Sample records for yield improved performance

  1. Improving yield and performance in ZnO thin-film transistors made using selective area deposition.

    PubMed

    Nelson, Shelby F; Ellinger, Carolyn R; Levy, David H

    2015-02-04

    We describe improvements in both yield and performance for thin-film transistors (TFTs) fabricated by spatial atomic layer deposition (SALD). These improvements are shown to be critical in forming high-quality devices using selective area deposition (SAD) as the patterning method. Selective area deposition occurs when the precursors for the deposition are prevented from reacting with some areas of the substrate surface. Controlling individual layer quality and the interfaces between layers is essential for obtaining good-quality thin-film transistors and capacitors. The integrity of the gate insulator layer is particularly critical, and we describe a method for forming a multilayer dielectric using an oxygen plasma treatment between layers that improves crossover yield. We also describe a method to achieve improved mobility at the important interface between the semiconductor and the gate insulator by, conversely, avoiding oxygen plasma treatment. Integration of the best designs results in wide design flexibility, transistors with mobility above 15 cm(2)/(V s), and good yield of circuits.

  2. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    PubMed

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more

  3. Improving the yield from fermentative hydrogen production.

    PubMed

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  4. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    DOE PAGES

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  5. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids

    PubMed Central

    2014-01-01

    Background Genetic improvement of shrub willow (Salix), a perennial energy crop common to temperate climates, has led to the development of new cultivars with improved biomass yield, pest and disease resistance, and biomass composition suitable for bioenergy applications. These improvements have largely been associated with species hybridization, yet little is known about the genetic mechanisms responsible for improved yield and performance of certain willow species hybrids. Results The top performing genotypes in this study, representing advanced pedigrees compared with those in previous studies, were mostly triploid in nature and outperformed current commercial cultivars. Of the genotypes studied, the diploids had the lowest mean yield of 8.29 oven dry Mg ha−1 yr−1, while triploids yielded 12.65 Mg ha−1 yr−1, with the top five producing over 16 Mg ha−1 yr−1. Triploids had high stem area and height across all three years of growth in addition to greatest specific gravity. The lowest specific gravity was observed among the tetraploid genotypes. Height was the early trait most correlated with and the best predictor of third-year yield. Conclusions These results establish a paradigm for future breeding and improvement of Salix bioenergy crops based on the development of triploid species hybrids. Stem height and total stem area are effective traits for early prediction of relative yield performance. PMID:24661804

  6. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.

    PubMed

    Messina, Carlos D; Podlich, Dean; Dong, Zhanshan; Samples, Mitch; Cooper, Mark

    2011-01-01

    The effectiveness of breeding strategies to increase drought resistance in crops could be increased further if some of the complexities in gene-to-phenotype (G → P) relations associated with epistasis, pleiotropy, and genotype-by-environment interactions could be captured in realistic G → P models, and represented in a quantitative manner useful for selection. This paper outlines a promising methodology. First, the concept of landscapes was extended from the study of fitness landscapes used in evolutionary genetics to the characterization of yield-trait-performance landscapes for agricultural environments and applications in plant breeding. Second, the E(NK) model of trait genetic architecture was extended to incorporate biophysical, physiological, and statistical components. Third, a graphical representation is proposed to visualize the yield-trait performance landscape concept for use in selection decisions. The methodology was demonstrated at a particular stage of a maize breeding programme with the objective of improving the drought tolerance of maize hybrids for the US Western Corn-Belt. The application of the framework to the genetic improvement of drought tolerance in maize supported selection of Doubled Haploid (DH) lines with improved levels of drought tolerance based on physiological genetic knowledge, prediction of test-cross yield within the target population of environments, and their predicted potential to sustain further genetic progress with additional cycles of selection. The existence of rugged yield-performance landscapes with multiple peaks and intervening valleys of lower performance, as shown in this study, supports the proposition that phenotyping strategies, and the directions emphasized in genomic selection can be improved by creating knowledge of the topology of yield-trait performance landscapes.

  7. Improved yields for MOST’s using ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockman, H. E.

    1976-04-01

    Conventionally diffused source and drain polysilicon gate MOST's commonly exhibit one type of fault, namely, that of polysilicon-to-diffusion short circuits. Investigations into the yields of large-area devices fabricated using ion-implanted sources and drains are compared with those of diffused structures. An improved technology for the chemical shaping of the polysilicon gates, which improves the yields for both types of devices, is also described. (AIP)

  8. Yield performance and stability of CMS-based triticale hybrids.

    PubMed

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  9. Strategy for continuous improvement in IC manufacturability, yield, and reliability

    NASA Astrophysics Data System (ADS)

    Dreier, Dean J.; Berry, Mark; Schani, Phil; Phillips, Michael; Steinberg, Joe; DePinto, Gary

    1993-01-01

    Continual improvements in yield, reliability and manufacturability measure a fab and ultimately result in Total Customer Satisfaction. A new organizational and technical methodology for continuous defect reduction has been established in a formal feedback loop, which relies on yield and reliability, failed bit map analysis, analytical tools, inline monitoring, cross functional teams and a defect engineering group. The strategy requires the fastest detection, identification and implementation of possible corrective actions. Feedback cycle time is minimized at all points to improve yield and reliability and reduce costs, essential for competitiveness in the memory business. Payoff was a 9.4X reduction in defectivity and a 6.2X improvement in reliability of 256 K fast SRAMs over 20 months.

  10. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater

  11. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    PubMed Central

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  12. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    PubMed

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha -1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  13. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  14. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  15. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  16. Improving creativity performance by short-term meditation.

    PubMed

    Ding, Xiaoqian; Tang, Yi-Yuan; Tang, Rongxiang; Posner, Michael I

    2014-03-19

    One form of meditation intervention, the integrative body-mind training (IBMT) has been shown to improve attention, reduce stress and change self-reports of mood. In this paper we examine whether short-term IBMT can improve performance related to creativity and determine the role that mood may play in such improvement. Forty Chinese undergraduates were randomly assigned to short-term IBMT group or a relaxation training (RT) control group. Mood and creativity performance were assessed by the Positive and Negative Affect Schedule (PANAS) and Torrance Tests of Creative Thinking (TTCT) questionnaire respectively. As predicted, the results indicated that short-term (30 min per day for 7 days) IBMT improved creativity performance on the divergent thinking task, and yielded better emotional regulation than RT. In addition, cross-lagged analysis indicated that both positive and negative affect may influence creativity in IBMT group (not RT group). Our results suggested that emotion-related creativity-promoting mechanism may be attributed to short-term meditation.

  17. Perceptual training yields rapid improvements in visually impaired youth.

    PubMed

    Nyquist, Jeffrey B; Lappin, Joseph S; Zhang, Ruyuan; Tadin, Duje

    2016-11-30

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events.

  18. Perceptual training yields rapid improvements in visually impaired youth

    PubMed Central

    Nyquist, Jeffrey B.; Lappin, Joseph S.; Zhang, Ruyuan; Tadin, Duje

    2016-01-01

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events. PMID:27901026

  19. PAY1 improves plant architecture and enhances grain yield in rice.

    PubMed

    Zhao, Lei; Tan, Lubin; Zhu, Zuofeng; Xiao, Langtao; Xie, Daoxin; Sun, Chuanqing

    2015-08-01

    Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over-expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole-3-acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker-assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high-yielding rice varieties. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  20. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection.

    PubMed

    Rapp, M; Lein, V; Lacoudre, F; Lafferty, J; Müller, E; Vida, G; Bozhanova, V; Ibraliu, A; Thorwarth, P; Piepho, H P; Leiser, W L; Würschum, T; Longin, C F H

    2018-06-01

    Simultaneous improvement of protein content and grain yield by index selection is possible but its efficiency largely depends on the weighting of the single traits. The genetic architecture of these indices is similar to that of the primary traits. Grain yield and protein content are of major importance in durum wheat breeding, but their negative correlation has hampered their simultaneous improvement. To account for this in wheat breeding, the grain protein deviation (GPD) and the protein yield were proposed as targets for selection. The aim of this work was to investigate the potential of different indices to simultaneously improve grain yield and protein content in durum wheat and to evaluate their genetic architecture towards genomics-assisted breeding. To this end, we investigated two different durum wheat panels comprising 159 and 189 genotypes, which were tested in multiple field locations across Europe and genotyped by a genotyping-by-sequencing approach. The phenotypic analyses revealed significant genetic variances for all traits and heritabilities of the phenotypic indices that were in a similar range as those of grain yield and protein content. The GPD showed a high and positive correlation with protein content, whereas protein yield was highly and positively correlated with grain yield. Thus, selecting for a high GPD would mainly increase the protein content whereas a selection based on protein yield would mainly improve grain yield, but a combination of both indices allows to balance this selection. The genome-wide association mapping revealed a complex genetic architecture for all traits with most QTL having small effects and being detected only in one germplasm set, thus limiting the potential of marker-assisted selection for trait improvement. By contrast, genome-wide prediction appeared promising but its performance strongly depends on the relatedness between training and prediction sets.

  1. Sodium bisulfite improves rhizome yield and quality in Paris polyphylla.

    PubMed

    Yu, Kun; Wang, Yan; Wei, Jian-Rong; Ma, Qing; Wang, Bu-Qiong; Yang, Chang-Hong; Wang, Ming-Hui; Yu, Dan; Li, Jia-Ru

    2010-03-01

    Rhizomes of the perennial herb Paris polyphylla have been used in traditional Chinese medicine for hundreds of years. Agricultural production of the rhizomes requires 7-10 years, which is too long to meet the demand of the medicinal industry. Therefore, studies on improving the yield of the herb and shortening the culturing period are imperative. The present work aimed to investigate the effect of sodium bisulfite (NaHSO (3)) on rhizome yield and quality, as well as some related metabolic features of P. polyphylla. The rhizome yield was improved by NaHSO (3) treatment in long-term experiments conducted during 2006 and 2007, with 2 mM NaHSO (3) giving the highest yield. HPLC analysis revealed that NaHSO (3) treatment increased the total saponin content (49 %), including three pennogenin glycosides and two diosgenin glycosides. In a short-term experiment, NaHSO (3) treatment resulted in an enhanced net photosynthetic rate (Pn) for about 4 days without significant changes in the chlorophyll or carotenoid content. The total soluble sugars and sucrose contents in the leaves also significantly increased after 2 mM NaHSO (3) treatment, whereas the starch content changed only slightly. The activities of the enzymes involved in ammonium assimilation (glutamine synthetase [GS] and glutamate dehydrogenase [GDH]) were not significantly influenced. In a long-term experiment, chlorophylls and carotenoids were not significantly affected, and neither was the starch content in leaves, but the total soluble sugars and sucrose contents in leaves increased significantly. The NaHSO (3) treatment significantly increased GS and GDH activities. These results indicate that NaHSO (3) treatment improved the rhizome yield in P. polyphylla, not only through enhancement of Pn but also by improving carbohydrate accumulation and ammonium assimilation. The increased saponin content after NaHSO (3) treatment was indicative of high rhizome quality. (c) Georg Thieme Verlag KG Stuttgart . New York.

  2. Reed canarygrass yield improvement

    USDA-ARS?s Scientific Manuscript database

    Reed canarygrass is well adapted to the northern USA. Eight cultivars and 72 accessions collected in rural landscapes from Iowa to New Hampshire were evaluated for yield. Accessions produced on average 7% higher biomass yield compared to existing cultivars. Naturalized populations of reed canarygras...

  3. Improving creativity performance by short-term meditation

    PubMed Central

    2014-01-01

    Background One form of meditation intervention, the integrative body-mind training (IBMT) has been shown to improve attention, reduce stress and change self-reports of mood. In this paper we examine whether short-term IBMT can improve performance related to creativity and determine the role that mood may play in such improvement. Methods Forty Chinese undergraduates were randomly assigned to short-term IBMT group or a relaxation training (RT) control group. Mood and creativity performance were assessed by the Positive and Negative Affect Schedule (PANAS) and Torrance Tests of Creative Thinking (TTCT) questionnaire respectively. Results As predicted, the results indicated that short-term (30 min per day for 7 days) IBMT improved creativity performance on the divergent thinking task, and yielded better emotional regulation than RT. In addition, cross-lagged analysis indicated that both positive and negative affect may influence creativity in IBMT group (not RT group). Conclusions Our results suggested that emotion-related creativity-promoting mechanism may be attributed to short-term meditation. PMID:24645871

  4. Spectral reflectance indices as a selection criterion for yield improvement in wheat

    NASA Astrophysics Data System (ADS)

    Babar, Md. Ali

    2005-11-01

    Scope and methods of study. Yield in wheat ( Triticum aestivum L.) is a complex trait and influenced by many environmental factors, and yield improvement is a daunting task for wheat breeders. Spectral reflectance indices (SRIs) have been used to study different physiological traits in wheat. SRIs have the potential to differentiate genotypes for grain yield. SRIs strongly associated with grain yield can be used to achieve effective genetic gain in wheat under different environments. Three experiments (15 adapted genotypes, 25 and 36 random sister lines derived from two different crosses) under irrigated conditions, and three experiments (each with 30 advanced genotypes) under water-limited conditions were conducted in three successive years in Northwest Mexico at the CIMMYT (International Maize and wheat Improvement Center) experimental station. SRIs and different agronomic data were collected for three years, and biomass was harvested for two years. Phenotypic and genetic correlations between SRIs and grain yield, between SRIs and biomass, realized and broad sense heritability, direct and correlated selection responses for grain yield, and SRIs were calculated. Findings and conclusion. Seven SRIs were calculated, and three near infrared based indices (WI, NWI-1 and NWI-2) showed higher level of genetic and phenotypic correlations with grain yield, yield components and biomass than other SRIs (PRI, RNDVI, GNDVI, and SR) under both irrigated and water limiting environments. Moderate to high realized and broad sense heritability, and selection response were demonstrated by the three NIR based indices. High efficiency of correlated response for yield estimation was demonstrated by the three NIR based indices. The ratio between the correlated response to grain yield based on the three NIR based indices and direct selection response for grain yield was very close to one. The NIR based indices showed very high accuracy in selecting superior genotypes for grain yield

  5. Improving yield of PZT piezoelectric devices on glass substrates

    NASA Astrophysics Data System (ADS)

    Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan

    2012-10-01

    The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be < 90%. For this work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.

  6. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    PubMed

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  7. N fertilization for improved forage yields has little impact on nutritive value

    USDA-ARS?s Scientific Manuscript database

    Applications of soil amendments or fertilizers containing nitrogen are a routine part of most grass forage management strategies, with the primary goal of improving forage yields. But an increase in yield is usually accompanied by a decrease in nutritive value. In order to better evaluate this trade...

  8. Improving the Yield and Nutritional Quality of Forage Crops

    PubMed Central

    Capstaff, Nicola M.; Miller, Anthony J.

    2018-01-01

    Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability. PMID:29740468

  9. Spectrally-Based Assessment of Crop Seasonal Performance and Yield

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Borisova, Denitsa; Georgiev, Georgy

    The rapid advances of space technologies concern almost all scientific areas from aeronautics to medicine, and a wide range of application fields from communications to crop yield predictions. Agricultural monitoring is among the priorities of remote sensing observations for getting timely information on crop development. Monitoring agricultural fields during the growing season plays an important role in crop health assessment and stress detection provided that reliable data is obtained. Successfully spreading is the implementation of hyperspectral data to precision farming associated with plant growth and phenology monitoring, physiological state assessment, and yield prediction. In this paper, we investigated various spectral-biophysical relationships derived from in-situ reflectance measurements. The performance of spectral data for the assessment of agricultural crops condition and yield prediction was examined. The approach comprisesd development of regression models between plant spectral and state-indicative variables such as biomass, vegetation cover fraction, leaf area index, etc., and development of yield forecasting models from single-date (growth stage) and multitemporal (seasonal) reflectance data. Verification of spectral predictions was performed through comparison with estimations from biophysical relationships between crop growth variables. The study was carried out for spring barley and winter wheat. Visible and near-infrared reflectance data was acquired through the whole growing season accompanied by detailed datasets on plant phenology and canopy structural and biochemical attributes. Empirical relationships were derived relating crop agronomic variables and yield to various spectral predictors. The study findings were tested using airborne remote sensing inputs. A good correspondence was found between predicted and actual (ground-truth) estimates

  10. Comparative analysis of maize (Zea mays) crop performance: natural variation, incremental improvements and economic impacts.

    PubMed

    Leibman, Mark; Shryock, Jereme J; Clements, Michael J; Hall, Michael A; Loida, Paul J; McClerren, Amanda L; McKiness, Zoe P; Phillips, Jonathan R; Rice, Elena A; Stark, Steven B

    2014-09-01

    Grain yield from maize hybrids continues to improve through advances in breeding and biotechnology. Despite genetic improvements to hybrid maize, grain yield from distinct maize hybrids is expected to vary across growing locations due to numerous environmental factors. In this study, we examine across-location variation in grain yield among maize hybrids in three case studies. The three case studies examine hybrid improvement through breeding, introduction of an insect protection trait or introduction of a transcription factor trait associated with increased yield. In all cases, grain yield from each hybrid population had a Gaussian distribution. Across-location distributions of grain yield from each hybrid partially overlapped. The hybrid with a higher mean grain yield typically outperformed its comparator at most, but not all, of the growing locations (a 'win rate'). These results suggest that a broad set of environmental factors similarly impacts grain yields from both conventional- and biotechnology-derived maize hybrids and that grain yields among two or more hybrids should be compared with consideration given to both mean yield performance and the frequency of locations at which each hybrid 'wins' against its comparators. From an economic standpoint, growers recognize the value of genetically improved maize hybrids that outperform comparators in the majority of locations. Grower adoption of improved maize hybrids drives increases in average U.S. maize grain yields and contributes significant value to the economy. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. The uncertainty of crop yield projections is reduced by improved temperature response functions.

    PubMed

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold

    2017-07-17

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  12. The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions

    NASA Technical Reports Server (NTRS)

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.; hide

    2017-01-01

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  13. SMIF capability at Intel Mask Operation improves yield

    NASA Astrophysics Data System (ADS)

    Dam, Thuc H.; Pekny, Matt; Millino, Jim; Luu, Gibson; Melwani, Nitesh; Venkatramani, Aparna; Tavassoli, Malahat

    2003-08-01

    At Intel Mask Operations (IMO), Standard Mechanical Interface (SMIF) processing has been employed to reduce environmental particle contamination from manual handling-related activities. SMIF handling entailed the utilization of automated robotic transfers of photoblanks/reticles between SMIF pods, whereas conventional handling utilized manual pick transfers of masks between SMIF pods with intermediate storage in Toppan compacts. The SMIF-enabling units in IMO's process line included: (1) coater, (2) exposure, (3) developer, (4) dry etcher, and (5) inspection. Each unit is equipped with automated I/O port, environmentally enclosed processing chamber, and SMIF pods. Yield metrics were utilized to demonstrate the effectiveness and advantages of SMIF processing compared to manual processing. The areas focused in this paper were blank resist coating, binary front-end reticle processing and 2nd level PSM reticle processing. Results obtained from the investigation showed yield improvements in these areas.

  14. Growing-finishing performance and carcass yield of pigs reared in a climate-controlled and uncontrolled environment

    NASA Astrophysics Data System (ADS)

    Berton, Mariana Piatto; de Cássia Dourado, Rita; de Lima, Flávia Biondi Fernandes; Rodrigues, Ana Beatriz Bertoncello; Ferrari, Fábio Borba; do Carmo Vieira, Leonardo Dimas; de Souza, Pedro Alves; Borba, Hirasilva

    2015-08-01

    The objective of this study was to evaluate the effect of temperature on the performance and carcass yield of pigs housed in different environments. Twenty castrated male pigs of the Topigs line were assigned to two treatments: T1, controlled environment, and T2, uncontrolled environment containing a shallow pool. A completely randomized design consisting of two treatments and ten repetitions each was used. The data were submitted to analysis of variance, and means were compared by the Tukey test at a level of significance of 5 % using the SAS 9.2 program (SAS Institute, Inc., NC, USA). The results showed that rearing pigs in an uncontrolled environment during the growing and finishing phases reduced daily feed intake (1.722 and 3.164 kg, respectively) and improved feed conversion (2.15 and 2.70 kg, respectively), but did not influence the carcass yield of the animals. In conclusion, rearing pigs under different environmental conditions during the growing and finishing phases influenced animal performance without interfering with carcass yield.

  15. Growing-finishing performance and carcass yield of pigs reared in a climate-controlled and uncontrolled environment.

    PubMed

    Berton, Mariana Piatto; de Cássia Dourado, Rita; de Lima, Flávia Biondi Fernandes; Rodrigues, Ana Beatriz Bertoncello; Ferrari, Fábio Borba; do Carmo Vieira, Leonardo Dimas; de Souza, Pedro Alves; Borba, Hirasilva

    2015-08-01

    The objective of this study was to evaluate the effect of temperature on the performance and carcass yield of pigs housed in different environments. Twenty castrated male pigs of the Topigs line were assigned to two treatments: T1, controlled environment, and T2, uncontrolled environment containing a shallow pool. A completely randomized design consisting of two treatments and ten repetitions each was used. The data were submitted to analysis of variance, and means were compared by the Tukey test at a level of significance of 5 % using the SAS 9.2 program (SAS Institute, Inc., NC, USA). The results showed that rearing pigs in an uncontrolled environment during the growing and finishing phases reduced daily feed intake (1.722 and 3.164 kg, respectively) and improved feed conversion (2.15 and 2.70 kg, respectively), but did not influence the carcass yield of the animals. In conclusion, rearing pigs under different environmental conditions during the growing and finishing phases influenced animal performance without interfering with carcass yield.

  16. Root carboxylate exudation capacity under phosphorus stress does not improve grain yield in green gram.

    PubMed

    Pandey, Renu; Meena, Surendra Kumar; Krishnapriya, Vengavasi; Ahmad, Altaf; Kishora, Naval

    2014-06-01

    Genetic variability in carboxylate exudation capacity along with improved root traits was a key mechanism for P-efficient green gram genotype to cope with P-stress but it did not increase grain yield. This study evaluates genotypic variability in green gram for total root carbon exudation under low phosphorus (P) using (14)C and its relationship with root exuded carboxylates, growth and yield potential in contrasting genotypes. Forty-four genotypes grown hydroponically with low (2 μM) and sufficient (100 μM) P concentrations were exposed to (14)CO2 to screen for total root carbon exudation. Contrasting genotypes were employed to study carboxylate exudation and their performance in soil at two P levels. Based on relative (14)C exudation and biomass, genotypes were categorized. Carboxylic acids were measured in exudates and root apices of contrasting genotypes belonging to efficient and inefficient categories. Oxalic and citric acids were released into the medium under low-P. PDM-139 (efficient) was highly efficient in carboxylate exudation as compared to ML-818 (inefficient). In low soil P, the reduction in biomass was higher in ML-818 as compared to PDM-139. Total leaf area and photosynthetic rate averaged for genotypes increased by 71 and 41 %, respectively, with P fertilization. Significantly, higher root surface area and volume were observed in PDM-139 under low soil P. Though the grain yield was higher in ML-818, the total plant biomass was significantly higher in PDM-139 indicating improved P uptake and its efficient translation into biomass. The higher carboxylate exudation capacity and improved root traits in the later genotype might be the possible adaptive mechanisms to cope with P-stress. However, it is not necessary that higher root exudation would result in higher grain yield.

  17. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization-A Global Meta-analysis.

    PubMed

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2017-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

  18. Albendazole nanocrystals with improved pharmacokinetic performance in mice.

    PubMed

    Paredes, Alejandro J; Bruni, Sergio Sánchez; Allemandi, Daniel; Lanusse, Carlos; Palma, Santiago D

    2018-02-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic agent with poor aqueous solubility, which leads to poor/erratic bioavailability and therapeutic failures. Here, we aimed to produce a novel formulation of ABZ nanocrystals (ABZNC) and assess its pharmacokinetic performance in mice. Results/methodology: ABZNC were prepared by high-pressure homogenization and spray-drying processes. Redispersion capacity and solid yield were measured in order to obtain an optimized product. The final particle size was 415.69±7.40 nm and the solid yield was 72.32%. The pharmacokinetic parameters obtained in a mice model for ABZNC were enhanced (p < 0.05) with respect to the control formulation. ABZNC with improved pharmacokinetic behavior were produced by a simple, inexpensive and potentially scalable methodology.

  19. Prescreening with FOBT Improves Yield and Is Cost-Effective in Colorectal Screening in the Elderly

    PubMed Central

    Changela, Kinesh; Mathur, Siddharth; Reddy, Sridhar; Momeni, Mojdeh; Krishnaiah, Mahesh; Anand, Sury

    2014-01-01

    Background. Utilization of colonoscopy for routine colorectal cancer (CRC) screening in the elderly (patients over 75) is controversial. This study was designed to evaluate if using fecal occult blood test (FOBT) to select patients for colonoscopy can improve yield and be a cost- effective approach for the elderly. Methods. Records of 10,908 subjects who had colonoscopy during the study period were reviewed. 1496 (13.7%) were ≥75 years. In 118 of these subjects, a colonoscopy was performed to evaluate a positive FOBT. Outcomes were compared between +FOBT group (F-Group) and the asymptomatic screening group (AS-Group). The cost-effectiveness was also calculated using a median estimated standardized worldwide colonoscopy and FOBT cost (rounded to closest whole numbers) of 1000 US $ and 10 US $, respectively. Results. 118/1496 (7.9%) colonoscopies were performed for evaluation of +FOBT. 464/1496 (31%) colonoscopies were performed in AS-Group. In F-Group, high risk adenoma detection rate (HR-ADR) was 15.2%, and 11.9% had 1-2 tubular adenomas. In comparison, the control AS-Group had HR-ADR of 19.2% and 17.7% had 1-2 tubular adenomas. In the FOBT+ group, CRC was detected in 5.1% which was significantly higher than the AS-Group in which CRC was detected in 1.7% (P = 0.03). On cost-effectiveness analysis, cost per CRC detected was significantly lower, that is, 19,666 US $ in F-Group in comparison to AS-Group 58,000 US $ (P < 0.05). There were no significant differences in other parameters among groups. Conclusion. Prescreening with FOBT to select elderly for colonoscopy seems to improve the yield and can be a cost-effective CRC screening approach in this subset. The benefit in the risk benefit analysis of screening the elderly appears improved by prescreening with an inexpensive tool. PMID:25101179

  20. Prescreening with FOBT Improves Yield and Is Cost-Effective in Colorectal Screening in the Elderly.

    PubMed

    Singhal, Shashideep; Changela, Kinesh; Basi, Puneet; Mathur, Siddharth; Reddy, Sridhar; Momeni, Mojdeh; Krishnaiah, Mahesh; Anand, Sury

    2014-01-01

    Background. Utilization of colonoscopy for routine colorectal cancer (CRC) screening in the elderly (patients over 75) is controversial. This study was designed to evaluate if using fecal occult blood test (FOBT) to select patients for colonoscopy can improve yield and be a cost- effective approach for the elderly. Methods. Records of 10,908 subjects who had colonoscopy during the study period were reviewed. 1496 (13.7%) were ≥75 years. In 118 of these subjects, a colonoscopy was performed to evaluate a positive FOBT. Outcomes were compared between +FOBT group (F-Group) and the asymptomatic screening group (AS-Group). The cost-effectiveness was also calculated using a median estimated standardized worldwide colonoscopy and FOBT cost (rounded to closest whole numbers) of 1000 US $ and 10 US $, respectively. Results. 118/1496 (7.9%) colonoscopies were performed for evaluation of +FOBT. 464/1496 (31%) colonoscopies were performed in AS-Group. In F-Group, high risk adenoma detection rate (HR-ADR) was 15.2%, and 11.9% had 1-2 tubular adenomas. In comparison, the control AS-Group had HR-ADR of 19.2% and 17.7% had 1-2 tubular adenomas. In the FOBT+ group, CRC was detected in 5.1% which was significantly higher than the AS-Group in which CRC was detected in 1.7% (P = 0.03). On cost-effectiveness analysis, cost per CRC detected was significantly lower, that is, 19,666 US $ in F-Group in comparison to AS-Group 58,000 US $ (P < 0.05). There were no significant differences in other parameters among groups. Conclusion. Prescreening with FOBT to select elderly for colonoscopy seems to improve the yield and can be a cost-effective CRC screening approach in this subset. The benefit in the risk benefit analysis of screening the elderly appears improved by prescreening with an inexpensive tool.

  1. YorkieCA overexpression in the posterior silk gland improves silk yield in Bombyx mori.

    PubMed

    Zhang, Panli; Liu, Shumin; Song, Hong-Sheng; Zhang, Guozheng; Jia, Qiangqiang; Li, Sheng

    2017-07-01

    The traditional hybrid breeding techniques can no longer meet the increasing demands for silk production by the silkworm, Bombyx mori, and further improvement of the silk yield will depend on modern molecular breeding techniques. Here, we report improved silk yield in transgenic silkworms overexpressing the oncogene Yorkie CA specifically in the posterior silk gland (PSG). The Yorkie CA cDNA was ligated downstream of the hr3 enhancer and the fibroin L-chain (Fil) promoter, then inserted into a piggyBac vector for transgene. Overexpression of Yorkie CA in the PSG significantly increased the weight of the PSG, and also increased the weight of the cocoon, larval body, and pupal body to decreasing degrees. Overexpression of Yorkie CA up-regulated the Yorkie target genes resulting in increased cell size, endomitosis, the number of protein synthesis organelles, the expression of fibroin genes in the PSG, and eventually silk yield. Additionally, as we reported previously using the binary GAL4/UAS system, transgenic silkworms overexpressing Ras1 CA with the hr3 enhancer and the Fil promoter also showed improved silk yield. Unfortunately, the hybrid progeny of Yorkie CA -overexpressing silkworms and Ras1 CA -overexpressing silkworms did not show overlapping improved silk yield due to the failure to increase expression of both Yorkie and Ras1. Copyright © 2017. Published by Elsevier Ltd.

  2. Synthesis and characterization of poly (dihydroxybiphenyl borate) with high char yield for high-performance thermosetting resins

    NASA Astrophysics Data System (ADS)

    Wang, Shujuan; Xing, Xiaolong; Li, Jian; Jing, Xinli

    2018-01-01

    The objective of the current work is to synthesize novel boron-containing polymers with excellent thermal resistance, and reveal the structure and the reason for the high char yield. Thus, poly (dihydroxybiphenyl borate) (PDDB) with a more rigid molecular chain, was successfully synthesized using 4,4‧-dihydroxybiphenyl and boric acid. Structural characterizations of the prepared PDDB were performed via NMR, FTIR, XPS, and XRD analyses. The results reveal that PDDB consists of aromatic, Phsbnd Osbnd B and Bsbnd Osbnd B structures as well as a small number of boron hydroxyl and phenolic hydroxyl groups. PDDB shows good solubility in strong polar solvents, which is of great importance for the modification of thermosetting resins. TGA combined with DSC were employed to evaluate the thermal properties of PDDB, and increases in the glass transition temperature (Tg) and char yield were observed with increased boron content. Tg and char yield of PDDB (800 °C, nitrogen atmosphere) reached up to 219 °C and 66.5%, respectively. PDDB was extensively characterized during pyrolysis to reveal the high char yield of PDDB. As briefly discussed, the boron oxide and boron carbide that formed during pyrolysis play a crucial role in the high char yield of PDDB, which reduces the release of volatile carbon dioxide and carbon. This research suggests that PDDB has great potential as a novel modified agent for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  3. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.

    PubMed

    Pagliardini, Julien; Hubmann, Georg; Alfenore, Sandrine; Nevoigt, Elke; Bideaux, Carine; Guillouet, Stephane E

    2013-03-28

    Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved

  4. Performance of Vegetation Indices for Wheat Yield Forecasting for Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Dempewolf, J.; Becker-Reshef, I.; Adusei, B.; Barker, B.

    2013-12-01

    Forecasting wheat yield in major producer countries early in the growing season allows better planning for harvest deficits and surplus with implications for food security, world market transactions, sustaining adequate grain stocks, policy making and other matters. Remote sensing imagery is well suited for yield forecasting over large areas. The Normalized Difference Vegetation Index (NDVI) has been the most-used spectral index derived from remote sensing imagery for assessing crop condition of major crops and forecasting crop yield. Many authors have found that the highest correlation between NDVI and yield of wheat crops occurs at the height of the growing season when NDVI values and photosynthetic activity of the wheat plants are at their relative maximum. At the same time NDVI saturates in very dense and vigorous (healthy, green) canopies such as wheat fields during the seasonal peak and shows significantly reduced sensitivity to further increases in photosynthetic activity. In this study we compare the performance of different vegetation indices derived from space-borne red and near-infrared spectral reflectance measurements for wheat yield forecasting in the Punjab Province, Pakistan. Areas covered by wheat crop each year were determined using a time series of MODIS 8-day composites at 250 m resolution converted to temporal metrics and classified using a bagged decision tree approach, driven by classified multi-temporal Landsat scenes. Within the wheat areas we analyze and compare wheat yield forecasts derived from three different satellite-based vegetation indices at the peak of the growing season. We regressed in turn NDVI, Wide Dynamic Range Vegetation Index (WDRVI) and the Vegetation Condition Index (VCI) from the four years preceding the wheat growing season 2011/12 against reported yield values and applied the regression equations to forecast wheat yield for the 2011/12 season per district for each of 36 Punjab districts. Yield forecasts overall

  5. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis

    PubMed Central

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2018-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers. PMID:29375594

  6. Root xylem plasticity to improve water use and yield in water-stressed soybean

    PubMed Central

    Prince, Silvas J.; Murphy, Mackensie; Durnell, Lorellin A.; Shannon, J. Grover

    2017-01-01

    Abstract We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24–80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6–R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. PMID:28064176

  7. Two-dimensional isobutyl acetate production pathways to improve carbon yield

    PubMed Central

    Tashiro, Yohei; Desai, Shuchi H.; Atsumi, Shota

    2015-01-01

    For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. PMID:26108471

  8. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraftmore » mills). Provide background to most effectively transfer this new technology to commercial mills.« less

  9. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat.

    PubMed

    Ahmad, Shakeel; Imran, Muhammad; Hussain, Sabir; Mahmood, Sajid; Hussain, Azhar; Hasnain, Muhammad

    2017-08-01

    The fertilizer use efficiency (FUE) of agricultural crops is generally low, which results in poor crop yields and low economic benefits to farmers. Among the various approaches used to enhance FUE, impregnation of mineral fertilizers with plant growth-promoting bacteria (PGPB) is attracting worldwide attention. The present study was aimed to improve growth, yield and nutrient use efficiency of wheat by bacterially impregnated mineral fertilizers. Results of the pot study revealed that impregnation of diammonium phosphate (DAP) and urea with PGPB was helpful in enhancing the growth, yield, photosynthetic rate, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) of wheat. However, the plants treated with F8 type DAP and urea, prepared by coating a slurry of PGPB (Bacillus sp. strain KAP6) and compost on DAP and urea granules at the rate of 2.0 g 100 g -1 fertilizer, produced better results than other fertilizer treatments. In this treatment, growth parameters including plant height, root length, straw yield and root biomass significantly (P ≤ 0.05) increased from 58.8 to 70.0 cm, 41.2 to 50.0 cm, 19.6 to 24.2 g per pot and 1.8 to 2.2 g per pot, respectively. The same treatment improved grain yield of wheat by 20% compared to unimpregnated DAP and urea (F0). Likewise, the maximum increase in photosynthetic rate, grain NP content, grain NP uptake, NUE and PUE of wheat were also recorded with F8 treatment. The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen.

    PubMed

    Sadras, V O; Richards, R A

    2014-05-01

    Crop yield in dry environments can be improved with complementary approaches including selecting for yield in the target environments, selecting for yield potential, and using indirect, trait- or genomic-based methods. This paper (i) outlines the achievements of direct selection for yield in improving drought adaptation, (ii) discusses the limitations of indirect approaches in the context of levels of organization, and (iii) emphasizes trade-offs and synergies between nitrogen nutrition and drought adaptation. Selection for yield in the water- and nitrogen-scarce environments of Australia improved wheat yield per unit transpiration at a rate of 0.12kg ha(-1) mm(-1) yr(-1); for indirect methods to be justified, they must return superior rates of improvement, achieve the same rate at lower cost or provide other cost-effective benefits, such as expanding the genetic basis for selection. Slow improvement of crop adaptation to water stress using indirect methods is partially related to issues of scale. Traits are thus classified into three broad groups: those that generally scale up from low levels of organization to the crop level (e.g. herbicide resistance), those that do not (e.g. grain yield), and traits that might scale up provided they are considered in a integrated manner with scientifically sound scaling assumptions, appropriate growing conditions, and screening techniques (e.g. stay green). Predicting the scalability of traits may help to set priorities in the investment of research efforts. Primary productivity in arid and semi-arid environments is simultaneously limited by water and nitrogen, but few attempts are made to target adaptation to water and nitrogen stress simultaneously. Case studies in wheat and soybean highlight biological links between improved nitrogen nutrition and drought adaptation.

  11. Long-duration effect of multi-factor stresses on the cellular biochemistry, oil-yielding performance and morphology of Nannochloropsis oculata

    PubMed Central

    Wei, Likun; Huang, Xuxiong

    2017-01-01

    Microalga Nannochloropsis oculata is a promising alternative feedstock for biodiesel. Elevating its oil-yielding capacity is conducive to cost-saving biodiesel production. However, the regulatory processes of multi-factor collaborative stresses (MFCS) on the oil-yielding performance of N. oculata are unclear. The duration effects of MFCS (high irradiation, nitrogen deficiency and elevated iron supplementation) on N. oculata were investigated in an 18-d batch culture. Despite the reduction in cell division, the biomass concentration increased, resulting from the large accumulation of the carbon/energy-reservoir. However, different storage forms were found in different cellular storage compounds, and both the protein content and pigment composition swiftly and drastically changed. The analysis of four biodiesel properties using pertinent empirical equations indicated their progressive effective improvement in lipid classes and fatty acid composition. The variation curve of neutral lipid productivity was monitored with fluorescent Nile red and was closely correlated to the results from conventional methods. In addition, a series of changes in the organelles (e.g., chloroplast, lipid body and vacuole) and cell shape, dependent on the stress duration, were observed by TEM and LSCM. These changes presumably played an important role in the acclimation of N. oculata to MFCS and accordingly improved its oil-yielding performance. PMID:28346505

  12. Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity

    PubMed Central

    Cook, David C.; Fraser, Rob W.; Paini, Dean R.; Warden, Andrew C.; Lonsdale, W. Mark; De Barro, Paul J.

    2011-01-01

    The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum. PMID:22022517

  13. NASA Earth Science Research Results for Improved Regional Crop Yield Prediction

    NASA Astrophysics Data System (ADS)

    Mali, P.; O'Hara, C. G.; Shrestha, B.; Sinclair, T. R.; G de Goncalves, L. G.; Salado Navarro, L. R.

    2007-12-01

    National agencies such as USDA Foreign Agricultural Service (FAS), Production Estimation and Crop Assessment Division (PECAD) work specifically to analyze and generate timely crop yield estimates that help define national as well as global food policies. The USDA/FAS/PECAD utilizes a Decision Support System (DSS) called CADRE (Crop Condition and Data Retrieval Evaluation) mainly through an automated database management system that integrates various meteorological datasets, crop and soil models, and remote sensing data; providing significant contribution to the national and international crop production estimates. The "Sinclair" soybean growth model has been used inside CADRE DSS as one of the crop models. This project uses Sinclair model (a semi-mechanistic crop growth model) for its potential to be effectively used in a geo-processing environment with remote-sensing-based inputs. The main objective of this proposed work is to verify, validate and benchmark current and future NASA earth science research results for the benefit in the operational decision making process of the PECAD/CADRE DSS. For this purpose, the NASA South American Land Data Assimilation System (SALDAS) meteorological dataset is tested for its applicability as a surrogate meteorological input in the Sinclair model meteorological input requirements. Similarly, NASA sensor MODIS products is tested for its applicability in the improvement of the crop yield prediction through improving precision of planting date estimation, plant vigor and growth monitoring. The project also analyzes simulated Visible/Infrared Imager/Radiometer Suite (VIIRS, a future NASA sensor) vegetation product for its applicability in crop growth prediction to accelerate the process of transition of VIIRS research results for the operational use of USDA/FAS/PECAD DSS. The research results will help in providing improved decision making capacity to the USDA/FAS/PECAD DSS through improved vegetation growth monitoring from high

  14. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Results Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. Conclusions This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further

  15. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability.

    PubMed

    Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S

    2018-05-31

    Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.

  16. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress.

    PubMed

    Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C

    2014-09-01

    Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait 'total crop nitrogen uptake' (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10-36 % more yield than those based on markers for yield per se. This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The approach can provide more markers for selection programmes for

  17. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress

    PubMed Central

    Gu, Junfei; Yin, Xinyou; Zhang, Chengwei; Wang, Huaqi; Struik, Paul C.

    2014-01-01

    Background and Aims Genetic markers can be used in combination with ecophysiological crop models to predict the performance of genotypes. Crop models can estimate the contribution of individual markers to crop performance in given environments. The objectives of this study were to explore the use of crop models to design markers and virtual ideotypes for improving yields of rice (Oryza sativa) under drought stress. Methods Using the model GECROS, crop yield was dissected into seven easily measured parameters. Loci for these parameters were identified for a rice population of 94 introgression lines (ILs) derived from two parents differing in drought tolerance. Marker-based values of ILs for each of these parameters were estimated from additive allele effects of the loci, and were fed to the model in order to simulate yields of the ILs grown under well-watered and drought conditions and in order to design virtual ideotypes for those conditions. Key Results To account for genotypic yield differences, it was necessary to parameterize the model for differences in an additional trait ‘total crop nitrogen uptake’ (Nmax) among the ILs. Genetic variation in Nmax had the most significant effect on yield; five other parameters also significantly influenced yield, but seed weight and leaf photosynthesis did not. Using the marker-based parameter values, GECROS also simulated yield variation among 251 recombinant inbred lines of the same parents. The model-based dissection approach detected more markers than the analysis using only yield per se. Model-based sensitivity analysis ranked all markers for their importance in determining yield differences among the ILs. Virtual ideotypes based on markers identified by modelling had 10–36 % more yield than those based on markers for yield per se. Conclusions This study outlines a genotype-to-phenotype approach that exploits the potential value of marker-based crop modelling in developing new plant types with high yields. The

  18. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres.

    PubMed

    Nelson, Donald E; Repetti, Peter P; Adams, Tom R; Creelman, Robert A; Wu, Jingrui; Warner, David C; Anstrom, Don C; Bensen, Robert J; Castiglioni, Paolo P; Donnarummo, Meghan G; Hinchey, Brendan S; Kumimoto, Roderick W; Maszle, Don R; Canales, Roger D; Krolikowski, Katherine A; Dotson, Stanton B; Gutterson, Neal; Ratcliffe, Oliver J; Heard, Jacqueline E

    2007-10-16

    Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y (NF-Y) family, AtNF-YB1, which acts through a previously undescribed mechanism to confer improved performance in Arabidopsis under drought conditions. An orthologous maize transcription factor, ZmNF-YB2, is shown to have an equivalent activity. Under water-limited conditions, transgenic maize plants with increased ZmNF-YB2 expression show tolerance to drought based on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting, and maintenance of photosynthesis. These stress adaptations contribute to a grain yield advantage to maize under water-limited environments. The application of this technology has the potential to significantly impact maize production systems that experience drought.

  19. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres

    PubMed Central

    Nelson, Donald E.; Repetti, Peter P.; Adams, Tom R.; Creelman, Robert A.; Wu, Jingrui; Warner, David C.; Anstrom, Don C.; Bensen, Robert J.; Castiglioni, Paolo P.; Donnarummo, Meghan G.; Hinchey, Brendan S.; Kumimoto, Roderick W.; Maszle, Don R.; Canales, Roger D.; Krolikowski, Katherine A.; Dotson, Stanton B.; Gutterson, Neal; Ratcliffe, Oliver J.; Heard, Jacqueline E.

    2007-01-01

    Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y (NF-Y) family, AtNF-YB1, which acts through a previously undescribed mechanism to confer improved performance in Arabidopsis under drought conditions. An orthologous maize transcription factor, ZmNF-YB2, is shown to have an equivalent activity. Under water-limited conditions, transgenic maize plants with increased ZmNF-YB2 expression show tolerance to drought based on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting, and maintenance of photosynthesis. These stress adaptations contribute to a grain yield advantage to maize under water-limited environments. The application of this technology has the potential to significantly impact maize production systems that experience drought. PMID:17923671

  20. Statistical modeling of SRAM yield performance and circuit variability

    NASA Astrophysics Data System (ADS)

    Cheng, Qi; Chen, Yijian

    2015-03-01

    In this paper, we develop statistical models to investigate SRAM yield performance and circuit variability in the presence of self-aligned multiple patterning (SAMP) process. It is assumed that SRAM fins are fabricated by a positivetone (spacer is line) self-aligned sextuple patterning (SASP) process which accommodates two types of spacers, while gates are fabricated by a more pitch-relaxed self-aligned quadruple patterning (SAQP) process which only allows one type of spacer. A number of possible inverter and SRAM structures are identified and the related circuit multi-modality is studied using the developed failure-probability and yield models. It is shown that SRAM circuit yield is significantly impacted by the multi-modality of fins' spatial variations in a SRAM cell. The sensitivity of 6-transistor SRAM read/write failure probability to SASP process variations is calculated and the specific circuit type with the highest probability to fail in the reading/writing operation is identified. Our study suggests that the 6-transistor SRAM configuration may not be scalable to 7-nm half pitch and more robust SRAM circuit design needs to be researched.

  1. Economic weights for genetic improvement of lactation persistency and milk yield.

    PubMed

    Togashi, K; Lin, C Y

    2009-06-01

    This study aimed to establish a criterion for measuring the relative weight of lactation persistency (the ratio of yield at 280 d in milk to peak yield) in restricted selection index for the improvement of net merit comprising 3-parity total yield and total lactation persistency. The restricted selection index was compared with selection based on first-lactation total milk yield (I(1)), the first-two-lactation total yield (I(2)), and first-three-lactation total yield (I(3)). Results show that genetic response in net merit due to selection on restricted selection index could be greater than, equal to, or less than that due to the unrestricted index depending upon the relative weight of lactation persistency and the restriction level imposed. When the relative weight of total lactation persistency is equal to the criterion, the restricted selection index is equal to the selection method compared (I(1), I(2), or I(3)). The restricted selection index yielded a greater response when the relative weight of total lactation persistency was above the criterion, but a lower response when it was below the criterion. The criterion varied depending upon the restriction level (c) imposed and the selection criteria compared. A curvilinear relationship (concave curve) exists between the criterion and the restricted level. The criterion increases as the restriction level deviates in either direction from 1.5. Without prior information of the economic weight of lactation persistency, the imposition of the restriction level of 1.5 on lactation persistency would maximize change in net merit. The procedure presented allows for simultaneous modification of multi-parity lactation curves.

  2. Performance index: An expeditious tool to screen for improved drought resistance in the Lathyrus genus.

    PubMed

    Silvestre, Susana; Araújo, Susana de Sousa; Vaz Patto, Maria Carlota; Marques da Silva, Jorge

    2014-07-01

    Some species of the Lathyrus genus are among the most promising crops for marginal lands, with high resilience to drought, flood, and fungal diseases, combined with high yields and seed nutritional value. However, lack of knowledge on the mechanisms underlying its outstanding performance and methodologies to identify elite genotypes has hampered its proper use in breeding. Chlorophyll a fast fluorescence transient (JIP test), was used to evaluate water deficit (WD) resistance in Lathyrus genus. Our results reveal unaltered photochemical values for all studied genotypes showing resistance to mild WD. Under severe WD, two Lathyrus sativus genotypes showed remarkable resilience maintaining the photochemical efficiency, contrary to other genotypes studied. Performance index (PIABS) is the best parameter to screen genotypes with improved performance and grain production under WD. Moreover, we found that JIP indices are good indicators of genotypic grain production under WD. Quantum yield of electron transport (ϕEo) and efficiency with which trapped excitons can move electrons further than QA (ψ0) revealed as important traits related to improved photosynthetic performance and should be exploited in future Lathyrus germplasm improvements. The JIP test herein described showed to be an expeditious tool to screen and to identify elite genotypes with improved drought resistance.

  3. [Winter wheat yield gap between field blocks based on comparative performance analysis].

    PubMed

    Chen, Jian; Wang, Zhong-Yi; Li, Liang-Tao; Zhang, Ke-Feng; Yu, Zhen-Rong

    2008-09-01

    Based on a two-year household survey data, the yield gap of winter wheat in Quzhou County of Hebei Province, China in 2003-2004 was studied through comparative performance analysis (CPA). The results showed that there was a greater yield gap (from 4.2 to 7.9 t x hm(-2)) between field blocks, with a variation coefficient of 0.14. Through stepwise forward linear multiple regression, it was found that the yield model with 8 selected variables could explain 63% variability of winter wheat yield. Among the variables selected, soil salinity, soil fertility, and irrigation water quality were the most important limiting factors, accounting for 52% of the total yield gap. Crop variety was another important limiting factor, accounting for 14%; while planting date, fertilizer type, disease and pest, and water press accounted for 7%, 14%, 10%, and 3%, respectively. Therefore, besides soil and climate conditions, management practices occupied the majority of yield variability in Quzhou County, suggesting that the yield gap could be reduced significantly through optimum field management.

  4. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    PubMed

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1) Experimental

    PubMed Central

    2012-01-01

    Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20%) enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. The

  6. Improving the Yield of Histological Sampling in Patients With Suspected Colorectal Cancer During Colonoscopy by Introducing a Colonoscopy Quality Assurance Program.

    PubMed

    Gado, Ahmed; Ebeid, Basel; Abdelmohsen, Aida; Axon, Anthony

    2011-08-01

    Masses discovered by clinical examination, imaging or endoscopic studies that are suspicious for malignancy typically require biopsy confirmation before treatment is initiated. Biopsy specimens may fail to yield a definitive diagnosis if the lesion is extensively ulcerated or otherwise necrotic and viable tumor tissue is not obtained on sampling. The diagnostic yield is improved when multiple biopsy samples (BSs) are taken. A colonoscopy quality-assurance program (CQAP) was instituted in 2003 in our institution. The aim of this study was to determine the effect of instituting a CQAP on the yield of histological sampling in patients with suspected colorectal cancer (CRC) during colonoscopy. Initial assessment of colonoscopy practice was performed in 2003. A total of five patients with suspected CRC during colonoscopy were documented in 2003. BSs confirmed CRC in three (60%) patients and were nondiagnostic in two (40%). A quality-improvement process was instituted which required a minimum six BSs with adequate size of the samples from any suspected CRC during colonoscopy. A total of 37 patients for the period 2004-2010 were prospectively assessed. The diagnosis of CRC was confirmed with histological examination of BSs obtained during colonoscopy in 63% of patients in 2004, 60% in 2005, 50% in 2006, 67% in 2007, 100% in 2008, 67% in 2009 and 100% in 2010. The yield of histological sampling increased significantly ( p <0.02) from 61% in 2004-2007 to 92% in 2008-2010. The implementation of a quality assurance and improvement program increased the yield of histological sampling in patients with suspected CRC during colonoscopy.

  7. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa).

    PubMed

    Rozpądek, Piotr; Rąpała-Kozik, Maria; Wężowicz, Katarzyna; Grandin, Anna; Karlsson, Stefan; Ważny, Rafał; Anielska, Teresa; Turnau, Katarzyna

    2016-10-01

    Improving the nutritional value of commonly cultivated crops is one of the most pending problems for modern agriculture. In natural environments plants associate with a multitude of fungal microorganisms that improve plant fitness. The best described group are arbuscular mycorrhizal fungi (AMF). These fungi have been previously shown to improve the quality and yield of several common crops. In this study we tested the potential utilization of Rhizophagus irregularis in accelerating growth and increasing the content of important dietary phytochemicals in onion (Allium cepa). Our results clearly indicate that biomass production, the abundance of vitamin B1 and its analogues and organic acid concentration can be improved by inoculating the plant with AM fungi. We have shown that improved growth is accompanied with up-regulated electron transport in PSII and antioxidant enzyme activity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Improving Physical Task Performance with Counterfactual and Prefactual Thinking

    PubMed Central

    Hammell, Cecilia; Chan, Amy Y. C.

    2016-01-01

    Counterfactual thinking (reflecting on “what might have been”) has been shown to enhance future performance by translating information about past mistakes into plans for future action. Prefactual thinking (imagining “what might be if…”) may serve a greater preparative function than counterfactual thinking as it is future-orientated and focuses on more controllable features, thus providing a practical script to prime future behaviour. However, whether or not this difference in hypothetical thought content may translate into a difference in actual task performance has been largely unexamined. In Experiment 1 (n = 42), participants performed trials of a computer-simulated physical task, in between which they engaged in either task-related hypothetical thinking (counterfactual or prefactual) or an unrelated filler task (control). As hypothesised, prefactuals contained more controllable features than counterfactuals. Moreover, participants who engaged in either form of hypothetical thinking improved significantly in task performance over trials compared to participants in the control group. The difference in thought content between counterfactuals and prefactuals, however, did not yield a significant difference in performance improvement. Experiment 2 (n = 42) replicated these findings in a dynamic balance task environment. Together, these findings provide further evidence for the preparatory function of counterfactuals, and demonstrate that prefactuals share this same functional characteristic. PMID:27942041

  9. Improving Physical Task Performance with Counterfactual and Prefactual Thinking.

    PubMed

    Hammell, Cecilia; Chan, Amy Y C

    2016-01-01

    Counterfactual thinking (reflecting on "what might have been") has been shown to enhance future performance by translating information about past mistakes into plans for future action. Prefactual thinking (imagining "what might be if…") may serve a greater preparative function than counterfactual thinking as it is future-orientated and focuses on more controllable features, thus providing a practical script to prime future behaviour. However, whether or not this difference in hypothetical thought content may translate into a difference in actual task performance has been largely unexamined. In Experiment 1 (n = 42), participants performed trials of a computer-simulated physical task, in between which they engaged in either task-related hypothetical thinking (counterfactual or prefactual) or an unrelated filler task (control). As hypothesised, prefactuals contained more controllable features than counterfactuals. Moreover, participants who engaged in either form of hypothetical thinking improved significantly in task performance over trials compared to participants in the control group. The difference in thought content between counterfactuals and prefactuals, however, did not yield a significant difference in performance improvement. Experiment 2 (n = 42) replicated these findings in a dynamic balance task environment. Together, these findings provide further evidence for the preparatory function of counterfactuals, and demonstrate that prefactuals share this same functional characteristic.

  10. Performance and carcass yield of crossbred dairy steers fed diets with different levels of concentrate.

    PubMed

    da Silva, Gabriel Santana; Chaves Véras, Antônia Sherlanea; de Andrade Ferreira, Marcelo; Moreira Dutra, Wilson; Menezes Wanderley Neves, Maria Luciana; Oliveira Souza, Evaristo Jorge; Ramos de Carvalho, Francisco Fernando; de Lima, Dorgival Morais

    2015-10-01

    The objective of this study was to evaluate the influence of diets with increasing concentrate levels (170, 340, 510 and 680 g/kg of total dry matter) on dry matter intake, digestibility, performance and carcass characteristics of 25 Holstein-Zebu crossbred dairy steers in a feedlot. A completely randomized design was used, and data were submitted to analysis of variance and regression. The dry matter intake and digestibility coefficients of all nutrients increased linearly. The total weight gain and average daily gain added 1.16 kg and 9.90 g, respectively, for each 10 g/kg increase in concentrate. The empty body weight, hot carcass weight and cold carcass weight responded linearly to increasing concentrate. The hot carcass yield and cold carcass yield, gains in empty body weight and carcass gain were also influenced, as were the efficiencies of carcass deposition and carcass deposition rate. It is concluded that increasing concentrate levels in feedlot diets increase the intake and digestibility of dry matter and other nutrients, improving the feed efficiency, performance and physical characteristics of the carcass. Furthermore and of importance concerning the climate change debate, evidence from the literature indicates that enteric methane production would be reduced with increasing concentrate levels such as those used.

  11. Manipulating plant geometry to improve microclimate, grain yield, and harvest index in grain sorghum.

    PubMed

    Thapa, Sushil; Stewart, Bob A; Xue, Qingwu; Chen, Yuanquan

    2017-01-01

    Cultivar selection, planting geometry, and plant population are the key factors determining grain sorghum yields in water deficit areas. The objective of this study was to investigate whether clump geometry (three plants clustered) improves microclimate within crop canopy when plants are grown under varying water levels. In a 2-yr sorghum (Sorghum bicolor L. Moench) greenhouse study, plants were grown at two geometries (clump and conventional evenly spaced planting, ESP), two water levels (high and low, representing well-watered and water-limited condition, respectively), and three soil surface treatments (lid covered, straw-mulched, and bare). Air temperature and relative humidity (RH) within the plant canopy were measured every five minutes at different growth stages. Mean vapor pressure deficits (VPDs) within the clumps were consistently lower than those for ESPs, indicating that clumps improved the microclimate. Clumps had significantly higher harvest index (HI) compared to ESPs (0.48 vs. 0.43), which was largely due to clumps having an average of 0.4 tillers per plant compared to 1.2 tillers per plant for ESPs. Grain yield in the current study was similar between clumps and ESPs. However, our results suggest that improved microclimate was likely a reason for clumps producing significantly higher grain yields compared to ESPs in previous studies.

  12. Manipulating plant geometry to improve microclimate, grain yield, and harvest index in grain sorghum

    PubMed Central

    Stewart, Bob A.; Xue, Qingwu; Chen, Yuanquan

    2017-01-01

    Cultivar selection, planting geometry, and plant population are the key factors determining grain sorghum yields in water deficit areas. The objective of this study was to investigate whether clump geometry (three plants clustered) improves microclimate within crop canopy when plants are grown under varying water levels. In a 2-yr sorghum (Sorghum bicolor L. Moench) greenhouse study, plants were grown at two geometries (clump and conventional evenly spaced planting, ESP), two water levels (high and low, representing well-watered and water-limited condition, respectively), and three soil surface treatments (lid covered, straw-mulched, and bare). Air temperature and relative humidity (RH) within the plant canopy were measured every five minutes at different growth stages. Mean vapor pressure deficits (VPDs) within the clumps were consistently lower than those for ESPs, indicating that clumps improved the microclimate. Clumps had significantly higher harvest index (HI) compared to ESPs (0.48 vs. 0.43), which was largely due to clumps having an average of 0.4 tillers per plant compared to 1.2 tillers per plant for ESPs. Grain yield in the current study was similar between clumps and ESPs. However, our results suggest that improved microclimate was likely a reason for clumps producing significantly higher grain yields compared to ESPs in previous studies. PMID:28264051

  13. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  14. Growth Performance, Carcass Characteristics and Meat Yield of Boer Goats Fed Diets Containing Leaves or Whole Parts of Andrographis paniculata.

    PubMed

    Yusuf, A L; Goh, Y M; Samsudin, A A; Alimon, A R; Sazili, A Q

    2014-04-01

    The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05).

  15. Growth Performance, Carcass Characteristics and Meat Yield of Boer Goats Fed Diets Containing Leaves or Whole Parts of Andrographis paniculata

    PubMed Central

    Yusuf, A. L.; Goh, Y. M.; Samsudin, A. A.; Alimon, A. R.; Sazili, A. Q.

    2014-01-01

    The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05). PMID:25049980

  16. Embarking on performance improvement.

    PubMed

    Brown, Bobbi; Falk, Leslie Hough

    2014-06-01

    Healthcare organizations should approach performance improvement as a program, not a project. The program should be led by a guidance team that identifies goals, prioritizes work, and removes barriers to enable clinical improvement teams and work groups to realize performance improvements. A healthcare enterprise data warehouse can provide the initial foundation for the program analytics. Evidence-based best practices can help achieve improved outcomes and reduced costs.

  17. Performance improvements of binary diffractive structures via optimization of the photolithography and dry etch processes

    NASA Astrophysics Data System (ADS)

    Welch, Kevin; Leonard, Jerry; Jones, Richard D.

    2010-08-01

    Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.

  18. In situ earthworm breeding in orchards significantly improves the growth, quality and yield of papaya (Carica papaya L.)

    PubMed Central

    Xiang, Huimin; Guo, Lei; Zhao, Benliang

    2016-01-01

    The aim of this study was to compare the effects of four fertilizer applications—control (C), chemical fertilizer (F), compost (O), and in situ earthworm breeding (E)—on the growth, quality and yield of papaya (Carica papaya L.). In this study, 5 g plant−1 urea (CH4N2O, %N = 46.3%) and 100 g plant−1 microelement fertilizer was applied to each treatment. The fertilizer applications of these four treatments are different from each other. The results showed that the E treatment had the highest growth parameters over the whole growth period. At 127 days after transplantation, the order of plant heights from greatest to smallest was E > F > O > C, and the stem diameters were E > F > O > C, with significant differences between all treatments. Soluble-solid, sugar, vitamin C, and protein content significantly increased in the E treatment. In addition, the total acid and the electrical conductivity of the fruit significantly decreased in the E treatment. Fruit firmness clearly increased in the O treatment, and decreased in the F treatment. The fresh individual fruit weights, fruit numbers, and total yields were greatly improved in the F and E treatments, and the total yield of the E treatment was higher than that in the F treatment. In conclusion, the in situ earthworm breeding treatment performed better than conventional compost and chemical fertilizer treatments. Furthermore, in situ earthworm breeding may be a potential organic fertilizer application in orchards because it not only improves the fruit quality and yield but also reduces the amount of organic wastes from agriculture as a result of the activities of earthworms. PMID:27994969

  19. Crop suitability monitoring for improved yield estimations with 100m PROBA-V data

    NASA Astrophysics Data System (ADS)

    Özüm Durgun, Yetkin; Gilliams, Sven; Gobin, Anne; Duveiller, Grégory; Djaby, Bakary; Tychon, Bernard

    2015-04-01

    This study has been realised within the framework of a PhD targeting to advance agricultural monitoring with improved yield estimations using SPOT VEGETATION remotely sensed data. For the first research question, the aim was to improve dry matter productivity (DMP) for C3 and C4 plants by adding a water stress factor. Additionally, the relation between the actual crop yield and DMP was studied. One of the limitations was the lack of crop specific maps which leads to the second research question on 'crop suitability monitoring'. The objective of this work is to create a methodological approach based on the spectral and temporal characteristics of PROBA-V images and ancillary data such as meteorology, soil and topographic data to improve the estimation of annual crop yields. The PROBA-V satellite was launched on 6th May 2013, and was designed to bridge the gap in space-borne vegetation measurements between SPOT-VGT (March 1998 - May 2014) and the upcoming Sentinel-3 satellites scheduled for launch in 2015/2016. PROBA -V has products in four spectral bands: BLUE (centred at 0.463 µm), RED (0.655 µm), NIR (0.845 µm), and SWIR (1.600 µm) with a spatial resolution ranging from 1km to 300m. Due to the construction of the sensor, the central camera can provide a 100m data product with a 5 to 8 days revisiting time. Although the 100m data product is still in test phase a methodology for crop suitability monitoring was developed. The multi-spectral composites, NDVI (Normalised Difference Vegetation Index) (NIR_RED/NIR+RED) and NDII (Normalised Difference Infrared Index) (NIR-SWIR/NIR+SWIR) profiles are used in addition to secondary data such as digital elevation data, precipitation, temperature, soil types and administrative boundaries to improve the accuracy of crop yield estimations. The methodology is evaluated on several FP7 SIGMA test sites for the 2014 - 2015 period. Reference data in the form of vector GIS with boundaries and cover type of agricultural fields are

  20. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    PubMed Central

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  1. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition

    PubMed Central

    Molina-Montenegro, Marco A.; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought. PMID:27613875

  2. Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

    1999-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  3. Dissemination of performance information and continuous improvement: A narrative systematic review.

    PubMed

    Lemire, Marc; Demers-Payette, Olivier; Jefferson-Falardeau, Justin

    2013-01-01

    Developing a performance measure and reporting the results to support decision making at an individual level has yielded poor results in many health systems. The purpose of this paper is to highlight the factors associated with the dissemination of performance information that generate and support continuous improvement in health organizations. A systematic data collection strategy that includes empirical and theoretical research published from 1980 to 2010, both qualitative and quantitative, was performed on Web of Science, Current Contents, EMBASE and MEDLINE. A narrative synthesis method was used to iteratively detail explicative processes that underlie the intervention. A classification and synthesis framework was developed, drawing on knowledge transfer and exchange (KTE) literature. The sample consisted of 114 articles, including seven systematic or exhaustive reviews. Results showed that dissemination in itself is not enough to produce improvement initiatives. Successful dissemination depends on various factors, which influence the way collective actors react to performance information such as the clarity of objectives, the relationships between stakeholders, the system's governance and the available incentives. This review was limited to the process of knowledge dissemination in health systems and its utilization by users at the health organization level. Issues related to improvement initiatives deserve more attention. Knowledge dissemination goes beyond better communication and should be considered as carefully as the measurement of performance. Choices pertaining to intervention should be continuously prompted by the concern to support organizational action. While considerable attention was paid to the public reporting of performance information, this review sheds some light on a more promising avenue for changes and improvements, notably in public health systems.

  4. Improving Docking Performance Using Negative Image-Based Rescoring.

    PubMed

    Kurkinen, Sami T; Niinivehmas, Sanna; Ahinko, Mira; Lätti, Sakari; Pentikäinen, Olli T; Postila, Pekka A

    2018-01-01

    Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing the docking-based ligand conformers directly against the target protein's cavity shape and electrostatics. The similarity comparison of the conformers is performed without geometry optimization against the negative image of the target protein's ligand-binding cavity using the negative image-based (NIB) screening protocol. The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with 11 target proteins using benchmark libraries. By focusing on the shape/electrostatics complementarity of the ligand-receptor association, the R-NiB is able to improve the early enrichment of docking essentially without adding to the computing cost. By implementing consensus scoring, in which the R-NiB and the original docking scoring are weighted for optimal outcome, the early enrichment is improved to a level that facilitates effective drug discovery. Moreover, the use of equal weight from the original docking scoring and the R-NiB scoring improves the yield in most cases.

  5. Improving scanner wafer alignment performance by target optimization

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich

    2016-03-01

    In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.

  6. Propulsive-lift concepts for improved low-speed performance of supersonic cruise arrow-wing configurations

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1976-01-01

    Low-aspect-ratio highly swept arrow-wing supersonic aircraft possess high levels of aerodynamic efficiency at supersonic cruising speeds, however, their inherently poor low-speed lift characteristics require design constraints that compromise supersonic performance. The data discussed in this paper were obtained in wind tunnel tests with supersonic crusing configurations, in which propulsive-lift concepts were used to improve low-speed performance. The data show that the increased low-speed lift provided by propulsive-lift permits reduction of both wing size and installed thrust. This yields a batter engine/airframe match for improved supersonic cruise efficiency and range, while still providing acceptable take-off field lengths.

  7. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size1[OPEN

    PubMed Central

    Wang, Liang; Lu, Qingtao

    2015-01-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. PMID:26504138

  8. Experimental and analytical investigations to improve low-speed performance and stability and control characteristics of supersonic cruise fighter vehicles

    NASA Technical Reports Server (NTRS)

    Graham, A. B.

    1977-01-01

    Small- and large-scale models of supersonic cruise fighter vehicles were used to determine the effectiveness of airframe/propulsion integration concepts for improved low-speed performance and stability and control characteristics. Computer programs were used for engine/airframe sizing studies to yield optimum vehicle performance.

  9. Yield: it's now an entitlement

    NASA Astrophysics Data System (ADS)

    George, Bill

    1994-09-01

    Only a few years ago, the primary method of cost reduction and productivity improvement in the semiconductor industry was increasing manufacturing yields throughout the process. Many of the remarkable reliability improvements realized over the past decade have come about as a result of actions that were originally taken primarily to improve device yields. Obviously, the practice of productivity improvement through yield enhancement is limited to the attainment of 100% yield, at which point some other mechanism must be employed. Traditionally, new products have been introduced to manufacturing at a point of relative immaturity, and semiconductor producers have relied on the traditional `learning curve' method of yield improvement to attain profitable levels of manufacturing yield. Recently, results of a survey of several fabs by a group of University of California at Berkeley researchers in the Competitive Semiconductor Manufacturing Program indicate that most factories learn at about the same rate after startup, in terms of both line yield and defectivity. If this is indeed generally true, then the most competitive factor is the one that starts with the highest yield, and it is difficult to displace a leader once his lead has been established. The two observations made above carry enormous implications for the semiconductor development or manufacturing professional. First, one must achieve very high yields in order to even play the game. Second, the achievement of competitive yields over time in the life of a factory is determined even before the factory is opened, in the planning and development phase. Third, and perhaps most uncomfortable for those of us who have relied on yield improvement as a cost driver, the winners of the nineties will find new levers to drive costs down, having already gotten the benefit of very high yield. This paper looks at the question of how the winners will achieve the critical measures of success, high initial yield and utilization

  10. Heterogeneity in Trauma Registry Data Quality: Implications for Regional and National Performance Improvement in Trauma.

    PubMed

    Dente, Christopher J; Ashley, Dennis W; Dunne, James R; Henderson, Vernon; Ferdinand, Colville; Renz, Barry; Massoud, Romeo; Adamski, John; Hawke, Thomas; Gravlee, Mark; Cascone, John; Paynter, Steven; Medeiros, Regina; Atkins, Elizabeth; Nicholas, Jeffrey M

    2016-03-01

    Led by the American College of Surgeons Trauma Quality Improvement Program, performance improvement efforts have expanded to regional and national levels. The American College of Surgeons Trauma Quality Improvement Program recommends 5 audit filters to identify records with erroneous data, and the Georgia Committee on Trauma instituted standardized audit filter analysis in all Level I and II trauma centers in the state. Audit filter reports were performed from July 2013 to September 2014. Records were reviewed to determine whether there was erroneous data abstraction. Percent yield was defined as number of errors divided by number of charts captured. Twelve centers submitted complete datasets. During 15 months, 21,115 patient records were subjected to analysis. Audit filter captured 2,901 (14%) records and review yielded 549 (2.5%) records with erroneous data. Audit filter 1 had the highest number of records identified and audit filter 3 had the highest percent yield. Individual center error rates ranged from 0.4% to 5.2%. When comparing quarters 1 and 2 with quarters 4 and 5, there were 7 of 12 centers with substantial decreases in error rates. The most common missed complications were pneumonia, urinary tract infection, and acute renal failure. The most common missed comorbidities were hypertension, diabetes, and substance abuse. In Georgia, the prevalence of erroneous data in trauma registries varies among centers, leading to heterogeneity in data quality, and suggests that targeted educational opportunities exist at the institutional level. Standardized audit filter assessment improved data quality in the majority of participating centers. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Surviving Performance Improvement "Solutions": Aligning Performance Improvement Interventions

    ERIC Educational Resources Information Center

    Bernardez, Mariano L.

    2009-01-01

    How can organizations avoid the negative, sometimes chaotic, effects of multiple, poorly coordinated performance improvement interventions? How can we avoid punishing our external clients or staff with the side effects of solutions that might benefit our bottom line or internal efficiency at the expense of the value received or perceived by…

  12. Calibrating SALT: a sampling scheme to improve estimates of suspended sediment yield

    Treesearch

    Robert B. Thomas

    1986-01-01

    Abstract - SALT (Selection At List Time) is a variable probability sampling scheme that provides unbiased estimates of suspended sediment yield and its variance. SALT performs better than standard schemes which are estimate variance. Sampling probabilities are based on a sediment rating function which promotes greater sampling intensity during periods of high...

  13. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops

    PubMed Central

    2011-01-01

    Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present

  14. Manipulation of a Senescence-Associated Gene Improves Fleshy Fruit Yield1[OPEN

    PubMed Central

    Gramegna, Giovanna; Trench, Bruna A.; Alves, Frederico R.R.; Silva, Eder M.; Silva, Geraldo F.F.; Thirumalaikumar, Venkatesh P.; Lupi, Alessandra C.D.; Demarco, Diego; Nogueira, Fabio T.S.; Freschi, Luciano

    2017-01-01

    Senescence is the process that marks the end of a leaf’s lifespan. As it progresses, the massive macromolecular catabolism dismantles the chloroplasts and, consequently, decreases the photosynthetic capacity of these organs. Thus, senescence manipulation is a strategy to improve plant yield by extending the leaf’s photosynthetically active window of time. However, it remains to be addressed if this approach can improve fleshy fruit production and nutritional quality. One way to delay senescence initiation is by regulating key transcription factors (TFs) involved in triggering this process, such as the NAC TF ORESARA1 (ORE1). Here, three senescence-related NAC TFs from tomato (Solanum lycopersicum) were identified, namely SlORE1S02, SlORE1S03, and SlORE1S06. All three genes were shown to be responsive to senescence-inducing stimuli and posttranscriptionally regulated by the microRNA miR164. Moreover, the encoded proteins interacted physically with the chloroplast maintenance-related TF SlGLKs. This characterization led to the selection of a putative tomato ORE1 as target gene for RNA interference knockdown. Transgenic lines showed delayed senescence and enhanced carbon assimilation that, ultimately, increased the number of fruits and their total soluble solid content. Additionally, the fruit nutraceutical composition was enhanced. In conclusion, these data provide robust evidence that the manipulation of leaf senescence is an effective strategy for yield improvement in fleshy fruit-bearing species. PMID:28710129

  15. Influence of material quality and process-induced defects on semiconductor device performance and yield

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Mckee, W. R.

    1974-01-01

    An overview of major causes of device yield degradation is presented. The relationships of device types to critical processes and typical defects are discussed, and the influence of the defect on device yield and performance is demonstrated. Various defect characterization techniques are described and applied. A correlation of device failure, defect type, and cause of defect is presented in tabular form with accompanying illustrations.

  16. Diverse rotations and poultry litter improves soybean yield

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without rotations or cover crops are perceived as unsustainable for long-term yield and soil health. Continuous systems, defined as continually producing a crop on the same parcel of land for more than three years, is thought to reduce yields. Given that crop rotations a...

  17. Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupoi, Jason; Smith, Emily

    2011-12-01

    Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification productsmore » and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 C. There was no significant accumulation (<250 {mu}g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.« less

  18. Preharvest Application of Methyl Jasmonate as an Elicitor Improves the Yield and Phenolic Content of Artichoke.

    PubMed

    Martínez-Esplá, Alejandra; Valero, Daniel; Martínez-Romero, Domingo; Castillo, Salvador; Giménez, María José; García-Pastor, Maria Emma; Serrano, María; Zapata, Pedro Javier

    2017-10-25

    The effects of methyl jasmonate (MeJa) treatment as an elicitor of artichoke plants [Cynara cardunculus var. scolymus (L.) Fiori] on the yield and quality attributes of artichokes, especially those related to individual phenolic content and antioxidant activity, at two harvest dates and along storage were analyzed in this research. Plants treated gave a higher yield of artichokes in comparison to control plants, with 0.55 kg more per plant. MeJa treatment also increased artichoke quality and phenolic content in the edible fraction at harvest and during storage at 2 °C for 28 days as a result of the accumulation of hydroxycinnamic acids and luteolin derivatives. In addition, antioxidant activity was enhanced by MeJa treatment and correlated with the total phenolic content. Results suggest that MeJa foliar application could be a simple and practical tool to improve the yield and phytochemical content on artichokes, with elicitation being a cheap and environmentally friendly procedure to improve the health-beneficial effects of artichoke consumption.

  19. Emerging engineering principles for yield improvement in microbial cell design.

    PubMed

    Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo

    2012-01-01

    Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling.

  20. Emerging engineering principles for yield improvement in microbial cell design

    PubMed Central

    Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo

    2012-01-01

    Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling. PMID:24688676

  1. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  2. Genotype × environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabio, Eric S.; Volk, Timothy A.; Miller, Raymond O.

    Development of dedicated bioenergy crop production systems will require accurate yield estimates, which will be important for determining many of the associated environmental and economic impacts of their production. Shrub willow (Salix spp) is being promoted in areas of the USA and Canada due to its adaption to cool climates and wide genetic diversity available for breeding improvement. Willow breeding in North America is in an early stage, and selection of elite genotypes for commercialization will require testing across broad geographic regions to gain an understanding of how shrub willow interacts with the environment. We analyzed a dataset of first-rotationmore » shrub willow yields of 16 genotypes across 10 trial environments in the USA and Canada for genotype-by-environment interactions using the additive main effects and multiplicative interactions (AMMI) model. Mean genotype yields ranged from 5.22 to 8.58 oven-dry Mg ha -1 yr -1. Analysis of the main effect of genotype showed that one round of breeding improved yields by as much as 20% over check cultivars and that triploid hybrids, most notably Salix viminalis × S. miyabeana, exhibited superior yields. We also found important variability in genotypic response to environments, which suggests specific adaptability could be exploited among 16 genotypes for yield gains. Strong positive correlations were found between environment main effects and AMMI parameters and growing environment temperatures. These findings demonstrate yield improvements are possible in one generation and will be important for developing cultivar recommendations and for future breeding efforts.« less

  3. Genotype × environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids

    DOE PAGES

    Fabio, Eric S.; Volk, Timothy A.; Miller, Raymond O.; ...

    2016-01-30

    Development of dedicated bioenergy crop production systems will require accurate yield estimates, which will be important for determining many of the associated environmental and economic impacts of their production. Shrub willow (Salix spp) is being promoted in areas of the USA and Canada due to its adaption to cool climates and wide genetic diversity available for breeding improvement. Willow breeding in North America is in an early stage, and selection of elite genotypes for commercialization will require testing across broad geographic regions to gain an understanding of how shrub willow interacts with the environment. We analyzed a dataset of first-rotationmore » shrub willow yields of 16 genotypes across 10 trial environments in the USA and Canada for genotype-by-environment interactions using the additive main effects and multiplicative interactions (AMMI) model. Mean genotype yields ranged from 5.22 to 8.58 oven-dry Mg ha -1 yr -1. Analysis of the main effect of genotype showed that one round of breeding improved yields by as much as 20% over check cultivars and that triploid hybrids, most notably Salix viminalis × S. miyabeana, exhibited superior yields. We also found important variability in genotypic response to environments, which suggests specific adaptability could be exploited among 16 genotypes for yield gains. Strong positive correlations were found between environment main effects and AMMI parameters and growing environment temperatures. These findings demonstrate yield improvements are possible in one generation and will be important for developing cultivar recommendations and for future breeding efforts.« less

  4. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  5. Subthalamic nucleus stimulation selectively improves motor and visual memory performance in Parkinson's disease.

    PubMed

    Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne

    2011-09-01

    Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.

  6. Can novel management practice improve soil and environmental quality and sustain crop yield simultaneously?

    USDA-ARS?s Scientific Manuscript database

    Little is known about management practices that can simultaneously improve soil and environmental quality and sustain crop yields. The effect of a combination of tillage, crop rotation, and N fertilization on soil C and N, global warming potential (GWP), greenhouse gas intensity (GHGI), and malt bar...

  7. Genetic architecture, inter-relationship and selection criteria for yield improvement in rice (Oryza sativa L.).

    PubMed

    Yadav, S K; Pandey, P; Kumar, B; Suresh, B G

    2011-05-01

    This study has been conducted to determine the extent of genetic association between yield of Rice (Oryza sativa L.) and its components. The present experiment was carried out with 40 Rice (Oryza sativa L.) genotypes which were evaluated in a randomized block design with 3 replications during wet season of 2007 and 2008. Results showed that sufficient amount of variability was found in the entire gene pool for all traits studied. Higher magnitude of genotypic and phenotypic coefficients of variation was recorded for seed yield, harvest index, biological yield, number of spikelets per panicle, flag leaf length, plant height and number of tillers indicates that these characters are least influence by environment. High heritability coupled with high genetic advance as percent of mean was registered for seed yield, harvest index, number of spikelets per panicle, biological yield and flag leaf length, suggesting preponderance of additive gene action in the expression of these characters. Grain yield was significantly and positively associated with harvest index, number of tillers per hill, number of panicle per plant, panicle length, number of spikelet's per panicle and test weight at both genotypic and phenotypic levels. Path coefficient analysis revealed that harvest index, biological yield, number of tillers per hill, panicle length, number of spikelets per panicle, plant height and test weight had direct positive effect on seed yield, indicating these are the main contributors to yield. From this study it may be concluded that harvest index, number of tillers per hill, panicle length and number of spikelet per panicle and test weight are the most important characters that contributed directly to yield. Thus, these characters may serve selection criteria for improving genetic potential of rice.

  8. Using TSP to Improve Performance

    DTIC Science & Technology

    2008-11-13

    Carnegie Mellon University Using TSP to Improve Performance 46 Work - Life Balance People are your most important resource. Finding and retaining good people...is critical to long-term success. Intuit found that TSP improved work - life balance , a key factor in job satisfaction. Source: Intuit © 2008 Carnegie...Mellon University Using TSP to Improve Performance 47 Intuit TSP Survey Results Improved work - life balance with TSP is reflected in job satisfaction

  9. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit.

    PubMed

    Rahman, Mosaddiqur; Sabir, Abdullah As; Mukta, Julakha Akter; Khan, Md Mohibul Alam; Mohi-Ud-Din, Mohammed; Miah, Md Giashuddin; Rahman, Mahfuzur; Islam, M Tofazzal

    2018-02-06

    Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.

  10. Performance Improvement Processes.

    ERIC Educational Resources Information Center

    1997

    This document contains four papers from a symposium on performance improvement processes. In "Never the Twain Shall Meet?: A Glimpse into High Performance Work Practices and Downsizing" (Laurie J. Bassi, Mark E. Van Buren) evidence from a national cross-industry of more than 200 establishments is used to demonstrate that high-performance…

  11. Effect of crude protein concentration and dietary electrolyte balance on litter quality, foot pad dermatitis, growth performance and processing yields in two medium heavy turkey hybrids.

    PubMed

    Veldkamp, T; Hocking, P M; Vinco, L J

    2017-10-01

    1. An experiment was conducted to investigate the effect of crude protein (CP) concentration and dietary electrolyte balance (DEB) on growth performance, processing yields, litter quality and foot pad dermatitis (FPD) in male turkeys from two commercial hybrids. Soya bean meal was replaced by vegetable protein sources selected for lower K concentrations to lower DEB in order to improve litter quality and subsequent quality of foot pads. 2. Effects of CP on litter friability and wetness were not consistent during the production period. FPD in turkeys fed on diets with low CP was significantly lower than FPD in turkeys fed on diets with high CP until 84 d. Growth performance was adversely affected at low CP. Processing yields were not affected by CP. 3. Litter was significantly dryer in pens of turkeys fed on diets with low DEB than in pens of turkeys fed on diets with high DEB. FPD in turkeys fed on diets with low DEB was significantly lower than in turkeys fed on diets with high DEB. Growth performance and processing yields were adversely affected at low DEB. 4. FPD in turkey hybrid A was higher than in turkey hybrid B at 28 d of age. Thereafter, no differences in FPD between turkey hybrids were observed. Growth performance and processing yields were not affected by turkey hybrid. 5. Overall, a significant interaction effect of CP × DEB was observed for FCR: in turkeys fed on the high DEB treatment, FCR of turkeys fed on the high CP diets was lower than FCR of turkeys fed on the low CP (LCP) diets whereas on the low DEB treatment, FCR was not affected by CP treatment. 6. It was concluded that litter quality can be improved and FPD may be decreased in turkeys fed on diets containing lower CP and DEB levels.

  12. Heterologous Production and Yield Improvement of Epothilones in Burkholderiales Strain DSM 7029.

    PubMed

    Bian, Xiaoying; Tang, Biao; Yu, Yucong; Tu, Qiang; Gross, Frank; Wang, Hailong; Li, Aiying; Fu, Jun; Shen, Yuemao; Li, Yue-Zhong; Stewart, A Francis; Zhao, Guoping; Ding, Xiaoming; Müller, Rolf; Zhang, Youming

    2017-07-21

    The cloning of microbial natural product biosynthetic gene clusters and their heterologous expression in a suitable host have proven to be a feasible approach to improve the yield of valuable natural products and to begin mining cryptic natural products in microorganisms. Myxobacteria are a prolific source of novel bioactive natural products with only limited choices of heterologous hosts that have been exploited. Here, we describe the use of Burkholderiales strain DSM 7029 as a potential heterologous host for the functional expression of myxobacterial secondary metabolites. Using a newly established electroporation procedure, the 56 kb epothilone biosynthetic gene cluster from the myxobacterium Sorangium cellulosum was introduced into the chromosome of strain DSM 7029 by transposition. Production of epothilones A, B, C, and D was detected despite their yields being low. Optimization of the medium, introduction of the exogenous methylmalonyl-CoA biosynthetic pathway, and overexpression of rare tRNA genes resulted in an approximately 75-fold increase in the total yields of epothilones to 307 μg L -1 . These results show that strain DSM 7029 has the potential to produce epothilones with reasonable titers and might be a broadly applicable host for the heterologous expression of other myxobacterial polyketide synthases and nonribosomal peptide synthetases, expediting the process of genome mining.

  13. Simulation of crop yield variability by improved root-soil-interaction modelling

    NASA Astrophysics Data System (ADS)

    Duan, X.; Gayler, S.; Priesack, E.

    2009-04-01

    Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental

  14. Improving yield and reliability of FIB modifications using electrical testing

    NASA Astrophysics Data System (ADS)

    Desplats, Romain; Benbrik, Jamel; Benteo, Bruno; Perdu, Philippe

    1998-08-01

    Focused Ion Beam technology has two main areas of application for ICs: modification and preparation for technological analysis. The most solicited area is modification. This involves physically modifying a circuit by cutting lines and creating new ones in order to change the electrical function of the circuit. IC planar technologies have an increasing number of metal interconnections making FIB modifications more complex and decreasing their changes of success. The yield of FIB operations on ICs reflects a downward trend that imposes a greater number of circuits to be modified in order to successfully correct a small number of them. This requires extended duration, which is not compatible with production line turn around times. To respond to this problem, two solutions can be defined: either, reducing the duration of each FIB operation or increasing the success rate of FIB modifications. Since reducing the time depends mainly on FIB operator experience, insuring a higher success rate represents a more crucial aspect as both experienced and novice operators could benefit from this improvement. In order to insure successful modifications, it is necessary to control each step of a FIB operation. To do this, we have developed a new method using in situ electrical testing which has a direct impact on the yield of FIB modifications. We will present this innovative development through a real case study of a CMOS ASIC for high-speed communications. Monitoring the electrical behavior at each step in a FIB operation makes it possible to reduce the number of circuits to be modified and consequently reduces system costs thanks to better yield control. Knowing the internal electrical behavior also gives us indications about the impact on reliability of FIB modified circuits. Finally, this approach can be applied to failure analysis and FIB operations on flip chip circuits.

  15. Performance improvement: the organization's quest.

    PubMed

    McKinley, C O; Parmer, D E; Saint-Amand, R A; Harbin, C B; Roulston, J C; Ellis, R A; Buchanan, J R; Leonard, R B

    1999-01-01

    In today's health care marketplace, quality has become an expectation. Stakeholders are demanding quality clinical outcomes, and accrediting bodies are requiring clinical performance data. The Roosevelt Institute's quest was to define and quantify quality outcomes, develop an organizational culture of performance improvement, and ensure customer satisfaction. Several of the organization's leaders volunteered to work as a team to develop a specific performance improvement approach tailored to the organization. To date, over 200 employees have received an orientation to the model and its philosophy and nine problem action and process improvement teams have been formed.

  16. Seed-Specific Expression of OsDWF4, a Rate-Limiting Gene Involved in Brassinosteroids Biosynthesis, Improves Both Grain Yield and Quality in Rice.

    PubMed

    Li, Qian-Feng; Yu, Jia-Wen; Lu, Jun; Fei, Hong-Yuan; Luo, Ming; Cao, Bu-Wei; Huang, Li-Chun; Zhang, Chang-Quan; Liu, Qiao-Quan

    2018-04-18

    Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.

  17. Surface Engineering of ITO Substrates to Improve the Memory Performance of an Asymmetric Conjugated Molecule with a Side Chain.

    PubMed

    Hou, Xiang; Cheng, Xue-Feng; Xiao, Xin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-09-05

    Organic multilevel random resistive access memory (RRAM) devices with an electrode/organic layer/electrode sandwich-like structure suffer from poor reproducibility, such as low effective ternary device yields and a wide threshold voltage distribution, and improvements through organic material renovation are rather limited. In contrast, engineering of the electrode surfaces rather than molecule design has been demonstrated to boost the performance of organic electronics effectively. Herein, we introduce surface engineering into organic multilevel RRAMs to enhance their ternary memory performance. A new asymmetric conjugated molecule composed of phenothiazine and malononitrile with a side chain (PTZ-PTZO-CN) was fabricated in an indium tin oxide (ITO)/PTZ-PTZO-CN/Al sandwich-like memory device. Modification of the ITO substrate with a phosphonic acid (PA) prior to device fabrication increased the ternary device yield (the ratio of effective ternary device) and narrowed the threshold voltage distribution. The crystallinity analysis revealed that PTZ-PTZO-CN grown on untreated ITO crystallized into two phases. After the surface engineering of ITO, this crystalline ambiguity was eliminated and a sole crystal phase was obtained that was the same as in the powder state. The unified crystal structure and improved grain mosaicity resulted in a lower threshold voltage and, therefore, a higher ternary device yield. Our result demonstrated that PA modification also improved the memory performance of an asymmetric conjugated molecule with a side chain. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantitative Genetic Analysis Reveals Potential to Genetically Improve Fruit Yield and Drought Resistance Simultaneously in Coriander

    PubMed Central

    Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar

    2017-01-01

    Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836

  19. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  20. Yield Performance of six lychee cultivars grown at two locations in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    The globalization of the economy, increased ethnic diversity, and a greater demand for healthy and more diverse food production have increased the demand for tropical fruits. There is a lack of formal experimentation to determine yield performance and fruit quality traits of lychee (Litchi chinensi...

  1. MODIS Data Assimilation in the CROPGRO model for improving soybean yield estimations

    NASA Astrophysics Data System (ADS)

    Richetti, J.; Monsivais-Huertero, A.; Ahmad, I.; Judge, J.

    2017-12-01

    Soybean is one of the main agricultural commodities in the world. Thus, having better estimates of its agricultural production is important. Improving the soybean crop models in Brazil is crucial for better understanding of the soybean market and enhancing decision making, because Brazil is the second largest soybean producer in the world, Parana state is responsible for almost 20% of it, and by itself would be the fourth greatest soybean producer in the world. Data assimilation techniques provide a method to improve spatio-temporal continuity of crops through integration of remotely sensed observations and crop growth models. This study aims to use MODIS EVI to improve DSSAT-CROPGRO soybean yield estimations in the Parana state, southern Brazil. The method uses the Ensemble Kalman filter which assimilates MODIS Terra and Aqua combined products (MOD13Q1 and MYD13Q1) into the CROPGRO model to improve the agricultural production estimates through update of light interception data over time. Expected results will be validated with monitored commercial farms during the period of 2013-2014.

  2. Effects of different regulatory methods on improvement of greenhouse saline soils, tomato quality, and yield.

    PubMed

    Maomao, Hou; Xiaohou, Shao; Yaming, Zhai

    2014-01-01

    To identify effective regulatory methods scheduling with the compromise between the soil desalination and the improvement of tomato quality and yield, a 3-year field experiment was conducted to evaluate and compare the effect of straw mulching and soil structure conditioner and water-retaining agent on greenhouse saline soils, tomato quality, and yield. A higher salt removing rate of 80.72% in plough layer with straw mulching was obtained based on the observation of salt mass fraction in 0 ~ 20 cm soil layer before and after the experiment. Salts were also found to move gradually to the deeper soil layer with time. Straw mulching enhanced the content of soil organic matter significantly and was conductive to reserve soil available N, P, and K, while available P and K in soils of plough layer with soil structure conditioner decreased obviously; thus a greater usage of P fertilizer and K fertilizer was needed when applying soil structure conditioner. Considering the evaluation indexes including tomato quality, yield, and desalination effects of different regulatory methods, straw mulching was recommended as the main regulatory method to improve greenhouse saline soils in south China. Soil structure conditioner was the suboptimal method, which could be applied in concert with straw mulching.

  3. Phase feeding in a small-bird production scenario: effect on growth performance, yield, and fillet dimension.

    PubMed

    Brewer, V B; Owens, C M; Emmert, J L

    2012-05-01

    Phase feeding (PF) has been effective at maintaining broiler growth while reducing production cost, but the effect on different broiler strains grown in a small-bird production scenario has not been assessed. Three strains of commercial broilers were fed a diet containing average industry nutrient levels from 0 to 18 d. From 18 to 32 d, birds were fed either diets with average industry nutrient levels or diets with phased levels of amino acids. For PF, diets were prepared that contained Lys, sulfur amino acids, and Thr levels matching the predicted requirements for birds at the beginning (high nutrient density) and end (low nutrient density) of PF. Pelleted high and low nutrient-density diets were blended to produce rations containing amino acid levels that matched the predicted PF requirements over 2-d intervals, and diets were switched every other day during PF. Treatments were replicated in 6 pens; each pen contained 15 males and 15 females. Weight gain, feed intake, and feed efficiency were calculated. All birds were commercially processed; yield and fillet dimensions were calculated. Differences among strain BW were noted on d 0, 18, 32, and at processing. Males weighed more than females on d 18 (excluding strain C), 32, and the day of processing. Weight gain was affected by strain (P < 0.05) but not by feeding regimen in the overall growth period (18-39 d). Feed efficiency was improved by PF in strains B and C during the overall growth period. Fillet yield was improved with PF for strain B, and there were no significant differences between PF and industry fillet yields for the other 2 strains. Phase feeding had no effect on fillet dimensions, and there was little effect of strain. These results suggest that different strains may vary in their response to PF, although performance was similar or better in PF birds compared with birds fed the industry diet, regardless of strain.

  4. Effect of Arbuscular Mycorrhizal Fungi On Yield and Phytoremediation Performance of Pot Marigold (Calendula officinalis L.) Under Heavy Metals Stress.

    PubMed

    Tabrizi, Leila; Mohammadi, Siavash; Delshad, Mojtaba; Moteshare Zadeh, Babak

    2015-01-01

    In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012-2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil(-1) accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.

  5. Performance of sorghum cultivars for biomass quality and biomethane yield grown in semi-arid area of Pakistan.

    PubMed

    Hassan, Muhammad Umair; Chattha, Muhammad Umer; Mahmood, Athar; Sahi, Shahbaz Talib

    2018-05-01

    Biomass is a promising renewable energy source and its significance is escalating in the context of climate change and depletion of fossil foils. This study was conducted for two consecutive years 2016 and 2017, using five sorghum cultivars, i.e., JS-263, Jawar-2011, Hagari, JS-2002, and YS-2016, in order to determine the best cultivars in terms of dry matter yield, chemical composition, and biomethane yield grown under semi-arid conditions in Pakistan. The results revealed that sorghum cultivars responded differently in terms of growth, biomass yield, chemical composition, and methane yield. Cultivars Jawar-2011 produced maximum leaf area index, leaf area duration, crop growth rate, plant height, and leaves per plant, however, they were comparable with Sorghum-2016, whereas cultivar JS-2002 performed poorly among the tested cultivars. Similarly, cultivar Jawar-2011 produced maximum dry matter yield (16.37 t ha -1 ) similar to that of YS-2016, further cultivar JS-2002 performed poorly and gave lower dry matter yield (12.87 t ha -1 ). The maximum protein concentration (10.95), neutral detergent fibers (61.20), and lignin contents (5.55) found in Jawar-2011 were comparable with those in YS-2016, while the lowest neutral detergent fiber and lignin contents were found in JS-2002. Although JS-2002 produced the highest specific methane yield per kilogram of volatile solids, it was overcompensated by Jawar-2011 owing to higher dry matter yield per hectare. These results suggested that cultivar Jawar-2011 can be grown successfully in semi-arid conditions of Pakistan in order to get good biomass yield along with higher methane yield.

  6. Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria.

    PubMed

    Almeida, Ana S; Sonnewald, Ursula; Alves, Paula M; Vieira, Helena L A

    2016-08-01

    The process of cell differentiation goes hand-in-hand with metabolic adaptations, which are needed to provide energy and new metabolites. Carbon monoxide (CO) is an endogenous cytoprotective molecule able to inhibit cell death and improve mitochondrial metabolism. Neuronal differentiation processes were studied using the NT2 cell line, which is derived from human testicular embryonic teratocarcinoma and differentiates into post-mitotic neurons upon retinoic acid treatment. CO-releasing molecule A1 (CORM-A1) was used do deliver CO into cell culture. CO treatment improved NT2 neuronal differentiation and yield, since there were more neurons and the total cell number increased following the differentiation process. CO supplementation enhanced the mitochondrial population in post-mitotic neurons derived from NT2 cells, as indicated by an increase in mitochondrial DNA. CO treatment during neuronal differentiation increased the extent of the classical metabolic change that occurs during neuronal differentiation, from glycolytic to more oxidative metabolism, by decreasing the ratio of lactate production and glucose consumption. The expression of pyruvate and lactate dehydrogenases was higher, indicating an augmented oxidative metabolism. Moreover, these findings were corroborated by an increased percentage of (13) C incorporation from [U-(13) C]glucose into the tricarboxylic acid cycle metabolites malate and citrate, and also glutamate and aspartate in CO-treated cells. Finally, under low levels of oxygen (5%), which enhances glycolytic metabolism, some of the enhancing effects of CO on mitochondria were not observed. In conclusion, our data show that CO improves neuronal and mitochondrial yield by stimulation of tricarboxylic acid cycle activity, and thus oxidative metabolism of NT2 cells during the process of neuronal differentiation. The process of cell differentiation is coupled with metabolic adaptations. Carbon monoxide (CO) is an endogenous cytoprotective

  7. A comparison of economic performance between high-yielding temperate breeds and zebu-crossbreds on smallholder dairy farms in Southern Malawi with particular focus on reproductive performance.

    PubMed

    Gazzarin, Christian; Banda, M C; Lips, M

    2018-04-23

    As in other sub-Saharan African countries, purebred dairy genetics such as Holsteins were imported to Malawi. The study investigated their economic performance by comparing them with local Zebu-crossbreds based on 131 smallholder dairy farm observations from Southern Malawi. High-yielding purebred cows and crossbred cows showed no significant differences in lactation yield and calving interval. Looking at the farms' actual costs, by-products such as maize bran clearly dominated the cost structure for both breeds, but crossbreeds showed significantly lower concentrate costs. While there was no statistically significant difference in income for both breed types, a substantial share (23%) of farms under investigation shows negative incomes. Based on survey data, two typical farms were established representing standard costs with homogenous assumptions such as identical milk price. The comparison of typical farms covering the full dairy system clearly indicated that crossbred dairy cows outperformed purebreds. In addition, a simulation of a shorter calving interval for both typical farms revealed a substantial positive impact on income for both breed types with more than 30% increase. We conclude that focusing on crossbreds in combination with improved feeding and fertility management offers a more promising strategy for smallholder dairy farms in Southern Malawi than just acquiring high-yielding purebreds.

  8. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

    PubMed Central

    Núñez-López, Lizeth; Aguirre-Cruz, Andrés

    2015-01-01

    Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming growth processes under submergence stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-1 (a related gene) can be used to improve saccharification. Cellulolytic and amylolytic enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification yield than wild-type (Col-0), mainly from accumulated starch. This improved saccharification yield was developmentally controlled; when compared to Col-0, young transgenic vegetative plants yielded 200–300% more glucose, adult vegetative plants yielded 40–90% more glucose and plants in reproductive stage had no difference in yield. We measured photosynthetic parameters, starch granule microstructure, and transcript abundance of genes involved in starch degradation (SEX4, GWD1), juvenile transition (SPL3-5) and meristematic identity (FUL, SOC1) but found no differences to Col-0, indicating that starch accumulation may be controlled by down-regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported. SUB1A-1 transgenics also offered less resistance to deformation than wild-type concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase. We conclude that heterologous SUB1A-1 expression can improve saccharification yield and softness, two traits needed in bioethanol production. PMID:25780769

  9. Recent patterns of crop yield growth and stagnation.

    PubMed

    Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A

    2012-01-01

    In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.

  10. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition.

    PubMed

    Bouallagui, H; Lahdheb, H; Ben Romdan, E; Rachdi, B; Hamdi, M

    2009-04-01

    The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46-2.51 g volatile solids (VS)l(-1)d(-1), of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.

  11. Improving precision of forage yield trials: A case study

    USDA-ARS?s Scientific Manuscript database

    Field-based agronomic and genetic research relies heavily on the data generated from field evaluations. Therefore, it is imperative to optimize the precision of yield estimates in cultivar evaluation trials to make reliable selections. Experimental error in yield trials is sensitive to several facto...

  12. Modelling crop yield in Iberia under drought conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  13. Improving biogas quality and methane yield via co-digestion of agricultural and urban biomass wastes.

    PubMed

    Poulsen, Tjalfe G; Adelard, Laetitia

    2016-08-01

    Impact of co-digestion versus mono-digestion on biogas and CH4 yield for a set of five biomass materials (vegetable food waste, cow dung, pig manure, grass clippings, and chicken manure) was investigated considering 95 different biomass mixes of the five materials under thermophilic conditions in bench-scale batch experiments over a period of 65days. Average biogas and CH4 yields were significantly higher during co-digestion than during mono-digestion of the same materials. This improvement was most significant for co-digestion experiments involving three biomass types, although it was independent of the specific biomasses being co-digested. Improvement in CH4 production was further more prominent early in the digestion process during co-digestion compared to mono-digestion. Co-digestion also appeared to increase the ultimate CH4/CO2 ratio of the gas produced compared to mono-digestion although this tendency was relatively weak and not statistically significant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Water limits to closing yield gaps

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Garrassino, Francesco; Chiarelli, Davide; Seveso, Antonio; D'Odorico, Paolo

    2017-01-01

    Agricultural intensification is often seen as a suitable approach to meet the growing demand for agricultural products and improve food security. It typically entails the use of fertilizers, new cultivars, irrigation, and other modern technology. In regions of the world affected by seasonal or chronic water scarcity, yield gap closure is strongly dependent on irrigation (blue water). Global yield gap assessments have often ignored whether the water required to close the yield gap is locally available. Here we perform a gridded global analysis (10 km resolution) of the blue water consumption that is needed annually to close the yield gap worldwide and evaluate the associated pressure on renewable freshwater resources. We find that, to close the yield gap, human appropriation of freshwater resources for irrigation would have to increase at least by 146%. Most study countries would experience at least a doubling in blue water requirement, with 71% of the additional blue water being required by only four crops - maize, rice, soybeans, and wheat. Further, in some countries (e.g., Algeria, Morocco, Syria, Tunisia, and Yemen) the total volume of blue water required for yield gap closure would exceed sustainable levels of freshwater consumption (i.e., 40% of total renewable surface and groundwater resources).

  15. Fundamental Performance Improvement of Microwave Kinetic Inductance Detectors for UVOIR Astrophysics

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin

    Ultraviolet, Optical, and near-Infrared Microwave Kinetic Inductance Detectors (UVOIR MKIDs) are one of the most powerful new technologies to emerge out of the NASA APRA detectors program in the last decade. This proposal seeks to build on previous APRA grants to drastically improve the performance of UVOIR MKIDs. Like an X-ray microcalorimeter ultraviolet, optical, and near-IR (UVOIR) MKIDs are cryogenic detectors capable of detecting single photons and measuring their energy without filters or gratings. Our team has created this technology from the ground up, and fielded a 2024-pixel UVOIR MKID array on five separate observing runs at 5-m class telescopes. With 34 observing nights successfully completed and two astronomy papers published using MKID data (the first astronomy papers published using MKID data at any wavelength), UVOIR MKIDs are at TRL 5-6 for ground-based astronomy, and TRL 3 for space-based astronomy. The outstanding potential of these detectors was recognized in the recent NASA long term vision, "Enduring Quests, Daring Visions'', which recognized on page 88 that MKIDs have tremendous potential for future NASA UVOIR space missions, especially for finding Earth twins around nearby stars: "..microwave kinetic inductance detectors (MKIDs) would be a game-changing capability..''. Current UVOIR MKIDs feature array sizes in the 10-30 kpix range, energy resolution R=16 at 254 nm, ~70% pixel yield, and quantum efficiency that goes from 70% in the UV to 25% in the near-IR. These arrays, fabricated out of Titanium Nitride (TiN) on a high resistivity silicon substrate, are fully functional for ground-based science. However, our current MKIDs are far away from their theoretical limits, especially in yield (70% vs. 100%) and energy resolution (R=10 vs. R=100 at 400 nm). The yield is of especially urgent concern as missing pixels make accurate photometry difficult, especially for rapidly time variable sources like compact binaries that we have been studying

  16. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  17. Farmers Extension Program Effects on Yield Gap in North China Plain

    NASA Astrophysics Data System (ADS)

    Sum, N.; Zhao, Y.

    2015-12-01

    Improving crop yield of the lowest yielding smallholder farmers in developing countries is essential to both food security of the country and the farmers' livelihood. Although wheat and maize production in most developed countries have reached 80% or greater of yield potential determined by simulated models, yield gap remains high in the developing world. One of these cases is the yield gap of maize in the North China Plain (NCP), where the average farmer's yield is 41% of his or her potential yield. This large yield gap indicates opportunity to raise yields substantially by improving agronomy, especially in nutrition management, irrigation facility, and mechanization issues such as technical services. Farmers' agronomic knowledge is essential to yield performance. In order to propagate such knowledge to farmers, agricultural extension programs, especially in-the-field guidance with training programs at targeted demonstration fields, have become prevalent in China. Although traditional analyses of the effects of the extension program are done through surveys, they are limited to only one to two years and to a small area. However, the spatial analysis tool Google Earth Engine (GEE) and its extensive satellite imagery data allow for unprecedented spatial temporal analysis of yield variation. We used GEE to analyze maize yield in Quzhou county in the North China Plain from 2007 to 2013. We based our analysis on the distance from a demonstration farm plot, the source of the farmers' agronomic knowledge. Our hypothesis was that the farther the farmers' fields were from the demonstration plot, the less access they would have to the knowledge, and the less increase in yield over time. Testing this hypothesis using GEE helps us determine the effectiveness of the demonstration plot in disseminating optimal agronomic practices in addition to evaluating yield performance of the demonstration field itself. Furthermore, we can easily extend this methodology to analyze the whole

  18. Improve strategic supplier performance using DMAIC to develop a Quality Improvement Plan

    NASA Astrophysics Data System (ADS)

    Jardim, Kevin P.

    Supplier performance that meets the requirements of the customer has long plagued quality professionals. Despite the vast efforts by organizations to improve supplier performance, little has been done to standardize the plan to improve performance. This project presents a guideline and problem-solving strategy using a Define, Measure, Analyze, Improve, and Control (DMAIC) structured tool that will assist in the management and improvement of supplier performance. An analysis of benchmarked Quality Improvement Plans indicated that this topic needs more focus on how to accomplish improved supplier performance. This project is part of a growing body of supplier continuous improvement efforts. With the input of Zodiac Aerospace quality professionals this project's results provide a solution to Quality Improvement Plans and show objective evidence of its benefits. This project contributes to the future research on similar topics.

  19. High temperature pre-digestion of corn stover biomass for improved product yields

    DOE PAGES

    Brunecky, Roman; Hobdey, Sarah E.; Taylor, Larry E.; ...

    2014-12-03

    Introduction: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.more » Results: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. In conclusion, Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.« less

  20. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies

    PubMed Central

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J.; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C3 crops is limited by their capacity to exploit sufficient carbon. The “C fertilization” through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels. PMID:22833749

  1. Improving yield potential in crops under elevated CO(2): Integrating the photosynthetic and nitrogen utilization efficiencies.

    PubMed

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.

  2. The efficacy of high-fidelity simulation on psychomotor clinical performance improvement of undergraduate nursing students.

    PubMed

    Vincent, Mary Anne; Sheriff, Susan; Mellott, Susan

    2015-02-01

    High-fidelity simulation has become a growing educational modality among institutions of higher learning ever since the Institute of Medicine recommended that it be used to improve patient safety in 2000. However, there is limited research on the effect of high-fidelity simulation on psychomotor clinical performance improvement of undergraduate nursing students being evaluated by experts using reliable and valid appraisal instruments. The purpose of this integrative review and meta-analysis is to explore what researchers have established about the impact of high-fidelity simulation on improving the psychomotor clinical performance of undergraduate nursing students. Only eight of the 1120 references met inclusion criteria. A meta-analysis using Hedges' g to compute the effect size and direction of impact yielded a range of -0.26 to +3.39. A positive effect was shown in seven of eight studies; however, there were five different research designs and six unique appraisal instruments used among these studies. More research is necessary to determine if high-fidelity simulation improves psychomotor clinical performance in undergraduate nursing students. Nursing programs from multiple sites having a standardized curriculum and using the same appraisal instruments with established reliability and validity are ideal for this work.

  3. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    -weighted result of area and yield contributions for each country, at each time-step. As part of our research we will generate historic figures and tabular data for every country-crop combination. Phase 3: In the final phase of our research, we attempt to demonstrate how different yield performers (for example, those growing crops at the yield floor vs. the yield ceiling) have utilized different area/yield strategies to increase agricultural production. To group individual pixels into performance quintiles, we utilize binning strategies from previous spatial yield-gap assessments. The results from this step will illustrate how the yield ceiling has improved over time vis-à-vis improvements in the yield floor. As we look forward to a more sustainable and productive agricultural future, we hope the results of this global analysis of our agricultural past can be utilized to identify both optimal and adverse strategies for agricultural growth.

  4. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    PubMed

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool

  5. An investigation of improved airbag performance by vent control and gas injection

    NASA Astrophysics Data System (ADS)

    Lee, Calvin; Rosato, Nick; Lai, Francis

    Airbags are currently being investigated as an impact energy absorber for U.S. Army airdrop. Simple airbags with constant vent areas have been found to be unsatisfactory in yielding high G forces. In this paper, a method of controlling the vent area and a method of injecting gas into the airbag during its compression stroke to improve airbag performance are presented. Theoretical analysis of complex airbags using these two methods show that they provide lower G forces than simple airbags. Vertical drop tests of a vent-control airbag confirm this result. Gas-injection airbags are currently being tested.

  6. Dielectric Coating Thermal Stabilization During GaAs-Based Laser Fabrication for Improved Device Yield

    DTIC Science & Technology

    2015-11-25

    1 Dielectric coating thermal stabilization during GaAs-based laser fabrication for improved device yield 1 Michael K. Connors a, c), Jamal...side contact metal, underlying SiO2 dielectric coating, and semiconductor surface. A thermal-anneal procedure developed for the fabrication of GaAs...slab coupled optical waveguide (SCOW) ridge waveguide devices stabilizes the SiO2 dielectric coating, by means of outgassing and stress reduction

  7. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield.

    PubMed

    Guo, Mei; Rupe, Mary A; Wei, Jun; Winkler, Chris; Goncalves-Butruille, Marymar; Weers, Ben P; Cerwick, Sharon F; Dieter, Jo Ann; Duncan, Keith E; Howard, Richard J; Hou, Zhenglin; Löffler, Carlos M; Cooper, Mark; Simmons, Carl R

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.

  8. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield

    PubMed Central

    Guo, Mei

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays ARGOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer’s modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer’s female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance. PMID:24218327

  9. High-yield maize with large net energy yield and small global warming intensity

    PubMed Central

    Grassini, Patricio; Cassman, Kenneth G.

    2012-01-01

    Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684

  10. Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries.

    PubMed

    Godin, Bruno; Nagle, Nick; Sattler, Scott; Agneessens, Richard; Delcarte, Jérôme; Wolfrum, Edward

    2016-01-01

    For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment. In this work, we used a laboratory-scale screening tool that mimics relevant thermochemical pretreatment conditions to compare the total sugar yield of three near-isogenic brown midrib ( bmr ) mutant lines and the wild-type (WT) sorghum cultivar. We then compared results obtained from the laboratory-scale screening pretreatment assay to a large-scale pretreatment system. After pretreatment and enzymatic hydrolysis, the bmr mutants had higher total sugar yields than the WT sorghum cultivar. Increased pretreatment temperatures increased reactivity for all sorghum samples reducing the differences observed at lower reaction temperatures. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples, and reduced the differences in total sugar yields among them, but solubilized a sizable fraction of the non-structural carbohydrates. The general trends of increased total sugar yield in the bmr mutant compared to the WT seen at the laboratory scale were observed at the large-scale system. However, in the larger reactor system, the measured total sugar yields were lower and the difference in total sugar yield between the WT and bmr sorghum was larger. Sorghum bmr mutants, which have a reduced lignin content showed

  11. Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries

    DOE PAGES

    Godin, Bruno; Nagle, Nick; Sattler, Scott; ...

    2016-11-21

    For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment. In thismore » work, we used a laboratory-scale screening tool that mimics relevant thermochemical pretreatment conditions to compare the total sugar yield of three near-isogenic brown midrib (bmr) mutant lines and the wild-type (WT) sorghum cultivar. We then compared results obtained from the laboratory-scale screening pretreatment assay to a large-scale pretreatment system. After pretreatment and enzymatic hydrolysis, the bmr mutants had higher total sugar yields than the WT sorghum cultivar. Increased pretreatment temperatures increased reactivity for all sorghum samples reducing the differences observed at lower reaction temperatures. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples, and reduced the differences in total sugar yields among them, but solubilized a sizable fraction of the non-structural carbohydrates. The general trends of increased total sugar yield in the bmr mutant compared to the WT seen at the laboratory scale were observed at the large-scale system. However, in the larger reactor system, the measured total sugar yields were lower and the difference in total sugar yield between the WT and bmr sorghum was larger. Sorghum bmr mutants, which have a reduced lignin content

  12. Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godin, Bruno; Nagle, Nick; Sattler, Scott

    For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment. In thismore » work, we used a laboratory-scale screening tool that mimics relevant thermochemical pretreatment conditions to compare the total sugar yield of three near-isogenic brown midrib (bmr) mutant lines and the wild-type (WT) sorghum cultivar. We then compared results obtained from the laboratory-scale screening pretreatment assay to a large-scale pretreatment system. After pretreatment and enzymatic hydrolysis, the bmr mutants had higher total sugar yields than the WT sorghum cultivar. Increased pretreatment temperatures increased reactivity for all sorghum samples reducing the differences observed at lower reaction temperatures. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples, and reduced the differences in total sugar yields among them, but solubilized a sizable fraction of the non-structural carbohydrates. The general trends of increased total sugar yield in the bmr mutant compared to the WT seen at the laboratory scale were observed at the large-scale system. However, in the larger reactor system, the measured total sugar yields were lower and the difference in total sugar yield between the WT and bmr sorghum was larger. Sorghum bmr mutants, which have a reduced lignin content

  13. A Case Study of Improving Yield Prediction and Sulfur Deficiency Detection Using Optical Sensors and Relationship of Historical Potato Yield with Weather Data in Maine

    PubMed Central

    Sharma, Lakesh K.; Bali, Sukhwinder K.; Dwyer, James D.; Plant, Andrew B.; Bhowmik, Arnab

    2017-01-01

    In Maine, potato yield is consistent, 38 t·ha−1, for last 10 years except 2016 (44 t·ha−1) which confirms that increasing the yield and quality of potatoes with current fertilization practices is difficult; hence, new or improvised agronomic methods are needed to meet with producers and industry requirements. Normalized difference vegetative index (NDVI) sensors have shown promise in regulating N as an in season application; however, using late N may stretch out the maturation stage. The purpose of the research was to test Trimble GreenSeeker® (TGS) and Holland Scientific Crop Circle™ ACS-430 (HCCACS-430) wavebands to predict potato yield, before the second hilling (6–8 leaf stage). Ammonium sulfate, S containing N fertilizer, is not advised to be applied on acidic soils but accounts for 60–70% fertilizer in Maine’s acidic soils; therefore, sensors are used on sulfur deficient site to produce sensor-bound S application guidelines before recommending non-S-bearing N sources. Two study sites investigated for this research include an S deficient site and a regular spot with two kinds of soils. Six N treatments, with both calcium ammonium nitrate and ammonium nitrate, under a randomized complete block design with four replications, were applied at planting. NDVI readings from both sensors were obtained at V8 leaf stages (8 leaf per plant) before the second hilling. Both sensors predict N and S deficiencies with a strong interaction with an average coefficient of correlation (r2) ~45. However, HCCACS-430 was observed to be more virtuous than TGS. The correlation between NDVI (from both sensors) and the potato yield improved using proprietor-proxy leaf area index (PPLAI) from HCCACS-430, e.g., r2 value of TGS at Easton site improve from 48 to 60. Weather data affected marketable potato yield (MPY) significantly from south to north in Maine, especially precipitation variations that could be employed in the N recommendations at planting and in season

  14. Performance, blood parameters and meat yield in broiler chickens supplemented with Mexican oregano oil

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the inclusion of Mexican oregano oil (MOO) Lippia berlandieri Schauer in broiler diets during grow-out on performance, blood parameters, and meat yield. One hundred and sixty-two one-day-old broilers, randomly divided into three equal groups (treatments): CON =...

  15. Improving performance on core processes of care.

    PubMed

    Austin, John Matthew; Pronovost, Peter J

    2016-06-01

    This article describes the recent literature on using extrinsic and intrinsic motivators to improve performance on core processes of care, highlighting literature that describes general frameworks for quality improvement work. The literature supporting the effectiveness of extrinsic motivators to improve quality is generally positive for public reporting of performance, with mixed results for pay-for-performance. A four-element quality improvement framework developed by The Armstrong Institute at Johns Hopkins Medicine was developed with intrinsic motivation in mind. The clear definition and communication of goals are important for quality improvement work. Training clinicians in improvement science, such as lean sigma, teamwork, or culture change provides clinicians with the skills they need to drive the improvement work. Peer learning communities offer the opportunity for clinicians to engage with each other and offer support in their work. The transparent reporting of performance helps ensure accountability of performance ranging from individual clinicians to governance. Quality improvement work that is led by and engages clinicians offers the opportunity for the work to be both meaningful and sustainable. The literature supports approaching quality improvement work in a systematic way, including the key elements of communication, infrastructure building, training, transparency, and accountability.

  16. Improved scintillation detector performance via a method of enhanced layered coatings

    DOE PAGES

    Wakeford, Daniel Tyler; Tornga, Shawn Robert; Adams, Jillian Cathleen; ...

    2016-11-16

    Increasing demand for better detection performance with a simultaneous reduction in size, weight and power consumption has motivated the use of compact semiconductors as photo-converters for many gamma-ray and neutron scintillators. The spectral response of devices such as silicon avalanche photodiodes (APDs) is poorly matched to many common high-performance scintillators. We have developed a generalized analytical method that utilizes an optical reference database to match scintillator luminescence to the excitation spectrum of high quantum efficiency semiconductor detectors. This is accomplished by the fabrication and application of a series of high quantum yield, short fluorescence lifetime, wavelengthshifting coatings. Furthermore, we showmore » here a 22% increase in photoelectron collection and a 10% improvement in energy resolution when applying a layered coating to an APD-coupled, cerium-doped, yttrium oxyorthosilicate (YSO:Ce) scintillator. Wavelength-shifted radioluminescence emission and rise time analysis are also discussed.« less

  17. Improving Performance in a Nuclear Cardiology Department

    ERIC Educational Resources Information Center

    LaFleur, Doug; Smalley, Karolyn; Austin, John

    2005-01-01

    Improving performance in the medical industry is an area that is ideally suited for the tools advocated by the International Society of Performance Improvement (ISPI). This paper describes an application of the tools that have been developed by Dale Brethower and Geary Rummler, two pillars of the performance improvement industry. It allows the…

  18. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre

    PubMed Central

    Zhao, X.; Moates, G.K.; Elliston, A.; Wilson, D.R.; Coleman, M.J.; Waldron, K.W.

    2015-01-01

    This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210 °C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g−1 substrate) cellulase plus β-glucosidase (2 U g−1 substrate) and a yeast inoculum of 10% (v/v or 8.0 × 107 cells mL−1). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. PMID:26210138

  19. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana

    PubMed Central

    Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean

  20. CF6 Jet Engine Performance Improvement Program: High Pressure Turbine Aerodynamic Performance Improvement

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1980-01-01

    The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.

  1. Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

    PubMed Central

    2011-01-01

    Background: New transbronchial needle aspiration (TBNA) technologies have been developed, but their clinical effectiveness and determinants of diagnostic yield have not been quantified. Prospective data are needed to determine risk-adjusted diagnostic yield. Methods: We prospectively enrolled patients undergoing TBNA of mediastinal lymph nodes in the American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education (AQuIRE) multicenter database and recorded clinical, procedural, and provider information. All clinical decisions, including type of TBNA used (conventional vs endobronchial ultrasound-guided), were made by the attending bronchoscopist. The primary outcome was obtaining a specific diagnosis. Results: We enrolled 891 patients at six hospitals. Most procedures (95%) were performed with ultrasound guidance. A specific diagnosis was made in 447 cases. Unadjusted diagnostic yields were 37% to 54% for different hospitals, with significant between-hospital heterogeneity (P = .0001). Diagnostic yield was associated with annual hospital TBNA volume (OR, 1.003; 95% CI, 1.000-1.006; P = .037), smoking (OR, 1.55; 95% CI, 1.02-2.34; P = .042), biopsy of more than two sites (OR, 0.57; 95% CI, 0.38-0.85; P = .015), lymph node size (reference > 1-2 cm, ≤ 1 cm: OR, 0.51; 95% CI, 0.34-0.77; P = .003; > 2-3 cm: OR, 2.49; 95% CI, 1.61-3.85; P < .001; and > 3 cm: OR, 3.61; 95% CI, 2.17-6.00; P < .001), and positive PET scan (OR, 3.12; 95% CI, 1.39-7.01; P = .018). Biopsy was performed on more and smaller nodes at high-volume hospitals (P < .0001). Conclusions: To our knowledge, this is the first bronchoscopy study of risk-adjusted diagnostic yields on a hospital-level basis. High-volume hospitals were associated with high diagnostic yields. This study also demonstrates the value of procedural registries as a quality improvement tool. A larger number and variety of participating hospitals is needed to verify these results and to further

  2. Pyramiding genes and alleles for improving energy cane biomass yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Ray; Nagai, Chifumi; Yu, Qingyi

    The overall goal of this project is to identify genes and gene interaction networks contributed to the extreme segregants with 30 folds biomass yield difference in sugarcane F2 populations. Towards achieving this goal, yield trials of 108 F2 extreme segregants from S. officinarum LA Purple and S. robustum MOL5829 (LM population) were carried out in two locations in three years. A yield trial of the second F2 population from S. officinarum LA Purple and S. spontaneum US56-14-4 (LU population) was installed in the summer of 2014 and the first set of yield component data was collected. For genotyping, transcriptomes frommore » leaves and stalks of 70 extreme segregants of the LM F2 population and 119 individuals of the LU F2 populations were sequenced. The genomes of 91 F1 individuals from the LM populations are being sequenced to construct ultra-high density genetic maps for each of the two parents for both assisting the LA Purple genome assembling and for testing a hypothesis of female restitution. The genomes of 110 F2 individuals from single F1 in the LU population, a different set from the 119 F2 individuals used for transcriptome sequencing, are being sequenced for mapping genes and QTLs affecting biomass yield and for testing a hypothesis of female restitution. Gene expression analysis between extreme segregants of high and low biomass yield showed up-regulation of cellulose synthase, cellulose, and xylan synthase in high biomass yield segregants among 3,274 genes differentially expressed between the two extremes. Our transcriptome results revealed not only the increment of cell wall biosynthesis pathway is essential, but the rapid turnover of certain cell wall polymers as well as carbohydrate partitioning are also important for recycling and energy conservation during rapid cell growth in high biomass sugarcane. Seventeen differentially expressed genes in auxin, one in ethylene and one in gibberellin related signaling and biosynthesis pathways were

  3. Improving emergency physician performance using audit and feedback: a systematic review.

    PubMed

    Le Grand Rogers, R; Narvaez, Yizza; Venkatesh, Arjun K; Fleischman, William; Hall, M Kennedy; Taylor, R Andrew; Hersey, Denise; Sette, Lynn; Melnick, Edward R

    2015-10-01

    Audit and feedback can decrease variation and improve the quality of care in a variety of health care settings. There is a growing literature on audit and feedback in the emergency department (ED) setting. Because most studies have been small and not focused on a single clinical process, systematic assessment could determine the effectiveness of audit and feedback interventions in the ED and which specific characteristics improve the quality of emergency care. The objective of the study is to assess the effect of audit and feedback on emergency physician performance and identify features critical to success. We adhered to the PRISMA statement to conduct a systematic review of the literature from January 1994 to January 2014 related to audit and feedback of physicians in the ED. We searched Medline, EMBASE, PsycINFO, and PubMed databases. We included studies that were conducted in the ED and reported quantitative outcomes with interventions using both audit and feedback. For included studies, 2 reviewers independently assessed methodological quality using the validated Downs and Black checklist for nonrandomized studies. Treatment effect and heterogeneity were to be reported via meta-analysis and the I2 inconsistency index. The search yielded 4332 articles, all of which underwent title review; 780 abstracts and 131 full-text articles were reviewed. Of these, 24 studies met inclusion criteria with an average Downs and Black score of 15.6 of 30 (range, 6-22). Improved performance was reported in 23 of the 24 studies. Six studies reported sufficient outcome data to conduct summary analysis. Pooled data from studies that included 41,124 patients yielded an average treatment effect among physicians of 36% (SD, 16%) with high heterogeneity (I2=83%). The literature on audit and feedback in the ED reports positive results for interventions across numerous clinical conditions but without standardized reporting sufficient for meta-analysis. Characteristics of audit and

  4. Self-assessed performance improves statistical fusion of image labels

    PubMed Central

    Bryan, Frederick W.; Xu, Zhoubing; Asman, Andrew J.; Allen, Wade M.; Reich, Daniel S.; Landman, Bennett A.

    2014-01-01

    . Statistical fusion resulted in statistically indistinguishable performance from self-assessed weighted voting. The authors developed a new theoretical basis for using self-assessed performance in the framework of statistical fusion and demonstrated that the combined sources of information (both statistical assessment and self-assessment) yielded statistically significant improvement over the methods considered separately. Conclusions: The authors present the first systematic characterization of self-assessed performance in manual labeling. The authors demonstrate that self-assessment and statistical fusion yield similar, but complementary, benefits for label fusion. Finally, the authors present a new theoretical basis for combining self-assessments with statistical label fusion. PMID:24593721

  5. Restoring Executive Confidence in Performance Improvement

    ERIC Educational Resources Information Center

    Seidman, William; McCauley, Michael

    2012-01-01

    Many organizations have significantly decreased their investment in performance improvement initiatives because they believe they are too risky. In fact, organizations should invest in performance improvements to build cash reserves and gain market share. Recent scientific breakthroughs have led to the development of methodologies and technologies…

  6. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOEpatents

    Shelnutt, John A.

    1986-01-01

    A method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation which comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a gas hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound .pi.--.pi. complexes which can develop.

  7. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOEpatents

    Shelnutt, J.A.

    1984-11-29

    A method is disclosed improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation. The method comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound ..pi..-..pi.. complexes which can develop.

  8. Li Anode Technology for Improved Performance

    NASA Technical Reports Server (NTRS)

    Chen, Tuqiang

    2011-01-01

    A novel, low-cost approach to stabilization of Li metal anodes for high-performance rechargeable batteries was developed. Electrolyte additives are selected and used in Li cell electrolyte systems, promoting formation of a protective coating on Li metal anodes for improved cycle and safety performance. Li batteries developed from the new system will show significantly improved battery performance characteristics, including energy/power density, cycle/ calendar life, cost, and safety.

  9. Improvement of cloud stability, yield and β-carotene content of carrot juice by process modification.

    PubMed

    Yu, Li Juan; Rupasinghe, H P Vasantha

    2013-10-01

    This study investigated the effects of three processing factors, acid blanching, centrifugation and dynamic high pressure homogenization, on cloud stability of carrot juice. Results indicated that the optimum processing condition for stabilized carrot juice were with dynamic high pressure homogenization at 100 MPa combined with 2% citric acid blanching at 95-100  for 2 min followed by 2000 r/min centrifugation for 10 min. The improvement of juice yield was also investigated using a pre-treatment of three commercial enzymes: Pectinex 3XL® (pectinase), Celluclast 1.5 L® (cellulase) and Novozyme 188™ (β-glucosidase). The combination of 0.1 g/kg of Pectinex 3XL®, 0.1 g/kg of Celluclast 1.5 L® and 0.1 g/kg of Novozyme 188™ at 50  and pH 4.0 for 90 min was the most effective condition to improve carrot juice yield from 49% to 67%. The enzymatic treatment increased juice total soluble solids from 7.5 to 8.9°Brix and β-carotene content from 21.4 to 33.7 mg/kg.

  10. Virtual chromoendoscopy improves the diagnostic yield of small bowel capsule endoscopy in obscure gastrointestinal bleeding.

    PubMed

    Boal Carvalho, Pedro; Magalhães, Joana; Dias de Castro, Francisca; Gonçalves, Tiago Cúrdia; Rosa, Bruno; Moreira, Maria João; Cotter, José

    2016-02-01

    Small bowel capsule endoscopy represents the initial investigation for obscure gastrointestinal bleeding. Flexible spectral imaging colour enhancement (FICE) is a virtual chromoendoscopy technique designed to enhance mucosal lesions, available in different settings according to light wavelength-- FICE1, 2 and 3. To compare the diagnostic yield of FICE1 and white light during capsule endoscopy in patients with obscure gastrointestinal bleeding. Retrospective single-centre study including 60 consecutive patients referred for small bowel capsule endoscopy for obscure gastrointestinal bleeding. Endoscopies were independently reviewed in FICE1 and white light; findings were then reviewed by another researcher, establishing a gold standard. Diagnostic yield was defined as the presence of lesions with high bleeding potential (P2) angioectasias, ulcers or tumours. Diagnostic yield using FICE1 was significantly higher than white light (55% vs. 42%, p=0.021). A superior number of P2 lesions was detected with FICE1 (74 vs. 44, p=0.003), particularly angioectasias (54 vs. 26, p=0.002), but not ulcers or tumours. FICE1 was significantly superior to white light, resulting in a 13% improvement in diagnostic yield, and potentially bleeding lesions particularly angioectasias were more often observed. Our results support the use of FICE1 while reviewing small bowel capsule endoscopy for obscure gastrointestinal bleeding. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. Coded aperture solution for improving the performance of traffic enforcement cameras

    NASA Astrophysics Data System (ADS)

    Masoudifar, Mina; Pourreza, Hamid Reza

    2016-10-01

    A coded aperture camera is proposed for automatic license plate recognition (ALPR) systems. It captures images using a noncircular aperture. The aperture pattern is designed for the rapid acquisition of high-resolution images while preserving high spatial frequencies of defocused regions. It is obtained by minimizing an objective function, which computes the expected value of perceptual deblurring error. The imaging conditions and camera sensor specifications are also considered in the proposed function. The designed aperture improves the depth of field (DoF) and subsequently ALPR performance. The captured images can be directly analyzed by the ALPR software up to a specific depth, which is 13 m in our case, though it is 11 m for the circular aperture. Moreover, since the deblurring results of images captured by our aperture yield fewer artifacts than those captured by the circular aperture, images can be first deblurred and then analyzed by the ALPR software. In this way, the DoF and recognition rate can be improved at the same time. Our case study shows that the proposed camera can improve the DoF up to 17 m while it is limited to 11 m in the conventional aperture.

  12. Combined Application of Biofertilizers and Inorganic Nutrients Improves Sweet Potato Yields

    PubMed Central

    Mukhongo, Ruth W.; Tumuhairwe, John B.; Ebanyat, Peter; AbdelGadir, AbdelAziz H.; Thuita, Moses; Masso, Cargele

    2017-01-01

    Sweet potato [Ipomoea batatas (L) Lam] yields currently stand at 4.5 t ha−1 on smallholder farms in Uganda, despite the attainable yield (45–48 t ha−1) of NASPOT 11 cultivar comparable to the potential yield (45 t ha−1) in sub-Saharan Africa (SSA). On-farm field experiments were conducted for two seasons in the Mt Elgon High Farmlands and Lake Victoria Crescent agro-ecological zones in Uganda to determine the potential of biofertilizers, specifically arbuscular mycorrhizal fungi (AMF), to increase sweet potato yields (NASPOT 11 cultivar). Two kinds of biofertilizers were compared to different rates of phosphorus (P) fertilizer when applied with or without nitrogen (N) and potassium (K). The sweet potato response to treatments was variable across sites (soil types) and seasons, and significant tuber yield increase (p < 0.05) was promoted by biofertilizer and NPK treatments during the short-rain season in the Ferralsol. Tuber yields ranged from 12.8 to 20.1 t ha−1 in the Rhodic Nitisol (sandy-clay) compared to 7.6 to 14.9 t ha−1 in the Ferralsol (sandy-loam) during the same season. Root colonization was greater in the short-rain season compared to the long-rain season. Biofertilizers combined with N and K realized higher biomass and tuber yield than biofertilizers alone during the short-rain season indicating the need for starter nutrients for hyphal growth and root colonization of AMF. In this study, N0.25PK (34.6 t ha−1) and N0.5PK (32.9 t ha−1) resulted in the highest yield during the long and the short-rain season, respectively, but there was still a yield gap of 11.9 and 13.6 t ha−1 for the cultivar. Therefore, a combination of 90 kg N ha−1 and 100 kg K ha−1 with either 15 or 30 kg P ha−1 can increase sweet potato yield from 4.5 to >30 t ha−1. The results also show that to realize significance of AMF in nutrient depleted soils, starter nutrients should be included. PMID:28348569

  13. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    PubMed Central

    Khan, Shahbaz; Anwar, Sumera; Kuai, Jie; Ullah, Sana; Fahad, Shah; Zhou, Guangsheng

    2017-01-01

    Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016) under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2) and four N rates (0, 60, 120, and 180 kg ha−1). Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80%) and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy. PMID:28536581

  14. Short- and long-term effects of forage supplementation of calves during the preweaning period on performance, reproduction, and milk yield at first lactation.

    PubMed

    Castells, Ll; Bach, A; Terré, M

    2015-07-01

    Sixty female Holstein calves [body weight (BW)=39.5±3.76kg] were fed a ground starter concentrate [19% crude protein, 19% neutral detergent fiber (NDF)] during the preweaning period. Furthermore, oats hay (68% NDF) was supplemented only during the postweaning period (CON) or during both pre- and postweaning periods (OH) to evaluate performance until first breeding, diet digestibility after weaning, reproductive performance, and milk yield at first lactation. Calves were individually housed and bedded with wood shavings. All calves were offered 6 L/d of milk replacer (MR) at 12% dry matter (DM) in 2 feedings until 28d of age, 3 L/d of MR at 12% DM in 2 feedings from 29 to 44d of age calves, and 1.5 L of MR at 12% DM in 1 feeding from 45 to 51d of age. Animals were weaned at 52d of age. Starter concentrate and forage intake were recorded daily and BW weekly until 65d of age. Two weeks after weaning, total-tract apparent digestibility was determined in 6 calves per treatment. Heifer BW was recorded at 10 mo of age. Breeding and milk yield at first lactation were also recorded. Starter concentrate intake was greater in OH compared with CON animals during the preweaning period. As a result, calves in the OH treatment had greater average daily gain (ADG) than CON animals during the preweaning period. After weaning, OH calves consumed more forage than CON animals, but we found no differences between treatments in ADG and starter concentrate intake. Similarly, total-tract apparent digestibility did not differ between treatments, and BW and ADG from 2wk after weaning to 10mo of age did not differ between treatments. Moreover, no differences in reproductive performance [age at first artificial insemination (AI), age at fertile insemination, conception rate at first AI, and number of AI] or milk yield at first lactation were observed between treatments, although a positive relationship between growth rate early in life and future energy-corrected milk yield was found. We

  15. Possible changes to arable crop yields by 2050

    PubMed Central

    Jaggard, Keith W.; Qi, Aiming; Ober, Eric S.

    2010-01-01

    By 2050, the world population is likely to be 9.1 billion, the CO2 concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2°C. In these conditions, what contribution can increased crop yield make to feeding the world? CO2 enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO2-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations. PMID:20713388

  16. Possible changes to arable crop yields by 2050.

    PubMed

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.

  17. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre.

    PubMed

    Zhao, X; Moates, G K; Elliston, A; Wilson, D R; Coleman, M J; Waldron, K W

    2015-10-01

    This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210°C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g(-1) substrate) cellulase plus β-glucosidase (2 U g(-1) substrate) and a yeast inoculum of 10% (v/v or 8.0×10(7) cells mL(-1)). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.; Phuyal, Khem P.; Ji, Lei

    2013-01-01

    In this study, we developed a new approach that adjusted normalized difference vegetation index (NDVI) pixel values that were near saturation to better characterize the cropland performance (CP) in the Greater Platte River Basin (GPRB), USA. The relationship between NDVI and the ratio vegetation index (RVI) at high NDVI values was investigated, and an empirical equation for estimating saturation-adjusted NDVI (NDVIsat_adjust) based on RVI was developed. A 10-year (2000–2009) NDVIsat_adjust data set was developed using 250-m 7-day composite historical eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. The growing season averaged NDVI (GSN), which is a proxy for ecosystem performance, was estimated and long-term NDVI non-saturation- and saturation-adjusted cropland performance (CPnon_sat_adjust, CPsat_adjust) maps were produced over the GPRB. The final CP maps were validated using National Agricultural Statistics Service (NASS) crop yield data. The relationship between CPsat_adjust and the NASS average corn yield data (r = 0.78, 113 samples) is stronger than the relationship between CPnon_sat_adjust and the NASS average corn yield data (r = 0.67, 113 samples), indicating that the new CPsat_adjust map reduces the NDVI saturation effects and is in good agreement with the corn yield ground observations. Results demonstrate that the NDVI saturation adjustment approach improves the quality of the original GSN map and better depicts the actual vegetation conditions of the GPRB cropland systems.

  19. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  20. Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency, earliness and yield.

    PubMed

    Dutra, Wellison F; Guerra, Yrlânia L; Ramos, Jean P C; Fernandes, Pedro D; Silva, Carliane R C; Bertioli, David J; Leal-Bertioli, Soraya C M; Santos, Roseane C

    2018-01-01

    The introduction of genes from wild species is a practice little adopted by breeders for the improvement of commercial crops, although it represents an excellent opportunity to enrich the genetic basis and create new cultivars. In peanut, this practice is being increasingly adopted. In this study we present results of introgression of wild alleles from the wild species Arachis duranensis and A. batizocoi improving photosynthetic traits and yield in a set of lines derived from the cross of an induced allotetraploid and cultivated peanut with selection under water stress. The assays were carried out in greenhouse and field focusing on physiological and agronomic traits. A multivariate model (UPGMA) was adopted in order to classify drought tolerant lines. Several lines showed improved levels of tolerance, with values similar to or greater than the tolerant control. Two BC1F6 lines (53 P4 and 96 P9) were highlighted for good drought-related traits, earliness and pod yield, having better phenotypic profile to the drought tolerant elite commercial cultivar BR1. These lines are good candidates for the creation of peanut cultivars suitable for production in semiarid environments.

  1. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.

    PubMed

    Wang, Shaokui; Li, Shan; Liu, Qian; Wu, Kun; Zhang, Jianqing; Wang, Shuansuo; Wang, Yi; Chen, Xiangbin; Zhang, Yi; Gao, Caixia; Wang, Feng; Huang, Haixiang; Fu, Xiangdong

    2015-08-01

    The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction. OsSPL16 (GW8), an SBP-domain transcription factor that regulates grain width, bound directly to the GW7 promoter and repressed its expression. The presence of a semidominant GW7(TFA) allele from tropical japonica rice was associated with higher grain quality without the yield penalty imposed by the Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module thus represents a new strategy to simultaneously improve rice yield and grain quality.

  2. Training Compliance Control Yields Improvements in Drawing as a Function of Beery Scores

    PubMed Central

    Snapp-Childs, Winona; Flatters, Ian; Fath, Aaron; Mon-Williams, Mark; Bingham, Geoffrey P.

    2014-01-01

    Many children have difficulty producing movements well enough to improve in sensori-motor learning. Previously, we developed a training method that supports active movement generation to allow improvement at a 3D tracing task requiring good compliance control. Here, we tested 7–8 year old children from several 2nd grade classrooms to determine whether 3D tracing performance could be predicted using the Beery VMI. We also examined whether 3D tracing training lead to improvements in drawing. Baseline testing included Beery, a drawing task on a tablet computer, and 3D tracing. We found that baseline performance in 3D tracing and drawing co-varied with the visual perception (VP) component of the Beery. Differences in 3D tracing between children scoring low versus high on the Beery VP replicated differences previously found between children with and without motor impairments, as did post-training performance that eliminated these differences. Drawing improved as a result of training in the 3D tracing task. The training method improved drawing and reduced differences predicted by Beery scores. PMID:24651280

  3. Mitigation of soil water repellency improves rootzone water status and yield in precision irrigated apples

    NASA Astrophysics Data System (ADS)

    Kostka, S.; Gadd, N.; Bell, D.

    2009-04-01

    Water repellent soils are documented to impact a range of hydrological properties, yet studies evaluating the consequences of soil water repellency (SWR) and its mitigation on crop yield and quality are conspicuously absent. With global concerns on drought and water availability and the projected impacts of climate change, development of novel strategies to optimize efficient rootzone delivery of water are required. Co-formulations of alkyl polyglycoside (APG) and ethylene oxide-propylene oxide (EO/PO) block copolymer surfactants have been shown to improve wetting synergistically. The objectives of this study were to determine if this surfactant technology: 1) increased soil water content and wetting front depth in mini-sprinkler irrigated, water repellent, Goulburn Valley clay loam soils and 2) assess the consequence of SWR mitigation on yield of Malus domestica Borkh. Three trials were conducted in the apple varieties 'Pink Lady' (2006/07 and 2007/08) and 'Gala' (2007/08) growing on Goulburn Valley clay loam soils in Victoria, AU. The test design was a randomized complete block with treatments replicated 5-6 times. Plot size varied by location. SWR was mitigated by applying surfactant at initial rates of 0, 5, or 10 L ha-1 in the spring, then at 0, 2.5, or 5 L ha-1 monthly for up to four months and compared to an untreated control. Treatments were applied to tree lines using a hand held small plot sprayer (118 liters of spray solution ha-1) followed by irrigation within 1-3 days of treatment applications. At each location, plots were irrigated by mini sprinklers and received the same irrigation volumes and management practices. Soil volumetric water content (VWC) was monitored at depths of 0-10 and 10-20 cm using a Theta probe (Delta-T Devices, Cambridge, UK). At harvest, fruit number and weights were measured and used for crop yield estimations. Data were analyzed using analysis of variance with mean values summarized and separated using Least Significant Test

  4. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    NASA Astrophysics Data System (ADS)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  5. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    PubMed

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  6. Food security: increasing yield and improving resource use efficiency.

    PubMed

    Parry, Martin A J; Hawkesford, Malcolm J

    2010-11-01

    Food production and security will be a major issue for supplying an increasing world population. The problem will almost certainly be exacerbated by climate change. There is a projected need to double food production by 2050. In recent times, the trend has been for incremental modest yield increases for most crops. There is an urgent need to develop integrated and sustainable approaches that will significantly increase both production per unit land area and the resource use efficiency of crops. This review considers some key processes involved in plant growth and development with some examples of ways in which molecular technology, plant breeding and genetics may increase the yield and resource use efficiency of wheat. The successful application of biotechnology to breeding is essential to provide the major increases in production required. However, each crop and each specific agricultural situation presents specific requirements and targets for optimisation. Some increases in production will come about as new varieties are developed which are able to produce satisfactory crops on marginal land presently not considered appropriate for arable crops. Other new varieties will be developed to increase both yield and resource use efficiency on the best land.

  7. Improving Reading Performance through Hypnosis.

    ERIC Educational Resources Information Center

    Fillmer, H. Thompson; And Others

    1981-01-01

    Describes a study investigating the effects of group hypnosis on the reading performance of university students in a reading and writing center. Discusses study procedures and presents data on pretest scores and gains in vocabulary and comprehension scores. Concludes that regular use of self-hypnosis significantly improved performance. (DMM)

  8. Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane

    PubMed Central

    2014-01-01

    Background The development of ‘energycane’ varieties of sugarcane is underway, targeting the use of both sugar juice and bagasse for ethanol production. The current study evaluated a selection of such ‘energycane’ cultivars for the combined ethanol yields from juice and bagasse, by optimization of dilute acid pretreatment optimization of bagasse for sugar yields. Method A central composite design under response surface methodology was used to investigate the effects of dilute acid pretreatment parameters followed by enzymatic hydrolysis on the combined sugar yield of bagasse samples. The pressed slurry generated from optimum pretreatment conditions (maximum combined sugar yield) was used as the substrate during batch and fed-batch simultaneous saccharification and fermentation (SSF) processes at different solid loadings and enzyme dosages, aiming to reach an ethanol concentration of at least 40 g/L. Results Significant variations were observed in sugar yields (xylose, glucose and combined sugar yield) from pretreatment-hydrolysis of bagasse from different cultivars of sugarcane. Up to 33% difference in combined sugar yield between best performing varieties and industrial bagasse was observed at optimal pretreatment-hydrolysis conditions. Significant improvement in overall ethanol yield after SSF of the pretreated bagasse was also observed from the best performing varieties (84.5 to 85.6%) compared to industrial bagasse (74.5%). The ethanol concentration showed inverse correlation with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-hydrolysis. The overall assessment of the cultivars showed greater improvement in the final ethanol concentration (26.9 to 33.9%) and combined ethanol yields per hectare (83 to 94%) for the best performing varieties with respect to industrial sugarcane. Conclusions These results suggest that the selection of sugarcane variety to optimize ethanol

  9. The CF6 engine performance improvement

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1982-01-01

    As part of the NASA-sponsored Engine Component Improvement (ECI) Program, a feasibility analysis of performance improvement and retention concepts for the CF6-6 and CF6-50 engines was conducted and seven concepts were identified for development and ground testing: new fan, new front mount, high pressure turbine aerodynamic performance improvement, high pressure turbine roundness, high pressure turbine active clearance control, low pressure turbine active clearance control, and short core exhaust nozzle. The development work and ground testing are summarized, and the major test results and an enomic analysis for each concept are presented.

  10. Enhanced low-temperature lithium storage performance of multilayer graphene made through an improved ionic liquid-assisted synthesis

    NASA Astrophysics Data System (ADS)

    Raccichini, Rinaldo; Varzi, Alberto; Chakravadhanula, Venkata Sai Kiran; Kübel, Christian; Balducci, Andrea; Passerini, Stefano

    2015-05-01

    The electrochemical properties of graphene are strongly depending on its synthesis. Between the different methods proposed so far, liquid phase exfoliation turns out to be a promising method for the production of graphene. Unfortunately, the low yield of this technique, in term of solid material obtained, still limit its use to small scale applications. In this article we propose a low cost and environmentally friendly method for producing multilayer crystalline graphene with high yield. Such innovative approach, involving an improved ionic liquid assisted, microwave exfoliation of expanded graphite, allows the production of graphene with advanced lithium ion storage performance, for the first time, at low temperatures (<0 °C), as low as -30 °C, with respect to commercially available graphite.

  11. Yield enhancement with DFM

    NASA Astrophysics Data System (ADS)

    Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok

    2012-03-01

    A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.

  12. The effectiveness of strategies to change organisational culture to improve healthcare performance

    PubMed Central

    Parmelli, Elena; Flodgren, Gerd; Schaafsma, Mary Ellen; Baillie, Nick; Beyer, Fiona R; Eccles, Martin P

    2014-01-01

    independently applied the criteria for inclusion and exclusion criteria to scan titles and abstracts and then to screen the full reports of selected citations. At each stage results were compared and discrepancies solved through discussion. Main results The search strategy yielded 4239 records. After the full text assessment, no studies met the quality criteria used by the EPOC Group and evaluated the effectiveness of strategies to change organisational culture to improve healthcare performance. Authors’ conclusions It is not possible to draw any conclusions about the effectiveness of strategies to change organisational culture because we found no studies that fulfilled the methodological criteria for this review. Research efforts should focus on strengthening the evidence about the effectiveness of methods to change organisational culture to improve health care performance. PMID:21249706

  13. The effectiveness of strategies to change organisational culture to improve healthcare performance.

    PubMed

    Parmelli, Elena; Flodgren, Gerd; Schaafsma, Mary Ellen; Baillie, Nick; Beyer, Fiona R; Eccles, Martin P

    2011-01-19

    abstracts and then to screen the full reports of selected citations. At each stage results were compared and discrepancies solved through discussion. The search strategy yielded 4239 records. After the full text assessment, no studies met the quality criteria used by the EPOC Group and evaluated the effectiveness of strategies to change organisational culture to improve healthcare performance. It is not possible to draw any conclusions about the effectiveness of strategies to change organisational culture because we found no studies that fulfilled the methodological criteria for this review. Research efforts should focus on strengthening the evidence about the effectiveness of methods to change organisational culture to improve health care performance.

  14. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    PubMed

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  15. Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau

    PubMed Central

    Wang, Li-fang; Chen, Juan; Shangguan, Zhou-ping

    2015-01-01

    Improving farming practices of soil and water conservation has profound effects on the yield of wheat (Triticum aestivum L.) in dryland farming regions of the Loess Plateau in China. Mulching has proven to be an effective practice to increase crop yield, and possibly contribute to replenishing groundwater. This evaluation study collected and analyzed the data of 1849 observations published in 38 papers using meta-analysis to investigate effects of the mulching practices on wheat yield in terms of different rainfall and regions in comparison with conventional tillage. The main results of the study follow. The effects of the mulching practices were ranked in the order of RFM (ridge–furrow mulching) > MTMC (mulching with two materials combined) > MOM (mulching with other materials) > WSM (wheat straw mulching) > FM (flat mulching). The effects of the mulching practices at the different levels of rainfall during the wheat growing season were in the order: (< 150 mm) > (> 250 mm) > (150–250 mm). The effects of the mulching practices in the different regions were in the order of Henan > Shanxi > Shaanxi > Gansu. WSM, MTMC and FM performed better in improving wheat yield for rainfall of < 150, 150–250 and > 250 mm during the growing season, respectively. The wheat yield with FM, MTMC, MOM and MOM was higher than those with the other mulching practices in Shaanxi, Gansu, Henan and Shanxi. The wheat yield with RFM was 27.4% higher than that with FM, indicating that RFM was the most effective practice to improve wheat yield among all the practices. These findings have important implications for choosing appropriate crop field management to improve wheat yield. PMID:26020965

  16. Does Mandatory Attendance Improve Student Performance?

    ERIC Educational Resources Information Center

    Marburger, Daniel R.

    2006-01-01

    Previous empirical literature indicates that student performance is inversely correlated with absenteeism. The author investigates the impact of enforcing an attendance policy on absenteeism and student performance. The evidence suggests that an enforced mandatory attendance policy significantly reduces absenteeism and improves exam performance.

  17. Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion

    PubMed Central

    Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS −1 in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost. PMID:24695485

  18. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion.

    PubMed

    Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS(-1) in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost.

  19. Cancelable ECG biometrics using GLRT and performance improvement using guided filter with irreversible guide signal.

    PubMed

    Kim, Hanvit; Minh Phuong Nguyen; Se Young Chun

    2017-07-01

    Biometrics such as ECG provides a convenient and powerful security tool to verify or identify an individual. However, one important drawback of biometrics is that it is irrevocable. In other words, biometrics cannot be re-used practically once it is compromised. Cancelable biometrics has been investigated to overcome this drawback. In this paper, we propose a cancelable ECG biometrics by deriving a generalized likelihood ratio test (GLRT) detector from a composite hypothesis testing in randomly projected domain. Since it is common to observe performance degradation for cancelable biometrics, we also propose a guided filtering (GF) with irreversible guide signal that is a non-invertibly transformed signal of ECG authentication template. We evaluated our proposed method using ECG-ID database with 89 subjects. Conventional Euclidean detector with original ECG template yielded 93.9% PD1 (detection probability at 1% FAR) while Euclidean detector with 10% compressed ECG (1/10 of the original data size) yielded 90.8% PD1. Our proposed GLRT detector with 10% compressed ECG yielded 91.4%, which is better than Euclidean with the same compressed ECG. GF with our proposed irreversible ECG template further improved the performance of our GLRT with 10% compressed ECG up to 94.3%, which is higher than Euclidean detector with original ECG. Lastly, we showed that our proposed cancelable ECG biometrics practically met cancelable biometrics criteria such as efficiency, re-usability, diversity and non-invertibility.

  20. Novel technologies to improve the performance of biomass pyrolsis systems

    NASA Astrophysics Data System (ADS)

    Liaw, Shi-Shen

    Biomass pyrolysis is a thermochemical conversion process to convert lignocellosic materials into bio-oil, gas, and char. The bio-oil can be further refined to produce transportation fuels, high-value chemicals and heat. Although fast pyrolysis is a very promising technology for high bio-oil production yield, the reactors used have several technological problems that limit their future techno-economic viability. Current fast pyrolysis reactors use large quantities of carrier gas that reduce their thermal efficiency. The use of sand to accelerate heating rates results in serious attrition problems responsible for sand contamination of the bio-char produced. Most of the fast pyrolysis reactors currently used need to process very small particles which consume large quantities of energy in grinding. The bio-oil produced is also highly acidic and corrosive mainly due to the presence of acetic acid. The lack of a viable technology to use the acetic acid contained in these oils is a major challenge for the development of viable bio-oil refineries. The objective of this dissertation is to evaluate several technologies to improve the techno-economic viability of biomass pyrolysis systems. The main hypotheses of this dissertation are: (1) high yields of bio-oils could also be obtained by using auger pyrolysis reactors using very low volumes of carried gas and no sand as a heat carrier if the system is fed with very small particles (2) The grinding energy can be reduced if the biomass is torrefied. There are torrefaction conditions that will not affect the overall yield of pyrolysis products (3) Acetic acid produced during pyrolysis can be removed with the use of a fractional condensation system (4) The acids produced during the torrefaction and pyrolysis with the use of the fractional condensation system can be anaerobically digested to produce methane. In this dissertation, it was proved through Py-GC/MS studies that yield of most of the pyrolytic products can be explained

  1. Five training sessions improves 3000 meter running performance.

    PubMed

    Riiser, A; Ripe, S; Aadland, E

    2015-12-01

    The primary aim of the present study was to evaluate the effect of two weeks of endurance training on 3000-meter running performance. Secondary we wanted to assess the relationship between baseline running performance and change in running performance over the intervention period. We assigned 36 military recruits to a training group (N.=28) and a control group. The training group was randomly allocated to one of three sub-groups: 1) a 3000 meter group (test race); 2) a 4x4-minutes high-intensity interval group; 3) a continuous training group. The training group exercised five times over a two-week period. The training group improved its 3000 meter running performance with 50 seconds (6%) compared to the control group (P=0.003). Moreover, all sub-groups improved their performance by 37 to 73 seconds (4-8%) compared to the control group (P<0.037). There was a significant relationship between pretest performance and improvement from pre- to post-test (ρ=-0.65, P<0.001) in the training group. We conclude that five endurance training sessions improved 3000 meter running performance and the slowest runners achieved the greatest improvement in running performance.

  2. Performance, carotenoids yield and microbial population dynamics in a photobioreactor system treating acidic wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    PubMed

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-01-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodopseudomonas palustris)-chemoheterotrophic bacteria to treat volatile fatty acid wastewater. Pollutants removal, biomass production and carotenoids yield in different phases were investigated in together with functional microbial population dynamics. The results indicated that properly decreasing HRT and increasing OLR improved the nutrient removal performance as well as the biomass and carotenoids productions. 85.7% COD, 89.9% TN and 91.8% TP removals were achieved under the optimal HRT of 48h and OLR of 2.51g/L/d. Meanwhile, the highest biomass production and carotenoids yield were 2719.3mg/L and 3.91mg/g-biomass respectively. In addition, HRT and OLR have obvious impacts on PNSB and total bacteria dynamics. Statistical analyses indicated that the COD removal exhibited a positive relationship with OLR, biomass and carotenoids production. PNSB/total bacteria ratio had a positive correlation with the carotenoids yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Uncertain behaviours of integrated circuits improve computational performance.

    PubMed

    Yoshimura, Chihiro; Yamaoka, Masanao; Hayashi, Masato; Okuyama, Takuya; Aoki, Hidetaka; Kawarabayashi, Ken-ichi; Mizuno, Hiroyuki

    2015-11-20

    Improvements to the performance of conventional computers have mainly been achieved through semiconductor scaling; however, scaling is reaching its limitations. Natural phenomena, such as quantum superposition and stochastic resonance, have been introduced into new computing paradigms to improve performance beyond these limitations. Here, we explain that the uncertain behaviours of devices due to semiconductor scaling can improve the performance of computers. We prototyped an integrated circuit by performing a ground-state search of the Ising model. The bit errors of memory cell devices holding the current state of search occur probabilistically by inserting fluctuations into dynamic device characteristics, which will be actualised in the future to the chip. As a result, we observed more improvements in solution accuracy than that without fluctuations. Although the uncertain behaviours of devices had been intended to be eliminated in conventional devices, we demonstrate that uncertain behaviours has become the key to improving computational performance.

  4. Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase.

    PubMed

    Yu, Shiqin; Lai, Bin; Plan, Manuel R; Hodson, Mark P; Lestari, Endah A; Song, Hao; Krömer, Jens O

    2018-01-01

    It was recently demonstrated that a bioelectrochemical system (BES) with a redox mediator allowed Pseudomonas putida to perform anoxic metabolism, converting sugar to sugar acids with high yield. However, the low productivity currently limits the application of this technology. To improve productivity, the strain was optimized through improved expression of glucose dehydrogenase (GCD) and gluconate dehydrogenase (GAD). In addition, quantitative real-time RT-PCR analysis revealed the intrinsic self-regulation of GCD and GAD. Utilizing this self-regulation system, the single overexpression strain (GCD) gave an outstanding performance in the electron transfer rate and 2-ketogluconic acid (2KGA) productivity. The peak anodic current density, specific glucose uptake rate and 2KGA producing rate were 0.12 mA/cm 2 , 0.27 ± 0.02 mmol/g CDW /hr and 0.25 ± 0.02 mmol/g CDW /hr, which were 327%, 477%, and 644% of the values of wild-type P. putida KT2440, respectively. This work demonstrates that expression of periplasmic dehydrogenases involved in electron transfer can significantly improve productivity in the BES. © 2017 Wiley Periodicals, Inc.

  5. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield

    PubMed Central

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-01-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1–T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20–30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. PMID:26220082

  6. Improved refractory performance through partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linck, F.E.; Peters, D.

    1995-12-31

    From the early designs and construction of Circulating Fluidized Bed (CFB) boilers, many improvements have been made based upon observations of performance. Included in these improvements have been the refractory linings. The early refractory linings were subjected to extreme fluctuations in temperatures as the units experienced up and down conditions. As the designs were improved refractory failures were mostly due to the operating conditions and other mechanical stresses rather than continual shutdowns and startups. More recent problems observed with refractory linings are localized areas of high erosion, corrosion and cracking which result in hot spots and eventual shutdowns for repair.more » Today the objective of refractory suppliers and installers is to strive towards planned shutdowns rather than emergency shutdowns. This can be accomplished through partnerships between operations, material suppliers and installers. In essence, the concept is a cooperative effort between these groups to solve the variety of refractory problems in order to achieve longer refractory lining performance and less chance for emergency shutdowns. The reliability of the refractory lining is dependent on the successful combination of the material selected, proper design and the installation of the refractory material. Where these three elements combine, the lining has the best chance of performing its intended purpose.« less

  7. DD3MAT - a code for yield criteria anisotropy parameters identification.

    NASA Astrophysics Data System (ADS)

    Barros, P. D.; Carvalho, P. D.; Alves, J. L.; Oliveira, M. C.; Menezes, L. F.

    2016-08-01

    This work presents the main strategies and algorithms adopted in the DD3MAT inhouse code, specifically developed for identifying the anisotropy parameters. The algorithm adopted is based on the minimization of an error function, using a downhill simplex method. The set of experimental values can consider yield stresses and r -values obtained from in-plane tension, for different angles with the rolling direction (RD), yield stress and r -value obtained for biaxial stress state, and yield stresses from shear tests performed also for different angles to RD. All these values can be defined for a specific value of plastic work. Moreover, it can also include the yield stresses obtained from in-plane compression tests. The anisotropy parameters are identified for an AA2090-T3 aluminium alloy, highlighting the importance of the user intervention to improve the numerical fit.

  8. Improved ethanol yield and reduced minimum ethanol selling price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 2) Techno-economic analysis

    PubMed Central

    2012-01-01

    Background Our companion paper discussed the yield benefits achieved by integrating deacetylation, mechanical refining, and washing with low acid and low temperature pretreatment. To evaluate the impact of the modified process on the economic feasibility, a techno-economic analysis (TEA) was performed based on the experimental data presented in the companion paper. Results The cost benefits of dilute acid pretreatment technology combined with the process alternatives of deacetylation, mechanical refining, and pretreated solids washing were evaluated using cost benefit analysis within a conceptual modeling framework. Control cases were pretreated at much lower acid loadings and temperatures than used those in the NREL 2011 design case, resulting in much lower annual ethanol production. Therefore, the minimum ethanol selling prices (MESP) of the control cases were $0.41-$0.77 higher than the $2.15/gallon MESP of the design case. This increment is highly dependent on the carbohydrate content in the corn stover. However, if pretreatment was employed with either deacetylation or mechanical refining, the MESPs were reduced by $0.23-$0.30/gallon. Combing both steps could lower the MESP further by $0.44 ~ $0.54. Washing of the pretreated solids could also greatly improve the final ethanol yields. However, the large capital cost of the solid–liquid separation unit negatively influences the process economics. Finally, sensitivity analysis was performed to study the effect of the cost of the pretreatment reactor and the energy input for mechanical refining. A 50% cost reduction in the pretreatment reactor cost reduced the MESP of the entire conversion process by $0.11-$0.14/gallon, while a 10-fold increase in energy input for mechanical refining will increase the MESP by $0.07/gallon. Conclusion Deacetylation and mechanical refining process options combined with low acid, low severity pretreatments show improvements in ethanol yields and calculated MESP for cellulosic

  9. Use of bioreactors for culturing human retinal organoids improves photoreceptor yields.

    PubMed

    Ovando-Roche, Patrick; West, Emma L; Branch, Matthew J; Sampson, Robert D; Fernando, Milan; Munro, Peter; Georgiadis, Anastasios; Rizzi, Matteo; Kloc, Magdalena; Naeem, Arifa; Ribeiro, Joana; Smith, Alexander J; Gonzalez-Cordero, Anai; Ali, Robin R

    2018-06-13

    The use of human pluripotent stem cell-derived retinal cells for cell therapy strategies and disease modelling relies on the ability to obtain healthy and organised retinal tissue in sufficient quantities. Generating such tissue is a lengthy process, often taking over 6 months of cell culture, and current approaches do not always generate large quantities of the major retinal cell types required. We adapted our previously described differentiation protocol to investigate the use of stirred-tank bioreactors. We used immunohistochemistry, flow cytometry and electron microscopy to characterise retinal organoids grown in standard and bioreactor culture conditions. Our analysis revealed that the use of bioreactors results in improved laminar stratification as well as an increase in the yield of photoreceptor cells bearing cilia and nascent outer-segment-like structures. Bioreactors represent a promising platform for scaling up the manufacture of retinal cells for use in disease modelling, drug screening and cell transplantation studies.

  10. Macroergonomic analysis and design for improved safety and quality performance.

    PubMed

    Kleiner, B M

    1999-01-01

    Macroergonomics, which emerged historically after sociotechnical systems theory, quality management, and ergonomics, is presented as the basis for a needed integrative methodology. A macroergonomics methodology was presented in some detail to demonstrate how aspects of microergonomics, total quality management (TQM), and sociotechnical systems (STS) can be triangulated in a common approach. In the context of this methodology, quality and safety were presented as 2 of several important performance criteria. To demonstrate aspects of the methodology, 2 case studies were summarized with safety and quality performance results where available. The first case manipulated both personnel and technical factors to achieve a "safety culture" at a nuclear site. The concept of safety culture is defined in INSAG-4 (International Atomic Energy Agency, 1991). as "that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance." The second case described a tire manufacturing intervention to improve quality (as defined by Sink and Tuttle, 1989) through joint consideration of technical and social factors. It was suggested that macroergonomics can yield greater performance than can be achieved through ergonomic intervention alone. Whereas case studies help to make the case, more rigorous formative and summative research is needed to refine and validate the proposed methodology respectively.

  11. Improvement of high-yield pulp properties by using a small amount of bleached wheat straw pulp.

    PubMed

    Zhang, Hongjie; He, Zhibin; Ni, Yonghao

    2011-02-01

    In this study, the potential of using bleached wheat straw pulp (BWSP) was explored to improve the tensile strength of the high-yield pulp (HYP) while preserving its high bulk property. The results showed that with the addition of 5-10% refined BWSP, the HYP tensile strength can be increased by about 10-20% without sacrificing the bulk. Similar results were obtained by adding refined BWSP into a mixed furnish of bleached kraft pulps (BKPs) and HYP. The explanation was that micro fines from refined BWSP can act as binders to improve the HYP interfiber bonding, as a result, the HYP tensile strength can be improved by using a small amount of BWSP, while the HYP bulk is not significantly affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Identifying seedling root architectural traits associated with yield and yield components in wheat.

    PubMed

    Xie, Quan; Fernando, Kurukulasuriya M C; Mayes, Sean; Sparkes, Debbie L

    2017-05-01

    Plant roots growing underground are critical for soil resource acquisition, anchorage and plant-environment interactions. In wheat ( Triticum aestivum ), however, the target root traits to improve yield potential still remain largely unknown. This study aimed to identify traits of seedling root system architecture (RSA) associated with yield and yield components in 226 recombinant inbred lines (RILs) derived from a cross between the bread wheat Triticum aestivum 'Forno' (small, wide root system) and spelt Triticum spelta 'Oberkulmer' (large, narrow root system). A 'pouch and wick' high-throughput phenotyping pipeline was used to determine the RSA traits of 13-day-old RIL seedlings. Two field experiments and one glasshouse experiment were carried out to investigate the yield, yield components and phenology, followed by identification of quantitative trait loci (QTLs). There was substantial variation in RSA traits between genotypes. Seminal root number and total root length were both positively associated with grains m -2 , grains per spike, above-ground biomass m -2 and grain yield. More seminal roots and longer total root length were also associated with delayed maturity and extended grain filling, likely to be a consequence of more grains being defined before anthesis. Additionally, the maximum width of the root system displayed positive relationships with spikes m -2 , grains m -2 and grain yield. Ten RILs selected for the longest total roots exhibited the same effects on yield and phenology as described above, compared with the ten lines with the shortest total roots. Genetic analysis revealed 38 QTLs for the RSA, and QTL coincidence between the root and yield traits was frequently observed, indicating tightly linked genes or pleiotropy, which concurs with the results of phenotypic correlation analysis. Based on the results from the Forno × Oberkulmer population, it is proposed that vigorous early root growth, particularly more seminal roots and longer total

  13. Yield Model Development (YMD) implementation plan for fiscal years 1981 and 1982

    NASA Technical Reports Server (NTRS)

    Ambroziak, R. A. (Principal Investigator)

    1981-01-01

    A plan is described for supporting USDA crop production forecasting and estimation by (1) testing, evaluating, and selecting crop yield models for application testing; (2) identifying areas of feasible research for improvement of models; and (3) conducting research to modify existing models and to develop new crop yield assessment methods. Tasks to be performed for each of these efforts are described as well as for project management and support. The responsibilities of USDA, USDC, USDI, and NASA are delineated as well as problem areas to be addressed.

  14. Oil palm natural diversity and the potential for yield improvement

    PubMed Central

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

  15. Oil palm natural diversity and the potential for yield improvement.

    PubMed

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.

  16. Specific energy yield comparison between crystalline silicon and amorphous silicon based PV modules

    NASA Astrophysics Data System (ADS)

    Ferenczi, Toby; Stern, Omar; Hartung, Marianne; Mueggenburg, Eike; Lynass, Mark; Bernal, Eva; Mayer, Oliver; Zettl, Marcus

    2009-08-01

    As emerging thin-film PV technologies continue to penetrate the market and the number of utility scale installations substantially increase, detailed understanding of the performance of the various PV technologies becomes more important. An accurate database for each technology is essential for precise project planning, energy yield prediction and project financing. However recent publications showed that it is very difficult to get accurate and reliable performance data of theses technologies. This paper evaluates previously reported claims the amorphous silicon based PV modules have a higher annual energy yield compared to crystalline silicon modules relative to their rated performance. In order to acquire a detailed understanding of this effect, outdoor module tests were performed at GE Global Research Center in Munich. In this study we examine closely two of the five reported factors that contribute to enhanced energy yield of amorphous silicon modules. We find evidence to support each of these factors and evaluate their relative significance. We discuss aspects for improvement in how PV modules are sold and identify areas for further study further study.

  17. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    PubMed

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  18. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0); 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value < 0.1); 3. Addition of notable amount of intermediate precursors or nutrients improved product yield by over five folds (P-value < 0.05); 4. Performing the cultivation in a well-controlled bioreactor enhanced the yield of product by three folds (P-value < 0.05); 5. Contribution of oxygen to product yield was not statistically significant. Yield calculations for various chemicals using the linear model were in fairly good agreement with the experimental values. The model generally underestimated the ethanol production as

  19. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study

    PubMed Central

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, NH4+-N, NO3--N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history. PMID:29209343

  20. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study.

    PubMed

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.

  1. Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis

    PubMed Central

    Meng, Yingying; Sang, Dajun; Yin, Pengcheng; Wu, Jinxia; Tang, Yuhong; Lu, Tiegang; Wang, Zeng-Yu; Tadege, Million

    2017-01-01

    Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs. PMID:28264034

  2. Performance improvement in the JCAHO environment of care.

    PubMed

    Hill, Scott A

    2002-01-01

    Using security management to demonstrate performance improvement for JCAHO can be a viable option. The article illustrates how a program for reducing theft became the basis for demonstrating performance improvement.

  3. Optimization of dilute sulfuric acid pretreatment to maximize combined sugar yield from sugarcane bagasse for ethanol production.

    PubMed

    Benjamin, Y; Cheng, H; Görgens, J F

    2014-01-01

    Increasing fermentable sugar yields per gram of biomass depends strongly on optimal selection of varieties and optimization of pretreatment conditions. In this study, dilute acid pretreatment of bagasse from six varieties of sugarcane was investigated in connection with enzymatic hydrolysis for maximum combined sugar yield (CSY). The CSY from the varieties were also compared with the results from industrial bagasse. The results revealed considerable differences in CSY between the varieties. Up to 22.7 % differences in CSY at the optimal conditions was observed. The combined sugar yield difference between the best performing variety and the industrial bagasse was 34.1 %. High ratio of carbohydrates to lignin and low ash content favored the release of sugar from the substrates. At mild pretreatment conditions, the differences in bioconversion efficiency between varieties were greater than at severe condition. This observation suggests that under less severe conditions the glucose recovery was largely determined by chemical composition of biomass. The results from this study support the possibility of increasing sugar yields or improving the conversion efficiency when pretreatment optimization is performed on varieties with improved properties.

  4. Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield

    USDA-ARS?s Scientific Manuscript database

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat (Triticum aestivum L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect s...

  5. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  6. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    PubMed Central

    Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi

    2016-01-01

    Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362

  7. Performance, Productivity and Continuous Improvement. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains four papers from a symposium on performance, productivity, and continuous improvement. "Investigating the Association between Productivity and Quality Performance in Two Manufacturing Settings" (Constantine Kontoghiorghes, Robert Gudgel) summarizes a study that identified the following quality management variables…

  8. Raising yield potential in wheat: increasing photosynthesis capacity and efficiency

    USDA-ARS?s Scientific Manuscript database

    Increasing wheat yields to help to ensure food security is a major challenge. Meeting this challenge requires a quantum improvement in the yield potential of wheat. Past increases in yield potential have largely resulted from improvements in harvest index not through increased biomass. Further large...

  9. HVM die yield improvement as a function of DRSEM ADC

    NASA Astrophysics Data System (ADS)

    Maheshwary, Sonu; Haas, Terry; McGarvey, Steve

    2010-03-01

    Given the current manufacturing technology roadmap and the competitiveness of the global semiconductor manufacturing environment in conjunction with the semiconductor manufacturing market dynamics, the market place continues to demand a reduced die manufacturing cost. This continuous pressure on lowering die cost in turn drives an aggressive yield learning curve, a key component of which is defect reduction of manufacturing induced anomalies. In order to meet and even exceed line and die yield targets there is a need to revamp defect classification strategies and place a greater emphasize on increasing the accuracy and purity of the Defect Review Scanning Electron Microscope (DRSEM) Automated Defect Classification (ADC) results while placing less emphasis on the ADC results of patterned/un-patterned wafer inspection systems. The increased emphasis on DRSEM ADC results allows for a high degree of automation and consistency in the classification data and eliminates variance induced by the manufacturing staff. This paper examines the use of SEM based Auto Defect Classification in a high volume manufacturing environment as a key driver in the reduction of defect limited yields.

  10. Ethiopian Wheat Yield and Yield Gap Estimation: A Spatial Small Area Integrated Data Approach

    NASA Astrophysics Data System (ADS)

    Mann, M.; Warner, J.

    2015-12-01

    Despite the collection of routine annual agricultural surveys and significant advances in GIS and remote sensing products, little econometric research has been undertaken in predicting developing nation's agricultural yields. In this paper, we explore the determinants of wheat output per hectare in Ethiopia during the 2011-2013 Meher crop seasons aggregated to the woreda administrative area. Using a panel data approach, combining national agricultural field surveys with relevant GIS and remote sensing products, the model explains nearly 40% of the total variation in wheat output per hectare across the country. The model also identifies specific contributors to wheat yields that include farm management techniques (eg. area planted, improved seed, fertilizer, irrigation), weather (eg. rainfall), water availability (vegetation and moisture deficit indexes) and policy intervention. Our findings suggest that woredas produce between 9.8 and 86.5% of their potential wheat output per hectare given their altitude, weather conditions, terrain, and plant health. At the median, Amhara, Oromiya, SNNP, and Tigray produce 48.6, 51.5, 49.7, and 61.3% of their local attainable yields, respectively. This research has a broad range of applications, especially from a public policy perspective: identifying causes of yield fluctuations, remotely evaluating larger agricultural intervention packages, and analyzing relative yield potential. Overall, the combination of field surveys with spatial data can be used to identify management priorities for improving production at a variety of administrative levels.

  11. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw.

    PubMed

    Wang, Xiaojiao; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui

    2012-09-01

    This study investigated the possibilities of improving methane yield from anaerobic digestion of multi-component substrates, using a mixture of dairy manure (DM), chicken manure (CM) and wheat straw (WS), based on optimized feeding composition and the C/N ratio. Co-digestion of DM, CM and WS performed better in methane potential than individual digestion. A larger synergetic effect in co-digestion of DM, CM and WS was found than in mixtures of single manures with WS. As the C/N ratio increased, methane potential initially increased and then declined. C/N ratios of 25:1 and 30:1 had better digestion performance with stable pH and low concentrations of total ammonium nitrogen and free NH(3). Maximum methane potential was achieved with DM/CM of 40.3:59.7 and a C/N ratio of 27.2:1 after optimization using response surface methodology. The results suggested that better performance of anaerobic co-digestion can be fulfilled by optimizing feeding composition and the C/N ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Deficit irrigation effects on yield and yield components of grain sorghum

    USDA-ARS?s Scientific Manuscript database

    Development of sustainable and efficient irrigation strategies is a priority for producers faced with water shortages. A promising management strategy for improving water use efficiency (WUE) is managed deficit irrigation (MDI), which attempts to optimize yield and WUE by synchronizing crop water u...

  13. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  14. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds

    PubMed Central

    Soliman, T.; Lim, F. K. S.; Lee, J. S. H.

    2016-01-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land. PMID:27853605

  15. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    PubMed

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  16. Macular Carotenoid Supplementation Improves Visual Performance, Sleep Quality, and Adverse Physical Symptoms in Those with High Screen Time Exposure

    PubMed Central

    Stringham, James M.; Stringham, Nicole T.; O’Brien, Kevin J.

    2017-01-01

    The dramatic rise in the use of smartphones, tablets, and laptop computers over the past decade has raised concerns about potentially deleterious health effects of increased “screen time” (ST) and associated short-wavelength (blue) light exposure. We determined baseline associations and effects of 6 months’ supplementation with the macular carotenoids (MC) lutein, zeaxanthin, and mesozeaxanthin on the blue-absorbing macular pigment (MP) and measures of sleep quality, visual performance, and physical indicators of excessive ST. Forty-eight healthy young adults with at least 6 h of daily near-field ST exposure participated in this placebo-controlled trial. Visual performance measures included contrast sensitivity, critical flicker fusion, disability glare, and photostress recovery. Physical indicators of excessive screen time and sleep quality were assessed via questionnaire. MP optical density (MPOD) was assessed via heterochromatic flicker photometry. At baseline, MPOD was correlated significantly with all visual performance measures (p < 0.05 for all). MC supplementation (24 mg daily) yielded significant improvement in MPOD, overall sleep quality, headache frequency, eye strain, eye fatigue, and all visual performance measures, versus placebo (p < 0.05 for all). Increased MPOD significantly improves visual performance and, in turn, improves several undesirable physical outcomes associated with excessive ST. The improvement in sleep quality was not directly related to increases in MPOD, and may be due to systemic reduction in oxidative stress and inflammation. PMID:28661438

  17. Macular Carotenoid Supplementation Improves Visual Performance, Sleep Quality, and Adverse Physical Symptoms in Those with High Screen Time Exposure.

    PubMed

    Stringham, James M; Stringham, Nicole T; O'Brien, Kevin J

    2017-06-29

    The dramatic rise in the use of smartphones, tablets, and laptop computers over the past decade has raised concerns about potentially deleterious health effects of increased "screen time" (ST) and associated short-wavelength (blue) light exposure. We determined baseline associations and effects of 6 months' supplementation with the macular carotenoids (MC) lutein, zeaxanthin, and mesozeaxanthin on the blue-absorbing macular pigment (MP) and measures of sleep quality, visual performance, and physical indicators of excessive ST. Forty-eight healthy young adults with at least 6 h of daily near-field ST exposure participated in this placebo-controlled trial. Visual performance measures included contrast sensitivity, critical flicker fusion, disability glare, and photostress recovery. Physical indicators of excessive screen time and sleep quality were assessed via questionnaire. MP optical density (MPOD) was assessed via heterochromatic flicker photometry. At baseline, MPOD was correlated significantly with all visual performance measures ( p < 0.05 for all). MC supplementation (24 mg daily) yielded significant improvement in MPOD, overall sleep quality, headache frequency, eye strain, eye fatigue, and all visual performance measures, versus placebo ( p < 0.05 for all). Increased MPOD significantly improves visual performance and, in turn, improves several undesirable physical outcomes associated with excessive ST. The improvement in sleep quality was not directly related to increases in MPOD, and may be due to systemic reduction in oxidative stress and inflammation.

  18. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment

    PubMed Central

    del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A.; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L.

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ13C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha−1 under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ13C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470

  19. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment.

    PubMed

    Del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.

  20. A Remote Sensing-Derived Corn Yield Assessment Model

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjay Man

    Agricultural studies and food security have become critical research topics due to continuous growth in human population and simultaneous shrinkage in agricultural land. In spite of modern technological advancements to improve agricultural productivity, more studies on crop yield assessments and food productivities are still necessary to fulfill the constantly increasing food demands. Besides human activities, natural disasters such as flood and drought, along with rapid climate changes, also inflect an adverse effect on food productivities. Understanding the impact of these disasters on crop yield and making early impact estimations could help planning for any national or international food crisis. Similarly, the United States Department of Agriculture (USDA) Risk Management Agency (RMA) insurance management utilizes appropriately estimated crop yield and damage assessment information to sustain farmers' practice through timely and proper compensations. Through County Agricultural Production Survey (CAPS), the USDA National Agricultural Statistical Service (NASS) uses traditional methods of field interviews and farmer-reported survey data to perform annual crop condition monitoring and production estimations at the regional and state levels. As these manual approaches of yield estimations are highly inefficient and produce very limited samples to represent the entire area, NASS requires supplemental spatial data that provides continuous and timely information on crop production and annual yield. Compared to traditional methods, remote sensing data and products offer wider spatial extent, more accurate location information, higher temporal resolution and data distribution, and lower data cost--thus providing a complementary option for estimation of crop yield information. Remote sensing derived vegetation indices such as Normalized Difference Vegetation Index (NDVI) provide measurable statistics of potential crop growth based on the spectral reflectance and could

  1. Preschoolers' Cognitive Performance Improves Following Massage.

    ERIC Educational Resources Information Center

    Hart, Sybil; Field, Tiffany; Hernandez-Reif, Maria; Lundy, Brenda

    1998-01-01

    Effects of massage on preschoolers' cognitive performance were assessed. Preschoolers were given Wechsler Preschool and Primary Scale of Intelligence-Revised subtests before and after receiving 15-minute massage or spending 15 minutes reading stories with the experimenter. Children's performance on Block Design improved following massage, and…

  2. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield.

    PubMed

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-11-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Genetic improvement of total milk yield and total lactation persistency of the first three lactations in dairy cattle.

    PubMed

    Togashi, K; Lin, C Y

    2008-07-01

    The objective of this study was to compare 6 selection criteria in terms of 3-parity total milk yield and 9 selection criteria in terms of total net merit (H) comprising 3-parity total milk yield and total lactation persistency. The 6 selection criteria compared were as follows: first-parity milk estimated breeding value (EBV; M1), first 2-parity milk EBV (M2), first 3-parity milk EBV (M3), first-parity eigen index (EI(1)), first 2-parity eigen index (EI(2)), and first 3-parity eigen index (EI(3)). The 9 selection criteria compared in terms of H were M1, M2, M3, EI(1), EI(2), EI(3), and first-parity, first 2-parity, and first 3-parity selection indices (I(1), I(2), and I(3), respectively). In terms of total milk yield, selection on M3 or EI(3) achieved the greatest genetic response, whereas selection on EI(1) produced the largest genetic progress per day. In terms of total net merit, selection on I(3) brought the largest response, whereas selection EI(1) yielded the greatest genetic progress per day. A multiple-lactation random regression test-day model simultaneously yields the EBV of the 3 lactations for all animals included in the analysis even though the younger animals do not have the opportunity to complete the first 3 lactations. It is important to use the first 3 lactation EBV for selection decision rather than only the first lactation EBV in spite of the fact that the first-parity selection criteria achieved a faster genetic progress per day than the 3-parity selection criteria. Under a multiple-lactation random regression animal model analysis, the use of the first 3 lactation EBV for selection decision does not prolong the generation interval as compared with the use of only the first lactation EBV. Thus, it is justified to compare genetic response on a lifetime basis rather than on a per-day basis. The results suggest the use of M3 or EI(3) for genetic improvement of total milk yield and the use of I(3) for genetic improvement of total net merit H

  4. Application Process Improvement Yields Results.

    ERIC Educational Resources Information Center

    Holesovsky, Jan Paul

    1995-01-01

    After a continuing effort to improve its grant application process, the department of medical microbiology and immunology at the University of Wisconsin-Madison is submitting many more applications and realizing increased funding. The methods and strategy used to make the process more efficient and effective are outlined. (Author/MSE)

  5. Description and Yield of Current Quality and Safety Review in Selected US Academic Emergency Departments.

    PubMed

    Griffey, Richard Thomas; Schneider, Ryan M; Sharp, Brian R; Pothof, Jeffrey J; Hodkins, Sheridan; Capp, Roberta; Wiler, Jennifer L; Sreshta, Neil; Sather, John E; Sampson, Christopher S; Powell, Jonathan T; Groner, Kathryn Y; Adler, Lee M

    2017-06-29

    Quality and safety review for performance improvement is important for systems of care and is required for US academic emergency departments (EDs). Assessment of the impact of patient safety initiatives in the context of increasing burdens of quality measurement compels standardized, meaningful, high-yield approaches for performance review. Limited data describe how quality and safety reviews are currently conducted and how well they perform in detecting patient harm and areas for improvement. We hypothesized that decades-old approaches used in many academic EDs are inefficient and low yield for identifying patient harm. We conducted a prospective observational study to evaluate the efficiency and yield of current quality review processes at five academic EDs for a 12-month period. Sites provided descriptions of their current practice and collected summary data on the number and severity of events identified in their reviews and the referral sources that led to their capture. Categories of common referral sources were established at the beginning of the study. Sites used the Institute for Healthcare Improvement's definition in defining an adverse event and a modified National Coordinating Council for Medication Error Reporting and Prevention (MERP) Index for grading severity of events. Participating sites had similar processes for quality review, including a two-level review process, monthly reviews and conferences, similar screening criteria, and a grading system for evaluating cases. In 60 months of data collection, we reviewed a total of 4735 cases and identified 381 events. This included 287 near-misses, errors/events (MERP A-I) and 94 adverse events (AEs) (MERP E-I). The overall AE rate (event rate with harm) was 1.99 (95% confidence interval = 1.62%-2.43%), ranging from 1.24% to 3.47% across sites. The overall rate of quality concerns (events without harm) was 6.06% (5.42%-6.78%), ranging from 2.96% to 10.95% across sites. Seventy-two-hour returns were the

  6. Continuing education for performance improvement: a creative approach.

    PubMed

    Collins, Patti-Ann; Hardesty, Ilana; White, Julie L; Zisblatt, Lara

    2012-10-01

    In an effort to improve patient safety and health care outcomes, continuing medical education has begun to focus on performance improvement initiatives for physician practices. Boston University School of Medicine's (BUSM) Continuing Nursing Education Accredited Provider Unit has begun a creative project to award nursing contact hours for nurses' participation in performance improvement activities. This column highlights its initial efforts. Copyright 2012, SLACK Incorporated.

  7. Narrowing the agronomic yield gap with improved nitrogen use efficiency: a modeling approach.

    PubMed

    Ahrens, T D; Lobell, D B; Ortiz-Monasterio, J I; Li, Y; Matson, P A

    2010-01-01

    Improving nitrogen use efficiency (NUE) in the major cereals is critical for more sustainable nitrogen use in high-input agriculture, but our understanding of the potential for NUE improvement is limited by a paucity of reliable on-farm measurements. Limited on-farm data suggest that agronomic NUE (AE(N)) is lower and more variable than data from trials conducted at research stations, on which much of our understanding of AE(N) has been built. The purpose of this study was to determine the magnitude and causes of variability in AE(N) across an agricultural region, which we refer to as the achievement distribution of AE(N). The distribution of simulated AE(N) in 80 farmers' fields in an irrigated wheat system in the Yaqui Valley, Mexico, was compared with trials at a local research center (International Wheat and Maize Improvement Center; CIMMYT). An agroecosystem simulation model WNMM was used to understand factors controlling yield, AE(N), gaseous N emissions, and nitrate leaching in the region. Simulated AE(N) in the Yaqui Valley was highly variable, and mean on-farm AE(N) was 44% lower than trials with similar fertilization rates at CIMMYT. Variability in residual N supply was the most important factor determining simulated AE(N). Better split applications of N fertilizer led to almost a doubling of AE(N), increased profit, and reduced N pollution, and even larger improvements were possible with technologies that allow for direct measurement of soil N supply and plant N demand, such as site-specific nitrogen management.

  8. 42 CFR 438.240 - Quality assessment and performance improvement program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Quality assessment and performance improvement... Performance Improvement Measurement and Improvement Standards § 438.240 Quality assessment and performance improvement program. (a) General rules. (1) The State must require, through its contracts, that each MCO and...

  9. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum).

    PubMed

    Weiner, Jacob; Du, Yan-Lei; Zhang, Cong; Qin, Xiao-Liang; Li, Feng-Min

    2017-09-01

    Although the importance of group selection in nature is highly controversial, several researchers have argued that plant breeding for agriculture should be based on group selection, because the goal in agriculture is to optimize population production, not individual fitness. A core hypothesis behind this claim is that crop genotypes with the highest individual fitness in a mixture of genotypes will not produce the highest population yield, because fitness is often increased by "selfish" behaviors, which reduce population performance. We tested this hypothesis by growing 35 cultivars of spring wheat (Triticum aestivum L.) in mixtures and monocultures, and analyzing the relationship between population yield in monoculture and individual yield in mixture. The relationship was unimodal, as predicted. The highest-yielding populations were from cultivars that had intermediate fitness, and these produced, on average, 35% higher yields than cultivars with the highest fitness. It is unlikely that plant breeding or genetic engineering can improve traits that natural selection has been optimizing for millions of years, but there is unutilized potential in traits that increase crop yield by decreasing individual fitness. © 2017 by the Ecological Society of America.

  10. Visuospatial training improves elementary students' mathematics performance.

    PubMed

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2017-06-01

    Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial reasoning and (2) mathematics performance as a result of the intervention. The study involved grade six students (ages 10-12) in eight classes. There were five intervention classes (n = 120) and three non-intervention control classes (n = 66). A specifically designed 10-week spatial reasoning programme was developed collaboratively with the participating teachers, with the intervention replacing the standard mathematics curriculum. The five classroom teachers in the intervention programme presented 20 hr of activities aimed at enhancing students' spatial visualization, mental rotation, and spatial orientation skills. The spatial reasoning programme led to improvements in both spatial ability and mathematics performance relative to the control group who received standard mathematics instruction. Our study is the first to show that a classroom-based spatial reasoning intervention improves elementary school students' mathematics performance. © 2017 The British Psychological Society.

  11. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b.

    PubMed

    Sun, Zhengxi; Su, Chao; Yun, Jinxia; Jiang, Qiong; Wang, Lixiang; Wang, Youning; Cao, Dong; Zhao, Fang; Zhao, Qingsong; Zhang, Mengchen; Zhou, Bin; Zhang, Lei; Kong, Fanjiang; Liu, Baohui; Tong, Yiping; Li, Xia

    2018-05-05

    The optimization of plant architecture in order to breed high-yielding soya bean cultivars is a goal of researchers. Tall plants bearing many long branches are desired, but only modest success in reaching these goals has been achieved. MicroRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene modules play pivotal roles in controlling shoot architecture and other traits in crops like rice and wheat. However, the effects of miR156-SPL modules on soya bean architecture and yield, and the molecular mechanisms underlying these effects, remain largely unknown. In this study, we achieved substantial improvements in soya bean architecture and yield by overexpressing GmmiR156b. Transgenic plants produced significantly increased numbers of long branches, nodes and pods, and they exhibited an increased 100-seed weight, resulting in a 46%-63% increase in yield per plant. Intriguingly, GmmiR156b overexpression had no significant impact on plant height in a growth room or under field conditions; however, it increased stem thickness significantly. Our data indicate that GmmiR156b modulates these traits mainly via the direct cleavage of SPL transcripts. Moreover, we found that GmSPL9d is expressed in the shoot apical meristem and axillary meristems (AMs) of soya bean, and that GmSPL9d may regulate axillary bud formation and branching by physically interacting with the homeobox gene WUSCHEL (WUS), a central regulator of AM formation. Together, our results identify GmmiR156b as a promising target for the improvement of soya bean plant architecture and yields, and they reveal a new and conserved regulatory cascade involving miR156-SPL-WUS that will help researchers decipher the genetic basis of plant architecture. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    NASA Astrophysics Data System (ADS)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  13. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  14. Can outcome-based continuing medical education improve performance of immigrant physicians?

    PubMed

    Castel, Orit Cohen; Ezra, Vered; Alperin, Mordechai; Nave, Rachel; Porat, Tamar; Golan, Avivit Cohen; Vinker, Shlomo; Karkabi, Khaled

    2011-01-01

    Immigrant physicians are a valued resource for physician workforces in many countries. Few studies have explored the education and training needs of immigrant physicians and ways to facilitate their integration into the health care system in which they work. Using an educational program developed for immigrant civilian physicians working in military primary care clinics at the Israel Defence Force, we illustrate how an outcome-based CME program can address practicing physicians' needs for military-specific primary care education and improve patient care. Following an extensive needs assessment, a 3-year curriculum was developed. The curriculum was delivered by a multidisciplinary educational team. Pre/post multiple-choice examinations, objective structured clinical examinations (OSCE), and end-of-program evaluations were administered for curriculum evaluation. To evaluate change in learners' performance, data from the 2003 (before-program) and 2006 (after-program) work-based assessments were retrieved retrospectively. Change in the performance of program participants was compared with that of immigrant physicians who did not participate in the program. Out of 28 learners, 23 (82%) completed the program. Learners did significantly better in the annual post-tests compared with the pretests (p <.01) and improved their OSCE scores (p <.001). Most program graduates (90%) rated overall satisfaction as very good or excellent. In comparison with nonparticipants, program graduates performed better on work-based assessments (Cohen's d =.63). Our intensive, outcome-based, longitudinal CME program has yielded encouraging results. Other medical educators, facing the challenge of integrating immigrant physicians to fit their health care system, may consider adapting our approach. Copyright © 2011 The Alliance for Continuing Medical Education, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical Education.

  15. Improved Performance via the Inverted Classroom

    ERIC Educational Resources Information Center

    Weinstein, Randy D.

    2015-01-01

    This study examined student performance in an inverted thermodynamics course (lectures provided by video outside of class) compared to a traditional lecture class. Students in the inverted class performed better on their exams. Students in the bottom third of the inverted course showed the greatest improvement. These bottom third students had a C…

  16. Peer Mentors Can Improve Academic Performance

    ERIC Educational Resources Information Center

    Asgari, Shaki; Carter, Frederick, Jr.

    2016-01-01

    The present study examined the relationship between peer mentoring and academic performance. Students from two introductory psychology classes either received (n = 37) or did not receive (n = 36) peer mentoring. The data indicated a consistent improvement in the performance (i.e., grades on scheduled exams) of the mentored group. A similar pattern…

  17. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  18. Characterization of sub-0.18-μm critical dimension pattern collapse for yield improvement

    NASA Astrophysics Data System (ADS)

    Zhong, Tom X.; Gurer, Emir; Lee, Ed C.; Bai, Hong; Gendron, Bill; Krishna, Murthy S.; Reynolds, Reese M.

    1999-09-01

    In this study, we demonstrate that surface-resist interface interactions are becoming more crucial in DUV lithography as we enter deep into the sub-wavelength era of smaller critical dimension (CD) size and high aspect ratio. This interaction reveals itself as an adhesion reduction of the resist film due to the smaller contact area between the feature and the substrate. Considerable yield improvements in a manufacturing environment can be realized if pattern collapsing of smaller features is prevented by means of proper priming. In addition, next generation photoresist processing equipments must be able to deliver excellent on-wafer results with minimum chemical consumption as environmental health and safety (EHS) requirements are better appreciated in the marketplace. HMDS is not only highly toxic but it is also a prime threat to CD control of most deep ultra violet (DUV) photoresists used for sub-0.18 micrometer design rules. The by-product NH3 created during priming process with HMDS can neutralize the photo-acid created during the exposure step. There are many technical opportunities in this usually neglected priming process step. In this study, we characterized sub-0.18 micrometer isolated line pattern collapse for UV5 resist on bare Si wafers by using a scanning electron microscope (SEM). The smallest line width printability on wafers primed with different contact angles was analyzed by using both top down and cross section SEM images. Our results show that there is a strong effect of substrate surface and film interface interaction on device yields. More specifically, there is a strong correlation between pattern integrity of features down to 115 nm and vapor prime process conditions. In general, wafers with higher contact angle can support smaller line widths. These results suggest that higher contact angle than the current specification will be required for sub-0.1 micrometer design rule for improved yield. An alternative material to HMDS will probably be

  19. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.

    PubMed

    Zhu, Xinna; Tan, Zaigao; Xu, Hongtao; Chen, Jing; Tang, Jinlei; Zhang, Xueli

    2014-07-01

    Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. 42 CFR 475.103 - Requirements for performing quality improvement initiatives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Requirements for performing quality improvement... HEALTH AND HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS QUALITY IMPROVEMENT ORGANIZATIONS Quality Improvement Organizations § 475.103 Requirements for performing quality improvement initiatives...

  1. A decade of precision agriculture impacts on grain yield and yield variation

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century, including simultaneously improving crop yields and reducing environmental impacts. Although the potential is high, few studies have do...

  2. Improving Process Heating System Performance v3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  3. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  4. Improved ETA-II accelerator performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, A C; Boyd, J K; Chen, Y J

    1999-03-22

    Improvements have been made in the performance of the ETA-II accelerator that allow a nominal 2 kA, 6 MeV beam to be focused to a spot size less that 1 mm in diameter. The improvements include reducing the energy sweep to less than +/- 0.5 & over 40 ns of the pulse using a real time energy diagnostic and improving the magnetic tune of the accelerator to reduce the emittance to 8 cm-mrad. Finally, an automated tuning system (MAESTRO) was run to minimize the time dependent centroid motion (corkscrew) by adjusting the steering dipoles over the focusing solenoids. The corkscrewmore » motion was reduced to less than +/- 0.5 mm at the output of the accelerator.« less

  5. Partnering through Training and Practice to Achieve Performance Improvement

    ERIC Educational Resources Information Center

    Lyons, Paul R.

    2010-01-01

    This article presents a partnership effort among managers, trainers, and employees to spring to life performance improvement using the performance templates (P-T) approach. P-T represents a process model as well as a method of training leading to performance improvement. Not only does it add to our repertoire of training and performance management…

  6. Clinical performance improvement series. Classic CQI integrated with comprehensive disease management as a model for performance improvement.

    PubMed

    Joshi, M S; Bernard, D B

    1999-08-01

    In recent years, health and disease management has emerged as an effective means of delivering, integrating, and improving care through a population-based approach. Since 1997 the University of Pennsylvania Health System (UPHS) has utilized the key principles and components of continuous quality improvement (CQI) and disease management to form a model for health care improvement that focuses on designing best practices, using best practices to influence clinical decision making, changing processes and systems to deploy and deliver best practices, and measuring outcomes to improve the process. Experience with 28 programs and more than 14,000 patients indicates significant improvement in outcomes, including high physician satisfaction, increased patient satisfaction, reduced costs, and improved clinical process and outcome measures across multiple diseases. DIABETES DISEASE MANAGEMENT: In three months a UPHS multidisciplinary diabetes disease management team developed a best practice approach for the treatment of all patients with diabetes in the UPHS. After the program was pilot tested in three primary care physician sites, it was then introduced progressively to additional practice sites throughout the health system. The establishment of the role of the diabetes nurse care managers (certified diabetes educators) was central to successful program deployment. Office-based coordinators ensure incorporation of the best practice protocols into routine flow processes. A disease management intranet disseminates programs electronically. Outcomes of the UPHS health and disease management programs so far demonstrate success across multiple dimensions of performance-service, clinical quality, access, and value. The task of health care leadership today is to remove barriers and enable effective implementation of key strategies, such as health and disease management. Substantial effort and resources must be dedicated to gain physician buy-in and achieve compliance. The

  7. Improving Student Naval Aviator Aircraft Carrier Landing Performance

    ERIC Educational Resources Information Center

    Sheppard, Thomas H.; Foster, T. Chris

    2008-01-01

    This article discusses the use of human performance technology (HPT) to improve qualification rates for learning to land onboard aircraft carriers. This project started as a request for a business case analysis and evolved into a full-fledged performance improvement project, from mission analysis through evaluation. The result was a significant…

  8. Adoption of JMM practices - A key to performance improvement of a local automotive industry

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A. K. M.; Haji, A. Jabbar Julia Bt.; Khan, Ahsan Ali; Mustafizul Karim, A. N.

    2017-03-01

    It is imperative for a manufacturing company all over the world to constantly look for ways to increase productivity and at the same time to lower cost to secure a competitive position. It is recognized that practices associated with Japanese Manufacturing Management (JMM) can yield a superior competitive advantage in terms of productivity, quality and provide overall successful business performance. This paper discusses the transfer of the best practices of the JMM locally and analyses the impact of adoption and adaptation of the management system as an in-depth case study conducted in a Malaysian automotive company. This study is to identify what are the changes in terms of the philosophy and practices undertaken by the company and ascertain the impact of the JMM on its manufacturing and financial performances. The elements of business performance from the viewpoint of manufacturing are based on safety, Parts Per Million (PPM), in-line Defect per Unit (DPU), First Time Quality (FTQ), cycle time, productivity, efficiency and stock level. The results show a positive impact to the automotive plant manufacturing performance. For example, safety index has reduced to 0 major accident occurrences. The PPM and In-line DPU have improved by 98% and 91% respectively whereas the FTQ has improved by 167%. Cycle time has reduced from 20 to 6 minutes and productivity increased up to 43% whilst the efficiency reached at 99.9%. The stock level was reduced from half month to 3 days after the adoption of the JMM. The revenue has increased up to 92%, the percentage of expenses has reduced from 11.04% to 3.06% giving an improvement of 72% whilst the net profit has increased from 5.33% to 8.15%. The Return of Asset (RoA) and Return of Equity (RoE) also showed slight improvement despite the effects from the restructuring exercise, Tsunami calamity and fluctuation in Japanese exchange rate.

  9. Chemical intervention in plant sugar signalling increases yield and resilience

    NASA Astrophysics Data System (ADS)

    Griffiths, Cara A.; Sagar, Ram; Geng, Yiqun; Primavesi, Lucia F.; Patel, Mitul K.; Passarelli, Melissa K.; Gilmore, Ian S.; Steven, Rory T.; Bunch, Josephine; Paul, Matthew J.; Davis, Benjamin G.

    2016-12-01

    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

  10. Training Attentional Control Improves Cognitive and Motor Task Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  11. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil.

    PubMed

    Garg, R N; Pathak, H; Das, D K; Tomar, R K

    2005-08-01

    This study explores the potential use of by-products of energy production, i.e., (i) flyash from coal-powered electricity generation and (ii) biogas slurry from agricultural waste treatment, as nutrient sources in agriculture. These residues are available in large amounts and their disposal is a major concern for the environment. As both residues contain considerable amounts of plant nutrients, their use as soil amendment may offer a promising win-win opportunity to improve crop production and, at the same time, preventing adverse environmental impacts of waste disposal. Effect of flyash and biogas slurry on soil physical properties and growth and yield of wheat (Triticum aestivum) was studied in a field experiment. Leaf area index, root length density and grain yield of wheat were higher in plots amended with flyash or biogas slurry compared to unamended plots. Both types of amendments reduced bulk density, and increased saturated hydraulic conductivity and moisture retention capacity of soil. The study showed that flyash and biogas slurry should be used as soil amendments for obtaining short-term and long-term benefits in terms of production increments and soil amelioration.

  12. Targeting carbon for crop yield and drought resilience

    PubMed Central

    Griffiths, Cara A

    2017-01-01

    Abstract Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step‐change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID

  13. Techniques for Improving Spelling Performance.

    ERIC Educational Resources Information Center

    Saylor, Paul

    Improving spelling performance of college students is a question of insuring that the correct information is in long-term memory and readily retrievable. Any system of spelling instruction should recognize the capacity limits of the sensory register and short-term memory; provide for identification of and concentration on the distinctive features…

  14. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  15. The effectiveness of external sensory cues in improving functional performance in individuals with Parkinson's disease: a systematic review with meta-analysis.

    PubMed

    Cassimatis, Constantine; Liu, Karen P Y; Fahey, Paul; Bissett, Michelle

    2016-09-01

    A systematic review with meta-analysis was performed to investigate the effect external sensory cued therapy on activities of daily living (ADL) performance that include walking and daily tasks such as dressing for individuals with Parkinson's disease (PD). A detailed computer-aided search of the literature was applied to MEDLINE, Cumulative Index to Nursing and Allied Health Literature, EMBASE and PubMed. Studies investigating the effects of external sensory cued therapy on ADL performance for individuals with PD in all stages of disease progression were collected. Relevant articles were critically reviewed and study results were synthesized by two independent researchers. A data-analysis method was used to extract data from selected articles. A meta-analysis was carried out for all randomized-controlled trials. Six studies with 243 individuals with PD were included in this review. All six studies yielded positive findings in favour of external sensory cues. The meta-analysis showed that external sensory cued therapy improved statistically after treatment (P=0.011) and at follow-up (P<0.001) for ADL performance. The results of this review provided evidence of an improvement in ADL performance in general in individuals with PD. It is recommended that clinicians incorporate external sensory into a training programme focused on improving daily task performance.

  16. Charge Yield at Low Electric Fields: Considerations for Bipolar Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2013-01-01

    A significant reduction in total dose damage is observed when bipolar integrated circuits are irradiated at low temperature. This can be partially explained by the Onsager theory of recombination, which predicts a strong temperature dependence for charge yield under low-field conditions. Reduced damage occurs for biased as well as unbiased devices because the weak fringing field in thick bipolar oxides only affects charge yield near the Si/SiO2 interface, a relatively small fraction of the total oxide thickness. Lowering the temperature of bipolar ICs - either continuously, or for time periods when they are exposed to high radiation levels - provides an additional degree of freedom to improve total dose performance of bipolar circuits, particularly in space applications.

  17. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    PubMed Central

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    system has the potential to improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  18. Improving balance by performing a secondary cognitive task.

    PubMed

    Swan, Laurie; Otani, Hajime; Loubert, Peter V; Sheffert, Sonya M; Dunbar, Gary L

    2004-02-01

    Contrary to general findings in the attention and memory literature, some studies have shown that performing a secondary cognitive task produces an improvement in balance performance. The purpose of the present experiment was to investigate under what condition such an improvement would occur. Young and older adults were asked to hold as still as possible on a platform that measured sway while performing or not performing the encoding phase of the Brooks' (1967) spatial or non-spatial memory task. The difficulty of maintaining balance was manipulated by varying the availability of visual input and sway-referenced motion of the platform. Sway scores were computed based on the distance between the individual pressure centres and the average centre of pressure during each 20-s trial. The results indicated that both the spatial and non-spatial memory tasks improved balance for older adults under the most difficult balance condition.

  19. Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation

    DOE PAGES

    Wu, Weihua; Tran-Gyamfi, Mary Bao; Jaryenneh, James Dekontee; ...

    2016-08-24

    Recently the feasibility of conversion of algal protein to mixed alcohols has been demonstrated with an engineered E.coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening,more » more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the top five of YqhD mutants were selected for combination with two IlvC mutants with NADH as a cofactor for the modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E.coli strain, subtype AY3, with increased fusel alcohol yield of ~60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels.« less

  20. Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weihua; Tran-Gyamfi, Mary Bao; Jaryenneh, James Dekontee

    Recently the feasibility of conversion of algal protein to mixed alcohols has been demonstrated with an engineered E.coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening,more » more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the top five of YqhD mutants were selected for combination with two IlvC mutants with NADH as a cofactor for the modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E.coli strain, subtype AY3, with increased fusel alcohol yield of ~60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels.« less

  1. Improve compliance and financial performance at the same time.

    PubMed

    Sinaiko, Jeff

    2002-01-01

    Contrary to conventional wisdom, which holds that compliance is often a net negative to a practice's financial performance, the fact is that compliance, operations, and the financial performance of a medical practice can all be simultaneously improved. This article will illustrate that the basic drivers of effective compliance are often the same fundamental business principles that lead to outstanding operations and enhanced financial performance. The lesson for medical practice managers is that if you improve compliance, you should actually improve your bottom line, not harm it.

  2. Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield.

    PubMed

    Yu, Hailong; You, Yanzhi; Lei, Fuhou; Liu, Zuguang; Zhang, Weiming; Jiang, Jianxin

    2015-01-01

    Green liquor (GL) combined with H2O2 (GL-H2O2) and green liquor (GL) combined with ethanol (GL-ethanol) were chosen for treating sugarcane bagasse. Results showed that the glucose yield (calculated from the glucose content as a percentage of the theoretical glucose available in the substrates)of sugarcane bagasse from GL-ethanol pretreatment (97.7%) was higher than that from GL-H2O2 pretreatment (41.7%) after 72h hydrolysis with 18 filter paper unit (FPU)/g-cellulose for cellulase, 27,175 cellobiase units (CBU)/g-cellulose for β-glucosidase. Furthermore, about 94.1% of xylan was converted to xylose after GL-ethanol pretreatment without additional xylanase, while the xylose yield was only 29.2% after GL-H2O2 pretreatment. Scanning electron microscopy showed that GL-ethanol pretreatment could break up the fiber severely. Moreover, GL-ethanol pretreated substrate was more accessible to cellulase and more hydrophilic than that of GL-H2O2 pretreated. Therefore, GL-ethanol pretreatment is a promising method for improving the overall sugar (glucose and xylan) yield of sugarcane bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Performance improvement with patient service partners.

    PubMed

    Burns, J P

    1998-01-01

    Once the decision is made to use a patient-focused care delivery system, a variety of methods can be used to successfully design the model. The author describes the process used by a multilevel, multidisciplinary team at a community hospital to design and implement a Service Partner role that would meet and exceed customer expectations. Demonstrated performance improvements included increased patient satisfaction, productive labor dollar savings, and improvements in the work environment for staff members.

  4. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.).

    PubMed

    Akhter, Wasira; Bhuiyan, Mohamed Khurshed Alam; Sultana, Farjana; Hossain, Mohamed Motaher

    2015-01-01

    The study evaluated the comparative performance of a few microbial antagonists, organic amendments and fungicides and their integration for the management of seedling mortality (Rhizoctonia solani Kühn) and yield improvement in pea (Pisum sativum L.). Before setting the experiment in field microplots, a series of in vitro and in vivo experiments were conducted to select a virulent isolate of R. solani, an effective antagonistic isolate of Trichoderma harzianum, a fungitoxic organic amendment and an appropriate fungicide. A greenhouse pathogenicity test compared differences in seedling mortality in pea inoculated by four isolates of R. solani and identified the isolate RS10 as the most virulent one. Among the 20 isolates screened in dual culture assay on PDA, T. harzianum isolate T-3 was found to show the highest (77.22%) inhibition of the radial growth of R. solani. A complete inhibition (100.00%) of colony growth of R. solani was observed when fungicide Bavistin 50 WP and Provax-200 at the rate of 100 and 250 ppm, respectively, were used, while Provax-200 was found to be highly compatible with T. harzianum. Mustard oilcake gave maximum inhibition (60.28%) of the radial growth of R. solani at all ratios, followed by sesame oilcake and tea waste. Integration of soil treatment with T. harzianum isolate T-3 and mustard oilcake and seed treatment with Provax-200 appeared to be significantly superior in reducing seedling mortality and improving seed yield in pea in comparison to any single or dual application of them in the experimental field. The research results will help growers develop integrated disease management strategies for the control of Rhizoctonia disease in pea. The research results show the need for an integrating selective microbial antagonist, organic amendment and fungicide to achieve appropriate management of seedling mortality (R. solani) and increase of seed yield in pea. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All

  5. Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora, and stress indicators of broilers.

    PubMed

    Cengiz, Özcan; Köksal, Bekir H; Tatlı, Onur; Sevim, Ömer; Ahsan, Umair; Üner, Aykut G; Ulutaş, Pınar A; Beyaz, Devrim; Büyükyörük, Sadık; Yakan, Akın; Önol, Ahmet G

    2015-10-01

    A study was carried out to evaluate the effect of dietary probiotic supplementation and stocking density on the performance, relative carcass yield, gut microflora, and stress markers of broilers. One-day-old Ross 308 male broiler chickens (n = 480) were allocated to 4 experimental groups for 42 d. Each treatment had 8 replicates of 15 chicks each. Two groups were subjected to a high stocking density (HSD) of 20 birds/m² and the other 2 groups were kept at low stocking density (LSD) of 10 birds/m². A basal diet supplemented with probiotic 1 and 0.5 g/kg of diet (in starter and finisher diets, respectively) was fed to 2 treatments, one with HSD and the other with LSD, thereby making a 2 × 2 factorial arrangement. There was no interaction between stocking density (LSD and HSD) and dietary probiotic (supplemented and unsupplemented) for all the variables. Feed intake and weight gain were significantly low and feed conversion ratio was poor in broilers at HSD. Dietary probiotic significantly enhanced the feed intake and weight gain in starter phase only. Dietary probiotic supplementation had no effect (P > 0.05) on total aerobs, Salmonella sp., and Lactobacilli populations in the intestines of broilers. However, HSD reduced the Lactobacilli population only (P < 0.05). Relative breast yields were significantly higher in broilers reared at LSD than HSD. Thigh meat yield was higher in broilers in HSD group compared to LSD. Dietary probiotic did not affect the relative carcass yield and weight of lymphoid organs. Serum malondialdehyde, corticosterone, nitric oxide, and plasma heterophil:lymphocyte ratio were not affected either by stocking density or dietary probiotic supplementation. In conclusion, HSD negatively affected the performance and intestinal Lactobacilli population of broilers only, whereas probiotic supplementation enhanced the performance of broilers during the starter phase only. Total aerobes, Salmonella, Lactobacilli carcass yield, and stress indicators

  6. Perceptual learning improves visual performance in juvenile amblyopia.

    PubMed

    Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M

    2005-09-01

    To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.

  7. Improving the Performance of AI Algorithms.

    DTIC Science & Technology

    1987-09-01

    favorably -6 influenced by s uch progranmning practices as the intellige +nt selt,(-rion .%V ’%. ot’ data formats; to) minimize th~e n,,-ed for...GROUP SUB-GROUP Artifcial Intelgence (Al) Algorithms, Improving Software .’ u- 12 05 Performance, Program Behavior, Predicting Performance, % 12 07...tions in communications, threat assessment, res(orce availability, and so forth. This need for intelligent and adaptable behavior indicates that the

  8. Method for improving fuel cell performance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas

    2003-10-21

    A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.

  9. 48 CFR 970.5203-2 - Performance improvement and collaboration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Solicitation Provisions and Contract Clauses for Management and Operating Contracts 970.5203-2 Performance improvement and... practices, where appropriate, that will improve performance in the areas of environmental and health, safety...

  10. Validation of Modifications to the ANSR for Listeria Method for Improved Internal Positive Control Performance.

    PubMed

    Alles, Susan; Meister, Evan; Hosking, Edan; Tovar, Eric; Shaulis, Rebecca; Schonfeld, Mark; Zhang, Lei; Li, Lin; Biswas, Preetha; Mozola, Mark; Donofrio, Robert; Chen, Yi

    2018-03-01

    A study was conducted to validate a minor reagent formulation change to the ANSR for Listeria method, Performance Tested MethodSM 101202. This change involves increasing the master mix volume prelyophilization by 40% and addition of salmon sperm DNA (nontarget DNA) to the master mix. These changes improve the robustness of the internal positive control response and reduce the possibility of obtaining invalid results due to weak-positive control curves. When three foods (hot dogs, Mexican-style cheese, and cantaloupe) and sponge samples taken from a stainless steel surface were tested, no significant differences in performance between the ANSR and U.S. Food and Drug Administration Bacteriological Analytical Manual or U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference culture procedures were observed for any of the matrixes as determined by probability of detection analysis. Inclusivity and exclusivity testing yielded 100% expected results for target and nontarget bacteria. Accelerated stability testing was carried out over a 7 week period and showed no decrease in assay performance over time.

  11. Soil resilience and yield performance in a vineyard established after intense pre-planting earthworks

    NASA Astrophysics Data System (ADS)

    Costantini, Edoardo; Valboa, Giuseppe; Gagnarli, Elena; Mocali, Stefano; Fabiani, Arturo; Priori, Simone; Simoni, Sauro; Storchi, Paolo; Perria, Rita; Vignozzi, Nadia; Agnelli, Alessandro

    2017-04-01

    Conventional earthworks undertaken before vine plantation may severely compromise soil functions and vine production, as a consequence of a decline of soil fertility caused by loss of organic matter and biological activity, along with changes in chemical and physical features of the topsoil due to the upset of the soil profile. This research was aimed at assessing the effects of conventional pre-planting earthworks on soil fertility and vine yield performance under organic farming. To this purpose, grape yield and quality along with soil chemical, physical and biological properties, were monitored over seven years in a young vineyard established in 2010 after soil leveling and deep ploughing, and in parallel in an older vineyard planted in 2000 after similar earthworks under the same soil and environment conditions. The vineyards (Vitis vinifera L., cv. Sangiovese) were located in the Chianti Classico district (Tuscany, Italy) on a stony calcareous soil classified as Cambic Skeletic Calcisol (loamic, aric) (WRB, 2014). Fertilization was based on annual applications of compost and shredded plant residues. According to the ordinary farming system, the older vineyard was kept free from grass covering during the first four years of growth by periodic tillage, in order to prevent nutritional competition, while in the following years it was managed by natural grass covering on alternate inter-rows. In the younger vineyard, grass covering needed to be postponed because of a delay in the vine development and grape yield induced by poor soil fertility. The results showed significant differences between the two vineyard, with the younger exhibiting lower total organic carbon (0.4 - 0.6 % vs 0.6 - 1.1 %), lower total nitrogen (0.07 - 0.11 % vs 0.10 - 0.15 %) and higher carbonate contents (32 - 38 % vs 21 -30 % total CaCO3), with no clear trend of recovery over time. Pre-planting earthworks also affected the structure and diversity of microbial and microarthropod communities

  12. A Study of Specialty Clones’ Yield Performance in Early and Late Harvests

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: A study was conducted on specialty potato breeding lines to examine yield components in an early and late harvest. Upon first examination it was apparent that the early water cutoff had a large effect on total yield. In the early trial only one clone achieved 600 cwt/A of total...

  13. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE PAGES

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; ...

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm 2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  14. NEST: a comprehensive model for scintillation yield in liquid xenon

    DOE PAGES

    Szydagis, M.; Barry, N.; Kazkaz, K.; ...

    2011-10-03

    Here, a comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should bemore » simple. We use a quasi-empirical approach, with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).« less

  15. Carbohydrates, Muscle Glycogen, and Improved Performance.

    ERIC Educational Resources Information Center

    Sherman, W. Mike

    1987-01-01

    One way to improve athletic performance without harming the athlete's health is diet manipulation. This article explores the relationship between muscular endurance and muscle glycogen and discusses a diet and training approach to competition. (Author/MT)

  16. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield

    PubMed Central

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3, a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA-HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing dsHaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera. Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls. PMID:28867769

  17. Satellite-based assessment of grassland yields

    NASA Astrophysics Data System (ADS)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  18. Recovery interventions and strategies for improved tennis performance

    PubMed Central

    Kovacs, Mark S; Baker, Lindsay B

    2014-01-01

    Improving the recovery capabilities of the tennis athlete is receiving more emphasis in the research communities, and also by practitioners (coaches, physical trainers, tennis performance specialists, physical therapists, etc). The purpose of this article was to review areas of recovery to limit the severity of fatigue and/or speed recovery from fatigue. This review will cover four broad recovery techniques commonly used in tennis with the belief that the interventions may improve athlete recovery and therefore improve adaptation and future performance. The four areas covered are: (1) temperature-based interventions, (2) compressive clothing, (3) electronic interventions and (4) nutritional interventions. PMID:24668374

  19. Visuospatial Training Improves Elementary Students' Mathematics Performance

    ERIC Educational Resources Information Center

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2017-01-01

    Background: Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. Aims: This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial…

  20. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.

    PubMed

    Ceglar, Andrej; Toreti, Andrea; Prodhomme, Chloe; Zampieri, Matteo; Turco, Marco; Doblas-Reyes, Francisco J

    2018-01-22

    Seasonal crop yield forecasting represents an important source of information to maintain market stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, while it fosters the use of climate information favouring adaptation strategies. As climate variability and extremes have significant influence on agricultural production, the early prediction of severe weather events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal climate forecasts provide additional value for agricultural applications in several regions of the world. However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), considering both drought and heat stress in summer, can predict maize yield in Europe and how land-surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central Europe, France and Italy.

  1. Improving the yield and quality of DNA isolated from white-rot fungi.

    PubMed

    Kuhad, R C; Kapoor, R K; Lal, R

    2004-01-01

    A new simple method used to eliminate polysaccharides that cause problems during DNA isolation was established for 6 different white-rot fungi using 1% hexadecyltrimethylammonium bromide (CTAB) as wash buffer and followed by centrifugation. Variation in the DNA yield and quality was ascertained using precipitating agents, detergents and cell-wall-hydrolyzing chitinase. Considerable amount of exopolysaccharides from fungal biomass was removed with the use of 1% CTAB wash buffer followed by centrifugation. The DNA varied in terms of yield and quality. For the DNA extraction use of 2% SDS in extraction buffer worked best for Pycnoporus cinnabarinus, Cyathus bulleri, Cyathus striatus and Cyathus stercoreus, while 2% CTAB worked best for Phanerochaete chrysosporium and Pleurotus ostreatus. Elimination of phenol and use of absolute ethanol for precipitating DNA resulted in good yield and quality of DNA. This DNA was amenable to restriction endonuclease digestion.

  2. Designing a Large-Scale Multilevel Improvement Initiative: The Improving Performance in Practice Program

    ERIC Educational Resources Information Center

    Margolis, Peter A.; DeWalt, Darren A.; Simon, Janet E.; Horowitz, Sheldon; Scoville, Richard; Kahn, Norman; Perelman, Robert; Bagley, Bruce; Miles, Paul

    2010-01-01

    Improving Performance in Practice (IPIP) is a large system intervention designed to align efforts and motivate the creation of a tiered system of improvement at the national, state, practice, and patient levels, assisting primary-care physicians and their practice teams to assess and measurably improve the quality of care for chronic illness and…

  3. Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China.

    PubMed

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China.

  4. Alfalfa (Medicago sativa L.)/Maize (Zea mays L.) Intercropping Provides a Feasible Way to Improve Yield and Economic Incomes in Farming and Pastoral Areas of Northeast China

    PubMed Central

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China. PMID:25329376

  5. Targeting carbon for crop yield and drought resilience.

    PubMed

    Griffiths, Cara A; Paul, Matthew J

    2017-11-01

    Current methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step-change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.4% per year required by 2050. Genetic modification (GM) mainly for herbicide tolerance and insect resistance has been transformational, akin to a second green revolution, although GM has yet to make major inroads into intrinsic yield processes themselves. Drought imposes the major restriction on crop yields globally but, as yet, has not benefited substantially from genetic improvement and still presents a major challenge to agriculture. Much still has to be learnt about the complex process of how drought limits yield and what should be targeted. Mechanisms of drought adaptation from the natural environment cannot be taken into crops without significant modification for the agricultural environment because mechanisms of drought tolerance are often in contrast with mechanisms of high productivity required in agriculture. However, through convergence of fundamental and translational science, it would appear that a mechanism of sucrose allocation in crops can be modified for both productivity and resilience to drought and other stresses. Recent publications show how this mechanism can be targeted by GM, natural variation and a new chemical approach. Here, with an emphasis on drought, we highlight how understanding fundamental science about how crops grow, develop and what limits their growth and yield can be combined with targeted genetic selection and pioneering chemical intervention technology for transformational yield improvements. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors

  6. Improved GaSb-based quantum well laser performance through metamorphic growth on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Christopher J. K., E-mail: richardson@lps.umd.edu; He, Lei; Apiratikul, Paveen

    The promise of the metamorphic growth paradigm is to enable design freedom of the substrate selection criteria beyond current choices that are limited by lattice matching requirements. A demonstration of this emerging degree of freedom is reported here by directly comparing identical laser structures grown both pseudomorphically on a GaSb substrate and metamorphically on a GaAs substrate. Improved thermal performance of the metamorphic laser material enables a higher output power before thermal roll-over begins. These performance gains are demonstrated in minimally processed gain-guided broad-area type-I lasers emitting close to 2-μm wavelengths and mounted p-side up. Continuous wave measurements at roommore » temperature yield a T{sub 0} of 145 K and peak output power of 192 mW from metamorphic lasers, compared to a T{sub 0} of 96 K and peak output power of 164 mW from identical lasers grown pseudomorphically on GaSb.« less

  7. Impact of capillary rise and recirculation on simulated crop yields

    NASA Astrophysics Data System (ADS)

    Kroes, Joop; Supit, Iwan; van Dam, Jos; van Walsum, Paul; Mulder, Martin

    2018-05-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands), where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the accuracy of the

  8. Dual-component video image analysis system (VIASCAN) as a predictor of beef carcass red meat yield percentage and for augmenting application of USDA yield grades.

    PubMed

    Cannell, R C; Tatum, J D; Belk, K E; Wise, J W; Clayton, R P; Smith, G C

    1999-11-01

    An improved ability to quantify differences in the fabrication yields of beef carcasses would facilitate the application of value-based marketing. This study was conducted to evaluate the ability of the Dual-Component Australian VIASCAN to 1) predict fabricated beef subprimal yields as a percentage of carcass weight at each of three fat-trim levels and 2) augment USDA yield grading, thereby improving accuracy of grade placement. Steer and heifer carcasses (n = 240) were evaluated using VIASCAN, as well as by USDA expert and online graders, before fabrication of carcasses to each of three fat-trim levels. Expert yield grade (YG), online YG, VIASCAN estimates, and VIASCAN estimated ribeye area used to augment actual and expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, and hot carcass weight), respectively, 1) accounted for 51, 37, 46, and 55% of the variation in fabricated yields of commodity-trimmed subprimals, 2) accounted for 74, 54, 66, and 75% of the variation in fabricated yields of closely trimmed subprimals, and 3) accounted for 74, 54, 71, and 75% of the variation in fabricated yields of very closely trimmed subprimals. The VIASCAN system predicted fabrication yields more accurately than current online yield grading and, when certain VIASCAN-measured traits were combined with some USDA yield grade factors in an augmentation system, the accuracy of cutability prediction was improved, at packing plant line speeds, to a level matching that of expert graders applying grades at a comfortable rate.

  9. Atmospheric Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.

  10. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Séguin, F. H.; Li, C. K.; DeCiantis, J. L.

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  11. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  12. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE PAGES

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.; ...

    2016-03-22

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  13. Does Iron Supplementation Improve Performance in Iron-Deficient Nonanemic Athletes?

    PubMed

    Rubeor, Amity; Goojha, Carmen; Manning, Jeffrey; White, Jordan

    2018-05-01

    Supplementing iron-deficient nonanemic (IDNA) athletes with iron to improve performance is a trend in endurance sports. To investigate the benefits of iron on performance, identify a ferritin level cutoff in IDNA athletes, and determine which iron supplementation regimens are most effective. A search of the PubMed, CINAHL, Embase, ERIC, and Cochrane databases was performed in 2014 including all articles. Citations of pertinent review articles were also searched. In 2017, the search was repeated. Inclusion criteria comprised studies of level 1 to 3 evidence, written in the English language, that researched iron supplementation in nonanemic athletes and reported performance outcomes. Systematic review. Level 3. The search terms used included athletic performance, resistance training, athletes, physical endurance, iron, iron deficiency, supplement, non-anemic, low ferritin, ferritin, ferritin blood level, athletes, and sports. A total of 1884 studies were identified through the initial database search, and 13 were identified through searching references of relevant review articles. A subsequent database search identified 46 studies. Following exclusions, 12 studies with a total of 283 participants were included. Supplementing IDNA athletes with iron improved performance in 6 studies (146 participants) and did not improve performance in the other 6 studies (137 participants). In the 6 studies that showed improved performance with iron supplementation, all used a ferritin level cutoff of ≤20 μg/L for treatment. Additionally, all studies that showed improved performance used oral iron as a supplement. The evidence is equivocal as to whether iron supplementation in IDNA athletes improves athletic performance. Supplementing athletes with ferritin levels <20 μg/L may be more beneficial than supplementing athletes with higher baseline ferritin levels.

  14. Bacillus subtilis strain specificity affects performance improvement in broilers.

    PubMed

    Rhayat, L; Jacquier, V; Brinch, K S; Nielsen, P; Nelson, A; Geraert, P-A; Devillard, E

    2017-07-01

    The study reports the effects on broiler performance of a newly isolated Bacillus subtilis strain, which is phylogenetically not closely related to already well-described strains of B. subtilis. In the first experiment, birds were reared in battery cages and exposed to C. perfringens. An increase in growth performance was observed with the strain when compared to the challenged animals. Three additional growth trials were conducted to 35 d of age, in different rearing conditions (genetic breeds, corn-soybean meal-based diet with or without animal proteins, in presence or absence of phytase, on fresh or used litter) to investigate the efficacy and the specificity of this new B. subtilis strain on the improvement of BWG and FCR of broilers in comparison with a B. subtilis-based DFM already used in the field. Whatever the rearing conditions tested, the new B. subtilis strain led to an average 3.2% improvement in feed conversion ratio or bodyweight. Comparatively, the commercial Bacillus strain significantly improved broiler performance in only one trial out of 3 with an average improvement reaching 2%. All these results indicate that this new B. subtilis strain consistently improves broiler performances. © 2017 Poultry Science Association Inc.

  15. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon.

    PubMed

    Septiningsih, E M; Prasetiyono, J; Lubis, E; Tai, T H; Tjubaryat, T; Moeljopawiro, S; McCouch, S R

    2003-11-01

    A BC(2)F(2) population developed from an interspecific cross between Oryza sativa (cv IR64) and O. rufipogon (IRGC 105491) was used in an advanced backcross QTL analysis to identify and introduce agronomically useful genes from this wild relative into the cultivated gene pool. The objectives of this study were: (1) to identify putative yield and yield component QTLs that can be useful to improve the elite cultivar IR64; (2) to compare the QTLs within this study with previously reported QTLs in rice as the basis for identifying QTLs that are stable across different environments and genetic backgrounds; and (3) to compare the identified QTLs with previously reported QTLs from maize to examine the degree of QTL conservation across the grass family. Two hundred eighty-five families were evaluated in two field environments in Indonesia, with two replications each, for 12 agronomic traits. A total of 165 markers consisting of 131 SSRs and 34 RFLPs were used to construct the genetic linkage map. By employing interval mapping and composite interval mapping, 42 QTLs were identified. Despite its inferior performance, 33% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield and yield components in the IR64 background. Twenty-two QTLs (53.4%) were located in similar regions as previously reported rice QTLs, suggesting the existence of stable QTLs across genetic backgrounds and environments. Twenty QTLs (47.6%) were exclusively detected in this study, uncovering potentially novel alleles from the wild, some of which might improve the performance of the tropical indica variety IR64. Additionally, several QTLs for plant height, grain weight, and flowering time detected in this study corresponded to homeologous regions in maize containing previously detected maize QTLs for these traits.

  16. A crossbred reference population can improve the response to genomic selection for crossbred performance.

    PubMed

    Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Piter

    2015-09-29

    Breeding goals in a crossbreeding system should be defined at the commercial crossbred level. However, selection is often performed to improve purebred performance. A genomic selection (GS) model that includes dominance effects can be used to select purebreds for crossbred performance. Optimization of the GS model raises the question of whether marker effects should be estimated from data on the pure lines or crossbreds. Therefore, the first objective of this study was to compare response to selection of crossbreds by simulating a two-way crossbreeding program with either a purebred or a crossbred training population. We assumed a trait of interest that was controlled by loci with additive and dominance effects. Animals were selected on estimated breeding values for crossbred performance. There was no genotype by environment interaction. Linkage phase and strength of linkage disequilibrium between quantitative trait loci (QTL) and single nucleotide polymorphisms (SNPs) can differ between breeds, which causes apparent effects of SNPs to be line-dependent. Thus, our second objective was to compare response to GS based on crossbred phenotypes when the line origin of alleles was taken into account or not in the estimation of breeding values. Training on crossbred animals yielded a larger response to selection in crossbred offspring compared to training on both pure lines separately or on both pure lines combined into a single reference population. Response to selection in crossbreds was larger if both phenotypes and genotypes were collected on crossbreds than if phenotypes were only recorded on crossbreds and genotypes on their parents. If both parental lines were distantly related, tracing the line origin of alleles improved genomic prediction, whereas if both parental lines were closely related and the reference population was small, it was better to ignore the line origin of alleles. Response to selection in crossbreeding programs can be increased by training on

  17. Instructional Materials for Improved Job Performance.

    ERIC Educational Resources Information Center

    Foley, John P., Jr.

    1978-01-01

    Instructional materials developed in military research to improve performance of electromechanical maintenance tasks are described, with implications for teacher education. The materials require task analysis, job task relevance, and task-oriented training. Although many industries have implemented these techniques, teacher training institutions…

  18. The People Side of Performance Improvement.

    ERIC Educational Resources Information Center

    Gerson, Richard F.

    1999-01-01

    Discusses 11 keys to the personal side of performance improvement, including positive attitude, high self esteem and positive self-image, communication skills, lifelong learning, caring about other people, health and well-being, motivation, goal setting, relaxation, visualization, and personal value system. (LRW)

  19. Handbook for Improving Superintendent Performance Evaluation.

    ERIC Educational Resources Information Center

    Candoli, Carl; And Others

    This handbook for superintendent performance evaluation contains information for boards of education as they institute or improve their evaluation system. The handbook answers questions involved in operationalizing, implementing, and evaluating a superintendent-evaluation system. The information was developed from research on superintendent…

  20. Improving Fatigue Performance of AHSS Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Yu, Xinghua; Erdman, III, Donald L.

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage ofmore » the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.« less

  1. Yield surface evolution for columnar ice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  2. Specific adaptation and genetic progress for grain yield in Great Plains hard winter wheats, 1987-2010

    USDA-ARS?s Scientific Manuscript database

    Meeting the food demands of a growing world population will become increasingly difficult should the rate of genetic improvement in grain yield of wheat (Triticum aestivum L.) and other grain crops decelerate. Data from USDA-ARS coordinated long-term regional performance nurseries was used to exami...

  3. Improving information recognition and performance of recycling chimneys.

    PubMed

    Durugbo, Christopher

    2013-01-01

    The aim of this study was to assess and improve how recyclers (individuals carrying out the task of recycling) make use of visual cues to carryout recycling tasks in relation to 'recycling chimneys' (repositories for recycled waste). An initial task analysis was conducted through an activity sampling study and an eye tracking experiment using a mobile eye tracker to capture fixations of recyclers during recycling tasks. Following data collection using the eye tracker, a set of recommendations for improving information representation were then identified using the widely researched skills, rules, knowledge framework, and for a comparative study to assess the performance of improved interfaces for recycling chimneys based on Ecological Interface Design principles. Information representation on recycling chimneys determines how we recycle waste. This study describes an eco-ergonomics-based approach to improve the design of interfaces for recycling chimneys. The results are valuable for improving the performance of waste collection processes in terms of minimising contamination and increasing the quantity of recyclables.

  4. Estimating national crop yield potential and the relevance of weather data sources

    NASA Astrophysics Data System (ADS)

    Van Wart, Justin

    2011-12-01

    To determine where, when, and how to increase yields, researchers often analyze the yield gap (Yg), the difference between actual current farm yields and crop yield potential. Crop yield potential (Yp) is the yield of a crop cultivar grown under specific management limited only by temperature and solar radiation and also by precipitation for water limited yield potential (Yw). Yp and Yw are critical components of Yg estimations, but are very difficult to quantify, especially at larger scales because management data and especially daily weather data are scarce. A protocol was developed to estimate Yp and Yw at national scales using site-specific weather, soils and management data. Protocol procedures and inputs were evaluated to determine how to improve accuracy of Yp, Yw and Yg estimates. The protocol was also used to evaluate raw, site-specific and gridded weather database sources for use in simulations of Yp or Yw. The protocol was applied to estimate crop Yp in US irrigated maize and Chinese irrigated rice and Yw in US rainfed maize and German rainfed wheat. These crops and countries account for >20% of global cereal production. The results have significant implications for past and future studies of Yp, Yw and Yg. Accuracy of national long-term average Yp and Yw estimates was significantly improved if (i) > 7 years of simulations were performed for irrigated and > 15 years for rainfed sites, (ii) > 40% of nationally harvested area was within 100 km of all simulation sites, (iii) observed weather data coupled with satellite derived solar radiation data were used in simulations, and (iv) planting and harvesting dates were specified within +/- 7 days of farmers actual practices. These are much higher standards than have been applied in national estimates of Yp and Yw and this protocol is a substantial step in making such estimates more transparent, robust, and straightforward. Finally, this protocol may be a useful tool for understanding yield trends and directing

  5. Verbal communication improves laparoscopic team performance.

    PubMed

    Shiliang Chang; Waid, Erin; Martinec, Danny V; Bin Zheng; Swanstrom, Lee L

    2008-06-01

    The impact of verbal communication on laparoscopic team performance was examined. A total of 24 dyad teams, comprised of residents, medical students, and office staff, underwent 2 team tasks using a previously validated bench model. Twelve teams (feedback groups) received instant verbal instruction and feedback on their performance from an instructor which was compared with 12 teams (control groups) with minimal or no verbal feedback. Their performances were both video and audio taped for analysis. Surgical backgrounds were similar between feedback and control groups. Teams with more verbal feedback achieved significantly better task performance (P = .002) compared with the control group with less feedback. Impact of verbal feedback was more pronounced for tasks requiring team cooperation (aiming and navigation) than tasks depending on individual skills (knotting). Verbal communication, especially the instructions and feedback from an experienced instructor, improved team efficiency and performance.

  6. Pre-task music improves swimming performance.

    PubMed

    Smirmaul, B P; Dos Santos, R V; Da Silva Neto, L V

    2015-12-01

    The purpose of this study was to investigate the effects of pre-task music on swimming performance and other psychological variables. A randomized counterbalanced within-subjects (experimental and control condition) design was employed. Eighteen regional level male swimmers performed two 200-m freestyle swimming time trials. Participants were exposed to either 5 minutes of self-selected music (pre-task music condition) or 5 minutes of silence (control condition) and, after 1 minute, performed the swimming task. Swimming time was significantly shorter (-1.44%) in the pre-task music condition. Listening to pre-task music increased motivation to perform the swimming task, while arousal remained unchanged. While fatigue increased after the swimming task in both conditions, vigor, ratings of perceived exertion and affective valence were unaltered. It is concluded, for the first time, that pre-task music improves swimming performance.

  7. Wafer scale fabrication of carbon nanotube thin film transistors with high yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Boyuan; Liang, Xuelei, E-mail: liangxl@pku.edu.cn, E-mail: ssxie@iphy.ac.cn; Yan, Qiuping

    Carbon nanotube thin film transistors (CNT-TFTs) are promising candidates for future high performance and low cost macro-electronics. However, most of the reported CNT-TFTs are fabricated in small quantities on a relatively small size substrate. The yield of large scale fabrication and the performance uniformity of devices on large size substrates should be improved before the CNT-TFTs reach real products. In this paper, 25 200 devices, with various geometries (channel width and channel length), were fabricated on 4-in. size ridged and flexible substrates. Almost 100% device yield were obtained on a rigid substrate with high out-put current (>8 μA/μm), high on/off current ratiomore » (>10{sup 5}), and high mobility (>30 cm{sup 2}/V·s). More importantly, uniform performance in 4-in. area was achieved, and the fabrication process can be scaled up. The results give us more confidence for the real application of the CNT-TFT technology in the near future.« less

  8. Closing Yield Gaps: How Sustainable Can We Be?

    PubMed

    Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E; Kropp, Juergen P

    2015-01-01

    Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way

  9. Coapplication of Chicken Litter Biochar and Urea Only to Improve Nutrients Use Efficiency and Yield of Oryza sativa L. Cultivation on a Tropical Acid Soil

    PubMed Central

    Maru, Ali; Haruna, Osumanu Ahmed; Charles Primus, Walter

    2015-01-01

    The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%. PMID:26273698

  10. Yield performance of cacao propagated by somatic embryogenesis and grafting

    USDA-ARS?s Scientific Manuscript database

    Twelve cacao (Theobroma cacao) clones propagated by grafting and somatic embryogenesis and grown on an Ultisol soil were evaluated for five years under intensive management at Corozal, Puerto Rico. Preliminary data showed no significant differences between propagation methods for yield of dry beans ...

  11. Crop yield responses to a hardwood biochar across varied soils and climate conditions

    USDA-ARS?s Scientific Manuscript database

    Biochars applied to soil for crop yield improvements have produced mixed results. The assorted crop yield responses may be linked to employing biochars with diverse chemical and physical characteristics. To clarify if biochars can improve crop yields, it may be prudent to evaluate one biochar type...

  12. 42 CFR 403.732 - Condition of participation: Quality assessment and performance improvement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... performance improvement program. (3) The RNHCI must set priorities for performance improvement, considering... assessment and performance improvement program addresses identified priorities in the RNHCI and are...

  13. Charge transfer through amino groups-small molecules interface improving the performance of electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık

    2016-05-01

    A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.

  14. Teaching Performance Improvement: An Opportunity for Continuing Medical Education

    ERIC Educational Resources Information Center

    Staker, Larry V.

    2003-01-01

    Practicing physicians generally are not engaged in either the methods of performance improvement for health care or the measurement and reporting of clinical outcomes. The principal reasons are lack of compensation for such work, the perception that the work of performance improvement adds no value and is a waste of time, the lack of knowledge and…

  15. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis.

    PubMed

    Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing

    2014-04-01

    Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.

  16. LACIE: Wheat yield models for the USSR

    NASA Technical Reports Server (NTRS)

    Sakamoto, C. M.; Leduc, S. K.

    1977-01-01

    A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.

  17. Heavy ion mutagenesis combined with triclosan screening provides a new strategy for improving the arachidonic acid yield in Mortierella alpina.

    PubMed

    Zhang, Huidan; Lu, Dong; Li, Xin; Feng, Yingang; Cui, Qiu; Song, Xiaojin

    2018-05-02

    Arachidonic acid (ARA), which is a ω-6 polyunsaturated fatty acid, has a wide range of biological activities and is an essential component of cellular membranes in some human tissues. Mortierella alpina is the best strain for industrial production of ARA. To increase its yield of arachidonic acid, heavy ion beam irradiation mutagenesis of Mortierella alpina was carried out in combination with triclosan and octyl gallate treatment. The obtained mutant strain F-23 ultimately achieved an ARA yield of 5.26 g L - 1 , which is 3.24 times higher than that of the wild-type strain. In addition, quantitative real-time PCR confirmed that the expression levels of fatty acid synthase (FAS), Δ5-desaturase, Δ6-desaturase, and Δ9-desaturase were all significantly up-regulated in the mutant F-23 strain, especially Δ6- and Δ9-desaturase, which were up-regulated 3- and 2-fold, respectively. This study confirmed a feasible mutagenesis breeding strategy for improving ARA production and provided a mutant of Mortierella alpina with high ARA yield.

  18. Global Agriculture Yields and Conflict under Future Climate

    NASA Astrophysics Data System (ADS)

    Rising, J.; Cane, M. A.

    2013-12-01

    Aspects of climate have been shown to correlate significantly with conflict. We investigate a possible pathway for these effects through changes in agriculture yields, as predicted by field crop models (FAO's AquaCrop and DSSAT). Using satellite and station weather data, and surveyed data for soil and management, we simulate major crop yields across all countries between 1961 and 2008, and compare these to FAO and USDA reported yields. Correlations vary by country and by crop, from approximately .8 to -.5. Some of this range in crop model performance is explained by crop varieties, data quality, and other natural, economic, and political features. We also quantify the ability of AquaCrop and DSSAT to simulate yields under past cycles of ENSO as a proxy for their performance under changes in climate. We then describe two statistical models which relate crop yields to conflict events from the UCDP/PRIO Armed Conflict dataset. The first relates several preceding years of predicted yields of the major grain in each country to any conflict involving that country. The second uses the GREG ethnic group maps to identify differences in predicted yields between neighboring regions. By using variation in predicted yields to explain conflict, rather than actual yields, we can identify the exogenous effects of weather on conflict. Finally, we apply precipitation and temperature time-series under IPCC's A1B scenario to the statistical models. This allows us to estimate the scale of the impact of future yields on future conflict. Centroids of the major growing regions for each country's primary crop, based on USDA FAS consumption. Correlations between simulated yields and reported yields, for AquaCrop and DSSAT, under the assumption that no irrigation, fertilization, or pest control is used. Reported yields are the average of FAO yields and USDA FAS yields, where both are available.

  19. Deficit irrigation and fertilization strategies to improve soil quality and alfalfa yield in arid and semi-arid areas of northern China.

    PubMed

    Jia, Qianmin; Kamran, Muhammad; Ali, Shahzad; Sun, Lefeng; Zhang, Peng; Ren, Xiaolong; Jia, Zhikuan

    2018-01-01

    In the arid and semi-arid areas of northern China, overexploitation of fertilizers and extensive irrigation with brackish groundwater have led to soil degradation and large areas of farmland have been abandoned. In order to improve the soil quality of abandoned farmland and make reasonable use of brackish groundwater, we conducted field trials in 2013 and 2014. In our study, we used three fertilization modes (CF, chemical fertilizer; OM, organic manure and chemical fertilizer; NF, no fertilizer) and three deficit irrigation levels (I 0 : 0 mm; I 75 : 75 mm; I 150 : 150 mm). The results showed that the activities of soil urease, alkaline phosphatase, invertase, catalase, and dehydrogenase in the OM treatment were significantly improved compared with those in the CF and NF treatments under the three deficit irrigation levels. Compared with NF, the OM treatment significantly increased soil organic carbon (SOC), water-soluble carbon (WSC), total nitrogen, microbial biomass carbon and nitrogen (MBC and MBN), and soil respiration rate, and significantly decreased soil C:N and MBC:MBN ratios and the metabolic quotient, thus improving the soil quality of abandoned farmland. Furthermore, the OM treatment increased alfalfa plant height, leaf area index, leaf chlorophyll content, and biomass yield. Under the CF and OM fertilization modes, the activities of urease and catalase in I 150 were significantly higher than those in I 0 , whereas irrigating without fertilizer did not significantly increase the activity of these two enzymes. Regardless of fertilization, alkaline phosphatase activity increased with an increase in irrigation amount, whereas invertase activity decreased. The results showed that deficit irrigation with brackish groundwater under the OM treatment can improve soil quality. Over the two years of the study, maximum SOC, total nitrogen, WSC, MBC, and MBN were observed under the OM-I 150 treatment, and the alfalfa biomass yield of this treatment was also

  20. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    PubMed Central

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  1. Melon yield prediction using small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Tiebiao; Wang, Zhongdao; Yang, Qi; Chen, YangQuan

    2017-05-01

    Thanks to the development of camera technologies, small unmanned aerial systems (sUAS), it is possible to collect aerial images of field with more flexible visit, higher resolution and much lower cost. Furthermore, the performance of objection detection based on deeply trained convolutional neural networks (CNNs) has been improved significantly. In this study, we applied these technologies in the melon production, where high-resolution aerial images were used to count melons in the field and predict the yield. CNN-based object detection framework-Faster R-CNN is applied in the melon classification. Our results showed that sUAS plus CNNs were able to detect melons accurately in the late harvest season.

  2. Improved perceptual-motor performance measurement system

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Reilly, R. E.

    1969-01-01

    Battery of tests determines the primary dimensions of perceptual-motor performance. Eighteen basic measures range from simple tests to sophisticated electronic devices. Improved system has one unit for the subject containing test display and response elements, and one for the experimenter where test setups, programming, and scoring are accomplished.

  3. Annual Corn Yield Estimation through Multi-temporal MODIS Data

    NASA Astrophysics Data System (ADS)

    Shao, Y.; Zheng, B.; Campbell, J. B.

    2013-12-01

    This research employed 13 years of the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate annual corn yield for the Midwest of the United States. The overall objective of this study was to examine if annual corn yield could be accurately predicted using MODIS time-series NDVI (Normalized Difference Vegetation Index) and ancillary data such monthly precipitation and temperature. MODIS-NDVI 16-Day composite images were acquired from the USGS EROS Data Center for calendar years 2000 to 2012. For the same time-period, county level corn yield statistics were obtained from the National Agricultural Statistics Service (NASS). The monthly precipitation and temperature measures were derived from Precipitation-Elevation Regressions on Independent Slopes Model (PRISM) climate data. A cropland mask was derived using 2006 National Land Cover Database. For each county and within the cropland mask, the MODIS-NDVI time-series data and PRISM climate data were spatially averaged, at their respective time steps. We developed a random forest predictive model with the MODIS-NDVI and climate data as predictors and corn yield as response. To assess the model accuracy, we used twelve years of data as training and the remaining year as hold-out testing set. The training and testing procedures were repeated 13 times. The R2 ranged from 0.72 to 0.83 for testing years. It was also found that the inclusion of climate data did not improve the model predictive performance. MODIS-NDVI time-series data alone might provide sufficient information for county level corn yield prediction.

  4. The Importance of Juvenile Root Traits for Crop Yields

    NASA Astrophysics Data System (ADS)

    White, Philip; Adu, Michael; Broadley, Martin; Brown, Lawrie; Dupuy, Lionel; George, Timothy; Graham, Neil; Hammond, John; Hayden, Rory; Neugebauer, Konrad; Nightingale, Mark; Ramsay, Gavin; Thomas, Catherine; Thompson, Jacqueline; Wishart, Jane; Wright, Gladys

    2014-05-01

    Genetic variation in root system architecture (RSA) is an under-exploited breeding resource. This is partly a consequence of difficulties in the rapid and accurate assessment of subterranean root systems. However, although the characterisation of root systems of large plants in the field are both time-consuming and labour-intensive, high-throughput (HTP) screens of root systems of juvenile plants can be performed in the field, glasshouse or laboratory. It is hypothesised that improving the root systems of juvenile plants can accelerate access to water and essential mineral elements, leading to rapid crop establishment and, consequently, greater yields. This presentation will illustrate how aspects of the juvenile root systems of potato (Solanum tuberosum L.) and oilseed rape (OSR; Brassica napus L.) correlate with crop yields and examine the reasons for such correlations. It will first describe the significant positive relationships between early root system development, phosphorus acquisition, canopy establishment and eventual yield among potato genotypes. It will report the development of a glasshouse assay for root system architecture (RSA) of juvenile potato plants, the correlations between root system architectures measured in the glasshouse and field, and the relationships between aspects of the juvenile root system and crop yields under drought conditions. It will then describe the development of HTP systems for assaying RSA of OSR seedlings, the identification of genetic loci affecting RSA in OSR, the development of mathematical models describing resource acquisition by OSR, and the correlations between root traits recorded in the HTP systems and yields of OSR in the field.

  5. Experimental and Numerical Optimization of a High-Lift System to Improve Low-Speed Performance, Stability, and Control of an Arrow-Wing Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Glaab, Louis J.

    1999-01-01

    An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.

  6. Phase feeding in a big-bird production scenario: effect on growth performance, yield, and fillet dimension.

    PubMed

    Brewer, V B; Owens, C M; Emmert, J L

    2012-05-01

    Phase feeding (PF) has been effective at maintaining broiler growth while reducing production cost, but the effect on different broiler strains and sex has not been assessed. An experiment was conducted using 4 commercial broiler strains grown up to 63 d of age (n = 1,440), comparing a PF approach to an industry-type diet. At d 17, birds began either the industry or PF regimen. The industry regimen consisted of average industry nutrient levels with periods from 17 to 32 d, 32 to 40 d, 40 to 49 d, and 49 d to the end of trial. For PF, diets were prepared that contained Lys, sulfur amino acids, and Thr levels matching the predicted requirements for birds at the beginning (high nutrient density) and end (low nutrient density) of PF. Pelleted high and low nutrient density diets were blended to produce rations containing amino acid levels that matched the predicted PF requirements over 2-d intervals. Weight gain, feed intake, and feed efficiency were calculated through d 58. Birds were commercially processed at 59, 61, or 63 d; yield and fillet dimensions were measured. Phase feeding did not effect weight gain or feed intake of broilers during the overall growth period (17-58 d). For most strains, PF did not effect final BW, yield, or fillet dimensions. However, strain and sex had greater effects on growth performance, yields, and fillet dimensions. Strains B and D had greater breast yield than strains A and C. Reduced feed costs ($0.01 to $0.04 per kilogram of gain, depending on strain) were observed for all strains with PF for the overall growth period (17-58 d). Therefore, potential savings on feed costs are possible for all strains used in this study with the incorporation of the PF regimen.

  7. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.

    PubMed

    Zhang, Xin; Zhang, Xiaomei; Xu, Guoqiang; Zhang, Xiaojuan; Shi, Jinsong; Xu, Zhenghong

    2018-05-03

    L-Serine is widely used in the pharmaceutical, food, and cosmetics industries. Although direct fermentative production of L-serine from sugar in Corynebacterium glutamicum has been achieved, the L-serine yield remains relatively low. In this study, atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the L-serine yield based on engineered C. glutamicum ΔSSAAI strain. Subsequently, we developed a novel high-throughput screening method using a biosensor constructed based on NCgl0581, a transcriptional factor specifically responsive to L-serine, so that L-serine concentration within single cell of C. glutamicum can be monitored via fluorescence-activated cell sorting (FACS). Novel L-serine-producing mutants were isolated from a large library of mutagenized cells. The mutant strain A36-pDser was screened from 1.2 × 10 5 cells, and the magnesium ion concentration in the medium was optimized specifically for this mutant. C. glutamicum A36-pDser accumulated 34.78 g/L L-serine with a yield of 0.35 g/g sucrose, which were 35.9 and 66.7% higher than those of the parent C. glutamicum ΔSSAAI-pDser strain, respectively. The L-serine yield achieved in this mutant was the highest of all reported L-serine-producing strains of C. glutamicum. Moreover, the whole-genome sequencing identified 11 non-synonymous mutations of genes associated with metabolic and transport pathways, which might be responsible for the higher L-serine production and better cell growth in C. glutamicum A36-pDser. This study explored an effective mutagenesis strategy and reported a novel high-throughput screening method for the development of L-serine-producing strains.

  8. Improving the performance of the amblyopic visual system

    PubMed Central

    Levi, Dennis M.; Li, Roger W.

    2008-01-01

    Experience-dependent plasticity is closely linked with the development of sensory function; however, there is also growing evidence for plasticity in the adult visual system. This review re-examines the notion of a sensitive period for the treatment of amblyopia in the light of recent experimental and clinical evidence for neural plasticity. One recently proposed method for improving the effectiveness and efficiency of treatment that has received considerable attention is ‘perceptual learning’. Specifically, both children and adults with amblyopia can improve their perceptual performance through extensive practice on a challenging visual task. The results suggest that perceptual learning may be effective in improving a range of visual performance and, importantly, the improvements may transfer to visual acuity. Recent studies have sought to explore the limits and time course of perceptual learning as an adjunct to occlusion and to investigate the neural mechanisms underlying the visual improvement. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia. PMID:19008199

  9. Electrolysis Performance Improvement and Validation Experiment

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1992-01-01

    Viewgraphs on electrolysis performance improvement and validation experiment are presented. Topics covered include: water electrolysis: an ever increasing need/role for space missions; static feed electrolysis (SFE) technology: a concept developed for space applications; experiment objectives: why test in microgravity environment; and experiment description: approach, hardware description, test sequence and schedule.

  10. Whole beetroot consumption acutely improves running performance.

    PubMed

    Murphy, Margaret; Eliot, Katie; Heuertz, Rita M; Weiss, Edward

    2012-04-01

    Nitrate ingestion improves exercise performance; however, it has also been linked to adverse health effects, except when consumed in the form of vegetables. The purpose of this study was to determine, in a double-blind crossover study, whether whole beetroot consumption, as a means for increasing nitrate intake, improves endurance exercise performance. Eleven recreationally fit men and women were studied in a double-blind placebo controlled crossover trial performed in 2010. Participants underwent two 5-km treadmill time trials in random sequence, once 75 minutes after consuming baked beetroot (200 g with ≥500 mg nitrate) and once 75 minutes after consuming cranberry relish as a eucaloric placebo. Based on paired t tests, mean running velocity during the 5-km run tended to be faster after beetroot consumption (12.3±2.7 vs 11.9±2.6 km/hour; P=0.06). During the last 1.1 miles (1.8 km) of the 5-km run, running velocity was 5% faster (12.7±3.0 vs 12.1±2.8 km/hour; P=0.02) in the beetroot trial, with no differences in velocity (P≥0.25) in the earlier portions of the 5-km run. No differences in exercise heart rate were observed between trials; however, at 1.8 km into the 5-km run, rating of perceived exertion was lower with beetroot (13.0±2.1 vs 13.7±1.9; P=0.04). Consumption of nitrate-rich, whole beetroot improves running performance in healthy adults. Because whole vegetables have been shown to have health benefits, whereas nitrates from other sources may have detrimental health effects, it would be prudent for individuals seeking performance benefits to obtain nitrates from whole vegetables, such as beetroot. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. Improving the astrometric performance of VLTI-PRIMA

    NASA Astrophysics Data System (ADS)

    Woillez, J.; Abuter, R.; Andolfato, L.; Berger, J.-P.; Bonnet, H.; Delplancke, F.; Derie, F.; Di Lieto, N.; Guniat, S.; Mérand, A.; Duc, T. Phan; Schmid, C.; Schuhler, N.; Henning, T.; Launhardt, R.; Pepe, F.; Queloz, D.; Quirrenbach, A.; Reffert, S.; Sahlmann, J.; Segransan, D.

    2014-07-01

    In the summer of 2011, the first on-sky astrometric commissioning of PRIMA-Astrometry delivered a performance of 3 m″ for a 10 ″ separation on bright objects, orders of magnitude away from its exoplanet requirement of 50 μ″ ~ 20 μ″ on objects as faint as 11 mag ~ 13 mag in K band. This contribution focuses on upgrades and characterizations carried out since then. The astrometric metrology was extended from the Coudé focus of the Auxillary Telescopes to their secondary mirror, in order to reduce the baseline instabilities and improve the astrometric performance. While carrying out this extension, it was realized that the polarization retardance of the star separator derotator had a major impact on both the astrometric metrology and the fringe sensors. A local compensation of this retardance and the operation on a symmetric baseline allowed a new astrometric commissioning. In October 2013, an improved astrometric performance of 160 μ″ was demonstrated, still short of the requirements. Instabilities in the astrometric baseline still appear to be the dominating factor. In preparation to a review held in January 2014, a plan was developed to further improve the astrometric and faint target performance of PRIMA Astrometry. On the astrometric aspect, it involved the extension of the internal longitudinal metrology to primary space, the design and implementation of an external baseline metrology, and the development of an astrometric internal fringes mode. On the faint target aspect, investigations of the performance of the fringe sensor units and the development of an AO system (NAOMI) were in the plan. Following this review, ESO decided to take a proposal to the April 2014 STC that PRIMA be cancelled, and that ESO resources be concentrated on ensuring that Gravity and Matisse are a success. This proposal was recommended by the STC in May 2014, and endorsed by ESO.

  12. Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells.

    PubMed

    Juárez, Mariana; González-De la Rosa, Claudia H; Memún, Elisa; Sigala, Juan-Carlos; Lara, Alvaro R

    2017-03-01

    Inefficient carbon metabolism is a relevant issue during the culture of mammalian cells for the production of biopharmaceuticals. Therefore, cell engineering strategies to improve the metabolic and growth performance of cell lines are needed. The expression of Vitreoscilla stercoraria hemoglobin (VHb) has been shown to significantly reduce overflow metabolism and improve the aerobic growth of bacteria. However, the effects of VHb on mammalian cells have been rarely studied. Here, the impact of VHb on growth and lactate accumulation during CHO-K1 cell culture was investigated. For this purpose, CHO-K1 cells were transfected with plasmids carrying the vgb or gfp gene to express VHb or green fluorescence protein (GFP), respectively. VHb expression increased the specific growth rate and biomass yields on glucose and glutamine by 60 %, and reduced the amount of lactate produced per cell by 40 %, compared to the GFP-expression controls. Immunofluorescence microscopy showed that VHb is distributed in the cytoplasm and organelles, which support the hypothesis that VHb could serve as an oxygen carrier, enhancing aerobic respiration. These results are useful for the development of better producing cell lines for industrial applications. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Some short-term effects of changing to lower yield cigarettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minty, B.D.; Royston, D.; Jones, J.G.

    The rate of clearance from the lung of the hydrophilic tracer molecule /sup 99m/Tc DTPA was used to investigate the short-term effects on lung epithelial function when smokers switched to cigarettes with lower yields of tobacco smoke constituents. Two separate studies were performed. In the first study, subjects smoked conventional mid- and low-tar cigarettes. The second study used two specially manufactured cigarettes with similar tar and nicotine yields, but differing carbon monoxide yields. Neither study demonstrated any significant improvement in /sup 99m/Tc DTPA clearance. The yields of carbon monoxide determined under standard machine smoking conditions implied that there would bemore » a 44 percent reduction in exposure to carbon monoxide when subjects switched from smoking conventional mid-tar to low-tar cigarettes. However, measurements of carboxyhemoglobin showed that the smokers compensated for the lower yields and their exposure was reduced by only 11 percent. Similarly, in the second study, the subjects reduced their exposure by 7 percent instead of the expected 44 percent. Urine nicotine/cotinine excretion measurements in this study indicated that there was no complimentary increase in nicotine absorption suggesting the possibility that subjects may be able to regulate their intake of individual components of the cigarette smoke. Thus, the unexpected result from this study was the finding that cigarette smokers could, in some way, regulate their intake of smoke from cigarettes of different composition so as to maintain a constant exposure of smoke constituents.« less

  14. An improved method for characterizing photoresist lithographic and defectivity performance for sub-20nm node lithography

    NASA Astrophysics Data System (ADS)

    Amblard, Gilles; Purdy, Sara; Cooper, Ryan; Hockaday, Marjory

    2016-03-01

    The overall quality and processing capability of lithographic materials are critical for ensuring high device yield and performance at sub-20nm technology nodes in a high volume manufacturing environment. Insufficient process margin and high line width roughness (LWR) cause poor manufacturing control, while high defectivity causes product failures. In this paper, we focus on the most critical layer of a sub-20nm technology node LSI device, and present an improved method for characterizing both lithographic and post-patterning defectivity performance of state-of-the-art immersion photoresists. Multiple formulations from different suppliers were used and compared. Photoresists were tested under various process conditions, and multiple lithographic metrics were investigated (depth of focus, exposure dose latitude, line width roughness, etc.). Results were analyzed and combined using an innovative approach based on advanced software, providing clearer results than previously available. This increased detail enables more accurate performance comparisons among the different photoresists. Post-patterning defectivity was also quantified, with defects reviewed and classified using state-of-the-art inspection tools. Correlations were established between the lithographic and post-patterning defectivity performances for each material, and overall ranking was established among the photoresists, enabling the selection of the best performer for implementation in a high volume manufacturing environment.

  15. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  16. A Spike Cocktail Approach to Improve Microbial Performance ...

    EPA Pesticide Factsheets

    Water reuse, via either centralized treatment of traditional wastewater or decentralized treatment and on-site reuse, is becoming an increasingly important element of sustainable water management. Despite advances in waterborne pathogen detection methods, low and highly variable pathogen levels limit their utility for routine evaluation of health risks in water reuse systems. Therefore, there is a need to improve our understanding of the linkage between pathogens and more readily measured process indicators during treatment. This paper describes an approach for constructing spiking experiments to relate the behavior of viral, bacterial, and protozoan pathogens with relevant process indicators. General issues are reviewed, and the spiking protocol is applied as a case study example to improve microbial performance monitoring and health risk evaluation in a water reuse system. This approach provides a foundation for the development of novel approaches to improve real or near-real time performance monitoring of water recycling systems. This manuscrupt details an approach for developing "spike cocktail", a mixture of microorganisms that can be used to evaluate the performance of engineered and natural systems.

  17. Boosting production yield of biomedical peptides

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.

    1978-01-01

    Nuclear magnetic resonance (NMR) technique is employed to monitor synthesis of biomedical peptides. Application of NMR technique may improve production yields of insulin, ACTH, and growth hormones, as well as other synthesized biomedical peptides.

  18. Improvement in the yield and quality of kalmegh (Andrographis paniculata Nees) under the sustainable production system.

    PubMed

    Verma, Rajesh Kumar; Verma, Sanjeet K; Pankaj, Umesh; Gupta, Anand K; Khan, Khushboo; Shankar, Karuna

    2015-02-01

    Andrographis paniculata Nees is an annual erect herb with wide medicinal and pharmacological applications due to the presence of andrographolide and other active chemical constituents. The large-scale cultivation of the kalmegh is not in practice. The aim of this study was to establish sustainable production systems of A. paniculata cv CIM-Megha with the application of different bioinoculants and chemical fertilisers. A. paniculata herb and andrographolide yield in the dried leaves was found to be highest (218% and 61.3%, respectively) in treatment T3 (NPK+Bacillus sp.) compared with T1 (control). The soil organic carbon, soil microbial respiration, soil enzymes activity and available nutrients improved significantly with combined application of bioinoculants and chemical fertilisers.

  19. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    PubMed

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  20. Tips pentacene crystal alignment for improving performance of solution processed organic thin film transistors

    NASA Astrophysics Data System (ADS)

    He, Zhengran

    A newly-developed p-type organic semiconductor 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene) demonstrates various advantages such as high mobility, air stability and solution processibility, but at the same time its application is restricted by major issues, such as crystal misorientation and performance variation of organic thin-film transistors (OTFTs). This dissertation demonstrates several different approaches to address these issues. As a result, both crystal orientation and areal coverage can be effectively improved, leading to an enhancement of average mobility and performance consistency of OTFTs. Chapter 1 presents an introduction and background of this dissertation. Chapter 2 explores the usage of inorganic silica nanoparticles to manipulate the morphology of TIPS pentacene thin films and the performance of solution-processed organic OTFTs. The resultant drop-cast films yield improved morphological uniformity at ~10% SiO2 loading, which also leads to a 3-fold increase in average mobility and nearly 4-times reduction in the ratio of standard deviation of mobility (μStdev) to average mobility (μAvg). The experimental results suggest that the SiO2 nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and that 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity. Chapter 3 discusses the utilization of air flow to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs. Under air-flow navigation (AFN), TIPS pentacene forms thin films with improved crystal orientation and increased areal coverage, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency. Chapter 4 investigates the critical roles of lateral and vertical phase separation in the performance of the next-generation organic and hybrid electronic

  1. The effectiveness of strategies to change organisational culture to improve healthcare performance: a systematic review.

    PubMed

    Parmelli, Elena; Flodgren, Gerd; Beyer, Fiona; Baillie, Nick; Schaafsma, Mary Ellen; Eccles, Martin P

    2011-04-03

    Organisational culture is an anthropological metaphor used to inform research and consultancy and to explain organisational environments. In recent years, increasing emphasis has been placed on the need to change organisational culture in order to improve healthcare performance. However, the precise function of organisational culture in healthcare policy often remains underspecified and the desirability and feasibility of strategies to be adopted have been called into question. The objective of this review was to determine the effectiveness of strategies to change organisational culture in order to improve healthcare performance. We searched the following electronic databases: The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, Sociological Abstracts, Web of Knowledge, PsycINFO, Business and Management, EThOS, Index to Theses, Intute, HMIC, SIGLE, and Scopus until October 2009. The Database of Abstracts of Reviews of Effectiveness (DARE) was searched for related reviews. We also searched the reference lists of all papers and relevant reviews identified, and we contacted experts in the field for advice on further potential studies. We considered randomised controlled trials (RCTs) or well designed quasi-experimental studies (controlled clinical trials (CCTs), controlled before and after studies (CBAs), and interrupted time series (ITS) analyses). Studies could be set in any type of healthcare organisation in which strategies to change organisational culture in order to improve healthcare performance were applied. Our main outcomes were objective measures of professional performance and patient outcome. The search strategy yielded 4,239 records. After the full text assessment, two CBA studies were included in the review. They both assessed the impact of interventions aimed at changing organisational culture, but one evaluated the impact on work-related and personal outcomes while the other measured clinical outcomes. Both were at high risk of

  2. The effectiveness of strategies to change organisational culture to improve healthcare performance: a systematic review

    PubMed Central

    2011-01-01

    Background Organisational culture is an anthropological metaphor used to inform research and consultancy and to explain organisational environments. In recent years, increasing emphasis has been placed on the need to change organisational culture in order to improve healthcare performance. However, the precise function of organisational culture in healthcare policy often remains underspecified and the desirability and feasibility of strategies to be adopted have been called into question. The objective of this review was to determine the effectiveness of strategies to change organisational culture in order to improve healthcare performance. Methods We searched the following electronic databases: The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, Sociological Abstracts, Web of Knowledge, PsycINFO, Business and Management, EThOS, Index to Theses, Intute, HMIC, SIGLE, and Scopus until October 2009. The Database of Abstracts of Reviews of Effectiveness (DARE) was searched for related reviews. We also searched the reference lists of all papers and relevant reviews identified, and we contacted experts in the field for advice on further potential studies. We considered randomised controlled trials (RCTs) or well designed quasi-experimental studies (controlled clinical trials (CCTs), controlled before and after studies (CBAs), and interrupted time series (ITS) analyses). Studies could be set in any type of healthcare organisation in which strategies to change organisational culture in order to improve healthcare performance were applied. Our main outcomes were objective measures of professional performance and patient outcome. Results The search strategy yielded 4,239 records. After the full text assessment, two CBA studies were included in the review. They both assessed the impact of interventions aimed at changing organisational culture, but one evaluated the impact on work-related and personal outcomes while the other measured clinical outcomes

  3. Food security in the 21st century: Global yield projections and agricultural expansion

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Rulli, M.; D'Odorico, P.

    2013-12-01

    Global demands on agricultural lands are ever increasing as a result of population growth, changes in diet and increasing biofuel use. By mid-century, the demands for food and fiber are expected to roughly double with the population reaching 9.5 billion. However, earth's finite resource base places a ceiling on the amount of agricultural production that is possible. Several strategies have been widely discussed to meet these rapid increases and to extend the ceiling yet higher, including reducing waste, modifying diets, improving yield and productivity and expanding agriculture and aquaculture. One of the most promising of these is closing the yield gap of currently under-performing agricultural land that has the potential to be much more productive. With high inputs (e.g. irrigation, fertilizers), this strategy has real potential to increase food security, particularly in the developing world where population is expected to sharply increase and where a high potential for yield gap closure exists. Thus it is important to consider whether improvements in global yield can adequately meet global dietary demand during the 21st century. Constructing yield projections to the end of the century, we examine whether global crop production for 154 countries and 16 major food crops under selected agricultural and dietary scenarios can keep pace with estimates of population growth to 2100. By calculating the global production of calories, we are then able to examine how many people can be supported under future scenarios and how closing yield gaps can increase this potential. Our findings agree with previous studies that closing the yield gap alone cannot provide sufficient production by mid-century and that a heavy global dependence on trade will persist throughout the century. Using high-resolution global land suitability maps under a suite of climate models, we find that scenarios incorporating a combination of yield gap closure and agricultural expansion provide the most

  4. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy.

    PubMed

    Li, Wenqin; Dang, Qi; Brown, Robert C; Laird, David; Wright, Mark M

    2017-10-01

    This study evaluated the impact of biomass properties on the pyrolysis product yields, economic and environmental performance for the pyrolysis-biochar-bioenergy platform. We developed and applied a fast pyrolysis, feedstock-sensitive, regression-based chemical process model to 346 different feedstocks, which were grouped into five types: woody, stalk/cob/ear, grass/plant, organic residue/product and husk/shell/pit. The results show that biomass ash content of 0.3-7.7wt% increases biochar yield from 0.13 to 0.16kg/kg of biomass, and decreases biofuel yields from 87.3 to 40.7 gallons per tonne. Higher O/C ratio (0.88-1.12) in biomass decreases biochar yield and increases biofuel yields within the same ash content level. Higher ash content of biomass increases minimum fuel selling price (MFSP), while higher O/C ratio of biomass decreases MFSP within the same ash content level. The impact of ash and O/C ratio of biomass on GHG emissions are not consistent for all feedstocks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield.

    PubMed

    Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier

    2012-06-01

    Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. LPV Controller Interpolation for Improved Gain-Scheduling Control Performance

    NASA Technical Reports Server (NTRS)

    Wu, Fen; Kim, SungWan

    2002-01-01

    In this paper, a new gain-scheduling control design approach is proposed by combining LPV (linear parameter-varying) control theory with interpolation techniques. The improvement of gain-scheduled controllers can be achieved from local synthesis of Lyapunov functions and continuous construction of a global Lyapunov function by interpolation. It has been shown that this combined LPV control design scheme is capable of improving closed-loop performance derived from local performance improvement. The gain of the LPV controller will also change continuously across parameter space. The advantages of the newly proposed LPV control is demonstrated through a detailed AMB controller design example.

  7. Cost and performance: complements for improvement.

    PubMed

    Rouse, Paul; Harrison, Julie; Turner, Nikki

    2011-10-01

    Activity-based costing (ABC) and Data Envelopment Analysis (DEA) share similar views of resource consumption in the production of outputs. While DEA has a high level focus typically using aggregated data in the form of inputs and outputs, ABC is more detailed and oriented around very disaggregated data. We use a case study of immunisation activities in 24 New Zealand primary care practices to illustrate how DEA and ABC can be used in conjunction to improve performance analysis and benchmarking. Results show that practice size, socio-economic environment, parts of the service delivery process as well as regular administrative tasks are major cost and performance drivers for general practices in immunisation activities. It is worth noting that initial analyses of the ABC results, using contextual information and conventional methods of analysis such as regression and correlations, did not result in any patterns of significance. Reorganising this information using the DEA efficiency scores has revealed trends that make sense to practitioners and provide insights into where to place efforts for improvement.

  8. Improving Examination Performance through the Clenched Fist Technique.

    ERIC Educational Resources Information Center

    Stanton, Harry E.

    1988-01-01

    The literature on the use of hypnosis in an educational setting is briefly reviewed, and a hypnotic approach involving the use of the clenched fist as a conditioned trigger to improve examination performance is described. A study of 60 high school students indicates that the approach can improve test outcomes. (TJH)

  9. Closing Yield Gaps: How Sustainable Can We Be?

    PubMed Central

    Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E.; Kropp, Juergen P.

    2015-01-01

    Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way

  10. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in quality assessment and performance improvement activities, including providing information about... 42 Public Health 4 2014-10-01 2014-10-01 false Internal quality assessment and performance...) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Quality Assessment and Performance Improvement § 460...

  11. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in quality assessment and performance improvement activities, including providing information about... 42 Public Health 4 2012-10-01 2012-10-01 false Internal quality assessment and performance...) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Quality Assessment and Performance Improvement § 460...

  12. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in quality assessment and performance improvement activities, including providing information about... 42 Public Health 4 2013-10-01 2013-10-01 false Internal quality assessment and performance...) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Quality Assessment and Performance Improvement § 460...

  13. Enhancing motor performance improvement by personalizing non-invasive cortical stimulation with concurrent functional near-infrared spectroscopy and multi-modal motor measurements

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Hodics, Timea; Hervey, Nathan; Kondraske, George; Stowe, Ann; Alexandrakis, George

    2015-03-01

    Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation technique that can facilitate task specific plasticity that can improve motor performance. Current tDCS interventions uniformly apply a chosen electrode montage to a subject population without personalizing electrode placement for optimal motor gains. We propose a novel perturbation tDCS (ptDCS) paradigm for determining a personalized electrode montage in which tDCS intervention yields maximal motor performance improvements during stimulation. PtDCS was applied to ten healthy adults and five stroke patients with upper hemiparesis as they performed an isometric wrist flexion task with their non-dominant arm. Simultaneous recordings of torque applied to a stationary handle, muscle activity by electromyography (EMG), and cortical activity by functional near-infrared spectroscopy (fNIRS) during ptDCS helped interpret how cortical activity perturbations by any given electrode montage related to changes in muscle activity and task performance quantified by a Reaction Time (RT) X Error product. PtDCS enabled quantifying the effect on task performance of 20 different electrode pair montages placed over the sensorimotor cortex. Interestingly, the electrode montage maximizing performance in all healthy adults did not match any of the ones being explored in current literature as a means of improving the motor performance of stroke patients. Furthermore, the optimal montage was found to be different in each stroke patient and the resulting motor gains were very significant during stimulation. This study supports the notion that task-specific ptDCS optimization can lend itself to personalizing the rehabilitation of patients with brain injury.

  14. Drought Tolerance during Reproductive Development is Important for Increasing wheat yield Potential under Climate change in Europe.

    PubMed

    Senapati, Nimai; Stratonovitch, Pierre; Paul, Matthew J; Semenov, Mikhail A

    2018-06-12

    Drought stress during reproductive development could drastically reduce grain number and wheat yield, but quantitative evaluation of such effect is unknown under climate change. The objectives of this study were to a) evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and b) identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimise drought tolerant (DT) and drought sensitive (DS) wheat ideotypes under future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared to DS, with the double yield stability for DT. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared to DS in southern Europe. In contrast, no yield difference (≤ 1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.

  15. Yield and economic performance of organic and conventional cotton-based farming systems--results from a field trial in India.

    PubMed

    Forster, Dionys; Andres, Christian; Verma, Rajeev; Zundel, Christine; Messmer, Monika M; Mäder, Paul

    2013-01-01

    The debate on the relative benefits of conventional and organic farming systems has in recent time gained significant interest. So far, global agricultural development has focused on increased productivity rather than on a holistic natural resource management for food security. Thus, developing more sustainable farming practices on a large scale is of utmost importance. However, information concerning the performance of farming systems under organic and conventional management in tropical and subtropical regions is scarce. This study presents agronomic and economic data from the conversion phase (2007-2010) of a farming systems comparison trial on a Vertisol soil in Madhya Pradesh, central India. A cotton-soybean-wheat crop rotation under biodynamic, organic and conventional (with and without Bt cotton) management was investigated. We observed a significant yield gap between organic and conventional farming systems in the 1(st) crop cycle (cycle 1: 2007-2008) for cotton (-29%) and wheat (-27%), whereas in the 2(nd) crop cycle (cycle 2: 2009-2010) cotton and wheat yields were similar in all farming systems due to lower yields in the conventional systems. In contrast, organic soybean (a nitrogen fixing leguminous plant) yields were marginally lower than conventional yields (-1% in cycle 1, -11% in cycle 2). Averaged across all crops, conventional farming systems achieved significantly higher gross margins in cycle 1 (+29%), whereas in cycle 2 gross margins in organic farming systems were significantly higher (+25%) due to lower variable production costs but similar yields. Soybean gross margin was significantly higher in the organic system (+11%) across the four harvest years compared to the conventional systems. Our results suggest that organic soybean production is a viable option for smallholder farmers under the prevailing semi-arid conditions in India. Future research needs to elucidate the long-term productivity and profitability, particularly of cotton and

  16. 42 CFR 486.348 - Condition: Quality assessment and performance improvement (QAPI).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS FOR COVERAGE OF... result in performance improvements and track performance to ensure that improvements are sustained. (b...

  17. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  18. Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females.

    PubMed

    Córdova, C; Silva, V C; Moraes, C F; Simões, H G; Nóbrega, O T

    2009-05-01

    The objective of the present study was to compare the effect of acute exercise performed at different intensities in relation to the anaerobic threshold (AT) on abilities requiring control of executive functions or alertness in physically active elderly females. Forty-eight physically active elderly females (63.8 +/- 4.6 years old) were assigned to one of four groups by drawing lots: control group without exercise or trial groups with exercise performed at 60, 90, or 110% of AT (watts) and submitted to 5 cognitive tests before and after exercise. Following cognitive pretesting, an incremental cycle ergometer test was conducted to determine AT using a fixed blood lactate concentration of 3.5 mmol/L as cutoff. Acute exercise executed at 90% of AT resulted in significant (P < 0.05, ANOVA) improvement in the performance of executive functions when compared to control in 3 of 5 tests (verbal fluency, Tower of Hanoi test (number of movements), and Trail Making test B). Exercising at 60% of AT did not improve results of any tests for executive functions, whereas exercise executed at 110% of AT only improved the performance in one of these tests (verbal fluency) compared to control. Women from all trial groups exhibited a remarkable reduction in the Simple Response Time (alertness) test (P = 0.001). Thus, physical exercise performed close to AT is more effective to improve cognitive processing of older women even if conducted acutely, and using a customized exercise prescription based on the anaerobic threshold should optimize the beneficial effects.

  19. Beyond Genomic Prediction: Combining Different Types of omics Data Can Improve Prediction of Hybrid Performance in Maize.

    PubMed

    Schrag, Tobias A; Westhues, Matthias; Schipprack, Wolfgang; Seifert, Felix; Thiemann, Alexander; Scholten, Stefan; Melchinger, Albrecht E

    2018-04-01

    The ability to predict the agronomic performance of single-crosses with high precision is essential for selecting superior candidates for hybrid breeding. With recent technological advances, thousands of new parent lines, and, consequently, millions of new hybrid combinations are possible in each breeding cycle, yet only a few hundred can be produced and phenotyped in multi-environment yield trials. Well established prediction approaches such as best linear unbiased prediction (BLUP) using pedigree data and whole-genome prediction using genomic data are limited in capturing epistasis and interactions occurring within and among downstream biological strata such as transcriptome and metabolome. Because mRNA and small RNA (sRNA) sequences are involved in transcriptional, translational and post-translational processes, we expect them to provide information influencing several biological strata. However, using sRNA data of parent lines to predict hybrid performance has not yet been addressed. Here, we gathered genomic, transcriptomic (mRNA and sRNA) and metabolomic data of parent lines to evaluate the ability of the data to predict the performance of untested hybrids for important agronomic traits in grain maize. We found a considerable interaction for predictive ability between predictor and trait, with mRNA data being a superior predictor for grain yield and genomic data for grain dry matter content, while sRNA performed relatively poorly for both traits. Combining mRNA and genomic data as predictors resulted in high predictive abilities across both traits and combining other predictors improved prediction over that of the individual predictors alone. We conclude that downstream "omics" can complement genomics for hybrid prediction, and, thereby, contribute to more efficient selection of hybrid candidates. Copyright © 2018 by the Genetics Society of America.

  20. Training for Template Creation: A Performance Improvement Method

    ERIC Educational Resources Information Center

    Lyons, Paul

    2008-01-01

    Purpose: There are three purposes to this article: first, to offer a training approach to employee learning and performance improvement that makes use of a step-by-step process of skill/knowledge creation. The process offers follow-up opportunities for skill maintenance and improvement; second, to explain the conceptual bases of the approach; and…

  1. Channels for Improved Performance from Living on Campus

    ERIC Educational Resources Information Center

    de Araujo, Pedro; Murray, James

    2010-01-01

    In a recent study, de Araujo and Murray (2010) find empirical evidence that living on campus leads to improved student performance, finding both immediate effects (GPA improves while the student lives on campus) and permanent effects (GPA remains higher even after moving off campus). Using the same dataset, we extend the analysis to explain why…

  2. Carbohydrate ingestion improves performance of a new reliable test of soccer performance.

    PubMed

    Currell, Kevin; Conway, Steve; Jeukendrup, Asker E

    2009-02-01

    The aim of the study was to investigate the reliability of a new test of soccer performance and evaluate the effect of carbohydrate (CHO) on soccer performance. Eleven university footballers were recruited and underwent 3 trials in a randomized order. Two of the trials involved ingesting a placebo beverage, and the other, a 7.5% maltodextrin solution. The protocol comprised a series of ten 6-min exercise blocks on an outdoor Astroturf pitch, separated by the performance of 2 of the 4 soccer-specific tests, making the protocol 90 min in duration. The intensity of the exercise was designed to be similar to the typical activity pattern during soccer match play. Participants performed skill tests of dribbling, agility, heading, and shooting throughout the protocol. The coefficients of variation for dribbling, agility, heading, and shooting were 2.2%, 1.2%, 7.0%, and 2.8%, respectively. The mean combined placebo scores were 42.4 +/- 2.7 s, 43.1 +/- 3.7 s, 210 +/- 34 cm, and 212 +/- 17 points for agility, dribbling, heading, and kicking, respectively. CHO ingestion led to a combined agility time of 41.5 +/- 0.8 s, for dribbling 41.7 +/- 3.5 s, 213 +/- 11 cm for heading, and 220 +/- 5 points for kicking accuracy. There was a significant improvement in performance for dribbling, agility, and shooting (p < .05) when CHO was ingested compared with placebo. In conclusion, the protocol is a reliable test of soccer performance, and ingesting CHO leads to an improvement in soccer performance.

  3. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates

    NASA Astrophysics Data System (ADS)

    Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.

    2014-10-01

    Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.

  4. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer.

    PubMed

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-13

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  5. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    NASA Astrophysics Data System (ADS)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  6. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    PubMed

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  7. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants

    PubMed Central

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  8. Using Satellite Data to Unpack Causes of Yield Gaps in India's Wheat Belt

    NASA Astrophysics Data System (ADS)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2016-12-01

    India will face significant food security challenges in the coming decades due to climate change, natural resource degradation, and population growth. Yields of wheat, one of India's staple crops, are already stagnating and will be significantly impacted by warming temperatures. Despite these challenges, wheat yields can be enhanced by implementing improved management in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps, we produced 30 m resolution yield maps across India's main wheat belt, the Indo-Gangetic Plains (IGP), from 2000 to 2015. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data that rarely exist in smallholder systems. We find that yields can be increased by 5% on average and up to 16% in the eastern IGP by improving management to current best practices within a given district. However, if policies and technologies are put in place to improve management to current best practices in Punjab, the highest yielding state, yields can be increased by 29% in the eastern IGP. Considering which factors most influence wheat yields, we find that later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies that reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to India's current and future food security.

  9. Plotting performance improvement progress through the development of a trauma dashboard.

    PubMed

    Hochstuhl, Diane C; Elwell, Sean

    2014-01-01

    Performance improvement processes are the core of a pediatric trauma program. The ability to identify, resolve, and trend specific indicators related to patient care and to show effective loop closure can be especially challenging. Using the hospital's overall quality process as a template, the trauma program built its own electronic dashboard. Our maturing trauma PI program now guides the overall trauma care. All departments own at least one performance indicator and must provide action plans for improvement. Utilization of an electronic dashboard for trauma performance improvement has provided a highly visible scorecard, which highlights successes and tracks areas needing improvement.

  10. Improving Driver Performance. A Curriculum for Licensed Drivers.

    ERIC Educational Resources Information Center

    Highway Users Federation for Safety and Mobility, Washington, DC.

    Curriculum material presented in this manual is for use in the development of an instructional program for drivers who either want or need to improve their driving performance. Three principal units are included: man and highway transportation, driver performance, and factors influencing driver behavior. Each unit is further divided into episodes…

  11. Supplementation with macular carotenoids improves visual performance of transgenic mice.

    PubMed

    Li, Binxing; Rognon, Gregory T; Mattinson, Ty; Vachali, Preejith P; Gorusupudi, Aruna; Chang, Fu-Yen; Ranganathan, Arunkumar; Nelson, Kelly; George, Evan W; Frederick, Jeanne M; Bernstein, Paul S

    2018-07-01

    Carotenoid supplementation can improve human visual performance, but there is still no validated rodent model to test their effects on visual function in laboratory animals. We recently showed that mice deficient in β-carotene oxygenase 2 (BCO2) and/or β-carotene oxygenase 1 (BCO1) enzymes can accumulate carotenoids in their retinas, allowing us to investigate the effects of carotenoids on the visual performance of mice. Using OptoMotry, a device to measure visual function in rodents, we examined the effect of zeaxanthin, lutein, and β-carotene on visual performance of various BCO knockout mice. We then transgenically expressed the human zeaxanthin-binding protein GSTP1 (hGSTP1) in the rods of bco2 -/- mice to examine if delivering more zeaxanthin to retina will improve their visual function further. The visual performance of bco2 -/- mice fed with zeaxanthin or lutein was significantly improved relative to control mice fed with placebo beadlets. β-Carotene had no significant effect in bco2 -/- mice but modestly improved cone visual function of bco1 -/- mice. Expression of hGSTP1 in the rods of bco2 -/- mice resulted in a 40% increase of retinal zeaxanthin and further improvement of visual performance. This work demonstrates that these "macular pigment mice" may serve as animal models to study carotenoid function in the retina. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Importance of rhizobia in Agriculture: potential of the commercial inoculants and native strains for improving legume yields in different land-use systems

    NASA Astrophysics Data System (ADS)

    Lesueur, D.; Atieno, M.; Mathu, S.; Herrmann, L.

    2012-04-01

    Legumes play an important role in the traditional diets of many regions throughout the world because they provide a multitude of benefits to both the soil and other crops grown in combination with them or following them in several cropping systems. The ability of legumes to fix atmospheric nitrogen in association with rhizobia gives them the capacity to grow in very degraded soils. But do we have to systematically inoculate legumes? For example our results suggested that the systematic inoculation of both cowpea and green gram in Kenya with commercial inoculants to improve yields is not really justified, native strains performing better than inoculated strains. But when native rhizobia nodulating legumes are not naturally present, application of rhizobial inoculants is very commonly used. Our results showed that the utilization of effective good-quality rhizobial inoculants by farmers have a real potential to improve legume yields in unfertile soils requesting high applications of mineral fertilizers. For example an effective soybean commercial inoculants was tested in different locations in Kenya (in about 150 farms in 3 mandate areas presenting different soil characteristics and environmental conditions). Application of the rhizobial inoculant significantly increased the soybean yields in all mandate areas (about 75% of the farms). Nodule occupancy analysis showed that a high number of nodules occupied by the inoculated strain did not obviously lead to an increase of soybean production. Soil factors (pH, P, C, N…) seemed to affect the inoculant efficiency whether the strain is occupying the nodules or not. Our statistic analysis showed that soil pH significantly affected nodulation and yield, though the effect was variable depending on the region. We concluded that the competitiveness of rhizobial strains might not be the main factor explaining the effect (or lack of) of legumes inoculation in the field. Another study was aiming to assess if several factors

  13. Device Engineering Towards Improved Tin Sulfide Solar Cell Performance and Performance Reproducibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul

    2016-11-21

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to rapidly test promising candidates in high-performing PV devices. There is a need to engineer new compatible device architectures, including the development of novel transparent conductive oxides and buffer layers. Here, we consider the two approaches of a substrate-style and a superstrate-style device architecture for novel thin-film solar cells. We use tin sulfide as a test absorber material. Upon device engineering, we demonstrate new approaches to improve device performance and performance reproducibility.

  14. An evaluation of the effect of altering nutrition and nutritional strategies in early lactation on reproductive performance and estrous behavior of high-yielding Holstein-Friesian dairy cows.

    PubMed

    Gilmore, H S; Young, F J; Patterson, D C; Wylie, A R G; Law, R A; Kilpatrick, D J; Elliott, C T; Mayne, C S

    2011-07-01

    Reproductive performance in the high-yielding dairy cow has severely decreased in the last 40 yr. The aim of this study was to compare the effectiveness of 4 nutritional strategies in improving the reproductive performance of high-yielding dairy cows. It was hypothesized that offering cows a high-starch ration in early lactation would enhance the onset of luteal activity, and that decreasing the severity of negative energy balance in the early postcalving period would improve reproductive parameters. Nutritional regimens aimed at improving fertility were applied to 96 Holstein-Friesian dairy animals. Upon calving, animals were allocated in a balanced manner to one of 4 dietary treatments. Primiparous animals were balanced according to live weight, body condition score and calving date. Multiparous animals were balanced according to parity, previous lactation milk yield, liveweight, body condition score and calving date. Treatment 1 was based on an industry best practice diet (control) to contain 170 g of crude protein/kg of dry matter. Treatment 2 was an individual cow feeding strategy, whereby the energy balance (EB) of individual animals was managed so as to achieve a predetermined target daily EB profile (±10 MJ/d). Treatment 3 was a high-starch/high-fat combination treatment, whereby an insulinogenic (high-starch) diet was offered in early lactation to encourage cyclicity and followed by a lipogenic (low-starch, high-fat) diet to promote embryo development. Treatment 4 was a low-protein diet, containing 140 g of crude protein/kg of dry matter, supplemented with protected methionine at an inclusion level of 40 g per animal per day. The nutritional strategies implemented in this study had no statistically significant effects on cow fertility measures, which included the onset of luteal activity, conception rate, in-calf rate, and the incidence of atypical cycles. The individual cow feeding strategy improved EB in early lactation but had no benefit on conception

  15. Are GM Crops for Yield and Resilience Possible?

    PubMed

    Paul, Matthew J; Nuccio, Michael L; Basu, Shib Sankar

    2018-01-01

    Crop yield improvements need to accelerate to avoid future food insecurity. Outside Europe, genetically modified (GM) crops for herbicide- and insect-resistance have been transformative in agriculture; other traits have also come to market. However, GM of yield potential and stress resilience has yet to impact on food security. Genes have been identified for yield such as grain number, size, leaf growth, resource allocation, and signaling for drought tolerance, but there is only one commercialized drought-tolerant GM variety. For GM and genome editing to impact on yield and resilience there is a need to understand yield-determining processes in a cell and developmental context combined with evaluation in the grower environment. We highlight a sugar signaling mechanism as a paradigm for this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Deploying Solid Targets in Dense Plasma Focus Devices for Improved Neutron Yields

    NASA Astrophysics Data System (ADS)

    Podpaly, Y. A.; Chapman, S.; Povilus, A.; Falabella, S.; Link, A.; Shaw, B. H.; Cooper, C. M.; Higginson, D.; Holod, I.; Sipe, N.; Gall, B.; Schmidt, A. E.

    2017-10-01

    We report on recent progress in using solid targets in dense plasma focus (DPF) devices. DPFs have been observed to generate energetic ion beams during the pinch phase; these beams interact with the dense plasma in the pinch region as well as the background gas and are believed to be the primary neutron generation mechanism for a D2 gas fill. Targets can be placed in the beam path to enhance neutron yield and to shorten the neutron pulse if desired. In this work, we measure yields from placing titanium deuteride foils, deuterated polyethylene, and non-deuterated control targets in deuterium filled DPFs at both megajoule and kilojoule scales. Furthermore, we have deployed beryllium targets in a helium gas-filled, kilojoule scale DPF for use as a potential AmBe radiological source replacement. Neutron yield, neutron time of flight, and optical images are used to diagnose the effectiveness of target deployments relative to particle-in-cell simulation predictions. A discussion of target holder engineering for material compatibility and damage control will be shown as well. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by the Office of Defense Nuclear Nonproliferation Research and Development within U.S. DOE's National Nuclear Security Administration and the LLNL Institutional Computing Grand Challenge program.

  17. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    PubMed

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

  18. An evaluation of the lamb vision system as a predictor of lamb carcass red meat yield percentage.

    PubMed

    Brady, A S; Belk, K E; LeValley, S B; Dalsted, N L; Scanga, J A; Tatum, J D; Smith, G C

    2003-06-01

    An objective method for predicting red meat yield in lamb carcasses is needed to accurately assess true carcass value. This study was performed to evaluate the ability of the lamb vision system (LVS; Research Management Systems USA, Fort Collins, CO) to predict fabrication yields of lamb carcasses. Lamb carcasses (n = 246) were evaluated using LVS and hot carcass weight (HCW), as well as by USDA expert and on-line graders, before fabrication of carcass sides to either bone-in or boneless cuts. On-line whole number, expert whole-number, and expert nearest-tenth USDA yield grades and LVS + HCW estimates accounted for 53, 52, 58, and 60%, respectively, of the observed variability in boneless, saleable meat yields, and accounted for 56, 57, 62, and 62%, respectively, of the variation in bone-in, saleable meat yields. The LVS + HCW system predicted 77, 65, 70, and 87% of the variation in weights of boneless shoulders, racks, loins, and legs, respectively, and 85, 72, 75, and 86% of the variation in weights of bone-in shoulders, racks, loins, and legs, respectively. Addition of longissimus muscle area (REA), adjusted fat thickness (AFT), or both REA and AFT to LVS + HCW models resulted in improved prediction of boneless saleable meat yields by 5, 3, and 5 percentage points, respectively. Bone-in, saleable meat yield estimations were improved in predictive accuracy by 7.7, 6.6, and 10.1 percentage points, and in precision, when REA alone, AFT alone, or both REA and AFT, respectively, were added to the LVS + HCW output models. Use of LVS + HCW to predict boneless red meat yields of lamb carcasses was more accurate than use of current on-line whole-number, expert whole-number, or expert nearest-tenth USDA yield grades. Thus, LVS + HCW output, when used alone or in combination with AFT and/or REA, improved on-line estimation of boneless cut yields from lamb carcasses. The ability of LVS + HCW to predict yields of wholesale cuts suggests that LVS could be used as an objective

  19. The influence of imagery capacity in motor performance improvement.

    PubMed

    Ruffino, Célia; Papaxanthis, Charalambos; Lebon, Florent

    2017-10-01

    Motor imagery (MI) training improves motor performance, but the inter-individual variability of this improvement remains still unexplored. In this study, we tested the influence of imagery ability on the performance improvement following MI training. Twenty participants were randomly distributed into the MI or control group. They actually performed, at pre- and post-test sessions, a revisited version of the Nine Hole Peg Test, a speed-accuracy trade-off task, commonly used in clinics. Between the tests, the MI group mentally trained on the task (5 blocks of 10 trials), while the control group watched a non-emotional documentary. Before and during MI training, we tested the imagery ability of the MI group, by the revised version of Movement Imagery Questionnaire and by the estimation of vividness for the movement task at each block (subjective evaluation-SE). In the post-test, the MI group significantly decreased the movement duration by -12.1 ± 5.7% (P < 0.001), whereas the control group did not (-2.68 ± 5%, P = 0.68). For the MI group, the percentage of improvement was correlated neither to the MIQ-R nor to the SE reported after block 1. However, we observed an evolution of the SE during training, with a positive correlation between performance improvement and SE at block 4 (R = 0.61, P = 0.03) and at block 5 (R = 0.68, P = 0.04). The current study shows that motor performance may be positively influenced, whilst not predicted, by the capacity to form vivid movement images throughout the mental training. These findings are of interest for clinical interventions using MI as a complementary rehabilitation tool.

  20. Improved Low Temperature Performance of Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe

    2013-01-01

    Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary

  1. Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.

    PubMed

    Thalapati, Sudhakar; Batchu, Anil K; Neelamraju, Sarla; Ramanan, Rajeshwari

    2012-06-01

    Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.

  2. A High Intensity Interval Training (HIIT)-Based Running Plan Improves Athletic Performance by Improving Muscle Power.

    PubMed

    García-Pinillos, Felipe; Cámara-Pérez, Jose C; Soto-Hermoso, Víctor M; Latorre-Román, Pedro Á

    2017-01-01

    García-Pinillos, F, Cámara-Pérez, JC, Soto-Hermoso, VM, and Latorre-Román, PÁ. A High Intensity Interval Training (HIIT)-based running plan improves athletic performance by improving muscle power. J Strength Cond Res 31(1): 146-153, 2017-This study aimed to examine the effect of a 5-week high-intensity intermittent training (HIIT)-based running plan on athletic performance and to compare the physiological and neuromuscular responses during a sprint-distance triathlon before and after the HIIT period. Thirteen triathletes were matched into 2 groups: the experimental group (EG) and the control group (CG). The CG was asked to maintain their normal training routines, whereas the EG maintained only their swimming and cycling routines and modified their running routine. Participants completed a sprint-distance triathlon before (pretest) and after (posttest) the intervention period. In both pretest and posttest, the participants performed 4 jumping tests: before the race (baseline), postswim, postcycling, and postrun. Additionally, heart rate was monitored (HRmean), whereas rate of perceived exertion (RPE) and blood lactate accumulation (BLa) were registered after the race. No significant differences (p ≥ 0.05) between groups were found before HIIT intervention (at pretest). Significant group-by-training interactions were found in vertical jumping ability and athletic performance: the EG improved jumping performance (∼6-9%, p ≤ 0.05, effect size (ES) > 0.7), swimming performance (p = 0.013, ES = 0.438), and running time (p = 0.001, ES = 0.667) during the competition, whereas the CG remained unchanged (p ≥ 0.05, ES < 0.4). No changes (p ≥ 0.05, ES < 0.4) were observed in RPE, HRmean, and BLa. A linear regression analysis showed that ΔCMJ predicted both the ΔRu_time (R = 0.559; p = 0.008) and the ΔOverall_time (R = 0.391; p = 0.048). This low-volume, HIIT-based running plan combined with the high training volumes of these triathletes in swimming and

  3. Improved rate control for electron-beam evaporation and evaluation of optical performance improvements.

    PubMed

    Gevelber, Michael; Xu, Bing; Smith, Douglas

    2006-03-01

    A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.

  4. Influence of Different Yield Loci on Failure Prediction with Damage Models

    NASA Astrophysics Data System (ADS)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2017-09-01

    Advanced high strength steels are widely used in the automotive industry to simultaneously improve crash performance and reduce the car body weight. A drawback of these multiphase steels is their sensitivity to damage effects and thus the reduction of ductility. For that reason the Forming Limit Curve is only partially suitable for this class of steels. An improvement in failure prediction can be obtained by using damage mechanics. The objective of this paper is to comparatively review the phenomenological damage model GISSMO and the Enhanced Lemaitre Damage Model. GISSMO is combined with three different yield loci, namely von Mises, Hill48 and Barlat2000 to investigate the influence of the choice of the plasticity description on damage modelling. The Enhanced Lemaitre Model is used with Hill48. An inverse parameter identification strategy for a DP1000 based on stress-strain curves and optical strain measurements of shear, uniaxial, notch and (equi-)biaxial tension tests is applied to calibrate the models. A strong dependency of fracture strains on the choice of yield locus can be observed. The identified models are validated on a cross-die cup showing ductile fracture with slight necking.

  5. Improving learning performance with happiness by interactive scenarios.

    PubMed

    Chuang, Chi-Hung; Chen, Ying-Nong; Tsai, Luo-Wei; Lee, Chun-Chieh; Tsai, Hsin-Chun

    2014-01-01

    Recently, digital learning has attracted a lot of researchers to improve the problems of learning carelessness, low learning ability, lack of concentration, and difficulties in comprehending the logic of math. In this study, a digital learning system based on Kinect somatosensory system is proposed to make children and teenagers happily learn in the course of the games and improve the learning performance. We propose two interactive geometry and puzzle games. The proposed somatosensory games can make learners feel curious and raise their motivation to find solutions for boring problems via abundant physical expressions and interactive operations. The players are asked to select particular operation by gestures and physical expressions within a certain time. By doing so, the learners can feel the fun of game playing and train their logic ability before they are aware. Experimental results demonstrate that the proposed somatosensory system can effectively improve the students' learning performance.

  6. Improving Learning Performance with Happiness by Interactive Scenarios

    PubMed Central

    Chuang, Chi-Hung; Chen, Ying-Nong; Tsai, Luo-Wei; Lee, Chun-Chieh; Tsai, Hsin-Chun

    2014-01-01

    Recently, digital learning has attracted a lot of researchers to improve the problems of learning carelessness, low learning ability, lack of concentration, and difficulties in comprehending the logic of math. In this study, a digital learning system based on Kinect somatosensory system is proposed to make children and teenagers happily learn in the course of the games and improve the learning performance. We propose two interactive geometry and puzzle games. The proposed somatosensory games can make learners feel curious and raise their motivation to find solutions for boring problems via abundant physical expressions and interactive operations. The players are asked to select particular operation by gestures and physical expressions within a certain time. By doing so, the learners can feel the fun of game playing and train their logic ability before they are aware. Experimental results demonstrate that the proposed somatosensory system can effectively improve the students' learning performance. PMID:24558331

  7. Coupling Light Emitting Diodes with Photocatalyst-Coated Optical Fibers Improves Quantum Yield of Pollutant Oxidation.

    PubMed

    Ling, Li; Tugaoen, Heather; Brame, Jonathon; Sinha, Shahnawaz; Li, Chuanhao; Schoepf, Jared; Hristovski, Kiril; Kim, Jae-Hong; Shang, Chii; Westerhoff, Paul

    2017-11-21

    A photocatalyst-coated optical fiber was coupled with a 318 nm ultraviolet-A light emitting diode, which activated the photocatalysts by interfacial photon-electron excitation while minimizing photonic energy losses due to conventional photocatalytic barriers. The light delivery mechanism was explored via modeling of evanescent wave energy produced upon total internal reflection and photon refraction into the TiO 2 surface coating. This work explores aqueous phase LED-irradiated optical fibers for treating organic pollutants and for the first time proposes a dual-mechanistic approach to light delivery and photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a function of optical fiber coating thickness, fiber length, and photocatalyst attachment method and compared against the performance of an equivalent catalyst mass in a completely mixed slurry reactor. Measured and simulated photon fluence through the optical fibers decreased as a function of fiber length, coating thickness, or TiO 2 mass externally coated on the fiber. Thinner TiO 2 coatings achieved faster pollutant removal rates from solution, and dip coating performed better than sol-gel attachment methods. TiO 2 attached to optical fibers achieved a 5-fold higher quantum yield compared against an equivalent mass of TiO 2 suspended in a slurry solution.

  8. Validation of yield enhancing QTLs from a low-yielding wild ancestor of rice

    USDA-ARS?s Scientific Manuscript database

    A set of introgression lines (ILs) containing chromosomal segments from O. rufipogon (IRGC 105491), a wild relative of O. sativa, in the genetic background of an elite U.S. variety, cv. Jefferson, was developed to confirm the performance of six yield-enhancing quantitative trait loci (QTLs). Fifty B...

  9. Enhancing the performance of gastrointestinal tumour board by improving documentation.

    PubMed

    Alsuhaibani, Roaa Saleh; Alzahrani, Hajer; Algwaiz, Ghada; Alfarhan, Haneen; Alolayan, Ashwaq; Abdelhafiz, Nafisa; Ali, Yosra; Jazieh, Abdul Rahman

    2018-01-01

    Tumour board contributes to providing better patient care by using a multidisciplinary team approach. In the efforts of evaluating the performance of the gastrointestinal tumour board at our institution, it was difficult to assess past performance due to lack of proper use of standardised documentation tool. This project aimed at improving adherence to the documentation tool and its recommendations in order to obtain performance measures for the tumour board. A multidisciplinary team and a plan were developed to improve documentation. Four rapid improvement cycles, Plan-Do-Study-Act (PDSA) cycles, were conducted. The first cycle focused on updating the case discussion summary form (CDSF) based on experts' input and previous identified deficiencies to enhance documentation and improve performance. The second PDSA cycle aimed at incorporating the CDSF into the electronic medical records system and assessing its functionality. The third cycle was to orient and train staff on using the form and launching it. The fourth PDSA cycle aimed at assessing the ability to obtain tumour board performance measures. Adherence to completion of the CDSF improved from 82% (baseline) to 94% after the fourth PDSA cycle. Over 104 consecutive cases discussed in the tumour board between January and July 2016 and 76 cases discussed in 2015, results were as follows: adherence to National Comprehensive Cancer Network guidelines in 2016 was observed in 141 (95%) recommendations, while it was observed in 90 (92%) recommendations in 2015. Changes in the management plans were observed in 37 (36%) cases in 2016 and in 6 (8%) cases in 2015. Regarding tumour board recommendations, 87% were done within 3 months of tumour board discussion in 2016, while 69% were done in 2015. Implementing electronic standardised documentation tool improved communication among the team and enabled getting accurate data about performance measures of the tumour board with positive impact on healthcare process and

  10. Enhancing the performance of gastrointestinal tumour board by improving documentation

    PubMed Central

    Alsuhaibani, Roaa Saleh; Alzahrani, Hajer; Algwaiz, Ghada; Alfarhan, Haneen; Alolayan, Ashwaq; Abdelhafiz, Nafisa; Ali, Yosra; Jazieh, Abdul Rahman

    2018-01-01

    Tumour board contributes to providing better patient care by using a multidisciplinary team approach. In the efforts of evaluating the performance of the gastrointestinal tumour board at our institution, it was difficult to assess past performance due to lack of proper use of standardised documentation tool. This project aimed at improving adherence to the documentation tool and its recommendations in order to obtain performance measures for the tumour board. A multidisciplinary team and a plan were developed to improve documentation. Four rapid improvement cycles, Plan–Do–Study–Act (PDSA) cycles, were conducted. The first cycle focused on updating the case discussion summary form (CDSF) based on experts’ input and previous identified deficiencies to enhance documentation and improve performance. The second PDSA cycle aimed at incorporating the CDSF into the electronic medical records system and assessing its functionality. The third cycle was to orient and train staff on using the form and launching it. The fourth PDSA cycle aimed at assessing the ability to obtain tumour board performance measures. Adherence to completion of the CDSF improved from 82% (baseline) to 94% after the fourth PDSA cycle. Over 104 consecutive cases discussed in the tumour board between January and July 2016 and 76 cases discussed in 2015, results were as follows: adherence to National Comprehensive Cancer Network guidelines in 2016 was observed in 141 (95%) recommendations, while it was observed in 90 (92%) recommendations in 2015. Changes in the management plans were observed in 37 (36%) cases in 2016 and in 6 (8%) cases in 2015. Regarding tumour board recommendations, 87% were done within 3 months of tumour board discussion in 2016, while 69% were done in 2015. Implementing electronic standardised documentation tool improved communication among the team and enabled getting accurate data about performance measures of the tumour board with positive impact on healthcare process

  11. Photosynthetic antenna engineering to improve crop yields.

    PubMed

    Kirst, Henning; Gabilly, Stéphane T; Niyogi, Krishna K; Lemaux, Peggy G; Melis, Anastasios

    2017-05-01

    Evidence shows that decreasing the light-harvesting antenna size of the photosystems in tobacco helps to increase the photosynthetic productivity and plant canopy biomass accumulation under high-density cultivation conditions. Decreasing, or truncating, the chlorophyll antenna size of the photosystems can theoretically improve photosynthetic solar energy conversion efficiency and productivity in mass cultures of algae or plants by up to threefold. A Truncated Light-harvesting chlorophyll Antenna size (TLA), in all classes of photosynthetic organisms, would help to alleviate excess absorption of sunlight and the ensuing wasteful non-photochemical dissipation of excitation energy. Thus, solar-to-biomass energy conversion efficiency and photosynthetic productivity in high-density cultures can be increased. Applicability of the TLA concept was previously shown in green microalgae and cyanobacteria, but it has not yet been demonstrated in crop plants. In this work, the TLA concept was applied in high-density tobacco canopies. The work showed a 25% improvement in stem and leaf biomass accumulation for the TLA tobacco canopies over that measured with their wild-type counterparts grown under the same ambient conditions. Distinct canopy appearance differences are described between the TLA and wild type tobacco plants. Findings are discussed in terms of concept application to crop plants, leading to significant improvements in agronomy, agricultural productivity, and application of photosynthesis for the generation of commodity products in crop leaves.

  12. Relationship between quality improvement processes and clinical performance.

    PubMed

    Damberg, Cheryl L; Shortell, Stephen M; Raube, Kristiana; Gillies, Robin R; Rittenhouse, Diane; McCurdy, Rodney K; Casalino, Lawrence P; Adams, John

    2010-08-01

    To examine the association between performance on clinical process measures and intermediate outcomes and the use of chronic care management processes (CMPs), electronic medical record (EMR) capabilities, and participation in external quality improvement (QI) initiatives. Cross-sectional analysis of linked 2006 clinical performance scores from the Integrated Healthcare Association's pay-for-performance program and survey data from the 2nd National Study of Physician Organizations among 108 California physician organizations (POs). Controlling for differences in PO size, organization type (medical group or independent practice association), and Medicaid revenue, we used ordinary least squares regression analysis to examine the association between the use of CMPs, EMR capabilities, and external QI initiatives and performance on the following 3 clinical composite measures: diabetes management, processes of care, and intermediate outcomes (diabetes and cardiovascular). Greater use of CMPs was significantly associated with clinical performance: among POs using more than 5 CMPs, we observed a 3.2-point higher diabetes management score on a performance scale with scores ranging from 0 to 100 (P <.001), while for each 1.0-point increase on the CMP index, we observed a 1.0-point gain in intermediate outcomes (P <.001). Participation in external QI initiatives was positively associated with improved delivery of clinical processes of care: a 1.0-point increase on the QI index translated into a 1.4-point gain in processes-of-care performance (P = .02). No relationship was observed between EMR capabilities and performance. Greater investments in CMPs and QI interventions may help POs raise clinical performance and achieve success under performance-based accountability schemes.

  13. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation.

    PubMed

    Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin

    2013-10-01

    As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.

  14. Performance in physiology evaluation: possible improvement by active learning strategies.

    PubMed

    Montrezor, Luís H

    2016-12-01

    The evaluation process is complex and extremely important in the teaching/learning process. Evaluations are constantly employed in the classroom to assist students in the learning process and to help teachers improve the teaching process. The use of active methodologies encourages students to participate in the learning process, encourages interaction with their peers, and stimulates thinking about physiological mechanisms. This study examined the performance of medical students on physiology over four semesters with and without active engagement methodologies. Four activities were used: a puzzle, a board game, a debate, and a video. The results show that engaging in activities with active methodologies before a physiology cognitive monitoring test significantly improved student performance compared with not performing the activities. We integrate the use of these methodologies with classic lectures, and this integration appears to improve the teaching/learning process in the discipline of physiology and improves the integration of physiology with cardiology and neurology. In addition, students enjoy the activities and perform better on their evaluations when they use them. Copyright © 2016 The American Physiological Society.

  15. Performance improvement CME for quality: challenges inherent to the process.

    PubMed

    Vakani, Farhan Saeed; O'Beirne, Ronan

    2015-01-01

    The purpose of this paper is to discuss the perspective debates upon the real-time challenges for a three-staged Performance Improvement Continuing Medical Education (PI-CME) model, an innovative and potential approach for future CME, to inform providers to think, prepare and to act proactively. In this discussion, the challenges associated for adopting the American Medical Association's three-staged PI-CME model are reported. Not many institutions in USA are using a three-staged performance improvement model and then customizing it to their own healthcare context for the specific targeted audience. They integrate traditional CME methods with performance and quality initiatives, and linking with CME credits. Overall the US health system is interested in a structured PI-CME model with the potential to improve physicians practicing behaviors. Knowing the dearth of evidence for applying this structured performance improvement methodology into the design of CME activities, and the lack of clarity on challenges inherent to the process that learners and providers encounter. This paper establishes all-important first step to render the set of challenges for a three-staged PI-CME model.

  16. Thin film studies toward improving the performance of accelerator electron sources

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al

    Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identical 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(+/-0.05) x 10--13 Torr L s--1 cm--2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(+/-0.05) x 10--13 Torr L s--1 cm--2 following an initial 90 °C bake and 2(+/-20) x 10--16 Torr L s --1 cm--2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify the task of implementing photocathode cooling, which is required for future high

  17. Thin film studies toward improving the performance of accelerator electron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, Md Abdullah

    Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identicalmore » 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(±0.05) x 10- 13 Torr L s -1 cm -2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(±0.05) x 10 -13 Torr L s -1 cm -2 following an initial 90 °C bake and 2(±20) x 10 -16 Torr L s -1 cm -2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify the task of implementing photocathode cooling, which is required for future high

  18. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    PubMed Central

    Polania, Jose A.; Poschenrieder, Charlotte; Beebe, Stephen; Rao, Idupulapati M.

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two

  19. Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.).

    PubMed

    Zeng, Zhengming; Xiong, Fangjie; Yu, Xiaohong; Gong, Xiaoping; Luo, Juntao; Jiang, Yudong; Kuang, Haochi; Gao, Bijun; Niu, Xiangli; Liu, Yongsheng

    2016-12-01

    Glyoxalase I (Gly I) is a component of the glyoxalase system which is involved in the detoxification of methylglyoxal, a byproduct of glycolysis. In the present study, a gene of rice (Oryza sativa L., cv. Nipponbare) encoding Gly I was cloned and characterized. The quantitative real-time PCR analysis indicated that rice Gly I (OsGly I) was ubiquitously expressed in root, stem, leaf, leaf sheath and spikelet with varying abundance. OsGly I was markedly upregulated in response to NaCl, ZnCl 2 and mannitol in rice seedlings. For further functional investigation, OsGly I was overexpressed in rice using Agrobacterium-mediated transformation. Transgenic rice lines exhibited increased glyoxalase enzyme activity, decreased methylglyoxal level and improved tolerance to NaCl, ZnCl 2 and mannitol compared to wild-type plants. Enhancement of stress tolerance in transgenic lines was associated with reduction of malondialdehyde content which was derived from cellular lipid peroxidation. In addition, the OsGly I-overexpression transgenic plants performed higher seed setting rate and yield. Collectively, these results indicate the potential of bioengineering the Gly I gene in crops. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Improving older adults' memory performance using prior task success.

    PubMed

    Geraci, Lisa; Miller, Tyler M

    2013-06-01

    Holding negative aging stereotypes can lead older adults to perform poorly on memory tests. We attempted to improve older adults' memory performance by giving them task experience that would counter their negative performance expectations. Before participating in a memory experiment, younger and older adults were given a cognitive task that they could either successfully complete, not successfully complete, or they were given no prior task. For older adults, recall was significantly higher and self-reported anxiety was significantly lower for the prior task success group relative to the other groups. There was no effect of prior task experience on younger adults' memory performance. Results suggest that older adults' memory can be improved with a single successful prior task experience. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. The Empirical Relationship among Organisational Learning, Continuous Improvement and Performance Improvement

    ERIC Educational Resources Information Center

    Sun, Hongyi; Ho, Kario; Ni, Wenbin

    2008-01-01

    There are still many questions remain unanswered about the relationship between Organisational Learning (OL) and Continuous Improvement (CI). For example, how do OL and CI contribute to business performance? Are OL and CI equal? Do OL and CI support each other? Should OL and CI be implemented separately or together? If together, how to integrate…

  2. Climate Effects on Corn Yield in Missouri(.

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Buyanovsky, Gregory

    2003-11-01

    Understanding climate effects on crop yield has been a continuous endeavor aiming at improving farming technology and management strategy, minimizing negative climate effects, and maximizing positive climate effects on yield. Many studies have examined climate effects on corn yield in different regions of the United States. However, most of those studies used yield and climate records that were shorter than 10 years and were for different years and localities. Although results of those studies showed various influences of climate on corn yield, they could be time specific and have been difficult to use for deriving a comprehensive understanding of climate effects on corn yield. In this study, climate effects on corn yield in central Missouri are examined using unique long-term (1895 1998) datasets of both corn yield and climate. Major results show that the climate effects on corn yield can only be explained by within-season variations in rainfall and temperature and cannot be distinguished by average growing-season conditions. Moreover, the growing-season distributions of rainfall and temperature for high-yield years are characterized by less rainfall and warmer temperature in the planting period, a rapid increase in rainfall, and more rainfall and warmer temperatures during germination and emergence. More rainfall and cooler-than-average temperatures are key features in the anthesis and kernel-filling periods from June through August, followed by less rainfall and warmer temperatures during the September and early October ripening time. Opposite variations in rainfall and temperature in the growing season correspond to low yield. Potential applications of these results in understanding how climate change may affect corn yield in the region also are discussed.

  3. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    PubMed

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improving the signal subtle feature extraction performance based on dual improved fractal box dimension eigenvectors

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Jingchao; Han, Hui; Ying, Yulong

    2018-05-01

    Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hilbert transform was performed to obtain the instantaneous amplitude of the signal. Then, the improved fractal box-counting dimension of the signal instantaneous amplitude was extracted as the first eigenvector. At the same time, the improved fractal box-counting dimension of the signal without the Hilbert transform was extracted as the second eigenvector. Finally, the dual improved fractal box-counting dimension eigenvectors formed the multi-dimensional eigenvectors as signal subtle features, which were used for radiation source signal recognition by the grey relation algorithm. The experimental results show that, compared with the traditional fractal box-counting dimension algorithm and the single improved fractal box-counting dimension algorithm, the proposed dual improved fractal box-counting dimension algorithm can better extract the signal subtle distribution characteristics under different reconstruction phase space, and has a better recognition effect with good real-time performance.

  5. Efficient SRAM yield optimization with mixture surrogate modeling

    NASA Astrophysics Data System (ADS)

    Zhongjian, Jiang; Zuochang, Ye; Yan, Wang

    2016-12-01

    Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a moderate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algorithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.

  6. Audit and feedback interventions to improve endoscopist performance: Principles and effectiveness.

    PubMed

    Tinmouth, Jill; Patel, Jigisha; Hilsden, Robert J; Ivers, Noah; Llovet, Diego

    2016-06-01

    There is considerable variation in the quality of colonoscopy, attributable in part to endoscopist performance. Audit and feedback (A&F) provides health professionals with a summary of their performance over a period of time and is a common strategy used to improve provider performance. In this review, we discuss current understanding of the mechanism of A&F and describe specific features of effective A&F. To date, trials of A&F to improve colonoscopy performance report heterogeneous results, in part because colonoscopy is a complex procedural skill but also because the quality improvement interventions were sub-optimally implemented or inadequately evaluated. Nonetheless, evidence from a wide range of literature suggests that A&F has the potential to improve endoscopist performance. We discuss future directions for research in this area and provide guidance for providers or health system planners wishing to implement A&F to address quality of colonoscopy in their practice and/or jurisdiction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Improvements in resist performance towards EUV HVM

    NASA Astrophysics Data System (ADS)

    Yildirim, Oktay; Buitrago, Elizabeth; Hoefnagels, Rik; Meeuwissen, Marieke; Wuister, Sander; Rispens, Gijsbert; van Oosten, Anton; Derks, Paul; Finders, Jo; Vockenhuber, Michaela; Ekinci, Yasin

    2017-03-01

    Extreme ultraviolet (EUV) lithography with 13.5 nm wavelength is the main option for sub-10nm patterning in the semiconductor industry. We report improvements in resist performance towards EUV high volume manufacturing. A local CD uniformity (LCDU) model is introduced and validated with experimental contact hole (CH) data. Resist performance is analyzed in terms of ultimate printing resolution (R), line width roughness (LWR), sensitivity (S), exposure latitude (EL) and depth of focus (DOF). Resist performance of dense lines at 13 nm half-pitch and beyond is shown by chemical amplified resist (CAR) and non-CAR (Inpria YA Series) on NXE scanner. Resolution down to 10nm half pitch (hp) is shown by Inpria YA Series resist exposed on interference lithography at the Paul Sherrer Institute. Contact holes contrast and consequent LCDU improvement is achieved on a NXE:3400 scanner by decreasing the pupil fill ratio. State-of-the-art imaging meets 5nm node requirements for CHs. A dynamic gas lock (DGL) membrane is introduced between projection optics box (POB) and wafer stage. The DGL membrane will suppress the negative impact of resist outgassing on the projection optics by 100%, enabling a wider range of resist materials to be used. The validated LCDU model indicates that the imaging requirements of the 3nm node can be met with single exposure using a high-NA EUV scanner. The current status, trends, and potential roadblocks for EUV resists are discussed. Our results mark the progress and the improvement points in EUV resist materials to support EUV ecosystem.

  8. Quantifying yield gaps in wheat production in Russia

    NASA Astrophysics Data System (ADS)

    Schierhorn, Florian; Faramarzi, Monireh; Prishchepov, Alexander V.; Koch, Friedrich J.; Müller, Daniel

    2014-08-01

    Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia’s widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.51-2.10 t ha-1, or 44-52% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.14-3.30 t ha-1, or 62-63% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha-1) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets.

  9. The Social Responsibility Performance Outcomes Model: Building Socially Responsible Companies through Performance Improvement Outcomes.

    ERIC Educational Resources Information Center

    Hatcher, Tim

    2000-01-01

    Considers the role of performance improvement professionals and human resources development professionals in helping organizations realize the ethical and financial power of corporate social responsibility. Explains the social responsibility performance outcomes model, which incorporates the concepts of societal needs and outcomes. (LRW)

  10. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    NASA Astrophysics Data System (ADS)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  11. High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine

    PubMed Central

    Telang, Nakul S; Kong, Caleb J; Verghese, Jenson; Gilliland III, Stanley E; Ahmad, Saeed; Dominey, Raymond N

    2018-01-01

    Numerous synthetic methods for the continuous preparation of fine chemicals and active pharmaceutical ingredients (API’s) have been reported in recent years resulting in a dramatic improvement in process efficiencies. Herein we report a highly efficient continuous synthesis of the antimalarial drug hydroxychloroquine (HCQ). Key improvements in the new process include the elimination of protecting groups with an overall yield improvement of 52% over the current commercial process. The continuous process employs a combination of packed bed reactors with continuous stirred tank reactors for the direct conversion of the starting materials to the product. This high-yielding, multigram-scale continuous synthesis provides an opportunity to achieve increase global access to hydroxychloroquine for treatment of malaria. PMID:29623120

  12. Healthcare managers' roles, competencies, and outputs in organizational performance improvement.

    PubMed

    Wallick, William G

    2002-01-01

    Healthcare CEOs recognize that managers are under increasing pressure to work smarter and more efficiently with fewer available resources. Jobs in the healthcare industry are in a constant state of change, requiring a workforce that is not only prepared to adjust quickly to the changing environment but to simultaneously maintain or improve overall organizational performance. Traditionally, trainers were viewed as the people with the primary responsibility for improving organizational performance. Today some CEOs believe healthcare managers should own that responsibility, and other CEOs believe the responsibility should be shared among healthcare managers and trainers. This shift in how accountability is viewed poses at least two important questions. Are managers aware of the various roles they need to enact to achieve successful organizational performance improvement? Do managers possess the competencies associated with those roles? The seven most contemporary trainer roles, now referred to as workplace learning and performance roles, are examined in this article to help managers increase their knowledge of the roles, competencies, and outputs expected of them. Based on findings of a study conducted to examine CEO's perceptions of managers' roles in the performance improvement process, this article provides theoretical backgrounds, includes verbatim study comments, and offers practical recommendations or tips for managers.

  13. Hypersonic flight performance improvements by overfueled ramjet combustion

    NASA Astrophysics Data System (ADS)

    Sachs, G.; Bayer, R.; Lederer, R.; Schaber, R.

    1991-12-01

    The performance characteristics of hypersonic airbreathing engines are examined with emphasis on the effect of overfueled combustion on thrust and specific fuel-consumption, as well as on the combustion temperature, real gas effects, and pollution due to exhaust gas. It is shown that overfueled ramjet combustion can provide a means for improving flight performance at hypersonic speed and, consequently, reduce the mission fuel burn and the propulsion system weight. It is also shown that, in the separation flight maneuver, the separation condition for the upper stage can be improved by overfueled ramjet combustion of the first stage, making it possible to increase the payload which the upper stage can deliver into orbit. The flight mechanics modeling considerations are presented.

  14. Using Semantic Coaching to Improve Teacher Performance.

    ERIC Educational Resources Information Center

    Caccia, Paul F.

    1996-01-01

    Explains that semantic coaching is a system of conversational analysis and communication design developed by Fernando Flores, and was based on the earlier research of John Austin and John Searle. Describes how to establish the coaching relationship, and how to coach for improved performance. (PA)

  15. Intake, digestibility, nitrogen balance, performance, and carcass yield of lambs fed licuri cake.

    PubMed

    Costa, J B; Oliveira, R L; Silva, T M; Ribeiro, R D X; Silva, A M; Leão, A G; Bezerra, L R; Rocha, T C

    2016-07-01

    This study aimed to determine the impact of the inclusion of licuri cake in the diets of crossbred Santa Inês lambs, based on intake, digestibility, N balance, urea N, and performance. We used 44 male lambs that were vaccinated and wormed, with an average age of 6 mo and an average BW of 21.2 kg ± 2.7 kg. The lambs were fed a mixture of Tifton-85 hay (40%) and a concentrated mixture (60%) composed of ground corn, soybean meal, and mineral premix. For the treatments, licuri cake was added at levels of 0, 8, 16, and 24% of DM, with the licuri cake replacing soybean meal and ground corn. We used 11 lambs per treatment in a randomized design. The lambs were confined for 70 d, and the digestibility trial occurred between Day 40 and Day 55. The increased level of licuri cake inclusion promoted a linear reduction in DM intake ( = 0.00) with a 39% reduction between treatments with the 0 and 24% cakes. On the other hand, ether extract () consumption showed an initial quadratic increase ( = 0.00). The total weight gain and ADG showed a linear decrease ( = 0.00) with the addition of licuri cake. The inclusion of licuri cake linearly enhanced ( = 0.02) the digestibility of CP and EE, whereas the digestibility of other nutrients in lambs remained unchanged ( > 0.05). The licuri cake increase led to a linear decrease ( < 0.05) in the N intake, fecal N, and retained N in lambs. Urinary N was not changed. The slaughter carcass weight, HCW, cold carcass weight, hot carcass yield, and cold carcass yield showed linear decreases ( < 0.05) with the addition of licuri cake. Carcass morphometric measurements were influenced by experimental diets, showing linear decreases ( < 0.05) with the addition of licuri cake to diets. The fat thickness, conformation, external length, internal length, leg length, rump width, and chest circumference showed linear decreases ( < 0.05) with the inclusion of licuri cake in diets. The inclusion of licuri cake decreased DMI and digestibility, reflecting

  16. An improved extraction method to increase DNA yield from molted feathers

    Treesearch

    Shelley Bayard De Volo; Richard T. Reynolds; Marlis R. Douglas; Michael F. Antolin

    2008-01-01

    To assess the value of molted feathers as a noninvasive source of DNA for genetic studies of Northern Goshawks (Accipiter gentilis), we isolated and quantified DNA from molted feathers and compared yields across five feather types. We also compared PCR success across the same five feather types using five microsatellite genetic markers of varying...

  17. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database.

    PubMed

    Niu, Mutian; Kebreab, Ermias; Hristov, Alexander N; Oh, Joonpyo; Arndt, Claudia; Bannink, André; Bayat, Ali R; Brito, André F; Boland, Tommy; Casper, David; Crompton, Les A; Dijkstra, Jan; Eugène, Maguy A; Garnsworthy, Phil C; Haque, Md Najmul; Hellwing, Anne L F; Huhtanen, Pekka; Kreuzer, Michael; Kuhla, Bjoern; Lund, Peter; Madsen, Jørgen; Martin, Cécile; McClelland, Shelby C; McGee, Mark; Moate, Peter J; Muetzel, Stefan; Muñoz, Camila; O'Kiely, Padraig; Peiren, Nico; Reynolds, Christopher K; Schwarm, Angela; Shingfield, Kevin J; Storlien, Tonje M; Weisbjerg, Martin R; Yáñez-Ruiz, David R; Yu, Zhongtang

    2018-02-16

    Enteric methane (CH 4 ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH 4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH 4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH 4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH 4 production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH 4 prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH 4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH 4 emission conversion factors for specific regions are required to improve CH 4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and

  18. Biochar Improves Performance of Plants for Mine Soil Revegetation

    EPA Science Inventory

    Biochar (the solid by-product of pyrolysis of biomass), has the potential to improve plant performance for revegetation of mine soils by improving soil chemistry, fertility, moisture holding capacity and by binding heavy metals. We investigated the effect of gasified conifer sof...

  19. Alternative preparation of inclusion bodies excludes interfering non-protein contaminants and improves the yield of recombinant proinsulin.

    PubMed

    Mackin, Robert B

    2014-01-01

    The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix.

  20. Alternative preparation of inclusion bodies excludes interfering non-protein contaminants and improves the yield of recombinant proinsulin

    PubMed Central

    Mackin, Robert B.

    2014-01-01

    The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix. PMID:26150942

  1. Working Memory Training Improves Dual-Task Performance on Motor Tasks.

    PubMed

    Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro

    2017-01-01

    The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.

  2. Improving the methane yield of maize straw: Focus on the effects of pretreatment with fungi and their secreted enzymes combined with sodium hydroxide.

    PubMed

    Zhao, Xiaoling; Luo, Kai; Zhang, Yue; Zheng, Zehui; Cai, Yafan; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-02-01

    In order to improve the methane yield, the alkaline and biological pretreatments on anaerobic digestion (AD) were investigated. Three treatments were tested: NaOH, biological (enzyme and fungi), and combined NaOH with biological. The maximum reducing sugar concentrations were obtained using Enzyme T (2.20 mg/mL) on the 6th day. The methane yield of NaOH + Enzyme A was 300.85 mL/g TS, 20.24% higher than the control. Methane yield obtained from Enzyme (T + A) and Enzyme T pretreatments were 277.03 and 273.75 mL/g TS, respectively, which were as effective as 1% NaOH (276.16 mL/g TS) in boosting methane production, and are environmentally friendly and inexpensive biological substitutes. Fungal pretreatment inhibited methane fermentation of maize straw, 15.68% was reduced by T + A compared with the control. The simultaneous reduction of DM, cellulose and hemicellulose achieved high methane yields. This study provides important guidance for the application of enzymes to AD from lignocellulosic agricultural waste. Copyright © 2017. Published by Elsevier Ltd.

  3. 42 CFR 486.348 - Condition: Quality assessment and performance improvement (QAPI).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... improvement (QAPI). 486.348 Section 486.348 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT... Coverage: Organ Procurement Organizations Organ Procurement Organization Process Performance Measures § 486.348 Condition: Quality assessment and performance improvement (QAPI). The OPO must develop, implement...

  4. Isocapnic hyperpnea training improves performance in competitive male runners.

    PubMed

    Leddy, John J; Limprasertkul, Atcharaporn; Patel, Snehal; Modlich, Frank; Buyea, Cathy; Pendergast, David R; Lundgren, Claes E G

    2007-04-01

    The effects of voluntary isocapnic hyperpnea (VIH) training (10 h over 4 weeks, 30 min/day) on ventilatory system and running performance were studied in 15 male competitive runners, 8 of whom trained twice weekly for 3 more months. Control subjects (n = 7) performed sham-VIH. Vital capacity (VC), FEV1, maximum voluntary ventilation (MVV), maximal inspiratory and expiratory mouth pressures, VO2max, 4-mile run time, treadmill run time to exhaustion at 80% VO2max, serum lactate, total ventilation (V(E)), oxygen consumption (VO2) oxygen saturation and cardiac output were measured before and after 4 weeks of VIH. Respiratory parameters and 4-mile run time were measured monthly during the 3-month maintenance period. There were no significant changes in post-VIH VC and FEV1 but MVV improved significantly (+10%). Maximal inspiratory and expiratory mouth pressures, arterial oxygen saturation and cardiac output did not change post-VIH. Respiratory and running performances were better 7- versus 1 day after VIH. Seven days post-VIH, respiratory endurance (+208%) and treadmill run time (+50%) increased significantly accompanied by significant reductions in respiratory frequency (-6%), V(E) (-7%), VO2 (-6%) and lactate (-18%) during the treadmill run. Post-VIH 4-mile run time did not improve in the control group whereas it improved in the experimental group (-4%) and remained improved over a 3 month period of reduced VIH frequency. The improvements cannot be ascribed to improved blood oxygen delivery to muscle or to psychological factors.

  5. 42 CFR 416.43 - Conditions for coverage-Quality assessment and performance improvement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... outcomes, patient safety, and quality of care. (2) Performance improvement activities must track adverse... improves patient safety by using quality indicators or performance measures associated with improved health... incorporate quality indicator data, including patient care and other relevant data regarding services...

  6. 42 CFR 416.43 - Conditions for coverage-Quality assessment and performance improvement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... outcomes, patient safety, and quality of care. (2) Performance improvement activities must track adverse... improves patient safety by using quality indicators or performance measures associated with improved health... incorporate quality indicator data, including patient care and other relevant data regarding services...

  7. 42 CFR 416.43 - Conditions for coverage-Quality assessment and performance improvement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... outcomes, patient safety, and quality of care. (2) Performance improvement activities must track adverse... improves patient safety by using quality indicators or performance measures associated with improved health... incorporate quality indicator data, including patient care and other relevant data regarding services...

  8. Yield surfaces for frictional sphere assemblages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard, J.D.; Didwania, A.K.

    1995-12-31

    By means of a recently developed computer algorithm for simulation of the quasi-static I mechanics of sphere assemblages, we have performed extensive computations of the dilatancy and plasticity of such systems for various proportional loading histories. We have investigated the effect of initial packing density or void ratio, size polydispersity, friction coefficient and plastic strain on the evolution of the yield surface. We find that all the yield surfaces tend to an asymptotic form which is well represented by the Lade-Duncan yield surface, developed originally for sand, suggesting that the Lade-Duncan form may reflect some universality in the behavior ofmore » assemblages of rigid frictional particles.« less

  9. Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): Alkaline α-amylase as a case study.

    PubMed

    Ma, Yingfang; Yang, Haiquan; Chen, Xianzhong; Sun, Bo; Du, Guocheng; Zhou, Zhemin; Song, Jiangning; Fan, You; Shen, Wei

    2015-10-01

    In this study, atmospheric and room temperature plasma (ARTP), a promising mutation breeding technique, was successfully applied to generate Bacillus subtilis mutants that yielded large quantities of recombinant protein. The high throughput screening platform was implemented to select those mutants with the highest yield of recombinant alkaline α-amylase (AMY), including the preferred mutant B. subtilis WB600 mut-12#. The yield and productivity of recombinant AMY in B. subtilis WB600 mut-12# increased 35.0% and 8.8%, respectively, the extracellular protein concentration of which increased 37.9%. B. subtilis WB600 mut-12# exhibited good genetic stability. Cells from B. subtilis WB600 mut-12# became shorter and wider than those from the wild-type. This study is the first to report a novel powerful mutagenesis tool (ARTP) that significantly improves the yield of recombinant proteins in B. subtilis and may therefore play an important role in the high expression level of proteins in recombinant microbial hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neurofeedback training improves attention and working memory performance.

    PubMed

    Wang, Jinn-Rong; Hsieh, Shulan

    2013-12-01

    The present study aimed to investigate the effectiveness of the frontal-midline theta (fmθ) activity uptraining protocol on attention and working memory performance of older and younger participants. Thirty-two participants were recruited. Participants within each age group were randomly assigned to either the neurofeedback training (fmθ uptraining) group or the sham-neurofeedback training group. There was a significant improvement in orienting scores in the older neurofeedback training group. In addition, there was a significant improvement in conflict scores in both the older and young neurofeedback training groups. However, alerting scores failed to increase. In addition, the fmθ training was found to improve working memory function in the older participants. The results further showed that fmθ training can modulate resting EEG for both neurofeedback groups. Our study demonstrated that fmθ uptraining improved attention and working memory performance and theta activity in the resting state for normal aging adults. In addition, younger participants also benefited from the present protocol in terms of improving their executive function. The current findings contribute to a better understanding of the mechanisms underlying neurofeedback training in cognitive function, and suggest that the fmθ uptraining protocol is an effective intervention program for cognitive aging. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. (Too) optimistic about optimism: the belief that optimism improves performance.

    PubMed

    Tenney, Elizabeth R; Logg, Jennifer M; Moore, Don A

    2015-03-01

    A series of experiments investigated why people value optimism and whether they are right to do so. In Experiments 1A and 1B, participants prescribed more optimism for someone implementing decisions than for someone deliberating, indicating that people prescribe optimism selectively, when it can affect performance. Furthermore, participants believed optimism improved outcomes when a person's actions had considerable, rather than little, influence over the outcome (Experiment 2). Experiments 3 and 4 tested the accuracy of this belief; optimism improved persistence, but it did not improve performance as much as participants expected. Experiments 5A and 5B found that participants overestimated the relationship between optimism and performance even when their focus was not on optimism exclusively. In summary, people prescribe optimism when they believe it has the opportunity to improve the chance of success-unfortunately, people may be overly optimistic about just how much optimism can do. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  12. 42 CFR 494.110 - Condition: Quality assessment and performance improvement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... time. (c) Standard: Prioritizing improvement activities. The dialysis facility must set priorities for performance improvement, considering prevalence and severity of identified problems and giving priority to...

  13. Autogenic-feedback training improves pilot performance during emergency flying conditions

    NASA Technical Reports Server (NTRS)

    Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.

    1994-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised three pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight, physiological data were recorded for each crew member and individual crew performance was rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  14. Autogenic-feedback training improves pilot performance during emergency flying conditions

    NASA Technical Reports Server (NTRS)

    Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.

    1993-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. The effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance was examined. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised four pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight physiological data were recorded for each crewmember and individual crew performance and rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  15. 42 CFR 460.136 - Internal quality assessment and performance improvement activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Internal quality assessment and performance improvement activities. 460.136 Section 460.136 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES....136 Internal quality assessment and performance improvement activities. (a) Quality assessment and...

  16. Improved variance estimation of classification performance via reduction of bias caused by small sample size.

    PubMed

    Wickenberg-Bolin, Ulrika; Göransson, Hanna; Fryknäs, Mårten; Gustafsson, Mats G; Isaksson, Anders

    2006-03-13

    Supervised learning for classification of cancer employs a set of design examples to learn how to discriminate between tumors. In practice it is crucial to confirm that the classifier is robust with good generalization performance to new examples, or at least that it performs better than random guessing. A suggested alternative is to obtain a confidence interval of the error rate using repeated design and test sets selected from available examples. However, it is known that even in the ideal situation of repeated designs and tests with completely novel samples in each cycle, a small test set size leads to a large bias in the estimate of the true variance between design sets. Therefore different methods for small sample performance estimation such as a recently proposed procedure called Repeated Random Sampling (RSS) is also expected to result in heavily biased estimates, which in turn translates into biased confidence intervals. Here we explore such biases and develop a refined algorithm called Repeated Independent Design and Test (RIDT). Our simulations reveal that repeated designs and tests based on resampling in a fixed bag of samples yield a biased variance estimate. We also demonstrate that it is possible to obtain an improved variance estimate by means of a procedure that explicitly models how this bias depends on the number of samples used for testing. For the special case of repeated designs and tests using new samples for each design and test, we present an exact analytical expression for how the expected value of the bias decreases with the size of the test set. We show that via modeling and subsequent reduction of the small sample bias, it is possible to obtain an improved estimate of the variance of classifier performance between design sets. However, the uncertainty of the variance estimate is large in the simulations performed indicating that the method in its present form cannot be directly applied to small data sets.

  17. Structural Design Strategies for Improved Small Overlap Crashworthiness Performance.

    PubMed

    Mueller, Becky C; Brethwaite, Andrew S; Zuby, David S; Nolan, Joseph M

    2014-11-01

    In 2012, the Insurance Institute for Highway Safety (IIHS) began a 64 km/h small overlap frontal crash test consumer information test program. Thirteen automakers already have redesigned models to improve test performance. One or more distinct strategies are evident in these redesigns: reinforcement of the occupant compartment, use of energy-absorbing fender structures, and the addition of engagement structures to induce vehicle lateral translation. Each strategy influences vehicle kinematics, posing additional challenges for the restraint systems. The objective of this two-part study was to examine how vehicles were modified to improve small overlap test performance and then to examine how these modifications affect dummy response and restraint system performance. Among eight models tested before and after design changes, occupant compartment intrusion reductions ranged from 6 cm to 45 cm, with the highest reductions observed in models with the largest number of modifications. All redesigns included additional occupant compartment reinforcement, one-third added structures to engage the barrier, and two modified a shotgun load path. Designs with engagement structures produced greater glance-off from the barrier and exhibited lower delta Vs but experienced more lateral outboard motion of the dummy. Designs with heavy reinforcement of the occupant compartment had higher vehicle accelerations and delta V. In three cases, these apparent trade-offs were not well addressed by concurrent changes in restraint systems and resulted in increased injury risk compared with the original tests. Among the 36 models tested after design changes, the extent of design changes correlated to structural performance. Half of the vehicles with the lowest intrusion levels incorporated aspects of all three design strategies. Vehicle kinematics and dummy and restraint system characteristics were similar to those observed in the before/after pairs. Different combinations of structural

  18. Do clinical safety charts improve paramedic key performance indicator results? (A clinical improvement programme evaluation).

    PubMed

    Ebbs, Phillip; Middleton, Paul M; Bonner, Ann; Loudfoot, Allan; Elliott, Peter

    2012-07-01

    Is the Clinical Safety Chart clinical improvement programme (CIP) effective at improving paramedic key performance indicator (KPI) results within the Ambulance Service of New South Wales? The CIP intervention area was compared with the non-intervention area in order to determine whether there was a statistically significant improvement in KPI results. The CIP was associated with a statistically significant improvement in paramedic KPI results within the intervention area. The strategies used within this CIP are recommended for further consideration.

  19. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219.

    PubMed

    Shamsudin, Noraziyah Abd Aziz; Swamy, B P Mallikarjuna; Ratnam, Wickneswari; Sta Cruz, Ma Teressa; Raman, Anitha; Kumar, Arvind

    2016-01-27

    Three drought yield QTLs, qDTY 2.2, qDTY 3.1, and qDTY 12.1 with consistent effect on grain yield under reproductive stage drought stress were pyramided through marker assisted breeding with the objective of improving the grain yield of the elite Malaysian rice cultivar MR219 under reproductive stage drought stress. Foreground selection using QTL specific markers, recombinant selection using flanking markers, and background selection were performed. BC1F3-derived lines with different combinations of qDTY 2.2 , qDTY 3.1, and qDTY 12.1 were evaluated under both reproductive stage drought stress and non-stress during the dry seasons of 2013 and 2014 at IRRI. The grain yield reductions in the stress trials compared to non-stress trials ranged from 79 to 93%. In the stress trials, delay in days to flowering and reduction in plant height were observed. In both seasons, MR219 did not produce any yield under stress, however it produced a yield of 5917 kg ha(-1) during the 2013 dry season and 8319 kg ha(-1) during the 2014 dry season under non-stress. Selected introgressed lines gave a yield advantage of 903 to 2500 kg ha(-1) over MR219 under reproductive stage drought stress and a yield of more than 6900 kg ha(-1) under non-stress during the 2014 dry season. Among lines with single qDTY, lines carrying qDTY 2.2 provided a higher yield advantage under reproductive stage drought stress in the MR219 background. Two-qDTY combinations (qDTY 3.1+ qDTY 2.2 and qDTY 3.1+ qDTY 12.1) performed better than lines with three qDTY combinations, indicating the absence of positive interactions between the three qDTYs. We successfully developed drought-tolerant MR219 pyramided lines with a yield advantage of more than 1500 kg ha(-1). Differential yield advantages of different combinations of the qDTYs indicate a differential synergistic relationship among qDTYs. This is the first report on the successful effect of qDTYs in increasing the yield under drought in genetic backgrounds other

  20. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    PubMed Central

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability. PMID:28084304

  1. Undergraduate medical academic performance is improved by scientific training.

    PubMed

    Zhang, Lili; Zhang, Wei; Wu, Chong; Liu, Zhongming; Cai, Yunfei; Cao, Xingguo; He, Yushan; Liu, Guoxiang; Miao, Hongming

    2017-09-01

    The effect of scientific training on course learning in undergraduates is still controversial. In this study, we investigated the academic performance of undergraduate students with and without scientific training. The results show that scientific training improves students' test scores in general medical courses, such as biochemistry and molecular biology, cell biology, physiology, and even English. We classified scientific training into four levels. We found that literature reading could significantly improve students' test scores in general courses. Students who received scientific training carried out experiments more effectively and published articles performed better than their untrained counterparts in biochemistry and molecular biology examinations. The questionnaire survey demonstrated that the trained students were more confident of their course learning, and displayed more interest, motivation and capability in course learning. In summary, undergraduate academic performance is improved by scientific training. Our findings shed light on the novel strategies in the management of undergraduate education in the medical school. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):379-384, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  2. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania

    PubMed Central

    Tumbo, S. D.; Kihupi, N. I.; Rwehumbiza, Filbert B.

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly. PMID:28536708

  3. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania.

    PubMed

    Msongaleli, Barnabas M; Tumbo, S D; Kihupi, N I; Rwehumbiza, Filbert B

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.

  4. Countermeasures to Improve the Driving Performance of Older Drivers.

    ERIC Educational Resources Information Center

    Ashman, Richard D.; And Others

    1994-01-01

    In a 2-year project, 105 older drivers were given physical therapy (flexibility exercises), perceptual therapy (to improve visual discrimination), and driver education; traffic engineering modifications were also made. All four interventions improved performance an average of 7.9%. Engineering was most cost effective on high-volume roads, the…

  5. The reliability of in-training assessment when performance improvement is taken into account.

    PubMed

    van Lohuizen, Mirjam T; Kuks, Jan B M; van Hell, Elisabeth A; Raat, A N; Stewart, Roy E; Cohen-Schotanus, Janke

    2010-12-01

    During in-training assessment students are frequently assessed over a longer period of time and therefore it can be expected that their performance will improve. We studied whether there really is a measurable performance improvement when students are assessed over an extended period of time and how this improvement affects the reliability of the overall judgement. In-training assessment results were obtained from 104 students on rotation at our university hospital or at one of the six affiliated hospitals. Generalisability theory was used in combination with multilevel analysis to obtain reliability coefficients and to estimate the number of assessments needed for reliable overall judgement, both including and excluding performance improvement. Students' clinical performance ratings improved significantly from a mean of 7.6 at the start to a mean of 7.8 at the end of their clerkship. When taking performance improvement into account, reliability coefficients were higher. The number of assessments needed to achieve a reliability of 0.80 or higher decreased from 17 to 11. Therefore, when studying reliability of in-training assessment, performance improvement should be considered.

  6. Yield gaps and yield relationships in US soybean production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...

  7. Methylphenidate improves performance on the radial arm maze in periadolescent rats

    PubMed Central

    Dow-Edwards, Diana L.; Weedon, Jeremy C.; Hellmann, Esther

    2008-01-01

    Methylphenidate (Ritalin; MPD) is one of the most commonly prescribed drugs in childhood and adolescence and many clinical studies have documented its efficacy. Due to the limitations of conducting invasive research in humans, animal models can be beneficial for studying drug effects. However, few animal studies have demonstrated the effects of methylphenidate on cognitive processes. The objective of this study was to find a dose of methylphenidate that was effective in improving performance on a spatial working memory cognitive task when administered orally to periadolescent rats. Therefore, we dosed subjects with methylphenidate at 1 or 3 mg/kg/day via gastric intubation from postnatal day 22 to 59 and assessed the effects of the drug on performance on the radial arm maze each day. To enhance performance overall, a second experiment was conducted where the subjects were moderately food restricted (to 90% of the free-feeding weight). Results of Experiment 1 show that during the first week of testing only the 3mg/kg MPD-treated males showed improved performance (entries prior to repeated entry) when ad-lib fed and housed in pairs while the same dose significantly improved performance in both males and females under conditions of food-restriction and individual housing in Experiment 2. MPD also produced a pattern of increased errors and arms entered during the first week, especially in Experiment 2. MPD increased locomotor activity when tested at postnatal day 60 in both experiments. The data suggest that 3mg/kg oral methylphenidate improves performance on a spatial cognitive task only early in treatment in the rat. While males show improvement under conditions of both high and low motivation, females only show MPD effects when highly motivated. Hypothetically, methylphenidate may improve radial arm maze performance through increased attention and improved spatial working memory and/or alterations in locomotion, reactivity to novelty or anxiety. Regardless, the

  8. A measure for provisional-and-urgent sanitary improvement in developing countries: septic-tank performance improvement.

    PubMed

    Harada, H; Dong, N T; Matsui, S

    2008-01-01

    Although many cities have planed to develop sewerages in developing countries, sewerage establishment still requires huge investment and engineering efforts. Improvement of existing sanitation facilities may contribute the betterment of urban sanitation before sewerage establishment. The purpose of this study is to propose a measure to improve urban sanitation in areas where a sewerage development plan is proposed but has not been yet established, based on a case study in Hanoi, Vietnam. We found that 90.5% of human excreta flowed into septic tanks. However, 89.6% of septic tanks have never been desludged in the past and their performance was observed to be at a low level. The study also showed that if they introduce regular desludging with a frequency of once a year, they can eliminate 72.8% of COD loads from septic tanks. It was indicated that the performance can be dramatically recovered by regular desludging, which could contribute urban sanitation improvement in Hanoi. In conclusion, the performance recovery of septic tanks by regular desludging was proposed as a provisional-and-urgent measure for urban sanitation improvement, together with the septage treatment in sewage sludge treatment facilities, which should be established earlier than other facilities of sewage treatment systems. IWA Publishing 2008.

  9. Regional crop gross primary production and yield estimation using fused Landsat-MODIS data

    NASA Astrophysics Data System (ADS)

    He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.

    2017-12-01

    Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, p<0.05). The estimated crop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.

  10. Effect of free-range days on a local chicken breed: growth performance, carcass yield, meat quality, and lymphoid organ index.

    PubMed

    Tong, H B; Wang, Q; Lu, J; Zou, J M; Chang, L L; Fu, S Y

    2014-08-01

    An experiment was conducted to evaluate the effect of free-range days on growth performance, carcass yield, meat quality, and lymphoid organ index of a local chicken breed. In total, 1,000 one-day-old male Suqin yellow chickens were raised for 21 d. On d 21, 720 birds with similar BW (536 ± 36 g) were selected and randomly assigned to free-range treatment at 21, 28, 35, and 42 d of age (assigned to free-range treatment for 21, 14, 7, and 0 d, respectively). Each treatment was represented by 5 replicates (pens) containing 36 birds (180 birds per treatment). All the birds were raised in indoor floor pens measuring 1.42 × 1.42 m (2 m(2), 18 birds/m(2)) in conventional poultry research houses before free-range treatment. In the free-range treatment, the chickens were raised in indoor floor houses measuring 3 × 5 m (15 m(2), 2.4 birds/m(2)). In addition, they also had an outdoor free-range paddock measuring 3 × 8 m (24 m(2), 1.5 birds/m(2)). The BW of birds after being assigned to free-range treatment for 7 d decreased significantly compared with that in the conventional treatment (P < 0.05). However, there was no effect of the free-range days on the BW at 42 d of age (P > 0.05). The daily weight gain, feed per gain, daily feed intake, and mortality from 21 to 42 d of age were unaffected by free-range days (P > 0.05). At 42 d of age, the breast yield increased linearly with increasing free-range days (P < 0.05), whereas the thigh, leg, thigh bone, and foot yields decreased linearly (P < 0.05). The lung yield showed a significant increasing and then decreasing quadratic response to increasing free-range days (P < 0.05). The water-holding capacity of the thigh muscle decreased linearly with increasing free-range days (P < 0.05), whereas there was no significant difference in the meat color, shear force, and muscle pH (P > 0.05). The absolute thymus weight and thymus:BW ratio showed a significant increasing and then decreasing quadratic response to increasing free

  11. Optimizing Dense Plasma Focus Neutron Yields With Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Stein, Elizabeth; Higginson, Drew; Kueny, Christopher; Link, Anthony; Schmidt, Andrea

    2017-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high-density jets are modeled in the large-eddy Navier-Stokes code CharlesX, which is suitable for modeling both sub-sonic and supersonic gas flow. The gas pattern, which is essentially static on z-pinch time scales, is imported from CharlesX to LSP for neutron yield predictions. Fast gas puffs allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of a subsonic jet increases relative to the background fill, we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density via super-sonic flow (also known as Mach diamonds) allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration and the necessary jet conditions for increasing neutron yield and reducing yield variability are explored. Simulations of realistic jet profiles are performed and compared to the ideal scenario. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL.

  12. Atmospheric CO2 concentration impacts on maize yield performance under dry conditions: do crop model simulate it right ?

    NASA Astrophysics Data System (ADS)

    Durand, Jean-Louis; Delusca, Kénel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Jochaim Weigel, Hans; Ruane, Alex C.; Rosenzweig, Cynthia; Jones, Jim; Ahuja, Laj; Anapalli, Saseendran; Basso, Bruno; Baron, Christian; Bertuzzi, Patrick; Biernath, Christian; Deryng, Delphine; Ewert, Frank; Gaiser, Thomas; Gayler, Sebastian; Heinlein, Florian; Kersebaum, Kurt Christian; Kim, Soo-Hyung; Müller, Christoph; Nendel, Claas; Olioso, Albert; Priesack, Eckhart; Ramirez-Villegas, Julian; Ripoche, Dominique; Rötter, Reimund; Seidel, Sabine; Srivastava, Amit; Tao, Fulu; Timlin, Dennis; Twine, Tracy; Wang, Enli; Webber, Heidi; Zhao, Shigan

    2017-04-01

    , the simulated impact of [CO2 ] on water use was negligible, with a general displacement of the water deficit toward later phases of the crop along with longer green leaf area duration at reduced transpiration rate. In general models which used explicit response functions of stomatal conductance to [CO2] performed significantly better than those which did not. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase. We shall discuss the various ways of simulating the response of stomatal conductance to [CO2] and the response of kernel set to water deficits.

  13. Can Near-Peer Teaching Improve Academic Performance?

    ERIC Educational Resources Information Center

    Williams, Brett; Fowler, James

    2014-01-01

    Near peer teaching is becoming increasingly popular within healthcare education. The experiences and effects of near-peer teaching upon the near-peer teachers' academic performance are poorly understood. In order to address this, the objective of this study was to examine whether a near-peer teaching program improved the overall clinical unit…

  14. Combined motor point associative stimulation (MPAS) and transcranial direct current stimulation (tDCS) improves plateaued manual dexterity performance.

    PubMed

    Hoseini, Najmeh; Munoz-Rubke, Felipe; Wan, Hsuan-Yu; Block, Hannah J

    2016-10-28

    Motor point associative stimulation (MPAS) in hand muscles is known to modify motor cortex excitability and improve learning rate, but not plateau of performance, in manual dexterity tasks. Central stimulation of motor cortex, such as transcranial direct current stimulation (tDCS), can have similar effects if accompanied by motor practice, which can be difficult and tiring for patients. Here we asked whether adding tDCS to MPAS could improve manual dexterity in healthy individuals who are already performing at their plateau, with no motor practice during stimulation. We hypothesized that MPAS could provide enough coordinated muscle activity to make motor practice unnecessary, and that this combination of stimulation techniques could yield improvements even in subjects at or near their peak. If so, this approach could have a substantial effect on patients with impaired dexterity, who are far from their peak. MPAS was applied for 30min to two right hand muscles important for manual dexterity. tDCS was simultaneously applied over left sensorimotor cortex. The motor cortex input/output (I/O) curve was assessed with transcranial magnetic stimulation (TMS), and manual dexterity was assessed with the Purdue Pegboard Test. Compared to sham or cathodal tDCS combined with MPAS, anodal tDCS combined with MPAS significantly increased the plateau of manual dexterity. This result suggests that MPAS has the potential to substitute for motor practice in mediating a beneficial effect of tDCS on manual dexterity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of the performance management information system in improving performance: an empirical study in Shanghai Ninth People's Hospital.

    PubMed

    Cui, Yinghui; Wu, Zhengyi; Lu, Yao; Jin, Wenzhong; Dai, Xing; Bai, Jinxi

    2016-01-01

    Improving the performance of clinical departments is not only the significant content of the healthcare system reform in China, but also the essential approach to better satisfying the Chinese growing demand for medical services. Performance management is vital and meaningful to public hospitals in China. Several studies are conducted in hospital internal performance management, but almost none of them consider the effects of informational tools. Therefore, we carried out an empirical study on effects of using performance management information system in Shanghai Ninth People's Hospital. The main feature of the system is that it provides a real-time query platform for users to analyze and dynamically monitor the key performance indexes, timely detect problems and make adjustments. We collected pivotal medical data on 35 clinical departments of this hospital from January 2013 until December 2014, 1 year before and after applying the performance management information system. Comparative analysis was conducted by statistical methods. The results show that the system is beneficial to improve performance scores of clinical departments and lower the proportion of drug expenses, meanwhile, shorten the average hospitalized days and increase the bed turnover rate. That is to say, with the increasing medical services, the quality and efficiency is greatly improved. In a word, application of the performance management information system has a positive effect on improving performance of clinical departments.

  16. How model and input uncertainty impact maize yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  17. Genomic architecture of heterosis for yield traits in rice.

    PubMed

    Huang, Xuehui; Yang, Shihua; Gong, Junyi; Zhao, Qiang; Feng, Qi; Zhan, Qilin; Zhao, Yan; Li, Wenjun; Cheng, Benyi; Xia, Junhui; Chen, Neng; Huang, Tao; Zhang, Lei; Fan, Danlin; Chen, Jiaying; Zhou, Congcong; Lu, Yiqi; Weng, Qijun; Han, Bin

    2016-09-29

    Increasing grain yield is a long-term goal in crop breeding to meet the demand for global food security. Heterosis, when a hybrid shows higher performance for a trait than both parents, offers an important strategy for crop breeding. To examine the genetic basis of heterosis for yield in rice, here we generate, sequence and record the phenotypes of 10,074 F 2 lines from 17 representative hybrid rice crosses. We classify modern hybrid rice varieties into three groups, representing different hybrid breeding systems. Although we do not find any heterosis-associated loci shared across all lines, within each group, a small number of genomic loci from female parents explain a large proportion of the yield advantage of hybrids over their male parents. For some of these loci, we find support for partial dominance of heterozygous locus for yield-related traits and better-parent heterosis for overall performance when all of the grain-yield traits are considered together. These results inform on the genomic architecture of heterosis and rice hybrid breeding.

  18. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).

    PubMed

    Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C

    2014-02-28

    Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.

  19. "Reflection-Before-Practice" Improves Self-Assessment and End-Performance in Laparoscopic Surgical Skills Training.

    PubMed

    Ganni, Sandeep; Botden, Sanne M B I; Schaap, Dennis P; Verhoeven, Bas H; Goossens, Richard H M; Jakimowicz, Jack J

    To establish whether a systematized approach to self-assessment in a laparoscopic surgical skills course improves accordance between expert- and self-assessment. A systematic training course in self-assessment using Competency Assessment Tool was introduced into the normal course of evaluation within a Laparoscopic Surgical Skills training course for the test group (n = 30). Differences between these and a control group (n = 30) who did not receive the additional training were assessed. Catharina Hospital, Eindhoven, The Netherlands (n = 27), and GSL Medical College, Rajahmundry, India (n = 33). Sixty postgraduate year 2 and 3 surgical residents who attended the 2-day Laparoscopic Surgical Skills grade 1 level 1 curriculum were invited to participate. The test group (n = 30) showed better accordance between expert- and self-assessment (difference of 1.5, standard deviation [SD] = 0.2 versus 3.83, SD = 0.6, p = 0.009) as well as half the number (7 versus 14) of cases of overreporting. Furthermore, the test group also showed higher overall mean performance (mean = 38.1, SD = 0.7 versus mean = 31.8, SD = 1.0, p < 0.001) than the control group (n = 30). The systematic approach to self-assessment can be viewed as responsible for this and can be seen as "reflection-before-practice" within the framework of reflective practice as defined by Donald Schon. Our results suggest that "reflection-before-practice" in implementing self-assessment is an important step in the development of surgical skills, yielding both better understanding of one's strengths and weaknesses and also improving overall performance. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

    PubMed

    Gombert, Andreas K; van Maris, Antonius J A

    2015-06-01

    Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Analysis of climate signals in the crop yield record of sub-Saharan Africa.

    PubMed

    Hoffman, Alexis L; Kemanian, Armen R; Forest, Chris E

    2018-01-01

    Food security and agriculture productivity assessments in sub-Saharan Africa (SSA) require a better understanding of how climate and other drivers influence regional crop yields. In this paper, our objective was to identify the climate signal in the realized yields of maize, sorghum, and groundnut in SSA. We explored the relation between crop yields and scale-compatible climate data for the 1962-2014 period using Random Forest, a diagnostic machine learning technique. We found that improved agricultural technology and country fixed effects are three times more important than climate variables for explaining changes in crop yields in SSA. We also found that increasing temperatures reduced yields for all three crops in the temperature range observed in SSA, while precipitation increased yields up to a level roughly matching crop evapotranspiration. Crop yields exhibited both linear and nonlinear responses to temperature and precipitation, respectively. For maize, technology steadily increased yields by about 1% (13 kg/ha) per year while increasing temperatures decreased yields by 0.8% (10 kg/ha) per °C. This study demonstrates that although we should expect increases in future crop yields due to improving technology, the potential yields could be progressively reduced due to warmer and drier climates. © 2017 John Wiley & Sons Ltd.

  2. Developing an automated database for monitoring ultrasound- and computed tomography-guided procedure complications and diagnostic yield.

    PubMed

    Itri, Jason N; Jones, Lisa P; Kim, Woojin; Boonn, William W; Kolansky, Ana S; Hilton, Susan; Zafar, Hanna M

    2014-04-01

    Monitoring complications and diagnostic yield for image-guided procedures is an important component of maintaining high quality patient care promoted by professional societies in radiology and accreditation organizations such as the American College of Radiology (ACR) and Joint Commission. These outcome metrics can be used as part of a comprehensive quality assurance/quality improvement program to reduce variation in clinical practice, provide opportunities to engage in practice quality improvement, and contribute to developing national benchmarks and standards. The purpose of this article is to describe the development and successful implementation of an automated web-based software application to monitor procedural outcomes for US- and CT-guided procedures in an academic radiology department. The open source tools PHP: Hypertext Preprocessor (PHP) and MySQL were used to extract relevant procedural information from the Radiology Information System (RIS), auto-populate the procedure log database, and develop a user interface that generates real-time reports of complication rates and diagnostic yield by site and by operator. Utilizing structured radiology report templates resulted in significantly improved accuracy of information auto-populated from radiology reports, as well as greater compliance with manual data entry. An automated web-based procedure log database is an effective tool to reliably track complication rates and diagnostic yield for US- and CT-guided procedures performed in a radiology department.

  3. Optimizing performance by improving core stability and core strength.

    PubMed

    Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain

    2008-01-01

    Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.

  4. An optimized expression vector for improving the yield of dengue virus-like particles from transfected insect cells.

    PubMed

    Charoensri, Nicha; Suphatrakul, Amporn; Sriburi, Rungtawan; Yasanga, Thippawan; Junjhon, Jiraphan; Keelapang, Poonsook; Utaipat, Utaiwan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Sittisombut, Nopporn

    2014-09-01

    Recombinant virus-like particles (rVLPs) of flaviviruses are non-infectious particles released from cells expressing the envelope glycoproteins prM and E. Dengue virus rVLPs are recognized as a potential vaccine candidate, but large scale production of these particles is hindered by low yields and the occurrence of cytopathic effects. In an approach to improve the yield of rVLPs from transfected insect cells, several components of a dengue serotype 2 virus prM+E expression cassette were modified and the effect of these modifications was assessed during transient expression. Enhancement of extracellular rVLP levels by simultaneous substitutions of the prM signal peptide and the stem-anchor region of E with homologous cellular and viral counterparts, respectively, was further augmented by codon optimization. Extensive formation of multinucleated cells following transfection with the codon-optimized expression cassette was abrogated by introducing an E fusion loop mutation. This mutation also helped restore the extracellular E levels affected negatively by alteration of a charged residue at the pr-M junction, which was intended to promote maturation of rVLPs during export. Optimized expression cassettes generated in this multiple add-on modification approach should be useful in the generation of stably expressing clones and production of dengue virus rVLPs for immunogenicity studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Technetium Getters to Improve Cast Stone Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey

    2015-10-15

    The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most tomore » the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.« less

  6. Effect of a free-range raising system on growth performance, carcass yield, and meat quality of slow-growing chicken.

    PubMed

    Wang, K H; Shi, S R; Dou, T C; Sun, H J

    2009-10-01

    Experiments were conducted to evaluate the effect of free-range raising systems on growth performance, carcass yield, and meat quality of slow-growing chickens. Slow-growing female chickens, Gushi chickens, were selected as the experimental birds. Two hundred 1-d-old female chicks were raised in a pen for 35 d. On d 36, ninety healthy birds, with similar BW (353.7+/-32.1g), were selected and randomly assigned to 2 treatments (indoor treatment and free-range treatment, P>0.05). Each treatment was represented by 3 groups containing 15 birds (45 birds per treatment). During the indoor treatment, the chickens were raised in floor pens in a conventional poultry research house (7 birds/m2). In the free-range treatment, the chickens were housed in a similar indoor house (7 birds/m2); in addition, they also had a free-range grass paddock (1 bird/m2). All birds were provided with the same starter and finisher diets and were raised for 112 d. Results showed that the BW and weight gain of the chickens in the free-range treatment were much lower than that of the chickens in the indoor floor treatments (P<0.05). There was no effect of the free-range raising system on eviscerated carcass, breast, thigh, and wing yield (P>0.05). However, the abdominal fat yield and tibia strength (P<0.05) significantly declined. The nutrient composition (water, protein, and fat), water-holding capacity, shear force, and pH of the muscle were largely unaffected (P>0.05) by the free-range raising system. The data indicated that the free-range raising system could significantly reduce growth performance, abdominal fat, and tibia strength, but with no effect on carcass traits and meat quality in slow-growing chickens.

  7. Using the properties of soil to speed up the start-up process, enhance process stability, and improve the methane content and yield of solid-state anaerobic digestion of alkaline-pretreated poplar processing residues.

    PubMed

    Yao, Yiqing; Luo, Yang; Li, Tian; Yang, Yingxue; Sheng, Hongmei; Virgo, Nolan; Xiang, Yun; Song, Yuan; Zhang, Hua; An, Lizhe

    2014-01-01

    Solid-state anaerobic digestion (SS-AD) was initially adopted for the treatment of municipal solid waste. Recently, SS-AD has been increasingly applied to treat lignocellulosic biomass, such as agricultural and forestry residues. However, studies on the SS-AD process are few. In this study, the process performance and methane yield from SS-AD of alkaline-pretreated poplar processing residues (PPRs) were investigated using the properties of soil, such as buffering capacity and nutritional requirements. The results showed that the lignocellulosic structures of the poplar sample were effectively changed by NaOH pretreatment, as indicated by scanning electron microscopy and Fourier transform infrared spectra analysis. The start-up was markedly hastened, and the process stability was enhanced. After NaOH pretreatment, the maximum methane yield (96.1 L/kg volatile solids (VS)) was obtained under a poplar processing residues-to-soil sample (P-to-S) ratio of 2.5:1, which was 29.9% and 36.1% higher than that of PPRs (74.0 L/kg VS) and that of experiments without NaOH pretreatment (70.6 L/kg VS), respectively. During steady state, the increase in the methane content of the experiment with a P-to-S ratio of 2.5:1 was 4.4 to 50.9% higher than that of the PPRs. Degradation of total solids and volatile solids ranged from 19.3 to 33.0% and from 34.9 to 45.9%, respectively. The maximum reductions of cellulose and hemicellulose were 52.6% and 42.9%, respectively, which were in accordance with the maximal methane yield. T 80 for the maximum methane yield for the experiments with NaOH pretreatment was 11.1% shorter than that for the PPRs. Pretreatment with NaOH and addition of soil led to a significant improvement in the process performance and the methane yield of SS-AD of PPRs. The changes in lignocellulosic structures induced by NaOH pretreatment led to an increase in methane yield. For the purpose of practical applications, SS-AD with soil addition is a convenient, economical

  8. Winning performance improvement strategies--linking documentation and accounts receivable.

    PubMed

    Braden, J H; Swadley, D

    1996-01-01

    When the HIM department at The University of Texas Medical Branch set out to improve documentation and accounts receivable management, it established a plan that encompassed a broad spectrum of data management process changes. The department examined and acknowledged the deficiencies in data management processes and used performance improvement tools to achieve successful results.

  9. Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, M.T., E-mail: pignimt@ornl.gov; Francis, M.W.; Gauld, I.C.

    A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {supmore » 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  10. Structured syncope care pathways based on lean six sigma methodology optimises resource use with shorter time to diagnosis and increased diagnostic yield.

    PubMed

    Martens, Leon; Goode, Grahame; Wold, Johan F H; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas

    2014-01-01

    To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield.

  11. Structured Syncope Care Pathways Based on Lean Six Sigma Methodology Optimises Resource Use with Shorter Time to Diagnosis and Increased Diagnostic Yield

    PubMed Central

    Martens, Leon; Goode, Grahame; Wold, Johan F. H.; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas

    2014-01-01

    Aims To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Methods Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. Results With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Conclusions Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield. PMID:24927475

  12. Comparison of statistical models for analyzing wheat yield time series.

    PubMed

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha⁻¹ year⁻¹ in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale.

  13. Comparison of Statistical Models for Analyzing Wheat Yield Time Series

    PubMed Central

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha−1 year−1 in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale. PMID:24205280

  14. Improving Powder Tableting Performance through Materials Engineering

    NASA Astrophysics Data System (ADS)

    Osei-Yeboah, Frederick

    Adequate mechanical strength is a critical requirement to the successful development of a tablet product. Before tablet compression, powders are often engineered by various processes including wet granulation and surface coating, which may improve or adversely affect the powder tableting performance. Such effects, commonly, result from a change in either particle mechanical properties or particulate (size, shape) properties. In this work, tableting performance is interpreted based on the qualitative bonding-area and bonding-strength (BABS) model. The tabletability of the microcrystalline cellulose (MCC) granules deteriorates rapidly with increasing amount of granulating water and eventually leads to over-granulation at high water level. Granule surface smoothing, size enlargement, granule densification and shape rounding are the dominant factors leading to the tabletability reduction of plastic MCC. Incorporation of increasing amounts of brittle excipients, such as lactose or dibasic calcium phosphate reduces the rate of tabletability reduction by promoting more granule fragmentation, introducing more surface area available for bonding. When a sufficient amount of brittle excipients is used, the over-granulation phenomenon can be eliminated. Surface coating of incompressible MCC pellets with highly bonding polymer leads to sufficient surface deformation and adhesion to enable direct compression of the pellets into tablets of adequate mechanical strength. This improvement is enhanced by the presence of moisture, which plasticizes the polymer to allow the development of a larger bonding area between coated pellets. The relationship between mechanical properties and tableting behavior is systematically investigated in polymeric composites using celecoxib-polyvinylpyrrolidone vinyl acetate solid dispersions. Mechanical properties such as indentation hardness of the solid dispersions were measured using nanoindentation. Incorporation of celecoxib up to 60% by weight

  15. Using Performance-Based Pay to Improve the Quality of Teachers

    ERIC Educational Resources Information Center

    Lavy, Victor

    2007-01-01

    Tying teachers' pay to their classroom performance should, says Victor Lavy, improve the current educational system both by clarifying teaching goals and by attracting and retaining the most productive teachers. But implementing pay for performance poses many practical challenges, because measuring individual teachers' performance is difficult.…

  16. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order tomore » provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  17. Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

    PubMed Central

    Renau-Morata, Begoña; Molina, Rosa V.; Carrillo, Laura; Cebolla-Cornejo, Jaime; Sánchez-Perales, Manuel; Pollmann, Stephan; Domínguez-Figueroa, José; Corrales, Alba R.; Flexas, Jaume; Vicente-Carbajosa, Jesús; Medina, Joaquín; Nebauer, Sergio G.

    2017-01-01

    Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SlCDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SlCDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 TF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield. PMID:28515731

  18. Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Casey, D. T.; Hohenberger, M.; Zylstra, A. B.; Bacher, A.; Brune, C. R.; Bionta, R. M.; Craxton, R. S.; Ellison, C. L.; Farrell, M.; Frenje, J. A.; Garbett, W.; Garcia, E. M.; Grim, G. P.; Hartouni, E.; Hatarik, R.; Herrmann, H. W.; Hohensee, M.; Holunga, D. M.; Hoppe, M.; Jackson, M.; Kabadi, N.; Khan, S. F.; Kilkenny, J. D.; Kohut, T. R.; Lahmann, B.; Le, H. P.; Li, C. K.; Masse, L.; McKenty, P. W.; McNabb, D. P.; Nikroo, A.; Parham, T. G.; Parker, C. E.; Petrasso, R. D.; Pino, J.; Remington, B.; Rice, N. G.; Rinderknecht, H. G.; Rosenberg, M. J.; Sanchez, J.; Sayre, D. B.; Schoff, M. E.; Shuldberg, C. M.; Séguin, F. H.; Sio, H.; Walters, Z. B.; Whitley, H. D.

    2018-05-01

    Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T2/3He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at a set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1 D simulations. Using data from D2/3He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D3He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis.

  19. Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

    DOE PAGES

    Gatu Johnson, M.; Casey, D. T.; Hohenberger, M.; ...

    2018-05-09

    Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T 2/ 3He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at amore » set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1 D simulations. Using data from D2-3He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D-3He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis.« less

  20. Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatu Johnson, M.; Casey, D. T.; Hohenberger, M.

    Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T 2/ 3He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at amore » set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1 D simulations. Using data from D2-3He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D-3He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis.« less