Sample records for yield increase due

  1. Microwave Energy Increases Fatty Acid Methyl Ester Yield in Human Whole Blood Due to Increased Sphingomyelin Transesterification.

    PubMed

    Metherel, Adam H; Aristizabal Henao, Juan J; Ciobanu, Flaviu; Taha, Ameer Y; Stark, Ken D

    2015-09-01

    Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield.

  2. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  3. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  4. Ants and termites increase crop yield in a dry climate.

    PubMed

    Evans, Theodore A; Dawes, Tracy Z; Ward, Philip R; Lo, Nathan

    2011-03-29

    Agricultural intensification has increased crop yields, but at high economic and environmental cost. Harnessing ecosystem services of naturally occurring organisms is a cheaper but under-appreciated approach, because the functional roles of organisms are not linked to crop yields, especially outside the northern temperate zone. Ecosystem services in soil come from earthworms in these cooler and wetter latitudes; what may fulfill their functional role in agriculture in warmer and drier habitats, where they are absent, is unproven. Here we show in a field experiment that ants and termites increase wheat yield by 36% from increased soil water infiltration due to their tunnels and improved soil nitrogen. Our results suggest that ants and termites have similar functional roles to earthworms, and that they may provide valuable ecosystem services in dryland agriculture, which may become increasingly important for agricultural sustainability in arid climates.

  5. Ants and termites increase crop yield in a dry climate

    PubMed Central

    Evans, Theodore A.; Dawes, Tracy Z.; Ward, Philip R.; Lo, Nathan

    2011-01-01

    Agricultural intensification has increased crop yields, but at high economic and environmental cost. Harnessing ecosystem services of naturally occurring organisms is a cheaper but under-appreciated approach, because the functional roles of organisms are not linked to crop yields, especially outside the northern temperate zone. Ecosystem services in soil come from earthworms in these cooler and wetter latitudes; what may fulfill their functional role in agriculture in warmer and drier habitats, where they are absent, is unproven. Here we show in a field experiment that ants and termites increase wheat yield by 36% from increased soil water infiltration due to their tunnels and improved soil nitrogen. Our results suggest that ants and termites have similar functional roles to earthworms, and that they may provide valuable ecosystem services in dryland agriculture, which may become increasingly important for agricultural sustainability in arid climates. PMID:21448161

  6. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    With an increasing and increasingly affluent population, there has been tremendous effort to examine strategies for sustainably increasing agricultural production to meet this surging global demand. Before developing new solutions from scratch, though, we believe it is important to consult our recent agricultural history to see where and how agricultural production changes have already taken place. By utilizing the newly created temporal M3 cropland datasets, we can for the first time examine gridded agricultural yields and area, both spatially and temporally. This research explores the historical drivers of agricultural production changes, from 1965-2005. The results will be presented spatially at the global-level (5-min resolution), as well as at the individual country-level. The primary research components of this study are presented below, including the general methodology utilized in each phase and preliminary results for soybean where available. The complete assessment will cover maize, wheat, rice, soybean, and sugarcane, and will include country-specific analysis for over 200 countries, states, territories and protectorates. Phase 1: The first component of our research isolates changes in agricultural production due to variation in planting decisions (harvested area) from changes in production due to intensification efforts (yield). We examine area/yield changes at the pixel-level over 5-year time-steps to determine how much each component has contributed to overall changes in production. Our results include both spatial patterns of changes in production, as well as spatial maps illustrating to what degree the production change is attributed to area and/or yield. Together, these maps illustrate where, why, and by how much agricultural production has changed over time. Phase 2: In the second phase of our research we attempt to determine the impact that area and yield changes have had on agricultural production at the country-level. We calculate a production

  7. An assessment of yield gains under climate change due to genetic modification of pearl millet.

    PubMed

    Singh, Piara; Boote, K J; Kadiyala, M D M; Nedumaran, S; Gupta, S K; Srinivas, K; Bantilan, M C S

    2017-12-01

    Developing cultivars with traits that can enhance and sustain productivity under climate change will be an important climate smart adaptation option. The modified CSM-CERES-Pearl millet model was used to assess yield gains by modifying plant traits determining crop maturity duration, potential yield and tolerance to drought and heat in pearl millet cultivars grown at six locations in arid (Hisar, Jodhpur, Bikaner) and semi-arid (Jaipur, Aurangabad and Bijapur) tropical India and two locations in semi-arid tropical West Africa (Sadore in Niamey and Cinzana in Mali). In all the study locations the yields decreased when crop maturity duration was decreased by 10% both in current and future climate conditions; however, 10% increase in crop maturity significantly (p<0.05) increased yields at Aurangabad and Bijapur, but not at other locations. Increasing yield potential traits by 10% increased yields under both the climate situations in India and West Africa. Drought tolerance imparted the lowest yield gain at Aurangabad (6%), the highest at Sadore (30%) and intermediate at the other locations under current climate. Under climate change the contribution of drought tolerance to the yield of cultivars either increased or decreased depending upon changes in rainfall of the locations. Yield benefits of heat tolerance substantially increased under climate change at most locations, having the greatest effects at Bikaner (17%) in India and Sadore (13%) in West Africa. Aurangabad and Bijapur locations had no yield advantage from heat tolerance due to their low temperature regimes. Thus drought and heat tolerance in pearl millet increased yields under climate change in both the arid and semi-arid tropical climates with greater benefit in relatively hotter environments. This study will assists the plant breeders in evaluating new promising plant traits of pearl millet for adapting to climate change at the selected locations and other similar environments. Copyright © 2017 The

  8. Crop Diversity for Yield Increase

    PubMed Central

    Li, Chengyun; He, Xiahong; Zhu, Shusheng; Zhou, Huiping; Wang, Yunyue; Li, Yan; Yang, Jing; Fan, Jinxiang; Yang, Jincheng; Wang, Guibin; Long, Yunfu; Xu, Jiayou; Tang, Yongsheng; Zhao, Gaohui; Yang, Jianrong; Liu, Lin; Sun, Yan; Xie, Yong; Wang, Haining; Zhu, Youyong

    2009-01-01

    Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean – either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand. PMID:19956624

  9. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s

    PubMed Central

    Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M

    2013-01-01

    Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849

  10. Future Warming Increases Global Maize Yield Variability with Implications for Food Markets

    NASA Astrophysics Data System (ADS)

    Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.

    2017-12-01

    If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable

  11. Increasing temperature cuts back crop yields in Hungary over the last 90 years.

    PubMed

    Pinke, Zsolt; Lövei, Gábor L

    2017-12-01

    The transformation of climatic regime has an undeniable impact on plant production, but we rarely have long enough date series to examine the unfolding of such effects. The clarification of the relationship between crop plants and climate has a near-immediate importance due to the impending human-made global change. This study investigated the relationship between temperature, precipitation, drought intensity and the yields of four major cereals in Hungary between 1921 and 2010. The analysis of 30-year segments indicated a monotonously increasing negative impact of temperature on crop yields. A 1°C temperature increase reduced the yield of the four main cereals by 9.6%-14.8% in 1981-2010, which revealed the vulnerability of Eastern European crop farming to recent climate change. Climate accounted for 17%-39% of yield variability over the past 90 years, but this figure reached 33%-67% between 1981 and 2010. Our analysis supports the claim that the mid-20th century green revolution improved yields "at the mercy of the weather": during this period, the impact of increasing fertilization and mechanisation coincided with climatic conditions that were more favourable than today. Crop yields in Eastern Europe have been stagnating or decreasing since the mid-1980s. Although usually attributed to the large socio-economic changes sweeping the region, our analysis indicates that a warming climate is at least partially responsible for this trend. Such a robust impact of increasing temperatures on crop yields also constitutes an obvious warning for this core grain-growing region of the world. © 2017 John Wiley & Sons Ltd.

  12. Chemical intervention in plant sugar signalling increases yield and resilience

    NASA Astrophysics Data System (ADS)

    Griffiths, Cara A.; Sagar, Ram; Geng, Yiqun; Primavesi, Lucia F.; Patel, Mitul K.; Passarelli, Melissa K.; Gilmore, Ian S.; Steven, Rory T.; Bunch, Josephine; Paul, Matthew J.; Davis, Benjamin G.

    2016-12-01

    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

  13. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield.

    PubMed

    Guo, Mei; Rupe, Mary A; Wei, Jun; Winkler, Chris; Goncalves-Butruille, Marymar; Weers, Ben P; Cerwick, Sharon F; Dieter, Jo Ann; Duncan, Keith E; Howard, Richard J; Hou, Zhenglin; Löffler, Carlos M; Cooper, Mark; Simmons, Carl R

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.

  14. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield

    PubMed Central

    Guo, Mei

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays ARGOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer’s modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer’s female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance. PMID:24218327

  15. Raising yield potential in wheat: increasing photosynthesis capacity and efficiency

    USDA-ARS?s Scientific Manuscript database

    Increasing wheat yields to help to ensure food security is a major challenge. Meeting this challenge requires a quantum improvement in the yield potential of wheat. Past increases in yield potential have largely resulted from improvements in harvest index not through increased biomass. Further large...

  16. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa

    PubMed Central

    Lesjak, Jurka; Calderini, Daniel F.

    2017-01-01

    Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m-2, i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared

  17. Wildlife-friendly farming increases crop yield: evidence for ecological intensification.

    PubMed

    Pywell, Richard F; Heard, Matthew S; Woodcock, Ben A; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M

    2015-10-07

    Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50-60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained--and, indeed, enhanced for some crops--despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. © 2015 The Authors.

  18. Wildlife-friendly farming increases crop yield: evidence for ecological intensification

    PubMed Central

    Pywell, Richard F.; Heard, Matthew S.; Woodcock, Ben A.; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M.

    2015-01-01

    Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50–60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained—and, indeed, enhanced for some crops—despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. PMID:26423846

  19. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    PubMed

    Okuno, Ayako; Hirano, Ko; Asano, Kenji; Takase, Wakana; Masuda, Reiko; Morinaka, Yoichi; Ueguchi-Tanaka, Miyako; Kitano, Hidemi; Matsuoka, Makoto

    2014-01-01

    Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA), and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  20. Food security: increasing yield and improving resource use efficiency.

    PubMed

    Parry, Martin A J; Hawkesford, Malcolm J

    2010-11-01

    Food production and security will be a major issue for supplying an increasing world population. The problem will almost certainly be exacerbated by climate change. There is a projected need to double food production by 2050. In recent times, the trend has been for incremental modest yield increases for most crops. There is an urgent need to develop integrated and sustainable approaches that will significantly increase both production per unit land area and the resource use efficiency of crops. This review considers some key processes involved in plant growth and development with some examples of ways in which molecular technology, plant breeding and genetics may increase the yield and resource use efficiency of wheat. The successful application of biotechnology to breeding is essential to provide the major increases in production required. However, each crop and each specific agricultural situation presents specific requirements and targets for optimisation. Some increases in production will come about as new varieties are developed which are able to produce satisfactory crops on marginal land presently not considered appropriate for arable crops. Other new varieties will be developed to increase both yield and resource use efficiency on the best land.

  1. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  2. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  3. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Is Yield Increase Sufficient to Achieve Food Security in China?

    PubMed Central

    Wei, Xing; Zhang, Zhao; Shi, Peijun; Wang, Pin; Chen, Yi; Song, Xiao; Tao, Fulu

    2015-01-01

    Increasing demand for food, driven by unprecedented population growth and increasing consumption, will keep challenging food security in China. Although cereal yields have substantially improved during the last three decades, whether it will keep thriving to meet the increasing demand is not known yet. Thus, an integrated analysis on the trends of crop yield and cultivated area is essential to better understand current state of food security in China, especially on county scale. So far, yield stagnation has extensively dominated the main cereal-growing areas across China. Rice yield is facing the most severe stagnation that 53.9% counties tracked in the study have stagnated significantly, followed by maize (42.4%) and wheat (41.9%). As another important element for production sustainability, but often neglected is the planted area patterns. It has been further demonstrated that the loss in productive arable land for rice and wheat have dramatically increased the pressure on achieving food security. Not only a great deal of the planted areas have stagnated since 1980, but also collapsed. 48.4% and 54.4% of rice- and wheat-growing counties have lost their cropland areas to varying degrees. Besides, 27.6% and 35.8% of them have retrograded below the level of the 1980s. The combined influence (both loss in yield and area) has determined the crop sustainable production in China to be pessimistic for rice and wheat, and consequently no surprise to find that more than half of counties rank a lower level of production sustainability. Therefore, given the potential yield increase in wheat and maize, as well as substantial area loss of rice and wheat, the possible targeted adaptation measures for both yield and cropping area is required at county scale. Moreover, policies on food trade, alongside advocation of low calorie diets, reducing food loss and waste can help to enhance food security. PMID:25680193

  5. Increased phytochrome B alleviates density effects on tuber yield of field potato crops.

    PubMed

    Boccalandro, Hernán E; Ploschuk, Edmundo L; Yanovsky, Marcelo J; Sánchez, Rodolfo A; Gatz, Christiane; Casal, Jorge J

    2003-12-01

    The possibility that reduced photomorphogenic responses could increase field crop yield has been suggested often, but experimental support is still lacking. Here, we report that ectopic expression of the Arabidopsis PHYB (phytochrome B) gene, a photoreceptor involved in detecting red to far-red light ratio associated with plant density, can increase tuber yield in field-grown transgenic potato (Solanum tuberosum) crops. Surprisingly, this effect was larger at very high densities, despite the intense reduction in the red to far-red light ratios and the concomitant narrowed differences in active phytochrome B levels between wild type and transgenics at these densities. Increased PHYB expression not only altered the ability of plants to respond to light signals, but they also modified the light environment itself. This combination resulted in larger effects of enhanced PHYB expression on tuber number and crop photosynthesis at high planting densities. The PHYB transgenics showed higher maximum photosynthesis in leaves of all strata of the canopy, and this effect was largely due to increased leaf stomatal conductance. We propose that enhanced PHYB expression could be used in breeding programs to shift optimum planting densities to higher levels.

  6. Material and methods to increase plant growth and yield

    DOEpatents

    Kirst, Matias

    2015-09-15

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  7. Materials and methods to increase plant growth and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirst, Matias

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  8. The decrease in yield strength in NiAl due to hydrostatic pressure

    NASA Technical Reports Server (NTRS)

    Margevicius, R. W.; Lewandowski, J. J.; Locci, I.

    1992-01-01

    The decrease in yield strength in NiAl due to hydrostatic pressure is examined via a comparison of the tensile flow behavior in the low strain regime at 0.1 MPa for NiAl which was cast, extruded, and annealed for 2 hr at 827 C in argon and very slowly cooled to room temperature. Pressurization to 1.4 GPa produces a subsequent reduction at 0.1 MP in proportional limit by 40 percent as well as a 25-percent reduction in the 0.2-percent offset yield strength, while pressurization with lower pressures produces a similar reduction, although smaller in magnitude.

  9. Whey cheese: membrane technology to increase yields.

    PubMed

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.

  10. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    NASA Astrophysics Data System (ADS)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  11. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.

    PubMed

    Fan, Mingsheng; Lal, Rattan; Cao, Jian; Qiao, Lei; Su, Yansen; Jiang, Rongfeng; Zhang, Fusuo

    2013-01-01

    China's food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution's technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s - the increase ranged from 0.73 to 1.76 Mg/ha for China's major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. Thus, without an improvement in inherent soil productivity, the 'Agricultural Miracle in China' would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving inherent soil productivity.

  12. Do increases in cigarette prices lead to increases in sales of cigarettes with high tar and nicotine yields?

    PubMed

    Farrelly, Matthew C; Loomis, Brett R; Mann, Nathan H

    2007-10-01

    We used scanner data on cigarette prices and sales collected from supermarkets across the United States from 1994 to 2004 to test the hypothesis that cigarette prices are positively correlated with sales of cigarettes with higher tar and nicotine content. During this period the average inflation-adjusted price for menthol cigarettes increased 55.8%. Price elasticities from multivariate regression models suggest that this price increase led to an increase of 1.73% in sales-weighted average tar yields and a 1.28% increase in sales-weighted average nicotine yields for menthol cigarettes. The 50.5% price increase of nonmenthol varieties over the same period yielded an estimated increase of 1% in tar per cigarette but no statistically significant increase in nicotine yields. An ordered probit model of the impact of cigarette prices on cigarette strength (ultra-light, light, full flavor, unfiltered) offers an explanation: As cigarette prices increase, the probability that stronger cigarette types will be sold increases. This effect is larger for menthol than for nonmenthol cigarettes. Our results are consistent with earlier population-based cross-sectional and longitudinal studies showing that higher cigarette prices and taxes are associated with increasing consumption of higher-yield cigarettes by smokers.

  13. Yield gap analyses to estimate attainable bovine milk yields and evaluate options to increase production in Ethiopia and India.

    PubMed

    Mayberry, Dianne; Ash, Andrew; Prestwidge, Di; Godde, Cécile M; Henderson, Ben; Duncan, Alan; Blummel, Michael; Ramana Reddy, Y; Herrero, Mario

    2017-07-01

    Livestock provides an important source of income and nourishment for around one billion rural households worldwide. Demand for livestock food products is increasing, especially in developing countries, and there are opportunities to increase production to meet local demand and increase farm incomes. Estimating the scale of livestock yield gaps and better understanding factors limiting current production will help to define the technological and investment needs in each livestock sector. The aim of this paper is to quantify livestock yield gaps and evaluate opportunities to increase dairy production in Sub-Saharan Africa and South Asia, using case studies from Ethiopia and India. We combined three different methods in our approach. Benchmarking and a frontier analysis were used to estimate attainable milk yields based on survey data. Household modelling was then used to simulate the effects of various interventions on dairy production and income. We tested interventions based on improved livestock nutrition and genetics in the extensive lowland grazing zone and highland mixed crop-livestock zones of Ethiopia, and the intensive irrigated and rainfed zones of India. Our analyses indicate that there are considerable yield gaps for dairy production in both countries, and opportunities to increase production using the interventions tested. In some cases, combined interventions could increase production past currently attainable livestock yields.

  14. Estimating milk yield and value losses from increased somatic cell count on US dairy farms.

    PubMed

    Hadrich, J C; Wolf, C A; Lombard, J; Dolak, T M

    2018-04-01

    Milk loss due to increased somatic cell counts (SCC) results in economic losses for dairy producers. This research uses 10 mo of consecutive dairy herd improvement data from 2013 and 2014 to estimate milk yield loss using SCC as a proxy for clinical and subclinical mastitis. A fixed effects regression was used to examine factors that affected milk yield while controlling for herd-level management. Breed, milking frequency, days in milk, seasonality, SCC, cumulative months with SCC greater than 100,000 cells/mL, lactation, and herd size were variables included in the regression analysis. The cumulative months with SCC above a threshold was included as a proxy for chronic mastitis. Milk yield loss increased as the number of test days with SCC ≥100,000 cells/mL increased. Results from the regression were used to estimate a monetary value of milk loss related to SCC as a function of cow and operation related explanatory variables for a representative dairy cow. The largest losses occurred from increased cumulative test days with a SCC ≥100,000 cells/mL, with daily losses of $1.20/cow per day in the first month to $2.06/cow per day in mo 10. Results demonstrate the importance of including the duration of months above a threshold SCC when estimating milk yield losses. Cows with chronic mastitis, measured by increased consecutive test days with SCC ≥100,000 cells/mL, resulted in higher milk losses than cows with a new infection. This provides farm managers with a method to evaluate the trade-off between treatment and culling decisions as it relates to mastitis control and early detection. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

    DOE PAGES

    Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.; ...

    2015-10-29

    Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolatemore » catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO 2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.« less

  16. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.

    Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolatemore » catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO 2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.« less

  17. Acid soil infertility effects on peanut yields and yield components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blamey, F.P.C.

    1983-01-01

    The interpretation of soil amelioration experiments with peanuts is made difficult by the unpredictibility of the crop and by the many factors altered when ameliorating acid soils. The present study was conducted to investigate the effects of lime and gypsum applications on peanut kernel yield via the three first order yield components, pods per ha, kernels per pod, and kernel mass. On an acid medium sandy loam soil (typic Plinthustult), liming resulted in a highly significant kernel yield increase of 117% whereas gypsum applications were of no significant benefit. As indicated by path coefficient analysis, an increase in the numbermore » of pods per ha was markedly more important in increasing yield than an increase in either the number of kernels per pod or kernel mass. Furthermore, exch. Al was found to be particularly detrimental to pod number. It was postulated that poor peanut yields resulting from acid soil infertility were mainly due to the depressive effect of exch. Al on pod number. Exch. Ca appeared to play a secondary role by ameliorating the adverse effects of exch. Al.« less

  18. Plant-Based Assessment of Inherent Soil Productivity and Contributions to China’s Cereal Crop Yield Increase since 1980

    PubMed Central

    Fan, Mingsheng; Lal, Rattan; Cao, Jian; Qiao, Lei; Su, Yansen; Jiang, Rongfeng; Zhang, Fusuo

    2013-01-01

    Objective China’s food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution’s technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. Methods The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. Results Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s — the increase ranged from 0.73 to 1.76 Mg/ha for China’s major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. Conclusions Thus, without an improvement in inherent soil productivity, the ‘Agricultural Miracle in China’ would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving inherent soil

  19. The impact of Global Warming on global crop yields due to changes in pest pressure

    NASA Astrophysics Data System (ADS)

    Battisti, D. S.; Tewksbury, J. J.; Deutsch, C. A.

    2011-12-01

    A billion people currently lack reliable access to sufficient food and almost half of the calories feeding these people come from just three crops: rice, maize, wheat. Insect pests are among the largest factors affecting the yield of these three crops, but models assessing the effects of global warming on crops rarely consider changes in insect pest pressure on crop yields. We use well-established relationships between temperature and insect physiology to project climate-driven changes in pest pressure, defined as integrated population metabolism, for the three major crops. By the middle of this century, under most scenarios, insect pest pressure is projected to increase by more than 50% in temperate areas, while increases in tropical regions will be more modest. Yield relationships indicate that the largest increases in insect pest pressure are likely to occur in areas where yield is greatest, suggesting increased strain on global food markets.

  20. Antifoam addition to shake flask cultures of recombinant Pichia pastoris increases yield

    PubMed Central

    2011-01-01

    Background Pichia pastoris is a widely-used host for recombinant protein production. Initial screening for both suitable clones and optimum culture conditions is typically carried out in multi-well plates. This is followed by up-scaling either to shake-flasks or continuously stirred tank bioreactors. A particular problem in these formats is foaming, which is commonly prevented by the addition of chemical antifoaming agents. Intriguingly, antifoams are often added without prior consideration of their effect on the yeast cells, the protein product or the influence on downstream processes such as protein purification. In this study we characterised, for the first time, the effects of five commonly-used antifoaming agents on the total amount of recombinant green fluorescent protein (GFP) secreted from shake-flask cultures of this industrially-relevant yeast. Results Addition of defined concentrations of Antifoam A (Sigma), Antifoam C (Sigma), J673A (Struktol), P2000 (Fluka) or SB2121 (Struktol) to shake-flask cultures of P. pastoris increased the total amount of recombinant GFP in the culture medium (the total yield) and in the case of P2000, SB2121 and J673A almost doubled it. When normalized to the culture density, the GFP specific yield (μg OD595-1) was only increased for Antifoam A, Antifoam C and J673A. Whilst none of the antifoams affected the growth rate of the cells, addition of P2000 or SB2121 was found to increase culture density. There was no correlation between total yield, specific yield or specific growth rate and the volumetric oxygen mass transfer coefficient (kLa) in the presence of antifoam. Moreover, the antifoams did not affect the dissolved oxygen concentration of the cultures. A comparison of the amount of GFP retained in the cell by flow cytometry with that in the culture medium by fluorimetry suggested that addition of Antifoam A, Antifoam C or J673A increased the specific yield of GFP by increasing the proportion secreted into the medium

  1. A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development[W

    PubMed Central

    Hannah, L. Curtis; Futch, Brandon; Bing, James; Shaw, Janine R.; Boehlein, Susan; Stewart, Jon D.; Beiriger, Robert; Georgelis, Nikolaos; Greene, Thomas

    2012-01-01

    The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures. PMID:22751213

  2. Intermittent illumination increases biophotolytic hydrogen yield by Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffries, T.W.; Leach, K.L.

    Intermittent illumination increased H/sub 2/ and C/sub 2/H/sub 4/ yields per unit of light from growing cells and from nitrogen-starved cells by 1.7- and 1.35-fold, respectively, as compared with continuous illumination.

  3. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    PubMed

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  4. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change

    PubMed Central

    Stratonovitch, Pierre; Semenov, Mikhail A.

    2015-01-01

    To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the

  5. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum

    DOE PAGES

    Papanek, Beth A.; Biswas, Ranjita; Rydzak, Thomas; ...

    2015-09-12

    Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, we study a mutant strain of C. thermocellum that was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulosemore » Avicel, effectively eliminating formate, acetate, and lactate production and reducing H 2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4 mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO 2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1 mM ethanol on 10 g/L Avicel. In conclusion, with the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.« less

  6. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  7. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    PubMed

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  8. Combining Urease and Nitrification Inhibitors with Incorporation Reduces Ammonia and Nitrous Oxide Emissions and Increases Corn Yields.

    PubMed

    Drury, Craig F; Yang, Xueming; Reynolds, W Dan; Calder, Wayne; Oloya, Tom O; Woodley, Alex L

    2017-09-01

    Less than 50% of applied nitrogen (N) fertilizer is typically recovered by corn ( L.) due to climatic constraints, soil degradation, overapplication, and losses to air and water. Two application methods, two N sources, and two inhibitors were evaluated to reduce N losses and enhance crop uptake. The treatments included broadcast urea (BrUrea), BrUrea with a urease inhibitor (BrUrea+UI), BrUrea with a urease and a nitrification inhibitor (BrUrea+UI+NI), injection of urea ammonium nitrate (InjUAN), and injected with one or both inhibitors (InjUAN+UI, InjUAN+UI+NI), and a control. The BrUrea treatment lost 50% (64.4 kg N ha) of the applied N due to ammonia volatilization, but losses were reduced by 64% with BrUrea+UI+NI (23.0 kg N ha) and by 60% with InjUAN (26.1 kg N ha). Ammonia losses were lower and crop yields were greater in 2014 than 2013 as a result of the more favorable weather when N was applied in 2014. When ammonia volatilization was reduced by adding a urease inhibitor, NO emissions were increased by 30 to 31% with BrUrea+UI and InjUAN+UI compared with BrUrea and InjUAN, respectively. Pollution swapping was avoided when both inhibitors were used (BrUrea+UI+NI, InjUAN+UI+NI) as both ammonia volatilization and NO emissions were reduced, and corn grain yields increased by 5% with BrUrea+UI+NI and by 7% with InjUAN+UI+NI compared with BrUrea and InjUAN, respectively. The combination of two N management strategies (InjUAN+UI+NI) increased yields by 19% (12.9 t ha) compared with BrUrea (10.8 t ha). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates

    NASA Technical Reports Server (NTRS)

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; hide

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  10. Temperature increase reduces global yields of major crops in four independent estimates

    PubMed Central

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Peng, Shushi; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population. PMID:28811375

  11. Temperature increase reduces global yields of major crops in four independent estimates.

    PubMed

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-08-29

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  12. Using FACE systems to screen wheat cultivars for yield increases at elevated CO2

    USDA-ARS?s Scientific Manuscript database

    Because of continuing increases in atmospheric CO2, identifying cultivars of crops with larger yield increases at elevated CO2 may provide an avenue to increase crop yield potential in future climates. Free-air CO2 enrichment (FACE) systems have most often been used with multiple replications of ea...

  13. Yield loss assessment due to Alternaria blight and its management in linseed.

    PubMed

    Singh, R B; Singh, H K; Parmar, Arpita

    2014-04-01

    Field experiments were conducted during 2010-11 and 2011-12 to assess the yield losses due to Alternaria blight disease caused by Alternaria lini and A. linicola in recently released cultivars and their management with the integration of Trichoderma viride, fungicides and plant extract. Disease severity on leaves varied from 41.07% (Parvati) to 65.01% (Chambal) while bud damage per cent ranged between 23.56% (Shekhar) to 46.12% (T-397), respectively in different cultivars. Maximum yield loss of 58.44% was recorded in cultivar Neelum followed by Parvati (55.56%), Meera (55.56%) and Chambal (51.72%), respectively while minimum loss was recorded in Kiran (19.99%) and Jeevan (22.22%). Minimum mean disease severity (19.47%) with maximum disease control (69.74%) was recorded with the treatment: seed treatment (ST) with vitavax power (2 g kg(-1) seed) + 2 foliar sprays (FS) of Saaf (a mixture of carbendazim+mancozeb) 0.2% followed by ST with Trichoderma viride (4g kg(-1) seed) + 2 FS of Saaf (0.2%). Minimum bud damage (13.75%) with maximum control (60.94%) was recorded with treatment of ST with vitavax power+2 FS of propiconazole (0.2%). Maximum mean seed yield (1440 kg ha(-1)) with maximum net return (Rs. 15352/ha) and benefit cost ratio (1:11.04) was obtained with treatment ST with vitavax power + 2 FS of Neem leaf extract followed by treatment ST with vitavax power+2 FS of Saaf (1378 kg ha(-1)).

  14. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress

    PubMed Central

    Ambavaram, Madana M. R.; Basu, Supratim; Krishnan, Arjun; Ramegowda, Venkategowda; Batlang, Utlwang; Rahman, Lutfor; Baisakh, Niranjan; Pereira, Andy

    2014-01-01

    Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions. PMID:25358745

  15. Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions.

    PubMed

    Cely, Martha V T; de Oliveira, Admilton G; de Freitas, Vanessa F; de Luca, Marcelo B; Barazetti, André R; Dos Santos, Igor M O; Gionco, Barbara; Garcia, Guilherme V; Prete, Cássio E C; Andrade, Galdino

    2016-01-01

    Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF) enhance plant nutrition by providing especially phosphorus, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species of AMF domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for nutrient supply in soybean (Glycine max L.) and cotton (Gossypium hirsutum L.) when compared with conventional chemical fertilization under field conditions. The experiments were carried out in a completely randomized block design with five treatments: Fertilizer, AMF, AMF with Fertilizer, AMF with 1/2 Fertilizer, and the Control with non-inoculated and non-fertilized plants. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth, nutrient absorption and yield. The results showed that AMF inoculation increased around 20 % of root colonization in both soybean and cotton; nutrients analyses in vegetal tissues showed increase of P and nitrogen content in inoculated plants, these results reflect in a higher yield. Our results showed that, AMF inoculation increase the effectiveness of fertilizer application in soybean and reduce the fertilizer dosage in cotton.

  16. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.

    PubMed

    Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to

  17. Bats and birds increase crop yield in tropical agroforestry landscapes.

    PubMed

    Maas, Bea; Clough, Yann; Tscharntke, Teja

    2013-12-01

    Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management. © 2013 John Wiley & Sons Ltd/CNRS.

  18. The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems.

    PubMed

    Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan

    2016-10-01

    Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.

  19. Crop yield response to increasing biochar rates

    USDA-ARS?s Scientific Manuscript database

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  20. Short-term complete submergence of rice at the tillering stage increases yield.

    PubMed

    Zhang, Yajie; Wang, Zhensheng; Li, Lei; Zhou, Qun; Xiao, Yao; Wei, Xing; Zhou, Mingyao

    2015-01-01

    Flooding is a major threat to agricultural production. Most studies have focused on the lower water storage limit in rice fields, whereas few studies have examined the upper water storage limit. This study aimed to explore the effect of waterlogging at the rice tillering stage on rice growth and yield. The early-ripening late japonica variety Yangjing 4227 was selected for this study. The treatments included different submergence depths (submergence depth/plant height: 1/2 (waist submergence), 2/3 (neck submergence), and 1/1 (complete submergence)) and durations (1, 3, and 5 d). The control group was treated with the conventional alternation of drying and wetting. The effects of waterlogging at the tillering stage on root characteristics, dry matter production, nitrogen and phosphorus accumulation, yield, yield components, and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene expression were explored. Compared with the control group, the 1/1 group showed significant increases in yield, seed-setting rate, photosynthetically efficient leaf area, and OS-ACS3 gene expression after 1 d of submergence. The grain number per panicle, dry weight of the aboveground and belowground parts, and number of adventitious roots also increased. Correlation analysis revealed a significant positive correlation between the panicle number and nitrogen content; however, no significant correlation was found for phosphorus content. If a decrease in rice yield of less than 10% is acceptable, half, 2/3, and complete submergence of the plants can be performed at the tillering stage for 1-3 d; this treatment will increase the space available for rice field water management/control and will improve rainfall resource utilization.

  1. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    NASA Astrophysics Data System (ADS)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  2. Argentina soybean yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A trend variable was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.

  3. Character-marked furniture: potential for lumber yield increase in rip-first rough mills

    Treesearch

    Urs Buehlmann; Janice K. Wiedenbeck; D. Earl Kline; D. Earl Kline

    1998-01-01

    The inclusion of character marks in furniture parts increases part yield at least as much as previously estimated by industrial practitioners and scientists specializing in yield efficiency. However, character-marked furniture is uncommon in the more popular North American furniture species and designs. Opportunities for extending the hardwood resource associated with...

  4. Character-marked furniture: potential for lumber yield increase in crosscut-first rough mills

    Treesearch

    Urs Buehlmann; Janice K. Wiedenbeck; E. Earl Kline; E. Earl Kline

    1999-01-01

    Including character marks in dimension parts of the furniture, cabinet, and dimension industries offers an opportunity to increase lumber yield substantially. However, little quantitative knowledge exists as to how the incorporation of character marks in parts influences yield when processing lumber in a crosscut-first rough mill. Using computer simulation, this study...

  5. Dynamic Predictions of Crop Yield and Irrigation in Sub-Saharan Africa Due to Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Foster-Wittig, T.

    2012-12-01

    The highest damages from climate change are predicted to be in the agricultural sector in sub-Saharan Africa. Agriculture is predicted to be especially vulnerable in this region because of its current state of high temperature and low precipitation and because it is usually rain-fed or relies on relatively basic technologies which therefore limit its ability to sustain in increased poor climatic conditions [1]. The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in agriculture due to IPCC predicted climate change impacts on precipitation and temperature. This research will provide a better understanding of the relationship between precipitation and rain-fed agriculture in savannas. In order to quantify the effects of climate change on agriculture, the impacts of climate change are modeled through the use of a land surface vegetation dynamics model previously developed combined with a crop model [2,4]. In this project, it will be used to model yield for point cropland locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall. With this model, future projections are developed for what can be anticipated for the crop yield based on two precipitation climate change scenarios; (1) decreased depth and (2) decreased frequency as well as temperature change scenarios; (3) only temperature increased, (4) temperature increase dand decreased precipitation depth, and (5) temperature increased and decreased precipitation frequency. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect food security in sub-Saharan Africa. As an additional analysis, irrigation is added to the model as it is thought to be the solution to protect food security by maximizing on the potential of food production. In water-limited areas such as Sub-Saharan Africa, it is important to consider water efficient irrigation techniques such as demand-based micro

  6. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  7. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco

    PubMed Central

    Simkin, Andrew J.; McAusland, Lorna; Headland, Lauren R.; Lawson, Tracy; Raines, Christine A.

    2015-01-01

    Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12–19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields. PMID:25956882

  8. Argentina wheat yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.

  9. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  10. Activation of Aspen Wood with Carbon Dioxide and Phosphoric Acid for Removal of Total Organic Carbon from Oil Sands Produced Water: Increasing the Yield with Bio-Oil Recycling

    PubMed Central

    Veksha, Andrei; Bhuiyan, Tazul I.; Hill, Josephine M.

    2016-01-01

    Several samples of activated carbon were prepared by physical (CO2) and chemical (H3PO4) activation of aspen wood and tested for the adsorption of organic compounds from water generated during the recovery of bitumen using steam assisted gravity drainage. Total organic carbon removal by the carbon samples increased proportionally with total pore volume as determined from N2 adsorption isotherms at −196 °C. The activated carbon produced by CO2 activation had similar removal levels for total organic carbon from the water (up to 70%) to those samples activated with H3PO4, but lower yields, due to losses during pyrolysis and activation. A method to increase the yield when using CO2 activation was proposed and consisted of recycling bio-oil produced from previous runs to the aspen wood feed, followed by either KOH addition (0.48%) or air pretreatment (220 °C for 3 h) before pyrolysis and activation. By recycling the bio-oil, the yield of CO2 activated carbon (after air pretreatment of the mixture) was increased by a factor of 1.3. Due to the higher carbon yield, the corresponding total organic carbon removal, per mass of wood feed, increased by a factor of 1.2 thus improving the overall process efficiency. PMID:28787817

  11. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  12. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    PubMed

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Does Integration Help Adapt to Climate Change? Case of Increased US Corn Yield Volatility

    NASA Astrophysics Data System (ADS)

    Verma, M.; Diffenbaugh, N. S.; Hertel, T. W.

    2012-12-01

    and reduces its demand. In the presence of domestic integration, ethanol production rises to substitute oil in the gasoline blend and thereby increases the corn demand and prices. However if one takes into account increase in corn price due to increased production costs (increase in oil price increases fertilizer prices - a major input into corn production) and reduced corn prices due to reduced fuel demand and therefore reduced ethanol additive demand; the prices can go either way. Our initial simulations show that they do in fact go down with mandate driven integration. This raises some more general questions: Whether integration (intersectoral and international) can be an effective strategy for adapting to climate change? And which of the four adaptation options - RFS or oil price driven domestic integration, full corn tariff liberalization or restricting tariff manipulation by partners - would be more effective in comparison to other adaptation (including no adaptation) scenarios? We implement the alternative adaptation strategies, while sampling from the same corn yield and oil price distributions and compare the resulting corn price variations to the base case where no such adaptation has been undertaken. Our initial results suggest that intersectoral integration is more effective form of adaptation than international one, but only if driven by market forces and not mandates.

  14. Anomalous yield reduction in direct-drive DT implosions due to 3He addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Hans W; Langenbrunner, James R; Mack, Joseph M

    2008-01-01

    Glass capsules were imploded in direct drive on the OMEGA laser [T. R. Boehly et aI., Opt. Commun. 133, 495, 1997] to look for anomalous degradation in deuterium/tritium (DT) yield (i.e., beyond what is predicted) and changes in reaction history with {sup 3}He addition. Such anomalies have previously been reported for D/{sup 3}He plasmas, but had not yet been investigated for DT/{sup 3}He. Anomalies such as these provide fertile ground for furthering our physics understanding of ICF implosions and capsule performance. A relatively short laser pulse (600 ps) was used to provide some degree of temporal separation between shock andmore » compression yield components for analysis. Anomalous degradation in the compression component of yield was observed, consistent with the 'factor of two' degradation previously reported by MIT at a 50% {sup 3}He atom fraction in D{sub 2} using plastic capsules [Rygg et aI., Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT, but consistent with LANL results in D{sub 2}/{sup 3}He [Wilson, et aI., lml Phys: Conf Series 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression ofcapsules containing {sup 3}He. Leading candidate explanations are poorly understood Equation-of-State (EOS) for gas mixtures, and unanticipated particle pressure variation with increasing {sup 3}He addition.« less

  15. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis.

    PubMed

    Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing

    2014-04-01

    Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.

  16. Drought Tolerance during Reproductive Development is Important for Increasing wheat yield Potential under Climate change in Europe.

    PubMed

    Senapati, Nimai; Stratonovitch, Pierre; Paul, Matthew J; Semenov, Mikhail A

    2018-06-12

    Drought stress during reproductive development could drastically reduce grain number and wheat yield, but quantitative evaluation of such effect is unknown under climate change. The objectives of this study were to a) evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and b) identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimise drought tolerant (DT) and drought sensitive (DS) wheat ideotypes under future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared to DS, with the double yield stability for DT. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared to DS in southern Europe. In contrast, no yield difference (≤ 1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.

  17. Analysis of climate signals in the crop yield record of sub-Saharan Africa.

    PubMed

    Hoffman, Alexis L; Kemanian, Armen R; Forest, Chris E

    2018-01-01

    Food security and agriculture productivity assessments in sub-Saharan Africa (SSA) require a better understanding of how climate and other drivers influence regional crop yields. In this paper, our objective was to identify the climate signal in the realized yields of maize, sorghum, and groundnut in SSA. We explored the relation between crop yields and scale-compatible climate data for the 1962-2014 period using Random Forest, a diagnostic machine learning technique. We found that improved agricultural technology and country fixed effects are three times more important than climate variables for explaining changes in crop yields in SSA. We also found that increasing temperatures reduced yields for all three crops in the temperature range observed in SSA, while precipitation increased yields up to a level roughly matching crop evapotranspiration. Crop yields exhibited both linear and nonlinear responses to temperature and precipitation, respectively. For maize, technology steadily increased yields by about 1% (13 kg/ha) per year while increasing temperatures decreased yields by 0.8% (10 kg/ha) per °C. This study demonstrates that although we should expect increases in future crop yields due to improving technology, the potential yields could be progressively reduced due to warmer and drier climates. © 2017 John Wiley & Sons Ltd.

  18. Vacuum transfer system increases sugar maple sap yield

    Treesearch

    Russell S. Walters

    1978-01-01

    Yields of sugar maple sap collected from three plastic pipeline systems by gravity, vacuum pump, and a vacuum pump with a transfer tank were compared during 2 years in northern Vermont. The transfer system yielded 27 percent more sap one year and 17 percent more the next year. Higher vacuum levels at the tapholes were observed in the transfer system.

  19. Forage yield increased by clearcutting and site preparation

    Treesearch

    John J. Stransky; Lowell K. Halls

    1977-01-01

    Total forage yield (TFY) on a pine-hardwood forest site in east Texas was sampled before and 1 growing season after clearcutting (1972 and 1973), also 1 and 3 growing seasons after planting site preparation by burning, choping, or KG blading (1974 and 1976). Total forage yield was only 359 ka/ha in the uncut forest, but 2217 kg/ha after clearcutting. On control plots (...

  20. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    PubMed

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter

  1. Attribution of maize yield increase in China to climate change and technological advancement between 1980 and 2010

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Zhao, Junfang; Wu, Dingrong; Mu, Jia; Xu, Yanhong

    2014-12-01

    Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from -41.4% to 0.4%. In particular, the actual

  2. Light-mediated self-organization of sunflower stands increases oil yield in the field

    PubMed Central

    López Pereira, Mónica; Sadras, Victor O.; Batista, William; Casal, Jorge J.; Hall, Antonio J.

    2017-01-01

    Here, we show a unique crop response to intraspecific interference, whereby neighboring sunflower plants in a row avoid each other by growing toward a more favorable light environment and collectively increase production per unit land area. In high-density stands, a given plant inclined toward one side of the interrow space, and the immediate neighbors inclined in the opposite direction. This process started early as an incipient inclination of pioneer plants, and the arrangement propagated gradually as a “wave” of alternate inclination that persisted until maturity. Measurements and experimental manipulation of light spectral composition indicate that these responses are mediated by changes in the red/far-red ratio of the light, which is perceived by phytochrome. Cellular automata simulations reproduced the patterns of stem inclination in field experiments, supporting the proposition of self-organization of stand structure. Under high crop population densities (10 and 14 plants per m2), as yet unachievable in commercial farms with current hybrids due to lodging and diseases, self-organized crops yielded between 19 and 47% more oil than crops forced to remain erect. PMID:28696316

  3. Light-mediated self-organization of sunflower stands increases oil yield in the field.

    PubMed

    López Pereira, Mónica; Sadras, Victor O; Batista, William; Casal, Jorge J; Hall, Antonio J

    2017-07-25

    Here, we show a unique crop response to intraspecific interference, whereby neighboring sunflower plants in a row avoid each other by growing toward a more favorable light environment and collectively increase production per unit land area. In high-density stands, a given plant inclined toward one side of the interrow space, and the immediate neighbors inclined in the opposite direction. This process started early as an incipient inclination of pioneer plants, and the arrangement propagated gradually as a "wave" of alternate inclination that persisted until maturity. Measurements and experimental manipulation of light spectral composition indicate that these responses are mediated by changes in the red/far-red ratio of the light, which is perceived by phytochrome. Cellular automata simulations reproduced the patterns of stem inclination in field experiments, supporting the proposition of self-organization of stand structure. Under high crop population densities (10 and 14 plants per m 2 ), as yet unachievable in commercial farms with current hybrids due to lodging and diseases, self-organized crops yielded between 19 and 47% more oil than crops forced to remain erect.

  4. Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory

    PubMed Central

    2010-01-01

    Background Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. Results Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. Conclusions The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased

  5. Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory.

    PubMed

    Ferndahl, Cecilia; Bonander, Nicklas; Logez, Christel; Wagner, Renaud; Gustafsson, Lena; Larsson, Christer; Hedfalk, Kristina; Darby, Richard A J; Bill, Roslyn M

    2010-06-17

    Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to

  6. Thidiazuron (TDZ) increases fruit set and yield of 'Hosui' and 'Packham's Triumph' pear trees.

    PubMed

    Pasa, Mateus S; Silva, Carina P DA; Carra, Bruno; Brighenti, Alberto F; Souza, André Luiz K DE; Petri, José Luiz

    2017-01-01

    The low fruit set is one of the main factors leading to poor yield of pear orchards in Brazil. The exogenous application of thidiazuron (TDZ) and aminoethoxyvinilglycine (AVG) has shown promising results in some pear cultivars and other temperate fruit trees. The objective of this study was to evaluate the effect of TDZ and AVG on fruit set, yield, and fruit quality of 'Hosui' and 'Packham's Triumph' pears. The study was performed in a commercial orchard located in São Joaquim, SC. Plant material consisted of 'Hosui' and 'Packham's Triumph' pear trees grafted on Pyrus calleryana. Treatments consisted on different rates of TDZ (0 mg L-1, 20 mg L-1, 40 mg L-1 and 60 mg L-1) sprayed at full bloom for both cultivars. An additional treatment of AVG 60 mg L-1 was sprayed one week after full bloom in 'Hosui'. The fruit set, number of fruit per tree, yield, fruit weight, seed number, and fruit quality attributes were assessed. Fruit set and yield of both cultivars are consistently increased by TDZ, within the rates of 20 to 60 mg L-1. Besides, its application increased fruit size of 'Hosui' and did not negatively affect fruit quality attributes of both cultivars.

  7. Apoplastic infusion of sucrose into stem internodes during female flowering does not increase grain yield in maize plants grown under nitrogen-limiting conditions.

    PubMed

    Peng, Yunfeng; Li, Chunjian; Fritschi, Felix B

    2013-08-01

    Nitrogen (N) limitation reduces leaf growth and photosynthetic rates of maize (Zea mays), and constrains photosynthate translocation to developing ears. Additionally, the period from about 1 week before to 2 weeks after silking is critical for establishing the reproductive sink capacity necessary to attain maximum yield. To investigate the influence of carbohydrate availability in plants of differing N status, a greenhouse study was performed in which exogenous sucrose (Suc) was infused around the time of silking into maize stems grown under different N regimes. N deficiency significantly reduced leaf area, leaf longevity, leaf chlorophyll content and photosynthetic rate. High N-delayed leaf senescence, particularly of the six uppermost leaves, compared to the other two N treatments. While N application increased ear leaf soluble protein concentration, it did not influence glucose and suc concentrations. Interestingly, ear leaf starch concentration decreased with increasing N application. Infusion of exogenous suc tended to increase non-structural carbohydrate concentrations in the developing ears of all N treatments at silking and 6 days after silking. However, leaf photosynthetic rates were not affected by suc infusion, and suc infusion failed to increase grain yield in any N treatment. The lack of an effect of suc infusion on ear growth and the high ear leaf starch concentration of N-deficient maize, suggest that yield reduction under N deficiency may not be due to insufficient photosynthate availability to the developing ear during silking, and that yield reduction under N deficiency may be determined at an earlier growth stage. Copyright © Physiologia Plantarum 2012.

  8. Adjusting slash pine growth and yield for silvicultural treatments

    Treesearch

    Stephen R. Logan; Barry D. Shiver

    2006-01-01

    With intensive silvicultural treatments such as fertilization and competition control now commonplace in today's slash pine (Pinus elliottii Engelm.) plantations, a method to adjust current growth and yield models is required to accurately account for yield increases due to these practices. Some commonly used ad-hoc methods, such as raising site...

  9. [Effects of plastic mulch on soil moisture and temperature and limiting factors to yield increase for dryland spring maize in the North China].

    PubMed

    Liu, Sheng-Yao; Zhang, Li-Feng; Li, Zhi-Hong; Jia, Jian-Ming; Fan, Feng-Cui; Shi, Yu-Fang

    2014-11-01

    Four treatments, including ridge tillage with plastic mulch (RP), ridge tillage without mulch (RB), flat tillage with plastic mulch (FP) and flat tillage without mulch (FB), were carried out to examine the tillage type and mulch on the effects of soil moisture and temperature, yield and water use efficiency (WUE) of dry land spring maize in the North China. Results showed that the average soil temperature was increased by 1-3 °C and the accumulated soil temperature was increased by 155.2-280.9 °C from sowing to tasseling by plastic mulch, and the growing duration was extended by 5.9-10.7 d. The water conservation effect of plastic mulch was significant from sowing to the seedling establishment, with WUE being increased by 81.6%-136.4% under mulch as compared with that without mulch. From the seedling to jointing stage, which coincided with the dry period in the region, soil water utilization by the maize under mulch could reach the depth of 80-100 cm, and its WUE was about 17.0%-21.6% lower than the maize without mulch, since the latter was affected by dry stress. With the coming of rainy season around the trumpeting stage, soil water in each treatment was replenished and maintained at relative high level up to harvest. Yield of maize was increased by 9.5% under RP as compared with RB. However, yield was reduced by 5.0% under FP, due to the plastic film under flat tillage prevented the infiltration of rainfall and waterlogging occurred. No significant difference in yield was found between RB and FB. Higher yield of spring maize was limited because of the mismatching in water supply and demand characterized by soil water shortage before the rainy season and abundant soil water storage after the rainy season.

  10. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    PubMed

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    PubMed

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  12. Low pH increases the yield of exosome isolation.

    PubMed

    Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2015-05-22

    Exosomes are the extracellular vesicles secreted by various cells. Exosomes mediate intercellular communication by delivering a variety of molecules between cells. Cancer cell derived exosomes seem to be related with tumor progression and metastasis. Tumor microenvironment is thought to be acidic and this low pH controls exosome physiology, leading to tumor progression. Despite the importance of microenvironmental pH on exosome, most of exosome studies have been performed without regard to pH. Therefore, the difference of exosome stability and yield of isolation by different pH need to be studied. In this research, we investigated the yield of total exosomal protein and RNA after incubation in acidic, neutral and alkaline conditioned medium. Representative exosome markers were investigated by western blot after incubation of exosomes in different pH. As a result, the concentrations of exosomal protein and nucleic acid were significantly increased after incubation in the acidic medium compared with neutral medium. The higher levels of exosome markers including CD9, CD63 and HSP70 were observed after incubation in an acidic environment. On the other hand, no exosomal protein, exosomal RNA and exosome markers have been detected after incubation in an alkaline condition. In summary, our results indicate that the acidic condition is the favorable environment for existence and isolation of exosomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size1[OPEN

    PubMed Central

    Wang, Liang; Lu, Qingtao

    2015-01-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. PMID:26504138

  14. The Potential of Five Winter-grown Crops to Reduce Root-knot Nematode Damage and Increase Yield of Tomato

    PubMed Central

    López-Pérez, Jose Antonio; Roubtsova, Tatiana; de Cara García, Miguel

    2010-01-01

    Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C). PMID:22736848

  15. Anomalous yield reduction in direct-drive deuterium/tritium implosions due to 3He addition

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Kyrala, G. A.; Caldwell, S. E.; Young, C. S.; Nobile, A.; Wermer, J.; Paglieri, S.; McEvoy, A. M.; Kim, Y.; Batha, S. H.; Horsfield, C. J.; Drew, D.; Garbett, W.; Rubery, M.; Glebov, V. Yu.; Roberts, S.; Frenje, J. A.

    2009-05-01

    Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with H3e addition. Such anomalies have previously been reported for D/H3e plasmas but had not yet been investigated for DT/H3e. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the "factor of 2" degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% H3e atom fraction in D2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D2/H3e [Wilson et al., J. Phys.: Conf. Ser. 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression of capsules containing H3e. Leading candidate explanations are poorly understood equation of state for gas mixtures and unanticipated particle pressure variation with increasing H3e addition.

  16. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    PubMed

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is

  17. Hot spots of wheat yield decline with rising temperatures.

    PubMed

    Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B

    2017-06-01

    Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.

  18. Tribology behavior on scratch tests: Effects of yield strength

    DOE PAGES

    Feng, Biao

    2017-03-07

    In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less

  19. Tribology behavior on scratch tests: Effects of yield strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Biao

    In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less

  20. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture

    PubMed Central

    Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao

    2018-01-01

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. PMID:29792597

  1. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture.

    PubMed

    Wan, Nian-Feng; Cai, You-Ming; Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Jiang, Jie-Xian; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao; Li, Bo

    2018-05-24

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. © 2018, Wan et al.

  2. Increased dry season water yield in burned watersheds in Southern California

    NASA Astrophysics Data System (ADS)

    Kinoshita, Alicia M.; Hogue, Terri S.

    2015-01-01

    The current work evaluates the effects of the 2003 Old Fire on semi-arid systems in the San Bernardino Mountains, California. Pre- and post-fire daily streamflow are used to analyze flow regimes in two burned watersheds. The average pre-fire runoff ratios in Devil Canyon and City Creek are 0.14 and 0.26, respectively, and both increase to 0.34 post-fire. Annual flow duration curves are developed for each watershed and the low flow is characterized by a 90% exceedance probability threshold. Post-fire low flow is statistically different from the pre-fire values (α = 0.05). In Devil Canyon the annual volume of pre-fire low flow increases on average from 2.6E + 02 to 3.1E + 03 m3 (1090% increase) and in City Creek the annual low flow volume increases from 2.3E + 03 to 5.0E + 03 m3 (118% increase). Predicting burn system resilience to disturbance (anthropogenic and natural) has significant implications for water sustainability and ultimately may provide an opportunity to utilize extended and increased water yield.

  3. Increased bacterial cell density and recombinant protein yield using a commercial microbial cultivation system.

    PubMed

    Peck, Grantley R; Bowden, Timothy R; Shiell, Brian J; Michalski, Wojtek P

    2014-01-01

    EnBase (BioSilta, Finland) is a microbial cultivation system that replicates fed-batch systems through sustained release of glucose by enzymatic degradation of a polymeric substrate. Achievable bacterial cell densities and recombinant capripoxvirus protein expression levels, solubility, and antigenicity using the EnBase system were assessed. BL21-AI Escherichia coli expressing capripoxvirus proteins achieved up to eightfold higher cell densities when grown in EnBase media compared with standard media. Greater yields of capripoxvirus proteins were attained using EnBase media, either through increases in the amount of expressed protein per cell in conjunction with higher cell density or through the increase in cell density alone. Addition of EnBase booster enhanced protein yield for one of the proteins tested but reduced yield for the other. However, the amount of soluble forms of the capripoxvirus proteins tested was not different from that observed from cultures grown under standard conditions. Purified capripoxvirus proteins expressed using EnBase or standard media were assessed for their performance by enzyme-linked immunosorbent assay (ELISA) and were shown to be equally capable of specifically binding capripoxvirus antibodies.

  4. Duplication of an upstream silencer of FZP increases grain yield in rice.

    PubMed

    Bai, Xufeng; Huang, Yong; Hu, Yong; Liu, Haiyang; Zhang, Bo; Smaczniak, Cezary; Hu, Gang; Han, Zhongmin; Xing, Yongzhong

    2017-11-01

    Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

  5. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety

    PubMed Central

    Curtis, T; Halford, N G

    2014-01-01

    Current wheat yield and consumption is considered in the context of the historical development of wheat, from early domestication through to modern plant breeding, the Green Revolution and wheat’s place as one of the world’s most productive and important crops in the 21st Century. The need for further improvement in the yield potential of wheat in order to meet current and impending challenges is discussed, including rising consumption and the demand for grain for fuel as well as food. Research on the complex genetics underlying wheat yield is described, including the identification of quantitative trait loci and individual genes, and the prospects of biotechnology playing a role in wheat improvement in the future are discussed. The challenge of preparing wheat to meet the problems of drought, high temperature and increasing carbon dioxide concentration that are anticipated to come about as a result of climate change is also reviewed. Wheat yield must be increased while not compromising food safety, and the emerging problem of processing contaminants is reviewed, focussing in particular on acrylamide, a contaminant that forms from free asparagine and reducing sugars during high temperature cooking and processing. Wheat breeders are strongly encouraged to consider the contaminant issue when breeding for yield. PMID:25540461

  6. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    PubMed

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  7. Pyrolysis of polyolefins for increasing the yield of monomers' recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaj, Pawel J., E-mail: pawel@mse.kth.se; Kaminsky, W.; Buzeto, F.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objectivemore » of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added

  8. Optimising yield and resource utilisation of summer maize under the conditions of increasing density and reducing nitrogen fertilization.

    PubMed

    Wei, Shanshan; Wang, Xiangyu; Zhu, Qicen; Jiang, Dong; Dong, Shuting

    2017-10-05

    The inefficient use of resources always poses risks of maize (Zea mays L.) yield reduction in China. We performed this research to monitor the effects of increasing plant density and reducing nitrogen (N) rate on radiation-use efficiency (RUE), N efficiency traits, grain yield (GY) and their inter-relationships. Besides, whether GY and resource-use efficiency can both be maximized was examined. Hence, a 2-year field experiment was conducted using a widely grown variety "Denghai 618" in Shandong, China. Treatments contained two different plant densities [67,500 (D 1 ) and 97,500 (D 2 ) plant ha -1 ] and three N levels [0 (N -2 ), 180 (N -1 ), 360 (N ck ) kg ha -1 ], set D 1 N ck as control. Significant increases in grain yield, biomass, RUE, above-ground N uptake (AGN) and N efficiency were observed when density increased from D 1 to D 2 . Declining N application was accompanied by reductions in yield, RUE and AGN especially under high density, yet an obvious improvement in N recovery efficiency (NRE), agronomic N efficiency and N partial factor productivity. The increased GY was positive related with population biomass (r = 0.895**), RUE (r = 0.769**) and AGN (r = 0.923**), whereas it has no significant correlation with N efficiency. In this study, D 2 N ck obtained 18.8, 17.9, 24.8 and 29.7% higher grain yield, RUE, AGN and NRE respectively, compared to control, optimizing both yield and the efficiencies of radiation and N use. Furthermore, higher yield and RUE with more desirable N efficiency may be possible via optimizing density and N rate combination.

  9. Optimising yield and resource utilisation of summer maize under the conditions of increasing density and reducing nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Wei, Shanshan; Wang, Xiangyu; Zhu, Qicen; Jiang, Dong; Dong, Shuting

    2017-12-01

    The inefficient use of resources always poses risks of maize ( Zea mays L.) yield reduction in China. We performed this research to monitor the effects of increasing plant density and reducing nitrogen (N) rate on radiation-use efficiency (RUE), N efficiency traits, grain yield (GY) and their inter-relationships. Besides, whether GY and resource-use efficiency can both be maximized was examined. Hence, a 2-year field experiment was conducted using a widely grown variety "Denghai 618" in Shandong, China. Treatments contained two different plant densities [67,500 (D1) and 97,500 (D2) plant ha-1] and three N levels [0 (N-2), 180 (N-1), 360 (Nck) kg ha-1], set D1Nck as control. Significant increases in grain yield, biomass, RUE, above-ground N uptake (AGN) and N efficiency were observed when density increased from D1 to D2. Declining N application was accompanied by reductions in yield, RUE and AGN especially under high density, yet an obvious improvement in N recovery efficiency (NRE), agronomic N efficiency and N partial factor productivity. The increased GY was positive related with population biomass ( r = 0.895**), RUE ( r = 0.769**) and AGN ( r = 0.923**), whereas it has no significant correlation with N efficiency. In this study, D2Nck obtained 18.8, 17.9, 24.8 and 29.7% higher grain yield, RUE, AGN and NRE respectively, compared to control, optimizing both yield and the efficiencies of radiation and N use. Furthermore, higher yield and RUE with more desirable N efficiency may be possible via optimizing density and N rate combination.

  10. Effect of enzyme concentration, addition of water and incubation time on increase in yield of starch from potato.

    PubMed

    Sit, Nandan; Agrawal, U S; Deka, Sankar C

    2014-05-01

    Enzymatic treatment process for starch extraction from potato was investigated using cellulase enzyme and compared with conventional process. The effects of three parameters, cellulase enzyme concentration, incubation time and addition of water were evaluated for increase in starch yield as compared to the conventional process i.e., without using enzyme. A two-level full factorial design was used to study the process. The results indicated that all the main parameters and their interactions are statistically significant. Enzyme concentration and incubation time had a positive effect on the increase in starch yield while addition of water had a negative effect. The increase in starch yield ranged from 1.9% at low enzyme concentration and incubation time and high addition of water to a maximum of 70% increase from conventional process in starch yield was achieved when enzyme concentration and incubation time were high and addition of water was low suggesting water present in the ground potato meal is sufficient for access to the enzyme with in the slurry ensuring adequate contact with the substrate.

  11. Increasing plant density in eastern United States broccoli production systems to maximize marketable head yields

    USDA-ARS?s Scientific Manuscript database

    Increased demand for fresh market broccoli (Brassica oleracea L. var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern commercial markets. Thus, a plant density study was carried ...

  12. Differential growth and yield by canola (Brassica napus L.) and wheat (Triticum aestivum L.) arising from alterations in chemical properties of sandy soils due to additions of fly ash.

    PubMed

    Yunusa, Isa A M; Manoharan, Veeragathipillai; Harris, Rob; Lawrie, Roy; Pal, Yash; Quiton, Jonathan T; Bell, Richard; Eamus, Derek

    2013-03-30

    There is a need for field trials on testing agronomic potential of coal fly ash to engender routine use of this technology. Two field trials were undertaken with alkaline and acidic fly ashes supplied at between 3 and 6 Mg ha⁻¹ to acidic soils and sown to wheat and canola at Richmond (Eastern Australia) and to wheat only at Merredin (Western Australia). Ash addition marginally (P< 0.10) raised the pH in the top soil layers at both sites. The exceptionally dry season at both sites constrained yields and thwarted any likelihood of gaining yield benefits from ash-induced improvements in soil conditions. Yield improvements due to ash addition were absent at Merredin and only marginal at Richmond, where no elevated accumulation of B, Mo, Se, P or S in either the straw or seeds of wheat was observed; canola increased accumulation of Mo and Se in its shoot with acidic fly ash, but it was well below phyto toxic levels. Simulations of wheat using APSIM at Richmond over a 100-year period (1909-2008) predicted yield increases in 52% of years with addition of ash at 3.0 Mg ha⁻¹ compared with 24% of years with addition of ash at 6.0 Mg ha⁻¹. The simulated yield increases did not exceed 40% over the control with addition of 6 Mg ha⁻¹ ash, but was between 40% and 50% with an addition rate of 3 Mg ha⁻¹. We found no evidence of phytotoxicity in either crop in this unusually dry year and there is still a need for further field assessment in years with favourable rainfall to enable development of clear recommendations on fly ash rates for optimum yield benefits. © 2012 Society of Chemical Industry.

  13. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.

    PubMed

    Chen, Xiaochao; Chen, Fanjun; Chen, Yanling; Gao, Qiang; Yang, Xiaoli; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2013-03-01

    The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate-change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2-year field experiment under three N applications. The Hybrid-Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha(-1)  yr(-1) with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid-1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain-filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade-off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting

  14. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    PubMed Central

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  15. Random regression models to account for the effect of genotype by environment interaction due to heat stress on the milk yield of Holstein cows under tropical conditions.

    PubMed

    Santana, Mário L; Bignardi, Annaiza Braga; Pereira, Rodrigo Junqueira; Menéndez-Buxadera, Alberto; El Faro, Lenira

    2016-02-01

    The present study had the following objectives: to compare random regression models (RRM) considering the time-dependent (days in milk, DIM) and/or temperature × humidity-dependent (THI) covariate for genetic evaluation; to identify the effect of genotype by environment interaction (G×E) due to heat stress on milk yield; and to quantify the loss of milk yield due to heat stress across lactation of cows under tropical conditions. A total of 937,771 test-day records from 3603 first lactations of Brazilian Holstein cows obtained between 2007 and 2013 were analyzed. An important reduction in milk yield due to heat stress was observed for THI values above 66 (-0.23 kg/day/THI). Three phases of milk yield loss were identified during lactation, the most damaging one at the end of lactation (-0.27 kg/day/THI). Using the most complex RRM, the additive genetic variance could be altered simultaneously as a function of both DIM and THI values. This model could be recommended for the genetic evaluation taking into account the effect of G×E. The response to selection in the comfort zone (THI ≤ 66) is expected to be higher than that obtained in the heat stress zone (THI > 66) of the animals. The genetic correlations between milk yield in the comfort and heat stress zones were less than unity at opposite extremes of the environmental gradient. Thus, the best animals for milk yield in the comfort zone are not necessarily the best in the zone of heat stress and, therefore, G×E due to heat stress should not be neglected in the genetic evaluation.

  16. High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae.

    PubMed

    Keymer, Philip; Ruffell, Ian; Pratt, Steven; Lant, Paul

    2013-03-01

    Anaerobic digestion of algal biomass will be an essential component of algal biofuel production systems, yet the methane yield from digestion of algae is typically much lower than the theoretical potential. In this work, high pressure thermal hydrolysis (HPTH) is shown to enhance methane yield during algae digestion. HPTH pre-treatment was applied to both raw algae and algal residue resulting from lipid extraction. HPTH and even the lipid extraction process itself increased methane yield, by 81% and 33% respectively; in combination they increased yield by 110% over that of the raw algae (18L CH4 gVS(-1) substrate). HPTH had little effect on the rate of anaerobic digestion, however lipid extraction enhanced it by 33% over that for raw algae (0.21day(-1)). Digestion resulted in solubilisation of nitrogen (and phosphorous to a lesser degree) in all cases, showing that there is potential for nutrient recycling for algal growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Use of an Additional 19-G EBUS-TBNA Needle Increases the Diagnostic Yield of EBUS-TBNA.

    PubMed

    Garrison, Garth; Leclair, Timothy; Balla, Agnes; Wagner, Sarah; Butnor, Kelly; Anderson, Scott R; Kinsey, C Matthew

    2018-06-12

    Although endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has an excellent diagnostic yield, there remain cases where the diagnosis is not obtained. We hypothesized that additional sampling with a 19-G EBUS-TBNA needle may increase diagnostic yield in a subset of cases where additional tissue sampling was required. Indications for use of the 19-G needle following 22-G sampling with rapid on-site cytologic examination were: (1) diagnostic uncertainty of the on-site cytopathologist (eg, nondiagnostic, probable lymphoma, etc.), (2) non-small cell lung cancer with probable need for molecular genetic and/or PD-L1 testing, or (3) need for a larger tissue sample for consideration of inclusion in a research protocol. A 19-G EBUS-TBNA needle was utilized following standard sampling with a 22-G needle in 48 patients (50 sites) during the same procedure. Although the diagnostic yield between the needles was equivalent, the concordance rate was only 83%. The 19-G determined a diagnosis in 4 additional patients (8%) and provided additional histopathologic information in 6 other cases (12%). Conversely, in 3 cases (6%) diagnostic information was provided only by the 22-G needle. Compared with 22-G EBUS-TBNA alone, sampling with both the 22- and 19-G EBUS needles resulted in an increase in diagnostic yield from 92% to 99% (P=0.045) and a number needed to sample of 13 patients to provide one additional diagnosis. There were no significant complications. In select cases where additional tissue may be needed, sampling with a 19-G EBUS needle following standard aspiration with a 22-G needle results in an increase in diagnostic yield.

  18. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  19. Managing Southeastern US Forests for Increased Water Yield

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  20. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean; JET Contributors

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  1. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  2. Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals

    PubMed Central

    García-Mier, Lina; Guevara-González, Ramón G.; Mondragón-Olguín, Víctor M.; Verduzco-Cuellar, Beatriz del Rocío; Torres-Pacheco, Irineo

    2013-01-01

    Plants are fundamental elements of the human diet, either as direct sources of nutrients or indirectly as feed for animals. During the past few years, the main goal of agriculture has been to increase yield in order to provide the food that is needed by a growing world population. As important as yield, but commonly forgotten in conventional agriculture, is to keep and, if it is possible, to increase the phytochemical content due to their health implications. Nowadays, it is necessary to go beyond this, reconciling yield and phytochemicals that, at first glance, might seem in conflict. This can be accomplished through reviewing food requirements, plant consumption with health implications, and farming methods. The aim of this work is to show how both yield and phytochemicals converge into a new vision of agricultural management in a framework of integrated agricultural practices. PMID:23429238

  3. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henard, Calvin A.; Smith, Holly K.; Guarnieri, Michael T.

    Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in themore » Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. As a result, given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase

  4. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst.

    PubMed

    Henard, Calvin A; Smith, Holly K; Guarnieri, Michael T

    2017-05-01

    Microbial conversion of methane to high-value bio-based fuels, chemicals, and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in the Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. Given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a

  5. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst

    DOE PAGES

    Henard, Calvin A.; Smith, Holly K.; Guarnieri, Michael T.

    2017-04-02

    Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO 2 lost through pyruvate decarboxylation in themore » Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. As a result, given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase

  6. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.

    PubMed

    Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina

    2015-09-01

    Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. © 2015 John Wiley & Sons Ltd.

  7. Yield gaps and yield relationships in US soybean production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...

  8. Reductions in India's crop yield due to ozone

    NASA Astrophysics Data System (ADS)

    Ghude, Sachin D.; Jena, Chinmay; Chate, D. M.; Beig, G.; Pfister, G. G.; Kumar, Rajesh; Ramanathan, V.

    2014-08-01

    This bottom-up modeling study, supported by emission inventories and crop production, simulates ozone on local to regional scales. It quantifies, for the first time, potential impact of ozone on district-wise cotton, soybeans, rice, and wheat crops in India for the first decade of the 21st century. Wheat is the most impacted crop with losses of 3.5 ± 0.8 million tons (Mt), followed by rice at 2.1 ± 0.8 Mt, with the losses concentrated in central and north India. On the national scale, this loss is about 9.2% of the cereals required every year (61.2 Mt) under the provision of the recently implemented National Food Security Bill (in 2013) by the Government of India. The nationally aggregated yield loss is sufficient to feed about 94 million people living below poverty line in India.

  9. Does repeated pleural culture increase the diagnostic yield of Mycobacterium tuberculosis from tuberculous pleural effusion in HIV-negative individuals?

    PubMed

    Ko, Yousang; Song, Jinkyung; Lee, Suh-Young; Moon, Jin-Wook; Mo, Eun-Kyung; Park, Ji Young; Kim, Joo-Hee; Park, Sunghoon; Hwang, Yong Il; Jang, Seung Hun; Jhun, Byung Woo; Sim, Yun Su; Shin, Tae Rim; Kim, Dong-Gyu; Hong, Ji Young; Lee, Chang Youl; Lee, Myung Goo; Kim, Cheol-Hong; Hyun, In Gyu; Park, Yong Bum

    2017-01-01

    Despite recent advances in methods for culturing Mycobacterium tuberculosis (MTB), the diagnostic yield of tuberculous pleural effusion (TBPE) remains unsatisfactory. However, unlike repeated sputum cultures of pulmonary tuberculosis, little is known about the role of repeated pleural cultures. We examined whether repeated pleural cultures are associated with increased MTB yield from TBPE. A multicenter, retrospective cohort study was performed from January 2012 to December 2015 in South Korea. Patients were categorized into two groups: single- or repeated-culture groups. The diagnostic yield of MTB and clinical, radiological, and pleural fluid characteristics were evaluated. Among the 329 patients with TBPE, 77 (23.4%) had repeated cultures and 252 (76.5%) had a single culture. Pleural culture was performed twice in all 77 patients in the repeated-culture group at a 1-day interval (inter-quartile range, 1.0-2.0). In the repeated-culture group, the yield of MTB from the first culture was 31.2%, which was similar to that in the single-culture group (31.2% vs. 29.8%, P = 0.887). However, the yield of MTB from the second culture (10/77, 13.0%) was more than that from the first. These results may be attributable to the insufficient immune clearance for MTB invasion into the pleural space between the first and second cultures. Over time, the yield of the second cultures decreased from 17.4% to 6.7% and then 6.3%. Finally, the overall yield of MTB in the repeated- and single-culture groups was 44.2% and 29.8% respectively (P < 0.001). The results showed that repeated pleural cultures increased MTB yield from TBPE in human immunodeficiency virus-negative individuals. Furthermore, repeated cultures may increase yield when carried out for two consecutive days.

  10. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    PubMed

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  11. Groundwater subsidies and penalties to corn yield

    NASA Astrophysics Data System (ADS)

    Zipper, S. C.; Booth, E.; Loheide, S. P.

    2013-12-01

    Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are

  12. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  13. Pistil Smut Infection Increases Ovary Production, Seed Yield Components, and Pseudosexual Reproductive Allocation in Buffalograss

    PubMed Central

    Chandra, Ambika; Huff, David R.

    2014-01-01

    Sex expression of dioecious buffalograss [Bouteloua dactyloides Columbus (syn. Buchloë dactyloides (Nutt.) Engelm.)] is known to be environmentally stable with approximate 1:1, male to female, sex ratios. Here we show that infection by the pistil smut fungus [Salmacisia buchloëana Huff & Chandra (syn. Tilletia buchloëana Kellerman and Swingle)] shifts sex ratios of buffalograss to be nearly 100% phenotypically hermaphroditic. In addition, pistil smut infection decreased vegetative reproductive allocation, increased most seed yield components, and increased pseudosexual reproductive allocation in both sex forms compared to uninfected clones. In female sex forms, pistil smut infection resulted in a 26 fold increase in ovary production and a 35 fold increase in potential harvest index. In male sex forms, pistil smut infection resulted in 2.37 fold increase in floret number and over 95% of these florets contained a well-developed pistil. Although all ovaries of infected plants are filled with fungal teliospores and hence reproductively sterile, an average male-female pair of infected plants exhibited an 87 fold increase in potential harvest index compared to their uninfected clones. Acquiring an ability to mimic the effects of pistil smut infection would enhance our understanding of the flowering process in grasses and our efforts to increase seed yield of buffalograss and perhaps other grasses. PMID:27135522

  14. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    PubMed

    Tian, Yunlu; Zheng, Chengyan; Chen, Jin; Chen, Changqing; Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  15. Lactation persistency as a component trait of the selection index and increase in reliability by using single nucleotide polymorphism in net merit defined as the first five lactation milk yields and herd life.

    PubMed

    Togashi, K; Hagiya, K; Osawa, T; Nakanishi, T; Yamazaki, T; Nagamine, Y; Lin, C Y; Matsumoto, S; Aihara, M; Hayasaka, K

    2012-08-01

    We first sought to clarify the effects of discounted rate, survival rate, and lactation persistency as a component trait of the selection index on net merit, defined as the first five lactation milks and herd life (HL) weighted by 1 and 0.389 (currently used in Japan), respectively, in units of genetic standard deviation. Survival rate increased the relative economic importance of later lactation traits and the first five lactation milk yields during the first 120 months from the start of the breeding scheme. In contrast, reliabilities of the estimated breeding value (EBV) in later lactation traits are lower than those of earlier lactation traits. We then sought to clarify the effects of applying single nucleotide polymorphism (SNP) on net merit to improve the reliability of EBV of later lactation traits to maximize their increased economic importance due to increase in survival rate. Net merit, selection accuracy, and HL increased by adding lactation persistency to the selection index whose component traits were only milk yields. Lactation persistency of the second and (especially) third parities contributed to increasing HL while maintaining the first five lactation milk yields compared with the selection index whose only component traits were milk yields. A selection index comprising the first three lactation milk yields and persistency accounted for 99.4% of net merit derived from a selection index whose components were identical to those for net merit. We consider that the selection index comprising the first three lactation milk yields and persistency is a practical method for increasing lifetime milk yield in the absence of data regarding HL. Applying SNP to the second- and third-lactation traits and HL increased net merit and HL by maximizing the increased economic importance of later lactation traits, reducing the effect of first-lactation milk yield on HL (genetic correlation (rG) = -0.006), and by augmenting the effects of the second- and third

  16. Impacts of climate change on rice production in Africa and causes of simulated yield changes.

    PubMed

    van Oort, Pepijn A J; Zwart, Sander J

    2018-03-01

    This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  17. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.

    PubMed

    Calicioglu, O; Brennan, R A

    2018-06-01

    The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Yield and yield gaps in central U.S. corn production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield. Quantile regression analysis was applied to county maize (Zea mays L.) yields (1972 – 2011) from Kentucky, Iowa and Nebraska (irrigated) (total of 115 counties) to e...

  19. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    PubMed

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  20. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants

    PubMed Central

    Wang, Yongchao; Gu, Wanrong; Xie, Tenglong; Li, Lijie; Sun, Yang; Zhang, He; Li, Jing; Wei, Shi

    2016-01-01

    DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether) and CCC (2-chloroethyltrimethyl- ammonium chloride) have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012), using maize hybrid, Zhengdan 958 (ZD 958) at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68%) from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69%) and thousand kernel weight (TKW) (by 8.57% and 6.55%) from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs). In PCH-treated plants, bending strength and puncture strength were greater than other treatments

  1. Simulating long-term landcover change and water yield dynamics in a forested, snow-dominated Rocky Mountain watershed

    Treesearch

    R. S. Ahl; S. W. Woods

    2006-01-01

    Changes in the extent, composition, and configuration of forest cover over time due to succession or disturbance processes can result in measurable changes in streamflow and water yield. Removal of forest cover generally increases streamflow due to reduced canopy interception and evapotranspiration. In watersheds where snow is the dominant source of water, yield...

  2. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production.

    PubMed

    Kukal, Meetpal S; Irmak, Suat

    2018-02-22

    Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968-2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.

  3. Increasing cancer detection yield of breast MRI using a new CAD scheme of mammograms

    NASA Astrophysics Data System (ADS)

    Tan, Maxine; Aghaei, Faranak; Hollingsworth, Alan B.; Stough, Rebecca G.; Liu, Hong; Zheng, Bin

    2016-03-01

    Although breast MRI is the most sensitive imaging modality to detect early breast cancer, its cancer detection yield in breast cancer screening is quite low (< 3 to 4% even for the small group of high-risk women) to date. The purpose of this preliminary study is to test the potential of developing and applying a new computer-aided detection (CAD) scheme of digital mammograms to identify women at high risk of harboring mammography-occult breast cancers, which can be detected by breast MRI. For this purpose, we retrospectively assembled a dataset involving 30 women who had both mammography and breast MRI screening examinations. All mammograms were interpreted as negative, while 5 cancers were detected using breast MRI. We developed a CAD scheme of mammograms, which include a new quantitative mammographic image feature analysis based risk model, to stratify women into two groups with high and low risk of harboring mammography-occult cancer. Among 30 women, 9 were classified into the high risk group by CAD scheme, which included all 5 women who had cancer detected by breast MRI. All 21 low risk women remained negative on the breast MRI examinations. The cancer detection yield of breast MRI applying to this dataset substantially increased from 16.7% (5/30) to 55.6% (5/9), while eliminating 84% (21/25) unnecessary breast MRI screenings. The study demonstrated the potential of applying a new CAD scheme to significantly increase cancer detection yield of breast MRI, while simultaneously reducing the number of negative MRIs in breast cancer screening.

  4. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).

    PubMed

    Kim, Young-Saeng; Kim, Il-Sup; Bae, Mi-Jung; Choe, Yong-Hoe; Kim, Yul-Ho; Park, Hyang-Mi; Kang, Hong-Gyu; Yoon, Ho-Sung

    2013-06-01

    Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.

  5. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination

    PubMed Central

    Albrecht, Matthias

    2016-01-01

    Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. PMID:26865304

  6. Increase in Ductility of High Carbon Steel Due to Accelerated Precipitation of Cementite

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad; UlHaq, Ehsan; Ibrahim, Ather; Abdul Karim, Muhammad Ramzan; Ali, A.; Fayyaz, M.; Khera, F. K.

    2017-09-01

    Eutectoid steel AISI 1080 is studied after annealing at 850°C and thermal cycling treatment (TCT) that involves heating at a rate of 10 K/min to 775°C, holding for 10 min, and cooling at a rate of 95 K/min. An increase is established in the content of cementite precipitating over austenite grain boundaries, and relative elongation with retention of yield and ultimate strengths with an increase in number of TCT cycles. After five cycles relative elongation reaches 29% with ultimate strength of 670 MPa.

  7. Estimating oak growth and yield

    Treesearch

    Martin E. Dale; Donald E. Hilt

    1989-01-01

    Yields from upland oak stands vary widely from stand to stand due to differences in age, site quality, species composition, and stand structure. Cutting history and other past disturbances such as grazing or fire also affect yields.

  8. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOEpatents

    Phillips, James E.; Lasswell, Patrick G.

    1987-01-01

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device.

  9. Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum L.) yields in Kansas have increased due to wheat breeding and improved agronomic practices, but are subject to climate and disease challenges. The objective of this research is to quantify the impact of weather, disease, and genetic improvement on wheat yields of varieties g...

  10. Estimating soybean genetic gain for yield in the northern United States – Influence of cropping history

    USDA-ARS?s Scientific Manuscript database

    Mean on-farm USA soybean yield increased at a rate of 21.3 kg per ha per year between 1924 and 2010, due to adoption of yield-enhancing genetic and agronomic technologies. To estimate annual rates of genetic yield gain in three northern USA soybean maturity groups (MG) and determine if these estimat...

  11. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies

    PubMed Central

    Koester, Robert P.; Skoneczka, Jeffrey A.; Cary, Troy R.; Diers, Brian W.; Ainsworth, Elizabeth A.

    2014-01-01

    Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha–1 year–1, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. PMID:24790116

  12. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOEpatents

    Phillips, J.E.; Lasswell, P.G.

    1987-02-03

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device. 10 figs.

  13. Soviet test yields

    NASA Astrophysics Data System (ADS)

    Vergino, Eileen S.

    Soviet seismologists have published descriptions of 96 nuclear explosions conducted from 1961 through 1972 at the Semipalatinsk test site, in Kazakhstan, central Asia [Bocharov et al., 1989]. With the exception of releasing news about some of their peaceful nuclear explosions (PNEs) the Soviets have never before published such a body of information.To estimate the seismic yield of a nuclear explosion it is necessary to obtain a calibrated magnitude-yield relationship based on events with known yields and with a consistent set of seismic magnitudes. U.S. estimation of Soviet test yields has been done through application of relationships to the Soviet sites based on the U.S. experience at the Nevada Test Site (NTS), making some correction for differences due to attenuation and near-source coupling of seismic waves.

  14. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest.

    PubMed

    Jin, Zhenong; Ainsworth, Elizabeth A; Leakey, Andrew D B; Lobell, David B

    2018-02-01

    Elevated atmospheric CO 2 concentrations ([CO 2 ]) are expected to increase C3 crop yield through the CO 2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO 2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO 2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO 2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO 2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO 2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops. © 2017 John Wiley & Sons Ltd.

  15. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination.

    PubMed

    Sutter, Louis; Albrecht, Matthias

    2016-02-10

    Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. © 2016 The Author(s).

  16. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre

    PubMed Central

    Zhao, X.; Moates, G.K.; Elliston, A.; Wilson, D.R.; Coleman, M.J.; Waldron, K.W.

    2015-01-01

    This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210 °C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g−1 substrate) cellulase plus β-glucosidase (2 U g−1 substrate) and a yeast inoculum of 10% (v/v or 8.0 × 107 cells mL−1). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. PMID:26210138

  17. Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria.

    PubMed

    Almeida, Ana S; Sonnewald, Ursula; Alves, Paula M; Vieira, Helena L A

    2016-08-01

    The process of cell differentiation goes hand-in-hand with metabolic adaptations, which are needed to provide energy and new metabolites. Carbon monoxide (CO) is an endogenous cytoprotective molecule able to inhibit cell death and improve mitochondrial metabolism. Neuronal differentiation processes were studied using the NT2 cell line, which is derived from human testicular embryonic teratocarcinoma and differentiates into post-mitotic neurons upon retinoic acid treatment. CO-releasing molecule A1 (CORM-A1) was used do deliver CO into cell culture. CO treatment improved NT2 neuronal differentiation and yield, since there were more neurons and the total cell number increased following the differentiation process. CO supplementation enhanced the mitochondrial population in post-mitotic neurons derived from NT2 cells, as indicated by an increase in mitochondrial DNA. CO treatment during neuronal differentiation increased the extent of the classical metabolic change that occurs during neuronal differentiation, from glycolytic to more oxidative metabolism, by decreasing the ratio of lactate production and glucose consumption. The expression of pyruvate and lactate dehydrogenases was higher, indicating an augmented oxidative metabolism. Moreover, these findings were corroborated by an increased percentage of (13) C incorporation from [U-(13) C]glucose into the tricarboxylic acid cycle metabolites malate and citrate, and also glutamate and aspartate in CO-treated cells. Finally, under low levels of oxygen (5%), which enhances glycolytic metabolism, some of the enhancing effects of CO on mitochondria were not observed. In conclusion, our data show that CO improves neuronal and mitochondrial yield by stimulation of tricarboxylic acid cycle activity, and thus oxidative metabolism of NT2 cells during the process of neuronal differentiation. The process of cell differentiation is coupled with metabolic adaptations. Carbon monoxide (CO) is an endogenous cytoprotective

  18. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.

    PubMed

    Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A

    2014-07-01

    Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Qin, Qingquan; Xu, Feng; Fan, Fengru; Ding, Yong; Zhang, Tim; Wiley, Benjamin J.; Wang, Zhong Lin

    2012-01-01

    This paper reports the quantitative measurement of a full spectrum of mechanical properties of fivefold twinned silver (Ag) nanowires (NWs), including Young's modulus, yield strength, and ultimate tensile strength. In-situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a scanning electron microscope (SEM). Young's modulus, yield strength, and ultimate tensile strength all increased as the NW diameter decreased. The maximum yield strength in our tests was found to be 2.64 GPa, which is about 50 times the bulk value and close to the theoretical value of Ag in the 110 orientation. The size effect in the yield strength is mainly due to the stiffening size effect in the Young's modulus. Yield strain scales reasonably well with the NW surface area, which reveals that yielding of Ag NWs is due to dislocation nucleation from surface sources. Pronounced strain hardening was observed for most NWs in our study. The strain hardening, which has not previously been reported for NWs, is mainly attributed to the presence of internal twin boundaries.

  20. Enhanced efficiency fertilizer’s effect on cotton yield and greenhouse gas emissions

    USDA-ARS?s Scientific Manuscript database

    Interest in the use of enhanced-efficiency nitrogen fertilizer (EENFs) sources has increased in recent years due to the potential of these new EENF sources to increase crop yield, while at the same time decreasing N loss from agricultural fields. Nitrogen is the most essential nutrient needed to op...

  1. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  2. Climate change and maize yield in southern Africa: what can farm management do?

    PubMed

    Rurinda, Jairos; van Wijk, Mark T; Mapfumo, Paul; Descheemaeker, Katrien; Supit, Iwan; Giller, Ken E

    2015-12-01

    There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options - planting date, fertilizer use and cultivar choice - using the crop simulation model, agricultural production systems simulator (APSIM), at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near- and long-term climates. Future climate data under two radiative forcing scenarios were generated from five global circulation models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid-December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010-2039 and 2040-2069 and by 20% for 2070-2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070-2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was nonlinear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future, improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change. © 2015 John Wiley & Sons Ltd.

  3. Integrated crop management practices for maximizing grain yield of double-season rice crop.

    PubMed

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-12

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  4. Increased feeding frequency increased milk fat yield and may reduce the severity of subacute ruminal acidosis in higher-risk cows.

    PubMed

    Macmillan, K; Gao, X; Oba, M

    2017-02-01

    The objectives of this study were to determine whether feeding behavior is different between cows at higher or lower risk for subacute ruminal acidosis (SARA) and whether increasing feeding frequency could be used to reduce the severity of SARA in higher-risk cows. In preliminary studies, 16 ruminally cannulated lactating cows were fed high-grain diets once per day to increase the risk of SARA. After a 17-d diet adaptation, ruminal pH was measured every 30 s over 24 h. Cows were classified as higher-risk (n = 7) or lower-risk (n = 9) for SARA based on an acidosis index (area of pH <5.8/dry matter intake). Feeding behavior was recorded every 5 min over the same 24 h. The 24-h observation period was analyzed in 3 periods of 8 h after feeding. Although there was no significant difference in overall dry matter intake, higher-risk cows spent more time eating in the first 8-h period after feeding than lower-risk cows (186 vs. 153 min) and less time eating in the third 8-h period (19 vs. 43 min). In the primary experiment, 8 ruminally cannulated lactating cows were fed a high-grain diet once per day (1×; 0800 h) or 3 times per day (3×; 0800, 1500, and 2000 h) in a crossover design with 21-d periods (16 d of treatment adaptation and 5 d of data collection). Rumen pH and feeding behavior were measured over 72 h. Behavior data were summarized separately for the 3 periods (0800 to 1500, 1500 to 2200, and 2200 to 0800 h). Four cows were categorized as higher-risk and 4 as lower-risk, based on their acidosis index. The 3× feeding reduced eating time between 0800 and 1500 h (99 vs. 145 min) and increased eating time between 2200 and 0800 h (76 vs. 43 min) for all cows, regardless of category, compared with 1× feeding. For higher-risk cows, 3× feeding reduced the area below pH 5.8 (51 vs. 98 pH × min/d), but it did not affect rumen pH for the lower-risk cows. Milk yield was not different between groups, but 3× feeding increased milk fat yield (1.22 vs. 1.08 kg/d) for all

  5. Holographic lens spectrum splitting photovoltaic system for increased diffuse collection and annual energy yield

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.

    2015-09-01

    Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.

  6. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre.

    PubMed

    Zhao, X; Moates, G K; Elliston, A; Wilson, D R; Coleman, M J; Waldron, K W

    2015-10-01

    This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210°C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g(-1) substrate) cellulase plus β-glucosidase (2 U g(-1) substrate) and a yeast inoculum of 10% (v/v or 8.0×10(7) cells mL(-1)). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Evolution of increased competitiveness in cows trades off with reduced milk yield, fertility and more masculine morphology.

    PubMed

    Sartori, Cristina; Mazza, Serena; Guzzo, Nadia; Mantovani, Roberto

    2015-08-01

    In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade-offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity-conception interval). Fighting ability also showed low but positive genetic correlations with "masculine" morphological traits, and negative correlations with "feminine" traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of "masculinization" counteracting the official selection for milk yield. Similar evolutionary trade-off between success in competition and fitness components may be present in various species experiencing female competition. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  8. High-biomass C4 grasses-Filling the yield gap.

    PubMed

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2018-06-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  10. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    NASA Astrophysics Data System (ADS)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  11. Sub-micrometer 20MeV protons or 45MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks.

    PubMed

    Schmid, T E; Friedland, W; Greubel, C; Girst, S; Reindl, J; Siebenwirth, C; Ilicic, K; Schmid, E; Multhoff, G; Schmitt, E; Kundrát, P; Dollinger, G

    2015-11-01

    In conventional experiments on biological effects of radiation types of diverse quality, micrometer-scale double-strand break (DSB) clustering is inherently interlinked with clustering of energy deposition events on nanometer scale relevant for DSB induction. Due to this limitation, the role of the micrometer and nanometer scales in diverse biological endpoints cannot be fully separated. To address this issue, hybrid human-hamster AL cells have been irradiated with 45MeV (60keV/μm) lithium ions or 20MeV (2.6keV/μm) protons quasi-homogeneously distributed or focused to 0.5×1μm(2) spots on regular matrix patterns (point distances up to 10.6×10.6μm), with pre-defined particle numbers per spot to provide the same mean dose of 1.7Gy. The yields of dicentrics and their distribution among cells have been scored. In parallel, track-structure based simulations of DSB induction and chromosome aberration formation with PARTRAC have been performed. The results show that the sub-micrometer beam focusing does not enhance DSB yields, but significantly affects the DSB distribution within the nucleus and increases the chance to form DSB pairs in close proximity, which may lead to increased yields of chromosome aberrations. Indeed, the experiments show that focusing 20 lithium ions or 451 protons per spot on a 10.6μm grid induces two or three times more dicentrics, respectively, than a quasi-homogenous irradiation. The simulations reproduce the data in part, but in part suggest more complex behavior such as saturation or overkill not seen in the experiments. The direct experimental demonstration that sub-micrometer clustering of DSB plays a critical role in the induction of dicentrics improves the knowledge on the mechanisms by which these lethal lesions arise, and indicates how the assumptions of the biophysical model could be improved. It also provides a better understanding of the increased biological effectiveness of high-LET radiation. Copyright © 2015 Elsevier B.V. All

  12. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.

    PubMed

    Paul, Matthew J; Oszvald, Maria; Jesus, Claudia; Rajulu, Charukesi; Griffiths, Cara A

    2017-07-20

    Food security is a pressing global issue. New approaches are required to break through a yield ceiling that has developed in recent years for the major crops. As important as increasing yield potential is the protection of yield from abiotic stresses in an increasingly variable and unpredictable climate. Current strategies to improve yield include conventional breeding, marker-assisted breeding, quantitative trait loci (QTLs), mutagenesis, creation of hybrids, genetic modification (GM), emerging genome-editing technologies, and chemical approaches. A regulatory mechanism amenable to three of these approaches has great promise for large yield improvements. Trehalose 6-phosphate (T6P) synthesized in the low-flux trehalose biosynthetic pathway signals the availability of sucrose in plant cells as part of a whole-plant sucrose homeostatic mechanism. Modifying T6P content by GM, marker-assisted selection, and novel chemistry has improved yield in three major cereals under a range of water availabilities from severe drought through to flooding. Yield improvements have been achieved by altering carbon allocation and how carbon is used. Targeting T6P both temporally and spatially offers great promise for large yield improvements in productive (up to 20%) and marginal environments (up to 120%). This opinion paper highlights this important breakthrough in fundamental science for crop improvement. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Experimental evidence of impact ignition: 100-fold increase of neutron yield by impactor collision.

    PubMed

    Azechi, H; Sakaiya, T; Watari, T; Karasik, M; Saito, H; Ohtani, K; Takeda, K; Hosoda, H; Shiraga, H; Nakai, M; Shigemori, K; Fujioka, S; Murakami, M; Nagatomo, H; Johzaki, T; Gardner, J; Colombant, D G; Bates, J W; Velikovich, A L; Aglitskiy, Y; Weaver, J; Obenschain, S; Eliezer, S; Kodama, R; Norimatsu, T; Fujita, H; Mima, K; Kan, H

    2009-06-12

    We performed integrated experiments on impact ignition, in which a portion of a deuterated polystyrene (CD) shell was accelerated to about 600 km/s and was collided with precompressed CD fuel. The kinetic energy of the impactor was efficiently converted into thermal energy generating a temperature of about 1.6 keV. We achieved a two-order-of-magnitude increase in the neutron yield by optimizing the timing of the impact collision, demonstrating the high potential of impact ignition for fusion energy production.

  14. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    PubMed Central

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  15. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death.

    PubMed

    Almeida, Ana S; Soares, Nuno L; Vieira, Melissa; Gramsbergen, Jan Bert; Vieira, Helena L A

    2016-01-01

    's increasing number of differentiated neurons in OHSC. In conclusion, CO's increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO's effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies.

  16. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death

    PubMed Central

    Almeida, Ana S.; Soares, Nuno L.; Vieira, Melissa; Gramsbergen, Jan Bert

    2016-01-01

    s increasing number of differentiated neurons in OHSC. In conclusion, CO’s increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO’s effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies. PMID:27144388

  17. Exploring exposure to Agent Orange and increased mortality due to bladder cancer.

    PubMed

    Mossanen, Matthew; Kibel, Adam S; Goldman, Rose H

    2017-11-01

    During the Vietnam War, many veterans were exposed to Agent Orange (AO), a chemical defoliant containing varying levels of the carcinogen dioxin. The health effects of AO exposure have been widely studied in the VA population. Here we review and interpret data regarding the association between AO exposure and bladder cancer (BC) mortality. Data evaluating the association between AO and BC is limited. Methods characterizing exposure have become more sophisticated over time. Several studies support the link between AO exposure and increased mortality due to BC, including the Korean Veterans Health Study. Available data suggest an association with exposure to AO and increased mortality due to BC. In patients exposed to AO, increased frequency of cystoscopic surveillance and potentially more aggressive therapy for those with BC may be warranted but utility of these strategies remains to be proven. Additional research is required to better understand the relationship between AO and BC. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Simulated Impacts of Climate Change on Water Use and Yield of Irrigated Sugarcane in South Africa

    NASA Technical Reports Server (NTRS)

    Jones, M.R; Singels, A.; Ruane, A. C.

    2015-01-01

    Reliable predictions of climate change impacts on water use, irrigation requirements and yields of irrigated sugarcane in South Africa (a water-scarce country) are necessary to plan adaptation strategies. Although previous work has been done in this regard, methodologies and results vary considerably. The objectives were (1) to estimate likely impacts of climate change on sugarcane yields, water use and irrigation demand at three irrigated sugarcane production sites in South Africa (Malelane, Pongola and La Mercy) for current (1980-2010) and future (2070-2100) climate scenarios, using an approach based on the Agricultural Model Inter-comparison and Improvement Project (AgMIP) protocols; and (2) to assess the suitability of this methodology for investigating climate change impacts on sugarcane production. Future climate datasets were generated using the Delta downscaling method and three Global Circulation Models (GCMs) assuming atmospheric CO2 concentration [CO2] of 734 ppm(A2 emissions scenario). Yield and water use were simulated using the DSSAT-Canegro v4.5 model. Irrigated cane yields are expected to increase at all three sites (between 11 and 14%), primarily due to increased interception of radiation as a result of accelerated canopy development. Evapotranspiration and irrigation requirements increased by 11% due to increased canopy cover and evaporative demand. Sucrose yields are expected to decline because of increased consumption of photo-assimilate for structural growth and maintenance respiration. Crop responses in canopy development and yield formation differed markedly between the crop cycles investigated. Possible agronomic implications of these results include reduced weed control costs due to shortened periods of partial canopy, a need for improved efficiency of irrigation to counter increased demands, and adjustments to ripening and harvest practices to counter decreased cane quality and optimize productivity. Although the Delta climate data

  19. Enhanced-efficiency fertilizer effects on cotton yield and quality in the Coastal Plains

    USDA-ARS?s Scientific Manuscript database

    Interest in the use of enhanced-efficiency N fertilizer (EENFs) sources has increased in recent years due to the potential of these new EENF sources to increase crop yield, while at the same time decreasing N loss from agricultural fields. The efficacy of these fertilizer sources on cotton productio...

  20. Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng

    1994-01-01

    The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.

  1. Yielding in colloidal gels due to nonlinear microstructure bending mechanics.

    PubMed

    Furst, Eric M; Pantina, John P

    2007-05-01

    We report measurements of the nonlinear micromechanics of strongly flocculated model colloidal aggregates. Linear aggregates directly assembled using laser tweezers are subjected to bending loads until a critical bending moment is reached, which is identified by a stictionlike rearrangement of a single colloidal bond. This nanoscale phenomenon provides a quantitative basis for understanding the macroscopic shear yield stresses of strongly flocculated polystyrene latex gels, based on the maximum bending moment exceeding the critical moment of the constituent colloidal bonds of the gel microstructure. These mechanics are consistent with the local bending moment overcoming the static friction force between neighboring adhesive particles. This results in a direct relationship between the rheology of these gels and the boundary friction between Brownian particles.

  2. Irrigation offsets wheat yield reductions from warming temperatures

    NASA Astrophysics Data System (ADS)

    Tack, Jesse; Barkley, Andrew; Hendricks, Nathan

    2017-11-01

    Temperature increases due to climate change are expected to cause substantial reductions in global wheat yields. However, uncertainty remains regarding the potential role for irrigation as an adaptation strategy to offset heat impacts. Here we utilize over 7000 observations spanning eleven Kansas field-trial locations, 180 varieties, and 29 years to show that irrigation significantly reduces the negative impact of warming temperatures on winter wheat yields. Dryland wheat yields are estimated to decrease about eight percent for every one-degree Celsius increase in temperature, yet irrigation completely offsets this negative impact in our sample. As in previous studies, we find that important interactions exist between heat stress and precipitation for dryland production. Here, uniquely, we observe both dryland and irrigated trials side-by-side at the same locations and find that precipitation does not provide the same reduction in heat stress as irrigation. This is likely to be because the timing, intensity, and volume of water applications influence wheat yields, so the ability to irrigate—rather than relying on rainfall alone—has a stronger influence on heat stress. We find evidence of extensive differences of water-deficit stress impacts across varieties. This provides some evidence of the potential for adapting to hotter and drier climate conditions using optimal variety selection. Overall, our results highlight the critical role of water management for future global food security. Water scarcity not only reduces crop yields through water-deficit stress, but also amplifies the negative effects of warming temperatures.

  3. An adapted yield criterion for the evolution of subsequent yield surfaces

    NASA Astrophysics Data System (ADS)

    Küsters, N.; Brosius, A.

    2017-09-01

    In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.

  4. Looking for Water in the Woods: Quantifying the Potential for Forest Management to Increase Regional Water Yield

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2014-12-01

    Water scarcity presents a crucial challenge for water resource managers charged with maintaining hydrologic resources for domestic, industrial, and agricultural use while protecting natural systems. Forest lands are critical to the functioning of the hydrologic cycle in many watersheds, affecting the quantity, quality, and timing of water delivered to surface and groundwater systems. While the hydrologic impacts of forest growth and removal have been shown to be substantial in watersheds around the globe, data and models connecting forest management to water use and regional hydrology are generally lacking. We propose that water-focused forest management has the potential to deliver a "new" source of water to surface and groundwater resources. To test this hypothesis, we developed a statistical model of water yield in southeastern US pine stands as a function of forest stand structure and ecosystem water use. Model results suggest a potential increase in water yield of up to 64% for pine stands managed at lower basal areas relative to those managed according to standard silvicultural practices. At the watershed scale, the magnitude of this potential water yield enhancement is driven by existing land use and forest management; evaluated for a large watershed in NE Florida, this potential increase is in excess of 200 million gallons per day (equivalent to 20% of the anthropogenic water use in the watershed). While useful for exploration, our statistical model also highlighted critical sources of uncertainty, including the effects of climatic variation, between-site variability, water use in young pine stands, and prescribed fire. Thus, in ongoing work we are comparing the effects of specific land management actions (e.g., thinning, clearcutting, and fire) on water yield across a gradient of environmental conditions (soil type, aquifer confinement, and climate) using a novel combination of in-situ soil moisture and groundwater monitoring. These data are being used to

  5. Infrared chemiluminescence study of the reaction Cl + HI yielding HCl + I at enhanced collision energies.

    NASA Technical Reports Server (NTRS)

    Cowley, L. T.; Horne, D. S.; Polanyi, J. C.

    1971-01-01

    Performed chemiluminescence and beam experiments show a markedly increased efficiency of conversion of the reaction energy into vibration and a markedly enhanced tendency for forward scattering in the reaction Cl + HI yields HCl + I as compared with H + Cl2 yields HCl + Cl. These differences appear to be due predominantly to the difference in the masses involved.

  6. Vacuolar deposition of recombinant proteins in plant vegetative organs as a strategy to increase yields.

    PubMed

    Marin Viegas, Vanesa Soledad; Ocampo, Carolina Gabriela; Petruccelli, Silvana

    2017-05-04

    Delivery of recombinant proteins to vegetative tissue vacuoles was considered inconvenient since this compartment was expected to be hydrolytic; nevertheless there is growing evidence that certain foreign proteins accumulate at high yields in vacuoles. For example avidin, cellulolytic enzymes, endolysin, and transglutaminases were produced at high yields when were sorted to leaf central vacuole avoiding the detrimental effect of these proteins on plant growth. Also, several secretory mammalian proteins such as collagen, α1-proteinase inhibitor, complement-5a, interleukin-6 and immunoglobulins accumulated at higher yields in leaf vacuoles than in the apoplast or cytosol. To reach this final destination, fusions to sequence specific vacuolar sorting signals (ssVSS) typical of proteases or proteinase inhibitors and/or Ct-VSS representative of storage proteins or plant lectins were used and both types of motifs were capable to increase accumulation. Importantly, the type of VSSs or position, either the N or C-terminus, did not alter protein stability, levels or pos-translational modifications. Vacuolar sorted glycoproteins had different type of oligosaccharides indicating that foreign proteins reached the vacuole by 2 different pathways: direct transport from the ER, bypassing the Golgi (high mannose oligosaccharides decorated proteins) or trafficking through the Golgi (Complex oligosaccharide containing proteins). In addition, some glycoproteins lacked of paucimannosidic oligosaccharides suggesting that vacuolar trimming of glycans did not occur. Enhanced accumulation of foreign proteins fused to VSS occurred in several plant species such as tobacco, Nicotiana benthamiana, sugarcane, tomato and in carrot and the obtained results were influenced by plant physiological state. Ten different foreign proteins fused to vacuolar sorting accumulated at higher levels than their apoplastic or cytosolic counterparts. For proteins with cytotoxic effects vacuolar sorted forms

  7. Functional group diversity of bee pollinators increases crop yield

    PubMed Central

    Hoehn, Patrick; Tscharntke, Teja; Tylianakis, Jason M; Steffan-Dewenter, Ingolf

    2008-01-01

    Niche complementarity is a commonly invoked mechanism underlying the positive relationship between biodiversity and ecosystem functioning, but little empirical evidence exists for complementarity among pollinator species. This study related differences in three functional traits of pollinating bees (flower height preference, daily time of flower visitation and within-flower behaviour) to the seed set of the obligate cross-pollinated pumpkin Cucurbita moschata Duch. ex Poir. across a land-use intensity gradient from tropical rainforest and agroforests to grassland in Indonesia. Bee richness and abundance changed with habitat variables and we used this natural variation to test whether complementary resource use by the diverse pollinator community enhanced final yield. We found that pollinator diversity, but not abundance, was positively related to seed set of pumpkins. Bees showed species-specific spatial and temporal variation in flower visitation traits and within-flower behaviour, allowing for classification into functional guilds. Diversity of functional groups explained even more of the variance in seed set (r2=45%) than did species richness (r2=32%) highlighting the role of functional complementarity. Even though we do not provide experimental, but rather correlative evidence, we can link spatial and temporal complementarity in highly diverse pollinator communities to pollination success in the field, leading to enhanced crop yield without any managed honeybees. PMID:18595841

  8. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  9. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge.

    PubMed

    Rico, J E; Mathews, A T; Lovett, J; Haughey, N J; McFadden, J W

    2016-11-01

    Reduced insulin action is a key adaptation that facilitates glucose partitioning to the mammary gland for milk synthesis and enhances adipose tissue lipolysis during early lactation. The progressive recovery of insulin sensitivity as cows advance toward late lactation is accompanied by reductions in circulating nonesterified fatty acids (NEFA) and milk yield. Because palmitic acid can promote insulin resistance in monogastrics through sphingolipid ceramide-dependent mechanisms, palmitic acid (C16:0) feeding may enhance milk production by restoring homeorhetic responses. We hypothesized that feeding C16:0 to mid-lactation cows would enhance ceramide supply and ceramide would be positively associated with milk yield. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows were randomly assigned to a sorghum silage-based diet containing no supplemental fat (control; n=10; 138±45 d in milk) or C16:0 at 4% of ration dry matter (PALM; 98% C16:0; n=10; 136±44 d in milk). Blood and milk were collected at routine intervals. Liver and skeletal muscle tissue were biopsied at d 47 of treatment. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. The plasma and tissue concentrations of ceramide and glycosylated ceramide were determined using liquid chromatography coupled with tandem mass spectrometry. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield, energy-corrected milk, and milk fat yield. The most abundant plasma and tissue sphingolipids detected were C24:0-ceramide, C24:0-monohexosylceramide (GlcCer), and C16:0-lactosylceramide. Plasma concentrations of total ceramide and GlcCer decreased as lactation advanced, and ceramide and GlcCer were elevated in cows fed PALM

  10. Performance of Vegetation Indices for Wheat Yield Forecasting for Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Dempewolf, J.; Becker-Reshef, I.; Adusei, B.; Barker, B.

    2013-12-01

    corresponded well with reported values. NDVI-based forecasts showed high correlations of r squared = 0.881 and RMSE 11%. The VCI performed similarly well with r squared = 0.886 and RMSE 11%. WDRVI performed better than either of the other indices with r squared = 0.909 and RMSE 10%, probably due to the increased sensitivity of the index at high values. Wheat yields in Pakistan show on average a slow but steady annual increase but overall are comparatively stable due to the fact that the majority of fields are irrigated. The next steps in this study will be to compare NDVI- with WDRVI-based yield forecasts in other environments dominated by rain-fed agriculture, such as Ukraine, Australia and the United States.

  11. Serrated yielding in Al-Li alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; McShane, H.B.

    1993-05-01

    Serrated yielding (SY) during tensile testing has been observed in Al-Li alloys, both in the binary and the commercial quaternary alloys, in single crystal as well as polycrystalline materials. Serrated yielding is commonly explained by a dynamic strain aging (DSA) model developed by McCormick and van den Beukel. All the solute elements present in Al-Li alloys, viz., Mg, Cu and Li are known to give DSA and SY. Several researchers believe the DSA to be the cause of SY and they attribute the disappearance of SY simply to the removal of solute from the matrix with aging. However, this argumentmore » has serious flaws. The present paper examines this aspect critically. The authors concluded that Al-Li alloys the disappearance of serrated yielding at a certain stage of aging is not due to removal of the solute from the matrix but due to the change in the nature of the metastable [delta][prime] precipitates - from fine coherent shearable precipitates to larger noncoherent nonshearable precipitates - which prevents the formation of the deformation bands. The serrated yielding reappears with extensive over aging due to the dissolution of these precipitates in favor of the equilibrium precipitates. The equilibrium precipitates, being widely spaced, are ineffective in preventing the formation of deformation bands.« less

  12. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate.

    PubMed

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.

  13. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    PubMed Central

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  14. Impacts of aerosol pollutant mitigation on lowland rice yields in China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyi; Li, Tao; Yue, Xu; Yang, Xiaoguang

    2017-10-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis and yields. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ a process-based modelling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. As a net effect, rice yields were estimated to significantly increase by 0.8%-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  15. Decreased use of pesticides for increased yields of rice and fish-options for sustainable food production in the Mekong Delta.

    PubMed

    Berg, Håkan; Tam, Nguyen Thanh

    2018-04-01

    This study assesses the use of pesticides and the attitude to pest management strategies among rice and rice-fish farmers in the Can Tho and Tien Giang provinces in Vietnam. Interviews were made with 80 farmers. The farmers were divided in to farmers cultivating only rice with a high use (RHP) and low use (RLP) of pesticides, and farmers cultivating rice and fish with a high use (RFHP) and low use (RFLP) of pesticides. 80% of the HP farmers relied mainly on pesticides to control pests, while >80% of the LP farmers also applied IPM strategies. Insecticides were the most commonly used pesticides. 85% of all farmers experienced health effects from using pesticides. 80% of the farmers felt that the yield of fish had decreased over the last three years, and that this mainly was caused by pesticides. The RFHP farmers had lower fish survival and fish yields as compared to the RFLP farmers. The RFHP farmers also had significant lower rice yields than the RFLP farmers, and there were significant correlations between both decreased fish yields and rice yields with increased use of pesticides among rice-fish farmers. Increased rice yields were positively correlated with increased fish survival, indicating the synergistic effects between rice and fish production. Overall, the RFLP farmers had the highest income of the four farmers´ groups, while RFHP farmers had the lowest income. This shows that rice-fish farming provides a competitive and sustainable alternative to intensive rice-farming, but only if the farmer restricts the use of pesticides. This would not only help to reduce the production costs, but also to decrease environmental and health effects, and it is proposed that rice-fish farming with a low use of pesticides provides an attractive alternative to rice-monocropping for a sustainable and diversified food production in the Mekong Delta. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Analysis of the trade-off between high crop yield and low yield instability at the global scale

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2016-10-01

    Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.

  17. Natural genetic variation for morphological and molecular determinants of plant growth and yield.

    PubMed

    Nunes-Nesi, Adriano; Nascimento, Vitor de Laia; de Oliveira Silva, Franklin Magnum; Zsögön, Agustin; Araújo, Wagner L; Sulpice, Ronan

    2016-05-01

    The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, Brian M., E-mail: bmhaines@lanl.gov

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion duemore » to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.« less

  19. Using Satellite Data to Unpack Causes of Yield Gaps in India's Wheat Belt

    NASA Astrophysics Data System (ADS)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2016-12-01

    India will face significant food security challenges in the coming decades due to climate change, natural resource degradation, and population growth. Yields of wheat, one of India's staple crops, are already stagnating and will be significantly impacted by warming temperatures. Despite these challenges, wheat yields can be enhanced by implementing improved management in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps, we produced 30 m resolution yield maps across India's main wheat belt, the Indo-Gangetic Plains (IGP), from 2000 to 2015. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data that rarely exist in smallholder systems. We find that yields can be increased by 5% on average and up to 16% in the eastern IGP by improving management to current best practices within a given district. However, if policies and technologies are put in place to improve management to current best practices in Punjab, the highest yielding state, yields can be increased by 29% in the eastern IGP. Considering which factors most influence wheat yields, we find that later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies that reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to India's current and future food security.

  20. The fficiency of Mycorrhiza biofertilizer treatment to the growth and yield of soybean

    NASA Astrophysics Data System (ADS)

    Samanhudi; Pujiasmanto, B.; Sudadi; Putra, I. H.; Mumtazah, H. M.

    2018-03-01

    Soybean is one of the major commodities in Indonesia. Due to its high demand, its requires an effort to increase the production. Soybeans are generally cultivated in dry land, for that its need a special management to increase the yield. The association between Mycorrhiza and roots help the plant to get water and nutrients. In this regard Mycorrhiza expected to increase soybean yield and efficiency. This research aim is to study the dose of Mycorrhiza on the growth and yield of soybean efficiently. The experiment was conducted in Selogiri District, Wonogiri, while the analysis of Mycorrhiza and soil was inFaculty of Agriculture, Universitas Sebelas Maret Surakarta from February to April 2016. Randomized Complete Block Design (RCBD) with two factors was emplyed for this experiment. The treatments are compost dose (derived from Waste Management Faculty of Agriculture UNS) and Mycorrhizal dose (obtained from BPPT Serpong). The result showed that the Mycorrhiza treatmentwas able to improved the growth and yield of soybean. The most efficient dose of is Mycorrhiza treatment at 0.64 ton ha-1.

  1. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    NASA Astrophysics Data System (ADS)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky < k_{cl} < k_{ig} and σ_{y0} < σ_{cl0} < σ_{ig0} , respectively. Based on the Hall-Petch relationships, micro-yielding in a bcc steel occurs at the instance that the pile-up dislocations within a specific grain showing the Schmid factor of 0.5 propagate into the neighboring grain. The initial brittle crack is formed at the instance that the flow strength exceeds the brittle fracture strength. Once the brittle crack is formed, it grows catastrophically. Due to the smallest and ky and σ_{y0} , the cleavage and the intergranular fracture occur always after micro-yielding. The {100} cleavage fracture of the steel is due to the lowest theoretical {100} cleavage strength. Due to the thermal components included in cleavage and intergranular fracture strengths, they show also the temperature and strain rate dependence observed in yield strength. The increase in susceptibility to brittle fracture with decreasing temperature and increasing strain rate is due to the increase in dislocation density which causes the high work hardening rate.

  2. Potential Impacts of Increased Management Intensities on Planted Pine Growth and Yield and Timber Supply Modeling in the South

    Treesearch

    Jacek P. Siry; Frederick W. Cubbage; Andy J. Malmquist

    1999-01-01

    The South can increase pine productivity on its forest lands as increased timber prices make returns from intensified forest management more profitable. We determined the most likely management intensities on industrial lands resulting in five management intensity classes. They are used to estimate the potential growth and yield levels, and compare these to empirical...

  3. Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates

    PubMed Central

    Einfalt, Daniel; Kazda, Marian

    2016-01-01

    This study tested the hypothesis that the easily degradable carbohydrates of the sugar beet silage (S) will improve the anaerobic digestion of grass silage (G) more profoundly compared to co-digestion of sugar beet silage with maize silage (M). M : S and G : S mixtures were tested in two continuous laboratory-scale AD experiments at volatile solid ratios of 1 : 0, 6 : 1, 3 : 1, and 1 : 3 at organic loading rates of 1.5 kgVS m−3 day−1. While the sugar beet effects in mixtures with maize silage were negligible, co-digestion with grass silage showed a beneficial performance. There, the specific methane production rate was 0.27 lN kg−1VS h−1at G : S ratio of 6 : 1 compared to G : S 1 : 0 with 0.14 lN kg−1VS h−1. In comparison to G : S 1 : 0, about 44% and 62% higher biogas yields were obtained at G : S 6 : 1 and 3 : 1, respectively. Also, the highest methane concentration was found in G : S at ratio of 1 : 3. Synergistic increase of methane yield was found in co-digestion in both experiments, but higher effect was realized in G : S, independently of the amount of sugar beet silage. The findings of this study emphasize the improvement of AD of grass silage by even low addition of sugar beet silage. PMID:27807538

  4. Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates.

    PubMed

    Ahmed, Sharif; Einfalt, Daniel; Kazda, Marian

    2016-01-01

    This study tested the hypothesis that the easily degradable carbohydrates of the sugar beet silage (S) will improve the anaerobic digestion of grass silage (G) more profoundly compared to co-digestion of sugar beet silage with maize silage (M). M : S and G : S mixtures were tested in two continuous laboratory-scale AD experiments at volatile solid ratios of 1 : 0, 6 : 1, 3 : 1, and 1 : 3 at organic loading rates of 1.5 kgVS m -3  day -1 . While the sugar beet effects in mixtures with maize silage were negligible, co-digestion with grass silage showed a beneficial performance. There, the specific methane production rate was 0.27 l N  kg -1 VS h -1 at G : S ratio of 6 : 1 compared to G : S 1 : 0 with 0.14 l N  kg -1 VS h -1 . In comparison to G : S 1 : 0, about 44% and 62% higher biogas yields were obtained at G : S 6 : 1 and 3 : 1, respectively. Also, the highest methane concentration was found in G : S at ratio of 1 : 3. Synergistic increase of methane yield was found in co-digestion in both experiments, but higher effect was realized in G : S, independently of the amount of sugar beet silage. The findings of this study emphasize the improvement of AD of grass silage by even low addition of sugar beet silage.

  5. Challenges in breeding for yield increase for drought.

    PubMed

    Sinclair, Thomas R

    2011-06-01

    Crop genetic improvement for environmental stress at the molecular and physiological level is very complex and challenging. Unlike the example of the current major commercial transgenic crops for which biotic stress tolerance is based on chemicals alien to plants, the complex, redundant and homeostatic molecular and physiological systems existing in plants must be altered for drought tolerance improvement. Sophisticated tools must be developed to monitor phenotype expression at the crop level to characterize variation among genotypes across a range of environments. Once stress-tolerant cultivars are developed, regional probability distributions describing yield response across years will be necessary. This information can then aid in identifying environmental conditions for positive and negative responses to genetic modification to guide farmer selection of stress-tolerant cultivars. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Enhanced Furfural Yields from Xylose Dehydration in the gamma-Valerolactone/Water Solvent System at Elevated Temperatures.

    PubMed

    Sener, Canan; Motagamwala, Ali Hussain; Alonso, David Martin; Dumesic, James

    2018-05-18

    High yields of furfural (>90%) were achieved from xylose dehydration in a sustainable solvent system composed of -valerolactone (GVL), a biomass derived solvent, and water. It is identified that high reaction temperatures (e.g., 498 K) are required to achieve high furfural yield. Additionally, it is shown that the furfural yield at these temperatures is independent of the initial xylose concentration, and high furfural yield is obtained for industrially relevant xylose concentrations (10 wt%). A reaction kinetics model is developed to describe the experimental data obtained with solvent system composed of 80 wt% GVL and 20 wt% water across the range of reaction conditions studied (473 - 523 K, 1-10 mM acid catalyst, 66 - 660 mM xylose concentration). The kinetic model demonstrates that furfural loss due to bimolecular condensation of xylose and furfural is minimized at elevated temperature, whereas carbon loss due to xylose degradation increases with increasing temperature. Accordingly, the optimal temperature range for xylose dehydration to furfural in the GVL/H2O solvent system is identified to be from 480 to 500 K. Under these reaction conditions, furfural yield of 93% is achieved at 97% xylan conversion from lignocellulosic biomass (maple wood). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield

    PubMed Central

    Gai, Zhijia; Zhang, Jingtao; Li, Caifeng

    2017-01-01

    The objective of this study was to examine the impact of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis, grain yield and their relationship. To achieve this objective, field experiments were conducted in 2013 and 2014, using a randomized complete block design, with three replications. Nitrogen was applied at planting at rates of 0, 25, 50, and 75 kg N ha-1. In both years, starter nitrogen fertilizer benefited root activity, leaf photosynthesis, and consequently its yield. Statistically significant correlation was found among root activity, leaf photosynthetic rate, and grain yield at the developmental stage. The application of N25, N50, and N75 increased grain yield by 1.28%, 2.47%, and 1.58% in 2013 and by 0.62%, 2.77%, and 2.06% in 2014 compared to the N0 treatment. Maximum grain yield of 3238.91 kg ha-1 in 2013 and 3086.87 kg ha-1 in 2014 were recorded for N50 treatment. Grain yield was greater for 2013 than 2014, possibly due to more favorable environmental conditions. This research indicated that applying nitrogen as starter is necessary to increase soybean yield in Sangjiang River Plain in China. PMID:28388620

  8. Nitrogen rate strategies for reducing yield-scaled nitrous oxide emissions in maize

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Nafziger, Emerson D.; Pittelkow, Cameron M.

    2017-12-01

    Mitigating nitrogen (N) losses from agriculture without negatively impacting crop productivity is a pressing environmental and economic challenge. Reductions in N fertilizer rate are often highlighted as a solution, yet the degree to which crop yields and economic returns may be impacted at the field-level remains unclear, in part due to limited data availability. Farmers are risk averse and potential yield losses may limit the success of voluntary N loss mitigation protocols, thus understanding field-level yield tradeoffs is critical to inform policy development. Using a case study of soil N2O mitigation in the US Midwest, we conducted an ex-post assessment of two economic and two environmental N rate reduction strategies to identify promising practices for maintaining maize yields and economic returns while reducing N2O emissions per unit yield (i.e. yield-scaled emissions) compared to an assumed baseline N input level. Maize yield response data from 201 on-farm N rate experiments were combined with an empirical equation predicting N2O emissions as a function of N rate. Results indicate that the economic strategy aimed at maximizing returns to N (MRTN) led to moderate but consistent reductions in yield-scaled N2O emissions with small negative impacts on yield and slight increases in median returns. The economic optimum N rate strategy reduced yield-scaled N2O emissions in 75% of cases but increased them otherwise, challenging the assumption that this strategy will automatically reduce environmental impacts per unit production. Both environmental strategies, one designed to increase N recovery efficiency and one to balance N inputs with grain N removal, further reduced yield-scaled N2O emissions but were also associated with negative yield penalties and decreased returns. These results highlight the inherent tension between achieving agronomic and economic goals while reducing environmental impacts which is often overlooked in policy discussions. To enable the

  9. Economic weights for genetic improvement of lactation persistency and milk yield.

    PubMed

    Togashi, K; Lin, C Y

    2009-06-01

    This study aimed to establish a criterion for measuring the relative weight of lactation persistency (the ratio of yield at 280 d in milk to peak yield) in restricted selection index for the improvement of net merit comprising 3-parity total yield and total lactation persistency. The restricted selection index was compared with selection based on first-lactation total milk yield (I(1)), the first-two-lactation total yield (I(2)), and first-three-lactation total yield (I(3)). Results show that genetic response in net merit due to selection on restricted selection index could be greater than, equal to, or less than that due to the unrestricted index depending upon the relative weight of lactation persistency and the restriction level imposed. When the relative weight of total lactation persistency is equal to the criterion, the restricted selection index is equal to the selection method compared (I(1), I(2), or I(3)). The restricted selection index yielded a greater response when the relative weight of total lactation persistency was above the criterion, but a lower response when it was below the criterion. The criterion varied depending upon the restriction level (c) imposed and the selection criteria compared. A curvilinear relationship (concave curve) exists between the criterion and the restricted level. The criterion increases as the restriction level deviates in either direction from 1.5. Without prior information of the economic weight of lactation persistency, the imposition of the restriction level of 1.5 on lactation persistency would maximize change in net merit. The procedure presented allows for simultaneous modification of multi-parity lactation curves.

  10. Bacteriophage M13 gene 2 protein. Increasing its yield in infected cells, and identification and localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Norm S. -C.; Pratt, David

    M13 gene 2 protein, implicated in the introduction of single-strand nicks into double-stranded closed circular (RFI) DNA molecules, was previously found in only very small quantities in infected cells. We now find that the gene 2 protein can be readily identified and its yield can be increased manyfold if infections are carried out at high temperature with either a gene 2 temperature- sensitive mutant or with wild type M13. Mechanisms are suggested by which the increased yield could result from subnormal function of the protein in these infections. Under conditions of high yield, the gene 2 protein is found largelymore » in a rapidly sedimenting particulate fraction of unknown nature, where it constitutes as much as 36 percent of the leucine-labeled protein. The gene 2 protein can be readily solubilized from this particulate fraction with the ionic detergent sodium dodecyl sulfate (SDS) but no satisfactory solubilization method was found which keeps the protein in its native state. Attempts to demonstrate in vitro activity of the gene 2 protein, that is, nicking of M13 RFI DNA, were not successful. On the basis of SDS-polyacrylamide gel electrophoresis, we estimate that the gene 2 polypeptide has a molecular weight of approximately 40,000. In the course of the experiments on gene 2 protein, it was observed that the gene 3, as well as the gene 8, virion protein molecules were found predominantly in the cell inner membrane, supporting the idea that virion assembly is carried out there. The gene 4, nonvirion, protein also proved to be in the inner membrane, as would be expected if this protein plays a role in virion assembly.« less

  11. Black plastic mulch combined with summer cover crop increases the yield and water use efficiency of apple tree on the rainfed Loess Plateau

    PubMed Central

    Zheng, Wei; Wen, Meijuan; Zhao, Zhiyuan; Liu, Jie; Wang, Zhaohui; Li, Ziyan

    2017-01-01

    Water deficit significantly limits dryland rainfed fruit production, so increasing water conservation is crucial for improving fruit productivity in arid and semiarid areas. In this study, we tested two treatments in an apple orchard: 1) PC treatment comprising black plastic mulch (BPM) (in-row) with weed control (inter-row); 2) and PGC treatment comprising BPM (in-row) combined with a summer cover crop (inter-row) of rape (Brassica campestris L.), which was sown in mid-June and was living from July to September. Under PGC, the inter-row soil water storage increased by 17.9% and 11.5% compared with PC after the harvest in 2013 and 2014, respectively, but there was no significant increase in 2015. The evapotranspiration (ET) from the inter-row areas during the cover crop period was lower under PGC than PC in 2013 (19.6%), 2014 (11.3%), and 2015 (13.3%). However, the differences in the total ET from the inter-row areas between the two treatments were not obvious, and the total ET from in-row areas was higher under PGC than PC due to the increased water uptake by apple trees under PGC. The apple yield, water use efficiency during the cover crop period (WUEg) and total water use efficiency (WUE) fluctuated during the experimental years. Compared with PC, the apple yield increased by 14.1%, 18.8%, and 26.7% under PGC in 2013, 2014, and 2015, respectively. In addition, the WUEg was 26.4%, 24.7%, and 32.7% higher under PGC compared with PC in 2013, 2014, and 2015, respectively. Thus, the WUE under PGC was 13.8% and 11.7% higher than that under PC in 2013 and 2014, respectively, but the difference was not significant in 2015 (p = 0.0527). Thus, BPM combined with a summer cover crop is recommended for decreasing the summer ET and promoting apple production in rainfed dryland areas where the rainy season is usually the hot season. PMID:28957428

  12. YorkieCA overexpression in the posterior silk gland improves silk yield in Bombyx mori.

    PubMed

    Zhang, Panli; Liu, Shumin; Song, Hong-Sheng; Zhang, Guozheng; Jia, Qiangqiang; Li, Sheng

    2017-07-01

    The traditional hybrid breeding techniques can no longer meet the increasing demands for silk production by the silkworm, Bombyx mori, and further improvement of the silk yield will depend on modern molecular breeding techniques. Here, we report improved silk yield in transgenic silkworms overexpressing the oncogene Yorkie CA specifically in the posterior silk gland (PSG). The Yorkie CA cDNA was ligated downstream of the hr3 enhancer and the fibroin L-chain (Fil) promoter, then inserted into a piggyBac vector for transgene. Overexpression of Yorkie CA in the PSG significantly increased the weight of the PSG, and also increased the weight of the cocoon, larval body, and pupal body to decreasing degrees. Overexpression of Yorkie CA up-regulated the Yorkie target genes resulting in increased cell size, endomitosis, the number of protein synthesis organelles, the expression of fibroin genes in the PSG, and eventually silk yield. Additionally, as we reported previously using the binary GAL4/UAS system, transgenic silkworms overexpressing Ras1 CA with the hr3 enhancer and the Fil promoter also showed improved silk yield. Unfortunately, the hybrid progeny of Yorkie CA -overexpressing silkworms and Ras1 CA -overexpressing silkworms did not show overlapping improved silk yield due to the failure to increase expression of both Yorkie and Ras1. Copyright © 2017. Published by Elsevier Ltd.

  13. Primary quantum yields of NO2 photodissociation

    NASA Technical Reports Server (NTRS)

    Gardner, Edward P.; Sperry, Paul D.; Calvert, Jack G.

    1987-01-01

    The quantum yields of formation of NO, O2, and NO2 loss are measured for NO2 vapor at low pressures (0.13-0.30 torr) irradiated at 334-405 nm wavelengths and temperature in the range 273-370 K in order to study the primary quantum efficiencies of NO2 photodecomposition. The temperature and wavelength dependences of the primary quantum efficiencies are examined. It is observed that the primary quantum efficiencies increase rapidly from near zero at 424 nm to near unity for excitation at wavelengths less than 394 nm. The theory of Pitts et al. (1964) that the energy deficiency for photodissociation of NO2 excited at wavelengths greater than 397.9 nm is due to the rotational and vibrational energy of the NO2 molecules is confirmed by the data. Values for the primary quantum yields of NO2 photodecomposition as a function of wavelength are presented.

  14. Detecting crop yield reduction due to irrigation-induced soil salinization in South-West Russia

    NASA Astrophysics Data System (ADS)

    Argaman, E.; Beets, W.; Croes, J.; Keesstra, S.; Verzandvoort, S.; Zeiliguer, A.

    2012-04-01

    The South-European part of the Russian Federation has experienced serious land degradation in the form of soil salinization since the 1960s. This land degradation was caused by intensive, large-scale irrigation on reclaimed land in combination with the salt-rich nature of the substrate. Alkaline soil salinity is believed to be an important factor decreasing crop yield in this area. A large research effort has been directed to the effects of soil salinity on crops, there is a need for simple, easily determinable indicators of crop health and soil salinity in irrigated systems, that can help to detect crop water stress in an early stage. The objectives of this research were to study the effects of soil salinity and vegetation water stress on the performance of alfalfa crop yield and physiological crop properties, and to study the possibility to measure soil salinity and alkalinity and the crop water stress index at plot level using a thermal gun and a regular digital camera. The study area was located in Saratov District, in the South-West part of Russia. Variables on the surface energy balance, crop properties, soil properties and visible reflectance were measured on plots with alfalfa cultures in two fields with and without signs of alkaline soil salinity, and with and without irrigation in July 2009. The research showed no clear adverse effects of soil salinity and soil alkalinity on crop yield and physiological crop properties. Soil salinity, as reflected by the electric conductivity, positively affected the root biomass of alfalfa in the range of 0.15 to 1.52 dS/m . This was a result of EC levels being below the documented threshold to negatively affect Alfalfa, as would be the case in truly saline soils. The soil pH also showed a positive correlation with root biomass within the range of pH 6.2 and 8.5 . From the literature these pH values are generally believed to be too high to exhibit a positive relationship with root biomass. No relationship was found

  15. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia).

    PubMed

    Kole, Chittaranjan; Kole, Phullara; Randunu, K Manoj; Choudhary, Poonam; Podila, Ramakrishna; Ke, Pu Chun; Rao, Apparao M; Marcus, Richard K

    2013-04-26

    Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues.

  16. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia)

    PubMed Central

    2013-01-01

    Background Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. Results We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. Conclusions While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues. PMID:23622112

  17. The Effects of Temperature and Precipitation on the Yield of Zea Mays L. I the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Stooksbury, David Emory

    Three families of straightforward maize (Zea mays L.) yield/climate models using monthly temperature and precipitation terms are produced. One family of models uses USDA's Crop Reporting Districts (CRD) as its scale of aggregation. The other two families of models use three different district aggregates based on climate or yield patterns. The climate and yield districts are determined by using a two-stage cluster analysis. The CRD-based family of models perform as well as the climate and yield based models. All models explain between 80% and 90% of the variance in maize yield. The most important climate term affecting maize yield in the South is the daily maximum temperature at pollination time. The higher the maximum temperature, the lower the yield. Above normal minimum temperature during pollination increases yield in the Middle South. Weather that favors early planting and rapid vegetative growth increases yield. Ideal maize yield weather includes a dry period during planting followed by a warm period during vegetative growth. Moisture variables are important only during the planting and harvest periods when above normal precipitation delays field work and thereby reduces yield. The model results indicate that the dire predictions about the fate of Southern agriculture in a trace gas warmed world may not be true. This is due to the overwhelming influence of the daily maximum temperature on yield. An optimum aggregate for climate impact studies was not found. I postulate that this is due to the dynamic nature of the American maize production system. For most climate impact studies on a dynamic agricultural system, there does not need to be a concern about the model aggregation.

  18. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  19. Temperature, Sowing and Harvest Dates, and Yield of Maize in the Southwestern US

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Stack, D.; Myoung, B.; Kim, S. H.; Kim, J.

    2014-12-01

    Since sowing date of maize is sensitive to climate variability and changes, it is of a practical importance to examine how sowing dates affect maize yields in various temperature regimes in the southwestern US. A 21-year (1991-2011) simulation of maize yield using Agricultural Production Systems sIMulator (APSIM) with observed meteorological forcing, shows that earlier sowing dates are favorable for higher yields primarily by increasing the length of growing season in cold mountaineous regions. In these regions, warmer conditions in the sowing period tend to advance the sowing date and then enhance yield. Over low-elevation warm regions, yields are less correlated with sowing dates and the length of growing season, perhaps because growing season temperatures are high enough for fast growth. Instead, in the warm regions, maize yields are sensitive to temperature variations during the late growing season due to adverse effects of extreme high temperature events on maize development.

  20. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1.

    PubMed

    Ma, Sanyuan; Xia, Xiaojuan; Li, Yufeng; Sun, Le; Liu, Yue; Liu, Yuanyuan; Wang, Xiaogang; Shi, Run; Chang, Jiasong; Zhao, Ping; Xia, Qingyou

    2017-08-01

    Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.

  1. Drought mitigation in perennial crops by fertilization and adjustments of regional yield models for future climate variability

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2017-12-01

    Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.

  2. Integrated model for predicting rice yield with climate change

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa

    2018-04-01

    Rice is the chief agricultural product and one of the primary food source. For this reason, it is of pivotal importance for worldwide economy and development. Therefore, in a decision-support-system both for the farmers and in the planning and management of the country's economy, forecasting yield is vital. However, crop yield, which is a dependent of the soil-bio-atmospheric system, is difficult to represent in statistical language. This paper describes a novel approach for predicting rice yield using artificial neural network, spatial interpolation, remote sensing and GIS methods. Herein, the variation in the yield is attributed to climatic parameters and crop health, and the normalized difference vegetation index from MODIS is used as an indicator of plant health and growth. Due importance was given to scaling up the input parameters using spatial interpolation and GIS and minimising the sources of error in every step of the modelling. The low percentage error (2.91) and high correlation (0.76) signifies the robust performance of the proposed model. This simple but effective approach is then used to estimate the influence of climate change on South Korean rice production. As proposed in the RCP8.5 scenario, an upswing in temperature may increase the rice yield throughout South Korea.

  3. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    NASA Astrophysics Data System (ADS)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  4. [Effects of air temperature increase and precipitation change on grain yield and quality of spring wheat in semiarid area of Northwest China].

    PubMed

    Wang, He-ling; Zhang, Qiang; Wang, Run-yuan; Gan, Yan-tai; Niu, Jun-yi; Zhang, Kai; Zhao, Fu-nian; Zhao, Hong

    2015-01-01

    In order to predict effects of climate changing on growth, quality and grain yields of spring wheat, a field experiment was conducted to investigate the effects of air temperature increases (0 °C, 1.0 °C, 2.0° C and 3.0°) and precipitation variations (decrease 20%, unchanging and increase 20%) on grain yields, quality, diseases and insect pests of spring wheat at the Dingxi Arid Meteorology and Ecological Environment Experimental Station of the Institute of Arid Meteorology of China Meteorological Administration (35°35' N ,104°37' E). The results showed that effects of precipitation variations on kernel numbers of spring wheat were not significant when temperature increased by less than 2.0° C , but was significant when temperature increased by 3.0° C. Temperature increase enhanced kernel numbers, while temperature decrease reduced kernel numbers. The negative effect of temperature on thousand-kernel mass of spring wheat increased with increasing air temperature. The sterile spikelet of spring wheat response to air temperature was quadratic under all precipitation regimes. Compared with control ( no temperature increase), the decreases of grain yield of spring wheat when air temperature increased by 1.0°C, 2.0°C and 3.0°C under each of the three precipitation conditions (decrease 20%, no changing and increase 20%) were 12.1%, 24.7% and 42.7%, 8.4%, 15.1% and 21.8%, and 9.0%, 15.5% and 22.2%, respectively. The starch content of spring wheat decreased and the protein content increased with increasing air temperature. The number of aphids increased when air temperature increased by 2.0°C , but decreased when air temperature increased by 3.0°CT. The infection rates of rust disease increased with increasing air temperature.

  5. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    PubMed

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production.

    PubMed

    Slewinski, Thomas L

    2012-08-01

    A dramatic change in agricultural crops is needed in order to keep pace with the demands of an increasing human population, exponential need for renewable fuels, and uncertain climatic changes. Grasses make up the vast majority of agricultural commodities. How these grasses capture, transport, and store carbohydrates underpins all aspects of crop productivity. Sink-source dynamics within the plant direct how much, where, and when carbohydrates are allocated, as well as determine the harvestable tissue. Carbohydrate partitioning can limit the yield capacity of these plants, thus offering a potential target for crop improvement. Grasses have the ability to buffer this sink-source interaction by transiently storing carbohydrates in stem tissue when production from the source is greater than whole-plant demand. These reserves improve yield stability in grain crops by providing an alternative source when photosynthetic capacity is reduced during the later phases of grain filling, or during periods of environmental and biotic stresses. Domesticated grasses such as sugarcane and sweet sorghum have undergone selection for high accumulation of stem carbohydrates, which serve as the primary sources of sugars for human and animal consumption, as well as ethanol production for fuel. With the enormous expectations placed on agricultural production in the near future, research into carbohydrate partitioning in grasses is essential for maintaining and increasing yields in grass crops. This review highlights the current knowledge of non-structural carbohydrate dynamics in grass stems and discusses the impacts of stem reserves in essential agronomic grasses.

  7. Studies of multi-ion-fluid yield anomaly in shock-driven implosions

    NASA Astrophysics Data System (ADS)

    Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Zylstra, A. B.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Amendt, P. A.; Bellei, C.; Wilks, S. C.; Zimmerman, G.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Marshall, F. J.; Seka, W.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Goncharov, V. N.; Meyerhofer, D. D.

    2014-10-01

    A. NIKROO, GA - Anomalously reduced yields relative to hydrodynamically calculated values have been observed for mixtures of D:3He compared to pure D2 gas-filled implosions in a series of shock-driven implosions at OMEGA. An extensive suite of measurements including temporal and spatial measurements of both the DD- and D3He-fusion reactions were obtained to identify the origin and physics behind this anomalous yield reduction. Measured spectral linewidths of fusion products suggest that the D ions are not thermalized to 3He during the burn, contributing to the reduced yield. The hypothesis that ion-species separation due to diffusive processes contributes to the observed yield reduction is explored using hydrodynamic simulations incorporating ion diffusion. Recent observations by Rosenberg et al. of a yield reduction with increased ion-ion mean free path do not explain the observed anomalous yield trend. Future work that will directly probe species separation with high-precision relative fusion reaction rate measurements between DD-neutrons and D3He-protons using the DualPTD instrument is discussed. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  8. Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.

    1998-01-01

    An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.

  9. Soil Water Availability Modulation Over Estimated Relative Yield Losses in Wheat (Triticum aestivum L.) Due to Ozone Exposure

    PubMed Central

    De la Torre, Daniel; Sierra, Maria Jose

    2007-01-01

    The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high. PMID:17619747

  10. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    PubMed

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  11. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions

    PubMed Central

    Cely, Martha V. T.; Siviero, Marco A.; Emiliano, Janaina; Spago, Flávia R.; Freitas, Vanessa F.; Barazetti, André R.; Goya, Erika T.; Lamberti, Gustavo de Souza; dos Santos, Igor M. O.; De Oliveira, Admilton G.; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone. PMID:27920781

  12. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet.

    PubMed

    Lee, C; Hristov, A N; Cassidy, T W; Heyler, K S; Lapierre, H; Varga, G A; de Veth, M J; Patton, R A; Parys, C

    2012-10-01

    The objective of this experiment was to evaluate the effect of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Lys, Met, and specifically His on dairy cow performance. The experiment was conducted for 12 wk with 48 Holstein cows. Following a 2-wk covariate period, cows were blocked by DIM and milk yield and randomly assigned to 1 of 4 diets, based on corn silage and alfalfa haylage: control, MP-adequate diet (ADMP; MP balance: +9 g/d); MP-deficient diet (DMP; MP balance: -317 g/d); DMP supplemented with RPLys (AminoShure-L, Balchem Corp., New Hampton, NY) and RPMet (Mepron; Evonik Industries AG, Hanau, Germany; DMPLM); and DMPLM supplemented with an experimental RPHis preparation (DMPLMH). The analyzed crude protein content of the ADMP and DMP diets was 15.7 and 13.5 to 13.6%, respectively. The apparent total-tract digestibility of all measured nutrients, plasma urea-N, and urinary N excretion were decreased by the DMP diets compared with ADMP. Milk N secretion as a proportion of N intake was greater for the DMP diets compared with ADMP. Compared with ADMP, dry matter intake (DMI) tended to be lower for DMP, but was similar for DMPLM and DMPLMH (24.5, 23.0, 23.7, and 24.3 kg/d, respectively). Milk yield was decreased by DMP (35.2 kg/d), but was similar to ADMP (38.8 kg/d) for DMPLM and DMPLMH (36.9 and 38.5kg/d, respectively), paralleling the trend in DMI. The National Research Council 2001model underpredicted milk yield of the DMP cows by an average (±SE) of 10.3 ± 0.75 kg/d. Milk fat and true protein content did not differ among treatments, but milk protein yield was increased by DMPLM and DMPLMH compared with DMP and was not different from ADMP. Plasma essential amino acids (AA), Lys, and His were lower for DMP compared with ADMP. Supplementation of the DMP diets with RP AA increased plasma Lys, Met, and His. In conclusion, MP deficiency, approximately 15% below the National Research Council requirements from 2001, decreased

  13. Metabolomic prediction of yield in hybrid rice.

    PubMed

    Xu, Shizhong; Xu, Yang; Gong, Liang; Zhang, Qifa

    2016-10-01

    Rice (Oryza sativa) provides a staple food source for more than 50% of the world's population. An increase in yield can significantly contribute to global food security. Hybrid breeding can potentially help to meet this goal because hybrid rice often shows a considerable increase in yield when compared with pure-bred cultivars. We recently developed a marker-guided prediction method for hybrid yield and showed a substantial increase in yield through genomic hybrid breeding. We now have transcriptomic and metabolomic data as potential resources for prediction. Using six prediction methods, including least absolute shrinkage and selection operator (LASSO), best linear unbiased prediction (BLUP), stochastic search variable selection, partial least squares, and support vector machines using the radial basis function and polynomial kernel function, we found that the predictability of hybrid yield can be further increased using these omic data. LASSO and BLUP are the most efficient methods for yield prediction. For high heritability traits, genomic data remain the most efficient predictors. When metabolomic data are used, the predictability of hybrid yield is almost doubled compared with genomic prediction. Of the 21 945 potential hybrids derived from 210 recombinant inbred lines, selection of the top 10 hybrids predicted from metabolites would lead to a ~30% increase in yield. We hypothesize that each metabolite represents a biologically built-in genetic network for yield; thus, using metabolites for prediction is equivalent to using information integrated from these hidden genetic networks for yield prediction. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  14. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Modifying the lantibiotic mutacin 1140 for increased yield, activity and stability.

    PubMed

    Geng, Mengxin; Smith, Leif

    2018-05-18

    mutacin 1140 core peptide. Only certain combinations of amino acid substitutions at the Dha5 and Dhb14 dehydrated residue positions were tolerated. Observation of glutamylated core peptide analogs show that dehydrations occur in a glutamate dependent manner. Interestingly, mutations in positions outside of rings A and B, the lipid II binding domain, would interfere with lipid II binding. Purified mutacin 1140 analogs have varying activity and selectivity against different genera of bacteria, supporting the effort to generate analogs with higher specificity against pathogenic bacteria. The discovery of analogs with improved inhibitory activity against pathogenic bacteria, increased protease stability, and higher product yields, may promote the clinical development of this unique antimicrobial compound. Copyright © 2018 American Society for Microbiology.

  16. Impact of low concentration factor microfiltration on milk component recovery and Cheddar cheese yield.

    PubMed

    Neocleous, M; Barbano, D M; Rudan, M A

    2002-10-01

    The effect of microfiltration (MF) on the composition of Cheddar cheese, fat, crude protein (CP), calcium, total solids recovery, and Cheddar cheese yield efficiency (i.e., composition adjusted yield divided by theoretical yield) was determined. Raw skim milk was microfiltered twofold using a 0.1-microm ceramic membrane at 50 degrees C. Four vats of cheese were made in one day using milk at lx, 1.26x, 1.51x, and 1.82x concentration factor (CF). An appropriate amount of cream was added to achieve a constant casein (CN)-to-fat ratio across treatments. Cheese manufacture was repeated on four different days using a randomized complete block design. The composition of the cheese was affected by MF. Moisture content of the cheese decreased with increasing MF CF. Standardization of milk to a constant CN-to-fat ratio did not eliminate the effect of MF on cheese moisture content. Fat recovery in cheese was not changed by MF. Separation of cream prior to MF, followed by the recombination of skim or MF retentate with cream resulted in lower fat recovery in cheese for control and all treatments and higher fat loss in whey when compared to previous yield experiments, when control Cheddar cheese was made from unseparated milk. Crude protein, calcium, and total solids recovery in cheese increased with increasing MF CF, due to partial removal of these components prior to cheese making. Calcium and calcium as a percentage of protein increased in the cheese, suggesting an increase in calcium retention in the cheese with increasing CF. While the actual and composition adjusted cheese yields increased with increasing MF CF, as expected, there was no effect of MF CF on cheese yield efficiency.

  17. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  18. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    PubMed Central

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-01-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge. PMID:26586114

  19. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    PubMed

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  20. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  1. Resource demand growth and sustainability due to increased world consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially neededmore » immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.« less

  2. Resource demand growth and sustainability due to increased world consumption

    DOE PAGES

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially neededmore » immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.« less

  3. Decreasing methane yield with increasing food intake keeps daily methane emissions constant in two foregut fermenting marsupials, the western grey kangaroo and red kangaroo.

    PubMed

    Vendl, Catharina; Clauss, Marcus; Stewart, Mathew; Leggett, Keith; Hummel, Jürgen; Kreuzer, Michael; Munn, Adam

    2015-11-01

    Fundamental differences in methane (CH4) production between macropods (kangaroos) and ruminants have been suggested and linked to differences in the composition of the forestomach microbiome. Using six western grey kangaroos (Macropus fuliginosus) and four red kangaroos (Macropus rufus), we measured daily absolute CH4 production in vivo as well as CH4 yield (CH4 per unit of intake of dry matter, gross energy or digestible fibre) by open-circuit respirometry. Two food intake levels were tested using a chopped lucerne hay (alfalfa) diet. Body mass-specific absolute CH4 production resembled values previously reported in wallabies and non-ruminant herbivores such as horses, and did not differ with food intake level, although there was no concomitant proportionate decrease in fibre digestibility with higher food intake. In contrast, CH4 yield decreased with increasing intake, and was intermediate between values reported for ruminants and non-ruminant herbivores. These results correspond to those in ruminants and other non-ruminant species where increased intake (and hence a shorter digesta retention in the gut) leads to a lower CH4 yield. We hypothesize that rather than harbouring a fundamentally different microbiome in their foregut, the microbiome of macropods is in a particular metabolic state more tuned towards growth (i.e. biomass production) rather than CH4 production. This is due to the short digesta retention time in macropods and the known distinct 'digesta washing' in the gut of macropods, where fluids move faster than particles and hence most likely wash out microbes from the forestomach. Although our data suggest that kangaroos only produce about 27% of the body mass-specific volume of CH4 of ruminants, it remains to be modelled with species-specific growth rates and production conditions whether or not significantly lower CH4 amounts are emitted per kg of meat in kangaroo than in beef or mutton production. © 2015. Published by The Company of Biologists Ltd.

  4. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input.

    PubMed

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-02-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  6. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  7. Quantifying yield gaps in wheat production in Russia

    NASA Astrophysics Data System (ADS)

    Schierhorn, Florian; Faramarzi, Monireh; Prishchepov, Alexander V.; Koch, Friedrich J.; Müller, Daniel

    2014-08-01

    Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia’s widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.51-2.10 t ha-1, or 44-52% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.14-3.30 t ha-1, or 62-63% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha-1) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets.

  8. An improved extraction method to increase DNA yield from molted feathers

    Treesearch

    Shelley Bayard De Volo; Richard T. Reynolds; Marlis R. Douglas; Michael F. Antolin

    2008-01-01

    To assess the value of molted feathers as a noninvasive source of DNA for genetic studies of Northern Goshawks (Accipiter gentilis), we isolated and quantified DNA from molted feathers and compared yields across five feather types. We also compared PCR success across the same five feather types using five microsatellite genetic markers of varying...

  9. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest

    NASA Astrophysics Data System (ADS)

    Cornish, P. M.; Vertessy, R. A.

    2001-02-01

    Water yields in a regrowth eucalypt forest were found to increase initially and then to decline below pre-treatment levels during the 16-year period which followed the logging of a moist old-growth eucalypt forest in Eastern Australia. Both regrowth and old-growth stands were dominated by Sydney Blue Gum ( Eucalyptus saligna Smith) and Silvertop Stringybark ( Eucalyptus laevopinea R. Baker). Using a paired-catchment approach we observed significant reductions in five of six gauged catchments, and were able to associate their magnitude with forest growth rate, canopy cover and soil depth. Regular yield declines were interrupted for a period in some catchments, possibly due to foliar insect attack. Yield reductions of up to a maximum 600 mm per year in logged and regenerated areas were in accord with water yield reductions observed in Mountain Ash ( Eucalyptus regnans F.J. Muell.) regeneration in Victoria. This study therefore represents the first confirmation of these Maroondah Mountain Ash results in another forest type that has also undergone eucalypt-to-eucalypt succession. Baseflow analysis indicated that baseflow and stormflow both increased after logging, with stormflow increases dominant in catchments with shallower soils. The lower runoff observed when the regenerating forest was aged 13-16 years was principally a consequence of lower baseflow.

  10. Analysis of the impacts of well yield and groundwater depth on irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozović, N.; Butler, A. P.

    2015-04-01

    Previous research has found that irrigation water demand is relatively insensitive to water price, suggesting that increased pumping costs due to declining groundwater levels will have limited effects on agricultural water management practices. However, non-linear changes in well yields as aquifer saturated thickness is reduced may have large impacts on irrigated production that are currently neglected in projections of the long-term sustainability of groundwater-fed irrigation. We conduct empirical analysis of observation data and numerical simulations for case studies in Nebraska, USA, to compare the impacts of changes in well yield and groundwater depth on agricultural production. Our findings suggest that declining well pumping capacities reduce irrigated production areas and profits significantly, whereas increased pumping costs reduce profits but have minimal impacts on the intensity of groundwater-fed irrigation. We suggest, therefore, that management of the dynamic relationship between well yield and saturated thickness should be a core component of policies designed to enhance long-term food security and support adaptation to climate change.

  11. A Remote Sensing-Derived Corn Yield Assessment Model

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjay Man

    Agricultural studies and food security have become critical research topics due to continuous growth in human population and simultaneous shrinkage in agricultural land. In spite of modern technological advancements to improve agricultural productivity, more studies on crop yield assessments and food productivities are still necessary to fulfill the constantly increasing food demands. Besides human activities, natural disasters such as flood and drought, along with rapid climate changes, also inflect an adverse effect on food productivities. Understanding the impact of these disasters on crop yield and making early impact estimations could help planning for any national or international food crisis. Similarly, the United States Department of Agriculture (USDA) Risk Management Agency (RMA) insurance management utilizes appropriately estimated crop yield and damage assessment information to sustain farmers' practice through timely and proper compensations. Through County Agricultural Production Survey (CAPS), the USDA National Agricultural Statistical Service (NASS) uses traditional methods of field interviews and farmer-reported survey data to perform annual crop condition monitoring and production estimations at the regional and state levels. As these manual approaches of yield estimations are highly inefficient and produce very limited samples to represent the entire area, NASS requires supplemental spatial data that provides continuous and timely information on crop production and annual yield. Compared to traditional methods, remote sensing data and products offer wider spatial extent, more accurate location information, higher temporal resolution and data distribution, and lower data cost--thus providing a complementary option for estimation of crop yield information. Remote sensing derived vegetation indices such as Normalized Difference Vegetation Index (NDVI) provide measurable statistics of potential crop growth based on the spectral reflectance and could

  12. Brown midrib corn silage fed during the peripartal period increased intake and resulted in a persistent increase in milk solids yield of Holstein cows.

    PubMed

    Stone, W C; Chase, L E; Overton, T R; Nestor, K E

    2012-11-01

    The objective of this study was to evaluate transition cow performance when brown midrib corn silage (BMRCS; Mycogen F2F444) was included in the diet during the transition period, and to determine if any production response occurring during the first 3 wk of lactation would persist from wk 4 to 15 when a common diet was fed. Seventy Holstein dairy cows were blocked by parity (either second or third and greater) and calving date and randomly assigned to the CCS (a mixture of varieties of conventional corn silage) or BMRCS treatment. Diets were formulated with the objective of keeping all ration parameters the same, with the exception of neutral detergent fiber digestibility. Neutral detergent fiber digestibility values (30 h) for CCS and BMRCS averaged 56.8 and 73.8%, respectively. Prepartum rations contained 47% corn silage, 18% wheat straw, 7% alfalfa haylage, and 28% concentrate, and averaged 45% neutral detergent fiber (DM basis). Postpartum rations contained 40% corn silage, 15% alfalfa haylage, 1% straw, and 44% concentrate. Milk weights (3×/d) and dry matter intake were recorded daily, and milk composition was measured weekly. Cows fed BMRCS had higher dry matter intake during the 2-wk period before calving (14.3 vs. 13.2 kg/d) and the 3-wk period after calving (20.1 vs. 18.1 kg/d) than did cows fed CCS. Yields of milk, solids, and lactose were increased, whereas a trend was observed for a reduction in somatic cell counts and linear scores in the postpartum period for cows receiving BMRCS during the transition. A significant carryover effect of BMRCS was observed on production from wk 4 to 15 when the common diet was fed, with yields of protein (1.36 vs. 1.30 kg/d), lactose (2.24 vs. 2.12 kg/d), and solids (5.82 vs. 5.51 kg/d) increasing significantly, and yields of fat-corrected milk, energy-corrected milk, and fat tending to increase during this period for cows that had been fed BMRCS. The increased intakes during the last 2 wk of the prepartum period in

  13. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Tao, Fulu

    2016-07-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize ( Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  14. Closing yield gaps: perils and possibilities for biodiversity conservation.

    PubMed

    Phalan, Ben; Green, Rhys; Balmford, Andrew

    2014-04-05

    Increasing agricultural productivity to 'close yield gaps' creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms.

  15. Closing yield gaps: perils and possibilities for biodiversity conservation

    PubMed Central

    Phalan, Ben; Green, Rhys; Balmford, Andrew

    2014-01-01

    Increasing agricultural productivity to ‘close yield gaps’ creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms. PMID:24535392

  16. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  17. Criteria for Yielding of Dispersion-Strengthened Alloys

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Lenel, F. V.

    1960-01-01

    A dislocation model is presented in order to account for the yield behavior of alloys with a finely dispersed second-phase. The criteria for yielding used in the model, is that appreciable yielding occurs in these alloys when the shear stress due to piled-up groups of dislocations is sufficient to fracture or plastically deform the dispersed second-phase particles, relieving the back stress on the dislocation sources. Equations derived on the basis of this model, predict that the yield stress of the alloys varies as the reciprocal square root of the mean free path between dispersed particles. Experimental data is presented for several SAP-Type alloys, precipitation-hardened alloys and steels which are in good agreement with the yield strength variation as a function of dispersion spacing predicted by this theoretical treatment.

  18. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    PubMed Central

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  19. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    PubMed

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  20. Influence of pressure on pyrolysis of black liquor: 2. Char yields and component release.

    PubMed

    Whitty, Kevin; Kullberg, Mika; Sorvari, Vesa; Backman, Rainer; Hupa, Mikko

    2008-02-01

    This is the second in a series of papers concerning the behavior of black liquor during pyrolysis at elevated pressures. Two industrial black liquors were pyrolyzed under pressurized conditions in two laboratory-scale devices, a pressurized single-particle reactor and a pressurized grid heater. Temperatures ranging between 650 and 1100 degrees C and pressures in the range 1-20 bar were studied. Char yields were calculated and based on analysis of some of the chars the fate of carbon, sodium, potassium and sulfur was determined as a function of pyrolysis pressure. At temperatures below 800 degrees C little variation in char yield was observed at different pressures. At higher temperatures char yield increased with pressure due to slower decomposition of sodium carbonate. For the same reason, sodium release decreased with pressure. Sulfur release, however, increased with pressure primarily because there was less opportunity for its capture in the less-swollen chars.

  1. Assessing Sediment Yield and the Effect of Best Management Practices on Sediment Yield Reduction for Tutuila Island, American Samoa

    NASA Astrophysics Data System (ADS)

    Leta, O. T.; Dulai, H.; El-Kadi, A. I.

    2017-12-01

    Upland soil erosion and sedimentation are the main threats for riparian and coastal reef ecosystems in Pacific islands. Here, due to small size of the watersheds and steep slope, the residence time of rainfall runoff and its suspended load is short. Fagaalu bay, located on the island of Tutuila (American Samoa) has been identified as a priority watershed, due to degraded coral reef condition and reduction of stream water quality from heavy anthropogenic activity yielding high nutrients and sediment loads to the receiving water bodies. This study aimed to estimate the sediment yield to the Fagaalu stream and assess the impact of Best Management Practices (BMP) on sediment yield reduction. For this, the Soil and Water Assessment Tool (SWAT) model was applied, calibrated, and validated for both daily streamflow and sediment load simulation. The model also estimated the sediment yield contributions from existing land use types of Fagaalu and identified soil erosion prone areas for introducing BMP scenarios in the watershed. Then, three BMP scenarios, such as stone bund, retention pond, and filter strip were treated on bare (quarry area), agricultural, and shrub land use types. It was found that the bare land with quarry activity yielded the highest annual average sediment yield of 133 ton per hectare (t ha-1) followed by agriculture (26.1 t ha-1) while the lowest sediment yield of 0.2 t ha-1 was estimated for the forested part of the watershed. Additionally, the bare land area (2 ha) contributed approximately 65% (207 ha) of the watershed's sediment yield, which is 4.0 t ha-1. The latter signifies the high impact as well as contribution of anthropogenic activity on sediment yield. The use of different BMP scenarios generally reduced the sediment yield to the coastal reef of Fagaalu watershed. However, treating the quarry activity area with stone bund showed the highest sediment yield reduction as compared to the other two BMP scenarios. This study provides an estimate

  2. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China.

    PubMed

    Liu, Zhijuan; Yang, Xiaoguang; Lin, Xiaomao; Hubbard, Kenneth G; Lv, Shuo; Wang, Jing

    2016-01-15

    Closing the gap between current and potential yields is one means of increasing agricultural production to feed the globally increasing population. Therefore, investigation of the geographic patterns, trends and causes of crop yield gaps is essential to identifying where yields might be increased and quantifying the contributions of yield-limiting factors that may provide us potentials to enhance crop productivity. In this study, the changes in potential yields, attainable yields, potential farmers' yields, and actual farmers' yields during the past five decades in Northeast China (NEC) were investigated. Additionally the yield gaps caused by non-controllable, agronomic, and socioeconomic factors were determined. Over the period 1961 to 2010 the estimated regional area-weighted mean maize potential yield, attainable yield, and potential farmers' yield were approximately 12.3 t ha(-1), 11.5 t ha(-1), and 6.4 t ha(-1) which showed a decreasing tendency. The actual farmers' yield over NEC was 4.5 t ha(-1), and showed a tendency to increase (p<0.01) by 1.27 t ha(-1) per decade. The regional mean total yield gap (YGt), weighted by the area in each county dedicated to maize crop, was 64% of potential yield. Moreover, 8, 40, and 16% reductions in potential yields were due to non-controllable factors (YGI), agronomic factors (YGII), and socioeconomic factors (YGIII), respectively. Therefore, the exploitable yield gap, considered here as the difference between the potential yield and what one can expect considering non-controllable factors (i.e. YGt-YGI), of maize in NEC was about 56%. The regional area-weighted averages of YGt, and YGIII were found to have significant decreases of 11.0, and 10.7% per decade. At the time horizon 2010, the exploitable yield gaps were estimated to equal 36% of potential yield. This led to the conclusion that the yield gap could be deeply reduced by improving local agronomic management and controlling socioeconomic factors. Copyright © 2015

  3. Development of a Team-Based On-Farm Learning Program While Challenging Soybean Growers to Increase Yield

    ERIC Educational Resources Information Center

    Davis, Vince M.; Kull, Linda S.; Nelson, James A.

    2012-01-01

    Illinois soybean growers have not been satisfied with recent lagging yield trends. A yield "challenge" was created to blend the motivation and creativity of a yield contest with the learning power of teamwork and on-farm demonstration. In the initial year (2010), 123 on-farm side-by-side demonstration plots were located throughout the…

  4. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Hontzeas, Nikos; Theobald, Julian C; Safronova, Vera I; Davies, William J

    2009-01-01

    Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.

  5. Modeling water yield response to forest cover changes in northern Minnesota

    Treesearch

    S.C. Bernath; E.S. Verry; K.N. Brooks; P.F. Ffolliott

    1982-01-01

    A water yield model (TIMWAT) has been developed to predict changes in water yield following changes in forest cover in northern Minnesota. Two versions of the model exist; one predicts changes in water yield as a function of gross precipitation and time after clearcutting. The second version predicts changes in water yield due to changes in above-ground biomass...

  6. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    PubMed

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  7. Onychomycosis due to nondermatophytic molds.

    PubMed

    Hwang, Sung Min; Suh, Moo Kyu; Ha, Gyoung Yim

    2012-05-01

    Although there have been many studies about onychomycosis due to nondermatophytic molds (NDM), few studies about etiologic agents including NDM in onychomycosis have been reported in Korea. This study investigated onychomycosis due to NDM in the Gyeongju area of Korea. In the 10-year period from 1999~2009, we reviewed 59 patients with onychomycosis due to NDM. The etiologic agents were identified by cultures on Sabouraud's Dextrose agar with and without cycloheximide. In some cases, internal transcribed spacer sequence analysis was done. NDM isolated considered pathogens when the presence of fungal elements was identified by direct microscopy observation and in follow-up cultures yielding the same fungi. Onychomycosis due to NDM comprised 2.3% of all onychomycosis. Of the 59 patients with onychomycosis due to NDM, 84.7% were toenail onychomycosis and 15.3% were fingernail onychomycosis. The incidence rate was highest in the fifth decade (27.1%). The ratio of male to female patients was 1:1.6. The frequency of associated diseases, in descending order, was hypertension, diabetes mellitus, and cerebral hematoma. Distal and lateral subungual onychomycosis (86.4%) was the most common clinical type of onychomycosis. Aspergillus spp. was the most frequently isolated etiologic agent of onychomycosis due to NDM (83.0%). Other causative agents were Scopulariopsis brevicaulis (10.2%), Acremonium spp. (3.4%), Fusarium solani (1.7%), and Chaetomium globosum (1.7%). Because of the increase in onychomycosis due to NDM, we suggest the need of a careful mycological examination in patients with onychomycosis.

  8. Estimate of the fetal temperature increase due to UHF RFID exposure.

    PubMed

    Fiocchi, S; Markakis, I A; Liorni, I; Parazzini, M; Samaras, T; Ravazzani, P

    2013-01-01

    Exposure from electromagnetic (EM) devices has increased during the last decades due to the rapid development of new technologies. Among them, radiofrequency identification (RFID) applications are used in almost every aspect of everyday life, which could expose people unselectively. This scenario could pose potential risks for certain groups of general population, such as pregnant women, who are more sensitive to thermal effects produced by EM exposure. In this paper, the temperature rise at the steady state in two pregnant women models exposed to UHF RFID has been assessed. Results show that heating of tissues is far from the threshold of biological effects indicated by radiation protection guidelines.

  9. Maximal yields from multispecies fisheries systems: rules for systems with multiple trophic levels.

    PubMed

    Matsuda, Hiroyuki; Abrams, Peter A

    2006-02-01

    Increasing centralization of the control of fisheries combined with increased knowledge of food-web relationships is likely to lead to attempts to maximize economic yield from entire food webs. With the exception of predator-prey systems, we lack any analysis of the nature of such yield-maximizing strategies. We use simple food-web models to investigate the nature of yield- or profit-maximizing exploitation of communities including two types of three-species food webs and a variety of six-species systems with as many as five trophic levels. These models show that, for most webs, relatively few species are harvested at equilibrium and that a significant fraction of the species is lost from the web. These extinctions occur for two reasons: (1) indirect effects due to harvesting of species that had positive effects on the extinct species, and (2) intentional eradication of species that are not themselves valuable, but have negative effects on more valuable species. In most cases, the yield-maximizing harvest involves taking only species from one trophic level. In no case was an unharvested top predator part of the yield-maximizing strategy. Analyses reveal that the existence of direct density dependence in consumers has a large effect on the nature of the optimal harvest policy, typically resulting in harvest of a larger number of species. A constraint that all species must be retained in the system (a "constraint of biodiversity conservation") usually increases the number of species and trophic levels harvested at the yield-maximizing policy. The reduction in total yield caused by such a constraint is modest for most food webs but can be over 90% in some cases. Independent harvesting of species within the web can also cause extinctions but is less likely to do so.

  10. In Brief: Refugee numbers could increase due to climate change

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-05-01

    Climate change could push the number of refugees globally to more than one billion by 2050, according to a new report from the British charity Christian Aid. Currently, there are about 155 million `internally displaced persons' worldwide, driven from their homes due to conflict, ethnic persecution, or natural disasters. The addition of climate change and growing population numbers could exacerbate these ongoing problems. In the report, Mali is presented as a case study where ongoing climate change is forcing farmers to find other ways to feed their families; one result is an increased number of people attempting to migrate to Europe. The report calls on rich nations to devote US$100 billion each year to help poor people adapt to changing weather patterns. The report, ``Human tide: the real migration crisis,'' is available at http://www.christian-aid.org.uk/indepth/705caweekreport/

  11. Posttransfusion Increase of Hematocrit per se Does Not Improve Circulatory Oxygen Delivery due to Increased Blood Viscosity.

    PubMed

    Zimmerman, Robert; Tsai, Amy G; Salazar Vázquez, Beatriz Y; Cabrales, Pedro; Hofmann, Axel; Meier, Jens; Shander, Aryeh; Spahn, Donat R; Friedman, Joel M; Tartakovsky, Daniel M; Intaglietta, Marcos

    2017-05-01

    Blood transfusion is used to treat acute anemia with the goal of increasing blood oxygen-carrying capacity as determined by hematocrit (Hct) and oxygen delivery (DO2). However, increasing Hct also increases blood viscosity, which may thus lower DO2 if the arterial circulation is a rigid hydraulic system as the resistance to blood flow will increase. The net effect of transfusion on DO2 in this system can be analyzed by using the relationship between Hct and systemic blood viscosity of circulating blood at the posttransfusion Hct to calculate DO2 and comparing this value with pretransfusion DO2. We hypothesized that increasing Hct would increase DO2 and tested our hypothesis by mathematically modeling DO2 in the circulation. Calculations were made assuming a normal cardiac output (5 L/min) with degrees of anemia ranging from 5% to 80% Hct deficit. We analyzed the effects of transfusing 0.5 or more units of 300 cc of packed red blood cells (PRBCs) at an Hct of 65% and calculated microcirculatory DO2 after accounting for increased blood viscosity and assuming no change in blood pressure. Our model accounts for O2 diffusion out of the circulation before blood arriving to the nutritional circulation and for changes in blood flow velocity. The immediate posttransfusion DO2 was also compared with DO2 after the transient increase in volume due to transfusion has subsided. Blood transfusion of up to 3 units of PRBCs increased DO2 when Hct (or hemoglobin) was 60% lower than normal, but did not increase DO2 when administered before this threshold. After accounting for the effect of increasing blood viscosity on blood flow owing to increasing Hct, we found in a mathematical simulation of DO2 that transfusion of up to 3 units of PRBCs does not increase DO2, unless anemia is the result of an Hct deficit greater than 60%. Observations that transfusions occasionally result in clinical improvement suggest that other mechanisms possibly related to increased blood viscosity may

  12. Lung cancer: is the increasing incidence due to radioactive polonium in cigarettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marmorstein, J.

    This paper presents clinical, experimental, and epidemiologic evidence to help explain the rapidly increasing incidence of primary lung cancer, with recently observed reversal in leading cell type from squamous cell to adenocarcinoma. It postulates that this may be due to changes in modern cigarettes, with or without filters, which allow inhalation of increased amounts of radioactive lead and polonium and decreased amounts of benzopyrene. This hypothesis is based upon measurements of increased concentrations of radioactive polonium in the lungs of cigarette smokers, in modern tobaccos grown since 1950, and in high-phosphate fertilizers used for tobacco farming in industrialized countries. Criticalmore » support for this thesis is based upon experimental animal studies in which lung cancers that resemble adenocarcinomas are induced with as little as 15 rads of radioactive polonium, equal to one fifth the dosage inhaled by cigarette smokers who average two packs a day during a 25-year period.« less

  13. A Wheat CCAAT Box-Binding Transcription Factor Increases the Grain Yield of Wheat with Less Fertilizer Input1

    PubMed Central

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. PMID:25489021

  14. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  15. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field.

    PubMed

    Selvaraj, Michael Gomez; Ishizaki, Takuma; Valencia, Milton; Ogawa, Satoshi; Dedicova, Beata; Ogata, Takuya; Yoshiwara, Kyouko; Maruyama, Kyonoshin; Kusano, Miyako; Saito, Kazuki; Takahashi, Fuminori; Shinozaki, Kazuo; Nakashima, Kazuo; Ishitani, Manabu

    2017-11-01

    Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non-transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  17. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

    NASA Astrophysics Data System (ADS)

    Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

  18. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA

    NASA Astrophysics Data System (ADS)

    Mukundan, Rajith; Pradhanang, Soni M.; Schneiderman, Elliot M.; Pierson, Donald C.; Anandhi, Aavudai; Zion, Mark S.; Matonse, Adão H.; Lounsbury, David G.; Steenhuis, Tammo S.

    2013-02-01

    High suspended sediment loads and the resulting turbidity can impact the use of surface waters for water supply and other designated uses. Changes in fluvial sediment loads influence material fluxes, aquatic geochemistry, water quality, channel morphology, and aquatic habitats. Therefore, quantifying spatial and temporal patterns in sediment loads is important both for understanding and predicting soil erosion and sediment transport processes as well as watershed-scale management of sediment and associated pollutants. A case study from the 891 km2 Cannonsville watershed, one of the major watersheds in the New York City water supply system is presented. The objective of this study was to apply Soil and Water Assessment Tool-Water Balance (SWAT-WB), a physically based semi-distributed model to identify suspended sediment generating source areas under current conditions and to simulate potential climate change impacts on soil erosion and suspended sediment yield in the study watershed for a set of future climate scenarios representative of the period 2081-2100. Future scenarios developed using nine global climate model (GCM) simulations indicate a sharp increase in the annual rates of soil erosion although a similar result in sediment yield at the watershed outlet was not evident. Future climate related changes in soil erosion and sediment yield appeared more significant in the winter due to a shift in the timing of snowmelt and also due to a decrease in the proportion of precipitation received as snow. Although an increase in future summer precipitation was predicted, soil erosion and sediment yield appeared to decrease owing to an increase in soil moisture deficit and a decrease in water yield due to increased evapotranspiration.

  19. Improving the yield from fermentative hydrogen production.

    PubMed

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  20. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009.

    PubMed

    Xiao, Dengpan; Tao, Fulu

    2016-07-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  1. Framework for quantifying flow and sediment yield to diagnose and solve the aggradation problem of an ungauged catchment

    NASA Astrophysics Data System (ADS)

    Tamang, Sagar Kumar; Song, Wenjun; Fang, Xing; Vasconcelos, Jose; Anderson, J. Brian

    2018-06-01

    Estimating sediment deposition in a stream, a standard procedure for dealing with aggradation problem is complicated in an ungauged catchment due to the absence of necessary flow data. A serious aggradation problem within an ungauged catchment in Alabama, USA, blocked the conveyance of a bridge, reducing the clearance under the bridge from several feet to a couple of inches. A study of historical aerial imageries showed deforestation in the catchment by a significant amount over a period consistent with the first identification of the problem. To further diagnose the aggradation problem, due to the lack of any gauging stations, local rainfall, flow, and sediment measurements were attempted. However, due to the difficulty of installing an area-velocity sensor in an actively aggrading stream, the parameter transfer process for a hydrologic model was adopted to understand/estimate streamflow. Simulated discharge combined with erosion parameters of MUSLE (modified universal soil loss equation) helped in the estimation of sediment yield of the catchment. Sediment yield for the catchment showed a significant increase in recent years. A two-dimensional hydraulic model was developed at the bridge site to examine potential engineering strategies to wash sediments off and mitigate further aggradation. This study is to quantify the increase of sediment yield in an ungauged catchment due to land cover changes and other contributing factors and develop strategies and recommendations for preventing future aggradation in the vicinity of the bridge.

  2. Recent patterns of crop yield growth and stagnation.

    PubMed

    Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A

    2012-01-01

    In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.

  3. An increase in aerosol burden due to the land-sea warming contrast

    NASA Astrophysics Data System (ADS)

    Hassan, T.; Allen, R.; Randles, C. A.

    2017-12-01

    Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.

  4. Disinfection byproduct yields from the chlorination of natural waters

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Yields for the formation of trihalomethane and nonpurgeable total organic-halide disinfection byproducts were determined as a function of pH and initial free-chlorine concentration for the chlorination of water from the Mississippi, Missouri, and Ohio Rivers. Samples were collected at 12 sites on the Mississippi River from Minneapolis, MN, to New Orleans. LA, and on the Missouri and Ohio Rivers 1.6 km above their confluences with the Mississippi during the summer, fall, and spring seasons of the year. Yields varied little with distance along the Mississippi River, although the dissolved organic-carbon concentration decreased considerably with distance downstream. Yields for the Missouri and Ohio were comparable to yields for the Mississippi, despite much higher bromide concentrations for the Missouri and Ohio. Trihalomethane yields increased as the pH and initial free- chlorine concentration increased. Nonpurgeable total organic-halide yields also increased as the initial free-chlorine concentration increased, but decreased as the pH increased.

  5. Utilization of flow cytometry for diagnosis of hematologic malignancies in Thailand: increasing trends and diagnostic yields in 7,982 samples.

    PubMed

    Promsuwicha, Orathai; Kankhao, Supattra; Songmuang, Wayuree; Auewarakul, Chirayu U

    2014-12-01

    Diagnosis of hematologic malignancies requires a multidisciplinary approach. Flow cytometry (FCM) has become an essential tool for immunophenotypic studies of malignant hematopoietic cells. To evaluate the utilization trend of FCM and its diagnostic yields for hematologic malignancy at a major teaching hospital in Thailand. FCM results of bone marrow (BM) and peripheral blood (PB) specimens during 2000-2013 were analyzed and compared to clinical diagnosis. Overall, 7,982 specimens were submitted for diagnostic FCM including 6,561 BM and 1,421 PB. The number of specimens analyzedwas 121, 142, 164, 299, 491, 431, 690, 611, 719, 744, 725, 863, 955 and 1,027, respectively, from 2000 to 2013. The most common clinical diagnoses requested for FCM were acute leukemia (5,911 cases, 74%) followed by lymphoma (1,419 cases, 17.8%), and chronic lymphocytic leukemia (CLL) (634 cases, 7.94%). The highest diagnostic yield of FCM was found in acute leukemia cases (69.71%) followed by CLL (35.33%). Only 15.43% of clinically suspected lymphoma cases were positive by FCM. Overutilization of PB (35.6% of cases) instead of BM for lymphoma staging significantly contributed to low diagnostic yields of lymphoma by FCM as circulating tumor cells may not be present in such cases. FCM has an increasing role in the diagnosis of hematologic malignancies in Thai patients over the past 14 years with the highest diagnostic yield in acute leukemia. Appropriate specimen types and study indications are required in order to reduce futility of costly diagnostic tests and improve diagnostic yields.

  6. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    PubMed Central

    Zhang, Hongzhi; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2017-01-01

    There is a need to optimize water-nitrogen (N) applications to increase seed cotton yield and water use efficiency (WUE) under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1), deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2), pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3), pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4)] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1), 2:8 (N2)] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD), root volume density (RVD), root mass density (RMD), and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP) in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE. PMID:28611817

  7. Stochastic approach to plasticity and yield in amorphous solids.

    PubMed

    Hentschel, H G E; Jaiswal, Prabhat K; Procaccia, Itamar; Sastry, Srikanth

    2015-12-01

    We focus on the probability distribution function (PDF) P(Δγ;γ) where Δγ are the measured strain intervals between plastic events in a athermal strained amorphous solids, and γ measures the accumulated strain. The tail of this distribution as Δγ→0 (in the thermodynamic limit) scales like Δγ(η). The exponent η is related via scaling relations to the tail of the PDF of the eigenvalues of the plastic modes of the Hessian matrix P(λ) which scales like λ(θ), η=(θ-1)/2. The numerical values of η or θ can be determined easily in the unstrained material and in the yielded state of plastic flow. Special care is called for in the determination of these exponents between these states as γ increases. Determining the γ dependence of the PDF P(Δγ;γ) can shed important light on plasticity and yield. We conclude that the PDF's of both Δγ and λ are not continuous functions of γ. In slowly quenched amorphous solids they undergo two discontinuous transitions, first at γ=0(+) and then at the yield point γ=γ(Y) to plastic flow. In quickly quenched amorphous solids the second transition is smeared out due to the nonexisting stress peak before yield. The nature of these transitions and scaling relations with the system size dependence of 〈Δγ〉 are discussed.

  8. Possible changes to arable crop yields by 2050

    PubMed Central

    Jaggard, Keith W.; Qi, Aiming; Ober, Eric S.

    2010-01-01

    By 2050, the world population is likely to be 9.1 billion, the CO2 concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2°C. In these conditions, what contribution can increased crop yield make to feeding the world? CO2 enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO2-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations. PMID:20713388

  9. Possible changes to arable crop yields by 2050.

    PubMed

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.

  10. Differential responses in yield of pumpkin (Cucurbita maxima L.) and nightshade (Solanum retroflexum Dun.) to the application of three animal manures.

    PubMed

    Azeez, J O; Van Averbeke, W; Okorogbona, A O M

    2010-04-01

    Crop responses to different manures differs considerably, however, the factors responsible for it have not been conclusively elucidated. Consequently, this study examined the biomass response of Cucurbita maxima and Solanum retroflexum to application rates of chicken and kraal manures of cattle and goat, and soil factors related to salinity. The crops' biomass yield increased linearly with increase in application rates of kraal and chicken manures, but steeper in the latter. Results showed that significant decline in biomass yield in chicken manure at rates above 8.5 tons ha(-1) were not due to salinity. The crops' response to cattle and goat kraal manures was linear but polynomial (cubic) in layer chicken manure. It was concluded that the yield decline in chicken manure was due to other manure factors except salinity, probably toxicity effect of the manure fatty acids. Further research was however, recommended to elucidate this claim. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Partitioning potential fish yields from the Great Lakes

    USGS Publications Warehouse

    Loftus, D.H.; Olver, C.H.; Brown, Edward H.; Colby, P.J.; Hartman, Wilbur L.; Schupp, D.H.

    1987-01-01

    We proposed and implemented procedures for partitioning future fish yields from the Great Lakes into taxonomic components. These projections are intended as guidelines for Great Lakes resource managers and scientists. Attainment of projected yields depends on restoration of stable fish communities containing some large piscivores that will use prey efficiently, continuation of control of the sea lamprey (Petromyzon marinus), and restoration of high-quality fish habitat. Because Great Lakes fish communities were harmonic before their collapse, we used their historic yield properties as part of the basis for projecting potential yields of rehabilitated communities. This use is qualified, however, because of possible inaccuracies in the wholly commercial yield data, the presence now of greatly expanded sport fisheries that affect yield composition and magnitude, and some possibly irreversible changes since the 1950s in the various fish communities themselves. We predict that total yields from Lakes Superior, Huron, and Ontario will be increased through rehabilitation, while those from Lakes Michigan and Erie will decline. Salmonines and coregonines will dominate future yields from the upper lakes. The Lake Erie fishery will continue to yield mostly rainbow smelt (Osmerus mordax), but the relative importance of percids, especially of walleye (Stizostedion vitreum vitreum) will increase. In Lake Ontario, yields of salmonines will be increased. Managers will have to apply the most rigorous management strictures to major predator species.

  12. Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting.

    PubMed

    Lu, Guangwen; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Bi, Yong-Mei; Rothstein, Steven J

    2017-05-01

    Agronomic traits controlling the formation, architecture and physiology of source and sink organs are main determinants of rice productivity. Semi-dwarf rice varieties with low tiller formation but high seed production per panicle and dark green and thick leaves with prolonged source activity are among the desirable traits to further increase the yield potential of rice. Here, we report the functional characterization of a zinc finger transcription factor, OsGATA12, whose overexpression causes increased leaf greenness, reduction of leaf and tiller number, and affects yield parameters. Reduced tillering allowed testing the transgenic plants under high density which resulted in significantly increased yield per area and higher harvest index compared to wild-type. We show that delayed senescence of transgenic plants and the corresponding longer stay-green phenotype is mainly due to increased chlorophyll and chloroplast number. Further, our work postulates that the increased greenness observed in the transgenic plants is due to more chlorophyll synthesis but most significantly to decreased chlorophyll degradation, which is supported by the reduced expression of genes involved in the chlorophyll degradation pathway. In particular we show evidence for the down-regulation of the STAY GREEN RICE gene and in vivo repression of its promoter by OsGATA12, which suggests a transcriptional repression function for a GATA transcription factor for prolonging the onset of senescence in cereals.

  13. Elevated CO2 alters distribution of nodal leaf area and enhances nitrogen uptake contributing to yield increase of soybean cultivars grown in Mollisols.

    PubMed

    Jin, Jian; Li, Yansheng; Liu, Xiaobing; Wang, Guanghua; Tang, Caixian; Yu, Zhenhua; Wang, Xiaojuan; Herbert, Stephen J

    2017-01-01

    Understanding how elevated CO2 affects dynamics of nodal leaf growth and N assimilation is crucial for the construction of high-yielding canopy via breeding and N management to cope with the future climate change. Two soybean cultivars were grown in two Mollisols differing in soil organic carbon (SOC), and exposed to ambient CO2 (380 ppm) or elevated CO2 (580 ppm) throughout the growth stages. Elevated CO2 induced 4-5 more nodes, and nearly doubled the number of branches. Leaf area duration at the upper nodes from R5 to R6 was 4.3-fold greater and that on branches 2.4-fold higher under elevated CO2 than ambient CO2, irrespective of cultivar and soil type. As a result, elevated CO2 markedly increased the number of pods and seeds at these corresponding positions. The yield response to elevated CO2 varied between the cultivars but not soils. The cultivar-specific response was likely attributed to N content per unit leaf area, the capacity of C sink in seeds and N assimilation. Elevated CO2 did not change protein concentration in seeds of either cultivar. These results indicate that elevated CO2 increases leaf area towards the upper nodes and branches which in turn contributes yield increase.

  14. Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield.

    PubMed

    Mourtzinis, Spyridon; Ortiz, Brenda V; Damianidis, Damianos

    2016-07-19

    Climate change has a strong influence on weather patterns and significantly affects crop yields globally. El Niño Southern Oscillation (ENSO) has a strong influence on the U.S. climate and is related to agricultural production variability. ENSO effects are location-specific and in southeastern U.S. strongly connect with climate variability. When combined with climate change, the effects on growing season climate patterns and crop yields might be greater than expected. In our study, historical monthly precipitation and temperature data were coupled with non-irrigated maize yield data (33-43 years depending on the location) to show a potential yield suppression of ~15% for one °C increase in southeastern U.S. growing season maximum temperature. Yield suppression ranged between -25 and -2% among locations suppressing the southeastern U.S. average yield trend since 1981 by 17 kg ha(-1)year(-1) (~25%), mainly due to year-to-year June temperature anomalies. Yields varied among ENSO phases from 1971-2013, with greater yields observed during El Niño phase. During La Niña years, maximum June temperatures were higher than Neutral and El Niño, whereas June precipitation was lower than El Niño years. Our data highlight the importance of developing location-specific adaptation strategies quantifying both, climate change and ENSO effects on month-specific growing season climate conditions.

  15. Increase of protein extraction yield from rapeseed meal through a pretreatment with phytase.

    PubMed

    Rodrigues, Ivo M; Carvalho, M Graça Vs; Rocha, Jorge Ms

    2017-06-01

    Rapeseed meal is a good source of high-quality vegetal protein but contains antinutritional compounds that limit its use for human and animal feed. The aim of this study was to develop a methodology to enhance alkaline protein extraction of rapeseed meal and to produce protein-rich products with low levels of phytic acid. Different phytase dosages and operating conditions were used for rapeseed meal pretreatment followed by alkaline extraction at different temperatures, time, pH and solid/liquid ratios (S/L). The highest protein extraction yield attained was 72.1%, for 2 h at 55 °C, with a phytase dosage of 0.8 U g -1 when the alkaline extraction was performed at 75 °C, pH 12.5 and 60 min for an S/L ratio of 10 g 100 mL -1 water. The extraction yields were higher than those previously obtained without enzymatic pretreatment. Phytase pretreatment enhanced alkaline extraction yield of proteins from rapeseed meal. This procedure allowed also the production of rapeseed protein concentrates with very low levels of phytic acid, ∼1 g kg -1 , improving their nutritional properties and commercial value. Moreover, after the pretreatment, the amount of phytic acid in the remaining rapeseed meal decreases about 25%. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.

    PubMed

    Jha, Uday Chand; Bohra, Abhishek; Jha, Rintu

    2017-01-01

    Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.

  17. Stocking and yield of Virginia pine stands in Prince Georges County, Maryland

    Treesearch

    Thomas W., Jr. Church

    1955-01-01

    Development of yield tables is prerequisite to designing forest-management plans. Yield tables have been prepared for Virginia pine in Maryland, North Carolina, and Pennsylvania. But the differences among yields in these three states are great. These differences are probably due chiefly to site. Therefore it would be desirable to have yield tables based on fairly local...

  18. Managment oriented analysis of sediment yield time compression

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in

  19. A quantitative method for risk assessment of agriculture due to climate change

    NASA Astrophysics Data System (ADS)

    Dong, Zhiqiang; Pan, Zhihua; An, Pingli; Zhang, Jingting; Zhang, Jun; Pan, Yuying; Huang, Lei; Zhao, Hui; Han, Guolin; Wu, Dong; Wang, Jialin; Fan, Dongliang; Gao, Lin; Pan, Xuebiao

    2018-01-01

    Climate change has greatly affected agriculture. Agriculture is facing increasing risks as its sensitivity and vulnerability to climate change. Scientific assessment of climate change-induced agricultural risks could help to actively deal with climate change and ensure food security. However, quantitative assessment of risk is a difficult issue. Here, based on the IPCC assessment reports, a quantitative method for risk assessment of agriculture due to climate change is proposed. Risk is described as the product of the degree of loss and its probability of occurrence. The degree of loss can be expressed by the yield change amplitude. The probability of occurrence can be calculated by the new concept of climate change effect-accumulated frequency (CCEAF). Specific steps of this assessment method are suggested. This method is determined feasible and practical by using the spring wheat in Wuchuan County of Inner Mongolia as a test example. The results show that the fluctuation of spring wheat yield increased with the warming and drying climatic trend in Wuchuan County. The maximum yield decrease and its probability were 3.5 and 64.6%, respectively, for the temperature maximum increase 88.3%, and its risk was 2.2%. The maximum yield decrease and its probability were 14.1 and 56.1%, respectively, for the precipitation maximum decrease 35.2%, and its risk was 7.9%. For the comprehensive impacts of temperature and precipitation, the maximum yield decrease and its probability were 17.6 and 53.4%, respectively, and its risk increased to 9.4%. If we do not adopt appropriate adaptation strategies, the degree of loss from the negative impacts of multiclimatic factors and its probability of occurrence will both increase accordingly, and the risk will also grow obviously.

  20. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    DOE PAGES

    Taitano, William T.; Simakov, Andrei N.; Chacon, Luis; ...

    2018-04-09

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICFmore » capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule

  1. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taitano, William T.; Simakov, Andrei N.; Chacon, Luis

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICFmore » capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule

  2. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    NASA Astrophysics Data System (ADS)

    Taitano, W. T.; Simakov, A. N.; Chacón, L.; Keenan, B.

    2018-05-01

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original Rygg experiments [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)]. We employ the same computational setup as in O. Larroche [Phys. Plasmas 19, 122706 (2012)], which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the

  3. Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand.

    PubMed

    Prabnakorn, Saowanit; Maskey, Shreedhar; Suryadi, F X; de Fraiture, Charlotte

    2018-04-15

    Rice yields in Thailand are among the lowest in Asia. In northeast Thailand where about 90% of rice cultivation is rain-fed, climate variability and change affect rice yields. Understanding climate characteristics and their impacts on the rice yield is important for establishing proper adaptation and mitigation measures to enhance productivity. In this paper, we investigate climatic conditions of the past 30years (1984-2013) and assess the impacts of the recent climate trends on rice yields in the Mun River Basin in northeast Thailand. We also analyze the relationship between rice yield and a drought indicator (Standardized Precipitation and Evapotranspiration Index, SPEI), and the impact of SPEI trends on the yield. Our results indicate that the total yield losses due to past climate trends are rather low, in the range of <50kg/ha per decade (3% of actual average yields). In general, increasing trends in minimum and maximum temperatures lead to modest yield losses. In contrast, precipitation and SPEI-1, i.e. SPEI based on one monthly data, show positive correlations with yields in all months, except in the wettest month (September). If increasing trends of temperatures during the growing season persist, a likely climate change scenario, there is high possibility that the yield losses will become more serious in future. In this paper, we show that the drought index SPEI-1 detects soil moisture deficiency and crop stress in rice better than precipitation or precipitation based indicators. Further, our results emphasize the importance of spatial and temporal resolutions in detecting climate trends and impacts on yields. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 3% Yield Increase (HH3), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron (ORCID:0000000320373827)

    2016-07-13

    Scientific reason for data generation: to serve as an alternate high-yield scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. Date the data set was last modified: 02/02/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought to market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 3% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply to crops already planted, but new plantings do take advantage of the gains in expected yield growth. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.

  5. 2% Yield Increase (HH2), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Maggie R.; Hellwinkel, Chad; Eaton, Laurence

    Scientific reason for data generation: to serve as an alternate high-yield scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. Date the data set was last modified: 02/02/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought tomore » market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 2% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply to crops already planted, but new plantings do take advantage of the gains in expected yield growth. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.« less

  6. Economic impact of reduced mortality due to increased cycling.

    PubMed

    Rutter, Harry; Cavill, Nick; Racioppi, Francesca; Dinsdale, Hywell; Oja, Pekka; Kahlmeier, Sonja

    2013-01-01

    Increasing regular physical activity is a key public health goal. One strategy is to change the physical environment to encourage walking and cycling, requiring partnerships with the transport and urban planning sectors. Economic evaluation is an important factor in the decision to fund any new transport scheme, but techniques for assessing the economic value of the health benefits of cycling and walking have tended to be less sophisticated than the approaches used for assessing other benefits. This study aimed to produce a practical tool for estimating the economic impact of reduced mortality due to increased cycling. The tool was intended to be transparent, easy to use, reliable, and based on conservative assumptions and default values, which can be used in the absence of local data. It addressed the question: For a given volume of cycling within a defined population, what is the economic value of the health benefits? The authors used published estimates of relative risk of all-cause mortality among regular cyclists and applied these to levels of cycling defined by the user to produce an estimate of the number of deaths potentially averted because of regular cycling. The tool then calculates the economic value of the deaths averted using the "value of a statistical life." The outputs of the tool support decision making on cycle infrastructure or policies, or can be used as part of an integrated economic appraisal. The tool's unique contribution is that it takes a public health approach to a transport problem, addresses it in epidemiologic terms, and places the results back into the transport context. Examples of its use include its adoption by the English and Swedish departments of transport as the recommended methodologic approach for estimating the health impact of walking and cycling. Copyright © 2013 World Health Organization. Published by Elsevier Inc. All rights reserved.

  7. The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012.

    PubMed

    Páscoa, P; Gouveia, C M; Russo, A; Trigo, R M

    2017-03-01

    The production of wheat in the Iberian Peninsula is strongly affected by climate conditions being particularly vulnerable to interannual changes in precipitation and long-term trends of both rainfall and evapotranspiration. Recent trends in precipitation and temperature point to an increase in dryness in this territory, thus highlighting the need to understand the dependence of wheat yield on climate conditions. The present work aims at studying the relation between wheat yields and drought events in the Iberian Peninsula, using a multiscalar drought index, the standardized precipitation evapotranspiration index (SPEI), at various timescales. The effects of the occurrence of dry episodes on wheat yields were analyzed, on regional spatial scale for two subperiods (1929-1985 and 1986-2012). The results show that in western areas, wheat yield is positively affected by dryer conditions, whereas the opposite happens in eastern areas. The winter months have a bigger influence in the west while the east is more dependent on the spring and summer months. Moreover, in the period of 1986-2012, the simultaneous occurrence of low-yield anomalies and dry events reaches values close to 100 % over many provinces. Results suggest that May and June have a strong control on wheat yield, namely, for longer timescales (9 to 12 months). A shift in the dependence of wheat yields on climatic droughts is evidenced by the increase in the area with positive correlation and the decrease in area with negative correlation between wheat yields and SPEI, probably due to the increase of dry events.

  8. Water yields from forests: an agnostic view

    Treesearch

    Robert R. Ziemer

    1987-01-01

    Abstract - Although experimental watershed studies have consistently shown that water yield can be increased by removing trees and shrubs, programs to increase water yield on an operational scale have consistently failed. Failure has been related to overstated goals and benefits, unrealistic assumptions, political naivete, and the emergence of new interest groups....

  9. Rx for low cash yields.

    PubMed

    Tobe, Chris

    2003-10-01

    Certain strategies can offer not-for-profit hospitals potentially greater investment yields while maintaining stability and principal safety. Treasury inflation-indexed securities can offer good returns, low volatility, and inflation protection. "Enhanced cash" strategies offer liquidity and help to preserve capital. Stable value "wrappers" allow hospitals to pursue higher-yielding fixed-income securities without an increase in volatility.

  10. Application of wheat yield model to United States and India. [Great Plains

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.

  11. Tree thinning as an option to increase herbaceous yield of an encroached semi-arid savanna in South Africa

    PubMed Central

    Smit, Gert N

    2005-01-01

    Background The investigation was conducted in a savanna area covered by what was considered an undesirably dense stand of Colophospermum mopane trees, mainly because such a dense stand of trees often results in the suppression of herbaceous plants. The objectives of this study were to determine the influence of intensity of tree thinning on the dry matter yield of herbaceous plants (notably grasses) and to investigate differences in herbaceous species composition between defined subhabitats (under tree canopies, between tree canopies and where trees have been removed). Seven plots (65 × 180 m) were subjected to different intensities of tree thinning, ranging from a totally cleared plot (0 %) to plots thinned to the equivalent of 10 %, 20%, 35 %, 50% and 75 % of the leaf biomass of a control plot (100 %) with a tree density of 2711 plants ha-1. The establishment of herbaceous plants (grasses and forbs) in response to reduced competition from the woody plants was measured during three full growing seasons following the thinning treatments. Results The grass component reacted positively to the tree thinning in terms of total dry matter (DM) yield, but forbs were negatively influenced. Rainfall interacted with tree density and the differences between grass DM yields in thinned plots during years of below average rainfall were substantially higher than those of the control. At high tree densities, yields differed little between seasons of varying rainfall. The relation between grass DM yield and tree biomass was curvilinear, best described by the exponential regression equation. Subhabitat differentiation by C. mopane trees did provide some qualitative benefits, with certain desirable grass species showing a preference for the subhabitat under tree canopies. Conclusion While it can be concluded from this study that high tree densities suppress herbaceous production, the decision to clear/thin the C. mopane trees should include additional considerations. Thinning of C

  12. Final Report on X-ray Yields from OMEGA II Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K B; May, M J; MacLaren, S A

    2007-06-20

    We present details about X-ray yields measured with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields are accurate to 10-15%. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the sub-keV range. Themore » PCD and HENWAY and DANTE numbers are compared. The time histories of the moderately hard (h{nu} > 4 keV) X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtration. There is general agreement between the H11 PCD and SNL PCD measured FWHM except for two of the shorter-laser-pulse shots, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope. X-ray waveforms from target emission in two softer spectral bands are also shown; the X-ray emissions have increasing duration as the spectral content gets softer.« less

  13. Increase in viability due to the accumulation of X chromosome mutations in Drosophila melanogaster males.

    PubMed

    Woodruff, Ronny C; Balinski, Michael A

    2018-05-09

    To increase our understanding of the role of new X-chromosome mutations in adaptive evolution, single-X Drosophila melanogaster males were mated with attached-X chromosome females, allowing the male X chromosome to accumulate mutations over 28 generations. Contrary to our hypothesis that male viability would decrease over time, due to the accumulation and expression of X-linked recessive deleterious mutations in hemizygous males, viability significantly increased. This increase may be attributed to germinal selection and to new X-linked beneficial or compensatory mutations, possibly supporting the faster-X hypothesis.

  14. Vulnerability of boreal zone for increased nitrogen loading due to climate change

    NASA Astrophysics Data System (ADS)

    Rankinen, Katri; Holmberg, Maria

    2016-04-01

    The observed rapid warming of the boreal zone that has been observed in Finland (0.14 °C by decade) is expected to continue (http://www.ipcc.ch/report/ar5/wg1/). Also precipitation is assumed to increase in future. These changes may increase nitrogen (N) loading from terrestrial environments to water bodies by accelerating soil organic matter decay and by increasing runoff. Nitrogen is limiting nutrient in the Baltic Sea but also in some lakes, so increased loading may increase eutrophication. Further, high nitrate levels in drinking water may cause methaemoglobin anemia for humans, and nitrate is also connected to increased risk of diabetes and cancer. Thus EU has set upper limits to nitrate concentration in drinking water. MONIMET (LIFE12 ENV/FI/000409) is a project about Climate Change Indicators and Vulnerability of Boreal Zone. We simulated N loading from two boreal catchments to the receiving waters by the dynamic, catchment scale model INCA in different climate change and land use change scenarios. We calculated land use specific N loading values for these two well monitored catchments that belong to the LTER (The Long Term Ecological Research) monitoring network. We upscaled the results to the larger river basin, combining them with the information on drinking water supply to assess the vulnerability. Specific emphasis was paid on nitrate concentrations in soil water and groundwater. In general, land use change has higher influence on N loading than increase in precipitation and temperature alone. Peak runoff will sift from snow melting peak in April to late autumn and winter. Growing season will become longer allowing more efficient vegetation uptake of nutrients. Small groundwater aquifers and private wells in the middle of agricultural fields will be in the risk of increased N concentrations, if agricultural N loading increases due to changes in agricultural patterns and land use change.

  15. Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future

    NASA Astrophysics Data System (ADS)

    Moftakhari, Hamed R.; AghaKouchak, Amir; Sanders, Brett F.; Feldman, David L.; Sweet, William; Matthew, Richard A.; Luke, Adam

    2015-11-01

    Mean sea level has risen tenfold in recent decades compared to the most recent millennia, posing a serious threat for population and assets in flood-prone coastal zones over the next century. An increase in the frequency of nuisance (minor) flooding has also been reported due to the reduced gap between high tidal datums and flood stage, and the rate of sea level rise (SLR) is expected to increase based on current trajectories of anthropogenic activities and greenhouse gases emissions. Nuisance flooding (NF), however nondestructive, causes public inconvenience, business interruption, and substantial economic losses due to impacts such as road closures and degradation of infrastructure. It also portends an increased risk in severe floods. Here we report substantial increases in NF along the coasts of United States due to SLR over the past decades. We then take projected near-term (2030) and midterm (2050) SLR under two representative concentration pathways (RCPs), 2.6 and 8.5, to estimate the increase in NF. The results suggest that on average, - 80 ± 10% local SLR causes the median of the NF distribution to increase by 55 ± 35% in 2050 under RCP8.5. The projected increase in NF will have significant socio-economic impacts and pose public health risks in coastal regions.

  16. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Jonkkari, I.; Kostamo, E.; Kostamo, J.; Syrjala, S.; Pietola, M.

    2012-07-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate-plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ˜ 0.3 μm) and rough (Ra ˜ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights.

  17. Confined ion energy >200 keV and increased fusion yield in a DPF with monolithic tungsten electrodes and pre-ionization

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred

    2017-10-01

    To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.

  18. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  19. Organ Donor Recovery Performed at an Organ Procurement Organization-Based Facility Is an Effective Way to Minimize Organ Recovery Costs and Increase Organ Yield.

    PubMed

    Doyle, Majella; Subramanian, Vijay; Vachharajani, Neeta; Collins, Kelly; Wellen, Jason R; Stahlschmidt, Emily; Brockmeier, Diane; Coleman, Jason; Kappel, Dean; Chapman, William C

    2016-04-01

    A new era in organ donation with national redistricting is being proposed. With these proposals, costs of organ acquisition are estimated to more than double. Traditionally, organ recoveries occur in the donor hospital setting, incurring premium hospital expenses. The aim of the study was to determine organ recovery costs and organ yield for donor recoveries performed at an organ procurement organization (OPO) facility. In 2001, we established an OPO facility and in 2008 began transferring the donor expeditiously when brain death was declared. The OPO donor and hospital costs on a per donor basis were calculated. Donation after cardiac death donors cannot be transferred and were included in the hospital cost analysis. From January 2009 to December 2014, nine hundred and sixty-three donors originating in our OPO had organs recovered and transplanted. Seven hundred and sixty-six (79.5%) donors were transferred to the OPO facility 8.6 hours (range 0.6 to 23.6 hours) after declaration of brain death. Donor recovery cost was 51% less when donors were transferred to the OPO facility ($16,153 OPO recovery vs $33,161 hospital recovery; p < 0.0001). Organ yield was 27.5% better (3.43 organs) from OPO-recovered donors vs an organ yield of 2.69 from hospital-recovered donors (p < 0.0001). Standard criteria donor organ yield from our OPO was 6% higher than the national average (3.92 vs 3.7 nationally; p = 0.012) and expanded criteria donor organ yield was 18% higher (2.2 vs 1.87 nationally; p = 0.03). An OPO facility for donor organ recovery increases efficiency and organ yield, reduces costs, and minimizes organ acquisition charge. As we face new considerations with broader sharing, increased efficiencies, cost. and organ use should be considered. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  1. Yield stress materials in soft condensed matter

    NASA Astrophysics Data System (ADS)

    Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien

    2017-07-01

    A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.

  2. Wheat yield dynamics: a structural econometric analysis.

    PubMed

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  3. Potential water yield reduction due to forestation across China

    Treesearch

    Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James M. Vose

    2006-01-01

    It is widely recognized that vegetation restoration will have positive effects on watershed health by reducing soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitat, and increasing ecosystem carbon sequestration. However, the hydrologic consequences of forestation on degraded lands are not well studied in the forest hydrology community...

  4. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  5. Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.).

    PubMed

    Kishore, G K; Pande, S; Podile, A R

    2005-01-01

    To isolate and characterize groundnut-associated bacterial isolates for growth promotion of groundnut in field. Three hundred and ninety-three groundnut-associated bacteria, representing the geocarposphere, phylloplane and rhizosphere, and endophytes were applied as seed treatment in greenhouse. Maximum increase in plant biomass (up to 26%) was observed following treatment with a rhizosphere isolate identified as Bacillus firmis GRS 123, and two phylloplane isolates Bacillus megaterium GPS 55 and Pseudomonas aeruginosa GPS 21. There was no correlation between the production of L-tryptophan-derived auxins and growth promotion by the test isolates. Actively growing cells and peat formulations of GRS 123 and GPS 55, and actively growing cells of GPS 21, significantly increased the plant growth and pod yield (up to 19%) in field. Rifampicin-resistant mutants of GRS 123 and GPS 21 colonized the ecto- and endorhizospheres of groundnut, respectively, up to 100 days after sowing (DAS), whereas GPS 55 was recovered from both the habitats at 100 DAS. Seed bacterization with phylloplane isolates promoted groundnut growth indicating the possibility of isolating rhizosphere beneficial bacteria from different habitats. Identification of phylloplane bacteria as effective plant growth-promoting rhizobacteria (PGPR) broadens the spectrum of PGPR available for field application.

  6. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    NASA Astrophysics Data System (ADS)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m-1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m-1) and moderately (M) saline water (ECw = 3.5 dS m-1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  7. Vulnerability Assessment of Housing Damage in the Philippines Due to an Increase Increase in Typhoon Intensity

    NASA Astrophysics Data System (ADS)

    Esteban, Miguel; Stromberg, Per; Gasparatos, Alexandros

    2010-05-01

    south is almost unaffected due to its proximity to the equator. The estimation of the damage shows that the number of houses partially or totally destroyed could increase by up to 58% in certain regions by 2085. The historical damage data shows how the adaptive capacity values of each region given by Yusuf and Herminia (2009) are crucial to the amount of damage recorded. These authors defined this parameter as the degree to which adjustments in practices, processes or structures can moderate or offset potential damage or take advantage of opportunities from climate change. This clearly highlights the importance of mitigation measures to increase the resilience of communities in the future. This is a significant conclusion of the present paper, independent of whether tropical cyclones increase in intensity or not.

  8. The effect of heating temperature on cytotoxicity and α-mangostin yield: Mangosteen pericarp juice and mangosteen extract

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Hasanah, Fitria; Krisanti, Elsa A.

    2018-03-01

    The pericarp of mangosteen (Garcinia mangostana L.) contains bioactive xanthones, with α-mangostin being the major component, has been known to possess antitumor, antiviral, and other pharmacological activities. In this study, the effect of elevated temperature during the preparation step of fresh mangosteen pericarp juice and mangosteen extract, on their α-mangostin yield and cytotoxicities was investigated. The cytotoxicity activity of fresh juice and mangosteen extract was investigated using the brine shrimp test. Heating the fresh pericarp mangosteen in water at 65°C for 30 minutes prior to blending produced a juice with higher α-mangostin yield and cytotoxicity compared to the traditional way of blending the juice at room temperature. Increasing α-mangostin yield of 9%-w/w due to heating was also observed when mangosteen extract was heated at 65°C, consistent with the increased cytotoxicity in terms of LC50 value. It is concluded that the effect of temperature on α-mangostin yield was in line with the temperature effect on cytotoxicity activity in all samples of pericarp juice and mangosteen extract in ethyl acetate fraction.

  9. Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

    PubMed

    Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe

    2016-01-08

    Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.

  10. Simulating evapotranspiration (ET) yield response of selected corn varieties under full and limited irrigation in the Texas High Plains using DSSAT-CERES-Maize

    USDA-ARS?s Scientific Manuscript database

    Water scarcity due to drought and groundwater depletion has led to increased interest in deficit irrigation strategies that reduce irrigation requirements while maintaining profitable yields. This has resulted in an increase in the number modeling studies aimed at evaluating crop response to limite...

  11. The importance of key floral bioactive compounds to honey bees for the detection and attraction of hybrid vegetable crops and increased seed yield.

    PubMed

    Mas, Flore; Harper, Aimee; Horner, Rachael; Welsh, Taylor; Jaksons, Peter; Suckling, David M

    2018-02-15

    Crop breeding programmes generally select for traits for improved yield and human consumption preferences. Yet, they often overlook one fundamental trait essential for insect-pollinated crops: pollinator attraction. This is even more critical for hybrid plants that rely on cross-pollination between the male-fertile line and the male-sterile line to set seeds. This study investigated the role of floral odours for honey bee pollination that could explain the poor seed yield in hybrid crops. The key floral bioactive compounds that honey bees detect were identified for three vegetable hybrid crops. It was found that 30% of the variation in bioactive compound quantities was explained by variety. Differences in quantities of the bioactive compounds triggered different degrees of olfactory response and were also associated with varied appetitive response. Correlating the abundance of each bioactive compound with seed yield, it was found that aldehydes such as nonanal and decanal can have a strong negative influence on seed yield with increasing quantity. Using these methodologies to identify relevant bioactive compounds associated with honey bee pollination, plant breeding programmes should also consider selecting for floral traits attractive to honey bees to improve crop pollination for enhanced seed yield. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. More Yield with Less Water: Increasing Water Use Efficiency by Capitalizing on the Adaptation of Native Shrubs in the Sudano-Sahel

    NASA Astrophysics Data System (ADS)

    Bogie, Nathaniel; Bayala, Roger; Diedhiou, Ibrahima; Dick, Richard; Ghezzehei, Teamrat

    2016-04-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively. We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Research plots at Keur Matar Arame with no fertilizer added were monitored in 2013 using two soil moisture sensor networks at depths of 10, 20, 40, 60, 100, 200, and 300cm. Cropping season water use total calculated based on beginning and end of season soil moisture and seasonal precipitation data revealed that crop-only plot used 411±32 mm of water, and the crop and shrub plot used 439±42 mm of water. Taking into account the quantity of crop biomass produced and neglecting the shrub biomass produced, the crop and shrub plot had a water use efficiency of 1.60 kg ha-1 mm-1 and the crop only plot had 0.269 kg ha-1 mm-1. Water status was measured three times throughout the season on millet leaves and revealed no significant trends. Handheld NDVI readings revealed significantly higher NDVI values in crop and shrub plots at all measurement dates. These findings build on work that was completed in 2004 at the site, but further increases in crop yields have been shown. Increasing water use efficiency by over 500% can be a great advantage in years of limited water availability such as 2013. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide

  13. Has the use of talc an effect on yield and extra virgin olive oil quality?

    PubMed

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Investigating sea level rise due to global warming in the teaching laboratory using Archimedes’ principle

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen; Pearce, Darren

    2015-11-01

    A teaching laboratory experiment is described that uses Archimedes’ principle to precisely investigate the effect of global warming on the oceans. A large component of sea level rise is due to the increase in the volume of water due to the decrease in water density with increasing temperature. Water close to 0 °C is placed in a beaker and a glass marble hung from an electronic balance immersed in the water. As the water warms, the weight of the marble increases as the water is less buoyant due to the decrease in density. In the experiment performed in this paper a balance with a precision of 0.1 mg was used with a marble 40.0 cm3 and mass of 99.3 g, yielding water density measurements with an average error of -0.008 ± 0.011%.

  15. Non-growing Rhodopseudomonas palustris Increases the Hydrogen Gas Yield from Acetate by Shifting from the Glyoxylate Shunt to the Tricarboxylic Acid Cycle*

    PubMed Central

    McKinlay, James B.; Oda, Yasuhiro; Rühl, Martin; Posto, Amanda L.; Sauer, Uwe; Harwood, Caroline S.

    2014-01-01

    When starved for nitrogen, non-growing cells of the photosynthetic bacterium Rhodopseudomonas palustris continue to metabolize acetate and produce H2, an important industrial chemical and potential biofuel. The enzyme nitrogenase catalyzes H2 formation. The highest H2 yields are obtained when cells are deprived of N2 and thus use available electrons to synthesize H2 as the exclusive product of nitrogenase. To understand how R. palustris responds metabolically to increase H2 yields when it is starved for N2, and thus not growing, we tracked changes in biomass composition and global transcript levels. In addition to a 3.5-fold higher H2 yield by non-growing cells we also observed an accumulation of polyhydroxybutyrate to over 30% of the dry cell weight. The transcriptome of R. palustris showed down-regulation of biosynthetic processes and up-regulation of nitrogen scavenging mechanisms in response to N2 starvation but gene expression changes did not point to metabolic activities that could generate the reductant necessary to explain the high H2 yield. We therefore tracked 13C-labeled acetate through central metabolic pathways. We found that non-growing cells shifted their metabolism to use the tricarboxylic acid cycle to metabolize acetate in contrast to growing cells, which used the glyoxylate cycle exclusively. This shift enabled cells to more fully oxidize acetate, providing the necessary reducing power to explain the high H2 yield. PMID:24302724

  16. Simulation of crop yield variability by improved root-soil-interaction modelling

    NASA Astrophysics Data System (ADS)

    Duan, X.; Gayler, S.; Priesack, E.

    2009-04-01

    Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental

  17. Normal yield tables for red alder.

    Treesearch

    Norman P. Worthington; Floyd A. Johnson; George R. Staebler; William J. Lloyd

    1960-01-01

    Increasing interest in the management of red alder (Alnus rubra) has created a need for reliable yield information. Existing yield tables for red alder have been very useful as interim sources of information, but they are generally inadequate for current and prospective management needs. The advisory committee for the Station's Olympia...

  18. Frost trends and their estimated impact on yield in the Australian wheatbelt

    PubMed Central

    Zheng, Bangyou; Chapman, Scott C.; Christopher, Jack T.; Frederiks, Troy M.; Chenu, Karine

    2015-01-01

    Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957–2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates. PMID:25922479

  19. Frost trends and their estimated impact on yield in the Australian wheatbelt.

    PubMed

    Zheng, Bangyou; Chapman, Scott C; Christopher, Jack T; Frederiks, Troy M; Chenu, Karine

    2015-06-01

    Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957-2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. 4% Yield Increase (HH4), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000320373827)

    2016-07-13

    Scientific reason for data generation: to serve as an alternate high-yield scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. Date the data set was last modified: 02/02/2016. How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought to market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 4% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.

  1. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups

    PubMed Central

    Dar, Manzoor H.; de Janvry, Alain; Emerick, Kyle; Raitzer, David; Sadoulet, Elisabeth

    2013-01-01

    Approximately 30% of the cultivated rice area in India is prone to crop damage from prolonged flooding. We use a randomized field experiment in 128 villages of Orissa India to show that Swarna-Sub1, a recently released submergence-tolerant rice variety, has significant positive impacts on rice yield when fields are submerged for 7 to 14 days with no yield penalty without flooding. We estimate that Swarna-Sub1 offers an approximate 45% increase in yields over the current popular variety when fields are submerged for 10 days. We show additionally that low-lying areas prone to flooding tend to be more heavily occupied by people belonging to lower caste social groups. Thus, a policy relevant implication of our findings is that flood-tolerant rice can deliver both efficiency gains, through reduced yield variability and higher expected yield, and equity gains in disproportionately benefiting the most marginal group of farmers. PMID:24263095

  2. Promoting acid resistance and nisin yield of Lactococcus lactis F44 by genetically increasing D-Asp amidation level inside cell wall.

    PubMed

    Hao, Panlong; Liang, Dongmei; Cao, Lijie; Qiao, Bin; Wu, Hao; Caiyin, Qinggele; Zhu, Hongji; Qiao, Jianjun

    2017-08-01

    Nisin fermentation by Lactococcus lactis requires a low pH to maintain a relatively higher nisin activity. However, the acidic environment will result in cell arrest, and eventually decrease the relative nisin production. Hence, constructing an acid-resistant L. lactis is crucial for nisin harvest in acidic nisin fermentation. In this paper, the first discovery of the relationship between D-Asp amidation-associated gene (asnH) and acid resistance was reported. Overexpression of asnH in L. lactis F44 (F44A) resulted in a sevenfold increase in survival capacity during acid shift (pH 3) and enhanced nisin desorption capacity compared to F44 (wild type), which subsequently contributed to higher nisin production, reaching 5346 IU/mL, 57.0% more than that of F44 in the fed-batch fermentation. Furthermore, the engineered F44A showed a moderate increase in D-Asp amidation level (from 82 to 92%) compared to F44. The concomitant decrease of the negative charge inside the cell wall was detected by a newly developed method based on the nisin adsorption amount onto cell surface. Meanwhile, peptidoglycan cross-linkage increased from 36.8% (F44) to 41.9% (F44A), and intracellular pH can be better maintained by blocking extracellular H + due to the maintenance of peptidoglycan integrity, which probably resulted from the action of inhibiting hydrolases activity. The inference was further supported by the acmC-overexpression strain F44C, which was characterized by uncontrolled peptidoglycan hydrolase activity. Our results provided a novel strategy for enhancing nisin yield through cell wall remodeling, which contributed to both continuous nisin synthesis and less nisin adsorption in acidic fermentation (dual enhancement).

  3. Characterizing bias correction uncertainty in wheat yield predictions

    NASA Astrophysics Data System (ADS)

    Ortiz, Andrea Monica; Jones, Julie; Freckleton, Robert; Scaife, Adam

    2017-04-01

    Farming systems are under increased pressure due to current and future climate change, variability and extremes. Research on the impacts of climate change on crop production typically rely on the output of complex Global and Regional Climate Models, which are used as input to crop impact models. Yield predictions from these top-down approaches can have high uncertainty for several reasons, including diverse model construction and parameterization, future emissions scenarios, and inherent or response uncertainty. These uncertainties propagate down each step of the 'cascade of uncertainty' that flows from climate input to impact predictions, leading to yield predictions that may be too complex for their intended use in practical adaptation options. In addition to uncertainty from impact models, uncertainty can also stem from the intermediate steps that are used in impact studies to adjust climate model simulations to become more realistic when compared to observations, or to correct the spatial or temporal resolution of climate simulations, which are often not directly applicable as input into impact models. These important steps of bias correction or calibration also add uncertainty to final yield predictions, given the various approaches that exist to correct climate model simulations. In order to address how much uncertainty the choice of bias correction method can add to yield predictions, we use several evaluation runs from Regional Climate Models from the Coordinated Regional Downscaling Experiment over Europe (EURO-CORDEX) at different resolutions together with different bias correction methods (linear and variance scaling, power transformation, quantile-quantile mapping) as input to a statistical crop model for wheat, a staple European food crop. The objective of our work is to compare the resulting simulation-driven hindcasted wheat yields to climate observation-driven wheat yield hindcasts from the UK and Germany in order to determine ranges of yield

  4. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  5. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct

  6. Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction.

    PubMed

    Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin

    2016-10-26

    The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.

  7. Impacts of multiple global environmental changes on African crop yield and water use efficiency: Implications to food and water security

    NASA Astrophysics Data System (ADS)

    Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.

    2016-12-01

    Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land

  8. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops

    PubMed Central

    2011-01-01

    Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present

  9. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.

    PubMed

    Mishra, Ashok; Singh, R; Raghuwanshi, N S; Chatterjee, C; Froebrich, Jochen

    2013-12-01

    Indian Ganga Basin (IGB), one of the most densely populated areas in the world, is facing a significant threat to food grain production, besides increased yield gap between actual and potential production, due to climate change. We have analyzed the spatial variability of climate change impacts on rice and wheat yields at three different locations representing the upper, middle and lower IGB. The DSSAT model is used to simulate the effects of climate variability and climate change on rice and wheat yields by analyzing: (i) spatial crop yield response to current climate, and (ii) impact of a changing climate as projected by two regional climate models, REMO and HadRM3, based on SRES A1B emission scenarios for the period 2011-2040. Results for current climate demonstrate a significant gap between actual and potential yield for upper, middle and lower IGB stations. The analysis based on RCM projections shows that during 2011-2040, the largest reduction in rice and wheat yields will occur in the upper IGB (reduction of potential rice and wheat yield respectively by 43.2% and 20.9% by REMO, and 24.8% and 17.2% by HadRM3). In the lower IGB, however, contrasting results are obtained, with HadRM3 based projections showing an increase in the potential rice and wheat yields, whereas, REMO based projections show decreased potential yields. We discuss the influence of agro-climatic factors; variation in temperature, length of maturity period and leaf area index which are responsible for modeled spatial variability in crop yield response within the IGB. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A data-oriented semi-process model for evaluating the yields of major crops at global scale (PRYSBI-2)

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2013-12-01

    Demand for major cereal crops will double by 2050 compared to the amount in 2005 due to the population growth, dietary change, and increase in biofuel use. This requires substantial efforts to increase crop yields under changing climate, water resources, and land use. In order to explore possible paths to meet the supply target, global crop modeling is a useful approach. To that end, we developed a process-based large-area crop model (called PRYSBIE-2) for major crops, including soybean. This model consisted of the enzyme kinetics model for photosynthetic carbon assimilation and soil water balance model from SWAT. The parameter values on water stress, nitrogen stress were calibrated over global croplands from one grid cell to another (1.125° in latitude and longitude) using Markov Chain Monte Carlo (MCMC) methods. The historical yield data collected from major crop-producing countries on a state, county, or prefecture scale were used as the calibration data. Then we obtained the model parameter sets that can give high correlation coefficients between the historical and estimated yield time series for the period 1980-2006. We analyzed the impacts on soybean yields in the three top soybean-producing countries (the USA, China, and Brazil) associated with the changes in climate and CO2 during the period 1980-2006, using the model. We found that, given the simulated yields and reported harvested areas, the estimated average net benefit from the CO2 fertilization effect (with one standard deviation) in the USA, Brazil, and China in the years was 42.70×32.52 Mt, 35.30×28.55 Mt, and 12.52×15.11 Mt, respectively. Results suggest that the CO2-induced increases in soybean yields in the USA and China likely offset a part of the negative impacts on yields due to the historical temperature rise. In contrast, the net effect of the past change in climate and CO2 in Brazil appeared to be positive. This study demonstrates a quantitative estimation of the impacts of the changes

  11. Yield: it's now an entitlement

    NASA Astrophysics Data System (ADS)

    George, Bill

    1994-09-01

    Only a few years ago, the primary method of cost reduction and productivity improvement in the semiconductor industry was increasing manufacturing yields throughout the process. Many of the remarkable reliability improvements realized over the past decade have come about as a result of actions that were originally taken primarily to improve device yields. Obviously, the practice of productivity improvement through yield enhancement is limited to the attainment of 100% yield, at which point some other mechanism must be employed. Traditionally, new products have been introduced to manufacturing at a point of relative immaturity, and semiconductor producers have relied on the traditional `learning curve' method of yield improvement to attain profitable levels of manufacturing yield. Recently, results of a survey of several fabs by a group of University of California at Berkeley researchers in the Competitive Semiconductor Manufacturing Program indicate that most factories learn at about the same rate after startup, in terms of both line yield and defectivity. If this is indeed generally true, then the most competitive factor is the one that starts with the highest yield, and it is difficult to displace a leader once his lead has been established. The two observations made above carry enormous implications for the semiconductor development or manufacturing professional. First, one must achieve very high yields in order to even play the game. Second, the achievement of competitive yields over time in the life of a factory is determined even before the factory is opened, in the planning and development phase. Third, and perhaps most uncomfortable for those of us who have relied on yield improvement as a cost driver, the winners of the nineties will find new levers to drive costs down, having already gotten the benefit of very high yield. This paper looks at the question of how the winners will achieve the critical measures of success, high initial yield and utilization

  12. Fatigue life estimation on coke drum due to cycle optimization

    NASA Astrophysics Data System (ADS)

    Siahaan, Andrey Stephan; Ambarita, Himsar; Kawai, Hideki; Daimaruya, Masashi

    2018-04-01

    In the last decade, due to the increasing demand of petroleum product, the necessity for converting the heavy oil are increasing. Thus, demand for installing coke drum in whole world will be increase. The coke drum undergoes the cyclic high temperature and suddenly cooling but in fact is not designed to withstand that kind of cycle, thus the operational life of coke drum is much shorter in comparison to other equipment in oil refinery. Various factors determine in order to improve reliability and minimize the down time, and it is found that the cycle optimization due to cycle, temperature, and pressure have an important role. From this research it is found that the fatigue life of the short cycle is decrease by a half compare to the normal cycle. It also found that in the preheating stage, the stress peak is far exceed the yield strength of coke drum material and fall into plastic deformation. This is happened because of the temperature leap in the preheating stage that cause thermal shock in the upper part of the skirt of the coke drum.

  13. Increased yield pressure in the anal canal during sacral nerve stimulation: a pilot study with the functional lumen imaging probe.

    PubMed

    Haas, S; Liao, D; Gregersen, H; Lundby, L; Laurberg, S; Krogh, K

    2017-02-01

    Sacral nerve stimulation (SNS) is a well-established treatment for fecal incontinence but its mode of action remains obscure. Anal sphincter function is usually evaluated with manometry but resistance to distension may be a more appropriate parameter than luminal pressure. The functional lumen imaging probe allows detailed description of distension properties of the anal canal. Our objective in this study was to characterize the impact of SNS on distension properties of the anal canal in patients with idiopathic fecal incontinence. We studied 10 women (median age 64 [44-79] years) with idiopathic fecal incontinence at baseline and during SNS. The luminal geometry of the anal canal was examined with the FLIP at rest and during squeeze and the distensibility of the anal canal was investigated during filling of the bag. All patients were successfully treated with SNS and the mean Wexner Incontinence Score was reduced from 14.9 ± 4 to 7.1 ± 4.8 (P<.001). The pressure required to open the narrowest point of the anal canal during distension (yield pressure) increased from 14.5 ± 12.2 mmHg at baseline to 20.5 ± 13.3 mmHg during SNS (P<.01). The pressure-strain elastic modulus increased non-significantly from 2.2 ± 0.5 to 2.9 ± 1.6 kPa, indicating increased stiffness of the anal canal. The yield pressure and the resistance to distension increased in response to SNS for idiopathic fecal incontinence. This will inevitably increase the resistance to flow through the anal canal, which may contribute to the benefits of sacral nerve stimulation. © 2016 John Wiley & Sons Ltd.

  14. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    USGS Publications Warehouse

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  15. Uncertainty in Simulating Wheat Yields Under Climate Change

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  16. Uncertainty in simulating wheat yields under climate change

    NASA Astrophysics Data System (ADS)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.

    2013-09-01

    Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.

  17. Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding

    NASA Astrophysics Data System (ADS)

    Bélanger, S.; Babin, M.; Tremblay, J.-É.

    2013-06-01

    The Arctic Ocean and its marginal seas are among the marine regions most affected by climate change. Here we present the results of a diagnostic model used to assess the primary production (PP) trends over the 1998-2010 period at pan-Arctic, regional and local (i.e. 9.28 km resolution) scales. Photosynthetically active radiation (PAR) above and below the sea surface was estimated using precomputed look-up tables of spectral irradiance, taking as input satellite-derived cloud optical thickness and cloud fraction parameters from the International Satellite Cloud Climatology Project (ISCCP) and sea ice concentration from passive microwaves data. A spectrally resolved PP model, designed for optically complex waters, was then used to assess the PP trends at high spatial resolution. Results show that PP is rising at a rate of +2.8 TgC yr-1 (or +14% decade-1) in the circum-Arctic and +5.1 TgC yr-1 when sub-Arctic seas are considered. In contrast, incident PAR above the sea surface (PAR(0+)) has significantly decreased over the whole Arctic and sub-Arctic Seas, except over the perennially sea-ice covered waters of the Central Arctic Ocean. This fading of PAR(0+) (-8% decade-1) was caused by increasing cloudiness during summer. Meanwhile, PAR penetrating the ocean (PAR(0-)) increased only along the sea ice margin over the large Arctic continental shelf where sea ice concentration declined sharply since 1998. Overall, PAR(0-) slightly increased in the circum-Arctic (+3.4% decade-1), while it decreased when considering both Arctic and sub-Arctic Seas (-3% decade-1). We showed that rising phytoplankton biomass (i.e. chlorophyll a) normalized by the diffuse attenuation of photosynthetically usable radiation (PUR), accounted for a larger proportion of the rise in PP than did the increase in light availability due to sea-ice loss in several sectors, and particularly in perennially and seasonally open waters. Against a general backdrop of rising productivity over Arctic shelves

  18. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).

    PubMed

    Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C

    2014-02-28

    Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.

  19. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-04-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0-20 cm depth) at the rate of 0.35 (95 % CI, 0.31-0.40) Mg C ha-1 yr-1, increased crop grain yield by 13.4 % (9.3-18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha-1 yr-1 with mineral fertilizer of 200-400 kg N ha-1 yr-1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9-56.4 %) and SOC sequestrated by the rate of 0.85 (0.54-1.15) Mg C ha-1 yr-1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28-62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11-15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture

  20. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature

  1. Biochar boosts tropical but not temperate crop yields

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Abalos, Diego; Prodana, Marija; Catarina Bastos, Ana; van Groenigen, Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-05-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services.

  2. Effects of fragmentation, supplementation and the addition of phase II compost to 2nd break compost on mushroom (Agaricus bisporus) yield.

    PubMed

    Royse, Daniel J

    2010-01-01

    Double-cropping offers growers an opportunity to increase production efficiency while reducing costs. We evaluated degree of fragmentation, supplementation, and addition of phase II compost (PIIC) to 2nd break compost (2BkC) on mushroom yield and biological efficiency (BE%). One crop was extended as a triple crop in which we evaluated effect of compost type, and addition of phase II compost and supplement. All crops involved removing the casing layer after 2nd break and then using 2BkC for the various treatments. Simple fragmentation of the compost increased mushroom yield by 30% compared to non-fragmented compost. Addition of a commercial supplement to fragmented compost increased mushroom yield by 53-56% over non-supplemented, fragmented 2BkC. Fragmented, supplemented 2BkC resulted in a 99% and 108% yield increase over the non-fragmented control depending on degree of fragmentation (3x, 1x, respectively). A 3rd crop of mushrooms was produced from 2BkC, but yields were about one-half that of the 1st and 2nd crops. Double-cropping (and even triple-cropping) offers growers an opportunity to increase bio-efficiency, reduce production costs, and increase profitability. The cost of producing Agaricus bisporus continues to rise due to increasing expenses including materials, energy, and labor. Optimizing production practices, through double- or triple-cropping, could help growers become more efficient and competitive, and ensure the availability of mushrooms for consumers.

  3. Using artificial neural network and satellite data to predict rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-09-01

    Rice production in Bangladesh is a crucial part of the national economy and providing about 70 percent of an average citizen's total calorie intake. The demand for rice is constantly rising as the new populations are added in every year in Bangladesh. Due to the increase in population, the cultivation land decreases. In addition, Bangladesh is faced with production constraints such as drought, flooding, salinity, lack of irrigation facilities and lack of modern technology. To maintain self sufficiency in rice, Bangladesh will have to continue to expand rice production by increasing yield at a rate that is at least equal to the population growth until the demand of rice has stabilized. Accurate rice yield prediction is one of the most important challenges in managing supply and demand of rice as well as decision making processes. Artificial Neural Network (ANN) is used to construct a model to predict Aus rice yield in Bangladesh. Advanced Very High Resolution Radiometer (AVHRR)-based remote sensing satellite data vegetation health (VH) indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used as input variables and official statistics of Aus rice yield is used as target variable for ANN prediction model. The result obtained with ANN method is encouraging and the error of prediction is less than 10%. Therefore, prediction can play an important role in planning and storing of sufficient rice to face in any future uncertainty.

  4. Satellite-based assessment of grassland yields

    NASA Astrophysics Data System (ADS)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  5. [Spatial-temporal variations of spring maize potential yields in a changing climate in Northeast China.

    PubMed

    Liu, Zhi Juan; Yang, Xiao Guang; Lyu, Shuo; Wang, Jing; Lin, Xiao Mao

    2018-01-01

    Based on meteorological data, agro-meteorological observations, and agricultural statistical data in Northeast China (NEC), by using the validated Agricultural Production System sIMulator (APSIM-maize), the potential, attainable, potential farmers' and actual farmers' yields of spring maize during the period 1961 to 2015 were analyzed, and the effects of climate variation on maize potential yield in NEC were quantified. Results indicated that the potential yield of spring maize was 12.2 t·hm -2 during the period 1961 to 2015, with those in northeast being lower than southwest within the study region. The attainable yield of spring maize was 11.3 t·hm -2 , and showed a similar spatial distribution with potential yield. Under the current farmers' management practices, mean simulated potential and actual farmers' yields were 6.5 and 4.5 t·hm -2 , respectively. Assuming there were no changes in cultivars and management practices in NEC, the mean potential, attainable, and potential farmers' yields of spring maize would decrease by 0.34, 0.25 and 0.10 t·hm -2 per decade in NEC. However, the actual farmers' yields increased with the value of 1.27 t·hm -2 per decade averaged over NEC. Due to climate variation, year-to-year variations of spring maize potential, attainable, and potential farmers' yields were significant, ranging from 10.0 to 14.4, 9.8 to 13.3, 4.4 to 8.5 t·hm -2 , respectively.

  6. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems.

    PubMed

    Bass, Adrian M; Bird, Michael I; Kay, Gavin; Muirhead, Brian

    2016-04-15

    The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO3, NH4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  8. Growth and Yield Responses of Cowpea to Inoculation and Phosphorus Fertilization in Different Environments

    PubMed Central

    Kyei-Boahen, Stephen; Savala, Canon E. N.; Chikoye, David; Abaidoo, Robert

    2017-01-01

    Cowpea (Vigna unguiculata) is a major source of dietary protein and essential component of the cropping systems in semi-arid regions of Sub-Saharan Africa. However, yields are very low due to lack of improved cultivars, poor management practices, and limited inputs use. The objectives of this study were to assess the effects of rhizobia inoculant and P on nodulation, N accumulation and yield of two cowpea cultivars in Mozambique. Field study was conducted in three contrasting environments during the 2013/2014 and 2014/2015 seasons using randomized complete block design with four replications and four treatments. Treatments consisted of seed inoculation, application of 40 kg P2O5 ha-1, inoculation + P, and a non-inoculated control. The most probable number (MPN) technique was used to estimate the indigenous bradyrhizobia populations at the experimental sites. The rhizobia numbers at the sites varied from 5.27 × 102 to 1.07 × 103 cells g-1 soil. Inoculation increased nodule number by 34–76% and doubled nodule dry weight (78 to 160 mg plant-1). P application improved nodulation and interacted positively with the inoculant. Inoculation, P, and inoculant + P increased shoot dry weight, and shoot and grain N content across locations but increases in number of pods plant-1, seeds pod-1, and 100-seed weight were not consistent among treatments across locations. Shoot N content was consistently high for the inoculated plants and also for the inoculated + P fertilized plants, whereas the non-inoculated control plants had the lowest tissue N content. P uptake in shoot ranged from 1.72 to 3.77 g kg-1 and was higher for plants that received P fertilizer alone. Inoculation and P either alone or in combination consistently increased cowpea grain yield across locations with yields ranging from 1097 kg ha-1 for the non-inoculated control to 1674 kg ha-1 for the inoculant + P treatment. Grain protein concentration followed a similar trend as grain yield and ranged from 223 to

  9. The impact of tropospheric ozone pollution on trial plot winter wheat yields in Great Britain - an econometric approach.

    PubMed

    Kaliakatsou, Evridiki; Bell, J Nigel B; Thirtle, Colin; Rose, Daniel; Power, Sally A

    2010-05-01

    Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O(3), with losses of up to 25%. However, the only British econometric study on O(3) impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O(3) tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Midkine Increases Diagnostic Yield in AFP Negative and NASH-Related Hepatocellular Carcinoma

    PubMed Central

    Vongsuvanh, Roslyn; van der Poorten, David; Iseli, Tristan; Strasser, Simone I.; McCaughan, Geoffrey W.; George, Jacob

    2016-01-01

    Robust biomarkers for population-level hepatocellular carcinoma (HCC) surveillance are lacking. We compared serum midkine (MDK), dickkopf-1 (DKK1), osteopontin (OPN) and AFP for HCC diagnosis in 86 HCC patients matched to 86 cirrhotics, 86 with chronic liver disease (CLD) and 86 healthy controls (HC). Based on the performance of each biomarker, we assessed a separate longitudinal cohort of 28 HCC patients, at and before cancer diagnosis. Serum levels of MDK and OPN were higher in HCC patients compared to cirrhosis, CLD and HC groups. DKK1 was not different between cases and controls. More than half of HCC patients had normal AFP. In this AFP-negative HCC cohort, 59.18% (n = 29/49) had elevated MDK, applying the optimal cut-off of 0.44 ng/ml. Using AFP ≥ 20 IU/ml or MDK ≥ 0.44 ng/ml, a significantly greater number (76.7%; n = 66/86) of HCC cases were detected. The area under the receiver operating curve for MDK was superior to AFP and OPN in NASH-HCC diagnosis. In the longitudinal cohort, MDK was elevated in 15/28 (54%) of HCC patients at diagnosis, of whom 67% had elevated MDK 6 months prior. Conclusion: AFP and MDK have a complementary role in HCC detection. MDK increases the diagnostic yield in AFP-negative HCC and has greater diagnostic performance than AFP, OPN and DKK-1 in the diagnosis of NASH-HCC. Additionally, MDK has a promising role in the pre-clinical diagnosis of HCC. PMID:27219517

  11. Application of a CROPWAT Model to Analyze Crop Yields in Nicaragua

    NASA Astrophysics Data System (ADS)

    Doria, R.; Byrne, J. M.

    2013-12-01

    ABSTRACT Changes in climate are likely to influence crop yields due to varying evapotranspiration and precipitation over agricultural regions. In Nicaragua, agriculture is extensive, with new areas of land brought into production as the population increases. Nicaraguan staple food items (maize and beans) are produced mostly by small scale farmers with less than 10 hectares, but they are critical for income generation and food security for rural communities. Given that the majority of these farmers are dependent on rain for crop irrigation, and that maize and beans are sensitive to variations in temperature and rainfall patterns, the present study was undertaken to assess the impact of climate change on these crop yields. Climate data were generated per municipio representing the three major climatic zones of the country: the wet Pacific lowland, the cooler Central highland, and the Caribbean lowland. Historical normal climate data from 1970-2000 (baseline period) were used as input to CROPWAT model to analyze the potential and actual evapotranspiration (ETo and ETa, respectively) that affects crop yields. Further, generated local climatic data of future years (2030-2099) under various scenarios were inputted to the CROPWAT to determine changes in ETo and ETa from the baseline period. Spatial variability maps of both ETo and ETa as well as crop yields were created. Results indicated significant variation in seasonal rainfall depth during the baseline period and predicted decreasing trend in the future years that eventually affects yields. These maps enable us to generate appropriate adaptation measures and best management practices for small scale farmers under future climate change scenarios. KEY WORDS: Climate change, evapotranspiration, CROPWAT, yield, Nicaragua

  12. Lattice Strain Due to an Atomic Vacancy

    PubMed Central

    Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.

    2009-01-01

    Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230

  13. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China

    PubMed Central

    Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change. PMID:29099842

  14. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    PubMed

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    factors that affected in the eastern and western Inner Mongolia. Furthermore, the effect of the average minimum temperature on yield was greater than that of the average maximum temperature. The increase of temperature in the western and middle regions would reduce the spring wheat yield, while in the eastern region due to the rising temperature, the spring wheat yield increased. The increase of solar radiation in the eastern and central regions would increase the yield of spring wheat. The increased air relative humidity would make the western spring wheat yield increased and the eastern spring wheat yield decreased. Finally, the models describing combined effects of these dominant climatic factors on the maturity and yield in different regions of Inner Mongolia were used to establish geographical differences. Our findings have important implications for improving climate change impact studies and for local agricultural production to cope with ongoing climate change.

  15. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    PubMed Central

    Li, Qisong; Chen, Jun; Wu, Linkun; Luo, Xiaomian; Li, Na; Arafat, Yasir; Lin, Sheng; Lin, Wenxiong

    2018-01-01

    Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS), semi-separation intercropping (SS) using a nylon net, and complete separation intercropping (CS) using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs) showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS) showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS) improved levels of soil-available nutrients (nitrogen (N) and phosphorus (P)) and enzymes (urease and acid phosphomonoesterase) as compared to intercropping without belowground interactions (CS). Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P) supply capacity and soil microecosystem stability. PMID:29470429

  16. Closing Yield Gaps: How Sustainable Can We Be?

    PubMed

    Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E; Kropp, Juergen P

    2015-01-01

    Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way

  17. Blackleg (Leptosphaeria maculans) Severity and Yield Loss in Canola in Alberta, Canada

    PubMed Central

    Hwang, Sheau-Fang; Strelkov, Stephen E.; Peng, Gary; Ahmed, Hafiz; Zhou, Qixing; Turnbull, George

    2016-01-01

    Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L.) in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields. PMID:27447676

  18. Increase in the Quantum Yield of Photoinhibition Contributes to Copper Toxicity in Vivo1

    PubMed Central

    Pätsikkä, Eija; Aro, Eva-Mari; Tyystjärvi, Esa

    1998-01-01

    The effect of copper on photoinhibition of photosystem II in vivo was studied in bean (Phaseolus vulgaris L. cv Dufrix). The plants were grown hydroponically in the presence of various concentrations of Cu2+ ranging from the optimum 0.3 μm (control) to 15 μm. The copper concentration of leaves varied according to the nutrient medium from a control value of 13 mg kg−1 dry weight to 76 mg kg−1 dry weight. Leaf samples were illuminated in the presence and absence of lincomycin at different light intensities (500–1500 μmol photons m−2 s−1). Lincomycin prevents the concurrent repair of photoinhibitory damage by blocking chloroplast protein synthesis. The photoinhibitory decrease in the light-saturated rate of O2 evolution measured from thylakoids isolated from treated leaves correlated well with the decrease in the ratio of variable to maximum fluorescence measured from the leaf discs; therefore, the fluorescence ratio was used as a routine measurement of photoinhibition in vivo. Excess copper was found to affect the equilibrium between photoinhibition and repair, resulting in a decrease in the steady-state concentration of active photosystem II centers of illuminated leaves. This shift in equilibrium apparently resulted from an increase in the quantum yield of photoinhibition (ΦPI) induced by excess copper. The kinetic pattern of photoinhibition and the independence of ΦPI on photon flux density were not affected by excess copper. An increase in ΦPI may contribute substantially to Cu2+ toxicity in certain plant species. PMID:9625715

  19. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase

    PubMed Central

    Li, Dayong; Huang, Zhiyuan; Song, Shuhui; Xin, Yeyun; Mao, Donghai; Lv, Qiming; Zhou, Ming; Tian, Dongmei; Tang, Mingfeng; Wu, Qi; Liu, Xue; Chen, Tingting; Song, Xianwei; Fu, Xiqin; Zhao, Bingran; Liang, Chengzhi; Li, Aihong; Liu, Guozhen; Li, Shigui; Hu, Songnian; Cao, Xiaofeng; Yu, Jun; Yuan, Longping; Chen, Caiyan; Zhu, Lihuang

    2016-01-01

    Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world’s food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed. PMID:27663737

  20. Regional crop yield forecasting: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    de Wit, A.; van Diepen, K.; Boogaard, H.

    2009-04-01

    Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.

  1. Increasing of Urban Radiation due to Climate Change and Reduction Strategy using Vegetation

    NASA Astrophysics Data System (ADS)

    Park, C.; Lee, D.; Heo, H. K.; Ahn, S.

    2017-12-01

    Urban Heat Island (UHI) which means urban air temperature is higher than suburban area is one of the most important environmental issues in Urban. High density of buildings and high ratio of impervious surfaces increases the radiation fluxes in urban canopy. Furthermore, climate change is expected to make UHI even more seriously in the future. Increased irradiation and air temperature cause high amount of short wave and long wave radiation, respectively. This increases net radiation negatively affects heat condition of pedestrian. UHI threatens citizen's health by increasing violence and heat related diseases. For this reason, understanding how much urban radiation will increase in the future, and exploring radiation reduction strategies is important for reducing UHI. In this research, we aim to reveal how the radiation flux in the urban canyon will change as the climate change and determine how much of urban vegetation will be needed to cover this degradation. The study area is a commercial district in Seoul where highly populated area. Due to the high density of buildings and lack of urban vegetation, this area has a poor thermal condition in summer. In this research, we simulate the radiation flux on the ground using multi-layer urban canopy model. Unlike conventionally used urban canopy model to simulate radiation transfer using vertically single layer, the multi-layer model we used here, enables to consider the vertical heterogeneous of buildings and urban vegetation. As a result, net radiation of urban ground will be increase 2.1 W/m² in the 2050s and 2.7 W/m² in the 2100s. And to prevent the increase of radiation, it is revealed that the urban vegetation should by increased by 10%. This research will be valuable in establishing greening planning as a strategy to reduce UHI effect.

  2. Efficacies of biochar and biochar-based amendment on vegetable yield and nitrogen utilization in four consecutive planting seasons.

    PubMed

    Wang, Hefang; Zheng, Hao; Jiang, Zhixiang; Dai, Yanhui; Liu, Guocheng; Chen, Lei; Luo, Xianxiang; Liu, Minhui; Wang, Zhenyu

    2017-09-01

    Biochar has been suggested as a potential tailored technology for mediating soil conditions and improving crop yields. However, the efficacies of biochar and biochar-based amendments (e.g., composted biochar) in agricultural soils under a rotation system remain uncertain. In this study, an arable soil was subjected to peanut shell biochar (PBC) and biochar-based amendment (PAD) combined with or without nitrogen (N) fertilizer to evaluate their effects on vegetable yield, N bioavailability, and their relative contribution to vegetable biomass in four consecutive planting seasons. PBC alone or in co-application with N fertilizer had little effect on vegetable yield, while PAD co-application with N fertilizer decreased vegetable biomass because of the inhibition of root morphology by excessive nutrient supply. PBC and PAD applications increased rhizosphere soil pH due to OH - and HCO 3 - release and NO 3 - -N uptake. Although the addition of PAD increased soil N contents due to its high contents in PAD, it had little effects on N utilization efficiency (NUE) in the four seasons. The relative contribution of PBC, PAD, and their interaction with N fertilizer to biomass yield was maintained at a low level. Our results indicated that a biochar-based amendment (e.g., PAD) was a potential alternative to N fertilizer, but the ratio of biochar to additives should be managed carefully to generate optimal benefits. Notably, the efficacy of PAD on plant growth was closely associated with plant species, and further related research on different plants is encouraged. Copyright © 2017. Published by Elsevier B.V.

  3. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    PubMed Central

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  4. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply.

    PubMed

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  5. The effect of axial ligands on the quantum yield of singlet oxygen of new silicon phthalocyanine

    NASA Astrophysics Data System (ADS)

    Lv, Huafei; Zhang, Xuemei; Yu, Xinxin; Pan, Sujuan; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-10-01

    The singlet oxygen (1O2) production abilitity is an important factor to assess their potential as effective of photosensitizers. In this paper, the 1O2 production rate, production rate constant and quantum yield of silicon(IV) phthalocyanine axially bearing 1-3 generation dendritic substituents were evaluated by a high performance liquid chromatographic method. The results show that the 1O2 production rate and production rate constant of these compounds increase gradually with dendritic generations increase. And the 1O2 quantum yield of silicon(IV) phthalocyanine with first generation dendritic ligand was the highest. This may be due to the isolation effect of the dendritic ligands on the phthalocyanine core. The parameters of the observed 1O2 production properties will provide valuable data for these dendrimer phthalocyanines as promising photosensitizer in PDT application.

  6. [Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties].

    PubMed

    Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang

    2017-04-18

    To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could

  7. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    PubMed Central

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.; Großkinsky, Dominik K.; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C.; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  8. Rice Research to Break Yield Barriers

    NASA Astrophysics Data System (ADS)

    Verma, Vivek; Ramamoorthy, Rengasamy; Kohli, Ajay; Kumar, Prakash P.

    2015-10-01

    The world’s population continues to expand and it is expected to cross 9 billion by 2050. This would significantly amplify the demand for food, which will pose serious threats to global food security. Additional challenges are being imposed due to a gradual decrease in the total arable land and global environmental changes. Hence, it is of utmost importance to review and revise the existing food production strategies by incorporating novel biotechnological approaches that can help to break the crop yield barriers in the near future. In this review, we highlight some of the concerns hampering crop yield enhancements. The review also focuses on modern breeding techniques based on genomics as well as proven biotechnological approaches that enable identification and utilization of candidate genes. Another aspect of discussion is the important area of research, namely hormonal regulation of plant development, which is likely to yield valuable regulatory genes for such crop improvement efforts in the future. These strategies can serve as potential tools for developing elite crop varieties for feeding the growing billions.

  9. [Study on High-yield Cultivation Measures for Arctii Fructus].

    PubMed

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  10. Global growth and stability of agricultural yield decrease with pollinator dependence

    PubMed Central

    Garibaldi, Lucas A.; Aizen, Marcelo A.; Klein, Alexandra M.; Cunningham, Saul A.; Harder, Lawrence D.

    2011-01-01

    Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers’ inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield–resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961–2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached. PMID:21422295

  11. Comparison of statistical models for analyzing wheat yield time series.

    PubMed

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha⁻¹ year⁻¹ in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale.

  12. Comparison of Statistical Models for Analyzing Wheat Yield Time Series

    PubMed Central

    Michel, Lucie; Makowski, David

    2013-01-01

    The world's population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha−1 year−1 in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale. PMID:24205280

  13. Nitrate concentration effects on NO3-N uptake and reduction, growth, and fruit yield in strawberry

    NASA Technical Reports Server (NTRS)

    Darnell, R. L.; Stutte, G. W.; Sager, J. C. (Principal Investigator)

    2001-01-01

    Strawberries (Fragaria xananassa Duch. 'Osogrande') were grown hydroponically with three NO3-N concentrations (3.75, 7.5, or 15.0 mM) to determine effects of varying concentration on NO3-N uptake and reduction rates, and to relate these processes to growth and fruit yield. Plants were grown for 32 weeks, and NO3-N uptake and nitrate reductase (NR) activities in roots and shoots were measured during vegetative and reproductive growth. In general, NO3-N uptake rates increased as NO3-N concentration in the hydroponics system increased. Tissue NO3- concentration also increased as external NO3-N concentration increased, reflecting the differences in uptake rates. There was no effect of external NO3-N concentration on NR activities in leaves or roots during either stage of development. Leaf NR activity averaged approximately 360 nmol NO2 formed/g fresh weight (FW)/h over both developmental stages, while NR activity in roots was much lower, averaging approximately 115 nmol NO2 formed/g FW/h. Vegetative organ FW, dry weight (DW), and total fruit yield were unaffected by NO3-N concentration. These data suggest that the inability of strawberry to increase growth and fruit yield in response to increasing NO3-N concentrations is not due to limitations in NO3-N uptake rates, but rather to limitations in NO3- reduction and/or assimilation in both roots and leaves.

  14. Fission yield covariances for JEFF: A Bayesian Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Leray, Olivier; Rochman, Dimitri; Fleming, Michael; Sublet, Jean-Christophe; Koning, Arjan; Vasiliev, Alexander; Ferroukhi, Hakim

    2017-09-01

    The JEFF library does not contain fission yield covariances, but simply best estimates and uncertainties. This situation is not unique as all libraries are facing this deficiency, firstly due to the lack of a defined format. An alternative approach is to provide a set of random fission yields, themselves reflecting covariance information. In this work, these random files are obtained combining the information from the JEFF library (fission yields and uncertainties) and the theoretical knowledge from the GEF code. Examples of this method are presented for the main actinides together with their impacts on simple burn-up and decay heat calculations.

  15. Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions

    NASA Astrophysics Data System (ADS)

    Santos, João A.; Malheiro, Aureliano C.; Karremann, Melanie K.; Pinto, Joaquim G.

    2011-03-01

    The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.

  16. Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra.

    PubMed

    Manjunath, Mallappa; Kanchan, Amrita; Ranjan, Kunal; Venkatachalam, Siddarthan; Prasanna, Radha; Ramakrishnan, Balasubramanian; Hossain, Firoz; Nain, Lata; Shivay, Yashbir Singh; Rai, Awadhesh Bahadur; Singh, Bijendra

    2016-02-01

    Microorganisms in the rhizosphere mediate the cycling of nutrients, their enhanced mobilisation and facilitate their uptake, leading to increased root growth, biomass and yield of plants. We examined the promise of beneficial cyanobacteria and eubacteria as microbial inoculants, applied singly or in combination as consortia or biofilms, to improve growth and yields of okra. Interrelationships among the microbial activities and the micro/macro nutrient dynamics in soils and okra yield characteristics were assessed along with the changes in the soil microbiome. A significant effect of microbial inoculation on alkaline phosphatase activity was recorded both at the mid-crop and harvest stages. Microbial biomass carbon values were highest due to the Anabaena sp. - Providencia sp. (CR1 + PR3) application. The yield of okra ranged from 444.6-478.4 g(-1) plant and a positive correlation (0.69) recorded between yield and root weight. The application of Azotobacter led to the highest root weight and yield. The concentration of Zn at mid-crop stage was 60-70% higher in the Azotobacter sp. and Calothrix sp. inoculated soils, as compared to uninoculated control. Iron concentration in soil was more than 2-3 folds higher than control at the mid-crop stage, especially due to the application of Anabaena-Azotobacter biofilm and Azotobacter sp. Both at the mid-crop and harvest stages, the PCR-DGGE profiles of eubacterial communities were similar among the uninoculated control, the Anabaena sp. - Providencia sp. (CW1 + PW5) and the Anabaena-Azotobacter biofilm treatments. Although the profiles of the Azotobacter, Calothrix and CR1 + PR3 treatments were identical at these stages of growth, the profile of CR1 + PR3 was clearly distinguishable. The performance of the inoculants, particularly Calothrix (T6) and consortium of Anabaena and Providencia (CR1 + PR3; T5), in terms of microbiological and nutrient data, along with generation of distinct PCR-DGGE profiles suggested their

  17. Yield Stress Reduction of DWPF Melter Feed Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.E.; Smith, M.E.

    2007-07-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah Rivermore » National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through

  18. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    PubMed

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  19. Effects of different irrigation practices using treated wastewater on tomato yields, quality, water productivity, and soil and fruit mineral contents.

    PubMed

    Demir, Azize Dogan; Sahin, Ustun

    2017-11-01

    Wastewater use in agricultural irrigation is becoming a common practice in order to meet the rising water demands in arid and semi-arid regions. The study was conducted to determine the effects of the full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation practices using treated municipal wastewater (TWW) and freshwater (FW) on tomato yield, water use, fruit quality, and soil and fruit heavy metal concentrations. The TWW significantly increased marketable yield compared to the FW, as well as decreased water consumption. Therefore, water use efficiency (WUE) in the TWW was significantly higher than in the FW. Although the DI and the PRD practices caused less yields, these practices significantly increased WUE values due to less irrigation water applied. The water-yield linear relationships were statistically significant. TWW significantly increased titratable acidity and vitamin C contents. Reduced irrigation provided significantly lower titratable acidity, vitamin C, and lycopene contents. TWW increased the surface soil and fruit mineral contents in response to FW. Greater increases were observed under FI, and mineral contents declined with reduction in irrigation water. Heavy metal accumulation in soils was within safe limits. However, Cd and Pb contents in fruits exceeded standard limits given by FAO/WHO. Higher metal pollution index values determined for fruits also indicated that TWW application, especially under FI, might cause health risks in long term.

  20. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    PubMed

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production.

    PubMed

    Pahlow, M; van Oel, P R; Mekonnen, M M; Hoekstra, A Y

    2015-12-01

    As aquaculture becomes more important for feeding the growing world population, so too do the required natural resources needed to produce aquaculture feed. While there is potential to replace fish meal and fish oil with terrestrial feed ingredients, it is important to understand both the positive and negative implications of such a development. The use of feed with a large proportion of terrestrial feed may reduce the pressure on fisheries to provide feed for fish, but at the same time it may significantly increase the pressure on freshwater resources, due to water consumption and pollution in crop production for aquafeed. Here the green, blue and gray water footprint of cultured fish and crustaceans related to the production of commercial feed for the year 2008 has been determined for the major farmed species, representing 88% of total fed production. The green, blue and gray production-weighted average feed water footprints of fish and crustaceans fed commercial aquafeed are estimated at 1629 m3/t, 179 m3/t and 166 m3/t, respectively. The estimated global total water footprint of commercial aquafeed was 31-35 km3 in 2008. The top five contributors to the total water footprint of commercial feed are Nile tilapia, Grass carp, Whiteleg shrimp, Common carp and Atlantic salmon, which together have a water footprint of 18.2 km3. An analysis of alternative diets revealed that the replacement of fish meal and fish oil with terrestrial feed ingredients may further increase pressure on freshwater resources. At the same time economic consumptive water productivity may be reduced, especially for carnivorous species. The results of the present study show that, for the aquaculture sector to grow sustainably, freshwater consumption and pollution due to aquafeed need to be taken into account. Copyright © 2015. Published by Elsevier B.V.

  2. Effects of drought after pollination on grain yield and quality of fresh waxy maize.

    PubMed

    Lu, Dalei; Cai, Xuemei; Zhao, Junyu; Shen, Xin; Lu, Weiping

    2015-01-01

    Waxy maize is consumed as a vegetable when harvested at fresh stage (23-26 days after pollination) in China. Fresh waxy maize is normally grown under rain-fed conditions and suffers drought frequently during plant growth. The effect of drought on grain development of fresh waxy maize is not known. Two years of pot trials showed that drought decreased fresh grain number and weight, which consequently reduced fresh ear and grain yields, especially in Yunuo7. Moisture and starch contents in grains were not affected but protein content was increased under drought treatment in both varieties. Grain soluble sugar content response to drought was not affected in Suyunuo5 but was decreased in Yunuo7. Pasting and gelatinization temperatures, trough viscosity, final viscosity, setback viscosity, gelatinization enthalpy and springiness of grain were little affected by drought. Drought decreased peak viscosity, breakdown viscosity and adhesiveness (absolute value), whereas it increased hardness. The retrogradation percentage was increased in both varieties in both years. Drought after pollination decreased the fresh waxy maize yield. Grain quality was reduced through decreased peak viscosity and adhesiveness (absolute value), while its hardness and retrogradation percentage were increased, which might be due to the increased protein content. © 2014 Society of Chemical Industry.

  3. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity.

    PubMed

    Jansen, John A; van Veen, Toon A B; de Jong, Sanne; van der Nagel, Roel; van Stuijvenberg, Leonie; Driessen, Helen; Labzowski, Ronald; Oefner, Carolin M; Bosch, Astrid A; Nguyen, Tri Q; Goldschmeding, Roel; Vos, Marc A; de Bakker, Jacques M T; van Rijen, Harold V M

    2012-04-01

    Arrhythmogenic ventricular remodeling is hallmarked by both reduced gap junction expression and increased collagen deposition. We hypothesized that reduced connexin43 (Cx43) expression is responsible for enhanced fibrosis in the remodeled heart, resulting in an arrhythmogenic substrate. Therefore, we investigated the effect of normal or reduced Cx43 expression on the formation of fibrosis in a physiological (aging) and pathophysiological (transverse aortic constriction [TAC]) mouse model. The Cx43(fl/fl) and Cx43(CreER(T)/fl) mice were aged 18 to 21 months or, at the age of 3 months, either TAC or sham operated and euthanized after 16 weeks. Epicardial activation mapping of the right and left ventricles was performed on Langendorff perfused hearts. Sustained ventricular arrhythmias were induced in 0 of 11 aged Cx43(fl/fl) and 10 of 15 Cx43(Cre-ER(T)/fl) mice (P<0.01). Cx43 expression was reduced by half in aged Cx43(CreER(T)/fl) compared with aged Cx43(fl/fl) mice, whereas collagen deposition was significantly increased from 1.1±0.2% to 7.4±1.3%. Aged Cx43(CreER(T)/fl) mice with arrhythmias had significantly higher levels of fibrosis and conduction heterogeneity than aged Cx43(CreER(T)/fl) mice without arrhythmias. The TAC operation significantly increased fibrosis in control compared with sham (4.0±1.2% versus 0.4±0.06%), but this increase was significantly higher in Cx43(CreER(T)/fl) mice (10.8±1.4%). Discoidin domain receptor 2 expression was unchanged, but procollagen peptide I and III expression and collagen type 1α2 mRNA levels were higher in TAC-operated Cx43HZ mice. Reduced cellular coupling results in more excessive collagen deposition during aging or pressure overload in mice due to enhanced fibroblast activity, leading to increased conduction in homogeneity and proarrhythmia.

  4. Yield cultivation of magnetotactic bacteria and magnetosomes: A review.

    PubMed

    Ali, Imran; Peng, Changsheng; Khan, Zahid M; Naz, Iffat

    2017-08-01

    Magnetotactic bacteria (MTB) have started to be employed for the biosynthesis of magnetic nanoparticles, due to the rapidly increasing demand for nanoparticles in biomedical, biotechnology and environmental protection. MBT are the group of prokaryotes that have the ability to produce bio-magnetic minerals or bio-magnetic crystals of either magnetite (Fe 3 O 4 ) or greigite (Fe 3 S 4 ) in numerous shapes and size ranges, known as magnetosomes (MS). MS compel MTB to respond to the applied external magnetic field. However, it is extremely difficult to grow MTB and produce high yield of MS under artificial environmental conditions, thus creating a major hurdle to relocate MTB technology from laboratory scale to industrial or commercial level. Therefore, to best of our knowledge this review is the first attempt to highlight existing research developments about the laboratory scale and mass production of MS by MTB. Moreover, the optimum culture media and environmental conditions used for the cultivation of MTB were also considered. Finally, future research is encouraged for the improvement of MS yield which will result in the development of advanced nanotechnology/magnetotechnology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    NASA Astrophysics Data System (ADS)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  6. Yield Potential of Sugar Beet – Have We Hit the Ceiling?

    PubMed Central

    Hoffmann, Christa M.; Kenter, Christine

    2018-01-01

    The yield of sugar beet has continuously increased in the past decades. The question arises, whether this progress will continue in the future. A key factor for increasing yield potential of the crop is breeding progress. It was related to a shift in assimilate partitioning in the plant toward more storage carbohydrates (sucrose), whereas structural carbohydrates (leaves, cell wall compounds) unintendedly declined. The yield potential of sugar beet was estimated at 24 t sugar ha-1. For maximum yield, sufficient growth factors have to be available and the crop has to be able to fully utilize them. In sugar beet, limitations result from the lacking coincidence of maximum irradiation rates and full canopy cover, sink strength for carbon assimilation and high water demand, which cannot be met by rainfall alone. After harvest, sugar losses during storage occur. The paper discusses options for a further increase in yield potential, like autumn sowing of sugar beet, increasing sink strength and related constraints. It is prospected that yield increase by further widening the ratio of storage and structural carbohydrates will come to its natural limit as a certain cell wall stability is necessary. New challenges caused by climate change and by prolonged processing campaigns will occur. Thus breeding for improved pathogen resistance and storage properties will be even more important for successful sugar beet production than a further increase in yield potential itself. PMID:29599787

  7. Effect of warming temperatures on US wheat yields.

    PubMed

    Tack, Jesse; Barkley, Andrew; Nalley, Lawton Lanier

    2015-06-02

    Climate change is expected to increase future temperatures, potentially resulting in reduced crop production in many key production regions. Research quantifying the complex relationship between weather variables and wheat yields is rapidly growing, and recent advances have used a variety of model specifications that differ in how temperature data are included in the statistical yield equation. A unique data set that combines Kansas wheat variety field trial outcomes for 1985-2013 with location-specific weather data is used to analyze the effect of weather on wheat yield using regression analysis. Our results indicate that the effect of temperature exposure varies across the September-May growing season. The largest drivers of yield loss are freezing temperatures in the Fall and extreme heat events in the Spring. We also find that the overall effect of warming on yields is negative, even after accounting for the benefits of reduced exposure to freezing temperatures. Our analysis indicates that there exists a tradeoff between average (mean) yield and ability to resist extreme heat across varieties. More-recently released varieties are less able to resist heat than older lines. Our results also indicate that warming effects would be partially offset by increased rainfall in the Spring. Finally, we find that the method used to construct measures of temperature exposure matters for both the predictive performance of the regression model and the forecasted warming impacts on yields.

  8. Sugar maple sap volume increases as vacuum level is increased

    Treesearch

    Russell S. Walters; H. Clay Smith

    1975-01-01

    Maple sap yields collected by using plastic tubing with a vacuum pump increased as the vacuum level was increased. Sap volumes collected at the 10- and 15-inch mercury vacuum levels were statistically significantly higher than volumes collected at the 5-inch level. Although the 15-inch vacuum yielded more sap than the 10-inch vacuum, the difference was not...

  9. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission.

  10. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    PubMed

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-07-03

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.

  11. Long-Term Monitoring of Rainfed Wheat Yield and Soil Water at the Loess Plateau Reveals Low Water Use Efficiency

    PubMed Central

    Qin, Wei; Chi, Baoliang; Oenema, Oene

    2013-01-01

    Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0–200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m3. Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE. PMID:24302987

  12. Review on the significance of chlorine for crop yield and quality.

    PubMed

    Geilfus, Christoph-Martin

    2018-05-01

    The chloride concentration in the plant determines yield and quality formation for two reasons. First, chlorine is a mineral nutrient and deficiencies thereof induce metabolic problems that interfere with growth. However, due to low requirement of most crops, deficiency of chloride hardly appears in the field. Second, excess of chloride, an event that occurs under chloride-salinity, results in severe physiological dysfunctions impairing both quality and yield formation. The chloride ion can effect quality of plant-based products by conferring a salty taste that decreases market appeal of e.g. fruit juices and beverages. However, most of the quality impairments are based on physiological dysfunctions that arise under conditions of chloride-toxicity: Shelf life of persimmon is shortened due to an autocatalytic ethylene production in fruit tissues. High concentrations of chloride in the soil can increase phyto-availability of the heavy metal cadmium, accumulating in wheat grains above dietary intake thresholds. When crops are cultivated on soils that are moderately salinized by chloride, nitrate fertilization might be a strategy to suppress uptake of chloride by means of an antagonistic anion-anion uptake competition. Overall, knowledge about proteins that catalyse chloride-efflux out of the roots or that restrict xylem loading is needed to engineer more resistant crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions

    PubMed Central

    Séry, D. Jean-Marc; Kouadjo, Z. G. Claude; Voko, B. R. Rodrigue; Zézé, Adolphe

    2016-01-01

    The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the

  14. Closing Yield Gaps: How Sustainable Can We Be?

    PubMed Central

    Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E.; Kropp, Juergen P.

    2015-01-01

    Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way

  15. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus

  16. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase.

    PubMed

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  17. Water yield and hydrology

    Treesearch

    Pamela J. Edwards; Charles A. Troendle

    2012-01-01

    Investigations of hydrologic responses resulting from reducing vegetation density are fairly common throughout the Eastern United States. Although most studies have focused on the potential for increasing water yields or documenting effects from intensive practices that far exceed what would be done for fuel-reduction objectives, data from some less-intensive...

  18. Detecting temporal change in watershed nutrient yields

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2008-01-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...

  19. Detecting Temporal Change in Watershed Nutrient Yields

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2008-01-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...

  20. Observational evidence of a long-term increase in precipitation due to urbanization effects and its implications for sustainable urban living.

    PubMed

    Wai, K M; Wang, X M; Lin, T H; Wong, M S; Zeng, S K; He, N; Ng, E; Lau, K; Wang, D H

    2017-12-01

    Although projected precipitation increases in East Asia due to future climate change have aroused concern, less attention has been paid by the scientific community and public to the potential long-term increase in precipitation due to rapid urbanization. A ten-year precipitation dataset was analysed for both a rapidly urbanized megacity and nearby suburban/rural stations in southern China. Rapid urbanization in the megacity was evident from satellite observations. A statistically significant, long-term, increasing trend of precipitation existed only at the megacity station (45.6mm per decade) and not at the other stations. The increase was attributed to thermal and dynamical modifications of the tropospheric boundary layer related to urbanization, which was confirmed by the results of our WRF-SLUCM simulations. The results also suggested that a long-term regional increase in precipitation, caused by greenhouse gas-induced climate change, for instance, was not evident within the study period. The urbanization-induced increase was found to be higher than the precipitation increase (18.3mm per decade) expected from future climate change. The direct climate impacts due to rapid urbanization is highlighted with strong implications for urban sustainable development and the planning of effective adaptation strategies for issues such as coastal defenses, mosquito-borne disease spread and heat stress mortality. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Benefits of seasonal forecasts of crop yields

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  2. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    PubMed

    Tito, Richard; Vasconcelos, Heraldo L; Feeley, Kenneth J

    2018-02-01

    One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order to maintain yields, farmers may be forced to change cultivation practices, the timing of cultivation, or even the type of crops grown. Alternatively, farmers can change the location where crops are cultivated (e.g., to higher elevations) to track suitable climates (in which case the plants will have to grow in different soils), as cultivated plants will otherwise have to tolerate warmer temperatures and possibly face novel enemies. We simulated these two last possible scenarios (for temperature increases of 1.3°C and 2.6°C) in the Peruvian Andes through a field experiment in which several traditionally grown varieties of potato and maize were planted at different elevations (and thus temperatures) using either the local soil or soil translocated from higher elevations. Maize production declined by 21%-29% in response to new soil conditions. The production of maize and potatoes declined by >87% when plants were grown under warmer temperatures, mainly as a result of the greater incidence of novel pests. Crop quality and value also declined under simulated migration and warming scenarios. We estimated that local farmers may experience severe economic losses of up to 2,300 US$ ha -1  yr -1 . These findings reveal that climate change is a real and imminent threat to agriculture and that there is a pressing need to develop effective management strategies to reduce yield losses and prevent food insecurity. Importantly, such strategies should take into account the influences of non-climatic and/or biotic factors (e.g., novel pests) on plant development. © 2017 John Wiley & Sons Ltd.

  3. [Sediment-yielding process and its mechanisms of slope erosion in wind-water erosion crisscross region of Loess Plateau, Northwest China].

    PubMed

    Tuo, Deng-Feng; Xu, Ming-Xiang; Zheng, Shi-Qing; Li, Qiang

    2012-12-01

    Due to the coupling effects of wind and water erosions in the wind-water erosion crisscross region of Loess Plateau, the slope erosion in the region was quite serious, and the erosion process was quite complicated. By using wind tunnel combined with simulated rainfall, this paper studied the sediment-yielding process and its mechanisms of slope erosion under the effects of wind-water alternate erosion, and quantitatively analyzed the efffects of wind erosion on water erosion and the relationships between wind and water erosions. There was an obvious positive interaction between wind and water erosions. Wind erosion promoted the development of microtopography, and altered the quantitative relationship between the sediment-yielding under water erosion and the variation of rainfall intensity. At the rainfall intensity of 60 and 80 mm x h(-1), the sediment-yielding without wind erosion decreased with the duration of rainfall and tended to be stable, but the sediment-yielding with wind erosion decreased to a certain valley value first, and then showed an increasing trend. At the rainfall intensity of 60, 80, and 100 mm x h(-1), the sediment-yielding with the wind erosion at speeds of 11 and 14 m x s(-1) increased by 7.3%-27.9% and 23.2%-39.0%, respectively, as compared with the sediment-yielding without wind erosion. At the rainfall intensity of 120 and 150 mm x h(-1) and in the rainfall duration of 15 minutes, the sediment-yielding with and without wind erosion presented a decreasing trend, but, with the increase of rainfall duration, the sediment-yielding with wind erosion showed a trend of decreasing first and increasing then, as compared with the sediment-yielding without wind erosion. The mechanisms of wind-water alternate erosion were complicated, reflecting in the mutual relation and mutual promotion of wind erosion and water erosion in the aspects of temporal-spatial distribution, energy supply, and action mode of erosion forces.

  4. [Effects of field border length for irrigation on the water consumption characteristics and grain yield of wheat].

    PubMed

    Ma, Shang-Yu; Yu, Zhen-Wen; Wang, Dong; Zhang, Yong-Li; Shi, Yu

    2012-09-01

    In the wheat growth seasons of 2009 -2010 and 2010-2011, six border lengths of 10, 20, 40, 60, 80 and 100 m were installed in a wheat field to study the effects of different border lengths for irrigation on the water consumption characteristics and grain yield of wheat. The results showed that with the increasing border length from 10 to 80 m, the irrigation amount and the proportion of irrigation amount to total water consumption amount, the water content in 0-200 cm soil layers and the soil water supply capacity at anthesis stage, as well as the wheat grain yield and water use efficiency increased, while the soil water consumption amount and the water consumption amount of wheat from jointing to anthesis stages as well as the total water consumption amount decreased. At the border length of <80 m, the irrigation amount was smaller, and the water content in upper soil layers was lower, as compared with those at the border length of 80 m, which led to the wheat to absorb more water from deeper soil layers, and thus, the total water consumption increased. At the border length of 100 m, the irrigation amount, soil water consumption amount, and total water consumption amount all increased, and, due to the excessive irrigation amount and the uneven distribution of irrigation water when irrigated once, the 1000-grain mass, grain yield, and water use efficiency decreased significantly, which was not conductive to the water-saving and high-yield cultivation.

  5. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    PubMed

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  6. Specific yield: compilation of specific yields for various materials

    USGS Publications Warehouse

    Johnson, A.I.

    1967-01-01

    Specific yield is defined as the ratio of (1) the volume of water that a saturated rock or soil will yield by gravity to (2) the total volume of the rock or soft. Specific yield is usually expressed as a percentage. The value is not definitive, because the quantity of water that will drain by gravity depends on variables such as duration of drainage, temperature, mineral composition of the water, and various physical characteristics of the rock or soil under consideration. Values of specific yields nevertheless offer a convenient means by which hydrologists can estimate the water-yielding capacities of earth materials and, as such, are very useful in hydrologic studies. The present report consists mostly of direct or modified quotations from many selected reports that present and evaluate methods for determining specific yield, limitations of those methods, and results of the determinations made on a wide variety of rock and soil materials. Although no particular values are recommended in this report, a table summarizes values of specific yield, and their averages, determined for 10 rock textures. The following is an abstract of the table. [Table

  7. Impacts of variability in cellulosic biomass yields on energy security.

    PubMed

    Mullins, Kimberley A; Matthews, H Scott; Griffin, W Michael; Anex, Robert

    2014-07-01

    The practice of modeling biomass yields on the basis of deterministic point values aggregated over space and time obscures important risks associated with large-scale biofuel use, particularly risks related to drought-induced yield reductions that may become increasingly frequent under a changing climate. Using switchgrass as a case study, this work quantifies the variability in expected yields over time and space through switchgrass growth modeling under historical and simulated future weather. The predicted switchgrass yields across the United States range from about 12 to 19 Mg/ha, and the 80% confidence intervals range from 20 to 60% of the mean. Average yields are predicted to decrease with increased temperatures and weather variability induced by climate change. Feedstock yield variability needs to be a central part of modeling to ensure that policy makers acknowledge risks to energy supplies and develop strategies or contingency plans that mitigate those risks.

  8. Abrupt Increases in Amazonian Tree Mortality Due to Drought-Fire Interactions

    NASA Technical Reports Server (NTRS)

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silverio, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nobrega, Caroline C.; hide

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, longterm experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW x m(exp -1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with less than 1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.

  9. Abrupt increases in Amazonian tree mortality due to drought-fire interactions.

    PubMed

    Brando, Paulo Monteiro; Balch, Jennifer K; Nepstad, Daniel C; Morton, Douglas C; Putz, Francis E; Coe, Michael T; Silvério, Divino; Macedo, Marcia N; Davidson, Eric A; Nóbrega, Caroline C; Alencar, Ane; Soares-Filho, Britaldo S

    2014-04-29

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.

  10. Increased dose near the skin due to electromagnetic surface beacon transponder.

    PubMed

    Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent

    2015-05-08

    The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.

  11. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    PubMed Central

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937

  12. The Safe Yield and Climatic Variability: Implications for Groundwater Management.

    PubMed

    Loáiciga, Hugo A

    2017-05-01

    Methods for calculating the safe yield are evaluated in this paper using a high-quality and long historical data set of groundwater recharge, discharge, extraction, and precipitation in a karst aquifer. Consideration is given to the role that climatic variability has on the determination of a climatically representative period with which to evaluate the safe yield. The methods employed to estimate the safe yield are consistent with its definition as a long-term average extraction rate that avoids adverse impacts on groundwater. The safe yield is a useful baseline for groundwater planning; yet, it is herein shown that it is not an operational rule that works well under all climatic conditions. This paper shows that due to the nature of dynamic groundwater processes it may be most appropriate to use an adaptive groundwater management strategy that links groundwater extraction rates to groundwater discharge rates, thus achieving a safe yield that represents an estimated long-term sustainable yield. An example of the calculation of the safe yield of the Edwards Aquifer (Texas) demonstrates that it is about one-half of the average annual recharge. © 2016, National Ground Water Association.

  13. Role of the N*(1535) in pp{yields}pp{phi} and {pi}{sup -}p{yields}n{phi} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Jujun; Graduate University of Chinese Academy of Sciences, Beijing 100049; Zou Bingsong

    2008-01-15

    The near-threshold {phi}-meson production in proton-proton and {pi}{sup -}p collisions is studied with the assumption that the production mechanism is due to the sub-N{phi}-threshold N*(1535) resonance. The {pi}{sup 0}-,{eta}-, and {rho}{sup 0}-meson exchanges for proton-proton collisions are considered. It is shown that the contribution to the pp{yields}pp{phi} reaction from the t-channel {pi}{sup 0}-meson exchange is dominant. With a significant N*(1535)N{phi} coupling [g{sub N*(1535)N{phi}}{sup 2}/4{pi}=0.13], both pp{yields}pp{phi} and {pi}{sup -}p{yields}n{phi} data are very well reproduced. The significant coupling of the N*(1535) resonance to N{phi} is compatible with previous indications of a large ss component in the quark wave function of themore » N*(1535) resonance and may be the real origin of the significant enhancement of the {phi} production over the naive OZI-rule predictions.« less

  14. Water yield issues in the jarrah forest of south-western Australia

    NASA Astrophysics Data System (ADS)

    Ruprecht, J. K.; Stoneman, G. L.

    1993-10-01

    The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge

  15. Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils.

    PubMed

    Chandra, K K; Kumar, Neeraj; Chand, Gireesh

    2010-11-01

    Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.

  16. Water limits to closing yield gaps

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Garrassino, Francesco; Chiarelli, Davide; Seveso, Antonio; D'Odorico, Paolo

    2017-01-01

    Agricultural intensification is often seen as a suitable approach to meet the growing demand for agricultural products and improve food security. It typically entails the use of fertilizers, new cultivars, irrigation, and other modern technology. In regions of the world affected by seasonal or chronic water scarcity, yield gap closure is strongly dependent on irrigation (blue water). Global yield gap assessments have often ignored whether the water required to close the yield gap is locally available. Here we perform a gridded global analysis (10 km resolution) of the blue water consumption that is needed annually to close the yield gap worldwide and evaluate the associated pressure on renewable freshwater resources. We find that, to close the yield gap, human appropriation of freshwater resources for irrigation would have to increase at least by 146%. Most study countries would experience at least a doubling in blue water requirement, with 71% of the additional blue water being required by only four crops - maize, rice, soybeans, and wheat. Further, in some countries (e.g., Algeria, Morocco, Syria, Tunisia, and Yemen) the total volume of blue water required for yield gap closure would exceed sustainable levels of freshwater consumption (i.e., 40% of total renewable surface and groundwater resources).

  17. Assessment of sediment yield in a sloping Mediterranean watershed in Cyprus

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado

    2014-05-01

    In the Mediterranean region, water catchment sediment yield as a result of erosion is higher than in many other regions in Europe due to the climatic conditions, topography, lithology and land-use. Modelling sediment transport is difficult due to intermittent stream flow and highly irregular rainfall conditions in this region. The objective of this study is to quantify sediment yield of a highly sloping Mediterranean environment. This study is conducted in the Peristerona Watershed in Cyprus, which has ephemeral water flow. In the downstream area a series of check dams have been placed across the stream to slow the flow and increase groundwater recharge. The surface area of the watershed, upstream of the check dams, is 103 km2 with elevation changing between 1540 m and 280 m and a mean local slope higher than 40% for the mountainous part and lower than 8% for the plain. The long-term average annual precipitation ranges from 755 mm in the upstream area to 276 mm in the plain. The surface extent of the sediment that was deposited at the most upstream check dam during two seasons was measured with a Differential Global Positioning System. The depth of the sediment was measured with utility poles and bulk density samples from the sediment profile were collected. The sediment had a surface area of 12600 m2 and an average depth of 0.23 m. The mean of the sediment dry bulk density samples was 1.05 t m-3 with a standard deviation of 0.11. Based on these values, area specific sediment yield was computed as 1 t ha-1 per year for the entire catchment area upstream of the check dam, assuming a check dam sediment trap efficiency of 15%. Erosion in the watershed is currently modeled with PESERA using detailed watershed data.

  18. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide.

    PubMed

    Azam, Andaleeb; Khan, Ikhtiar; Mahmood, Abid; Hameed, Abdul

    2013-10-01

    Future concentration of carbon dioxide in the atmosphere is very important due to its apparent economic and environmental impact in terms of climate change. However, a compressive assessment of its effect on the nutritional and chemical characteristics of food crops has yet to be established. In the present study the impact of elevated atmospheric CO2 on the yield, chemical composition and nutritional quality of three root vegetables, carrot (Daucus carota L. cv. T-1-111), radish (Raphanus sativus L. cv. Mino) and turnip (Brassica rapa L. cv. Grabe) has been investigated. The yield of carrot, radish and turnip increased by 69, 139 and 72%, respectively, when grown under elevated CO2 conditions. Among the proximate composition, protein, vitamin C and fat contents decreased significantly for all the vegetables while sugar and fibre contents were increased. Response of the vegetables to elevated CO2 , in terms of elemental composition, was different with a significant decrease in many important minerals. Elevated CO2 decreased the amount of majority of the fatty acids and amino acids in these vegetables. It was observed that elevated CO2 increased the yield of root vegetables but many important nutritional parameters including protein, vitamin C, minerals, essential fatty acids and amino acids were decreased. © 2013 Society of Chemical Industry.

  19. Estimating PM2.5-associated mortality increase in California due to the Volkswagen emission control defeat device

    NASA Astrophysics Data System (ADS)

    Wang, Tianyang; Jerrett, Michael; Sinsheimer, Peter; Zhu, Yifang

    2016-11-01

    The Volkswagen Group of America (VW) was found by the US Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) to have installed "defeat devices" and emit more oxides of nitrogen (NOx) than permitted under current EPA standards. In this paper, we quantify the hidden NOx emissions from this so-called VW scandal and the resulting public health impacts in California. The NOx emissions are calculated based on VW road test data and the CARB Emission Factors (EMFAC) model. Cumulative hidden NOx emissions from 2009 to 2015 were estimated to be over 3500 tons. Adult mortality changes were estimated based on ambient fine particulate matter (PM2.5) change due to secondary nitrate formation and the related concentration-response functions. We estimated that hidden NOx emissions from 2009 to 2015 have resulted in a total of 12 PM2.5-associated adult mortality increases in California. Most of the mortality increase happened in metropolitan areas, due to their high population and vehicle density.

  20. Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Shuai; Cai, Hong-Bo; Shan, Lian-Qiang; Zhang, Hua-Sen; Gu, Yu-Qiu; Zhu, Shao-Ping

    2017-06-01

    Observations of anomalous neutron yield in the indirect-drive inertial confinement fusion implosion experiments conducted at SG-III prototype and SG-II upgrade laser facilities are interpreted. The anomalous mechanism results in a neutron yield which is 100-times higher than that predicted by 1D radiation-hydrodynamic simulations. 2D radiation-hydrodynamic simulations show that the supersonic, radially directed gold (Au) plasma jets arising from the laser-hohlraum interactions can collide with the carbon-deuterium (CD) corona plasma of the compressed pellet. It is found that in the interaction front of the high-Z jet with the low-Z corona, with low density  ˜{{10}20}~\\text{c}{{\\text{m}}-3} and high temperature  ˜keV, kinetic effects become important. Particle-in-cell simulations indicate that an electrostatic shock wave can be driven when the high-temperature Au jet expands into the low-temperature CD corona. Deuterium ions with an amount of  ˜1015 can be accelerated to  ˜25 keV by the collisionless shock wave, thus causing efficient neutron productions though the beam-target method by stopping these energetic ions in the corona. The evaluated neutron yield is consistent with the experiments conducted at SG laser facilities.

  1. Climate Effects on Corn Yield in Missouri(.

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Buyanovsky, Gregory

    2003-11-01

    Understanding climate effects on crop yield has been a continuous endeavor aiming at improving farming technology and management strategy, minimizing negative climate effects, and maximizing positive climate effects on yield. Many studies have examined climate effects on corn yield in different regions of the United States. However, most of those studies used yield and climate records that were shorter than 10 years and were for different years and localities. Although results of those studies showed various influences of climate on corn yield, they could be time specific and have been difficult to use for deriving a comprehensive understanding of climate effects on corn yield. In this study, climate effects on corn yield in central Missouri are examined using unique long-term (1895 1998) datasets of both corn yield and climate. Major results show that the climate effects on corn yield can only be explained by within-season variations in rainfall and temperature and cannot be distinguished by average growing-season conditions. Moreover, the growing-season distributions of rainfall and temperature for high-yield years are characterized by less rainfall and warmer temperature in the planting period, a rapid increase in rainfall, and more rainfall and warmer temperatures during germination and emergence. More rainfall and cooler-than-average temperatures are key features in the anthesis and kernel-filling periods from June through August, followed by less rainfall and warmer temperatures during the September and early October ripening time. Opposite variations in rainfall and temperature in the growing season correspond to low yield. Potential applications of these results in understanding how climate change may affect corn yield in the region also are discussed.

  2. Interaction Between Phosphorus and Zinc on the Biomass Yield and Yield Attributes of the Medicinal Plant Stevia (Stevia rebaudiana)

    PubMed Central

    Das, Kuntal; Dang, Raman; Shivananda, T. N.; Sur, Pintu

    2005-01-01

    A greenhouse experiment was conducted at the Indian Institute of Horticultural Research (IIHR), Bangalore to study the interaction effect between phosphorus (P) and zinc (Zn) on the yield and yield attributes of the medicinal plant stevia. The results show that the yield and yield attributes have been found to be significantly affected by different treatments. The total yield in terms of biomass production has been increased significantly with the application of Zn and P in different combinations and methods, being highest (23.34 g fresh biomass) in the treatment where Zn was applied as both soil (10 kg ZnSO4/ha) and foliar spray (0.2% ZnSO4). The results also envisaged that the different yield attributes viz. height, total number of branches, and number of leaves per plant have been found to be varied with treatments, being highest in the treatment where Zn was applied as both soil and foliar spray without the application of P. The results further indicated that the yield and yield attributes of stevia have been found to be decreased in the treatment where Zn was applied as both soil and foliar spray along with P suggesting an antagonistic effect between Zn and P. PMID:15915292

  3. Mechanical design of mussel byssus: material yield enhances attachment strength

    PubMed

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  4. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying.

    PubMed

    Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C; Wang, Tao; Li, Feng-Min

    2012-08-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.

  5. The effect of soil moisture anomalies on maize yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis

    2018-03-01

    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.

  6. Endobronchial Ultrasound-guided Transbronchial Needle Aspiration Increases the Yield of Transbronchial Lung Biopsy for the Evaluation of Peribronchial Lesions

    PubMed Central

    Chen, Cheng; Mu, Chuan-Yong; Su, Mei-Qin; Mao, Jing-Yu; Zhu, Ye-Han; Huang, Jian-An

    2017-01-01

    Background: Due to absence of visible endobronchial target, the diagnostic yield of flexible bronchoscopy for peribronchial lesions has been unsatisfactory. Convex probe endobronchial ultrasound (CP-EBUS) has allowed for performing real-time transbronchial needle aspiration (TBNA) of enlarged hilar and mediastinal lymph nodes and therefore could also be used as a means of diagnosing proximal peribronchial lesions. Methods: We retrospectively analyzed the results related to 72 patients who underwent CP-EBUS for peribronchial lesions without endobronchial involvement and adjacent to three-grade bronchi based on chest computed tomography (CT) scan. We recorded the images during EBUS as well as the diagnostic results of TBNA and conventional-transbronchial lung biopsy/brush (C-TBLB/b), and final diagnoses were based on pathologic analysis and follow-up. Results: In all cases, the mass was able to be identified using EBUS in 97.2% patients (70/72) who were performed with EBUS-TBNA + C-TBLB/b. Sixty-six patients had a final diagnosis, 80.0% patients (56/70) had malignancies, and 14.3% patients (10/70) had benign disease. In malignancies, the diagnostic yield of C-TBLB/b was 57.1% (32/56) and in EBUS-TBNA was 85.7% (48/56), whereas pathologic diagnosis reached 94.6% when EBUS-TBNA was combined with C-TBLB/b. C-TBLB/b + EBUS-TBNA also exhibited stronger potency of histolytic diagnosis for malignancies than either EBUS-TBNA or C-TBLB/b alone. Furthermore, there are data supporting the value of EBUS-TBNA for the diagnosis of benign lung disease. Conclusion: The combined endoscopic approach with EBUS-TBNA and C-TBLB/b is an accurate and effective method for the evaluation of peribronchial lesions, with better results than using each technique alone. PMID:28051017

  7. The Auxin Biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A Increases Grain Yield of Wheat.

    PubMed

    Shao, An; Ma, Wenying; Zhao, Xueqiang; Hu, Mengyun; He, Xue; Teng, Wan; Li, Hui; Tong, Yiping

    2017-08-01

    Controlling the major auxin biosynthetic pathway to manipulate auxin content could be a target for genetic engineering of crops with desired traits, but little progress had been made because low or high auxin contents often cause developmental inhibition. Here, we performed a genome-wide analysis of bread wheat ( Triticum aestivum ) to identify the Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) genes that function in the tryptophan-dependent pathway of auxin biosynthesis. Sequence mining together with gene cloning identified 15 TaTAR genes, among which 12 and three genes were phylogenetically close to Arabidopsis ( Arabidopsis thaliana ) AtTAR2 and AtTAR3, respectively. TaTAR2.1 had the most abundant transcripts in the TaTAR2 genes and was expressed mainly in roots and up-regulated by low nitrogen (N) availability. Knockdown of TaTAR2.1 caused vegetative and reproductive deficiencies and impaired lateral root (LR) growth under both high- and low-N conditions. Overexpressing TaTAR2.1-3A in wheat enhanced LR branching, plant height, spike number, grain yield, and aerial N accumulation under different N supply levels. In addition, overexpressing TaTAR2.1-3A in Arabidopsis elevated auxin accumulation in the primary root tip, LR tip, LR primordia, and cotyledon and hypocotyl and increased primary root length, visible LR number, and shoot fresh weight under high- and low-N conditions. Our results indicate that TaTAR2.1 is critical for wheat growth and also shows potential for genetic engineering to reach the aim of improving the grain yield of wheat. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Spectral behavior of wheat yield variety trials

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.

    1981-01-01

    Little variation between varieties is seen at jointing, but the variability is found to increase during grain filling and decline again at maturity. No relationship is found between spectral response and yield, and when yields are segregated into various classes the spectral response is the same. Spring and winter nurseries are found to separate during the reproductive stage because of differences in dates of heading and maturity, but they exhibit similar spectral responses. The transformed normalized difference is at a minimum after the maximum grain weight occurs and the leaves begin to brown and fall off. These data of 100% ground cover demonstrate that it is not possible to predict grain yield from only spectral data. This, however, may not apply when reduced yields are caused by less-than-full ground cover

  9. Base-Case 1% Yield Increase (BC1), All Energy Crops scenario of the 2016 Billion Ton Report

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron (ORCID:0000000320373827)

    2016-07-13

    Scientific reason for data generation: to serve as the base-case scenario for the BT16 volume 1 agricultural scenarios to compare these projections of potential biomass supplies against a reference case (agricultural baseline 10.11578/1337885). The simulation runs from 2015 through 2040; a starting year of 2014 is used but not reported. How each parameter was produced (methods), format, and relationship to other data in the data set: This exogenous price simulations (also referred to as “specified-price” simulations) introduces a farmgate price, and POLYSYS solves for biomass supplies that may be brought to market in response to these prices. In specified-price scenarios, a specified farmgate price is offered constantly in all counties over all years of the simulation. This simulation begins in 2015 with an offered farmgate price for primary crop residues only between 2015 and 2018 and long-term contracts for dedicated crops beginning in 2019. Expected mature energy crop yield grows at a compounding rate of 1% beginning in 2016. The yield growth assumptions are fixed after crops are planted such that yield gains do not apply to crops already planted, but new plantings do take advantage of the gains in expected yield growth. Instruments used: Policy Analysis System –POLYSYS (version POLYS2015_V10_alt_JAN22B), an agricultural policy modeling system of U.S. agriculture (crops and livestock), supplied by the University of Tennessee Institute of Agriculture, Agricultural Policy Analysis Center.

  10. Modelling predicts that tolerance to drought during reproductive development will be required for high yield potential and stability of wheat in Europe

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail A.; Stratonovitch, Pierre; Paul, Matthew J.

    2017-04-01

    Short periods of extreme weather, such as a spell of high temperature or drought during a sensitive stage of development, could result in substantial yield losses due to reduction in grain number and grain size. In a modelling study (Stratonovitch & Semenov 2015), heat tolerance around flowering in wheat was identified as a key trait for increased yield potential in Europe under climate change. Ji et all (Ji et al. 2010) demonstrated cultivar specific responses of yield to drought stress around flowering in wheat. They hypothesised that carbohydrate supply to anthers may be the key in maintaining pollen fertility and grain number in wheat. It was shown in (Nuccio et al. 2015) that genetically modified varieties of maize that increase the concentration of sucrose in ear spikelets, performed better under non-drought and drought conditions in field experiments. The objective of this modelling study was to assess potential benefits of tolerance to drought during reproductive development for wheat yield potential and yield stability across Europe. We used the Sirius wheat model to optimise wheat ideotypes for 2050 (HadGEM2, RCP8.5) climate scenarios at selected European sites. Eight cultivar parameters were optimised to maximise mean yields, including parameters controlling phenology, canopy growth and water limitation. At those sites where water could be limited, ideotypes sensitive to drought produced substantially lower mean yields and higher yield variability compare with tolerant ideotypes. Therefore, tolerance to drought during reproductive development is likely to be required for wheat cultivars optimised for the future climate in Europe in order to achieve high yield potential and yield stability.

  11. Integrating remote sensing, geographic information system and modeling for estimating crop yield

    NASA Astrophysics Data System (ADS)

    Salazar, Luis Alonso

    This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.

  12. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance

    PubMed Central

    Sahni, Sangita; Prasad, Bishun D.; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P.; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR–related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  13. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].

    PubMed

    Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan

    2015-10-01

    Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai

  14. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  15. Simple, high-yield purification of xanthine oxidase from bovine milk.

    PubMed

    Ozer, N; Müftüoglu, M; Ataman, D; Ercan, A; Ogüs, I H

    1999-05-13

    Xanthine oxidase, a commercially important enzyme with a wide area of application, was extracted from fresh milk, without added preservatives, using toluene and heat. The short purification procedure, with high yield, consisted of extraction, ammonium sulfate fractionation, and DEAE-Sepharose (fast flow) column chromatography. Xanthine oxidase was eluted as a single activity peak from the column using a buffer gradient. The purification fold, specific activity and yield for the purified xanthine oxidase were 328, 10.161 U/mg and 69%, respectively. The enzyme was concentrated by ultrafiltration, although 31% of the activity was lost during concentration, no change in specific activity was observed. Activity and protein gave coincident staining bands on native polyacrylamide gels. The intensity and the number of bands were dependent on the oxidative state(s) of the enzyme; reduction by 2-mercaptoethanol decreased the intensity of the slow-moving bands and increased the intensity of the fastest-moving band. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two major bands (molecular masses of 152 and 131 kDa) were observed, accounting for > or = 95% of xanthine oxidase. Native- and SDS-PAGE showed that the purified xanthine oxidase becomes a heterodimer due to endogenous proteases.

  16. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    PubMed Central

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080

  17. Measurement of fission yields and isomeric yield ratios at IGISOL

    NASA Astrophysics Data System (ADS)

    Pomp, Stephan; Mattera, Andrea; Rakopoulos, Vasileios; Al-Adili, Ali; Lantz, Mattias; Solders, Andreas; Jansson, Kaj; Prokofiev, Alexander V.; Eronen, Tommi; Gorelov, Dimitri; Jokinen, Ari; Kankainen, Anu; Moore, Iain D.; Penttilä, Heikki; Rinta-Antila, Sami

    2018-03-01

    Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyväskylä, Finland, for such measurements on 232Th and natU targets. Previously published fission yield data from IGISOL concern the 232Th(p,f) and 238U(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range from natU(n,f) based on γ-spectrometry. We find a staggering behaviour in the cumulative yields for Sn and a shift in the independent fission yields for Sb as compared to current evaluations. Plans for the future experimental program on fission yields and IYR measurements are discussed.

  18. Yield Potential of Soil Water and Its Sustainability for Dryland Spring Maize with Plastic Film Mulch on the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Lin, Wen; Liu, Wenzhao

    2016-04-01

    Plastic film mulch(PM) is an agronomic measure widely used in the dryland spring maize production system on the Loess Plateau of China. The measure can greatly increase yield of dryland maize due to its significant effects on soil water conservation. Few researches have been done to investigate how the yield potential is impacted by PM. The yield-water use (ET) boundary equation raised by French and Schultz provides a simple approach to calculate crop water limited yield potential and gives a benchmark for farmers in managing their crops. However, method used in building the equation is somewhat arbitrary and has no strict principle, which leads to the uncertainty of equation when it is applied. Though using PM can increase crop yield, it increases soil temperature, promotes crop growth and increases the water transpired by crop, which further leads to high water consumption as compared with crops without PM. This means that PM may lead to the overuse of soil water and hence is unsustainable in a long run. This research is mainly focused on the yield potential and sustainability of PMing for spring maize on the Loess Plateau. A principle that may be utilized by any other researchers was proposed based on French & Schultz's boundary equation and on part of quantile regression theory. We used a data set built by collecting the experimental data from published papers and analyzed the water-limited yield potential of spring maize on the Loess Plateau. Moreover, maize yield and soil water dynamics under PM were investigated by a long-term site field experiment. Results show that on the Loess Plateau, the water limited yield potential can be calculated using the boundary equation y = 60.5×(x - 50), with a platform yield of 15954 kghm-2 after the water use exceeds 314 mm. Without PMing, the water limited yield potential can be estimated by the boundary equation y = 47.5×(x - 62.3) , with a platform yield of 12840 kghm-2 when the water use exceeds 325 mm, which

  19. Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum

    NASA Astrophysics Data System (ADS)

    Sanz, J.; Muntifering, R. B.; Bermejo, V.; Gimeno, B. S.; Elvira, S.

    The influence of ambient ozone (O 3) concentrations and nitrogen (N) fertilization, singly and in combination, on the growth and nutritive quality of Trifolium subterraneum was assessed. This is an important O 3-sensitive species of great pastoral value in Mediterranean areas. Plant material was enclosed in open-top chambers (OTCs). Three O 3 levels were established: Filtered air with O 3 concentrations below 15 ppb (CFA), non-filtered air with O 3 concentrations in the range of ambient levels (NFA), and non-filtered air supplemented with 40 ppb O 3 over ambient levels (NFA+). Similarly, three N levels were defined: 5, 15 and 30 kg ha -1. The increase in O 3 exposure induced a reduction of the clover aerial green biomass and an increase of senescent biomass. Ozone effects were more adverse in the root system, inducing an impairment of the aerial/subterranean biomass ratio. Compared with the CFA treatment, nutritive quality of aerial biomass was 10 and 20% lower for NFA and NFA+ treatments, respectively, due to increased concentrations of acid detergent fiber, neutral detergent fiber and lignin. The latter effect appears to be related to senescence acceleration. The increment in N supplementation enhanced the increase of ADF concentrations in those plants simultaneously exposed to ambient and above-ambient O 3 concentrations, and reduced the incremental rate of foliar senescence induced by the pollutant.

  20. Yield Improvement of the Anti-MRSA Antibiotics WAP-8294A by CRISPR/dCas9 Combined with Refactoring Self-Protection Genes in Lysobacter enzymogenes OH11.

    PubMed

    Yu, Lingjun; Su, Wei; Fey, Paul D; Liu, Fengquan; Du, Liangcheng

    2018-01-19

    The cyclic lipodepsipeptides WAP-8294A are antibiotics with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). One member of this family, WAP-8294A2 (Lotilibcin), was in clinical trials due to its high activity and distinct chemistry. However, WAP-8294A compounds are produced in a very low yield by Lysobacter and only under very stringent conditions. Improving WAP-8294A yield has become very critical for research and application of these anti-MRSA compounds. Here, we report a strategy to increase WAP-8294A production. We first used the CRISPR/dCas9 system to increase the expression of five cotranscribed genes (orf1-5) in the WAP gene cluster, by fusing the omega subunit of RNA polymerase with dCas9 that targets the operon's promoter region. This led to the transcription of the genes increased by 5-48 folds in strain dCas9-ω3. We then refactored four putative self-protection genes (orf6, orf7, orf9 and orf10) by reorganizing them into an operon under the control of a strong Lysobacter promoter, P HSAF . The refactored operon was introduced into strain dCas9-ω3, and the transcription of the self-protection genes increased by 20-60 folds in the resultant engineered strains. The yield of the three main WAP-8294A compounds, WAP-8294A1, WAP-8294A2, and WAP-8294A4, increased by 6, 4, and 9 folds, respectively, in the engineered strains. The data also showed that the yield increase of WAP-8294A compounds was mainly due to the increase of the extracellular distribution. WAP-8294A2 exhibited potent (MIC 0.2-0.8 μg/mL) and specific activity against S. aureus among a battery of clinically relevant Gram-positive pathogens (54 isolates).

  1. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars.

    PubMed

    Sarvestani, Zinolabedin Tahmasebi; Pirdashti, Hemmatollah; Sanavy, Seyed Ali Mohammad Modarres; Balouchi, Hamidreza

    2008-05-15

    A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.

  2. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portofino, Sabrina, E-mail: sabrina.portofino@enea.it; Donatelli, Antonio; Iovane, Pierpaolo

    Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operationalmore » parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.« less

  3. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management

    PubMed Central

    Döring, Johanna; Frisch, Matthias; Tittmann, Susanne; Stoll, Manfred; Kauer, Randolf

    2015-01-01

    The main objective of this study was to determine growth, yield and fruit quality of grapevines under organic and biodynamic management in relation to integrated viticultural practices. Furthermore, the mechanisms for the observed changes in growth, yield and fruit quality were investigated by determining nutrient status, physiological performance of the plants and disease incidence on bunches in three consecutive growing seasons. A field trial (Vitis vinifera L. cv. Riesling) was set up at Hochschule Geisenheim University, Germany. The integrated treatment was managed according to the code of good practice. Organic and biodynamic plots were managed according to Regulation (EC) No 834/2007 and Regulation (EC) No 889/2008 and according to ECOVIN- and Demeter-Standards, respectively. The growth and yield of the grapevines differed strongly among the different management systems, whereas fruit quality was not affected by the management system. The organic and the biodynamic treatments showed significantly lower growth and yield in comparison to the integrated treatment. The physiological performance was significantly lower in the organic and the biodynamic systems, which may account for differences in growth and cluster weight and might therefore induce lower yields of the respective treatments. Soil management and fertilization strategy could be responsible factors for these changes. Yields of the organic and the biodynamic treatments partially decreased due to higher disease incidence of downy mildew. The organic and the biodynamic plant protection strategies that exclude the use of synthetic fungicides are likely to induce higher disease incidence and might partially account for differences in the nutrient status of vines under organic and biodynamic management. Use of the biodynamic preparations had little influence on vine growth and yield. Due to the investigation of important parameters that induce changes especially in growth and yield of grapevines under

  4. Effect of low electric fields on alpha scintillation light yield in liquid argon

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.

  5. Optimizing Dense Plasma Focus Neutron Yields With Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Stein, Elizabeth; Higginson, Drew; Kueny, Christopher; Link, Anthony; Schmidt, Andrea

    2017-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high-density jets are modeled in the large-eddy Navier-Stokes code CharlesX, which is suitable for modeling both sub-sonic and supersonic gas flow. The gas pattern, which is essentially static on z-pinch time scales, is imported from CharlesX to LSP for neutron yield predictions. Fast gas puffs allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of a subsonic jet increases relative to the background fill, we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density via super-sonic flow (also known as Mach diamonds) allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration and the necessary jet conditions for increasing neutron yield and reducing yield variability are explored. Simulations of realistic jet profiles are performed and compared to the ideal scenario. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL.

  6. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana

    PubMed Central

    Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.

    2017-01-01

    along with crop residue retention presents a win–win scenario due to improved crop yield, increased economic return, and trends of increasing soil fertility. The biggest challenge, however, remains with producing enough biomass and retaining same on the field. PMID:28680427

  7. Symmetry relations in charmless B{yields}PPP decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronau, Michael; Rosner, Jonathan L.; Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

    2005-11-01

    Strangeness-changing decays of B mesons to three-body final states of pions and kaons are studied, assuming that they are dominated by a {delta}I=0 penguin amplitude with flavor structure b{yields}s. Numerous isospin relations for B{yields}K{pi}{pi} and for underlying quasi-two-body decays are compared successfully with experiment, in some cases resolving ambiguities in fitting resonance parameters. The only exception is a somewhat small branching ratio noted in B{sup 0}{yields}K*{sup 0}{pi}{sup 0}, interpreted in terms of destructive interference between a penguin amplitude and an enhanced electroweak penguin contribution. Relations for B decays into three kaons are derived in terms of final states involving K{submore » S} or K{sub L}, assuming that {phi}K-subtracted decay amplitudes are symmetric in K and K, as has been observed experimentally. Rates due to nonresonant backgrounds are studied using a simple model, which may reduce discrete ambiguities in Dalitz plot analyses.« less

  8. [Yield of starch extraction from plantain (Musa paradisiaca). Pilot plant study].

    PubMed

    Flores-Gorosquera, Emigdia; García-Suárez, Francisco J; Flores-Huicochea, Emmanuel; Núñez-Santiago, María C; González-Soto, Rosalia A; Bello-Pérez, Luis A

    2004-01-01

    In México, the banana (Musa paradisiaca) is cooked (boiling or deep frying) before being eaten, but the consumption is not very popular and a big quantity of the product is lost after harvesting. The unripe plantain has a high level of starch and due to this the use of banana can be diversified as raw material for starch isolation. The objective of this work was to study the starch yield at pilot plant scale. Experiments at laboratory scale were carried out using the pulp with citric acid to 0,3 % (antioxidant), in order to evaluate the different unitary operations of the process. The starch yield, based on starch presence in the pulp that can be isolated, were between 76 and 86 %, and the values at pilot plant scale were between 63 and 71 %, in different lots of banana fruit. Starch yield values were similar among the diverse lots, showing that the process is reproducible. The lower values of starch recovery at pilot plant scale are due to the loss during sieving operations; however, the amount of starch recovery is good.

  9. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  10. High-yield recombinant expression and purification of marginally soluble, short elastin-like polypeptides.

    PubMed

    Bahniuk, Markian S; Alshememry, Abdullah K; Unsworth, Larry D

    2016-12-01

    The protocol described here is designed as an extension of existing techniques for creating elastin-like polypeptides. It allows for the expression and purification of elastin-like polypeptide (ELP) constructs that are poorly expressed or have very low transition temperatures. DNA concatemerization has been modified to reduce issues caused by methylation sensitivity and inefficient cloning. Linearization of the modified expression vector has been altered to greatly increase cleavage efficiency. The purification regimen is based upon using denaturing metal affinity chromatography to fully solubilize and, if necessary, pre-concentrate the target peptide before purification by inverse temperature cycling (ITC). This protocol has been used to express multiple leucine-containing elastin-like polypeptides, with final yields of 250-660 mg per liter of cells, depending on the specific construct. This was considerably greater than previously reported yields for similar ELPs. Due to the relative hydrophobicity of the tested constructs, even compared with commonly employed ELPs, conventional methods would not have been able to be purify these peptides.

  11. Mitigation of soil water repellency improves rootzone water status and yield in precision irrigated apples

    NASA Astrophysics Data System (ADS)

    Kostka, S.; Gadd, N.; Bell, D.

    2009-04-01

    at 5% level of probability. As surfactant rate increased, wetting front depth increased and soil VWC increased for the surfactant treatments (p=0.05). Soil VWC was significantly lower (p=0.05) in untreated soils than in the surfactant treatments on each measurement date throughout the growing season. In the surfactant treatments, soil VWC at the 0-10 cm and 10-20 cm depths of the soil profile were 2-5 percentage points higher than at the same depths in the untreated control (p=0.05). Mean fruit size for the variety 'Pink Lady' was 17-33 g greater in the surfactant treatments than in the untreated control in the 2006/07 and 2007/08 seasons, respectively (p=0.05). Mean fruit size differences of 41 g were observed between surfactant treatments and the untreated control in the single year of results for the variety 'Gala'. Due to thinning, there were no differences in fruit number. Total yield (kg tree-1) differed significantly between the untreated and surfactant treated plots (p=0.05), however, yields between the two surfactant treatment rates were statistically equivalent. In the variety 'Pink Lady', surfactant treatment increased total yield by approximately 20% in each of the two test seasons. Yield increases in the surfactant treated 'Gala' were nearly 50% greater than the untreated control. When examining the yield differences on a hectare basis, yield increases of 3.7 - 6.0 Mg kg ha-1 were encountered between the surfactant treatments and the control in the two varieties tested. Mitigation of SWR resulted in increased net return of 6,000 - 9000 ha-1 for the variety 'Pink Lady' and 3,600 ha-1 for the cultivar 'Gala'. This study demonstrates that simple innovative management strategies such as low level surfactant treatments to water repellent soils resulted in improved infiltration, increased rootzone water reserves, and significant increases in apple yield and quality under deficit irrigation.

  12. Slaughterhouse fatty waste saponification to increase biogas yield.

    PubMed

    Battimelli, A; Torrijos, M; Moletta, R; Delgenès, J P

    2010-05-01

    A thermochemical pretreatment, i.e. saponification, was optimised in order to improve anaerobic biodegradation of slaughterhouse wastes such as aeroflotation grease and flesh fats from cattle carcass. Anaerobic digestion of raw wastes, as well as of wastes saponified at different temperatures (60 degrees C, 120 degrees C and 150 degrees C) was conducted in fed-batch reactors under mesophilic condition and the effect of different saponification temperatures on anaerobic biodegradation and on the long-chain fatty acids (LCFAs) relative composition was assessed. Even after increasing loads over a long period of time, raw fatty wastes were biodegraded slowly and the biogas potentials were lower than those of theoretical estimations. In contrast, pretreated wastes exhibited improved batch biodegradation, indicating a better initial bio-availability, particularly obvious for carcass wastes. However, LCFA relative composition was not significantly altered by the pretreatment. Consequently, the enhanced biodegradation should be attributed to an increased initial bio-availability of fatty wastes without any modification of their long chain structure which remained slowly biodegradable. Finally, saponification at 120 degrees C achieved best performances during anaerobic digestion of slaughterhouse wastes. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Lee, Se-Jin; Chaffin, Charles L; Merchenthaler, István

    2016-03-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women.

  14. Projected Increase in Lightning Strikes in the United States Due to Global Warming

    NASA Astrophysics Data System (ADS)

    Romps, D. M.; Seeley, J.; Vollaro, D.; Molinari, J.

    2014-12-01

    Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. The lightning flash rate is proposed here to be proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation is found to explain the majority of variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS) on timescales ranging from diurnal to seasonal. The observations reveal that storms convert the CAPE of water mass to discharged lightning energy with an efficiency of about 1%. This proxy can be applied to global climate models, which provide predictions for the increase in lightning due to global warming. Results from 11 GCMs will be shown.

  15. Effect of low electric fields on alpha scintillation light yield in liquid argon

    DOE PAGES

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...

    2017-01-24

    Measurements were made of scintillation light yield of alpha particles from themore » $$^{222}$$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. Furthermore, the light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.« less

  16. Yield and quality of seed from yellow birch progenies.

    Treesearch

    Knud E. Clausen

    1980-01-01

    Seed yield in 8- ad 9-year-old yellow birch varied among families and years but averaged more than 1,500 seeds per tree. Long catkins contained more seed than short ones. Seed quality was poor due to insufficient pollination and to differences among trees in flowering phenology.

  17. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    PubMed Central

    Polania, Jose A.; Poschenrieder, Charlotte; Beebe, Stephen; Rao, Idupulapati M.

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two

  18. Increasing burden of urinary tract infections due to intrinsic colistin-resistant bacteria in hospitals in Marseille, France.

    PubMed

    Abat, Cédric; Desboves, Guillaume; Olaitan, Abiola Olumuyiwa; Chaudet, Hervé; Roattino, Nicole; Fournier, Pierre-Edouard; Colson, Philippe; Raoult, Didier; Rolain, Jean-Marc

    2015-02-01

    The emergence of multidrug-resistant (MDR) Gram-negative bacteria has become a major public health problem, eliciting renewed interest in colistin, an old antibiotic that is now routinely used to treat MDR bacterial infections. Here we investigated whether colistin use has affected the prevalence of infections due to intrinsic colistin-resistant bacteria (CRB) in university hospitals in Marseille (France) over a 5-year period. All data from patients infected by intrinsic CRB were compiled from January 2009 to December 2013. Escherichia coli infections were used for comparison. Colistin consumption data were also collected from pharmacy records from 2008 to 2013. A total of 4847 intrinsic CRB infections, including 3150 Proteus spp., 847 Morganella spp., 704 Serratia spp. and 146 Providencia spp., were collected between 2009 and 2013. During this period, the annual incidence rate of hospital-acquired CRB infections increased from 220 per 1000 patients to 230 per 1000 patients and that of community-acquired CRB infections increased from 100 per 1000 patients to 140 per 1000 patients. In parallel, colistin consumption increased 2.2-fold from 2008 to 2013, mainly because of an increase in the use of colistin aerosol forms (from 50 unitary doses to 2926 unitary doses; P<10(-5)) that was significantly correlated with an increase in the number of patients positive for CRB admitted to ICUs and units of long-term care between 2009 and 2013 (r=0.91; P=0.03). The global rise in infections due to intrinsic CRB is worrying and surveillance is warranted to better characterise this intriguing epidemiological change. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Nitrogen and harvest impact on warm-season grasses biomass yield

    USDA-ARS?s Scientific Manuscript database

    Perennial warm-season grasses have drawn interest as bioenergy feedstocks due to their high productivity with minimal amounts of inputs while producing multiple environmental benefits. Nitrogen (N) fertility and harvest timing are critical management practices when optimizing biomass yield of these ...

  20. Quantification of increased flood risk due to global climate change for urban river management planning.

    PubMed

    Morita, M

    2011-01-01

    Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.

  1. Fast changes in seasonal forest communities due to soil moisture increase after damming.

    PubMed

    do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio

    2013-12-01

    Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  2. Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium

    NASA Astrophysics Data System (ADS)

    Verkhovtsev, Alexey; McKinnon, Sally; de Vera, Pablo; Surdutovich, Eugene; Guatelli, Susanna; Korol, Andrei V.; Rosenfeld, Anatoly; Solov'yov, Andrey V.

    2015-04-01

    The production of secondary electrons generated by carbon nanoparticles and pure water medium irradiated by fast protons is studied by means of model approaches and Monte Carlo simulations. It is demonstrated that due to a prominent collective response to an external field, the nanoparticles embedded in the medium enhance the yield of low-energy electrons. The maximal enhancement is observed for electrons in the energy range where plasmons, which are excited in the nanoparticles, play the dominant role. Electron yield from a solid carbon nanoparticle composed of fullerite, a crystalline form of C60 fullerene, is demonstrated to be several times higher than that from liquid water. Decay of plasmon excitations in carbon-based nanosystems thus represents a mechanism of increase of the low-energy electron yield, similar to the case of sensitizing metal nanoparticles. This observation gives a hint for investigation of novel types of sensitizers to be composed of metallic and organic parts. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo García and Eugene Surdutovich.

  3. Heat treatment of wheat straw by immersion in hot water decreases mushroom yield in Pleurotus ostreatus.

    PubMed

    Jaramillo Mejía, Santiago; Albertó, Edgardo

    2013-01-01

    The oyster mushroom, Pleurotus ostreatus, is cultivated worldwide. It is one of the most appreciated mushrooms due to its high nutritional value. Immersion of the substrate in hot water is one of the most popular and worldwide treatment used for mushroom farmers. It is cheap and easy to implement. To compare the yields obtained during mushroom production of P. ostreatus using different pre-treatments (immersion in hot water, sterilization by steam and the use of fungicide) to determine if they influence mushroom crop. Four different treatments of substrate (wheat straw) were carried out: (i) immersion in hot water (IHW); (ii) steam sterilization; (iii) chemical; and (iv) untreated. The residual water from the IHW treatment was used to evaluate the mycelium growth and the production of P. ostreatus. Carbendazim treatment produced highest yields (BE: 106.93%) while IHW produced the lowest BE with 75.83%. Sugars, N, P, K and Ca were found in residual water of IHW treatment. The residual water increased the mycelium growth but did not increase yields. We have proved that IHW treatment of substrate reduced yields at least 20% when compared with other straw treatments such as steam, chemical or untreated wheat straw. Nutrients like sugars, proteins and minerals were found in the residual water extract which is the resultant water where the immersion treatment is carried out. The loss of these nutrients would be the cause of yield decrease. Alternative methods to the use of IHW as treatment of the substrate should be considered to reduce economical loss. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  4. Steam gasification of waste tyre: influence of process temperature on yield and product composition.

    PubMed

    Portofino, Sabrina; Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto; Galvagno, Sergio

    2013-03-01

    An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai

    2017-01-01

    Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging. PMID:29117250

  6. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.).

    PubMed

    Zhang, Mingwei; Wang, Hui; Yi, Yuan; Ding, Jinfeng; Zhu, Min; Li, Chunyan; Guo, Wenshan; Feng, Chaonian; Zhu, Xinkai

    2017-01-01

    Lodging is one of the constraints that limit wheat yields and quality due to the unexpected bending or breaking stems on wheat (Triticum aestivum L.) production worldwide. In addition to choosing lodging resistance varieties, husbandry practices also have a significant effect on lodging. Nitrogen management is one of the most common and efficient methods. A field experiment with Yangmai 20 as research material (a widely-used variety) was conducted to study the effects of different nitrogen levels and ratios on culm morphological, anatomical characters and chemical components and to explore the nitrogen application techniques for lodging tolerance and high yield. Results showed that some index of basal internodes, such as stem wall thickness, filling degree, lignin content, cellulose content, water-soluble carbohydrate (WSC) and WSC/N ratio, were positively and significantly correlated with culm lodging-resistant index (CLRI). As the increase of nitrogen level and basal nitrogen ratio, the basal internodes became slender and fragile with the thick stem wall, while filling degree, chemical components and the strength of the stem decreased gradually, which significantly increased the lodging risk. The response of grain yield to nitrogen doses was quadratic and grain yield reached the highest at the nitrogen ratio of 50%:10%:20%:20% (the ratio of nitrogen amount applied before sowing, at tillering stage, jointing stage and booting stage respectively, abbreviated as 5:1:2:2). These results suggested that for Yangmai 20, the planting density of 180×104ha-1, nitrogen level of 225 kg ha-1, and the ratio of 5: 1: 2: 2 effectively increased lodging resistance and grain yield. This combination of planting density and nitrogen level and ratio could effectively relieve the contradiction between high-yielding and anti-lodging.

  7. Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality.

    PubMed

    Cheng, Jun; Li, Tao; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2014-04-01

    To produce quality jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons, two zeolites of HY and HZSM-5 supporting Ni and Mo were used as catalysts to convert soybean oil into jet fuel. Zeolite HY exhibited higher jet range alkane selectivity (40.3%) and lower jet range aromatic hydrocarbon selectivity (23.8%) than zeolite HZSM-5 (13.8% and 58.9%). When reaction temperature increased from 330 to 390°C, yield of jet fuel over Ni-Mo/HY catalyst at 4 MPa hydrogen pressure increased from 0% to 49.1% due to the shift of reaction pathway from oligomerization to cracking reaction. Further increase of reaction temperature from 390 to 410°C resulted in increased yield of jet range aromatic hydrocarbons from 18.7% to 30%, which decreased jet fuel quality. A high yield of jet fuel (48.2%) was obtained at 1 MPa low hydrogen pressure over Ni (8 wt.%)-Mo (12 wt.%)/HY catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Continental-scale Sensitivity of Water Yield to Changes in Impervious Cover

    NASA Astrophysics Data System (ADS)

    Caldwell, P.; Sun, G.; McNulty, S.; Cohen, E.; Moore Myers, J.

    2012-12-01

    Projected land conversion from native forest, grassland, and shrubland to urban impervious cover will alter watershed water balances by reducing groundwater recharge and evapotranspiration, increasing surface runoff, and potentially altering regional weather patterns. These hydrologic changes have important ecohydrological implications to local watersheds, including stream channel habitat degradation and the loss of aquatic biodiversity. Many observational studies have evaluated the impact of urbanization on water yield in small catchments downstream of specific urban areas. However it is often difficult to separate the impact of impervious cover from other impacts of urbanization such as leaking water infrastructure, irrigation runoff, water supply withdrawals, and effluent discharge. In addition, the impact of impervious cover has not been evaluated at scales large enough to assess spatial differences in water yield sensitivity to changes in impervious cover. The objective of this study was to assess the sensitivity of water yield to impervious cover across the conterminous U.S., and to identify locations where water yield will be most impacted by future urbanization. We used the Water Supply Stress Index (WaSSI) model to simulate monthly water yield as impacted by impervious cover for the approximately 82,000 12-digit HUC watersheds across the conterminous U.S. WaSSI computed infiltration, surface runoff, soil moisture, and baseflow processes explicitly for ten vegetative land cover classes and impervious cover in each watershed using the 2006 National Land Cover Dataset estimates of impervious cover. Our results indicate that impervious cover has increased total water yield in urban areas (relative to native vegetation), and that the increase was most significant during the growing season. The proportion of stream flow that occurred as baseflow decreased, even though total water yield increased as a result of impervious cover. Water yield was most sensitive to

  9. Measurement of thick target neutron yield from the reaction (p+181 Ta) with projectiles in the range of 6-20 MeV

    NASA Astrophysics Data System (ADS)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.

    2018-02-01

    181Ta is a commonly used backing material for many targets in nuclear reaction studies. When the target thickness is less than the range of bombarded projectiles, the interaction via Ta(p,n) reactions in the backing can be a significant source of background. In this study, the neutron spectral yields from the reaction of protons of different energies (between 6 to 20 MeV) with a thick Ta target were determined using CR-39 detectors. The results from this study can be used as a correction factor in such situations. The parameters of registered tracks in CR-39 were analysed using an in-house image analysing program autoTRAK_n and then to derive the associated dose values. The spectral yields obtained experimentally were compared with those obtained from the theoretical calculations. The neutron yield was found to increase with increase in projectile energy mainly due to the opening of reaction channels from (p, n) to (p, 3n).

  10. Increased Risk of Mortality Due to Interpersonal Violence in Foreign-Born Women of Reproductive Age: A Swedish Register-Based Study.

    PubMed

    Fernbrant, Cecilia; Essén, Birgitta; Esscher, Annika; Östergren, Per-Olof; Cantor-Graae, Elizabeth

    2016-10-01

    Violence against women is an increasing public health concern, with assault leading to death as the most extreme outcome. Previous findings indicate that foreign-born women living in Sweden are more exposed to interpersonal violence than Swedish-born women. The current study investigates mortality due to interpersonal violence in comparison with other external causes of death among women of reproductive age in Sweden, with focus on country of birth. Foreign-born women and especially those from countries with low and very low gender equity levels had increased risk of mortality due to interpersonal violence, thus implicating lack of empowerment as a contributing factor. © The Author(s) 2016.

  11. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.

    PubMed

    Chhikara, Sudesh; Abdullah, Hesham M; Akbari, Parisa; Schnell, Danny; Dhankher, Om Parkash

    2018-05-01

    Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 20051

    PubMed Central

    Zuidhof, M. J.; Schneider, B. L.; Carney, V. L.; Korver, D. R.; Robinson, F. E.

    2014-01-01

    The effect of commercial selection on the growth, efficiency, and yield of broilers was studied using 2 University of Alberta Meat Control strains unselected since 1957 and 1978, and a commercial Ross 308 strain (2005). Mixed-sex chicks (n = 180 per strain) were placed into 4 replicate pens per strain, and grown on a current nutritional program to 56 d of age. Weekly front and side profile photographs of 8 birds per strain were collected. Growth rate, feed intake, and measures of feed efficiency including feed conversion ratio, residual feed intake, and residual maintenance energy requirements were characterized. A nonlinear mixed Gompertz growth model was used to predict BW and BW variation, useful for subsequent stochastic growth simulation. Dissections were conducted on 8 birds per strain semiweekly from 21 to 56 d of age to characterize allometric growth of pectoralis muscles, leg meat, abdominal fat pad, liver, gut, and heart. A novel nonlinear analysis of covariance was used to test the hypothesis that allometric growth patterns have changed as a result of commercial selection pressure. From 1957 to 2005, broiler growth increased by over 400%, with a concurrent 50% reduction in feed conversion ratio, corresponding to a compound annual rate of increase in 42 d live BW of 3.30%. Forty-two-day FCR decreased by 2.55% each year over the same 48-yr period. Pectoralis major growth potential increased, whereas abdominal fat decreased due to genetic selection pressure over the same time period. From 1957 to 2005, pectoralis minor yield at 42 d of age was 30% higher in males and 37% higher in females; pectoralis major yield increased by 79% in males and 85% in females. Over almost 50 yr of commercial quantitative genetic selection pressure, intended beneficial changes have been achieved. Unintended changes such as enhanced sexual dimorphism are likely inconsequential, though musculoskeletal, immune function, and parent stock management challenges may require additional

  13. Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation.

    PubMed

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-02-01

    Soil cadmium (Cd) contamination in China has become a serious concern due to its high toxicity to human health through food chains. A pot experiment was conducted to investigate the effects of hydrated lime (L), hydroxyapatite (H) and organic fertilizer (F) alone or in combination to remedy a mild (DY) and a moderate (YX) Cd contaminated agricultural soil under rice-wheat rotation. Results showed that crops grain yield and Cd concentration, soil pH, CaCl 2 extractable Cd and Cd speciation were markedly affected by the amendments. In both cropping seasons, hydrated lime and hydroxyapatite significantly immobilized soil Cd, and hydroxyapatite, organic fertilizer significantly increased grain yield. Hydrated lime mainly increased soil carbonates bound Cd fractions resulted from 16.7% to 36.2% and from 16.8% to 28.3%, and hydroxyapatite increased Fe/Mn oxides Cd fractions from 19.3% to 33.4% and from 31.4% to 42.1% in the DY and YX soils, respectively; while organic fertilizer slightly increased soil exchangeable and organic matter bound Cd fractions. Besides, combined amendments contain alkaline materials and organic materials have the potential to decrease grain Cd and increase grain yield simultaneously. Therefore, in view of the effects of amendments on grain yield and Cd concentration, the cost as well as the potential benefits expected, combined amendments like hydrated lime + organic fertilizer, hydrated lime + hydroxyapatite + organic fertilizer are recommended in practical application. Mechanisms of Cd immobilization affected by amendments are mainly attributed to the changes in soil Cd availability and crops root uptake rather than internal translocation in plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A scalable satellite-based crop yield mapper: Integrating satellites and crop models for field-scale estimation in India

    NASA Astrophysics Data System (ADS)

    Jain, M.; Singh, B.; Srivastava, A.; Lobell, D. B.

    2015-12-01

    Food security will be challenged over the upcoming decades due to increased food demand, natural resource degradation, and climate change. In order to identify potential solutions to increase food security in the face of these changes, tools that can rapidly and accurately assess farm productivity are needed. With this aim, we have developed generalizable methods to map crop yields at the field scale using a combination of satellite imagery and crop models, and implement this approach within Google Earth Engine. We use these methods to examine wheat yield trends in Northern India, which provides over 15% of the global wheat supply and where over 80% of farmers rely on wheat as a staple food source. In addition, we identify the extent to which farmers are shifting sow date in response to heat stress, and how well shifting sow date reduces the negative impacts of heat stress on yield. To identify local-level decision-making, we map wheat sow date and yield at a high spatial resolution (30 m) using Landsat satellite imagery from 1980 to the present. This unique dataset allows us to examine sow date decisions at the field scale over 30 years, and by relating these decisions to weather experienced over the same time period, we can identify how farmers learn and adapt cropping decisions based on weather through time.

  15. Foliar applied abscisic acid increases 'Chardonnay' grapevines (Vitis vinifera) bud freezing tolerance during Autumn cold acclimation

    USDA-ARS?s Scientific Manuscript database

    Economic loss due to cold weather events is a major constraint to winegrape-related industries where extreme and/or fluctuating winter temperatures induce injury and required remedial retraining and replanting increases production costs and lowers yield and fruit quality. The purpose of this study ...

  16. Anomalous effects in the aluminum oxide sputtering yield

    NASA Astrophysics Data System (ADS)

    Schelfhout, R.; Strijckmans, K.; Depla, D.

    2018-04-01

    The sputtering yield of aluminum oxide during reactive magnetron sputtering has been quantified by a new and fast method. The method is based on the meticulous determination of the reactive gas consumption during reactive DC magnetron sputtering and has been deployed to determine the sputtering yield of aluminum oxide. The accuracy of the proposed method is demonstrated by comparing its results to the common weight loss method excluding secondary effects such as redeposition. Both methods exhibit a decrease in sputtering yield with increasing discharge current. This feature of the aluminum oxide sputtering yield is described for the first time. It resembles the discrepancy between published high sputtering yield values determined by low current ion beams and the low deposition rate in the poisoned mode during reactive magnetron sputtering. Moreover, the usefulness of the new method arises from its time-resolved capabilities. The evolution of the alumina sputtering yield can now be measured up to a resolution of seconds. This reveals the complex dynamical behavior of the sputtering yield. A plausible explanation of the observed anomalies seems to originate from the balance between retention and out-diffusion of implanted gas atoms, while other possible causes are commented.

  17. Structured syncope care pathways based on lean six sigma methodology optimises resource use with shorter time to diagnosis and increased diagnostic yield.

    PubMed

    Martens, Leon; Goode, Grahame; Wold, Johan F H; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas

    2014-01-01

    To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield.

  18. Structured Syncope Care Pathways Based on Lean Six Sigma Methodology Optimises Resource Use with Shorter Time to Diagnosis and Increased Diagnostic Yield

    PubMed Central

    Martens, Leon; Goode, Grahame; Wold, Johan F. H.; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas

    2014-01-01

    Aims To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Methods Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. Results With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Conclusions Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield. PMID:24927475

  19. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    PubMed

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-05-25

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H.

  20. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    PubMed Central

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H. PMID:27220407