hybrid rice crosses. We classify modern hybrid rice varieties into three groups, representing different hybrid breeding systems. Although we do not find any heterosis-associated loci shared across all lines, within each group, a small number of genomic loci from female parents explain a large proportion of the yield advantage of hybrids over their male parents. For some of these loci, we find support for partial dominance of heterozygous locus for yield-related traits and better-parent heterosis for overall performance when all of the grain-yield traits are considered together. These results inform on the genomic architecture of heterosis and rice hybrid breeding.

  7. Theory of nonlinear elasticity, stress-induced relaxation, and dynamic yielding in dense fluids of hard nonspherical colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2012-04-01

    We generalize the microscopic naïve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.

  8. Understanding the leisure constraints of Hispanic-Americans in Northern Virginia: an exploratory analysis of constraints, socioeconomic status and acculturation

    Treesearch

    Edward F, II Byrne; Ellen B. Drogin Rodgers

    2003-01-01

    The purpose of this study is to investigate the constraints to use of outdoor recreation resources and participation in leisure activities among Hispanic restaurant workers in Northern Virginia; specifically, the relationship of socioeconomic status and acculturation to leisure constraints. The dramatic rate of increase of Hispanic-Americans, the group's low...

  9. An adapted yield criterion for the evolution of subsequent yield surfaces

    NASA Astrophysics Data System (ADS)

    Küsters, N.; Brosius, A.

    2017-09-01

    In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.

  10. Osmotic virial coefficients for model protein and colloidal solutions: importance of ensemble constraints in the analysis of light scattering data.

    PubMed

    Siderius, Daniel W; Krekelberg, William P; Roberts, Christopher J; Shen, Vincent K

    2012-05-07

    Protein-protein interactions in solution may be quantified by the osmotic second virial coefficient (OSVC), which can be measured by various experimental techniques including light scattering. Analysis of Rayleigh light scattering measurements from such experiments requires identification of a scattering volume and the thermodynamic constraints imposed on that volume, i.e., the statistical mechanical ensemble in which light scattering occurs. Depending on the set of constraints imposed on the scattering volume, one can obtain either an apparent OSVC, A(2,app), or the true thermodynamic OSVC, B(22)(osm), that is rigorously defined in solution theory [M. A. Blanco, E. Sahin, Y. Li, and C. J. Roberts, J. Chem. Phys. 134, 225103 (2011)]. However, it is unclear to what extent A(2,app) and B(22)(osm) differ, which may have implications on the physical interpretation of OSVC measurements from light scattering experiments. In this paper, we use the multicomponent hard-sphere model and a well-known equation of state to directly compare A(2,app) and B(22)(osm). Our results from the hard-sphere equation of state indicate that A(2,app) underestimates B(22)(osm), but in a systematic manner that may be explained using fundamental thermodynamic expressions for the two OSVCs. The difference between A(2,app) and B(22)(osm) may be quantitatively significant, but may also be obscured in experimental application by statistical uncertainty or non-steric interactions. Consequently, the two OSVCs that arise in the analysis of light scattering measurements do formally differ, but in a manner that may not be detectable in actual application.

  11. Distance Constraint Satisfaction Problems

    NASA Astrophysics Data System (ADS)

    Bodirsky, Manuel; Dalmau, Victor; Martin, Barnaby; Pinsker, Michael

    We study the complexity of constraint satisfaction problems for templates Γ that are first-order definable in ({ Z}; {suc}), the integers with the successor relation. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), we provide a full classification for the case that Γ is locally finite (i.e., the Gaifman graph of Γ has finite degree). We show that one of the following is true: The structure Γ is homomorphically equivalent to a structure with a certain majority polymorphism (which we call modular median) and CSP(Γ) can be solved in polynomial time, or Γ is homomorphically equivalent to a finite transitive structure, or CSP(Γ) is NP-complete.

  12. Constraint-Induced Aphasia Therapy in the Acute Stage: What Is the Key Factor for Efficacy? A Randomized Controlled Study.

    PubMed

    Woldag, Hartwig; Voigt, Nancy; Bley, Maria; Hummelsheim, Horst

    2017-01-01

    Constraint-induced aphasia therapy (CIAT) has proven effective in patients with subacute and chronic forms of aphasia. It has remained unclear, however, whether intensity of therapy or constraint is the relevant factor. Data about intensive speech and language therapy (SLT) are conflicting. To identify the effective component of CIAT and assess the feasibility of SLT in the acute stage after stroke. A total of 60 patients with aphasia (68.2 ± 11.7 years) were enrolled 18.9 days after first-ever stroke. They were randomly distributed into 3 groups: (1) CIAT group receiving therapy for 3 hours per day (10 workdays, total 30 hours); (2) conventional communication treatment group, with same intensity without constraints; and (3) control group receiving individual therapy twice a day as well as group therapy (total 14 hours). Patients were assessed pretreatment and posttreatment using the Aachener Aphasia Test (primary end point: token test) and the Communicative Activity Log (CAL). Pretreatment, there were no between-group differences. Posttreatment, all groups showed significant improvements without between-group differences. It was found that 14 hours of aphasia therapy administered within 2 weeks as individual therapy, focusing on individual deficits, combined with group sessions has proven to be most efficient. This approach yielded the same outcome as 30 hours of group therapy, either in the form of CIAT or group therapy without constraints. SLT in an intensive treatment schedule is feasible and was well tolerated in the acute stage after stroke. © The Author(s) 2016.

  13. MIMO radar waveform design with peak and sum power constraints

    NASA Astrophysics Data System (ADS)

    Arulraj, Merline; Jeyaraman, Thiruvengadam S.

    2013-12-01

    Optimal power allocation for multiple-input multiple-output radar waveform design subject to combined peak and sum power constraints using two different criteria is addressed in this paper. The first one is by maximizing the mutual information between the random target impulse response and the reflected waveforms, and the second one is by minimizing the mean square error in estimating the target impulse response. It is assumed that the radar transmitter has knowledge of the target's second-order statistics. Conventionally, the power is allocated to transmit antennas based on the sum power constraint at the transmitter. However, the wide power variations across the transmit antenna pose a severe constraint on the dynamic range and peak power of the power amplifier at each antenna. In practice, each antenna has the same absolute peak power limitation. So it is desirable to consider the peak power constraint on the transmit antennas. A generalized constraint that jointly meets both the peak power constraint and the average sum power constraint to bound the dynamic range of the power amplifier at each transmit antenna is proposed recently. The optimal power allocation using the concept of waterfilling, based on the sum power constraint, is the special case of p = 1. The optimal solution for maximizing the mutual information and minimizing the mean square error is obtained through the Karush-Kuhn-Tucker (KKT) approach, and the numerical solutions are found through a nested Newton-type algorithm. The simulation results show that the detection performance of the system with both sum and peak power constraints gives better detection performance than considering only the sum power constraint at low signal-to-noise ratio.

  14. Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield

    PubMed Central

    Choe, Eunsoo; Drnevich, Jenny; Williams, Martin M.

    2016-01-01

    Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The objectives were to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network. PMID:26796516

  15. A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing

    NASA Technical Reports Server (NTRS)

    Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo

    2009-01-01

    The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.

  16. Time-variable magma pressure at Kīlauea Volcano yields constraint on the volume and volatile content of shallow magma storage

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Patrick, M. R.; Poland, M. P.; Miklius, A.

    2015-12-01

    Episodic depressurization-pressurization cycles of Kīlauea Volcano's shallow magma system cause variations in ground deformation, eruption rate, and surface height of the active summit lava lake. The mechanism responsible for these pressure-change cycles remains enigmatic, but associated monitoring signals often show a quasi-exponential temporal history that is consistent with a temporary reduction (or blockage) of supply to Kīlauea's shallow magma storage area. Regardless of their cause, the diverse signals produced by these deflation-inflation (DI) cycles offer an unrivaled opportunity to constrain properties of an active volcano's shallow magma reservoir and relation to its eruptive vents. We model transient behavior at Kīlauea Volcano using a simple mathematical model of an elastic reservoir that is coupled to magma flux through Kīlauea's East Rift Zone (ERZ) at a rate proportional to the difference in pressure between the summit reservoir and the ERZ eruptive vent (Newtonian flow). In this model, summit deflations and ERZ flux reductions are caused by a blockage in supply to the reservoir, while re-inflations occur as the system returns to a steady-state flux condition. The model naturally produces exponential variations in pressure and eruption rate which reasonably, albeit imperfectly, match observations during many of the transient events at Kīlauea. We constrain the model using a diverse range of observations including time-varying summit lava lake surface height and volume change, the temporal evolution of summit ground tilt, time-averaged eruption rate derived from TanDEM-X radar data, and height difference between the summit lava lake and the ERZ eruptive vent during brief eruptive pauses (Patrick et al., 2015). Formulating a Bayesian inverse and including independent prior constraint on magma density, host rock strength, and other properties of the system, we are able to place probabilistic constraints on the volume and volatile content of shallow

  17. The Role of Climate Covariability on Crop Yields in the Conterminous United States

    DOE PAGES

    Leng, Guoyong; Zhang, Xuesong; Huang, Maoyi; ...

    2016-09-12

    The covariability of temperature (T), precipitation (P) and radiation (R) is an important aspect in understanding the climate influence on crop yields. Here in this paper, we analyze county-level corn and soybean yields and observed climate for the period 1983–2012 to understand how growing-season (June, July and August) mean T, P and R influence crop yields jointly and in isolation across the CONterminous United States (CONUS). Results show that nationally averaged corn and soybean yields exhibit large interannual variability of 21% and 22%, of which 35% and 32% can be significantly explained by T and P, respectively. By including R,more » an additional of 5% in variability can be explained for both crops. Using partial regression analyses, we find that studies that ignore the covariability among T, P, and R can substantially overestimate the sensitivity of crop yields to a single climate factor at the county scale. Further analyses indicate large spatial variation in the relative contributions of different climate variables to the variability of historical corn and soybean yields. Finally, the structure of the dominant climate factors did not change substantially over 1983–2012, confirming the robustness of the findings, which have important implications for crop yield prediction and crop model validations.« less

  18. Magnetic Pair Creation Attenuation Altitude Constraints in Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Baring, Matthew; Story, Sarah

    The Fermi gamma-ray pulsar database now exceeds 150 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency at and below the turnover energy. Our updated computations span both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. The altitude bounds, typically in the range of 2-5 stellar radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. However, the exceptional case of the Crab pulsar provides an altitude bound of around 20% of the light cylinder radius if pair transparency persists out to 350 GeV, the maximum energy detected by MAGIC. This is an impressive new physics-based constraint on the Crab's gamma-ray emission locale.

  19. Exploring the Impact of Early Decisions in Variable Ordering for Constraint Satisfaction Problems.

    PubMed

    Ortiz-Bayliss, José Carlos; Amaya, Ivan; Conant-Pablos, Santiago Enrique; Terashima-Marín, Hugo

    2018-01-01

    When solving constraint satisfaction problems (CSPs), it is a common practice to rely on heuristics to decide which variable should be instantiated at each stage of the search. But, this ordering influences the search cost. Even so, and to the best of our knowledge, no earlier work has dealt with how first variable orderings affect the overall cost. In this paper, we explore the cost of finding high-quality orderings of variables within constraint satisfaction problems. We also study differences among the orderings produced by some commonly used heuristics and the way bad first decisions affect the search cost. One of the most important findings of this work confirms the paramount importance of first decisions. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. We propose a simple method to improve early decisions of heuristics. By using it, performance of heuristics increases.

  20. Exploring the Impact of Early Decisions in Variable Ordering for Constraint Satisfaction Problems

    PubMed Central

    Amaya, Ivan

    2018-01-01

    When solving constraint satisfaction problems (CSPs), it is a common practice to rely on heuristics to decide which variable should be instantiated at each stage of the search. But, this ordering influences the search cost. Even so, and to the best of our knowledge, no earlier work has dealt with how first variable orderings affect the overall cost. In this paper, we explore the cost of finding high-quality orderings of variables within constraint satisfaction problems. We also study differences among the orderings produced by some commonly used heuristics and the way bad first decisions affect the search cost. One of the most important findings of this work confirms the paramount importance of first decisions. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. We propose a simple method to improve early decisions of heuristics. By using it, performance of heuristics increases. PMID:29681923

  1. Constraint on a varying proton-electron mass ratio 1.5 billion years after the big bang.

    PubMed

    Bagdonaite, J; Ubachs, W; Murphy, M T; Whitmore, J B

    2015-02-20

    A molecular hydrogen absorber at a lookback time of 12.4 billion years, corresponding to 10% of the age of the Universe today, is analyzed to put a constraint on a varying proton-electron mass ratio, μ. A high resolution spectrum of the J1443+2724 quasar, which was observed with the Very Large Telescope, is used to create an accurate model of 89 Lyman and Werner band transitions whose relative frequencies are sensitive to μ, yielding a limit on the relative deviation from the current laboratory value of Δμ/μ=(-9.5 ± 5.4(stat)± 5.3(syst))×10(-6).

  2. AMMI adjustment for statistical analysis of an international wheat yield trial.

    PubMed

    Crossa, J; Fox, P N; Pfeiffer, W H; Rajaram, S; Gauch, H G

    1991-01-01

    Multilocation trials are important for the CIMMYT Bread Wheat Program in producing high-yielding, adapted lines for a wide range of environments. This study investigated procedures for improving predictive success of a yield trial, grouping environments and genotypes into homogeneous subsets, and determining the yield stability of 18 CIMMYT bread wheats evaluated at 25 locations. Additive Main effects and Multiplicative Interaction (AMMI) analysis gave more precise estimates of genotypic yields within locations than means across replicates. This precision facilitated formation by cluster analysis of more cohesive groups of genotypes and locations for biological interpretation of interactions than occurred with unadjusted means. Locations were clustered into two subsets for which genotypes with positive interactions manifested in high, stable yields were identified. The analyses highlighted superior selections with both broad and specific adaptation.

  3. Importance of rhizobia in Agriculture: potential of the commercial inoculants and native strains for improving legume yields in different land-use systems

    NASA Astrophysics Data System (ADS)

    Lesueur, D.; Atieno, M.; Mathu, S.; Herrmann, L.

    2012-04-01

    Legumes play an important role in the traditional diets of many regions throughout the world because they provide a multitude of benefits to both the soil and other crops grown in combination with them or following them in several cropping systems. The ability of legumes to fix atmospheric nitrogen in association with rhizobia gives them the capacity to grow in very degraded soils. But do we have to systematically inoculate legumes? For example our results suggested that the systematic inoculation of both cowpea and green gram in Kenya with commercial inoculants to improve yields is not really justified, native strains performing better than inoculated strains. But when native rhizobia nodulating legumes are not naturally present, application of rhizobial inoculants is very commonly used. Our results showed that the utilization of effective good-quality rhizobial inoculants by farmers have a real potential to improve legume yields in unfertile soils requesting high applications of mineral fertilizers. For example an effective soybean commercial inoculants was tested in different locations in Kenya (in about 150 farms in 3 mandate areas presenting different soil characteristics and environmental conditions). Application of the rhizobial inoculant significantly increased the soybean yields in all mandate areas (about 75% of the farms). Nodule occupancy analysis showed that a high number of nodules occupied by the inoculated strain did not obviously lead to an increase of soybean production. Soil factors (pH, P, C, N…) seemed to affect the inoculant efficiency whether the strain is occupying the nodules or not. Our statistic analysis showed that soil pH significantly affected nodulation and yield, though the effect was variable depending on the region. We concluded that the competitiveness of rhizobial strains might not be the main factor explaining the effect (or lack of) of legumes inoculation in the field. Another study was aiming to assess if several factors

  4. Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies

    PubMed Central

    Teplitsky, Celine; Tarka, Maja; Møller, Anders P.; Nakagawa, Shinichi; Balbontín, Javier; Burke, Terry A.; Doutrelant, Claire; Gregoire, Arnaud; Hansson, Bengt; Hasselquist, Dennis; Gustafsson, Lars; de Lope, Florentino; Marzal, Alfonso; Mills, James A.; Wheelwright, Nathaniel T.; Yarrall, John W.; Charmantier, Anne

    2014-01-01

    Background In a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available. Methodology/Principal Findings We investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found. Conclusions These results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary

  5. Do Yield and Quality of Big Bluestem and Switchgrass Feedstock Decline over Winter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jane M. F.; Gresham, Garold L.

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of mineralsmore » from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha-1 (fall) and 5.4 Mg ha-1 (spring) with similar high heating value (17.7 MJ kg-1). The K/(Ca + Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13% by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.« less

  6. Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties.

    PubMed

    Gwenzi, Willis; Chaukura, Nhamo; Mukome, Fungai N D; Machado, Stephen; Nyamasoka, Blessing

    2015-03-01

    Sub-Saharan Africa (SSA) experiences soil degradation, food and livelihood insecurity, environmental pollution and lack of access to energy. Biochar has gained international research attention, but few studies have investigated the potential of biochar to address the challenges in SSA. This paper seeks to identify and evaluate generic potential opportunities and constraints associated with biochar application in sub-Saharan Africa using Zimbabwe as case study. Specific objectives were to; (1) identify and quantify feedstocks for biochar production; (2) review literature on the biochar properties, and evaluate its potential applications in agriculture, environmental remediation and energy provision, and (3) identify research gaps, risks and constraints associated with biochar technology. Biochar feedstocks in Zimbabwe were estimated to be 9.9 Mton yr(-1), predominantly derived from manure (88%) and firewood (10%). This will yield 3.5, 1.7 and 3.1 Mton yr(-1) of biochar, bio-oil and synthetic gas, respectively. Land application of the 3.5 Mton yr(-1) of biochar (≈63% C) would sequester approximately 2.2 Mton yr(-1) of soil carbon in Zimbabwe alone, while simultaneously minimizing the environmental and public health risks, and greenhouse gas emissions associated with solid organic wastes. Biochar potentially enhances soil and crop productivity through enhanced nutrient and soil moisture availability, amelioration of acidic soils and stimulation of microbial diversity and activity. Due to its excellent adsorption properties, biochar has potential applications in industrial and environmental applications including water and wastewater treatment, remediation and revegetation of contaminated soils and water. Biochar products have energy values comparable or higher than those of traditional biomass fuels; thereby making them ideal alternative sources of energy especially for poor households without access to electricity. Before the benefits of biochar can be

  7. Constraint Based Modeling Going Multicellular.

    PubMed

    Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas

    2016-01-01

    Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches.

  8. Recent climate variability and its impacts on soybean yields in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Danielle Barros; Rao, V. Brahmananda

    2011-08-01

    Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean ( Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.

  9. A proof for loop-law constraints in stoichiometric metabolic networks

    PubMed Central

    2012-01-01

    Background Constraint-based modeling is increasingly employed for metabolic network analysis. Its underlying assumption is that natural metabolic phenotypes can be predicted by adding physicochemical constraints to remove unrealistic metabolic flux solutions. The loopless-COBRA approach provides an additional constraint that eliminates thermodynamically infeasible internal cycles (or loops) from the space of solutions. This allows the prediction of flux solutions that are more consistent with experimental data. However, it is not clear if this approach over-constrains the models by removing non-loop solutions as well. Results Here we apply Gordan’s theorem from linear algebra to prove for the first time that the constraints added in loopless-COBRA do not over-constrain the problem beyond the elimination of the loops themselves. Conclusions The loopless-COBRA constraints can be reliably applied. Furthermore, this proof may be adapted to evaluate the theoretical soundness for other methods in constraint-based modeling. PMID:23146116

  10. A heuristic constraint programmed planner for deep space exploration problems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao; Xu, Rui; Cui, Pingyuan

    2017-10-01

    In recent years, the increasing numbers of scientific payloads and growing constraints on the probe have made constraint processing technology a hotspot in the deep space planning field. In the procedure of planning, the ordering of variables and values plays a vital role. This paper we present two heuristic ordering methods for variables and values. On this basis a graphplan-like constraint-programmed planner is proposed. In the planner we convert the traditional constraint satisfaction problem to a time-tagged form with different levels. Inspired by the most constrained first principle in constraint satisfaction problem (CSP), the variable heuristic is designed by the number of unassigned variables in the constraint and the value heuristic is designed by the completion degree of the support set. The simulation experiments show that the planner proposed is effective and its performance is competitive with other kind of planners.

  11. Cosmic-Ray Nucleosynthesis of p-nuclei: Yields and Routes

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Mathews, Grant J.

    2018-02-01

    We investigate the cosmic-ray nucleosynthesis (CRN) of proton-rich stable nuclides (p-nuclides). We calculate the cosmic-ray (CR) energy spectra of heavy nuclides with mass number A=[74,209], taking into account the detailed nuclear spallation, decay, energy loss, and escape from the Galaxy during the CR propagation. We adopt the latest semiempirical formula SPACS for the spallation cross sections and the latest data on nuclear decay. Effective electron-capture decay rates are calculated using the proper cross sections for recombination and ionization in the whole CR energy region. Calculated CR spectral shapes vary for different nuclides. Abundances of proton-rich unstable nuclides increase in CRs with increasing energy relative to those of other nuclides. Yields of the primary and secondary spallation processes and differential yields from respective seed nuclides are calculated. We find that the CR energy region of ≤slant { \\mathcal O }(100) MeV/nucleon predominantly contributes to the total yields. The atomic cross sections in the low-energy range adopted in this study are then necessary. Effects of CRN on the Galactic chemical evolution of p-nuclides are calculated. Important seed nuclides are identified for respective p-nuclides. The contribution of CRN is significant for 180m Ta, accounting for about 20% of the solar abundance. About 87% of the 180m Ta CRN yield can be attributed to the primary process. The most important production routes are reactions of 181Ta, 180Hf, and 182W. CRN yields of other p-nuclides are typically about { \\mathcal O }(10‑4–10‑2) of solar abundances.

  12. Method and System for Air Traffic Rerouting for Airspace Constraint Resolution

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz (Inventor); Morando, Alexander R. (Inventor); Sheth, Kapil S. (Inventor); McNally, B. David (Inventor); Clymer, Alexis A. (Inventor); Shih, Fu-tai (Inventor)

    2017-01-01

    A dynamic constraint avoidance route system automatically analyzes routes of aircraft flying, or to be flown, in or near constraint regions and attempts to find more time and fuel efficient reroutes around current and predicted constraints. The dynamic constraint avoidance route system continuously analyzes all flight routes and provides reroute advisories that are dynamically updated in real time. The dynamic constraint avoidance route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  13. Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems

    NASA Astrophysics Data System (ADS)

    Everest, B.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.

    2016-11-01

    Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment. Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures and the consequent suppression of thermal activation.

  14. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  15. Systems with outer constraints. Gupta-Bleuler electromagnetism as an algebraic field theory

    NASA Astrophysics Data System (ADS)

    Grundling, Hendrik

    1988-03-01

    Since there are some important systems which have constraints not contained in their field algebras, we develop here in a C*-context the algebraic structures of these. The constraints are defined as a group G acting as outer automorphisms on the field algebra ℱ, α: G ↦ Aut ℱ, α G ⊄ Inn ℱ, and we find that the selection of G-invariant states on ℱ is the same as the selection of states ω on M( G M(Gmathop × limits_α F) ℱ) by ω( U g)=1∨ g∈ G, where U g ∈ M ( G M(Gmathop × limits_α F) ℱ)/ℱ are the canonical elements implementing α g . These states are taken as the physical states, and this specifies the resulting algebraic structure of the physics in M( G M(Gmathop × limits_α F) ℱ), and in particular the maximal constraint free physical algebra ℛ. A nontriviality condition is given for ℛ to exist, and we extend the notion of a crossed product to deal with a situation where G is not locally compact. This is necessary to deal with the field theoretical aspect of the constraints. Next the C*-algebra of the CCR is employed to define the abstract algebraic structure of Gupta-Bleuler electromagnetism in the present framework. The indefinite inner product representation structure is obtained, and this puts Gupta-Bleuler electromagnetism on a rigorous footing. Finally, as a bonus, we find that the algebraic structures just set up, provide a blueprint for constructive quadratic algebraic field theory.

  16. Mobility and Position Error Analysis of a Complex Planar Mechanism with Redundant Constraints

    NASA Astrophysics Data System (ADS)

    Sun, Qipeng; Li, Gangyan

    2018-03-01

    Nowadays mechanisms with redundant constraints have been created and attracted much attention for their merits. The mechanism of the redundant constraints in a mechanical system is analyzed in this paper. A analysis method of Planar Linkage with a repetitive structure is proposed to get the number and type of constraints. According to the difference of applications and constraint characteristics, the redundant constraints are divided into the theoretical planar redundant constraints and the space-planar redundant constraints. And the calculation formula for the number of redundant constraints and type of judging method are carried out. And a complex mechanism with redundant constraints is analyzed of the influence about redundant constraints on mechanical performance. With the combination of theoretical derivation and simulation research, a mechanism analysis method is put forward about the position error of complex mechanism with redundant constraints. It points out the direction on how to eliminate or reduce the influence of redundant constraints.

  17. Prominent Constraints Faced by Government Managers.

    DTIC Science & Technology

    1983-06-01

    A A t-32 412 PROMINENT CONSTRAINTS FACED BY GOVERNMENT MANAGERS (U) JUN 83NAVAL POSTGRADUATE SCHOOL MONTEREY CA R I NIEDERMULLER7N.LASSI FIED F/G ,5...STANDARS-963A- ’ I It I Uf NAVAL POSTGRADUATE SCHOOL Monterey, California co IA THESIS PROMINENT CONSTRAINTS FACED BY GOVERNMENT MANAGERS by Robert T...Government Managers June 1983 S. PERFORMING ORO. REPORT NUMsER 7. AUTNOR(s) .COtAC R03 GRANT NUNSER(W.) Robert T. Niedermuller I. PERPORMIXG OROANIZATIIOM

  18. UCMS - A new signal parameter measurement system using digital signal processing techniques. [User Constraint Measurement System

    NASA Technical Reports Server (NTRS)

    Choi, H. J.; Su, Y. T.

    1986-01-01

    The User Constraint Measurement System (UCMS) is a hardware/software package developed by NASA Goddard to measure the signal parameter constraints of the user transponder in the TDRSS environment by means of an all-digital signal sampling technique. An account is presently given of the features of UCMS design and of its performance capabilities and applications; attention is given to such important aspects of the system as RF interface parameter definitions, hardware minimization, the emphasis on offline software signal processing, and end-to-end link performance. Applications to the measurement of other signal parameters are also discussed.

  19. Constraints in cancer evolution.

    PubMed

    Venkatesan, Subramanian; Birkbak, Nicolai J; Swanton, Charles

    2017-02-08

    Next-generation deep genome sequencing has only recently allowed us to quantitatively dissect the extent of heterogeneity within a tumour, resolving patterns of cancer evolution. Intratumour heterogeneity and natural selection contribute to resistance to anticancer therapies in the advanced setting. Recent evidence has also revealed that cancer evolution might be constrained. In this review, we discuss the origins of intratumour heterogeneity and subsequently focus on constraints imposed upon cancer evolution. The presence of (1) parallel evolution, (2) convergent evolution and (3) the biological impact of acquiring mutations in specific orders suggest that cancer evolution may be exploitable. These constraints on cancer evolution may help us identify cancer evolutionary rule books, which could eventually inform both diagnostic and therapeutic approaches to improve survival outcomes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  20. Radiofrequency pulse design in parallel transmission under strict temperature constraints.

    PubMed

    Boulant, Nicolas; Massire, Aurélien; Amadon, Alexis; Vignaud, Alexandre

    2014-09-01

    To gain radiofrequency (RF) pulse performance by directly addressing the temperature constraints, as opposed to the specific absorption rate (SAR) constraints, in parallel transmission at ultra-high field. The magnitude least-squares RF pulse design problem under hard SAR constraints was solved repeatedly by using the virtual observation points and an active-set algorithm. The SAR constraints were updated at each iteration based on the result of a thermal simulation. The numerical study was performed for an SAR-demanding and simplified time of flight sequence using B1 and ΔB0 maps obtained in vivo on a human brain at 7T. The proposed adjustment of the SAR constraints combined with an active-set algorithm provided higher flexibility in RF pulse design within a reasonable time. The modifications of those constraints acted directly upon the thermal response as desired. Although further confidence in the thermal models is needed, this study shows that RF pulse design under strict temperature constraints is within reach, allowing better RF pulse performance and faster acquisitions at ultra-high fields at the cost of higher sequence complexity. Copyright © 2013 Wiley Periodicals, Inc.

  1. Blackleg (Leptosphaeria maculans) Severity and Yield Loss in Canola in Alberta, Canada

    PubMed Central

    Hwang, Sheau-Fang; Strelkov, Stephen E.; Peng, Gary; Ahmed, Hafiz; Zhou, Qixing; Turnbull, George

    2016-01-01

    Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L.) in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields. PMID:27447676

  2. Phenotypic plasticity of nest timing in a post-glacial landscape: how do reptiles adapt to seasonal time constraints?

    PubMed

    Edge, Christopher B; Rollinson, Njal; Brooks, Ronald J; Congdon, Justin D; Iverson, John B; Janzen, Fredric J; Litzgus, Jacqueline D

    2017-02-01

    Life histories evolve in response to constraints on the time available for growth and development. Nesting date and its plasticity in response to spring temperature may therefore be important components of fitness in oviparous ectotherms near their northern range limit, as reproducing early provides more time for embryos to complete development before winter. We used data collected over several decades to compare air temperature and nest date plasticity in populations of painted turtles and snapping turtles from a relatively warm environment (southeastern Michigan) near the southern extent of the last glacial maximum to a relatively cool environment (central Ontario) near the northern extent of post-glacial recolonization. For painted turtles, population-level differences in reaction norm elevation for two phenological traits were consistent with adaptation to time constraints, but no differences in reaction norm slopes were observed. For snapping turtle populations, the difference in reaction norm elevation for a single phenological trait was in the opposite direction of what was expected under adaptation to time constraints, and no difference in reaction norm slope was observed. Finally, among-individual variation in individual plasticity for nesting date was detected only in the northern population of snapping turtles, suggesting that reaction norms are less canalized in this northern population. Overall, we observed evidence of phenological adaptation, and possibly maladaptation, to time constraints in long-lived reptiles. Where present, (mal)adaptation occurred by virtue of differences in reaction norm elevation, not reaction norm slope. Glacial history, generation time, and genetic constraint may all play an important role in the evolution of phenological timing and its plasticity in long-lived reptiles. © 2016 by the Ecological Society of America.

  3. Predators modify biogeographic constraints on species distributions in an insect metacommunity.

    PubMed

    Grainger, Tess Nahanni; Germain, Rachel M; Jones, Natalie T; Gilbert, Benjamin

    2017-03-01

    Theory describing the positive effects of patch size and connectivity on diversity in fragmented systems has stimulated a large body of empirical work, yet predicting when and how local species interactions mediate these responses remains challenging. We used insects that specialize on milkweed plants as a model metacommunity to investigate how local predation alters the effects of biogeographic constraints on species distributions. Species-specific dispersal ability and susceptibility to predation were used to predict when patch size and connectivity should shape species distributions, and when these should be modified by local predator densities. We surveyed specialist herbivores and their predators in milkweed patches in two matrix types, a forest and an old field. Predator-resistant species showed the predicted direct positive effects of patch size and connectivity on occupancy rates. For predator-susceptible species, predators consistently altered the impact of biogeographic constraints, rather than acting independently. Finally, differences between matrix types in species' responses and overall occupancy rates indicate a potential role of the inter-patch environment in mediating the joint effects of predators and spatial drivers. Together, these results highlight the importance of local top-down pressure in mediating classic biogeographic relationships, and demonstrate how species-specific responses to local and regional constraints can be used to predict these effects. © 2017 by the Ecological Society of America.

  4. Effects of sling and voluntary constraint during constraint-induced movement therapy for the arm after stroke: a randomized, prospective, single-centre, blinded observer rated study.

    PubMed

    Krawczyk, Maciej; Sidaway, Marta; Radwanska, Anna; Zaborska, Joanna; Ujma, Renata; Czlonkowska, Anna

    2012-11-01

    To determine whether a combination of constraint-induced movement therapy and physiotherapy in stroke patients using different constraint regimens (sling versus voluntary constraint) changes or reduces motor deficits, the amount of functional use of the arm and whether the effects of treatment continue after 12 months. Forty-seven stroke patients were stratified and randomly divided into intensive physiotherapy programmes focused on regaining arm functions. Neurorehabilitation Unit of IInd Department of Neurology at Institute of Psychiatry and Neurology in Warsaw. Patients were randomly allocated to: the sling-constraint group (n = 24) or to the voluntary-constraint group (n = 23). Massed practice with the paretic arm (5 hours/day for 15 consecutive working days). Sling-constraint group had their arm immobilized in a hemi-sling during therapy. In addition, individual, 1-hour physiotherapy sessions were conducted in both groups. Rivermead Motor Assessment (RMA) Arm scale, (0-15), Motor Activity Log - Quality of Movement (MAL-QOM) (0-5 for 30 daily tasks). There was no significant difference between groups after therapy (MAL-QOM mean change for sling group 0.78, SD = 0.46 and for voluntary-constraint group 0.84, SD = 0.48; P = 0.687). All treated patients retained mean gains in real-world arm use (MAL-QOM) mean scores after 12 months follow-up compared with posttreatment values but there was no significant difference between groups (comparison of estimated mean change of MAL-QOM stated 0.23. 95% confidence interval = -0.04-0.50). Voluntary activity constraint in the intact arm is equivalent to sling, standard constraint during massed practice of paretic arm.

  5. Yield Advances in Peanut

    USDA-ARS?s Scientific Manuscript database

    Average yields of peanut in the U.S. set an all time record of 4,695 kg ha-1 in 2012. This far exceeded the previous record yield of 3,837 kg ha-1 in 2008. Favorable weather conditions undoubtedly contributed to the record yields in 2012; however, these record yields would not have been achievable...

  6. Constraints and spandrels of interareal connectomes

    PubMed Central

    Rubinov, Mikail

    2016-01-01

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls. PMID:27924867

  7. Constraints and spandrels of interareal connectomes.

    PubMed

    Rubinov, Mikail

    2016-12-07

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls.

  8. Propagating Resource Constraints Using Mutual Exclusion Reasoning

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Sanchez, Romeo; Do, Minh B.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    One of the most recent techniques for propagating resource constraints in Constraint Based scheduling is Energy Constraint. This technique focuses in precedence based scheduling, where precedence relations are taken into account rather than the absolute position of activities. Although, this particular technique proved to be efficient on discrete unary resources, it provides only loose bounds for jobs using discrete multi-capacity resources. In this paper we show how mutual exclusion reasoning can be used to propagate time bounds for activities using discrete resources. We show that our technique based on critical path analysis and mutex reasoning is just as effective on unary resources, and also shows that it is more effective on multi-capacity resources, through both examples and empirical study.

  9. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    With an increasing and increasingly affluent population, there has been tremendous effort to examine strategies for sustainably increasing agricultural production to meet this surging global demand. Before developing new solutions from scratch, though, we believe it is important to consult our recent agricultural history to see where and how agricultural production changes have already taken place. By utilizing the newly created temporal M3 cropland datasets, we can for the first time examine gridded agricultural yields and area, both spatially and temporally. This research explores the historical drivers of agricultural production changes, from 1965-2005. The results will be presented spatially at the global-level (5-min resolution), as well as at the individual country-level. The primary research components of this study are presented below, including the general methodology utilized in each phase and preliminary results for soybean where available. The complete assessment will cover maize, wheat, rice, soybean, and sugarcane, and will include country-specific analysis for over 200 countries, states, territories and protectorates. Phase 1: The first component of our research isolates changes in agricultural production due to variation in planting decisions (harvested area) from changes in production due to intensification efforts (yield). We examine area/yield changes at the pixel-level over 5-year time-steps to determine how much each component has contributed to overall changes in production. Our results include both spatial patterns of changes in production, as well as spatial maps illustrating to what degree the production change is attributed to area and/or yield. Together, these maps illustrate where, why, and by how much agricultural production has changed over time. Phase 2: In the second phase of our research we attempt to determine the impact that area and yield changes have had on agricultural production at the country-level. We calculate a production

  10. The Casalbuoni-Brink-Schwarz superparticle with covariant, reducible constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayi, O.F.

    1992-04-30

    This paper discusses the fermionic constraints of the massless Casalbuoni-Brink-Schwarz superparticle in d = 10 which are separated covariantly as first- and second-class constraints which are infinitely reducible. Although the reducibility conditions of the second-class constraints include the first-class ones a consistent quantization is possible. The ghost structure of the system for quantizing it in terms of the BFV-BRST methods is given and unitarity is shown.

  11. Models of Sector Flows Under Local, Regional and Airport Weather Constraints

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    2017-01-01

    Recently, the ATM community has made important progress in collaborative trajectory management through the introduction of a new FAA traffic management initiative called a Collaborative Trajectory Options Program (CTOP). FAA can use CTOPs to manage air traffic under multiple constraints (manifested as flow constrained areas or FCAs) in the system, and it allows flight operators to indicate their preferences for routing and delay options. CTOPs also permits better management of the overall trajectory of flights by considering both routing and departure delay options simultaneously. However, adoption of CTOPs in airspace has been hampered by many factors that include challenges in how to identify constrained areas and how to set rates for the FCAs. Decision support tools providing assistance would be particularly helpful in effective use of CTOPs. Such DSTs tools would need models of demand and capacity in the presence of multiple constraints. This study examines different approaches to using historical data to create and validate models of maximum flows in sectors and other airspace regions in the presence of multiple constraints. A challenge in creating an empirical model of flows under multiple constraints is a lack of sufficient historical data that captures diverse situations involving combinations of multiple constraints especially those with severe weather. The approach taken here to deal with this is two-fold. First, we create a generalized sector model encompassing multiple sectors rather than individual sectors in order to increase the amount of data used for creating the model by an order of magnitude. Secondly, we decompose the problem so that the amount of data needed is reduced. This involves creating a baseline demand model plus a separate weather constrained flow reduction model and then composing these into a single integrated model. A nominal demand model is a flow model (gdem) in the presence of clear local weather. This defines the flow as a

  12. Planck 2015 results: XIX. Constraints on primordial magnetic fields

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    In this paper, we compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that ismore » being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B 1 Mpc < 4.4 nG (where B 1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B 1 Mpc < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B 1 Mpc < 2.0 nG and B 1 Mpc < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B 1 Mpc < 2.8 nG. Additionally, a search for preferred directions in the magnetically-induced passive bispectrum yields B 1 Mpc < 4.5 nG, whereas the compensated-scalar bispectrum gives B 1 Mpc < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives

  13. Planck 2015 results. XIX. Constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chluba, J.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shiraishi, M.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B1 Mpc < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B1 Mpc < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B1 Mpc < 2.0 nG and B1 Mpc < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1 Mpc < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B1 Mpc < 4.5 nG, whereas the compensated-scalar bispectrum gives B1 Mpc < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B1 Mpc < 1380 nG. In our final analysis, we

  14. The Importance of Teaching: Pedagogical Constraints and Possibilities in Working-Class Schools

    ERIC Educational Resources Information Center

    Lupton, Ruth; Hempel-Jorgensen, Amelia

    2012-01-01

    This paper starts from the propositions that (a) pedagogy is central to the achievement of socially just education and (b) there are existing pedagogical approaches that can contribute to more socially just outcomes. Given the ostensible commitments of the current English Government to reducing educational inequality and to the importance of…

  15. Understanding the weather signal in national crop-yield variability

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  16. Teaching People to Manage Constraints: Effects on Creative Problem-Solving

    ERIC Educational Resources Information Center

    Peterson, David R.; Barrett, Jamie D.; Hester, Kimberly S.; Robledo, Issac C.; Hougen, Dean F.; Day, Eric A.; Mumford, Michael D.

    2013-01-01

    Constraints often inhibit creative problem-solving. This study examined the impact of training strategies for managing constraints on creative problem-solving. Undergraduates, 218 in all, were asked to work through 1 to 4 self-paced instructional programs focused on constraint management strategies. The quality, originality, and elegance of…

  17. Resolving mobility constraints impeding rural seniors' access to regionalized services.

    PubMed

    Ryser, Laura; Halseth, Greg

    2012-01-01

    Rural and small town places in developed economies are aging. While attention has been paid to the local transportation needs of rural seniors, fewer researchers have explored their regional transportation needs. This is important given policies that have reduced and regionalized many services and supports. This article explores mobility constraints impeding rural seniors' access to regionalized services using the example of northern British Columbia. Drawing upon several qualitative studies, we explore geographical, maintenance, organizational, communication, human resources, infrastructure, and financial constraints that affect seniors' regional mobility. Our findings indicate that greater coordination across multiple government agencies and jurisdictions is needed and more supportive policies and resources must be in place to facilitate a comprehensive regional transportation strategy. In addition to discussing the complexities of these geographies, the article identifies innovative solutions that have been deployed in northern British Columbia to support an aging population. This research provides a foundation for developing a comprehensive understanding of the key issues that need to be addressed to inform strategic investments in infrastructure and programs that support the regional mobility and, hence, healthy aging of rural seniors.

  18. Simultaneous multiple non-crossing quantile regression estimation using kernel constraints

    PubMed Central

    Liu, Yufeng; Wu, Yichao

    2011-01-01

    Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation. PMID:22190842

  19. Active Semi-Supervised Community Detection Based on Must-Link and Cannot-Link Constraints

    PubMed Central

    Cheng, Jianjun; Leng, Mingwei; Li, Longjie; Zhou, Hanhai; Chen, Xiaoyun

    2014-01-01

    Community structure detection is of great importance because it can help in discovering the relationship between the function and the topology structure of a network. Many community detection algorithms have been proposed, but how to incorporate the prior knowledge in the detection process remains a challenging problem. In this paper, we propose a semi-supervised community detection algorithm, which makes full utilization of the must-link and cannot-link constraints to guide the process of community detection and thereby extracts high-quality community structures from networks. To acquire the high-quality must-link and cannot-link constraints, we also propose a semi-supervised component generation algorithm based on active learning, which actively selects nodes with maximum utility for the proposed semi-supervised community detection algorithm step by step, and then generates the must-link and cannot-link constraints by accessing a noiseless oracle. Extensive experiments were carried out, and the experimental results show that the introduction of active learning into the problem of community detection makes a success. Our proposed method can extract high-quality community structures from networks, and significantly outperforms other comparison methods. PMID:25329660

  20. Simulation of corn yields and parameters uncertainties analysis in Hebei and Sichuang, China

    NASA Astrophysics Data System (ADS)

    Fu, A.; Xue, Y.; Hartman, M. D.; Chandran, A.; Qiu, B.; Liu, Y.

    2016-12-01

    Corn is one of most important agricultural production in China. Research on the impacts of climate change and human activities on corn yields is important in understanding and mitigating the negative effects of environmental factors on corn yields and maintaining the stable corn production. Using climatic data, including daily temperature, precipitation, and solar radiation from 1948 to 2010, soil properties, observed corn yields, and farmland management information, corn yields in Sichuang and Hebei Provinces of China in the past 63 years were simulated using the Daycent model, and the results was evaluated using Root mean square errors, bias, simulation efficiency, and standard deviation. The primary climatic factors influencing corn yields were examined, the uncertainties of climatic factors was analyzed, and the uncertainties of human activity parameters were also studied by changing fertilization levels and cultivated ways. The results showed that: (1) Daycent model is capable to simulate corn yields in Sichuang and Hebei provinces of China. Observed and simulated corn yields have the similar increasing trend with time. (2) The minimum daily temperature is the primary factor influencing corn yields in Sichuang. In Hebei Province, daily temperature, precipitation and wind speed significantly affect corn yields.(3) When the global warming trend of original data was removed, simulated corn yields were lower than before, decreased by about 687 kg/hm2 from 1992 to 2010; When the fertilization levels, cultivated ways were increased and decreased by 50% and 75%, respectively in the Schedule file in Daycent model, the simulated corn yields increased by 1206 kg/hm2 and 776 kg/hm2, respectively, with the enhancement of fertilization level and the improvement of cultivated way. This study provides a scientific base for selecting a suitable fertilization level and cultivated way in corn fields in China.

  1. Structural topology optimization with fuzzy constraint

    NASA Astrophysics Data System (ADS)

    Rosko, Peter

    2011-12-01

    The paper deals with the structural topology optimization with fuzzy constraint. The optimal topology of structure is defined as a material distribution problem. The objective is the weight of the structure. The multifrequency dynamic loading is considered. The optimal topology design of the structure has to eliminate the danger of the resonance vibration. The uncertainty of the loading is defined with help of fuzzy loading. Special fuzzy constraint is created from exciting frequencies. Presented study is applicable in engineering and civil engineering. Example demonstrates the presented theory.

  2. Space Shuttle capabilities, constraints, and cost

    NASA Technical Reports Server (NTRS)

    Lee, C. M.

    1980-01-01

    The capabilities, constraints, and costs of the Space Transportation System (STS), which combines reusable and expendable components, are reviewed, and an overview of the current planning activities for operating the STS in an efficient and cost-effective manner is presented. Traffic forecasts, performance constraints and enhancements, and potential new applications are discussed. Attention is given to operating costs, pricing policies, and the steps involved in 'getting on board', which includes all the interfaces between NASA and the users necessary to come to launch service agreements.

  3. Wildlife-friendly farming increases crop yield: evidence for ecological intensification.

    PubMed

    Pywell, Richard F; Heard, Matthew S; Woodcock, Ben A; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M

    2015-10-07

    Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50-60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained--and, indeed, enhanced for some crops--despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. © 2015 The Authors.

  4. Wildlife-friendly farming increases crop yield: evidence for ecological intensification

    PubMed Central

    Pywell, Richard F.; Heard, Matthew S.; Woodcock, Ben A.; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M.

    2015-01-01

    Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50–60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained—and, indeed, enhanced for some crops—despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. PMID:26423846

  5. Fast and Easy 3D Reconstruction with the Help of Geometric Constraints and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Annich, Afafe; El Abderrahmani, Abdellatif; Satori, Khalid

    2017-09-01

    The purpose of the work presented in this paper is to describe new method of 3D reconstruction from one or more uncalibrated images. This method is based on two important concepts: geometric constraints and genetic algorithms (GAs). At first, we are going to discuss the combination between bundle adjustment and GAs that we have proposed in order to improve 3D reconstruction efficiency and success. We used GAs in order to improve fitness quality of initial values that are used in the optimization problem. It will increase surely convergence rate. Extracted geometric constraints are used first to obtain an estimated value of focal length that helps us in the initialization step. Matching homologous points and constraints is used to estimate the 3D model. In fact, our new method gives us a lot of advantages: reducing the estimated parameter number in optimization step, decreasing used image number, winning time and stabilizing good quality of 3D results. At the end, without any prior information about our 3D scene, we obtain an accurate calibration of the cameras, and a realistic 3D model that strictly respects the geometric constraints defined before in an easy way. Various data and examples will be used to highlight the efficiency and competitiveness of our present approach.

  6. Optimal impulsive time-fixed orbital rendezvous and interception with path constraints

    NASA Technical Reports Server (NTRS)

    Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.

    1990-01-01

    Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.

  7. Relationships between surface solar radiation and wheat yield in Spain

    NASA Astrophysics Data System (ADS)

    Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepción

    2017-04-01

    Here we examine the role of solar radiation to describe wheat-yield variability in Spain. We used Partial Least Square regression to capture the modes of surface solar radiation that drive wheat-yield variability. We will show that surface solar radiation introduces the effects of teleconnection patterns on wheat yield and also it is associated with drought and diurnal temperature range. We highlight the importance of surface solar radiation to obtain models for wheat-yield projections because it could reduce uncertainty with respect to the projections based on temperatures and precipitation variables. In addition, the significance of the model based on surface solar radiation is greater than the previous one based on drought and diurnal temperature range (Hernandez-Barrera et al., 2016). According to our results, the increase of solar radiation over Spain for 21st century could force a wheat-yield decrease (Hernandez-Barrera et al., 2017). Hernandez-Barrera S., Rodríguez-Puebla C. and Challinor A.J. 2016 Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology. DOI: 10.1007/s00704-016-1779-9 Hernandez-Barrera S., Rodríguez-Puebla C. 2017 Wheat yield in Spain and associated solar radiation patterns. International Journal of Climatology. DOI: 10.1002/joc.4975

  8. Applying the theory of constraints in health care: Part 1--The philosophy.

    PubMed

    Breen, Anne M; Burton-Houle, Tracey; Aron, David C

    2002-01-01

    The imperative to improve both technical and service quality while simultaneously reducing costs is quite clear. The Theory of Constraints (TOC) is an emerging philosophy that rests on two assumptions: (1) systems thinking and (2) if a constraint "is anything that limits a system from achieving higher performance versus its goal," then every system must have at least one (and at most no more than a few) constraints or limiting factors. A constraint is neither good nor bad in itself. Rather, it just is. In fact, recognition of the existence of constraints represents an excellent opportunity for improvement because it allows one to focus ones efforts in the most productive area--identifying and managing the constraints. This is accomplished by using the five focusing steps of TOC: (1) identify the system's constraint; (2) decide how to exploit it; (3) subordinate/synchronize everything else to the above decisions; (4) elevate the system's constraint; and (5) if the constraint has shifted in the above steps, go back to step 1. Do not allow inertia to become the system's constraint. TOC also refers to a series of tools termed "thinking processes" and the sequence in which they are used.

  9. Constraints on scattering amplitudes in multistate Landau-Zener theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsyn, Nikolai A.; Lin, Jeffmin; Chernyak, Vladimir Y.

    2017-01-30

    Here, we derive a set of constraints, which we will call hierarchy constraints, on scattering amplitudes of an arbitrary multistate Landau-Zener model (MLZM). The presence of additional symmetries can transform such constraints into nontrivial relations between elements of the transition probability matrix. This observation can be used to derive complete solutions of some MLZMs or, for models that cannot be solved completely, to reduce the number of independent elements of the transition probability matrix.

  10. Constraints on scattering amplitudes in multistate Landau-Zener theory

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.; Lin, Jeffmin; Chernyak, Vladimir Y.

    2017-01-01

    We derive a set of constraints, which we will call hierarchy constraints, on scattering amplitudes of an arbitrary multistate Landau-Zener model (MLZM). The presence of additional symmetries can transform such constraints into nontrivial relations between elements of the transition probability matrix. This observation can be used to derive complete solutions of some MLZMs or, for models that cannot be solved completely, to reduce the number of independent elements of the transition probability matrix.

  11. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    NASA Astrophysics Data System (ADS)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  12. The Effects of Constraints and Mastery on Mental and Physical Health: Conceptual and Methodological Considerations

    PubMed Central

    Infurna, Frank J.; Mayer, Axel

    2015-01-01

    Perceived control and health are closely interrelated in adulthood and old age. However, less is known regarding the differential implications of two facets of perceived control, constraints and mastery, for mental and physical health. Furthermore, a limitation of previous research testing the pathways linking perceived control to mental and physical health is that mediation was tested with cross-sectional designs and not in a longitudinal mediation design that accounts for temporal ordering and prior confounds. Using data from the Health and Retirement Study (HRS; n = 7,612, M age = 68, SD = 10.66; 59% women) we examined the effect of constraints and mastery on 4-year changes in mental and physical health and whether physical activity mediated such effects in a longitudinal mediation design. Using confirmatory factor analysis, we modeled the two-factor structure of perceived control that consisted of constraints and mastery. In our longitudinal mediation model, where we accounted for possible confounders (e.g., age, gender, education, neuroticism, conscientiousness, memory, and health conditions), constraints showed a stronger total effect on mental and physical health, than mastery, such that more constraints were associated with 4-year declines in mental and physical health. Physical activity did not mediate the effect of constraints and mastery on mental and physical health (indirect effect). In order to demonstrate the importance of a longitudinal mediation model that accounts for confounders, we also estimated the mediated effect using two models commonly used in the literature: cross-sectional mediation model and longitudinal mediation model without accounting for confounders. These mediation models indicated a spurious indirect effect that cannot be causally interpreted. Our results showcase that constraints and mastery have differential implications for mental and physical health, as well as how a longitudinal mediation design can illustrate (or not

  13. The effects of constraints and mastery on mental and physical health: Conceptual and methodological considerations.

    PubMed

    Infurna, Frank J; Mayer, Axel

    2015-06-01

    Perceived control and health are closely interrelated in adulthood and old age. However, less is known regarding the differential implications of 2 facets of perceived control, constraints and mastery, for mental and physical health. Furthermore, a limitation of previous research testing the pathways linking perceived control to mental and physical health is that mediation was tested with cross-sectional designs and not in a longitudinal mediation design that accounts for temporal ordering and prior confounds. Using data from the Health and Retirement Study (HRS; n = 7,612, M age = 68, SD = 10.66; 59% women) we examined the effect of constraints and mastery on 4-year changes in mental and physical health and whether physical activity mediated such effects in a longitudinal mediation design. Using confirmatory factor analysis, we modeled the 2-factor structure of perceived control that consisted of constraints and mastery. In our longitudinal mediation model, where we accounted for possible confounders (e.g., age, gender, education, neuroticism, conscientiousness, memory, and health conditions), constraints showed a stronger total effect on mental and physical health, than mastery, such that more constraints were associated with 4-year declines in mental and physical health. Physical activity did not mediate the effect of constraints and mastery on mental and physical health (indirect effect). To demonstrate the importance of a longitudinal mediation model that accounts for confounders, we also estimated the mediated effect using 2 models commonly used in the literature: cross-sectional mediation model and longitudinal mediation model without accounting for confounders. These mediation models indicated a spurious indirect effect that cannot be causally interpreted. Our results showcase that constraints and mastery have differential implications for mental and physical health, as well as how a longitudinal mediation design can illustrate (or not) pathways in

  14. Multi-scale image segmentation method with visual saliency constraints and its application

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works

  15. Phase equilibrium constraints on angrite petrogenesis

    NASA Astrophysics Data System (ADS)

    Longhi, John

    1999-02-01

    crystallize had much lower Al content than that of ADOR. In the late stages of crystallization the 86010 residual liquid (and that of LEW87051) encountered the low Mg' set of equilibria involving kirschsteinite. These relationships require either a higher degree of melting for the 86010 parent magma or source region different than ADOR's. These relationships are also consistent with compositionally dependent REE partition coefficients between fassaite and the ADOR liquid being as much as 1.5-2 times higher than those for the 86010 liquid at the onset of pyroxene crystallization. The combination of a trapped liquid component, higher partition coefficients, and smaller degrees of melting help to explain the observation that ADOR, an apparent cumulate, has REE concentrations twice as high as those in 86010 (Mittlefehdlt and Lindstrom, 1990), an apparent chilled liquid. The absence of a strong negative Eu-anomaly in the ADOR parent liquid, however, requires relatively high degrees of partial melting to eliminate plagioclase in the source region (resorption of plagioclase at the peritectic eliminates the Eu-anomaly that develops during crystallization), so ultimately different source regions are required. Progressive iron loss from devolatilized primitive chondrites (Allende, Murchison) produces source regions capable of producing a wide range of melt compositions with angritic to eucritic crystallization behavior. The compositions of carbonaceous and ordinary chondrite provide a similar range of potential source region compositions. However, primitive chondrite(±Fe) source regions that produce angrite-like melts have Mg' that is too low, whereas chondrite(±Fe) sources that have Mg' sufficiently high to yield the Mg' in angrite minerals have too much silica (or orthopyroxene) component to yield angrite-like liquids. No single group of meteorites ± Fe simultaneously satisfies the constraints of Mg' and silica component. However, mixtures of Fe-depleted chondrite plus a low

  16. Infinite horizon problems on stratifiable state-constraints sets

    NASA Astrophysics Data System (ADS)

    Hermosilla, C.; Zidani, H.

    2015-02-01

    This paper deals with a state-constrained control problem. It is well known that, unless some compatibility condition between constraints and dynamics holds, the Value Function has not enough regularity, or can fail to be the unique constrained viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. Here, we consider the case of a set of constraints having a stratified structure. Under this circumstance, the interior of this set may be empty or disconnected, and the admissible trajectories may have the only option to stay on the boundary without possible approximation in the interior of the constraints. In such situations, the classical pointing qualification hypothesis is not relevant. The discontinuous Value Function is then characterized by means of a system of HJB equations on each stratum that composes the state-constraints. This result is obtained under a local controllability assumption which is required only on the strata where some chattering phenomena could occur.

  17. Analysis of Space Tourism Constraints

    NASA Astrophysics Data System (ADS)

    Bonnal, Christophe

    2002-01-01

    Space tourism appears today as a new Eldorado in a relatively near future. Private operators are already proposing services for leisure trips in Low Earth Orbit, and some happy few even tested them. But are these exceptional events really marking the dawn of a new space age ? The constraints associated to the space tourism are severe : - the economical balance of space tourism is tricky; development costs of large manned - the technical definition of such large vehicles is challenging, mainly when considering - the physiological aptitude of passengers will have a major impact on the mission - the orbital environment will also lead to mission constraints on aspects such as radiation, However, these constraints never appear as show-stoppers and have to be dealt with pragmatically: - what are the recommendations one can make for future research in the field of space - which typical roadmap shall one consider to develop realistically this new market ? - what are the synergies with the conventional missions and with the existing infrastructure, - how can a phased development start soon ? The paper proposes hints aiming at improving the credibility of Space Tourism and describes the orientations to follow in order to solve the major hurdles found in such an exciting development.

  18. Reconciling Scientific Aspirations and Engineering Constraints for a Lunar Mission via Hyperdimensional Interpolation

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.; Clark, Pamela; Elfes, Alberto; Smith, Jeffrey H.; Mrozinski, Joseph; Adumitroaie, Virgil; Hua, Hook; Shelton, Kacie; Lincoln, William; Silberg, Robert

    2010-01-01

    technology-improvement investments would be likely to produce the largest or most important return. However, the number of variations that need to be considered for such analysis quickly balloons to an unwieldy size. If three variations are considered for each of six constraints-a very modest example-there are a total of 243 variations to consider. If it takes 40 minutes to compute each variation, as it does with HURON, our automated optimization system, then it would take 162 hours or nearly 7 days of round-the-clock computing to calculate the results. Adding further constraints or variations exponentially increases the amount of time that is needed.

  19. Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations

    PubMed Central

    König, Gerhard; Brooks, Bernard R.

    2014-01-01

    Background Free energy simulations are an important tool in the arsenal of computational biophysics, allowing the calculation of thermodynamic properties of binding or enzymatic reactions. This paper introduces methods to increase the accuracy and precision of free energy calculations by calculating the free energy costs of constraints during post-processing. The primary purpose of employing constraints for these free energy methods is to increase the phase space overlap between ensembles, which is required for accuracy and convergence. Methods The free energy costs of applying or removing constraints are calculated as additional explicit steps in the free energy cycle. The new techniques focus on hard degrees of freedom and use both gradients and Hessian estimation. Enthalpy, vibrational entropy, and Jacobian free energy terms are considered. Results We demonstrate the utility of this method with simple classical systems involving harmonic and anharmonic oscillators, four-atomic benchmark systems, an alchemical mutation of ethane to methanol, and free energy simulations between alanine and serine. The errors for the analytical test cases are all below 0.0007 kcal/mol, and the accuracy of the free energy results of ethane to methanol is improved from 0.15 to 0.04 kcal/mol. For the alanine to serine case, the phase space overlaps of the unconstrained simulations range between 0.15 and 0.9%. The introduction of constraints increases the overlap up to 2.05%. On average, the overlap increases by 94% relative to the unconstrained value and precision is doubled. Conclusions The approach reduces errors arising from constraints by about an order of magnitude. Free energy simulations benefit from the use of constraints through enhanced convergence and higher precision. General Significance The primary utility of this approach is to calculate free energies for systems with disparate energy surfaces and bonded terms, especially in multi-scale molecular mechanics

  20. 3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Fenster, Aaron

    2016-03-01

    We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.