Sample records for yield load solutions

  1. Evaluation of Polyuria: The Roles of Solute Loading and Water Diuresis.

    PubMed

    Bhasin, Bhavna; Velez, Juan Carlos Q

    2016-03-01

    Polyuria, defined as daily urine output in excess of 3.0 to 3.5L/d, can occur due to solute or water diuresis. Solute-induced polyuria can be seen in hospitalized patients after a high solute load from exogenous protein administration or following relief of urinary obstruction. Similar clinical scenarios are rarely encountered in the outpatient setting. We describe a case of polyuria due to high solute ingestion and excessive water intake leading to a mixed picture of solute and water diuresis. Restriction of the daily solute load and water intake resulted in complete resolution of polyuria. Determination of the daily excreted urinary osmoles may yield important clues to the cause of polyuria and should be included in the routine workup of polyuria. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Yield Behavior of Solution Treated and Aged Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.

    2014-01-01

    Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.

  3. Fatigue crack growth under general-yielding cyclic-loading

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1986-01-01

    In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta J. The correlation of da/dN with delta J was also studied by a number of other investigators. However, none of thse studies have correlated da/dN with delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tips fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.

  4. Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.

    1998-01-01

    An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.

  5. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    USGS Publications Warehouse

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville

  6. Structural strength assessment of the reconstructed road structure in terms of the loading time and yield criterion

    NASA Astrophysics Data System (ADS)

    Mazurek, Grzegorz; Iwański, Marek

    2018-05-01

    This article reports the results of numerical simulations of the stress-strain states in the rebuilt road structure compared to the solutions contained in the Polish Catalogue, with the true characteristics of the layer materials taken into account. In the case analysed, a cold-recycled base layer with foamed bitumen as a recycling agent was used. The presented analysis is complementary to the mandatory in Poland procedure of mechanistic pavement design based on a linear elastic model. The temperature distribution in the road structure was analysed at the reference temperature of 40°C on the asphalt layer surface. The loading time was included in the computer simulations through the use of the classic generalized Maxwell model and thus the stiffness-time history of the layers had to be determined. For this purpose, the dynamic modulus E* tests of the loading time frequency from 0.1 Hz to 20 Hz were carried out, and the yield point was modelled using the Coulomb-Mohr failure criterion calculated on the basis of triaxial compression tests. The analytical solution to the problem was found with ABAQUS. The results demonstrate that the high temperature of asphalt layers and long loading time noticeably reduces the stiffness modulus in those layers. That reduction changes the principal stress levels, which significantly influences the shear stress both in the recycled base layer and in the subgrade soil. Should the yield point be exceeded rapidly in the recycled layer, the horizontal stresses in the asphalt layers will increase and adversely affect the durability of the reconstructed road pavement structure, especially in the zones of slow heavy vehicle traffic.

  7. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.

    PubMed

    Su, Jialei; Shen, Feng; Qiu, Mo; Qi, Xinhua

    2017-02-14

    Agricultural waste cow dung was used as feedstock for the production of a high value-added chemical levulinic acid (LA) in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg), mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH) pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  8. Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.

    2007-01-01

    The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.

  9. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    PubMed

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. QUANTIFYING LOAD-INDUCED SOLUTE TRANSPORT AND SOLUTE-MATRIX INTERACTIONS WITHIN THE OSTEOCYTE LACUNAR-CANALICULAR SYSTEM

    PubMed Central

    Wang, Bin; Zhou, Xiaozhou; Price, Christopher; Li, Wen; Pan, Jun; Wang, Liyun

    2012-01-01

    Osteocytes, the most abundant cells in bone, are critical in maintaining tissue homeostasis and orchestrating bone’s mechanical adaptation. Osteocytes depend upon load-induced convection within the lacunar-canalicular system (LCS) to maintain viability and to sense their mechanical environment. Using the fluorescence recovery after photobleaching (FRAP) imaging approach, we previously quantified the convection of a small tracer (sodium fluorescein, 376Da) in the murine tibial LCS for an intermittent cyclic loading (Price et al., 2011. JBMR 26:277-85). In the present study we first expanded the investigation of solute transport using a larger tracer (parvalbumin, 12.3kDa), which is comparable in size to some signaling proteins secreted by osteocytes. Murine tibiae were subjected to sequential FRAP tests under rest-inserted cyclic loading while the loading magnitude (0, 2.8, or 4.8N) and frequency (0.5, 1, or 2 Hz) were varied. The characteristic transport rate k and the transport enhancement relative to diffusion (k/k0) were measured under each loading condition, from which the peak solute velocity in the LCS was derived using our LCS transport model. Both the transport enhancement and solute velocity increased with loading magnitude and decreased with loading frequency. Furthermore, the solute-matrix interactions, quantified in terms of the reflection coefficient through the osteocytic pericellular matrix (PCM), were measured and theoretically modeled. The reflection coefficient of parvalbumin (σ=0.084) was derived from the differential fluid and solute velocities within loaded bone. Using a newly developed PCM sieving model, the PCM’s fiber configurations accounting for the measured interactions were obtained for the first time. The present study provided not only new data on the micro-fluidic environment experienced by osteocytes in situ, but also a powerful quantitative tool for future study of the PCM, the critical interface that controls both outside

  11. Approaches to stream solute load estimation for solutes with varying dynamics from five diverse small watershed

    USGS Publications Warehouse

    Aulenbach, Brent T.; Burns, Douglas A.; Shanley, James B.; Yanai, Ruth D.; Bae, Kikang; Wild, Adam; Yang, Yang; Yi, Dong

    2016-01-01

    Estimating streamwater solute loads is a central objective of many water-quality monitoring and research studies, as loads are used to compare with atmospheric inputs, to infer biogeochemical processes, and to assess whether water quality is improving or degrading. In this study, we evaluate loads and associated errors to determine the best load estimation technique among three methods (a period-weighted approach, the regression-model method, and the composite method) based on a solute's concentration dynamics and sampling frequency. We evaluated a broad range of varying concentration dynamics with stream flow and season using four dissolved solutes (sulfate, silica, nitrate, and dissolved organic carbon) at five diverse small watersheds (Sleepers River Research Watershed, VT; Hubbard Brook Experimental Forest, NH; Biscuit Brook Watershed, NY; Panola Mountain Research Watershed, GA; and Río Mameyes Watershed, PR) with fairly high-frequency sampling during a 10- to 11-yr period. Data sets with three different sampling frequencies were derived from the full data set at each site (weekly plus storm/snowmelt events, weekly, and monthly) and errors in loads were assessed for the study period, annually, and monthly. For solutes that had a moderate to strong concentration–discharge relation, the composite method performed best, unless the autocorrelation of the model residuals was <0.2, in which case the regression-model method was most appropriate. For solutes that had a nonexistent or weak concentration–discharge relation (modelR2 < about 0.3), the period-weighted approach was most appropriate. The lowest errors in loads were achieved for solutes with the strongest concentration–discharge relations. Sample and regression model diagnostics could be used to approximate overall accuracies and annual precisions. For the period-weighed approach, errors were lower when the variance in concentrations was lower, the degree of autocorrelation in the concentrations was

  12. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  13. Loads and yields of selected constituents in streams and rivers of Monroe County, New York, 1984-2001

    USGS Publications Warehouse

    Sherwood, Donald A.

    2004-01-01

    Hydrologic data collected in Monroe County since the 1980s and earlier, including long-term records of streamflow and chemical loads, provide a basis for assessment of water-management practices. All monitored streams except Northrup Creek showed a slight (nonsignificant) overall decrease in annual streamflow over their period of record; Northrup Creek showed a slight increase.The highest yields of all constituents except chloride and sulfate were at Northrup Creek; these values exceeded those of the seven Irondequoit Creek basin sites and the Genesee River site. The highest yields of dissolved chloride were at the most highly urbanized site (Allen Creek), whereas the highest yields of dissolved sulfate were at the most upstream Irondequoit Creek sites -- Railroad Mills (active) and Pittsford (inactive). Yields of all constituents in the Genesee River at the Charlotte Pump Station were within the range of those at the Irondequoit Creek basin sites.The four active Irondequoit Creek basin sites showed significant downward trends in flow-adjusted loads of ammonia + organic nitrogen, possibly from the conversion of agricultural land to suburban land. Two active sites (Allen Creek and Blossom Road) and one inactive site (Thomas Creek) showed downward trends in loads of ammonia. All active sites showed significant upward trends in dissolved chloride loads. Northrup Creek showed a significant downward trend in total phosphorus load since the improvement in phosphorus removal at the Spencerport wastewater-treatment plant, and upward trends in dissolved chloride and sulfate loads. The Genesee River at the Charlotte Pump Station showed significant downward trends in loads of ammonia + organic nitrogen and chloride, and an upward trend in loads of orthophosphate.The improved treatment or diversion of sewage-treatment-plant-effluent has produced decreased yields of some constituents throughout the county, particularly in the Irondequoit Creek basin, where the loads of

  14. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size1[OPEN

    PubMed Central

    Wang, Liang; Lu, Qingtao

    2015-01-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. PMID:26504138

  15. A method to approximate a closest loadability limit using multiple load flow solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong

    A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less

  16. A Distributed Dynamic Programming-Based Solution for Load Management in Smart Grids

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xu, Yinliang; Li, Sisi; Zhou, MengChu; Liu, Wenxin; Xu, Ying

    2018-03-01

    Load management is being recognized as an important option for active user participation in the energy market. Traditional load management methods usually require a centralized powerful control center and a two-way communication network between the system operators and energy end-users. The increasing user participation in smart grids may limit their applications. In this paper, a distributed solution for load management in emerging smart grids is proposed. The load management problem is formulated as a constrained optimization problem aiming at maximizing the overall utility of users while meeting the requirement for load reduction requested by the system operator, and is solved by using a distributed dynamic programming algorithm. The algorithm is implemented via a distributed framework and thus can deliver a highly desired distributed solution. It avoids the required use of a centralized coordinator or control center, and can achieve satisfactory outcomes for load management. Simulation results with various test systems demonstrate its effectiveness.

  17. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  18. Estimated loads and yields of suspended soils and water-quality constituents in Kentucky streams

    USGS Publications Warehouse

    Crain, Angela S.

    2001-01-01

    Loads and yields of suspended solids, nutrients, major ions, trace elements, organic carbon, fecal coliform, dissolved oxygen, and alkalinity were estimated for 22 streams in 11 major river basins in Kentucky. Mean daily discharge was estimated at ungaged stations or stations with incomplete discharge records using drainage-area ratio, regression analysis, or a combination of the two techniques. Streamflow was partitioned into total and base flow and used to estimate loads and yields for suspended solids and water-quality constituents by use of the ESTIMATOR and FLUX computer programs. The relative magnitude of constituent transport to streams from groundand surface-water sources was determined for the 22 stations. Nutrient and suspended solids yields for drainage basins with relatively homogenous land use were used to estimate the total-flow and base-flow yields of nutrient and suspended solids for forested, agricultural, and urban land. Yields of nutrients?nitrite plus nitrate, ammonia plus organic nitrogen, and total phosphorus?in forested drainage basins were generally less than 1 ton per square mile per year ((ton/mi2)/yr) and were generally less than 2 (ton/mi2)/yr in agricultural drainage basins. The smallest total-flow yields for nitrogen (nitrite plus nitrate) was estimated at Levisa Fork at Paintsville in which 95 percent of the land is forested. This site also had one of the smallest total-flow yields for ammonia plus organic nitrogen. In general, nutrient yields from forested lands were lower than those from urban and agricultural land. Some of the largest estimated total-flow yields of nutrients among agricultural basins were for streams in the Licking River Basin, the North Fork Licking River near Milford, and the South Fork Licking River at Cynthiana. Agricultural land constitutes greater than 75 percent of the drainage area in these two basins. Possible sources of nutrients discharging into the Licking River are farm and residential fertilizers

  19. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 2000-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.; Pickup, Barbara E.

    2006-01-01

    The Illinois River and tributaries, Flint Creek and Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus levels in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30-day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to summarize phosphorus concentrations and provide estimates of phosphorus loads, yields, and flow-weighted concentrations in the Illinois River and tributaries from January 2000 through December 2004. Data from water-quality samples collected from 2000 to 2004 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and mean flow-weighted concentrations in the Illinois River basin for three 3-year periods - 2000-2002, 2001-2003, and 2002-2004, to update a previous report that used data from water-quality samples from 1997 to 2001. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Phosphorus concentrations in the Illinois River basin were significantly greater in runoff samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and decreased in the downstream direction in the Illinois River from the Watts to Tahlequah stations. Phosphorus concentrations generally increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River

  20. Solute load concentrations in some streams in the Upper Osun and Owena drainage basins, central western Nigeria

    NASA Astrophysics Data System (ADS)

    Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.

    1999-12-01

    The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.

  1. Solution of the advection-dispersion equation: Continuous load of finite duration

    USGS Publications Warehouse

    Runkel, R.L.

    1996-01-01

    Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.

  2. Strip Yield Model Numerical Application to Different Geometries and Loading Conditions

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Forman, Royce; Shivakumar, Venkataraman; Lyons, Jed

    2006-01-01

    A new numerical method based on the strip-yield analysis approach was developed for calculating the Crack Tip Opening Displacement (CTOD). This approach can be applied for different crack configurations having infinite and finite geometries, and arbitrary applied loading conditions. The new technique adapts the boundary element / dislocation density method to obtain crack-face opening displacements at any point on a crack, and succeeds by obtaining requisite values as a series of definite integrals, the functional parts of each being evaluated exactly in a closed form.

  3. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 1997-2001

    USGS Publications Warehouse

    Pickup, Barbara E.; Andrews, William J.; Haggard, Brian E.; Green, W. Reed

    2003-01-01

    The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and the Baron Fork. Loads appeared to generally increase with time during 1997-2001 at all stations, but this increase might be partly attributable to the beginning of runoff-event sampling in the basin in July 1999. Base-flow loads at stations on the Illinois River were about 10 times greater than those on the Baron Fork and 5 times greater than those on Flint Creek. Runoff components of the annual total phosphorus load ranged from 58.7 to 96.8 percent from 1997-2001. Base-flow and runoff loads were generally greatest in spring (March through May) or summer (June through August), and were least in fall (September through November). Total yields of phosphorus ranged from 107 to 797 pounds per year per square mile. Greatest yields were at Flint Creek near Kansas (365 to 797 pounds per

  4. On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem

    NASA Technical Reports Server (NTRS)

    Lim, Sang G.; Brewe, David E.; Prahl, Joseph M.

    1990-01-01

    The transient analysis of hydrodynamic lubrication of a point-contact is presented. A body-fitted coordinate system is introduced to transform the physical domain to a rectangular computational domain, enabling the use of the Newton-Raphson method for determining pressures and locating the cavitation boundary, where the Reynolds boundary condition is specified. In order to obtain the transient solution, an explicit Euler method is used to effect a time march. The transient dynamic load is a sinusoidal function of time with frequency, fractional loading, and mean load as parameters. Results include the variation of the minimum film thickness and phase-lag with time as functions of excitation frequency. The results are compared with the analytic solution to the transient step bearing problem with the same dynamic loading function. The similarities of the results suggest an approximate model of the point contact minimum film thickness solution.

  5. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin

    PubMed Central

    Stroman, David W; Mintun, Keri; Epstein, Arthur B; Brimer, Crystal M; Patel, Chirag R; Branch, James D; Najafi-Tagol, Kathryn

    2017-01-01

    Purpose To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl). Methods Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics. Results Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics. Conclusion The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid. PMID:28458509

  6. Gaussian step-pressure loading of rigid viscoplastic plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Durling, B. J.

    1978-01-01

    The response of a thin, rigid viscoplastic plate subjected to a spatially axisymmetric Gaussian step pressure impulse loading was studied analytically. A Gaussian pressure distribution in excess of the collapse load was applied to the plate, held constant for a length of time, and then suddenly removed. The plate deforms with monotonically increasing deflections until the dynamic energy is completely dissipated in plastic work. The simply supported plate of uniform thickness obeys the von Mises yield criterion and a generalized constitutive equation for rigid viscoplastic materials. For the small deflection bending response of the plate, the governing system of equations is essentially nonlinear. Transverse shear stress is neglected in the yield condition and rotary inertia in the equations of dynamic equilibrium. A proportional loading technique, known to give excellent approximations of the exact solution for the uniform load case, was used to linearize the problem and to obtain the analytical solutions in the form of eigenvalue expansions. The effects of load concentration, of an order of magnitude change in the viscosity of the plate material, and of load duration were examined while holding the total impulse constant.

  7. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    PubMed Central

    2011-01-01

    Background Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP)) was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production. Results The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C) and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20%) gave higher monomeric glucose (Glc) and xylose (Xyl) yields than the 2% loading used in earlier studies. An H2O2 loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H2O2 concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H2O2 loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg/g glucan gave

  8. FURFURAL YIELD AND DECOMPOSITION IN SODIUM 2,4DIMETHYLBENZENESULFONATE--SULFURIC ACID--WATER SOLUTIONS.

    DTIC Science & Technology

    Batch-type microreactors (about 1/40 milliliter of reactants) were used to measure furfural yields from acidified xylose solutions containing sodium...It was found that presence of the salt did not affect the quantity of furfural produced, but greatly increased the rate of formation. The regular...increase in rate of furfural formation was directly related to the increase in the rate xylose decomposition, and furfural yields for all salt and acid

  9. Effects of Land-Applied Ammonia Scrubber Solutions on Yield, Nitrogen Uptake, Soil Test Phosphorus, and Phosphorus Runoff.

    PubMed

    Martin, Jerry W; Moore, Philip A; Li, Hong; Ashworth, Amanda J; Miles, Dana M

    2018-03-01

    Ammonia (NH) scrubbers reduce amounts of NH and dust released from animal rearing facilities while generating nitrogen (N)-rich solutions, which may be used as fertilizers. The objective of this study was to determine the effects of various NH scrubber solutions on forage yields, N uptake, soil-test phosphorus (P), and P runoff. A small plot study was conducted using six treatments: (i) an unfertilized control, (ii) potassium bisulfate (KHSO) scrubber solution, (iii) aluminum sulfate [Al(SO) ⋅14HO, alum] scrubber solution, (iv) sodium bisulfate (NaHSO) scrubber solution, (v) sulfuric acid (HSO) scrubber solution, and (vi) ammonium nitrate (NHNO) fertilizer. The scrubber solutions were obtained from ARS Air Scrubbers attached to commercial broiler houses. All N sources were applied at a rate of 112 kg N ha. Plots were harvested approximately every 4 wk and soil-test P measurements were made, then a rainfall simulation study was conducted. Cumulative forage yields were greater ( < 0.05) for KHSO (7.6 Mg ha) and NaHSO (7.5 Mg ha) scrubber solutions than for alum (6.7 Mg ha) or HSO (6.5 Mg ha) scrubber solutions or for NHNO (6.9 Mg ha). All N sources resulted in higher yields than the control (5.1 Mg ha). The additional potassium in the KHSO treatment likely resulted in higher yields. Although Mehlich-III-extractable P was not affected, water-extractable P in soil was lowered by the alum-based scrubber solution, which also resulted in lower P runoff. This study demonstrates that N captured using NH scrubbers is a viable N fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Computation of major solute concentrations and loads in German rivers using regression analysis.

    USGS Publications Warehouse

    Steele, T.D.

    1980-01-01

    Regression functions between concentrations of several inorganic solutes and specific conductance and between specific conductance and stream discharge were derived from intermittent samples collected for 2 rivers in West Germany. These functions, in conjunction with daily records of streamflow, were used to determine monthly and annual solute loadings. -from Author

  11. A new yield and failure theory for composite materials under static and dynamic loading

    DOE PAGES

    Daniel, Isaac M.; Daniel, Sam M.; Fenner, Joel S.

    2017-09-12

    In order to facilitate and accelerate the process of introducing, evaluating and adopting new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of composite structures based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new yield/failure theory is proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is based on the equivalent stress concept derived from energy principles and is expressed in terms of a single criterion. It is presented in the formmore » of master yield and failure envelopes incorporating strain rate effects. The theory can be further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive damage of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without extensive testing and offers easily implemented design tools.« less

  12. A new yield and failure theory for composite materials under static and dynamic loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Isaac M.; Daniel, Sam M.; Fenner, Joel S.

    In order to facilitate and accelerate the process of introducing, evaluating and adopting new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of composite structures based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new yield/failure theory is proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is based on the equivalent stress concept derived from energy principles and is expressed in terms of a single criterion. It is presented in the formmore » of master yield and failure envelopes incorporating strain rate effects. The theory can be further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive damage of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without extensive testing and offers easily implemented design tools.« less

  13. Comparison of heavy metal loads in stormwater runoff from major and minor urban roads using pollutant yield rating curves.

    PubMed

    Davis, Brett; Birch, Gavin

    2010-08-01

    Trace metal export by stormwater runoff from a major road and local street in urban Sydney, Australia, is compared using pollutant yield rating curves derived from intensive sampling data. The event loads of copper, lead and zinc are well approximated by logarithmic relationships with respect to total event discharge owing to the reliable appearance of a first flush in pollutant mass loading from urban roads. Comparisons of the yield rating curves for these three metals show that copper and zinc export rates from the local street are comparable with that of the major road, while lead export from the local street is much higher, despite a 45-fold difference in traffic volume. The yield rating curve approach allows problematic environmental data to be presented in a simple yet meaningful manner with less information loss. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Nutrient and sediment concentrations, yields, and loads in impaired streams and rivers in the Taunton River Basin, Massachusetts, 1997-2008

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Sorenson, Jason R.

    2013-01-01

    Rapid development, population growth, and the changes in land and water use accompanying development are placing increasing stress on water resources in the Taunton River Basin. An assessment by the Massachusetts Department of Environmental Protection determined that a number of tributary streams to the Taunton River are impaired for a variety of beneficial uses because of nutrient enrichment. Most of the impaired reaches are in the Matfield River drainage area in the vicinity of the City of Brockton. In addition to impairments of stream reaches in the basin, discharge of nutrient-rich water from the Taunton River contributes to eutrophication of Mount Hope and Narragansett Bays. To assess water quality and loading in the impaired tributary stream reaches in the basin, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection compiled existing water-quality data from previous studies for the period 1997-2006, developed and calibrated a Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model to simulate streamflow in areas of the basin that contain the impaired reaches for the same time period, and collected additional streamflow and water-quality data from sites on the Matfield and Taunton Rivers in 2008. A majority of the waterquality samples used in the study were collected between 1999 and 2006. Overall, the concentration, yield, and load data presented in this report represent water-quality conditions in the basin for the period 1997-2008. Water-quality data from 52 unique sites were used in the study. Most of the samples from previous studies were collected between June and September under dry weather conditions. Simulated or measured daily mean streamflow and water-quality data were used to estimate constituent yields and loads in the impaired tributary stream reaches and the main stem of the Taunton River and to develop yield-duration plots for reaches with sufficient water-quality data. Total

  15. Performance tradeoffs in static and dynamic load balancing strategies

    NASA Technical Reports Server (NTRS)

    Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.

    1986-01-01

    The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.

  16. Organic Carbon Trends, Loads, and Yields to the Sacramento-San Joaquin Delta, California, Water Years 1980 to 2000

    USGS Publications Warehouse

    Saleh, Dina K.; Domagalski, Joseph L.; Kratzer, Charles R.; Knifong, Donna L.

    2003-01-01

    Organic carbon, nutrient, and suspended sediment concentration data were analyzed for the Sacramento and San Joaquin River Basins for the period 1980-2000. The data were retrieved from three sources: the U.S. Geological Survey's National Water Information System, the U.S. Environmental Protection Agency's Storage and Retrieval System, and the California Interagency Ecological Program's relational database. Twenty sites were selected, all of which had complete records of daily streamflow data. These data met the minimal requirements of the statistical programs used to estimate trends, loads, and yields. The seasonal Kendall program was used to estimate trends in organic carbon, nutrient, and suspended sediment. At all 20 sites, analyses showed that in the 145 analyses for the seven constituents, 95 percent of the analyses had no significant trend. Dissolved organic carbon (DOC) concentrations were significant only for four sites: the American River at Sacramento, the Sacramento River sites near Freeport, Orestimba Creek at River Roads near Crows Landing, and the San Joaquin River near Vernalis. Loads were calculated using two programs, ESTIMATOR and LOADEST2. The 1998 water year was selected to describe loads in the Sacramento River Basin. Organic carbon, nutrient, and suspended sediment loads at the Sacramento River sites near Freeport included transported loads from two main upstream sites: the Sacramento River at Verona and the American River at Sacramento. Loads in the Sacramento River Basin were affected by the amount of water diverted to the Yolo Bypass (the amount varies annually, depending on the precipitation and streamflow). Loads at the Sacramento River sites near Freeport were analyzed for two hydrologic seasons: the irrigation season (April to September) and the nonirrigation season (October to March). DOC loads are lower during the irrigation season then they are during the nonirrigation season. During the irrigation season, water with low

  17. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions.

    PubMed

    Modi, Sweta; Xiang, Tian-Xiang; Anderson, Bradley D

    2012-09-10

    Nanoparticulate drug carriers such as liposomal drug delivery systems are of considerable interest in cancer therapy because of their ability to passively accumulate in solid tumors. For liposomes to have practical utility for antitumor therapy in patients, however, optimization of drug loading, retention, and release kinetics are necessary. Active loading is the preferred method for optimizing loading of ionizable drugs in liposomes as measured by drug-to-lipid ratios, but the extremely low aqueous solubilities of many anticancer drug candidates may limit the external driving force, thus slowing liposomal uptake during active loading. This report demonstrates the advantages of maintaining drug supersaturation during active loading. A novel method was developed for creating and maintaining supersaturation of a poorly soluble camptothecin analogue, AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin), using a low concentration of a cyclodextrin (sulfobutylether-β-cyclodextrin) to inhibit crystallization over a 48 h period. Active loading into liposomes containing high concentrations of entrapped sodium or calcium acetate was monitored using drug solutions at varying degrees of supersaturation. Liposomal uptake rates increased linearly with the degree of supersaturation of drug in the external loading solution. A mathematical model was developed to predict the rate and extent of drug loading versus time, taking into account the chemical equilibria inside and outside of the vesicles and the transport kinetics of various permeable species across the lipid bilayer and the dialysis membrane. Intraliposomal sink conditions were maintained by the high internal pH caused by the efflux of acetic acid and exchange with AR-67, which undergoes lactone ring-opening, ionization, and membrane binding in the interior of the vesicles. The highest drug to lipid ratio achieved was 0.17 from a supersaturated solution at a total drug concentration of 0.6 mg/ml. The rate and extent of

  18. The yield and post-yield behavior of high-density polyethylene

    NASA Technical Reports Server (NTRS)

    Semeliss, M. A.; Wong, R.; Tuttle, M. E.

    1990-01-01

    An experimental and analytical evaluation was made of the yield and post-yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was selected for study because it is very inexpensive and readily available in the form of thin-walled tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress rate was imposed during all tests. The measured yield and post-yield behavior was compared with predictions based on both isotropic and anisotropic models. Of particular interest was whether inelastic behavior was sensitive to the hydrostatic stress level. The major achievements and conclusions reached are discussed.

  19. Concentrations, loads, and yields of particle-associated contaminants in urban creeks, Austin, Texas, 1999-2004

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Guilfoyle, A.L.; Sunvison, M.W.

    2006-01-01

    Concentrations, loads, and yields of particle-associated (hydrophobic) contaminants (PACs) in urban runoff in creeks in Austin, Texas, were characterized using an innovative approach: large-volume suspended-sediment sampling. This approach isolates suspended sediment from the water column in quantities sufficient for direct chemical analysis of PACs. During 1999-2004, samples were collected after selected rain events from each of five stream sites and Barton Springs for a study by the U.S. Geological Survey, in cooperation with the City of Austin. Sediment isolated from composited samples was analyzed for major elements, metals, organochlorine compounds, and polycyclic aromatic hydrocarbons (PAHs). In addition, at the Shoal Creek and Boggy Creek sites, individual samples for some events were analyzed to investigate within-event variation in sediment chemistry. Organochlorine compounds detected in suspended sediment included chlordane, dieldrin, DDD, DDE, DDT, and polychlorinated biphenyls (PCBs). Concentrations of PACs varied widely both within and between sites, with higher concentrations at the more urban sites and multiple nondetections at the least-urban sites. Within-site variation for metals and PAHs was smaller than between-site variation, and concentrations and yields of these and the organochlorine compounds correlated positively to the percentage of urban land use in the watershed. Loads of most PACs tested correlated significantly with suspended-sediment loads. Concentrations of most PACs correlated strongly with three measures of urban land use. Variation in suspended-sediment chemistry during runoff events was investigated at the Shoal and Boggy Creek sites. Five of the eight metals analyzed, dieldrin, chlordane, PCBs, and PAHs were detected at the highest concentrations in the first sample collected at the Shoal Creek site, a first-flush effect, but not at the Boggy Creek site. Temporal patterns in concentrations of DDT and its breakdown products

  20. An approach for the regularization of a power flow solution around the maximum loading point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Y.

    1992-08-01

    In the conventional power flow solution, the boundary conditions are directly specified by active power and reactive power at each node, so that the singular point coincided with the maximum loading point. For this reason, the computations are often disturbed by ill-condition. This paper proposes a new method for getting the wide-range regularity by giving some modifications to the conventional power flow solution method, thereby eliminating the singular point or shifting it to the region with the voltage lower than that of the maximum loading point. Then, the continuous execution of V-P curves including maximum loading point is realized. Themore » efficiency and effectiveness of the method are tested in practical 598-nodes system in comparison with the conventional method.« less

  1. Steady state solutions to dynamically loaded periodic structures

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.

    1980-01-01

    The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.

  2. An analytical solution for the elastoplastic response of a continuous fiber composite under uniaxial loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1990-01-01

    A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.

  3. Sample-averaged biexciton quantum yield measured by solution-phase photon correlation.

    PubMed

    Beyler, Andrew P; Bischof, Thomas S; Cui, Jian; Coropceanu, Igor; Harris, Daniel K; Bawendi, Moungi G

    2014-12-10

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.

  4. Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

    PubMed Central

    Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; Coropceanu, Igor; Harris, Daniel K.; Bawendi, Moungi G.

    2015-01-01

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals. PMID:25409496

  5. Finite element solutions for crack-tip behavior in small-scale yielding

    NASA Technical Reports Server (NTRS)

    Tracey, D. M.

    1976-01-01

    The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.

  6. Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading

    NASA Astrophysics Data System (ADS)

    Berezvai, Szabolcs; Kossa, Attila

    2017-05-01

    This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.

  7. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  8. Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

    DOE PAGES

    Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; ...

    2014-11-19

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here in this study, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS andmore » InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.« less

  9. Concentrations, loads, and yields of organic carbon in streams of agricultural watersheds

    USGS Publications Warehouse

    Kronholm, Scott; Capel, Paul

    2012-01-01

    Carbon is cycled to and from large reservoirs in the atmosphere, on land, and in the ocean. Movement of organic carbon from the terrestrial reservoir to the ocean plays an important role in the global cycling of carbon. The transition from natural to agricultural vegetation can change the storage and movement of organic carbon in and from a watershed. Samples were collected from 13 streams located in hydrologically and agriculturally diverse watersheds, to better understand the variability in the concentrations and loads of dissolved organic carbon (DOC) and particulate organic carbon (POC) in the streams, and the variability in watershed yields. The overall annual median concentrations of DOC and POC were 4.9 (range: 2.1–6.8) and 1.1 (range: 0.4–3.8) mg C L−1, respectively. The mean DOC watershed yield (± SE) was 25 ± 6.8 kg C ha−1 yr−1. The yields of DOC from these agricultural watersheds were not substantially different than the DOC yield from naturally vegetated watersheds in equivalent biomes, but were at the low end of the range for most biomes. Total organic carbon (DOC + POC) annually exported from the agricultural watersheds was found to average 0.03% of the organic carbon that is contained in the labile plant matter and top 1 m of soil in the watershed. Since the total organic carbon exported from agricultural watersheds is a relatively small portion of the sequestered carbon within the watershed, there is the great potential to store additional carbon in plants and soils of the watershed, offsetting some anthropogenic CO2 emissions.

  10. Behaviour of Frictional Joints in Steel Arch Yielding Supports

    NASA Astrophysics Data System (ADS)

    Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel

    2014-10-01

    The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.

  11. Evolution of ion emission yield of alloys with the nature of the solute. 2: Interpretation

    NASA Technical Reports Server (NTRS)

    Blaise, G.; Slodzian, G.

    1977-01-01

    Solid solutions of transition elements in copper, nickel, cobalt, iron, and aluminum matrices were analyzed by observing secondary ion emissions under bombardment with 6.2-keV argon ions. Enchancement of the production of solute-element ions was observed. An ion emission model is proposed according to which the ion yield is governed by the probability of an atom leaving the metal in a preionized state. The energy distribution of the valence electrons of the solute atoms is the bases of the probability calculation.

  12. Preparation of Curcumin Loaded Egg Albumin Nanoparticles Using Acetone and Optimization of Desolvation Process.

    PubMed

    Aniesrani Delfiya, D S; Thangavel, K; Amirtham, D

    2016-04-01

    In this study, acetone was used as a desolvating agent to prepare the curcumin-loaded egg albumin nanoparticles. Response surface methodology was employed to analyze the influence of process parameters namely concentration (5-15%w/v) and pH (5-7) of egg albumin solution on solubility, curcumin loading and entrapment efficiency, nanoparticles yield and particle size. Optimum processing conditions obtained from response surface analysis were found to be the egg albumin solution concentration of 8.85%w/v and pH of 5. At this optimum condition, the solubility of 33.57%, curcumin loading of 4.125%, curcumin entrapment efficiency of 55.23%, yield of 72.85% and particles size of 232.6 nm were obtained and these values were related to the values which are predicted using polynomial model equations. Thus, the model equations generated for each response was validated and it can be used to predict the response values at any concentration and pH.

  13. Yield and failure criteria for composite materials under static and dynamic loading

    DOE PAGES

    Daniel, Isaac M.

    2015-12-23

    To facilitate and accelerate the process of introducing, evaluating and adopting of new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of structural laminates based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new failure theory, the Northwestern (NU-Daniel) theory, has been proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is primarily applicable to matrix-dominated interfiber/interlaminar failures. It is based on micromechanical failure mechanisms but is expressed in terms of easily measuredmore » macroscopic lamina stiffness and strength properties. It is presented in the form of a master failure envelope incorporating strain rate effects. The theory was further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive failure of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without very extensive testing and offers easily implemented design tools.« less

  14. Concentrations, loads, and yields of select constituents from major tributaries of the Mississippi and Missouri Rivers in Iowa, water years 2004-2008

    USGS Publications Warehouse

    Garrett, Jessica D.

    2012-01-01

    suspended sediment, increased with streamflow. Nitrogen concentrations (total nitrogen and nitrate plus nitrite) increased with low and moderate streamflows, but decreased with high streamflows. Seasonal patterns observed in constituent concentrations were affected by streamflow, algae blooms, and pesticide application. The various landform regions produced different water-quality responses across the study basins; for example, total phosphorus, suspended sediment, and turbidity were greatest from the steep, loess-dominated southwestern Iowa basins. Nutrient concentrations, though not regulated for drinking water at the study sites, were high compared to drinking-water limits and criteria for protection of aquatic life proposed for other Midwestern states (Iowa criteria for aquatic life have not been proposed). Nitrate plus nitrite concentrations exceeded the drinking-water limit [10 milligrams per liter (mg/L)] in 11 percent of all samples at the 10 sites, and exceeded Minnesota's proposed aquatic life criteria (4.9 mg/L) in 68 percent of samples. The Wisconsin standard for total phosphorus (0.1 mg/L) was exceeded in 92 percent of samples. Ammonia standards, current during sample collection and at publication of this report, for protection of aquatic life were met for all samples, but draft criteria proposed in 2009 to protect more sensitive species like mussels, were exceeded at three sites. Loads and yields also differed among sites and years. The Big Sioux, Little Sioux, and Des Moines Rivers produced the greatest sulfate yields. Mississippi River tributaries had greater chloride yields than Missouri River tributaries. The Big Sioux River also had the lowest silica yields and total nitrogen and nitrate yields, whereas nitrogen yields were greater in the northeastern rivers. The Boyer and Nishnabotna River total phosphorus yields were the greatest in the study. The Boyer River orthophosphate yields were greatest except in 2008, when the Maquoketa River produced the

  15. Effect of axial load on mode shapes and frequencies of beams

    NASA Technical Reports Server (NTRS)

    Shaker, F. J.

    1975-01-01

    An investigation of the effect of axial load on the natural frequencies and mode shapes of uniform beams and of a cantilevered beam with a concentrated mass at the tip is presented. Characteristic equations which yield the frequencies and mode shape functions for the various cases are given. The solutions to these equations are presented by a series of graphs so that frequency as a function of axial load can readily be determined. The effect of axial load on the mode shapes are also depicted by another series of graphs.

  16. Mechanical responses, texture evolution, and yield loci of extruded AZ31 magnesium alloy under various loading conditions: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Kabirian, Farhoud

    Mechanical responses and texture evolution of extruded AZ31 Mg are measured under uniaxial (tension-compression) and multiaxial (free-end torsion) loadings. Compression loading is carried out in three different directions at temperature and strain rate ranges of 77-423 K and 10-4 -3000 s -1, respectively. Texture evolution at different intermediate strains reveals that crystal reorientation is exhausted at smaller strains with increase in strain rate while increase in temperature retards twinning. In addition to the well-known tension-compression yield asymmetry, a strong anisotropy in strain hardening response is observed. Strain hardening during the compression experiment is intensified with decreasing and increasing temperature and strain rate, respectively. This complex behavior is explained through understanding the roles of deformation mechanisms using the Visco-Plastic Self Consistent (VPSC) model. In order to calibrate the VPSC model's constants as accurate as possible, a vast number of mechanical responses including stress-strain curves in tension, compression in three directions, and free-end torsion, texture evolution at different strains, lateral strains of compression samples, twin volume fraction, and axial strain during the torsion experiment. Modeling results show that depending on the number of measurements used for calibration, roles of different mechanisms in plastic deformation change significantly. In addition, a precise definition of yield is established for the extruded AZ31magnesium alloy after it is subjected to different loading conditions (uniaxial to multiaxial) at four different plastic strains. The yield response is measured in ?-? space. Several yield criteria are studied to predict yield response of extruded AZ31. This study proposes an asymmetrical fourth-order polynomial yield function. Material constants in this model can be directly calculated using mechanical measurements. Convexity of the proposed model is discussed, and

  17. Effects of land-applied ammonia scrubber solutions on yield, nitrogen uptake, soil test phosphorus and phosphorus runoff

    USDA-ARS?s Scientific Manuscript database

    Ammonia (NH3) scrubbers reduce amounts of NH3 and dust released from animal rearing facilities, while generating nitrogen (N) rich solutions, which may be used as fertilizer. The objective of this study was to determine the effects of various NH3 scrubber solutions on yields, N uptake by forage, so...

  18. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  19. Yield surface evolution for columnar ice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  20. Characteristics of sediment data and annual suspended-sediment loads and yields for selected lower Missouri River mainstem and tributary stations, 1976-2008

    USGS Publications Warehouse

    Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.

    2010-01-01

    Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.

  1. Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Sohn, Andrew

    1996-01-01

    Dynamic mesh adaptation on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load inbalances among processors on a parallel machine. This paper described the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution coast is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35 percent of the mesh is randomly adapted. For large scale scientific computations, our load balancing strategy gives an almost sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remappier yields processor assignments that are less than 3 percent of the optimal solutions, but requires only 1 percent of the computational time.

  2. Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Sohn, Andrew

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.

  3. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology

    USGS Publications Warehouse

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.

    2018-03-07

    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  4. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christman, E.A.; Appleby, A.; Jayko, M.

    1980-07-01

    Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.

  5. AMINE EXTRACTION OF PLUTONIUM FROM NITRIC ACID SOLUTIONS LOADING AND STRIPPING EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.S.

    1961-01-19

    Information is presented on a suitable amine processing system for plutonium nitrate. Experiments with concentrated plutonium nitrate solutions show that trilaurylamine (TLA) - xylene solvent systems did not form a second organic phase. Experiments are also reported with tri-noctylamine (TnOA)-xylene and TLA-Amsco - octyl alcohol. Two organic phases appear in both these systems at high plutonium nitrate concentrations. Data are tabulated from loading and stripping experiments. (J.R.D.)

  6. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone

    PubMed Central

    Fan, Lixia; Pei, Shaopeng; Lucas Lu, X; Wang, Liyun

    2016-01-01

    The transport of fluid, nutrients, and signaling molecules in the bone lacunar–canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30–50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in

  7. Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.

    PubMed

    Enoki, Masami; Katoh, Ryuzi

    2018-05-17

    We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.

  8. Determination of Yield and Flow Surfaces for Inconel 718 Under Axial-Torsional Loading at Temperatures Up to 649 C

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.

    1998-01-01

    An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.

  9. Automatic yield-line analysis of slabs using discontinuity layout optimization

    PubMed Central

    Gilbert, Matthew; He, Linwei; Smith, Colin C.; Le, Canh V.

    2014-01-01

    The yield-line method of analysis is a long established and extremely effective means of estimating the maximum load sustainable by a slab or plate. However, although numerous attempts to automate the process of directly identifying the critical pattern of yield-lines have been made over the past few decades, to date none has proved capable of reliably analysing slabs of arbitrary geometry. Here, it is demonstrated that the discontinuity layout optimization (DLO) procedure can successfully be applied to such problems. The procedure involves discretization of the problem using nodes inter-connected by potential yield-line discontinuities, with the critical layout of these then identified using linear programming. The procedure is applied to various benchmark problems, demonstrating that highly accurate solutions can be obtained, and showing that DLO provides a truly systematic means of directly and reliably automatically identifying yield-line patterns. Finally, since the critical yield-line patterns for many problems are found to be quite complex in form, a means of automatically simplifying these is presented. PMID:25104905

  10. Effects of diurnal control in the mineral concentration of nutrient solution on tomato yield and nutrient absorption in hydroponics.

    PubMed

    Higashide, T; Shimaji, H; Takaichi, M

    1996-12-01

    We researched effects of diurnal change of the mineral concentration on tomato yield and nutrient absorption. First, we examined the effect on yield in a spray culture, in the experiment 1-1, when nitrate concentration of solution (N) and potassium concentration (K) were low and phosphate concentration (P) was high during the daytime, while N and K were high and P was low during the night, the yield was low. In the experiment 1-2, when N and K were high and P was low during the daytime, while N and K were low and P was high during the night, the yield was low. Second, we examined the effect on nutrient absorption in a water culture. Concentration of KNO3, of solution was changed in the daytime or the night. When KNO3 level was low during the daytime, while it was high during the night, total nitrate and potassium absorption for 24 hours was the highest. It were showed the possibility of the efficient supply of minerals to plants by the diurnal control in minerals.

  11. Measuring cognitive load: mixed results from a handover simulation for medical students.

    PubMed

    Young, John Q; Irby, David M; Barilla-LaBarca, Maria-Louise; Ten Cate, Olle; O'Sullivan, Patricia S

    2016-02-01

    The application of cognitive load theory to workplace-based activities such as patient handovers is hindered by the absence of a measure of the different load types. This exploratory study tests a method for measuring cognitive load during handovers. The authors developed the Cognitive Load Inventory for Handoffs (CLI4H) with items for intrinsic, extraneous, and germane load. Medical students completed the measure after participating in a simulated handover. Exploratory factor and correlation analyses were performed to collect evidence for validity. Results yielded a two-factor solution for intrinsic and germane load that explained 50 % of the variance. The extraneous load items performed poorly and were removed from the model. The score for intrinsic load correlated with the Paas Cognitive Load scale (r = 0.31, p = 0.004) and was lower for students with more prior handover training (p = 0.036). Intrinsic load did not, however, correlate with performance. Germane load did not correlate with the Paas Cognitive Load scale but did correlate as expected with performance (r = 0.30, p = 0.005) and was lower for those students with more prior handover training (p = 0.03). The CLI4H yielded mixed results with some evidence for validity of the score from the intrinsic load items. The extraneous load items performed poorly and the use of only a single item for germane load limits conclusions. The instrument requires further development and testing. Study results and limitations provide guidance to future efforts to measure cognitive load during workplace-based activities, such as handovers.

  12. Concentrations, loads, and yields of total nitrogen and total phosphorus in the Barnegat Bay-Little Egg Harbor watershed, New Jersey, 1989-2011, at multiple spatial scales

    USGS Publications Warehouse

    Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.

    2014-01-01

    Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading

  13. Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model

    USGS Publications Warehouse

    Granato, Gregory; Jones, Susan Cheung

    2017-01-01

    The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.

  14. Sediment Loads and Yield, and Selected Water-Quality Parameters in Clear Creek, Carson City and Douglas County, Nevada, Water Years 2004-07

    USGS Publications Warehouse

    Seiler, Ralph L.; Wood, James L.

    2009-01-01

    Some reaches of Clear Creek above U.S. Highway 395 have experienced severe erosion as a result of fires, extreme precipitation events, and past and current human activities in the basin. Previous evaluations of erosion in the basin have concluded that most of the sediment produced and transported in the basin was associated with U.S. Highway 50, a four-lane highway that roughly parallels Clear Creek through much of the basin. During this study (water years 2004-07), construction of roads and a large residential area and golf course in the area began and are likely to affect water quality and sediment transport in the basin. Sediment data were collected between October 2003 and September 2007 (water years 2004-07) from three sites along Clear Creek. Annual suspended-sediment load was estimated to range from 1,456 tons in water year 2006 to only 100 tons in water year 2004, which corresponds to suspended-sediment yields of 93.9 tons per square mile per year in 2006 to 6.4 tons per square mile per year in 2004. In water year 2006, the suspended-sediment load on December 31, 2005, alone exceeded the combined annual load for water years 2004, 2005, and 2007. Bedload sediment was estimated to comprise 73 percent of total sediment load in the creek. Mean annual suspended-sediment yield in Clear Creek basin was much greater than yields in the Logan House, Edgewood, and Glenbrook Creek basins in the adjacent Lake Tahoe basin. Comparison of data collected during this study with data collected by university researchers in the 1970s is inconclusive as to whether fundamental changes in basin sediment characteristics have occurred during the 30-year period because different methods and sampling locations were used in the earlier studies.

  15. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    USGS Publications Warehouse

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    San Joaquin Basin but decreased in the Sacramento and Santa Ana Basins from 1982 to 2002. Tile drainage accounted for 22 percent of the total nitrogen load in the San Joaquin River near Vernalis for 1985-2004. Nutrient loads and trends were calculated by using the log-linear multiple-regression model, LOADEST. Loads were calculated for water years 1975-2004 for 22 sites in the Sacramento Basin, 15 sites in the San Joaquin Basin, and 6 sites in the Santa Ana Basin. The average annual load of total nitrogen and total phosphorus for 1985-2004 in subbasins in the Sacramento and San Joaquin Basins were divided by their drainage areas to calculate average annual yield. Total nitrogen yields were greater than 2.45 tons per square mile per year [(tons/mi2)/yr] in about 61 percent of the valley floor in the San Joaquin Basin compared with only about 12 percent of the valley floor in the Sacramento Basin. Total phosphorus yields were greater than 0.34 (tons/mi2)/yr in about 43 percent of the valley floor in the San Joaquin Basin compared with only about 5 percent in the valley floor of the Sacramento Basin. In a stepwise multiple linear-regression analysis of 30 subbasins in the Sacramento and San Joaquin Basins, the most important explanatory variables (out of 11 variables) for the response variable (total nitrogen yield) were the percentage of land use in (1) orchards and vineyards, (2) row crops, and (3) urban categories. For total phosphorus yield, the most important explanatory variable was the amount of fertilizer application plus manure production. Trends were evaluated for three time periods: 1975-2004, 1985-2004, and 1993-2004. Most trends in flow-adjusted concentrations of nutrients in the Sacramento Basin were downward for all three time periods. The decreasing nutrient trends in the American River at Sacramento and the Sacramento River at Freeport for 1975-2004 were attributed to the consolidation of wastewater in the Sacramento metropolitan area in December 1982 to

  16. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of

  17. Axisymmetric micromechanics of elastic-perfectly plastic fibrous composites under uniaxial tension loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1993-01-01

    The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.

  18. Real-Time Measurement of Solute Transport Within the Lacunar-Canalicular System of Mechanically Loaded Bone: Direct Evidence for Load-Induced Fluid Flow

    PubMed Central

    Price, Christopher; Zhou, Xiaozhou; Li, Wen; Wang, Liyun

    2011-01-01

    Since proposed by Piekarski and Munro in 1977, load-induced fluid flow through the bone lacunar-canalicular system (LCS) has been accepted as critical for bone metabolism, mechanotransduction, and adaptation. However, direct unequivocal observation and quantification of load-induced fluid and solute convection through the LCS have been lacking due to technical difficulties. Using a novel experimental approach based on fluorescence recovery after photobleaching (FRAP) and synchronized mechanical loading and imaging, we successfully quantified the diffusive and convective transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in the bone LCS of adult male C57BL/6J mice. We demonstrated that cyclic end-compression of the mouse tibia with a moderate loading magnitude (–3 N peak load or 400 µɛ surface strain at 0.5 Hz) and a 4-second rest/imaging window inserted between adjacent load cycles significantly enhanced (+31%) the transport of sodium fluorescein through the LCS compared with diffusion alone. Using an anatomically based three-compartment transport model, the peak canalicular fluid velocity in the loaded bone was predicted (60 µm/s), and the resulting peak shear stress at the osteocyte process membrane was estimated (∼5 Pa). This study convincingly demonstrated the presence of load-induced convection in mechanically loaded bone. The combined experimental and mathematical approach presented herein represents an important advance in quantifying the microfluidic environment experienced by osteocytes in situ and provides a foundation for further studying the mechanisms by which mechanical stimulation modulates osteocytic cellular responses, which will inform basic bone biology, clinical understanding of osteoporosis and bone loss, and the rational engineering of their treatments. © 2011 American Society for Bone and Mineral Research. PMID:20715178

  19. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island,Water Year 2002

    USGS Publications Warehouse

    Breault, Robert F.

    2009-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamflow-gaging stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2002 (October 1, 2001 to September 30, 2002). Water-quality samples were also collected at 35 of 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2002 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2002. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 12.6 cubic feet per second (ft3/s) to the reservoir during WY 2002. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.14 to 8.1 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 534,000 kilograms (kg) of sodium and 851,000 kg of chloride to the Scituate Reservoir during WY 2002; sodium and chloride yields for the tributaries ranged from 2,900 to 40,200 kilograms per square mile (kg/mi2) and from 4,200 to 68,200 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 16.8 milligrams per

  20. Effect of Stress Ratio and Loading Frequency on the Corrosion Fatigue Behavior of Smooth Steel Wire in Different Solutions

    PubMed Central

    Wang, Songquan; Zhang, Dekun; Hu, Ningning; Zhang, Jialu

    2016-01-01

    In this work, the effects of loading condition and corrosion solution on the corrosion fatigue behavior of smooth steel wire were discussed. The results of polarization curves and weight loss curves showed that the corrosion of steel wire in acid solution was more severe than that in neutral and alkaline solutions. With the extension of immersion time in acid solution, the cathodic reaction of steel wire gradually changed from the reduction of hydrogen ion to the reduction of oxygen, but was always the reduction of hydrogen ion in neutral and alkaline solutions. The corrosion kinetic parameters and equivalent circuits of steel wires were also obtained by simulating the Nyquist diagrams. In corrosion fatigue test, the effect of stress ratio and loading frequency on the crack initiation mechanism was emphasized. The strong corrosivity of acid solution could accelerate the nucleation of crack tip. The initiation mechanism of crack under different conditions was summarized according to the side and fracture surface morphologies. For the crack initiation mechanism of anodic dissolution, the stronger the corrosivity of solution was, the more easily the fatigue crack source formed, while, for the crack initiation mechanism of deformation activation, the lower stress ratio and higher frequency would accelerate the generation of corrosion fatigue crack source. PMID:28773869

  1. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base

  2. Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions

    NASA Astrophysics Data System (ADS)

    Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.

    2018-04-01

    A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.

  3. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    NASA Astrophysics Data System (ADS)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  4. Product yield-detected ESR on magnetic field-dependent photoreduction of quinones in SDS micellar solution

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; Sakata, S.; Konaka, R.; Shiga, T.

    1987-06-01

    Transient free radicals in the magnetic field-dependent photoreduction of quinones (menadione or anthraquinone) in a sodium dodecyl sulfate (SDS) micellar solution, were converted to stable nitroxide radicals by the ``spin trapping'' technique with or without the microwave irradiation. Upon irradiating the microwave at 160 mW, the product yield (``spin adduct'' of the alkyl radical generated from SDS molecule) decreased by up to 14% at certain magnetic fields in a resonant manner. Although only one component of the postulated radical pair was converted to the spin adduct, the decrease in the yield as a function of external magnetic field revealed the ESR spectra of both component radicals of the radical pair, i.e., the semiquinone radical and the alkyl radical from SDS. This experiment not only gives the direct evidence for the radical pair model, but also suggests the possibility for this method to be applied in controlling the chemical reactions by the microwave. A simple calculation was made to simulate the observed ``product yield-detected ESR.'' Agreements were achieved semiquantitatively between the observed reductions in the spin adduct yields and those calculated. The estimated exchange interaction between the component radicals in the radical pair of the present systems was lower than 0.3 mT.

  5. Relationship between Yield Point Phenomena and the Nanoindentation Pop-in Behavior of Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, T.-H.; Oh, C.-S.; Lee, K.

    2012-01-01

    Pop-ins on nanoindentation load-displacement curves of a ferritic steel were correlated with yield drops on its tensile stress-strain curves. To investigate the relationship between these two phenomena, nanoindentation and tensile tests were performed on annealed specimens, prestrained specimens, and specimens aged for various times after prestraining. Clear nanoindentation pop-ins were observed on annealed specimens, which disappeared when specimens were indented right after the prestrain, but reappeared to varying degrees after strain aging. Yield drops in tensile tests showed similar disappearance and appearance, indicating that the two phenomena, at the nano- and macro-scale, respectively, are closely related and influenced by dislocationmore » locking by solutes (Cottrell atmospheres).« less

  6. The Effect of Antibody Size and Mechanical Loading on Solute Diffusion Through the Articular Surface of Cartilage.

    PubMed

    DiDomenico, Chris D; Goodearl, Andrew; Yarilina, Anna; Sun, Victor; Mitra, Soumya; Sterman, Annette Schwartz; Bonassar, Lawrence J

    2017-09-01

    Because of the heterogeneous nature of articular cartilage tissue, penetration of potential therapeutic molecules for osteoarthritis (OA) through the articular surface (AS) is complex, with many factors that affect transport of these solutes within the tissue. Therefore, the goal of this study is to investigate how the size of antibody (Ab) variants, as well as application of cyclic mechanical loading, affects solute transport within healthy cartilage tissue. Penetration of fluorescently tagged solutes was quantified using confocal microscopy. For all the solutes tested, fluorescence curves were obtained through the articular surface. On average, diffusivities for the solutes of sizes 200 kDa, 150 kDa, 50 kDa, and 25 kDa were 3.3, 3.4, 5.1, and 6.0 μm2/s from 0 to 100 μm from the articular surface. Diffusivities went up to a maximum of 16.5, 18.5, 20.5, and 23.4 μm2/s for the 200 kDa, 150 kDa, 50 kDa, and 25 kDa molecules, respectively, from 225 to 325 μm from the surface. Overall, the effect of loading was very significant, with maximal transport enhancement for each solute ranging from 2.2 to 3.4-fold near 275 μm. Ultimately, solutes of this size do not diffuse uniformly nor are convected uniformly, through the depth of the cartilage tissue. This research potentially holds great clinical significance to discover ways of further optimizing transport into cartilage and leads to effective antibody-based treatments for OA.

  7. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    USGS Publications Warehouse

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91

  8. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  9. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2010

    USGS Publications Warehouse

    Smith, Kirk P.; Breault, Robert F.

    2011-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB), Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance and water temperature. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2010 (October 1, 2009, to September 30, 2010). Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 monitoring stations by the USGS during WY 2010 as part of a long sampling program; all stations are in the Scituate Reservoir drainage area. Waterquality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2010. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 39 cubic feet per second (ft3/s) to the reservoir during WY 2010. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.7 to 27 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2010; sodium and chloride yields for the tributaries ranged from 11,000 to 66,000 kilograms per square mile (kg/mi2) and from 18,000 to 110,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median chloride

  10. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter

  11. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  12. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2009

    USGS Publications Warehouse

    Breault, Robert F.; Smith, Kirk P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB), Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 13 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance and water temperature. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2009 (October 1, 2008, to September 30, 2009). Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 monitoring stations by the USGS during WY 2009 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2009. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 27 cubic feet per second (ft3/s) to the reservoir during WY 2009. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.50 to 17 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,400,000 kilograms (kg) of sodium and 2,200,000 kg of chloride to the Scituate Reservoir during WY 2009; sodium and chloride yields for the tributaries ranged from 10,000 to 64,000 kilograms per square mile (kg/mi2) and from 15,000 to 110,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median

  13. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  14. Using spatially detailed water-quality data and solute-transport modeling to improve support total maximum daily load development

    USGS Publications Warehouse

    Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.

    2012-01-01

    Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.

  15. High-precision solution to the moving load problem using an improved spectral element method

    NASA Astrophysics Data System (ADS)

    Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li

    2018-02-01

    In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

  16. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line.

    PubMed

    Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila M M; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy C R; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K

    2014-01-01

    Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.

  17. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line

    PubMed Central

    Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila MM; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy CR; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K

    2014-01-01

    Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors. PMID:24741306

  18. Improving the yield from fermentative hydrogen production.

    PubMed

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  19. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  20. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    USGS Publications Warehouse

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  1. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    USGS Publications Warehouse

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected

  2. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    USGS Publications Warehouse

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were

  3. Modeling of yield surface evolution in uniaxial and biaxial loading conditions using a prestrained large scale specimen

    NASA Astrophysics Data System (ADS)

    Zaman, Shakil Bin; Barlat, Frédéric; Kim, Jin Hwan

    2018-05-01

    Large-scale advanced high strength steel (AHSS) sheet specimens were deformed in uniaxial tension, using a novel grip system mounted on a MTS universal tension machine. After pre-strain, they were used as a pre-strained material to examine the anisotropic response in the biaxial tension tests with various load ratios, and orthogonal tension tests at 45° and 90° from the pre-strain axis. The flow curve and the instantaneous r-value of the pre-strained steel in each of the aforementioned uniaxial testing conditions were also measured and compared with those of the undeformed steel. Furthermore, an exhaustive analysis of the yield surface was also conducted and the results, prior and post-prestrain were represented and compared. The homogeneous anisotropic hardening (HAH) model [1] was employed to predict the behavior of the pre-strained material. It was found that the HAH-predicted flow curves after non-linear strain path change and the yield loci after uniaxial pre-strain were in good agreement with the experiments, while the r-value evolution after strain path change was qualitatively well predicted.

  4. Water-quality conditions, and constituent loads and yields in the Cambridge drinking-water source area, Massachusetts, water years 2005–07

    USGS Publications Warehouse

    Smith, Kirk P.

    2013-01-01

    The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of ongoing development in the drinking-water source area, the Cambridge water supply has the potential to be affected by a wide variety of contaminants. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Hobbs Brook and Stony Brook Basins, which compose the drinking-water source area, since 1997 (water year 1997) through continuous monitoring and discrete sample collection and, since 2004, through systematic collection of streamwater samples during base-flow and stormflow conditions at five primary sampling stations in the drinking-water source area. Four primary sampling stations are on small tributaries in the Hobbs Brook and Stony Brook Basins; the fifth primary sampling station is on the main stem of Stony Brook and drains about 93 percent of the Cambridge drinking-water source area. Water samples also were collected at six secondary sampling stations, including Fresh Pond Reservoir, the final storage reservoir for the raw water supply. Storm runoff and base-flow concentrations of calcium (Ca), chloride (Cl), sodium (Na), and sulfate (SO4) were estimated from continuous records of streamflow and specific conductance for six monitoring stations, which include the five primary sampling stations. These data were used to characterize current water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Hobbs Brook and Stony Brook Basins. These data also were used to describe how streamwater quality is affected by various watershed characteristics and provide information to guide future watershed management. Water samples were analyzed for physical properties and concentrations of Ca, Cl, Na, and SO4, total nitrogen (TN), total phosphorus (TP

  5. Nutrient Concentrations, Loads, and Yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2006-01-01

    The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency over time. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, conducted an investigation to summarize nitrogen and phosphorus concentrations and provide estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than in base-flow samples at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma. Nitrogen concentrations in base-flow samples significantly increased in the downstream direction in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations. Nitrogen in base-flow samples from Beaty Creek was significantly less than in those from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to Cherokee stations in Spavinaw Creek, probably due to a point source between those stations, then significantly decreased downstream from the Cherokee to Colcord stations. Phosphorus in base

  6. Approximate analytical solutions to the double-stance dynamics of the lossy spring-loaded inverted pendulum.

    PubMed

    Shahbazi, Mohammad; Saranlı, Uluç; Babuška, Robert; Lopes, Gabriel A D

    2016-12-05

    This paper introduces approximate time-domain solutions to the otherwise non-integrable double-stance dynamics of the 'bipedal' spring-loaded inverted pendulum (B-SLIP) in the presence of non-negligible damping. We first introduce an auxiliary system whose behavior under certain conditions is approximately equivalent to the B-SLIP in double-stance. Then, we derive approximate solutions to the dynamics of the new system following two different methods: (i) updated-momentum approach that can deal with both the lossy and lossless B-SLIP models, and (ii) perturbation-based approach following which we only derive a solution to the lossless case. The prediction performance of each method is characterized via a comprehensive numerical analysis. The derived representations are computationally very efficient compared to numerical integrations, and, hence, are suitable for online planning, increasing the autonomy of walking robots. Two application examples of walking gait control are presented. The proposed solutions can serve as instrumental tools in various fields such as control in legged robotics and human motion understanding in biomechanics.

  7. Suspended Sediment Load and Sediment Yield During Floods and Snowmelt Runoff In The Rio Cordon (northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Lenzi, M. A.

    Suspended sediment transport in high mountain streams display a grater time-space variability and a shorter duration (normally concentrated during the snowmelt period and the duration time of single floods) than in larger lowland rivers. Suspended sedi- ment load and sediment yield were analysed in a small, high-gradient stream of East- ern Italian Alps which was instrumented to measure in continuous water discharge and sediment transport. The research was conducted in the Rio Cordon, a 5 Km2 small catchment of the Dolomites. The ratio of suspended to total sediment yield and the re- lations between sediment concentration and water discharge were analysed for eleven floods which occurred from 1991 to 2001. Different patterns of hysteresis in the re- lation between suspended sediment and discharge were related to types and locations of active sediment sources. The within-storm variation of particle size of suspended sediment during a mayor flood (September 1994, 30 yearsload. The relation between water discharge and S.S.C. for both floods and snowmelt runoff shows larger scatter for both series of data, with snowmelt data less scattered than rain- fall induced floods. This is accounted for by the variable effectiveness of erosion pro- cesses and sediment supply mechanisms during snowmelt and rainfall-induced floods. During snowmelt, erosion processes essentially consist in the removal of loose, fine- grained sediment from slopes by surface runoff; as a consequence, suspended sedi- ment transport takes place also with rather low discharges. Abundant suspended sedi- ment transport was recorded during the snowmelt period of May 2001, that followed a winter characterized by a huge snow cover and late snowfalls. Different sources of sed- iment contribute to suspended load during the

  8. Primary radical yields in pulse irradiated alkaline aqueous solution

    NASA Technical Reports Server (NTRS)

    Fielden, E. M.; Hart, E. J.

    1969-01-01

    Primary radical yields of hydrated electrons, H atoms, and OH radicals are determined by measuring hydrated electron formation following a 4 microsecond pulse of X rays. The pH dependence of free radical yields beyond pH 12 is determined by observation of the hydrated electrons.

  9. FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time.

    PubMed

    Zhang, Hongdan; Zhang, Shuaishuai; Yuan, Hongyou; Lyu, Gaojin; Xie, Jun

    2018-02-01

    An organosolv pretreatment system consisting of 60% ethanol and 0.025 mol·L -1 FeCl 3 under various temperatures was developed in this study. During the pretreatment, the highest xylose yield was 11.4 g/100 g raw material, representing 49.8% of xylose in sugarcane bagasse. Structural features of raw material and pretreated substrates were characterized to better understand how hemicellulose removal and delignification affected subsequent enzymatic hydrolysis. The 160 °C pretreated solid presented a remarkable glucose yield of 93.8% for 72 h. Furthermore, the influence of different additives on the enzymatic hydrolysis of pretreated solid was investigated. The results indicated that the addition of Tween 80 shortened hydrolysis time to 6 h and allowed a 50% reduction of enzyme loading to achieve the same level of glucose yield. This work suggested that FeCl 3 -catalyzed organosolv pretreatment could improve the enzymatic hydrolysis significantly and reduce the hydrolysis time and enzyme dosage with the addition of Tween 80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hydrostatic Stress Effect On the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2002-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has no effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of notched geometries. New experiments and nonlinear finite element analyses (FEA) of Inconel 100 (IN 100) equal-arm bend and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions was performed. In all test cases, the von Mises constitutive model, which is independent of hydrostatic pressure, overestimated the load for a given displacement or strain. Considering the failure displacements or strains, the Drucker-Prager FEMs predicted loads that were 3% to 5% lower than the von Mises values. For the failure loads, the Drucker Prager FEMs predicted strains that were 20% to 35% greater than the von Mises values. The Drucker-Prager yield function seems to more accurately predict the overall specimen response of geometries with significant internal hydrostatic stress influence.

  11. Influence of a fertilizer solution on yield and quality of bread wheat in Guadalquivir Valley (Córdoba, Spain)

    NASA Astrophysics Data System (ADS)

    Concepción Benítez, M.; González, José Luis; Tejada, Manuel

    2014-05-01

    The use of by-products of food industries in agricultural practices has become a routine over the last few decades. The addition of beet vinasse, by-products of the two sep olive mill process and by-products of defatted sunflower flour, etc., to soils is a common agricultural practice, since sensible use has been reported to improve the physical, chemical and biological aspects of the soil and to increase harvest yield, and in many cases harvest quality Previous research carried out by the authors (Ordóñez et al., 2001) examined a process whereby a protein concentrate is obtained from defatted sunflower flour. In this process, floating liquid phosphorus, potassium contents and smaller amounts of humic substances and nitrogen are obtained. The potential application of this solution as a fertiliser has been evaluated on rye grass, confirming that its effects are comparable to those produced by a nutritional solution in terms of phosphorus and potassium foliar levels. The experiment was performed on soil classified as Typic Haploxererts located in the Middle Valley of the river Guadalquivir Cajeme wheat (Triticum aestivum var) variety was used at a dose of 180 kg seeds / ha. For both crop, four fertiliser treatments were applied in triplicate to randomly distributed 7 x 8 m plots. The greatest positive effect of applying the experimental phospho-potassic solution was found for the leaf levels of K, in maturity; this influence was most significant when the highest dosage of said solution. With reference to the levels of N, P and K in wheat grain, the levels of potassium were significantly different for all the fertilising treatments, and the plot fertilised with the highest dosage of the experimental phospho-potassic solution presented the highest values. As for the data obtained for harvest yield and quality, the addition of the experimental solution was observed to have a significantly positive influence (but only in the highest dosages) on the production levels.

  12. Approximate analytical solution for induction heating of solid cylinders

    DOE PAGES

    Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...

    2015-10-20

    An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less

  13. Concentrations, loads, and yields of nutrients and suspended sediment in the South Pacolet, North Pacolet, and Pacolet Rivers, northern South Carolina and southwestern North Carolina, October 2005 to September 2009

    USGS Publications Warehouse

    Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year

  14. The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.; Brewe, David E.

    1988-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  15. The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques

    NASA Technical Reports Server (NTRS)

    Woods, C. M.; Brewe, D. E.

    1989-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed utilizing a multigrid iteration technique. The method is compared with a noniterative approach in terms of computational time and accuracy. The computational model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobsson-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via a smeared mass or striated flow extending to both surfaces in the film gap. The mixed nature of the equations (parabolic in the full film zone and hyperbolic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  16. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    NASA Astrophysics Data System (ADS)

    Hamon, Casey L.; Dorsey, Christopher L.; Özel, Tuğba; Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania

    2016-07-01

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY ) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30-70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.

  17. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency

    NASA Astrophysics Data System (ADS)

    Che, Xiaozhou; Li, Yongxi; Qu, Yue; Forrest, Stephen R.

    2018-05-01

    Multijunction solar cells are effective for increasing the power conversion efficiency beyond that of single-junction cells. Indeed, the highest solar cell efficiencies have been achieved using two or more subcells to adequately cover the solar spectrum. However, the efficiencies of organic multijunction solar cells are ultimately limited by the lack of high-performance, near-infrared absorbing organic subcells within the stack. Here, we demonstrate a tandem cell with an efficiency of 15.0 ± 0.3% (for 2 mm2 cells) that combines a solution-processed non-fullerene-acceptor-based infrared absorbing subcell on a visible-absorbing fullerene-based subcell grown by vacuum thermal evaporation. The hydrophilic-hydrophobic interface within the charge-recombination zone that connects the two subcells leads to >95% fabrication yield among more than 130 devices, and with areas up to 1 cm2. The ability to stack solution-based on vapour-deposited cells provides significant flexibility in design over the current, all-vapour-deposited multijunction structures.

  18. Assessing Sediment Yield and the Effect of Best Management Practices on Sediment Yield Reduction for Tutuila Island, American Samoa

    NASA Astrophysics Data System (ADS)

    Leta, O. T.; Dulai, H.; El-Kadi, A. I.

    2017-12-01

    Upland soil erosion and sedimentation are the main threats for riparian and coastal reef ecosystems in Pacific islands. Here, due to small size of the watersheds and steep slope, the residence time of rainfall runoff and its suspended load is short. Fagaalu bay, located on the island of Tutuila (American Samoa) has been identified as a priority watershed, due to degraded coral reef condition and reduction of stream water quality from heavy anthropogenic activity yielding high nutrients and sediment loads to the receiving water bodies. This study aimed to estimate the sediment yield to the Fagaalu stream and assess the impact of Best Management Practices (BMP) on sediment yield reduction. For this, the Soil and Water Assessment Tool (SWAT) model was applied, calibrated, and validated for both daily streamflow and sediment load simulation. The model also estimated the sediment yield contributions from existing land use types of Fagaalu and identified soil erosion prone areas for introducing BMP scenarios in the watershed. Then, three BMP scenarios, such as stone bund, retention pond, and filter strip were treated on bare (quarry area), agricultural, and shrub land use types. It was found that the bare land with quarry activity yielded the highest annual average sediment yield of 133 ton per hectare (t ha-1) followed by agriculture (26.1 t ha-1) while the lowest sediment yield of 0.2 t ha-1 was estimated for the forested part of the watershed. Additionally, the bare land area (2 ha) contributed approximately 65% (207 ha) of the watershed's sediment yield, which is 4.0 t ha-1. The latter signifies the high impact as well as contribution of anthropogenic activity on sediment yield. The use of different BMP scenarios generally reduced the sediment yield to the coastal reef of Fagaalu watershed. However, treating the quarry activity area with stone bund showed the highest sediment yield reduction as compared to the other two BMP scenarios. This study provides an estimate

  19. Vertical load capacities of roof truss cross members.

    PubMed

    Gearhart, David F; Morsy, Mohamed Khaled

    2016-05-01

    Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and 67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.

  20. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/ polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    USDA-ARS?s Scientific Manuscript database

    In this study poly(lactic acid)(PLA) and polyvinylpyrrolidone (PVP) micro and nanofibers mats loaded with copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/ PVP blends contain...

  1. Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008-09

    USGS Publications Warehouse

    Sloto, Ronald A.; Olson, Leif E.

    2011-01-01

    Turbidity and suspended-sediment concentration data were collected by the U.S. Geological Survey (USGS) at four stream stations--French Creek near Phoenixville, West Branch Brandywine Creek near Honey Brook, West Branch Brandywine Creek at Modena, and East Branch Brandywine Creek below Downingtown--in Chester County, Pa. Sedimentation and siltation is the leading cause of stream impairment in Chester County, and these data are critical for quantifying sediment transport. This study was conducted by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. Data from optical turbidity sensors deployed at the four stations were recorded at 15- or 30-minute intervals by a data logger and uploaded every 1 to 4 hours to the USGS database. Most of the suspended-sediment samples were collected using automated samplers. The use of optical sensors to continuously monitor turbidity provided an accurate estimate of sediment fluctuations without the collection and analysis costs associated with intensive sampling during storms. Turbidity was used as a surrogate for suspended-sediment concentration (SSC), which is a measure of sedimentation and siltation. Regression models were developed between SSC and turbidity for each of the monitoring stations using SSC data collected from the automated samplers and turbidity data collected at each station. Instantaneous suspended-sediment loads (SSL) were computed from time-series turbidity and discharge data for the 2008 and 2009 water years using the regression equations. The instantaneous computations of SSL were summed to provide daily, storm, and water year annual loads. The annual SSL contributed from each basin was divided by the upstream drainage area to estimate the annual sediment yield. For all four basins, storms provided more than 96 percent of the annual SSL. In each basin, four storms generally provided over half the annual SSL each water year. Stormflows with the

  2. Double-Row Capsulolabral Repair Increases Load to Failure and Decreases Excessive Motion.

    PubMed

    McDonald, Lucas S; Thompson, Matthew; Altchek, David W; McGarry, Michelle H; Lee, Thay Q; Rocchi, Vanna J; Dines, Joshua S

    2016-11-01

    Using a cadaver shoulder instability model and load-testing device, we compared biomechanical characteristics of double-row and single-row capsulolabral repairs. We hypothesized a greater reduction in glenohumeral motion and translation and a higher load to failure in a mattress double-row capsulolabral repair than in a single-row repair. In 6 matched pairs of cadaveric shoulders, a capsulolabral injury was created. One shoulder was repaired with a single-row technique, and the other with a double-row mattress technique. Rotational range of motion, anterior-inferior translation, and humeral head kinematics were measured. Load-to-failure testing measured stiffness, yield load, deformation at yield load, energy absorbed at yield load, load to failure, deformation at ultimate load, and energy absorbed at ultimate load. Double-row repair significantly decreased external rotation and total range of motion compared with single-row repair. Both repairs decreased anterior-inferior translation compared with the capsulolabral-injured condition, however, no differences existed between repair types. Yield load in the single-row group was 171.3 ± 110.1 N, and in the double-row group it was 216.1 ± 83.1 N (P = .02). Ultimate load to failure in the single-row group was 224.5 ± 121.0 N, and in the double-row group it was 373.9 ± 172.0 N (P = .05). Energy absorbed at ultimate load in the single-row group was 1,745.4 ± 1,462.9 N-mm, and in the double-row group it was 4,649.8 ± 1,930.8 N-mm (P = .02). In cases of capsulolabral disruption, double-row repair techniques may result in decreased shoulder rotational range of motion and improved load-to-failure characteristics. In cases of capsulolabral disruption, repair techniques with double-row mattress repair may provide more secure fixation. Double-row capsulolabral repair decreases shoulder motion and increases load to failure, yield load, and energy absorbed at yield load more than single-row repair. Published by

  3. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    NASA Astrophysics Data System (ADS)

    Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.

    2015-12-01

    We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.

  4. Solute-Filled Syringe For Formulating Intravenous Solution

    NASA Technical Reports Server (NTRS)

    Owens, Jim; Bindokas, AL; Dudar, Tom; Finley, Mike; Scharf, Mike

    1993-01-01

    Prefilled syringe contains premeasured amount of solute in powder or concentrate form used to deliver solute to sterile interior of large-volume parenteral (LVP) bag. Predetermined amount of sterile water also added to LVP bag through sterilizing filter, and mixed with contents of syringe, yielding sterile intravenous solution of specified concentration.

  5. Separation and Recovery of Cobalt from Copper Leach Solutions

    NASA Astrophysics Data System (ADS)

    Jeffers, T. H.

    1985-01-01

    Significant amounts of cobalt, a strategic and critical metal, are present in readily accessible copper recycling leach solutions. However, cost-effective technology is not available to separate and recover the cobalt from this low-grade domestic source. The Bureau of Mines has developed a procedure using a chelating ion-exchange resin from Dow Chemical Co. to successfully extract cobalt from a pH 3.0 copper recycling solution containing only 30 mg/1 cobalt. Cyclic tests with the commercial resin XFS-4195 in 4-ft-high by 1-in.-diameter columns gave an average cobalt extraction of 95% when 65 bed volumes of solution were processed at a flow rate of 4 gpm/ft.2 Elution of the cobalt using a 50 g/l H2SO4 solution yielded an eluate containing 0.5 gli Co. Selective elution of the loaded resin and solvent extraction procedures using di-2-ethylhexyl phosphoric acid (D2EHPA) and Cyanex 272 removed the impurities and produced a cobalt sulfate solution containing 25 g/l Co.

  6. Structural Inelasticity (28th), A Finite Element ’Vectorization’ Method for the Solution of Crack Growth Problems in Two or Three Dimensions.

    DTIC Science & Technology

    1986-02-01

    analitic and numerical paws which have aieared In the literature. A more detail accbunt is contained In the review article by Rice [91. The...where Y is the initial yield stress. Based on the stress change A011O) we predict thA the element o for which...solution predicts an applied load of 0.93, which is 7% greater than the measured value. The plastic zones at different leves of lied load are shown

  7. Voltera's Solution of the Wave Equation as Applied to Three-Dimensional Supersonic Airfoil Problems

    NASA Technical Reports Server (NTRS)

    Heslet, Max A; Lomax, Harvard; Jones, Arthur L

    1947-01-01

    A surface integral is developed which yields solutions of the linearized partial differential equation for supersonic flow. These solutions satisfy boundary conditions arising in wing theory. Particular applications of this general method are made, using acceleration potentials, to flat surfaces and to uniformly loaded lifting surfaces. Rectangular and trapezoidal plan forms are considered along with triangular forms adaptable to swept-forward and swept-back wings. The case of the triangular plan form in sideslip is also included. Emphasis is placed on the systematic application of the method to the lifting surfaces considered and on the possibility of further application.

  8. Hydrostatic Stress Effect on the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2003-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has negligible effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of various geometries. Fatigue tests and nonlinear finite element analyses (FEA) of Inconel 100 (IN100) equal-arm bend specimens and new monotonic tests and nonlinear finite element analyses of IN100 smooth tension, smooth compression, and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions were performed. A new FEA constitutive model was developed that incorporates a pressure-dependent yield function with combined multilinear kinematic and multilinear isotropic hardening using the ABAQUS user subroutine (UMAT) utility. In all monotonic tensile test cases, the von Mises constitutive model, overestimated the load for a given displacement or strain. Considering the failure displacements or strains for the DENT specimen, the Drucker-Prager FEM s predicted loads that were approximately 3% lower than the von Mises values. For the failure loads, the Drucker Prager FEM s predicted strains that were up to 35% greater than the von Mises values. Both the Drucker-Prager model and the von Mises model performed equally-well in simulating the equal-arm bend fatigue test.

  9. Contact solution algorithms

    NASA Technical Reports Server (NTRS)

    Tielking, John T.

    1989-01-01

    Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.

  10. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  11. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  12. Preparation of Cu-loaded SrTiO3 nanoparticles and their photocatalytic activity for hydrogen evolution from methanol aqueous solution

    NASA Astrophysics Data System (ADS)

    Bui, Duc-Nguyen; Mu, Jin; Wang, Lei; Kang, Shi-Zhao; Li, Xiangqing

    2013-06-01

    Cu-loaded SrTiO3 nanoparticles (Cu-SrTiO3) were prepared using a simple in situ photo-deposition method and their photocatalytic activity for hydrogen evolution from methanol aqueous solution was evaluated. The results characterized with XRD, TEM, XPS and EDX indicated that the as-synthesized sample was composed of metallic Cu and cubic SrTiO3, and the metallic Cu was homogeneously loaded on the surface of SrTiO3 nanoparticles. Under UV light irradiation, Cu-SrTiO3 displayed much higher photocatalytic activity for hydrogen evolution and excellent stability in comparison with pure SrTiO3 nanoparticles. The results further confirmed that the efficient separation of photogenerated electron/hole pairs was critical for the enhanced photocatalytic activity of Cu-SrTiO3. Moreover, the rate of hydrogen evolution of 0.5 wt.% Cu-SrTiO3 is comparable with that of 0.5 wt.% Pt-SrTiO3 photocatalyst under optimum conditions, implying that the metallic Cu is an efficient alternative to Pt as a co-catalyst on SrTiO3. The high photocatalytic activity, low cost and chemical stability mean that the Cu-loaded SrTiO3 is a potential catalyst for the photocatalytic hydrogen evolution from methanol aqueous solution.

  13. Changing fluxes of carbon and other solutes from the Mekong River

    PubMed Central

    Li, Siyue; Bush, Richard T.

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42−, Cl− and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3− (23.4) > Ca2+ (6.4) > SO42− (3.8) > Cl− (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3− and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3− flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3−, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  14. Changing fluxes of carbon and other solutes from the Mekong River.

    PubMed

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  15. Retrofitting impervious urban infrastructure with green technology for rainfall-runoff restoration, indirect reuse and pollution load reduction.

    PubMed

    Sansalone, John; Raje, Saurabh; Kertesz, Ruben; Maccarone, Kerrilynn; Seltzer, Karl; Siminari, Michele; Simms, Peter; Wood, Brandon

    2013-12-01

    The built environs alter hydrology and water resource chemistry. Florida is subject to nutrient criteria and is promulgating "no-net-load-increase" criteria for runoff and constituents (nutrients and particulate matter, PM). With such criteria, green infrastructure, hydrologic restoration, indirect reuse and source control are potential design solutions. The study simulates runoff and constituent load control through urban source area re-design to provide long-term "no-net-load-increases". A long-term continuous simulation of pre- and post-development response for an existing surface parking facility is quantified. Retrofits include a biofiltration area reactor (BAR) for hydrologic and denitrification control. A linear infiltration reactor (LIR) of cementitious permeable pavement (CPP) provides infiltration, adsorption and filtration. Pavement cleaning provided source control. Simulation of climate and source area data indicates re-design achieves "no-net-load-increases" at lower costs compared to standard construction. The retrofit system yields lower cost per nutrient load treated compared to Best Management Practices (BMPs). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Nutrient Concentrations, Loads, and Yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-2006

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2008-01-01

    The City of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw basin in northwestern Arkansas and northeastern Oklahoma for public water supply. Taste and odor problems in the water attributable to blue-green algae have increased in frequency. Changes in the algae community in the lakes may be attributable to increases in nutrient levels in the lakes, and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized nitrogen and phosphorus concentrations and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations in the Eucha-Spavinaw basin for three 3-year periods - 2002-2004, 2003-2005, and 2004-2006, to update a previous report that used data from water-quality samples for a 3-year period from January 2002 through December 2004. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple agencies for interstate agreements. Nitrogen and phosphorus concentrations were significantly greater in runoff samples than in base-flow samples for all three periods at Spavinaw Creek near Maysville, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Runoff concentrations were not significantly greater than base-flow concentrations at Spavinaw Creek near Cherokee, Arkansas; and Spavinaw Creek near Sycamore, Oklahoma except for phosphorus during 2003-2005. Nitrogen concentrations in base-flow samples significantly increased downstream in Spavinaw Creek from the Maysville to Sycamore stations then significantly decreased from the Sycamore to the Colcord stations for all three periods. Nitrogen in base-flow samples from Beaty Creek was significantly less than in samples from Spavinaw Creek. Phosphorus concentrations in base-flow samples significantly increased from the Maysville to

  17. Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation.

    PubMed

    Liu, Chao; Li, Zhou; Hajagos, Tibor Jacob; Kishpaugh, David; Chen, Dustin Yuan; Pei, Qibing

    2017-06-27

    Spectroscopic gamma-photon detection has widespread applications for research, defense, and medical purposes. However, current commercial detectors are either prohibitively expensive for wide deployment or incapable of producing the characteristic gamma photopeak. Here we report the synthesis of transparent, ultra-high-loading (up to 60 wt %) Cd x Zn 1-x S/ZnS core/shell quantum dot/polymer nanocomposite monoliths for gamma scintillation by in situ copolymerization of the partially methacrylate-functionalized quantum dots in a monomer solution. The efficient Förster resonance energy transfer of the high-atomic-number quantum dots to lower-band-gap organic dyes enables the extraction of quantum-dot-borne excitons for photon production, resolving the problem of severe light yield deterioration found in previous nanoparticle-loaded scintillators. As a result, the nanocomposite scintillator exhibited simultaneous improvements in both light yield (visible photons produced per MeV of gamma-photon energy) and gamma attenuation. With these enhancements, a 662 keV Cs-137 gamma photopeak with 9.8% resolution has been detected using a 60 wt % quantum-dot nanocomposite scintillator, demonstrating the potential of such a nanocomposite system in the development of high-performance low-cost spectroscopic gamma detectors.

  18. Serrated yielding in Al-Li alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; McShane, H.B.

    1993-05-01

    Serrated yielding (SY) during tensile testing has been observed in Al-Li alloys, both in the binary and the commercial quaternary alloys, in single crystal as well as polycrystalline materials. Serrated yielding is commonly explained by a dynamic strain aging (DSA) model developed by McCormick and van den Beukel. All the solute elements present in Al-Li alloys, viz., Mg, Cu and Li are known to give DSA and SY. Several researchers believe the DSA to be the cause of SY and they attribute the disappearance of SY simply to the removal of solute from the matrix with aging. However, this argumentmore » has serious flaws. The present paper examines this aspect critically. The authors concluded that Al-Li alloys the disappearance of serrated yielding at a certain stage of aging is not due to removal of the solute from the matrix but due to the change in the nature of the metastable [delta][prime] precipitates - from fine coherent shearable precipitates to larger noncoherent nonshearable precipitates - which prevents the formation of the deformation bands. The serrated yielding reappears with extensive over aging due to the dissolution of these precipitates in favor of the equilibrium precipitates. The equilibrium precipitates, being widely spaced, are ineffective in preventing the formation of deformation bands.« less

  19. Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

    NASA Astrophysics Data System (ADS)

    Goryk, A. V.; Koval'chuk, S. B.

    2018-05-01

    An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

  20. Total nutrient and sediment loads, trends, yields, and nontidal water-quality indicators for selected nontidal stations, Chesapeake Bay Watershed, 1985–2011

    USGS Publications Warehouse

    Langland, Michael J.; Blomquist, Joel D.; Moyer, Douglas; Hyer, Kenneth; Chanat, Jeffrey G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Chesapeake Bay Program (CBP) partners, routinely reports long-term concentration trends and monthly and annual constituent loads for stream water-quality monitoring stations across the Chesapeake Bay watershed. This report documents flow-adjusted trends in sediment and total nitrogen and phosphorus concentrations for 31 stations in the years 1985–2011 and for 32 stations in the years 2002–2011. Sediment and total nitrogen and phosphorus yields for 65 stations are presented for the years 2006–2011. A combined nontidal water-quality indicator (based on both trends and yields) indicates there are more stations classified as “improving water-quality trend and a low yield” than “degrading water-quality trend and a high yield” for total nitrogen. The same type of 2-way classification for total phosphorus and sediment results in equal numbers of stations in each indicator class.

  1. Growth inhibition, turgor maintenance, and changes in yield threshold after cessation of solute import in pea epicotyls

    NASA Technical Reports Server (NTRS)

    Schmalstig, J. G.; Cosgrove, D. J.

    1988-01-01

    The dependence of stem elongation on solute import was investigated in etiolated pea seedlings (Pisum sativum L. var Alaska) by excising the cotyledons. Stem elongation was inhibited by 60% within 5 hours of excision. Dry weight accumulation into the growing region stopped and osmotic pressure of the cell sap declined by 0.14 megapascal over 5 hours. Attempts to assay phloem transport via ethylenediaminetetraacetate-enhanced exudation from cut stems revealed no effect of cotyledon excision, indicating that the technique measured artifactual leakage from cells. Despite the drop in cell osmotic pressure, turgor pressure (measured directly via a pressure probe) did not decline. Turgor maintenance is postulated to occur via uptake of solutes from the free space, thereby maintaining the osmotic pressure difference across the cell membrane. Cell wall properties were measured by the pressure-block stress relaxation technique. Results indicate that growth inhibition after cotyledon excision was mediated primarily via an increase in the wall yield threshold.

  2. Optimization of cryoprotectant loading into murine and human oocytes.

    PubMed

    Karlsson, Jens O M; Szurek, Edyta A; Higgins, Adam Z; Lee, Sang R; Eroglu, Ali

    2014-02-01

    Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethyl sulfoxide (Me(2)SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me(2)SO exposure time, revealing that neither shrinkage nor Me(2)SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me(2)SO addition appears to result from interactions between the effects of Me(2)SO toxicity and osmotic stress. We also investigated Me(2)SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me(2)SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me(2)SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Optimization of Cryoprotectant Loading into Murine and Human Oocytes

    PubMed Central

    Karlsson, Jens O.M.; Szurek, Edyta A.; Higgins, Adam Z.; Lee, Sang R.; Eroglu, Ali

    2014-01-01

    Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethylsulfoxide (Me2SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me2SO exposure time, revealing that neither shrinkage nor Me2SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me2SO addition appears to result from interactions between the effects of Me2SO toxicity and osmotic stress. We also investigated Me2SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me2SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me2SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach. PMID:24246951

  4. Annual estimates of water and solute export from 42 tributaries to the Yukon River

    USGS Publications Warehouse

    Frederick Zanden,; Suzanne P. Anderson,; Striegl, Robert G.

    2012-01-01

    Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions.

  5. Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution.

    PubMed

    Lei, Di; Zheng, Qianwen; Wang, Yili; Wang, Hongjie

    2015-02-01

    A novel material, aminopropyl-functionalized manganese-loaded SBA-15 (NH2-Mn-SBA-15), was synthesized by bonding 3-aminopropyl trimethoxysilane (APTMS) onto manganese-loaded SBA-15 (Mn-SBA-15) and used as a Cu2+ adsorbent in aqueous solution. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectra (XRD), N2 adsorption/desorption isotherms, high resolution field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the NH2-Mn-SBA-15. The ordered mesoporous structure of SBA-15 was remained after modification. The manganese oxides were mainly loaded on the internal surface of the pore channels while the aminopropyl groups were mainly anchored on the external surface of SBA-15. The adsorption of Cu2+ on NH2-Mn-SBA-15 was fitted well by the Langmuir equation and the maximum adsorption capacity of NH2-Mn-SBA-15 for Cu2+ was over two times higher than that of Mn-SBA-15 under the same conditions. The Elovich equation gave a good fit for the adsorption process of Cu2+ by NH2-Mn-SBA-15 and Mn-SBA-15. Both the loaded manganese oxides and the anchored aminopropyl groups were found to contribute to the uptake of Cu2+. The NH2-Mn-SBA-15 showed high selectivity for copper ions. Consecutive adsorption-desorption experiments showed that the NH2-Mn-SBA-15 could be regenerated by acid treatment without altering its properties. Copyright © 2014. Published by Elsevier B.V.

  6. Improvement of drug loading onto ion exchange resin by cyclodextrin inclusion complex.

    PubMed

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Sila-on, Warisada; Opanasopit, Praneet

    2013-11-01

    Ion exchange resins have ability to exchange their counter ions for ionized drug in the surrounding medium, yielding "drug resin complex." Cyclodextrin can be applied for enhancement of drug solubility and stability. Cyclodextrin inclusion complex of poorly water-soluble NSAIDs, i.e. meloxicam and piroxicam, was characterized and its novel application for improving drug loading onto an anionic exchange resin, i.e. Dowex® 1×2, was investigated. β-Cyclodextrin (β-CD) and hydroxypropyl β-cyclodextrin (HP-β-CD) were used for the preparation of inclusion complex with drugs in solution state at various pH. The inclusion complex was characterized by phase solubility, continuous variation, spectroscopic and electrochemistry methods. Then, the drug with and without cyclodextrin were equilibrated with resin at 1:1 and 1:2 weight ratio of drug and resin. Solubility of the drugs was found to increase with increasing cyclodextrin concentration and pH. The increased solubility was explained predominantly due to the formation of inclusion complex at low pH and the increased ionization of drug at high pH. According to characterization studies, the inclusion complex was successfully formed with a 1:1 stoichiometry. The presence of cyclodextrin in the loading solution resulted in the improvement of drug loading onto resin. Enhancing drug loading onto ion-exchange resin via the formation of cyclodextrin inclusion complex is usable in the development of ion-exchange based drug delivery systems, which will beneficially reduce the use of harmful acidic or basic and organic chemicals.

  7. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  8. Local stresses in metal matrix composites subjected to thermal and mechanical loading

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.

    1990-01-01

    An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.

  9. Impact of sampling strategy on stream load estimates in till landscape of the Midwest

    USGS Publications Warehouse

    Vidon, P.; Hubbard, L.E.; Soyeux, E.

    2009-01-01

    Accurately estimating various solute loads in streams during storms is critical to accurately determine maximum daily loads for regulatory purposes. This study investigates the impact of sampling strategy on solute load estimates in streams in the US Midwest. Three different solute types (nitrate, magnesium, and dissolved organic carbon (DOC)) and three sampling strategies are assessed. Regardless of the method, the average error on nitrate loads is higher than for magnesium or DOC loads, and all three methods generally underestimate DOC loads and overestimate magnesium loads. Increasing sampling frequency only slightly improves the accuracy of solute load estimates but generally improves the precision of load calculations. This type of investigation is critical for water management and environmental assessment so error on solute load calculations can be taken into account by landscape managers, and sampling strategies optimized as a function of monitoring objectives. ?? 2008 Springer Science+Business Media B.V.

  10. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogenmore » production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.« less

  11. 46 CFR 153.1065 - Sodium chlorate solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sodium chlorate solutions. 153.1065 Section 153.1065... Procedures § 153.1065 Sodium chlorate solutions. (a) No person may load sodium chlorate solutions into a... before loading. (b) The person in charge of cargo transfer shall make sure that spills of sodium chlorate...

  12. 46 CFR 153.1065 - Sodium chlorate solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sodium chlorate solutions. 153.1065 Section 153.1065... Procedures § 153.1065 Sodium chlorate solutions. (a) No person may load sodium chlorate solutions into a... before loading. (b) The person in charge of cargo transfer shall make sure that spills of sodium chlorate...

  13. 46 CFR 153.1065 - Sodium chlorate solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sodium chlorate solutions. 153.1065 Section 153.1065... Procedures § 153.1065 Sodium chlorate solutions. (a) No person may load sodium chlorate solutions into a... before loading. (b) The person in charge of cargo transfer shall make sure that spills of sodium chlorate...

  14. Yield strength measurement of shock-loaded metal by flyer-impact perturbation method

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Shi, Zhan

    2018-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.

  15. Yield surfaces for frictional sphere assemblages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard, J.D.; Didwania, A.K.

    1995-12-31

    By means of a recently developed computer algorithm for simulation of the quasi-static I mechanics of sphere assemblages, we have performed extensive computations of the dilatancy and plasticity of such systems for various proportional loading histories. We have investigated the effect of initial packing density or void ratio, size polydispersity, friction coefficient and plastic strain on the evolution of the yield surface. We find that all the yield surfaces tend to an asymptotic form which is well represented by the Lade-Duncan yield surface, developed originally for sand, suggesting that the Lade-Duncan form may reflect some universality in the behavior ofmore » assemblages of rigid frictional particles.« less

  16. Dynamic Loading of Immature Epiphyseal Cartilage Pumps Nutrients out of Vascular Canals

    PubMed Central

    Albro, Michael B.; Banerjee, Rajan E.; Li, Roland; Oungoulian, Sevan R.; Chen, Bo; del Palomar, Amaya P.; Hung, Clark T.; Ateshian, Gerard A.

    2011-01-01

    The potential influence of mechanical loading on transvascular transport in vascularized soft tissues has not been explored extensively. This experimental investigation introduced and explored the hypothesis that dynamic mechanical loading can pump solutes out of blood vessels and into the surrounding tissue, leading to faster uptake and higher solute concentrations than could otherwise be achieved under unloaded conditions. Immature epiphyseal cartilage was used as a model tissue system, with fluorescein (332 Da), dextran (3, 10 and 70 kDa) and transferrin (80 kDa) as model solutes. Cartilage disks were either dynamically loaded (±10% compression over a 10% static offset strain, at 0.2 Hz) or maintained unloaded in solution for up to 20 hours. Results demonstrated statistically significant solute uptake in dynamically loaded (DL) explants relative to passive diffusion (PD) controls for all solutes except unbound fluorescein, as evidenced by the DL:PD concentration ratios after 20 hours (1.0 ± 0.2, 2.4 ± 1.1, 6.1 ± 3.3, 9.0 ± 4.0, and 5.5±1.6 for fluorescein, 3, 10, and 70 kDa dextran, and transferrin). Significant uptake enhancements were also observed within the first 30 seconds of loading. Termination of dynamic loading produced dissipation of enhanced solute uptake back to PD control values. Confocal images confirmed that solute uptake occurred from cartilage canals into their surrounding extracellular matrix. The incidence of this loading-induced transvascular solute pumping mechanism may significantly alter our understanding of the interaction of mechanical loading and tissue metabolism. PMID:21481875

  17. High-resolution mapping of yield curve shape and evolution for high porosity sandstones

    NASA Astrophysics Data System (ADS)

    Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.

    2017-12-01

    The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.

  18. Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.

    PubMed

    Ramakrishnan, S; Collier, J; Oyetunji, R; Stutts, B; Burnett, R

    2010-07-01

    In situ hydrolysis of cellulose (dissolving pulp) in N-methyl morpholine oxide (NMMO) solutions by commercially available Accellerase1000 is carried out. The yield of reducing sugars is followed as a function of time at three different temperatures and four different enzyme loadings to study the effect of system parameters on enzymatic hydrolysis. Initial results show that rates of hydrolysis of cellulose and yields of reducing sugars in the presence of NMMO-water is superior initially (ratio of initial reaction rates approximately 4) and comparable to that of regenerated cellulose (for times greater than 5h) when suspended in aqueous solutions. The usage of Accellerase1000 results predominantly in the formation of glucose with minimal amounts of cellobiose. This study proves the ability of cellulases to remain active in NMMO to carry out an in situ saccharification of cellulose thus eliminating the need to recover regenerated cellulose. Thus this work will form the basis for developing a continuous process for conversion of biomass to hydrogen, ethanol and other hydrocarbons. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Solution of the spatial neutral model yields new bounds on the Amazonian species richness

    NASA Astrophysics Data System (ADS)

    Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.

    2017-02-01

    Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).

  20. Analysis of three variables in sampling solutions used to assay bacteria of hands: type of solution, use of antiseptic neutralizers, and solution temperature.

    PubMed Central

    Larson, E L; Strom, M S; Evans, C A

    1980-01-01

    Tests were performed using the sterile bag technique to determine the effects of type of sampling solution, use of antiseptic neutralizers, and solution temperature on the detection and quantitation of bacteria on hands. Using paired hand cultures, three sampling solutions were compared: quarter-strength Ringer solution, a phosphate buffer containing Triton X-100, and the same buffer containing antiseptic neutralizers. The phosphate buffer containing Triton X-100 was significantly better than quarter-strength Ringer solution in mean bacterial yield; the neutralizer-containing sampling solution was slightly better than Triton X-100-containing solution, although differences were not significant at the P = 0.05 level. Temperature (6 or 23 degrees C) of the sampling solution showed no consistent effect on bacterial yield from hands tested with the fluid containing neutralizers. PMID:7012171

  1. Programming of the complex logarithm function in the solution of the cracked anisotropic plate loaded by a point force

    NASA Astrophysics Data System (ADS)

    Zaal, K. J. J. M.

    1991-06-01

    In programming solutions of complex function theory, the complex logarithm function is replaced by the complex logarithmic function, introducing a discontinuity along the branch cut into the programmed solution which was not present in the mathematical solution. Recently, Liaw and Kamel presented their solution of the infinite anisotropic centrally cracked plate loaded by an arbitrary point force, which they used as Green's function in a boundary element method intended to evaluate the stress intensity factor at the tip of a crack originating from an elliptical home. Their solution may be used as Green's function of many more numerical methods involving anisotropic elasticity. In programming applications of Liaw and Kamel's solution, the standard definition of the logarithmic function with the branch cut at the nonpositive real axis cannot provide a reliable computation of the displacement field for Liaw and Kamel's solution. Either the branch cut should be redefined outside the domain of the logarithmic function, after proving that the domain is limited to a part of the plane, or the logarithmic function should be defined on its Riemann surface. A two dimensional line fractal can provide the link between all mesh points on the plane essential to evaluate the logarithm function on its Riemann surface. As an example, a two dimensional line fractal is defined for a mesh once used by Erdogan and Arin.

  2. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  3. Concentrations, and Estimated Loads and Yields of Total Nitrogen and Total Phosphorus at Selected Stations in Kentucky, 1979-2004

    USGS Publications Warehouse

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    To evaluate the State's water quality, the Kentucky Division of Water collects data from a statewide network of primary ambient stream water-quality monitoring stations and flexible, rotating watershed-monitoring stations. This ambient stream water-quality monitoring network program is directed to assess the conditions of surface waters throughout Kentucky. Water samples were collected monthly for the majority of the stations from 1979 to 1998, which represented agricultural, undeveloped (mainly forested), and areas of mixed land use/land cover. In 1998, the number of water samples collected was reduced to a collection frequency of six times per year (every 2 months) every 4 of 5 years, because a new monitoring network was implemented involving a 5-year rotating Basin Management Unit scheme of monitoring. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to summarize concentrations of total nitrogen and total phosphorus and provide estimates of total nitrogen and total phosphorus loads and yields in 55 selected streams in Kentucky's ambient stream water-quality monitoring network, which was operated from 1979 through 2004. Streams in predominately agricultural basins had higher concentrations of total nitrogen (TN) and concentrations of total phosphorus (TP) than streams in predominately undeveloped (forested) basins. Streams in basins in intensely developed karst areas characterized by caves, springs, sinkholes, and sinking streams had a higher median concentration of TN (1.5 milligrams per liter [mg/L]) than streams in basins with limited or no karst areas (0.63 mg/L). As with TN, median concentrations of TP also were higher in areas of intense karst (0.05 mg/L) than in areas with limited or no karst (0.02 mg/L). The U.S. Environmental Protection Agency (USEPA) has recommended ecoregional nutrient water-quality criteria as a starting

  4. Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Lee, Casey J.; Ziegler, Andrew C.

    2008-01-01

    Johnson County is one of the most rapidly developing counties in Kansas. Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value. This report describes estimates of streamflow and constituent concentrations, loads, and yields in relation to watershed characteristics in five Johnson County streams using continuous in-stream sensor measurements. Specific conductance, pH, water temperature, turbidity, and dissolved oxygen were monitored in five watersheds from October 2002 through December 2006. These continuous data were used in conjunction with discrete water samples to develop regression models for continuously estimating concentrations of other constituents. Continuous regression-based concentrations were estimated for suspended sediment, total suspended solids, dissolved solids and selected major ions, nutrients (nitrogen and phosphorus species), and fecal-indicator bacteria. Continuous daily, monthly, seasonal, and annual loads were calculated from concentration estimates and streamflow. The data are used to describe differences in concentrations, loads, and yields and to explain these differences relative to watershed characteristics. Water quality at the five monitoring sites varied according to hydrologic conditions; contributing drainage area; land use (including degree of urbanization); relative contributions from point and nonpoint constituent sources; and human activity within each watershed. Dissolved oxygen (DO) concentrations were less than the Kansas aquatic-life-support criterion of 5.0 mg/L less than 10 percent of the time at all sites except Indian Creek, which had DO concentrations less than the criterion about 15 percent of the time. Concentrations of suspended sediment, chloride (winter only), indicator bacteria, and pesticides were substantially larger during periods of increased streamflow. Suspended

  5. Buffet Load Alleviation

    NASA Technical Reports Server (NTRS)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  6. Effect of Phosphate-Buffered Solution Corrosion on the Ratcheting Fatigue Behavior of a Duplex Mg-Li-Al Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong

    2016-05-01

    This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.

  7. Performance, carotenoids yield and microbial population dynamics in a photobioreactor system treating acidic wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    PubMed

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-01-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodopseudomonas palustris)-chemoheterotrophic bacteria to treat volatile fatty acid wastewater. Pollutants removal, biomass production and carotenoids yield in different phases were investigated in together with functional microbial population dynamics. The results indicated that properly decreasing HRT and increasing OLR improved the nutrient removal performance as well as the biomass and carotenoids productions. 85.7% COD, 89.9% TN and 91.8% TP removals were achieved under the optimal HRT of 48h and OLR of 2.51g/L/d. Meanwhile, the highest biomass production and carotenoids yield were 2719.3mg/L and 3.91mg/g-biomass respectively. In addition, HRT and OLR have obvious impacts on PNSB and total bacteria dynamics. Statistical analyses indicated that the COD removal exhibited a positive relationship with OLR, biomass and carotenoids production. PNSB/total bacteria ratio had a positive correlation with the carotenoids yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow

    NASA Astrophysics Data System (ADS)

    Mook, W. M.; Niederberger, C.; Bechelany, M.; Philippe, L.; Michler, J.

    2010-02-01

    Characterizing the mechanical response of isolated nanostructures is vitally important to fields such as microelectromechanical systems (MEMS) where the behaviour of nanoscale contacts can in large part determine system reliability and lifetime. To address this challenge directly, single crystal gold nanodots are compressed inside a high resolution scanning electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. These structures load elastically, and then yield in a stochastic manner, at loads ranging from 16 to 110 µN, which is up to five times higher than the load necessary for flow after yield. Yielding is immediately followed by displacement bursts equivalent to 1-50% of the initial height, depending on the yield point. During the largest displacement bursts, strain energy within the structure is released while new surface area is created in the form of localized slip bands, which are evident in both the SEM movies and still-images. A first order estimate of the apparent energy release rate, in terms of fracture mechanics concepts, for bursts representing 5-50% of the structure's initial height is on the order of 10-100 J m-2, which is approximately two orders of magnitude lower than bulk values. Once this initial strain burst during yielding has occurred, the structures flow in a ductile way. The implications of this behaviour, which is analogous to a brittle to ductile transition, are discussed with respect to mechanical reliability at the micro- and nanoscales.

  9. Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro

    NASA Astrophysics Data System (ADS)

    Barras, Alexandre; Boussekey, Luc; Courtade, Emmanuel; Boukherroub, Rabah

    2013-10-01

    Hypericin (Hy), a naturally occurring photosensitizer (PS), is extracted from Hypericum perforatum plants, commonly known as St. John's wort. The discovery of the in vitro and in vivo photodynamic activities of hypericin as a photosensitizer generated great interest, mainly to induce a very potent antitumoral effect. However, this compound belongs to the family of naphthodianthrones which are known to be poorly soluble in physiological solutions and produce non-fluorescent aggregates (A. Wirz et al., Pharmazie, 2002, 57, 543; A. Kubin et al., Pharmazie, 2008, 63, 263). These phenomena can reduce its efficiency as a photosensitizer for the clinical application. In the present contribution, we have prepared, characterized, and studied the photochemical properties of Hy-loaded lipid nanocapsule (LNC) formulations. The amount of singlet oxygen (1O2) generated was measured by the use of p-nitroso-dimethylaniline (RNO) as a selective scavenger under visible light irradiation. Our results showed that Hy-loaded LNCs suppressed aggregation of Hy in aqueous media, increased its apparent solubility, and enhanced the production of singlet oxygen in comparison with free drug. Indeed, encapsulation of Hy in LNCs led to an increase of 1O2 quantum yield to 0.29-0.44, as compared to 0.02 reported for free Hy in water. Additionally, we studied the photodynamic activity of Hy-loaded LNCs on human cervical carcinoma (HeLa) and Human Embryonic Kidney (HEK) cells. The cell viability decreased radically to 10-20% at 1 μM, reflecting Hy-loaded LNC25 phototoxicity.Hypericin (Hy), a naturally occurring photosensitizer (PS), is extracted from Hypericum perforatum plants, commonly known as St. John's wort. The discovery of the in vitro and in vivo photodynamic activities of hypericin as a photosensitizer generated great interest, mainly to induce a very potent antitumoral effect. However, this compound belongs to the family of naphthodianthrones which are known to be poorly soluble in

  10. Sediment yields for selected streams in Texas

    USGS Publications Warehouse

    Welborn, C.T.; Bezant, R. Bryce

    1978-01-01

    Sediment loads ranged from 1,500 tons per year at the station North Fork Hubbard Creek near Albany to 278,000 tons per year at the station Wichita River at Wichita Falls. Sediment yields ranged from 15 tons per square mile per year in the drainage area of East Yegua Creek near Dime Box to 500 tons per square mile per year in the drainage area of Denton Creek near Justin. Sediment yields from drainage areas generally decrease from northwest to southeast across the State.

  11. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    NASA Astrophysics Data System (ADS)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  12. Stress-Constrained Structural Topology Optimization with Design-Dependent Loads

    NASA Astrophysics Data System (ADS)

    Lee, Edmund

    Topology optimization is commonly used to distribute a given amount of material to obtain the stiffest structure, with predefined fixed loads. The present work investigates the result of applying stress constraints to topology optimization, for problems with design-depending loading, such as self-weight and pressure. In order to apply pressure loading, a material boundary identification scheme is proposed, iteratively connecting points of equal density. In previous research, design-dependent loading problems have been limited to compliance minimization. The present study employs a more practical approach by minimizing mass subject to failure constraints, and uses a stress relaxation technique to avoid stress constraint singularities. The results show that these design dependent loading problems may converge to a local minimum when stress constraints are enforced. Comparisons between compliance minimization solutions and stress-constrained solutions are also given. The resulting topologies of these two solutions are usually vastly different, demonstrating the need for stress-constrained topology optimization.

  13. Analytical stress intensity solution for the Stable Poisson Loaded specimen

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Calomino, Anthony M.; Brewer, David N.

    1993-01-01

    An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-curve determination. The crack mouth opening displacements (CMODs) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMODs, and crack displacement profiles, are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.

  14. Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.

    2005-01-01

    The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the

  15. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    PubMed

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-05-01

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small

  16. Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: Multivariate optimization of the loading process.

    PubMed

    Robaina, Nicolle F; Soriano, Silvio; Cassella, Ricardo J

    2009-08-15

    This paper reports the development of a new procedure for the adsorption of four cationic dyes (Rhodamine B, Methylene Blue, Crystal Violet and Malachite Green) from aqueous medium employing polyurethane foam (PUF) loaded with sodium dodecylsulfate (SDS) as solid phase. PUF loading process was based on the stirring of 200mg PUF cylinders with acidic solutions containing SDS. The conditions for loading were optimized by response surface methodology (RSM) using a Doehlert design with three variables that were SDS and HCl concentrations and stirring time. Results obtained in the optimization process showed that the stirring time is not a relevant parameter in the PUF loading, evidencing that the transport of SDS from solution to PUF surface is fast. On the other hand, both SDS and HCl concentrations were important parameters causing significant variation in the efficiency of the resulting solid phase for the removal of dyes from solution. At optimized conditions, SDS and HCl concentrations were 4.0 x 10(-4) and 0.90 mol L(-1), respectively. The influence of stirring time was evaluated by univariate methodology. A 20 min stirring time was established in order to make the PUF loading process fast and robust without losing efficiency. The procedure was tested for the removal of the four cationic dyes from aqueous solutions and removal efficiencies always better than 90% were achieved for the two concentrations tested (2.0 x 10(-5) and 1.0 x 10(-4)mol L(-1)).

  17. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States

    USGS Publications Warehouse

    Anning, David W.; Flynn, Marilyn E.

    2014-01-01

    Results from the trend analysis and from the SPARROW model indicate that, compared to monitoring stations with no trends or decreasing trends, stations with increasing trends are associated with a smaller percentage of the predicted dissolved-solids load originating from geologic sources, and a larger percentage originating from urban lands and road deicers. Conversely, compared to stations with increasing trends or no trends, stations with decreasing trends have a larger percentage of the predicted dissolved-solids load originating from geologic sources and a smaller percentage originating from urban lands and road deicers. Stations with decreasing trends also have larger percentages of predicted dissolved-solids load originating from cultivated lands and pasture lands, compared to stations with increasing trends or no trends.

  18. Synthesis of camptothecin-loaded gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Xing, Zhimin; Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Zhao, Chunjian; Zhao, Xiuhua; Meng, Ronghua; Tan, Shengnan

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  19. On load paths and load bearing topology from finite element analysis

    NASA Astrophysics Data System (ADS)

    Kelly, D.; Reidsema, C.; Lee, M.

    2010-06-01

    Load paths can be mapped from vector plots of 'pointing stress vectors'. They define a path along which a component of load remains constant as it traverses the solution domain. In this paper the theory for the paths is first defined. Properties of the plots that enable a designer to interpret the structural behavior from the contours are then identified. Because stress is a second order tensor defined on an orthogonal set of axes, the vector plots define separate paths for load transfer in each direction of the set of axes. An algorithm is therefore presented that combines the vectors to define a topology to carry the loads. The algorithm is shown to straighten the paths reducing bending moments and removing stress concentration. Application to a bolted joint, a racing car body and a yacht hull demonstrate the usefulness of the plots.

  20. A closed-form trim solution yielding minimum trim drag for airplanes with multiple longitudinal-control effectors

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Sliwa, Steven M.; Lallman, Frederick J.

    1989-01-01

    Airplane designs are currently being proposed with a multitude of lifting and control devices. Because of the redundancy in ways to generate moments and forces, there are a variety of strategies for trimming each airplane. A linear optimum trim solution (LOTS) is derived using a Lagrange formulation. LOTS enables the rapid calculation of the longitudinal load distribution resulting in the minimum trim drag in level, steady-state flight for airplanes with a mixture of three or more aerodynamic surfaces and propulsive control effectors. Comparisons of the trim drags obtained using LOTS, a direct constrained optimization method, and several ad hoc methods are presented for vortex-lattice representations of a three-surface airplane and two-surface airplane with thrust vectoring. These comparisons show that LOTS accurately predicts the results obtained from the nonlinear optimization and that the optimum methods result in trim drag reductions of up to 80 percent compared to the ad hoc methods.

  1. New York City green loading zones study.

    DOT National Transportation Integrated Search

    2014-07-01

    The purpose of this study is to examine the impact and potential benefits of Green Loading Zones (GLZs)a policy solution to incentivize further : electric truck adoption with the creation of curbside loading zones that are exclusively available to...

  2. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Mirzadeh, F.; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1990-01-01

    Elements of the analytical/experimental program to characterize the response of silicon carbide titanium (SCS-6/Ti-15-3) composite tubes under biaxial loading are outlined. The analytical program comprises prediction of initial yielding and subsequent inelastic response of unidirectional and angle-ply silicon carbide titanium tubes using a combined micromechanics approach and laminate analysis. The micromechanics approach is based on the method of cells model and has the capability of generating the effective thermomechanical response of metal matrix composites in the linear and inelastic region in the presence of temperature and time-dependent properties of the individual constituents and imperfect bonding on the initial yield surfaces and inelastic response of (0) and (+ or - 45)sub s SCS-6/Ti-15-3 laminates loaded by different combinations of stresses. The generated analytical predictions will be compared with the experimental results. The experimental program comprises generation of initial yield surfaces, subsequent stress-strain curves and determination of failure loads of the SCS-6/Ti-15-3 tubes under selected loading conditions. The results of the analytical investigation are employed to define the actual loading paths for the experimental program. A brief overview of the experimental methodology is given. This includes the test capabilities of the Composite Mechanics Laboratory at the University of Virginia, the SCS-6/Ti-15-3 composite tubes secured from McDonnell Douglas Corporation, a text fixture specifically developed for combined axial-torsional loading, and the MTS combined axial-torsion loader that will be employed in the actual testing.

  3. Dust loading of the normal atmosphere

    NASA Astrophysics Data System (ADS)

    Hall, F. F., Jr.

    1983-01-01

    Soil dust can contribute to atmospheric turbidity over most of the globe. The major sources of this dust are in the world's arid regions, where loadings of over 1000 micrograms/cu m can occur during strong winds. Saharan dust transported across the Atlantic can produce loadings up to 100 micrograms/cu m in the Western Hemisphere. Asian sources yield springtime loadings of 5-10 micrograms/cu m at Midway Island. Other important sources of dust are agricultural plowing and vehicular traffic on graded roads. The U.S. air quality standard of 75 micrograms/cu m is often exceeded in rural areas.

  4. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013

    USGS Publications Warehouse

    Smith, Kirk P.

    2015-01-01

    At the stations where water-quality samples were collected by the PWSB, the median of the median chloride concentrations was 18 milligrams per liter (mg/L), median nitrite concentration was 0.002 mg/L as nitrogen (N), median nitrate concentration was less than 0.01 mg/L as N, median orthophosphate concentration was 0.128 mg/L as phosphate, and median concentrations of total coliform bacteria and Escherichia coli (E. coli) were 330 and 15 colony-forming units per 100 milliliters (CFU/100mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and E. coli bacteria were 100 kilograms per day (kg/d; 50 kilograms per day per square mile [kg/d/mi2]), 10 grams per day (g/d; 5.1 grams per day per square mile [g/d/mi2]), 73 g/d (28 g/d/mi2), 720 g/d (320 g/d/mi2), 21,000 colony-forming units per day (CFU×106/d; 8,700 CFU×106/d/mi2), and 1,000 CFU×106/d (510 CFU×106/d/mi2), respectively.

  5. On computing the geoelastic response to a disk load

    NASA Astrophysics Data System (ADS)

    Bevis, M.; Melini, D.; Spada, G.

    2016-06-01

    We review the theory of the Earth's elastic and gravitational response to a surface disk load. The solutions for displacement of the surface and the geoid are developed using expansions of Legendre polynomials, their derivatives and the load Love numbers. We provide a MATLAB function called diskload that computes the solutions for both uncompensated and compensated disk loads. In order to numerically implement the Legendre expansions, it is necessary to choose a harmonic degree, nmax, at which to truncate the series used to construct the solutions. We present a rule of thumb (ROT) for choosing an appropriate value of nmax, describe the consequences of truncating the expansions prematurely and provide a means to judiciously violate the ROT when that becomes a practical necessity.

  6. Pd-loaded carbon felt as the cathode for selective dechlorination of 2,4-dichlorophenoxyacetic acid in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsyganok, A.I.; Yamanaka, Ichiro; Otsuka, Kiyoshi

    1998-11-01

    Electrocatalytic reductive dehalogenation of 2,4-dichlorophenoxyacetic acid (2,4-D) to phenoxyacetic acid in aqueous solution containing MeOH, trifluoroacetic acid, and tetraalkylammonium salt was studied. A Teflon-made two-compartment flow-through cell with a permeable carbon felt cathode and a platinum foil anode was employed. Several noble metals were tested as electrocatalysts. Palladium-loaded carbon felt was found to be the most suitable significantly enhanced its electrocatalytic activity toward 2,4-D dechlorination. The reaction was hypothesized to proceed at carbon-palladium interface areas through 4-chlorine cleavage to form 2-chlorophenoxyacetic acid as the main reaction intermediate.

  7. A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading

    NASA Technical Reports Server (NTRS)

    Rui, Yuting; Sun, C. T.

    1990-01-01

    Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.

  8. Mechanical loading of bovine pericardium accelerates enzymatic degradation.

    PubMed

    Ellsmere, J C; Khanna, R A; Lee, J M

    1999-06-01

    Bioprosthetic heart valves fail as the result of two simultaneous processes: structural deterioration and calcification. Leaflet deterioration and perforation have been correlated with regions of highest stress in the tissue. The failures have long been assumed to be due to simple mechanical fatigue of the collagen fibre architecture; however, we have hypothesized that local stresses-and particularly dynamic stresses-accelerate local proteolysis, leading to tissue failure. This study addresses that hypothesis. Using a novel, custom-built microtensile culture system, strips of bovine pericardium were subjected to static and dynamic loads while being exposed to solutions of microbial collagenase or trypsin (a non-specific proteolytic enzyme). The time to extend to 30% strain (defined here as time to failure) was recorded. After failure, the percentage of collagen solubilized was calculated based on the amount of hydroxyproline present in solution. All data were analyzed by analysis of variance (ANOVA). In collagenase, exposure to static load significantly decreased the time to failure (P < 0.002) due to increased mean rate of collagen solubilization. Importantly, specimens exposed to collagenase and dynamic load failed faster than those exposed to collagenase under the same average static load (P = 0.02). In trypsin, by contrast, static load never led to failure and produced only minimal degradation. Under dynamic load, however, specimens exposed to collagenase, trypsin, and even Tris/CaCl2 buffer solution, all failed. Only samples exposed to Hanks' physiological solution did not fail. Failure of the specimens exposed to trypsin and Tris/CaCl2 suggests that the non-collagenous components and the calcium-dependent proteolytic enzymes present in pericardial tissue may play roles in the pathogenesis of bioprosthetic heart valve degeneration.

  9. The use of multigrid techniques in the solution of the Elrod algorithm for a dynamically loaded journal bearing. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.

    1988-01-01

    A numerical solution to a theoretical model of vapor cavitation in a dynamically loaded journal bearing is developed, utilizing a multigrid iterative technique. The code is compared with a presently existing direct solution in terms of computational time and accuracy. The model is based on the Elrod algorithm, a control volume approach to the Reynolds equation which mimics the Jakobssen-Floberg and Olsson cavitation theory. Besides accounting for a moving cavitation boundary and conservation of mass at the boundary, it also conserves mass within the cavitated region via liquid striations. The mixed nature of the equations (elliptic in the full film zone and nonelliptic in the cavitated zone) coupled with the dynamic aspects of the problem create interesting difficulties for the present solution approach. Emphasis is placed on the methods found to eliminate solution instabilities. Excellent results are obtained for both accuracy and reduction of computational time.

  10. Estimated nitrogen loads from selected tributaries in Connecticut draining to Long Island Sound, 1999–2009

    USGS Publications Warehouse

    Mullaney, John R.; Schwarz, Gregory E.

    2013-01-01

    The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year

  11. Computer simulation of concentrated solid solution strengthening

    NASA Technical Reports Server (NTRS)

    Kuo, C. T. K.; Arsenault, R. J.

    1976-01-01

    The interaction forces between a straight edge dislocation moving through a three-dimensional block containing a random array of solute atoms were determined. The yield stress at 0 K was obtained by determining the average maximum solute-dislocation interaction force that is encountered by edge dislocation, and an expression relating the yield stress to the length of the dislocation and the solute concentration is provided. The magnitude of the solid solution strengthening due to solute atoms can be determined directly from the numerical results, provided the dislocation line length that moves as a unit is specified.

  12. Gender-Specific Effects of Cognitive Load on Social Discounting.

    PubMed

    Strombach, Tina; Margittai, Zsofia; Gorczyca, Barbara; Kalenscher, Tobias

    2016-01-01

    We live busy, social lives, and meeting the challenges of our complex environments puts strain on our cognitive systems. However, cognitive resources are limited. It is unclear how cognitive load affects social decision making. Previous findings on the effects of cognitive load on other-regarding preferences have been ambiguous, allowing no coherent opinion whether cognitive load increases, decreases or does not affect prosocial considerations. Here, we suggest that social distance between individuals modulates whether generosity towards a recipient increases or decreases under cognitive load conditions. Participants played a financial social discounting task with several recipients at variable social distance levels. In this task, they could choose between generous alternatives, yielding medium financial rewards for the participant and recipient at variable social distances, or between a selfish alternative, yielding larger rewards for the participant alone. We show that the social discount function of male participants was significantly flattened under high cognitive load conditions, suggesting they distinguished less between socially close and socially distant recipients. Unexpectedly, the cognitive-load effect on social discounting was gender-specific: while social discounting was strongly dependent on cognitive load in men, women were nearly unaffected by cognitive load manipulations. We suggest that cognitive load leads men, but not women to simplify the decision problem by neglecting the social distance information. We consider our study a good starting point for further experiments exploring the role of gender in prosocial choice.

  13. Gender-Specific Effects of Cognitive Load on Social Discounting

    PubMed Central

    Strombach, Tina; Margittai, Zsofia; Gorczyca, Barbara; Kalenscher, Tobias

    2016-01-01

    We live busy, social lives, and meeting the challenges of our complex environments puts strain on our cognitive systems. However, cognitive resources are limited. It is unclear how cognitive load affects social decision making. Previous findings on the effects of cognitive load on other-regarding preferences have been ambiguous, allowing no coherent opinion whether cognitive load increases, decreases or does not affect prosocial considerations. Here, we suggest that social distance between individuals modulates whether generosity towards a recipient increases or decreases under cognitive load conditions. Participants played a financial social discounting task with several recipients at variable social distance levels. In this task, they could choose between generous alternatives, yielding medium financial rewards for the participant and recipient at variable social distances, or between a selfish alternative, yielding larger rewards for the participant alone. We show that the social discount function of male participants was significantly flattened under high cognitive load conditions, suggesting they distinguished less between socially close and socially distant recipients. Unexpectedly, the cognitive-load effect on social discounting was gender-specific: while social discounting was strongly dependent on cognitive load in men, women were nearly unaffected by cognitive load manipulations. We suggest that cognitive load leads men, but not women to simplify the decision problem by neglecting the social distance information. We consider our study a good starting point for further experiments exploring the role of gender in prosocial choice. PMID:27788192

  14. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    NASA Astrophysics Data System (ADS)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic

  15. Temperature-induced labelling of Fluo-3 AM selectively yields brighter nucleus in adherent cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Guixian; Pan, Leiting, E-mail: plt@nankai.edu.cn; Li, Cunbo

    2014-01-17

    Highlights: •We detailedly examine temperature effects of Fluo-3 AM labelling in adherent cells. •4 °C Loading and 20 °C de-esterification of Fluo-3 AM yields brighter nuclei. •Brighter nuclei labelling by Fluo-3 AM also depends on cell adhesion quality. •A qualitative model of the brighter nucleus is proposed. -- Abstract: Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca{sup 2+}]{sub c}) and nuclear calcium ([Ca{sup 2+}]{sub n}) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injectionmore » always induces a brighter nucleus which is more responsive to [Ca{sup 2+}]{sub n} detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca{sup 2+}]{sub n} and [Ca{sup 2+}]{sub c} in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells.« less

  16. The effect of yield strength and ductility to fatigue damage

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1973-01-01

    The cumulative damage of aluminium alloys with different yield strength and various ductility due to seismic loads was studied. The responses of an idealized beam with a centered mass at one end and fixed at the other end to El Centro's and Taft's earthquakes are computed by assuming that the alloys are perfectly elastoplastic materials and by using numerical technique. Consequently, the corresponding residual plastic strain can be obtained from the stress-strain relationship. The revised Palmgren-Miner cumulative damage theorem is utilized to calculate the fatigue damage. The numerical results show that in certain cases, the high ductility materials are more resistant to seismic loads than the high yield strength materials. The results also show that if a structure collapse during the earthquake, the collapse always occurs in the very early stage.

  17. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  18. System ID modern control algorithms for active aerodynamic load control and impact on gearbox loading.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley

    2010-06-01

    Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to performmore » turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.« less

  19. Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.

    1985-01-01

    The bearingless rotorcraft offers reduced weight, less complexity and superior flying qualities. Almost all the current industrial structural dynamic programs of conventional rotors which consist of single load path rotor blades employ the transfer matrix method to determine natural vibration characteristics because this method is ideally suited for one dimensional chain like structures. This method is extended to multiple load path rotor blades without resorting to an equivalent single load path approximation. Unlike the conventional blades, it isk necessary to introduce the axial-degree-of-freedom into the solution process to account for the differential axial displacements in the different load paths. With the present extension, the current rotor dynamic programs can be modified with relative ease to account for the multiple load paths without resorting to the equivalent single load path modeling. The results obtained by the transfer matrix method are validated by comparing with the finite element solutions. A differential stiffness matrix due to blade rotation is derived to facilitate the finite element solutions.

  20. Microfracture and changes in energy absorption to fracture of young vertebral cancellous bone following physiological fatigue loading.

    PubMed

    Lu, W W; Luk, K D K; Cheung, K C M; Gui-Xing, Qiu; Shen, J X; Yuen, L; Ouyang, J; Leong, J C Y

    2004-06-01

    Fifty-five human thoracolumbar vertebrae were randomly fatigue loaded and analyzed. The purpose of this study was to explore the relationship between fatigue loading, trabecular microfracture, and energy absorption to fracture in human cadaveric thoracolumbar vertebrae. Although trabecular microfractures are found in vivo and have been produced by fatigue loading in vitro, the effect of the level of physiologic fatigue loading on microfracture and energy absorption has not been investigated. Fifty-five human thoracolumbar vertebrae (T11-L4) were randomly divided into 5 groups: 1) control (no loading, n = 6); 2) axial compression to yield (n = 7); and 3-5) 20,000 cycles of fatigue loading at 2 Hz (each n = 14). The level of fatigue loading was determined as a proportion of the yield load of Group 2 as follows: 10% (Group 3), 20% (Group 4), and 30% (Group 5). Half of the specimens in groups 3 to 5 were used for radiographic and histomorphometric analysis to determine microfracture density and distribution, whereas the other half were tested to determine the energy absorption to yield failure. No radiographic evidence of gross fracture was found in any of the groups following fatigue loading. A mean 7.5% increase in stiffness was found in specimens subject to cyclic loading at 10% of yield stress (Group 3). Fatigue at 20% (Group 4) and 30% of yield stress (Group 5) caused significantly higher (P < 0.05) increases in mean stiffness of 23.6% and 24.2%, respectively. Microfracture density increased from 0.46/mm in Group 3 to 0.66/mm in Group 4 and 0.94/mm in Group 5 (P < 0.05). The energy absorbed to failure decreased from 21.9 J in Group 3 to 18.1 J and 19.6 J in Groups 4 and 5, respectively (P < 0.05). Fatigue loading at physiologic levels produced microfractures that are not detectable by radiography. Increased fatigue load results in an increase in microfracture density and decrease energy absorbed to fracture, indicating a reduced resistance to further fatigue

  1. Nutrient concentrations and loads in the northeastern United States - Status and trends, 1975-2003

    USGS Publications Warehouse

    Trench, Elaine C. Todd; Moore, Richard B.; Ahearn, Elizabeth A.; Mullaney, John R.; Hickman, R. Edward; Schwarz, Gregory E.

    2012-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) began regional studies in 2003 to synthesize information on nutrient concentrations, trends, stream loads, and sources. In the northeastern United States, a study area that extends from Maine to central Virginia, nutrient data were evaluated for 130 USGS water-quality monitoring stations. Nutrient data were analyzed for trends in flow-adjusted concentrations, modeled instream (non-flow-adjusted) concentrations, and stream loads for 32 stations with 22 to 29 years of water-quality and daily mean streamflow record during 1975-2003 (termed the long-term period), and for 46 stations during 1993-2003 (termed the recent period), by using a coupled statistical model of streamflow and water quality developed by the USGS. Recent trends in flow-adjusted concentrations of one or more nutrients also were analyzed for 90 stations by using Tobit regression. Annual stream nutrient loads were estimated, and annual nutrient yields were calculated, for 47 stations for the long-term and recent periods, and for 37 additional stations that did not have a complete streamflow and water-quality record for 1993-2003. Nutrient yield information was incorporated for 9 drainage basins evaluated in a national NAWQA study, for a total of 93 stations evaluated for nutrient yields. Long-term downward trends in flow-adjusted concentrations of total nitrogen and total phosphorus (18 and 19 of 32 stations, respectively) indicate regional improvements in nutrient-related water-quality conditions. Most of the recent trends detected for total phosphorus were upward (17 of 83 stations), indicating possible reversals to the long-term improvements. Concentrations of nutrients in many streams persist at levels that are likely to affect aquatic habitat adversely and promote freshwater or coastal eutrophication. Recent trends for modeled instream concentrations, and modeled reference concentrations, were evaluated relative to

  2. [Optimization on trehalose loading technique as protective conditioning for lyophilization of human platelets].

    PubMed

    Liu, Jing-Han; Zhou, Jun; Ouyang, Xi-Lin; Li, Xi-Jin; Lu, Fa-Qiang

    2005-08-01

    This study was aimed to further optimize trehalose loading technique including loading temperature, loading time, loading solution and loading concentration of trehalose, based on the established parameters. Loading efficiency in plasma was compared with that in buffer at 37 degrees C; the curves of intracellular trehalose concentration versus loading time at 37 degrees C and 16 degrees C were measured; curves of mean platelet volume (MPV) versus loading time and loading concentration were investigated and compared. According to results obtained, the loaing time, loading temperature, loading solution and trehalose concentration were ascertained for high loading efficiency of trehalose into human platelet. The results showed that the loading efficiency in plasma was markedly higher than that in buffer at 37 degrees C, the loading efficiency in plasma at 37 degrees C was significantly higher than that at 16 degrees C and reached 19.51% after loading for 4 hours, but 6.16% at 16 degrees C. MPV at 16 degrees C was increased by 43.2% than that at 37 degrees C, but had no distinct changes with loading time and loading concentration. In loading at 37 degrees C, MPV increased with loading time and loading concentration positively. Loading time and loading concentration displayed synergetic effect on MPV. MPV increased with loading time and concentration while trehalose loading concentration was above 50 mmol/L. It is concluded that the optimization parameters of trehalose loading technique are 37 degrees C (temperature), 4 hours (leading time), plasma (loading solution), 50 mmol/L (feasible trehalose concentration). The trehalose concentration can be adjusted to meet the requirement of lyophilization.

  3. Niosome-loaded cold-set whey protein hydrogels.

    PubMed

    Abaee, Arash; Madadlou, Ashkan

    2016-04-01

    The α-tocopherol-carrying niosomes with mean diameter of 5.7 μm were fabricated and charged into a transglutaminase-cross-linked whey protein solution that was subsequently gelled with glucono delta-lactone. Encapsulation efficiency of α-tocopherol within niosomes was ≈80% and encapsulation did not influence the radical scavenging activity of α-tocopherol. Fourier transform infrared (FTIR) spectroscopy suggested formation of ε-(γ-glutamyl) lysine cross-linkages by transglutaminase and that enzymatic cross-linking increased proteins hydrophobicity. FTIR also proposed hydrogen bonding between niosomes and proteins. Dynamic rheometry indicated that transglutaminase cross-linking and niosomes charging of the protein solution enhanced the gelation process. However, charging the cross-linked protein solution with niosomal suspension resulted in lower elastic modulus (G') of the subsequently formed gel compared with both non-cross-linked niosome-loaded and cross-linked niosome-free counterparts. Electron microscopy indicated a discontinuous network for the niosome-loaded cross-linked sample. Niosome loading into the protein gel matrix increased its swelling extent in the enzyme-free simulated gastric fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Strengthening of Fe3Al Aluminides by One or Two Solute Elements

    NASA Astrophysics Data System (ADS)

    Kratochvíl, Petr; Daniš, Stanislav; Minárik, Peter; Pešička, Josef; Král, Robert

    2017-09-01

    The compressive yield stress of Fe-26Al with additives Ti (0.5 to 4 at. pct), Cr (0.5 to 8 at. pct), Mo (0.5 to 4 at. pct), and V (0.5 to 8 at. pct) at 1073 K (800 °C) has been determined. The effect of the concentration of diverse solutes on the yield stress at 1073 K (800 °C) was compared, and the additivity of the effects of solutes was tested. The effects in iron aluminides with two solutes (V and Ti, Ti and Cr, V and Cr) are compared with those of a single solute V, Ti, and Cr. It is found that the additivity of yield stress increments is valid only for lower solute concentrations. When the amount of the solute atoms increases, the yield stress increment is substantially higher than the sum of the yield stress increments of single solutes. This behavior is related to the high-temperature order in iron aluminides.

  5. Nutrient and suspended-sediment trends, loads, and yields and development of an indicator of streamwater quality at nontidal sites in the Chesapeake Bay watershed, 1985-2010

    USGS Publications Warehouse

    Langland, Michael; Blomquist, Joel; Moyer, Douglas; Hyer, Kenneth

    2012-01-01

    analysis with results from a greater number of sites (64 primary sites) where loads and yields of total nitrogen and phosphorus and sediment could be calculated. The new indicator shows fewer significant trends for the 10-year time period than for the long-term time period (1985-2010). For 2001-10, total nitrogen trends were downward (improving) at 14 sites and upward (degrading) at 2 sites; no trend was found at 17 sites. For total phosphorus, 12 sites showed improving trends, 4 sites showed degrading trends, and 17 sites showed no trend. For total sediment, most sites (21) did not exhibit a significant trend; 3 sites showed improving trends, and 10 sites showed degrading trends. Few significant trends were seen at the 16 secondary sites: improving trends for total nitrogen at 4 sites, improving trends for total phosphorus at 2 sites, and a degrading trend for sediment at 1 site. Total streamflow to the Chesapeake Bay was 20 percent higher in 2010 than in 2009 and is considered to be within the normal range of flow, whereas annual streamflow at 28 sites was greater in 2010 than in 2009. No trends in daily streamflow were detected at the 31 long-term sites. Combined loads for the farthest downstream nontidal monitoring sites (called "River Input Monitoring sites") increased 33 percent for total nitrogen, 120 percent for total phosphorus, and 330 percent for total sediment from 2009 to 2010. The large increase in phosphorus and sediment loads in 2010 was caused in large part by two large storm events that occurred during the spring in the Potomac River Basin. Yields (load per watershed area) of total nitrogen in the Chesapeake Bay watershed decreased from north to south (New York to Virginia). No spatial patterns were discernible for total phosphorus or sediment.

  6. An Attempt to Shorten Loading Time of Epirubicin into DC Beads® Using Vibration and a Sieve.

    PubMed

    Sonoda, Akinaga; Nitta, Norihisa; Yamamoto, Takefumi; Tomozawa, Yuki; Ohta, Shinichi; Watanabe, Shobu; Murata, Kiyoshi

    2017-04-01

    We investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads ® ) to be used for transarterial chemoembolization. After separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loaded samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope. Spectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar. The use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.

  7. An approximate solution for interlaminar stresses in laminated composites: Applied mechanics program

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Herakovich, Carl T.

    1992-01-01

    An approximate solution for interlaminar stresses in finite width, laminated composites subjected to uniform extensional, and bending loads is presented. The solution is based upon the principle of minimum complementary energy and an assumed, statically admissible stress state, derived by considering local material mismatch effects and global equilibrium requirements. The stresses in each layer are approximated by polynomial functions of the thickness coordinate, multiplied by combinations of exponential functions of the in-plane coordinate, expressed in terms of fourteen unknown decay parameters. Imposing the stationary condition of the laminate complementary energy with respect to the unknown variables yields a system of fourteen non-linear algebraic equations for the parameters. Newton's method is implemented to solve this system. Once the parameters are known, the stresses can be easily determined at any point in the laminate. Results are presented for through-thickness and interlaminar stress distributions for angle-ply, cross-ply (symmetric and unsymmetric laminates), and quasi-isotropic laminates subjected to uniform extension and bending. It is shown that the solution compares well with existing finite element solutions and represents an improved approximate solution for interlaminar stresses, primarily at interfaces where global equilibrium is satisfied by the in-plane stresses, but large local mismatch in properties requires the presence of interlaminar stresses.

  8. Potato growth and yield using nutrient film technique (NFT)

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Hinkle, C. R.

    1990-01-01

    Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.

  9. Current research on shear buckling and thermal loads with PASCO: Panel Analysis and Sizing Code

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Greene, W. H.; Anderson, M. S.

    1981-01-01

    The PASCO computer program to obtain the detailed dimensions of optimum stiffened composite structural panels is described. Design requirements in terms of inequality constraints can be placed on buckling loads or vibration frequencies, lamina stresses and strains, and overall panel stiffness for each of many load conditions. General panel cross sections can be treated. An analysis procedure involving a smeared orthotropic solution was investigated. The conservatism in the VIPASA solution and the danger in a smeared orthotropic solution is explored. PASCO's capability to design for thermal loadings is also described. It is emphasized that design studies illustrate the importance of the multiple load condition capability when thermal loads are present.

  10. Determination of in vivo behavior of mitomycin C-loaded o/w soybean oil microemulsion and mitomycin C solution via gamma camera imaging.

    PubMed

    Kotmakçı, Mustafa; Kantarcı, Gülten; Aşıkoğlu, Makbule; Ozkılıç, Hayal; Ertan, Gökhan

    2013-09-01

    In this study, a microemulsion system was evaluated for delivery of mitomycin C (MMC). To track the distribution of the formulated drug after intravenous administration, radiochemical labeling and gamma scintigraphy imaging were used. The aim was to evaluate a microemulsion system for intravenous delivery of MMC and to compare its in vivo behavior with that of the MMC solution. For microemulsion formulation, soybean oil was used as the oil phase. Lecithin and Tween 80 were surfactants and ethanol was the cosurfactant. To understand the whole body localization of MMC-loaded microemulsion, MMC was labeled with radioactive technetium and gamma scintigraphy was applied for visualization of drug distribution. Radioactivity in the bladder 30 minutes after injection of the MMC solution was observed, according to static gamma camera images. This shows that urinary excretion of the latter starts very soon. On the other hand, no radioactivity appeared in the urinary bladder during the 90 minutes following the administration of MMC-loaded microemulsion. The unabated radioactivity in the liver during the experiment shows that the localization of microemulsion formulation in the liver is stable. In the light of the foregoing, it is suggested that this microemulsion formulation may be an appropriate carrier system for anticancer agents by intravenous delivery in hepatic cancer chemotherapy.

  11. Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow

    PubMed Central

    Seidenstuecker, Michael; Kissling, Steffen; Ruehe, Juergen; Suedkamp, Norbert P.; Mayr, Hermann O.; Bernstein, Anke

    2015-01-01

    The aim of this study was the development of a process for filling the pores of a β-tricalcium phosphate ceramic with interconnected porosity with an alginate hydrogel. For filling of the ceramics, solutions of alginate hydrogel precursors with suitable viscosity were chosen as determined by rheometry. For loading of the porous ceramics with the gel the samples were placed at the flow chamber and sealed with silicone seals. By using a vacuum induced directional flow, the samples were loaded with alginate solutions. The loading success was controlled by ESEM and fluorescence imaging using a fluorescent dye (FITC) for staining of the gel. After loading of the pores, the alginate is transformed into a hydrogel through crosslinking with CaCl2 solution. The biocompatibility of the obtained composite material was tested with a live dead cell staining by using MG-63 Cells. The loading procedure via vacuum assisted directional flow allowed complete filling of the pores of the ceramics within a few minutes (10 ± 3 min) while loading through simple immersion into the polymer solution or through a conventional vacuum method only gave incomplete filling. PMID:26703749

  12. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.

    PubMed

    Komor, E; Orlich, G; Weig, A; Köckenberger, W

    1996-08-01

    Phloem loading comprises the entire pathway of phloem-mobile solutes from their place of generation (or delivery) to the sieve tubes in a sequence of transport steps across or passing by several different cell types. Each of these steps can be classified as symplastic or apoplastic. The detailed anatomical-cytological work in the past ten years made clear that the symplastic continuity from mesophyll to sieve tubes may be very different for different plant species or even in different vein orders. Therefore data from one species are not transferable to another species and a well-rounded picture involving different experimental methods has to be aimed at for each species separately. The information obtained with the Ricinus seedling, where phloem loading and sieve tube sap analysis can be achieved relatively easily, is presented. The analysis of the radioactive labelling of sucrose from the sieve tubes of cotyledons, in which external and intracellular sucrose had been differently labelled, revealed that at sucrose concentrations close to the natural one, 50% of sucrose is loaded directly from the external medium. The other 50% is first taken up by mesophyll and then released for uptake into the sieve tubes. No bundle tissue works as obligate, intermediate sucrose storage. The apoplast therefore definitely serves as a transit reservoir for sucrose destined to be loaded into the sieve tubes. The sieve tube sap contains glycolytic metabolites at concentrations higher than found in the hypocotyl tissue, whereas the corresponding glycolytic enzymes are missing. It is concluded that the enzymes are sequestered in the companion cell or by parietal membrane stacks. Not only the sieve tubes but nearly all cotyledonary cells are equipped with a sucrose-H(+) symporter able to achieve sucrose accumulation and sensitive to inhibition by high salt concentrations or SH reagents. A cDNA clone coding for a sucrose carrier was isolated. It is transcribed at approximately the same

  13. Simultaneous Detection and Classification of Acoustic Emissions in Integrated Diagnostics with Yield in Aluminum

    NASA Astrophysics Data System (ADS)

    Parmar, Devendra

    2006-04-01

    Acoustic emission (AE) experiments were conducted on a strained aluminum (10 cm x 9 cm x 0.25 cm) specimen. Studies were conducted with the goal to characterize AE associated with material yield developed due to high loading and to correlate the course of the yield with AE signals. The American Association of State Highway and Transport Officials (AASHTO) listed aluminum as one of the structural components of highway brides^1 with unit weight of 2800 kg.m-3. The specimen, mounted on the load frame, was held on each end by the wedge grips and was electromechanically tested in a tension mode at rates of extension of 0.0333 mm/s and 0.0666 mm/s. Load was applied to the test frame via moving cross heads. A load transducer (load cell) mounted in series with the specimen measured the applied load by converting it into an electrical signal. Results are analyzed using defect zone model in which location of the defect is determined from the measurement of the arrival time of the signal at two different sensors placed at strategically around the source of emission from the test object. The sensor that detects the signal first is identified to be in the defect zone. ^1AASHTO LRFD Bridge Design Specifications, 1994.

  14. (6)Li-loaded liquid scintillators with pulse shape discrimination.

    PubMed

    Greenwood, L R; Chellew, N R; Zarwell, G A

    1979-04-01

    Excellent pulse height and pulse shape discrimination performance has been obtained for liquid scintillators containing as much as 10 wt.% (6)Li-salicylate dissolved in a toluene-methanol solvent system using naphthalene and 9,10 diphenylanthracene as intermediate and secondary solutes. This solution has improved performance at higher (6)Li-loading than solutions in dioxane-water solvent systems, and remains stable at temperatures as low as -10 degrees C. Cells as large as 5 cm in diameter and 15.2 deep have been prepared which have a higher light output for slow neutron detection than (10)B-loaded liquids. Neutron efficiency calculations are also presented.

  15. Residential Saudi load forecasting using analytical model and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Ahmad Abdulaziz

    In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.

  16. Loads and yields of deicing compounds and total phosphorus in the Cambridge drinking-water source area, Massachusetts, water years 2009–15

    USGS Publications Warehouse

    Smith, Kirk P.

    2017-09-12

    The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of stream-flow samples.In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area.Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154

  17. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer compositemore » material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.« less

  18. Assessment of Optimal Flexibility in Ensemble of Frequency Responsive Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Soumya; Hansen, Jacob; Lian, Jianming

    2018-04-19

    Potential of electrical loads in providing grid ancillary services is often limited due to the uncertainties associated with the load behavior. A knowledge of the expected uncertainties with a load control program would invariably yield to better informed control policies, opening up the possibility of extracting the maximal load control potential without affecting grid operations. In the context of frequency responsive load control, a probabilistic uncertainty analysis framework is presented to quantify the expected error between the target and actual load response, under uncertainties in the load dynamics. A closed-form expression of an optimal demand flexibility, minimizing the expected errormore » in actual and committed flexibility, is provided. Analytical results are validated through Monte Carlo simulations of ensembles of electric water heaters.« less

  19. Microdomain Yield Behaviour in an Ultra-High Strength Low Alloy Steel for Marine Use with Low Sensitivity of SCC

    NASA Astrophysics Data System (ADS)

    Yin, Jiang; Tao, Anxiang; Xu, Pingguang; Ping, Dehai

    The present paper involves a fundamental research on microdomain yield behavior of an ultrahigh strength low alloy steel with high temperature tempered bainite. The smooth cylinder specimen was took from deep water mooring chain links from the steel with the chemical composition of 0.23C-0.25Si -0.70Mn-3.55 (Cr+Ni+Mo) -0.13 (V+Nb+Ti) (mass %) ,which was quenched from 1253K and then tempered at 873K Its macroscopic yield strength is 1120MPa and the tensile strength is 1250MPa In-situ neutron diffraction measurements of loading tension have suggested that a good linear elastic deformation can be kept up to 500MPa stress, and then (200) priority non-linear elastic strain, that is the yield of crystal lattice occur at 700MPa and the (110) non-linear elastic strain was found at 800MPa. The (200) and (110) nonlinear elastic strain increases gradually when the stress was further increased, however, the (211) kept its linear elastic deformation stage as before. The sub-microstructural analysis carried out using TEM and additional determine the nature and quantitative analysis has revealed that there are three kinds of alloy carbides: (1) θ-M3C cementites with an average particle size of less than 50 nm which inside laths and lath boundaries; (2) ɛ-M2C formed uniformly within the ferrites with a length of less than 200 nm and width of less than 20 nm; (3) ultra-fine high density MC cohered with matrix α-Fe and its particle size is about 2 nm. The whole microdomain yield behaviour of the material was possibly influenced by the fcc-MC with high density. The results of CLT (constant load), SSRT (slow strain rate) and KIscc test of the present chain in seawater solution indicate, that threshold value of SCC (stress corrosion cracking) stress exceed 0.8 tensile strength and the chain's KIscc value is double of KIscc value of 4340 steel type parts. MC not only form strong hydrogen trap, but also slow down microdomain yield likely by means of increasing yield strength of

  20. Arsenic load in rice ecosystem and its mitigation through deficit irrigation.

    PubMed

    Mukherjee, Arkabanee; Kundu, M; Basu, B; Sinha, B; Chatterjee, M; Bairagya, M Das; Singh, U K; Sarkar, S

    2017-07-15

    Rice the staple food is a notable intake source of arsenic to the rural population of eastern India through food-chain. A field survey was carried out to study the variation of arsenic load in different parts of rice genotype Shatabdi (most popular genotype of the region) exposed to varying level of arsenic present in the irrigation water and soil. As irrigation is the primary source of arsenic contamination, a study was conducted to assess arsenic load in rice ecosystem under deficit irrigation practices like intermittent ponding (IP), saturation (SAT) and aerobic (AER) imposed during stress allowable stage (16-40 days after transplanting) of the crop (genotype Shatabdi). Present survey showed that arsenic content in water and soil influenced the arsenic load of rice grain. Variation in arsenic among different water and soil samples influenced grain arsenic load to the maximum extent followed by straw. Deviation in root arsenic load due to variation in water and soil arsenic content was lowest. Arsenic concentration of grain is strongly related to the arsenic content of both irrigation water and soil. However, water has 10% higher impact on grain arsenic load over soil. Translocation of arsenic from root to shoot decreased with the increase in arsenic content of water. Imposition of saturated and aerobic environment reduced both yield and grain arsenic load. In contrast under IP a marked decrease in grain arsenic content recorded with insignificant reduction in yield. Deficit irrigation resulted in significant reduction (17.6-25%) in arsenic content of polished rice and the values were lower than that of the toxic level (<0.2 mg kg -1 ). In contrast the decrease in yield was to the tune of 0.9% under IP regime over CP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Polymer Brushes under High Load

    PubMed Central

    Balko, Suzanne M.; Kreer, Torsten; Costanzo, Philip J.; Patten, Tim E.; Johner, Albert; Kuhl, Tonya L.; Marques, Carlos M.

    2013-01-01

    Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties. PMID:23516470

  2. Quantifying yield behaviour in metals by X-ray nanotomography

    PubMed Central

    Mostafavi, M.; Bradley, R.; Armstrong, D. E. J.; Marrow, T. J.

    2016-01-01

    Nanoindentation of engineering materials is commonly used to study, at small length scales, the continuum mechanical properties of elastic modulus and yield strength. However, it is difficult to measure strain hardening via nanoindentation. Strain hardening, which describes the increase in strength with plastic deformation, affects fracture toughness and ductility, and is an important engineering material property. The problem is that the load-displacement data of a single nanoindentation do not provide a unique solution for the material’s plastic properties, which can be described by its stress-strain behaviour. Three-dimensional mapping of the displacement field beneath the indentation provides additional information that can overcome this difficulty. We have applied digital volume correlation of X-ray nano-tomographs of a nanoindentation to measure the sub-surface displacement field and so obtain the plastic properties of a nano-structured oxide dispersion strengthened steel. This steel has potential applications in advanced nuclear energy systems, and this novel method could characterise samples where proton irradiation of the surface simulates the effects of fast neutron damage, since facilities do not yet exist that can replicate this damage in bulk materials. PMID:27698472

  3. MODELING UNCERTAINTY OF RUNOFF AND SEDIMENT YIELD IN TWO EXPERIMENTAL WATERSHEDS

    EPA Science Inventory

    Sediment loading from agriculture is adversely impacting surface water quality and ecological conditions. In this regard, the use of distributed hydrologic models has gained acceptance in management of soil erosion and sediment yield from agricultural watersheds. Soil infiltrati...

  4. Round Heat-treated Chromium-molybdenum-steel Tubing Under Combined Loads

    NASA Technical Reports Server (NTRS)

    Osgood, William R

    1943-01-01

    The results of tests of round heat-treated chromium-molybdenum-steel tubing are presented. Tests were made on tubing under axial load, bending load, torsional load, combined bending and axial load, combined bending and torsional load, and combined axial, bending, and torsional load. Tensile and compressive tests were made to determine the properties of the material. Formulas are given for the evaluation of the maximum strength of this steel tubing under individual or combined loads. The solution of an example is included to show the procedure to be followed in designing a tubular cantilever member to carry combined loads.

  5. Opening Loads Analyses for Various Disk-Gap-Band Parachutes

    NASA Technical Reports Server (NTRS)

    Cruz, J. R.; Kandis, M.; Witkowski, A.

    2003-01-01

    Detailed opening loads data is presented for 18 tests of Disk-Gap-Band (DGB) parachutes of varying geometry with nominal diameters ranging from 43.2 to 50.1 ft. All of the test parachutes were deployed from a mortar. Six of these tests were conducted via drop testing with drop test vehicles weighing approximately 3,000 or 8,000 lb. Twelve tests were conducted in the National Full-Scale Aerodynamics Complex 80- by 120-foot wind tunnel at the NASA Ames Research Center. The purpose of these tests was to structurally qualify the parachute for the Mars Exploration Rover mission. A key requirement of all tests was that peak parachute load had to be reached at full inflation to more closely simulate the load profile encountered during operation at Mars. Peak loads measured during the tests were in the range from 12,889 to 30,027 lb. Of the two test methods, the wind tunnel tests yielded more accurate and repeatable data. Application of an apparent mass model to the opening loads data yielded insights into the nature of these loads. Although the apparent mass model could reconstruct specific tests with reasonable accuracy, the use of this model for predictive analyses was not accurate enough to set test conditions for either the drop or wind tunnel tests. A simpler empirical model was found to be suitable for predicting opening loads for the wind tunnel tests to a satisfactory level of accuracy. However, this simple empirical model is not applicable to the drop tests.

  6. MSAT boom joint testing and load absorber design

    NASA Technical Reports Server (NTRS)

    Klinker, D. H.; Shuey, K.; St.clair, D. R.

    1994-01-01

    Through a series of component and system-level tests, the torque margin for the MSAT booms is being determined. The verification process has yielded a number of results and lessons that can be applied to many other types of deployable spacecraft mechanisms. The MSAT load absorber has proven to be an effective way to provide high energy dissipation using crushable honeycomb. Using two stages of crushable honeycomb and a fusible link, a complex crush load profile has been designed and implemented. The design features of the load absorber lend themselves to use in other spacecraft applications.

  7. Response of reinforced concrete and corrugated steel pipes to surface load

    NASA Astrophysics Data System (ADS)

    Lay, Geoff R.

    Full-scale simulated live load tests were conducted in a controlled laboratory setting using a single-axle frame on 600-mm-inner-diameter reinforced concrete pipe (RCP) and corrugated steel pipe (CSP) when buried in dense, well-graded sand and gravel. Measurements of the RCP at nominal and working forces and beyond are reported for 0.3, 0.6 and 0.9 m of soil cover above the pipe crown. The RCP experienced no cracking when buried at 0.3 m under nominal and working CL-625 and CL-800 single-axle design loads. At these loads, the vertical contraction of the pipe diameter was less than 0.08 and 0.10 mm and the largest tensile strains in the pipe were 75 and 100 muepsilon (50-60% of the cracking strain), respectively. A 0.15 (+/-0.05)-mm-wide axial crack developed at the inner crown in the presence of a 6 kNm/m circumferential bending moment (70% of the theoretical ultimate moment capacity) at the fully factored CL-625 load. This crack did not propagate or widen from 3 series of cyclic load-unload tests. At 1300 kN of applied load the change in pipe diameter was less than 3.5 mm. Increasing soil cover from 0.3 to 0.6 to 0.9 m reduced the circumferential crown bending moment from 6.0 to 3.9 to 2.1 kNm/m, respectively, at 400 kN of axle load. A 1.6- and a 2.8-mm-thick CSP were also subjected to axle loading. No yielding or limit states occurred in the 1.6-mm-thick CSP when buried 0.9-m-deep. However, at 0.6 m of cover a 300 kN axle load caused local yielding at the pipe crown. Increasing soil cover from 0.6 to 0.9 m decreased the vertical diameter change from -3.0 to -1.2 mm and the crown bending moment from 0.7 to 0.2 kNm/m (75% and 20% of the yield moment), respectively, at a 250 kN axle load. Deflections of the thicker CSP were less than the thinner pipe below the CL-625 single-axle load, however further increases in applied load produced a greater response in the thicker pipe, likely due to a haunch support issue. Shallow axle loading produced a greater 3-dimensional

  8. Integrated bioethanol production to boost low-concentrated cellulosic ethanol without sacrificing ethanol yield.

    PubMed

    Xu, Youjie; Zhang, Meng; Roozeboom, Kraig; Wang, Donghai

    2018-02-01

    Four integrated designs were proposed to boost cellulosic ethanol titer and yield. Results indicated co-fermentation of corn flour with hydrolysate liquor from saccharified corn stover was the best integration scheme and able to boost ethanol titers from 19.9 to 123.2 g/L with biomass loading of 8% and from 36.8 to 130.2 g/L with biomass loadings of 16%, respectively, while meeting the minimal ethanol distillation requirement of 40 g/L and achieving high ethanol yields of above 90%. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass is able to significantly enhance ethanol concentration to reduce energy cost for distillation without sacrificing ethanol yields. This novel method could be extended to any pretreatment of biomass from low to high pH pretreatment as demonstrated in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Lightening the load: perceptual load impairs visual detection in typical adults but not in autism.

    PubMed

    Remington, Anna M; Swettenham, John G; Lavie, Nilli

    2012-05-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enhanced perceptual capacity, leading to the superior performance and increased distractor processing previously reported. Using a signal-detection paradigm, we test this directly and demonstrate that, under higher levels of load, perceptual sensitivity was reduced in typical adults but not in adults with ASD. These findings confirm our hypothesis and offer a promising solution to the previous discrepancies by suggesting that increased distractor processing in ASD results not from a filtering deficit but from enhanced perceptual capacity.

  10. Fission yield and criticality excursion code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    2000-06-30

    The ANSI/ANS 8.3 standard allows a maximum yield not to exceed 2 x 10 fissions to calculate requiring the alarm system to be effective. It is common practice to use this allowance or to develop some other yield based on past criticality accident history or excursion experiments. The literature on the subject of yields discusses maximum yields larger and somewhat smaller than the ANS 8.3 permissive value. The ability to model criticality excursions and vary the various parameters to determine a credible maximum yield for operational specific cases has been available for some time but is not in common usemore » by criticality safety specialists. The topic of yields for various solution, metal, oxide powders, etc. in various geometry's and containers has been published by laboratory specialists or university staff and students for many decades but have not been available to practitioners. The need for best-estimate calculations of fission yields with a well-validated criticality excursion code has long been recognized. But no coordinated effort has been made so far to develop a generalized and well-validated excursion code for different types of systems. In this paper, the current practices to estimate fission yields are summarized along with its shortcomings for the 12-Rad zone (at SRS) and Criticality Alarm System (CAS) calculations. Finally the need for a user-friendly excursion code is reemphasized.« less

  11. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    PubMed Central

    Hu, Zhongyi; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425

  12. Electricity load forecasting using support vector regression with memetic algorithms.

    PubMed

    Hu, Zhongyi; Bao, Yukun; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.

  13. Groundwater pumping effects on contaminant loading management in agricultural regions.

    PubMed

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas. Copyright © 2014 Elsevier Ltd. All

  14. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE PAGES

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...

    2018-01-01

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  15. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  16. Improved (10)B-loaded liquid scintillator with pulse-shape discrimination.

    PubMed

    Greenwood, L R; Chellew, N R

    1979-04-01

    An improved (10)B-loaded liquid scintillator solution has been developed containing trimethylborate, 1-methylnaphthalene, and 9,10-diphenylanthracene. Cells up to 5 cm in diameter by 15.2 cm long have been prepared and tested with (10)B-loadings up to 7.2% by weight (80% trimethylborate). The solution has excellent light output and pulse-shape discrimination properties and is stable at temperatures as low as -17 degrees C. Neutron efficiency calculations are also presented.

  17. Self-sensing of elastic strain, matrix yielding and plasticity in multiwall carbon nanotube/vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Ku-Herrera, J. J.; Avilés, F.; Seidel, G. D.

    2013-08-01

    The piezoresistive response of multiwalled carbon nanotube/vinyl ester composites containing 0.3, 0.5 and 1% w/w carbon nanotubes (CNTs) loaded in tension and compression is investigated. The change in electrical resistance (ΔR) under tension loading was positive and showed a linear relationship with the applied strain up to failure, with slightly increased sensitivity for decreased CNT content. In compression, a nonlinear and non-monotonic piezoresistive behavior was observed, with ΔR initially decreasing in the elastic regime, leveling off at the onset of yielding and increasing after matrix yielding. The piezoresistive response of the composite is more sensitive to the CNT content for compression than for tension, and the calculated gage factors are higher in the compressive plastic regime. The results show that the piezoresistive signal is dependent on the CNT concentration, loading type and material elastoplastic behavior, and that recording ΔR during mechanical loading can allow self-identification of the elastic and plastic regimes of the composite.

  18. The effect of flow data resolution on sediment yield estimation and channel design

    NASA Astrophysics Data System (ADS)

    Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.

    2016-07-01

    The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.

  19. Effect of load ratio on fatigue crack propagation behavior of solid-solution-strengthened Ni-based superalloys at elevated temperature

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.

    2013-04-01

    The fatigue crack propagation (FCP) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 and HAYNES 230, were studied simultaneously in laboratory air using a constant stress intensity factor (K)-controlled mode with different load ratios (R-ratio) at 700 °C. The FCP tests were performed in both cycle and time-dependent FCP domains to examine the effect of R-ratio on the FCP rate, da/dn. For cycle-dependent FCP test, a 1-s sinusoidal fatigue was applied for a compact tension (CT) specimen of INCONEL 617 and HAYNES 230 to measure their FCP rates. For time-dependent FCP test, a 3-s sinusoidal fatigue with a hold time of 300 s at maximum load was applied. Both cycle/time-dependent FCP behaviors were characterized and analyzed. The results showed that increasing R-ratio would introduce the fatigue incubation and decrease the FCP rates at cycle-dependent FCP tests. On the contrary, fatigue incubation was not observed at time-dependent FCP tests for both INCONEL 617 and HAYNES 230 at each tested R-ratio, suggesting that association of maximum load (Kmax) with crack tip open displacement (CTOD) and environmental factor governed the FCP process. Also, for time-dependent FCP, HAYNES 230 showed lower FCP rates than INCONEL 617 regardless of R-ratio. However, for cycle-dependent FCP, HAYNES 230 showed the lower FCP rates only at high R-ratios. Fracture surface of specimens were examined using SEM to investigate the cracking mechanism under cycle/time-dependent FCP condition with various R-ratios.

  20. Sharing the rivers: Balancing the needs of people and fish against the backdrop of heavy sediment loads downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Czuba, J. A.; Czuba, C. R.; Curran, C. A.

    2012-12-01

    Despite heavy sediment loads, large winter floods, and floodplain development, the rivers draining Mount Rainier, a 4,392-m glaciated stratovolcano within 85 km of sea level at Puget Sound, Washington, support important populations of anadromous salmonids, including Chinook salmon and steelhead trout, both listed as threatened under the Endangered Species Act. Aggressive river-management approaches of the early 20th century, such as bank armoring and gravel dredging, are being replaced by more ecologically sensitive approaches including setback levees. However, ongoing aggradation rates of up to 8 cm/yr in lowland reaches present acute challenges for resource managers tasked with ensuring flood protection without deleterious impacts to aquatic ecology. Using historical sediment-load data and a recent reservoir survey of sediment accumulation, rivers draining Mount Rainer were found to carry total sediment yields of 350 to 2,000 tonnes/km2/yr, notably larger than sediment yields of 50 to 200 tonnes/km2/yr typical for other Cascade Range rivers. An estimated 70 to 94% of the total sediment load in lowland reaches originates from the volcano. Looking toward the future, transport-capacity analyses and sediment-transport modeling suggest that large increases in bedload and associated aggradation will result from modest increases in rainfall and runoff that are predicted under future climate conditions. If large sediment loads and associated aggradation continue, creative solutions and long-term management strategies are required to protect people and structures in the floodplain downstream of Mount Rainier while preserving aquatic ecosystems.

  1. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achasov, N. N., E-mail: achasov@math.nsc.ru

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibilitymore » of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.« less

  2. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    PubMed

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Scaling of load in communications networks.

    PubMed

    Narayan, Onuttom; Saniee, Iraj

    2010-09-01

    We show that the load at each node in a preferential attachment network scales as a power of the degree of the node. For a network whose degree distribution is p(k)∼k{-γ} , we show that the load is l(k)∼k{η} with η=γ-1 , implying that the probability distribution for the load is p(l)∼1/l{2} independent of γ . The results are obtained through scaling arguments supported by finite size scaling studies. They contradict earlier claims, but are in agreement with the exact solution for the special case of tree graphs. Results are also presented for real communications networks at the IP layer, using the latest available data. Our analysis of the data shows relatively poor power-law degree distributions as compared to the scaling of the load versus degree. This emphasizes the importance of the load in network analysis.

  4. ROI on yield data analysis systems through a business process management strategy

    NASA Astrophysics Data System (ADS)

    Rehani, Manu; Strader, Nathan; Hanson, Jeff

    2005-05-01

    The overriding motivation for yield engineering is profitability. This is achieved through application of yield management. The first application is to continually reduce waste in the form of yield loss. New products, new technologies and the dynamic state of the process and equipment keep introducing new ways to cause yield loss. In response, the yield management efforts have to continually come up with new solutions to minimize it. The second application of yield engineering is to aid in accurate product pricing. This is achieved through predicting future results of the yield engineering effort. The more accurate the yield prediction, the more accurate the wafer start volume, the more accurate the wafer pricing. Another aspect of yield prediction pertains to gauging the impact of a yield problem and predicting how long that will last. The ability to predict such impacts again feeds into wafer start calculations and wafer pricing. The question then is that if the stakes on yield management are so high why is it that most yield management efforts are run like science and engineering projects and less like manufacturing? In the eighties manufacturing put the theory of constraints1 into practice and put a premium on stability and predictability in manufacturing activities, why can't the same be done for yield management activities? This line of introspection led us to define and implement a business process to manage the yield engineering activities. We analyzed the best known methods (BKM) and deployed a workflow tool to make them the standard operating procedure (SOP) for yield managment. We present a case study in deploying a Business Process Management solution for Semiconductor Yield Engineering in a high-mix ASIC environment. We will present a description of the situation prior to deployment, a window into the development process and a valuation of the benefits.

  5. Sediment transport, particle size, and loads in North Fish Creek in Bayfield County, Wisconsin, water years 1990-91

    USGS Publications Warehouse

    Rose, W.J.; Graczyk, D.J.

    1996-01-01

    There was little relation between watershed area and sediment loads for the three sites. The watershed of site C is about 41 percent of that of site A, but the sand load at site C was only 1 percent of that at site A. The watershed area between sites B and C is 40 percent of that above site A, but this area yielded 49 percent of the sand load at site A. Nineteen percent of the watershed above site A is between sites A and B, yet this area yielded about 50 percent of the sand load at site A.

  6. On Solutions for the Transient Response of Beams

    NASA Technical Reports Server (NTRS)

    Leonard, Robert W.

    1959-01-01

    Williams type modal solutions of the elementary and Timoshenko beam equations are presented for the response of several uniform beams to a general applied load. Example computations are shown for a free-free beam subject to various concentrated loads at its center. Discussion includes factors influencing the convergence of modal solutions and factors to be considered in a choice of beam theory. Results obtained by two numerical procedures, the traveling-wave method and Houbolt's method, are also presented and discussed.

  7. Lattice strains and load partitioning in bovine trabecular bone.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhtar, R.; Daymond, M. R.; Almer, J. D.

    2012-02-01

    Microdamage and failure mechanisms have been well characterized in bovine trabecular bone. However, little is known about how elastic strains develop in the apatite crystals of the trabecular struts and their relationship with different deformation mechanisms. In this study, wide-angle high-energy synchrotron X-ray diffraction has been used to determine bulk elastic strains under in situ compression. Dehydrated bone is compared to hydrated bone in terms of their response to load. During compression, load is initially borne by trabeculae aligned parallel to loading direction with non-parallel trabeculae deforming by bending. Ineffective load partitioning is noted in dehydrated bone whereas hydrated bonemore » behaves like a plastically yielding foam« less

  8. Influence of substrate surface loading on the kinetic behaviour of aerobic granules.

    PubMed

    Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa

    2005-06-01

    In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.

  9. Ideal orthodontic alignment load relationships based on periodontal ligament stress.

    PubMed

    Viecilli, R F; Burstone, C J

    2015-04-01

    To test the hypothesis that periodontal ligament (PDL) stress relationships that yield resistance numbers representing load proportions between different teeth depend on alignment load type. Finite element models of all teeth, except the third molars, were produced. Four different types of loads were applied, and the third principal stresses of different teeth in standardized areas of most compression were calculated. Based on these results, resistance numbers, representing the load proportions for each tooth derived from PDL stress, were determined. The third principal stress values for typical alignment loads in the areas of most stress were very different for different load types for each tooth. Differences in resistance numbers between teeth also varied with different loads. Resistance numbers, that is, load proportion numbers between teeth to achieve similar stress at the compressive PDL zone, depend on the type of applied load. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Solute transport by flow yields geometric shocks in shape evolution

    NASA Astrophysics Data System (ADS)

    Huang, Jinzi (Mac); Davies Wykes, Megan; Hajjar, George; Ristroph, Leif; Shelley, Michael

    2017-11-01

    Geological processes such as erosion and dissolution of surfaces often lead to striking shapes with strikingly sharp features. We present observations of such features forming in dissolution under gravity. In our experiment, a dissolving body with initially smooth surface evolves into an increasingly sharp needle shape. A mathematical model of its shape dynamics, derived from a boundary layer theory, predicts that a geometric shock forms at the tip of dissolved body, with the tip curvature becoming infinite in finite time. We further discuss the model's application to similar processes, such as flow driven erosion which can yield corners.

  11. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents.

    PubMed

    Riley, Brian J; Kroll, Jared O; Peterson, Jacob A; Matyáš, Josef; Olszta, Matthew J; Li, Xiaohong; Vienna, John D

    2017-09-27

    In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I 2 (g). The starting materials for these scaffolds included Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag 0 particles were added by soaking the aerogels in aqueous AgNO 3 solutions followed by drying and Ag + reduction under H 2 /Ar to form Ag 0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag + . During the Ag + -impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na-Al-Si-O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag 0 -functionalized Na-Al-Si-O aerogels were >0.5 m I m s -1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag 0 -functionalized Al-Si-O aerogel was 0.31 m I m s -1 . The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.

  12. Blocked Force and Loading Calculations for LaRC THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the performance of LaRC Thunder actuators under load and under blocked conditions. The problem is treated with the Von Karman non-linear analysis combined with a simple Raleigh-Ritz calculation. From this, shape and displacement under load combined with voltage are calculated. A method is found to calculate the blocked force vs voltage and spring force vs distance. It is found that under certain conditions, the blocked force and displacement is almost linear with voltage. It is also found that the spring force is multivalued and has at least one bifurcation point. This bifurcation point is where the device collapses under load and locks to a different bending solution. This occurs at a particular critical load. It is shown this other bending solution has a reduced amplitude and is proportional to the original amplitude times the square of the aspect ratio.

  13. An evaluation of flow-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1995-01-01

    Abstract - Flow-stratified sampling is a new method for sampling water quality constituents such as suspended sediment to estimate loads. As with selection-at-list-time (SALT) and time-stratified sampling, flow-stratified sampling is a statistical method requiring random sampling, and yielding unbiased estimates of load and variance. It can be used to estimate event...

  14. Production of Y-86 and other radiometals for research purposes using a solution target system.

    PubMed

    Oehlke, Elisabeth; Hoehr, Cornelia; Hou, Xinchi; Hanemaayer, Victoire; Zeisler, Stefan; Adam, Michael J; Ruth, Thomas J; Celler, Anna; Buckley, Ken; Benard, Francois; Schaffer, Paul

    2015-11-01

    Diagnostic radiometals are typically obtained from cyclotrons by irradiating solid targets or from radioisotope generators. These methods have the advantage of high production yields, but require additional solid target handling infrastructure that is not readily available to many cyclotron facilities. Herein, we provide an overview of our results regarding the production of various positron-emitting radiometals using a liquid target system installed on a 13 MeV cyclotron at TRIUMF. Details about the production, purification and quality control of (89)Zr, (68)Ga and for the first time (86)Y are discussed. Aqueous solutions containing 1.35-1.65 g/mL of natural-abundance zinc nitrate, yttrium nitrate, and strontium nitrate were irradiated on a 13 MeV cyclotron using a standard liquid target. Different target body and foil materials were investigated for corrosion. Production yields were calculated using theoretical cross-sections from the EMPIRE code and compared with experimental results. The radioisotopes were extracted from irradiated target material using solid phase extraction methods adapted from previously reported methods, and used for radiolabelling experiments. We demonstrated production quantities that are sufficient for chemical and biological studies for three separate radiometals, (89)Zr (Asat = 360 MBq/μA and yield = 3.17 MBq/μA), (86)Y (Asat = 31 MBq/μA and yield = 1.44 MBq/μA), and (68)Ga (Asat = 141 MBq/μA and yield = 64 MBq/μA) from one hour long irradiations on a typical medical cyclotron. (68)Ga yields were sufficient for potential clinical applications. In order to avoid corrosion of the target body and target foil, nitrate solutions were chosen as well as niobium as target-body material. An automatic loading system enabled up to three production runs per day. The separation efficiency ranged from 82 to 99%. Subsequently, (68)Ga and (86)Y were successfully used to radiolabel DOTA-based chelators while deferoxamine was used to coordinate

  15. Lung-targeting drug delivery system of baicalin-loaded nanoliposomes: development, biodistribution in rabbits, and pharmacodynamics in nude mice bearing orthotopic human lung cancer

    PubMed Central

    Wei, Yumeng; Liang, Jing; Zheng, Xiaoli; Pi, Chao; Liu, Hao; Yang, Hongru; Zou, Yonggen; Ye, Yun; Zhao, Ling

    2017-01-01

    The present study aims to develop a kind of novel nanoliposomes for the lung-targeting delivery system of baicalin as a Chinese medicine monomer. Baicalin-loaded nanoliposomes were prepared by the effervescent dispersion and lyophilized techniques. Baicalin-loaded nanoliposomes had an average particle size of 131.7±11.7 nm with 0.19±0.02 polydispersity index, 82.8%±1.24% entrapment efficiency and 90.47%±0.93% of yield and sustaining drug release effect over 24 h and were stable for 12 months at least. In vitro no hemolytic activity was observed for the experimental drug concentration. After intravenous administration of baicalin-loaded nanoliposomes to rabbits, drug concentration in the lungs was the highest among the tested organs at all time points and was significantly higher than that of its solution. For the targeting parameters, the relative intake rate and the ratio of peak concentration of lung were 4.837 and 2.789, respectively. Compared with plasma, liver, spleen, and kidney, the ratios of targeting efficacy (Te)liposomes to (Te)injection of lung were increased by a factor of 14.131, 1.893, 3.357, and 3.470, respectively. Furthermore, the results showed that the baicalin-loaded nanoliposomes did not induce lung injury. Importantly, baicalin-loaded nanoliposomes showed better antitumor therapeutic efficacy in the nude mice bearing orthotopic human lung cancer with the median survival time of blank liposomes (11.40±0.16 days), baicalin solution (17.30±0.47 days), and baicalin-loaded nanoliposomes (25.90±0.53 days). Therefore, the liposome is a promising drug carrier with an excellent lung-targeting property and therapeutic effect for the treatment of lung disease, such as lung cancer. PMID:28096670

  16. Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, George J.; Bikakis, George S.

    2015-01-01

    GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.

  17. Embedded class solutions compatible for physical compact stars in general relativity

    NASA Astrophysics Data System (ADS)

    Newton Singh, Ksh.; Pant, Neeraj; Tewari, Neeraj; Aria, Anil K.

    2018-05-01

    We have explored a family of new solutions satisfying Einstein's field equations and Karmarkar condition. We have assumed an anisotropic stress-tensor with no net electric charge. Interestingly, the new solutions yield zero values of all the physical quantities for all even integer n > 0. However, for all n >0 (n ≠ even numbers) they yield physically possible solutions. We have tuned the solution for neutron star Vela X-1 so that the solutions matches the observed mass and radius. For the same star we have extensively discussed the behavior of the solutions. The solutions yield a stiffer equation of state for larger values of n since the adiabatic index increases and speed of sound approaches the speed of light. It is also found that the solution is physically possible for Vela X-1 if 1.8 ≤ n < 7 (with n≠ 2,4,6). All the solutions for n ≥ 7 violates the causality condition and all the solutions with 0 < n < 1.8 lead to complex values of transverse sound speed vt. The range of well-behaved n depends on the mass and radius of compact stars.

  18. Global Earth Response to Loading by Ocean Tide Models

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  19. Analytic model to estimate thermonuclear neutron yield in z-pinches using the magnetic Noh problem

    NASA Astrophysics Data System (ADS)

    Allen, Robert C.

    The objective was to build a model which could be used to estimate neutron yield in pulsed z-pinch experiments, benchmark future z-pinch simulation tools and to assist scaling for breakeven systems. To accomplish this, a recent solution to the magnetic Noh problem was utilized which incorporates a self-similar solution with cylindrical symmetry and azimuthal magnetic field (Velikovich, 2012). The self-similar solution provides the conditions needed to calculate the time dependent implosion dynamics from which batch burn is assumed and used to calculate neutron yield. The solution to the model is presented. The ion densities and time scales fix the initial mass and implosion velocity, providing estimates of the experimental results given specific initial conditions. Agreement is shown with experimental data (Coverdale, 2007). A parameter sweep was done to find the neutron yield, implosion velocity and gain for a range of densities and time scales for DD reactions and a curve fit was done to predict the scaling as a function of preshock conditions.

  20. Technology Solutions Case Study: Advanced Boiler Load Monitoring Controls, Chicago, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-09-01

    Most of Chicago’s older multifamily housing stock is heated by centrally metered steam or hydronic systems. The cost of heat is typically absorbed into the owner’s operating cost and is then passed to tenants. Central boilers typically have long service lifetimes; the incentive for retrofit system efficiency upgrades is greater than equipment replacement for the efficiency-minded owner. System improvements as the “low-hanging fruit” are familiar, from improved pipe insulation to aftermarket controls such as outdoor temperature reset (OTR) or lead/lag controllers for sites with multiple boilers. Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoringmore » (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing OTR control. Results show that energy savings depend on the degree to which boilers are oversized for their load, represented by cycling rates. Also, savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, oversized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less oversized boilers at another site showed muted savings.« less

  1. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    DOEpatents

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  2. The impact of particle size and initial solid loading on thermochemical pretreatment of wheat straw for improving sugar recovery.

    PubMed

    Rojas-Rejón, Oscar A; Sánchez, Arturo

    2014-07-01

    This work studies the effect of initial solid load (4-32 %; w/v, DS) and particle size (0.41-50 mm) on monosaccharide yield of wheat straw subjected to dilute H(2)SO(4) (0.75 %, v/v) pretreatment and enzymatic saccharification. Response surface methodology (RSM) based on a full factorial design (FFD) was used for the statistical analysis of pretreatment and enzymatic hydrolysis. The highest xylose yield obtained during pretreatment (ca. 86 %; of theoretical) was achieved at 4 % (w/v, DS) and 25 mm. The solid fraction obtained from the first set of experiments was subjected to enzymatic hydrolysis at constant enzyme dosage (17 FPU/g); statistical analysis revealed that glucose yield was favored with solids pretreated at low initial solid loads and small particle sizes. Dynamic experiments showed that glucose yield did not increase after 48 h of enzymatic hydrolysis. Once established pretreatment conditions, experiments were carried out with several initial solid loading (4-24 %; w/v, DS) and enzyme dosages (5-50 FPU/g). Two straw sizes (0.41 and 50 mm) were used for verification purposes. The highest glucose yield (ca. 55 %; of theoretical) was achieved at 4 % (w/v, DS), 0.41 mm and 50 FPU/g. Statistical analysis of experiments showed that at low enzyme dosage, particle size had a remarkable effect over glucose yield and initial solid load was the main factor for glucose yield.

  3. Influence of Yield Stress Determination in Anisotropic Hardening Model on Springback Prediction in Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bong, H. J.; Ha, J.; Choi, J.; Barlat, F.; Lee, M.-G.

    2018-05-01

    In this study, a numerical sensitivity analysis of the springback prediction was performed using advanced strain hardening models. In particular, the springback in U-draw bending for dual-phase 780 steel sheets was investigated while focusing on the effect of the initial yield stress determined from the cyclic loading tests. The anisotropic hardening models could reproduce the flow stress behavior under the non-proportional loading condition for the considered parametric cases. However, various identification schemes for determining the yield stress of the anisotropic hardening models significantly influenced the springback prediction. The deviations from the measured springback varied from 4% to 13.5% depending on the identification method.

  4. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load.

    PubMed

    Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven

    2015-12-01

    Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    1999-01-01

    The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.

  6. Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature

    PubMed Central

    2013-01-01

    In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volume of 70 L was used. The digestion operated at 25°C, 30°C and 35°C with organic loading rates of 1.0, 2.0, 2.5, 3.0, 3.5 and 4.0 kg Volatile solid/m3d and a HRT of 15 days. At a temperature of 35°C, the methane yield was increased by 43% compared to 25°C. Anaerobic co-digestion appeared feasible with a loading rate of 3.0 kg VS/m3d at 35°C. At this state, the specific methane yield was calculated about 0.12 m3/kg VS with a methane content of 53–70.2% in the biogas. The volatile solid (VS) removal was 72%. As a result of volatile fatty acid accumulation and decrease in pH, when the loading rate was less than 1 or greater than 4 kg VS/m3d, the process was inhibited or overloaded, respectively. Both the lower and higher loading rates resulted in a decline in the methane yield. PMID:24502409

  7. Regression analysis and real-time water-quality monitoring to estimate constituent concentrations, loads, and yields in the Little Arkansas River, south-central Kansas, 1995-99

    USGS Publications Warehouse

    Christensen, Victoria G.; Jian, Xiaodong; Ziegler, Andrew C.

    2000-01-01

    Water from the Little Arkansas River is used as source water for artificial recharge to the Equus Beds aquifer, which provides water for the city of Wichita in south-central Kansas. To assess the quality of the source water, continuous in-stream water-quality monitors were installed at two U.S. Geological Survey stream-gaging stations to provide real-time measurement of specific conductance, pH, water temperature, dissolved oxygen, and turbidity in the Little Arkansas River. In addition, periodic water samples were collected manually and analyzed for selected constituents, including alkalinity, dissolved solids, total suspended solids, chloride, sulfate, atrazine, and fecal coliform bacteria. However, these periodic samples do not provide real-time data on which to base aquifer-recharge operational decisions to prevent degradation of the Equus Beds aquifer. Continuous and periodic monitoring enabled identification of seasonal trends in selected physical properties and chemical constituents and estimation of chemical mass transported in the Little Arkansas River. Identification of seasonal trends was especially important because high streamflows have a substantial effect on chemical loads and because concentration data from manually collected samples often were not available. Therefore, real-time water-quality monitoring of surrogates for the estimation of selected chemical constituents in streamflow can increase the accuracy of load and yield estimates and can decrease some manual data-collection activities. Regression equations, which were based on physical properties and analysis of water samples collected from 1995 through 1998 throughout 95 percent of the stream's flow duration, were developed to estimate alkalinity, dissolved solids, total suspended solids, chloride, sulfate, atrazine, and fecal coliform bacteria concentrations. Error was evaluated for the first year of data collection and each subsequent year, and a decrease in error was observed as the

  8. Spinal loads as influenced by external loads: a combined in vivo and in silico investigation.

    PubMed

    Zander, Thomas; Dreischarf, Marcel; Schmidt, Hendrik; Bergmann, Georg; Rohlmann, Antonius

    2015-02-26

    Knowledge of in vivo spinal loads and muscle forces remains limited but is necessary for spinal biomechanical research. To assess the in vivo spinal loads, measurements with telemeterised vertebral body replacements were performed in four patients. The following postures were investigated: (a) standing with arms hanging down on sides, (b) holding dumbbells to subject the patient to a vertical load, and (c) the forward elevation of arms for creating an additional flexion moment. The same postures were simulated by an inverse static model for validation purposes, to predict muscle forces, and to assess the spinal loads in subjects without implants. Holding dumbbells on sides increased implant forces by the magnitude of the weight of the dumbbells. In contrast, elevating the arms yielded considerable implant forces with a high correlation between the external flexion moment and the implant force. Predictions agreed well with experimental findings, especially for forward elevation of arms. Flexion moments were mainly compensated by erector spinae muscles. The implant altered the kinematics and, thus, the spinal loads. Elevation of both arms in vivo increased spinal axial forces by approximately 100N; each additional kg of dumbbell weight held in the hands increased the spinal axial forces by 60N. Model predictions suggest that in the intact situation, the force increase is one-third greater for these loads. In vivo measurements are essential for the validation of analytical models, and the combination of both methods can reveal unquantifiable data such as the spinal loads in the intact non-instrumented situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed.

    PubMed

    Shih, Yu-Ting; Lee, Tsung-Yu; Huang, Jr-Chuan; Kao, Shuh-Ji; Chang

    2016-08-01

    The apportionment of riverine dissolved inorganic nitrogen (DIN) load to individual land use on a watershed scale demands the support of accurate DIN load estimation and differentiation of point and non-point sources, but both of them are rarely quantitatively determined in small montane watersheds. We introduced the Danshui River watershed of Taiwan, a mountainous urbanized watershed, to determine the export coefficients via a reverse Monte Carlo approach from riverine DIN load. The results showed that the dynamics of N fluctuation determines the load estimation method and sampling frequency. On a monthly sampling frequency basis, the average load estimation of the methods (GM, FW, and LI) outperformed that of individual method. Export coefficient analysis showed that the forest DIN yield of 521.5kg-Nkm(-2)yr(-1) was ~2.7-fold higher than the global riverine DIN yield (mainly from temperate large rivers with various land use compositions). Such a high yield was attributable to high rainfall and atmospheric N deposition. The export coefficient of agriculture was disproportionately larger than forest suggesting that a small replacement of forest to agriculture could lead to considerable change of DIN load. The analysis of differentiation between point and non-point sources showed that the untreated wastewater (non-point source), accounting for ~93% of the total human-associated wastewater, resulted in a high export coefficient of urban. The inclusion of the treated and untreated wastewater completes the N budget of wastewater. The export coefficient approach serves well to assess the riverine DIN load and to improve the understanding of N cascade. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Influence of yield surface curvature on the macroscopic yielding and ductile failure of isotropic porous plastic materials

    NASA Astrophysics Data System (ADS)

    Dæhli, Lars Edvard Bryhni; Morin, David; Børvik, Tore; Hopperstad, Odd Sture

    2017-10-01

    Numerical unit cell models of an approximative representative volume element for a porous ductile solid are utilized to investigate differences in the mechanical response between a quadratic and a non-quadratic matrix yield surface. A Hershey equivalent stress measure with two distinct values of the yield surface exponent is employed as the matrix description. Results from the unit cell calculations are further used to calibrate a heuristic extension of the Gurson model which incorporates effects of the third deviatoric stress invariant. An assessment of the porous plasticity model reveals its ability to describe the unit cell response to some extent, however underestimating the effect of the Lode parameter for the lower triaxiality ratios imposed in this study when compared to unit cell simulations. Ductile failure predictions by means of finite element simulations using a unit cell model that resembles an imperfection band are then conducted to examine how the non-quadratic matrix yield surface influences the failure strain as compared to the quadratic matrix yield surface. Further, strain localization predictions based on bifurcation analyses and imperfection band analyses are undertaken using the calibrated porous plasticity model. These simulations are then compared to the unit cell calculations in order to elucidate the differences between the various modelling strategies. The current study reveals that strain localization analyses using an imperfection band model and a spatially discretized unit cell are in reasonable agreement, while the bifurcation analyses predict higher strain levels at localization. Imperfection band analyses are finally used to calculate failure loci for the quadratic and the non-quadratic matrix yield surface under a wide range of loading conditions. The underlying matrix yield surface is demonstrated to have a pronounced influence on the onset of strain localization.

  11. Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

    PubMed Central

    Xiang, Tianyu; Chen, Jingshuai; Wang, Yuwen; Yin, Xiaohong; Shao, Xiao

    2016-01-01

    Summary A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 μmol/(g·h) and 335.93 μmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory. PMID:27335766

  12. Electric and magnetic polarization saturations for a thermally loaded penny-shaped crack in a magneto-electro-thermo-elastic medium

    NASA Astrophysics Data System (ADS)

    Li, P.-D.; Li, X.-Y.; Kang, G.-Z.; Müller, R.

    2017-09-01

    This paper is devoted to investigating the thermal-induced electric and magnetic polarization saturations (PS) at the tip of a penny-shaped crack embedded in an infinite space of magneto-electro-thermo-elastic medium. In view of the symmetry with respect to the cracked plane, this crack problem is formulated by a mixed boundary value problem. By virtue of the solution to the Abel type integral equation, the governing equations corresponding to the present problem are analytically solved and the generalized crack surface displacement and field intensity factors are obtained in closed-forms. Applying the hypothesis of the electric and magnetic PS model to the analytical results, the sizes of the electric and magnetic yielding zones are determined. Numerical calculations are carried out to reveal the influences of the thermal load and the electric and magnetic yielding strengths on the results, and to show the distributions of the electric and magnetic potentials on the crack surfaces. It is found that the sizes of electric and magnetic yielding zones are mainly dependent on the electric and magnetic yielding strengths, respectively. Since the multi-ferroic media are widely used in various complex thermal environments, the present work could serve as a reference for the designs of various magneto-electric composite structures.

  13. Plasticity Tool for Predicting Shear Nonlinearity of Unidirectional Laminates Under Multiaxial Loading

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Bomarito, Geoffrey F.

    2016-01-01

    This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.

  14. Estimation of joint stiffness with a compliant load.

    PubMed

    Ludvig, Daniel; Kearney, Robert E

    2009-01-01

    Joint stiffness defines the dynamic relationship between the position of the joint and the torque acting about it. It consists of two components: intrinsic and reflex stiffness. Many previous studies have investigated joint stiffness in an open-loop environment, because the current algorithm in use is an open-loop algorithm. This paper explores issues related to the estimation of joint stiffness when subjects interact with compliant loads. First, we show analytically how the bias in closed-loop estimates of joint stiffness depends on the properties of the load, the noise power, and length of the estimated impulse response functions (IRF). We then demonstrate with simulations that the open-loop analysis will fail completely for an elastic load but may succeed for an inertial load. We further show that the open-loop analysis can yield unbiased results with an inertial load and document IRF length, signal-to-noise ratio needed, and minimum inertia needed for the analysis to succeed. Thus, by using a load with a properly selected inertia, open-loop analysis can be used under closed-loop conditions.

  15. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    NASA Technical Reports Server (NTRS)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  16. Using Satellite Data to Identify the Causes of and Potential Solutions for Yield Gaps in India's Wheat Belt

    NASA Astrophysics Data System (ADS)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2017-12-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. We present two studies that are using satellite data to better understand the factors contributing to yield gaps and potential interventions to close yield gaps in India's main wheat belt, the Indo-Gangetic Plains (IGP). To identify the magnitude and causes of current yield gaps, we produced 30 meter resolution yield maps from 2001 to 2015 using Landsat sallite data and a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region. We also apply this method to high-resolution micro-satellite data (< 5 m) to map field and sub-field level yields across villages in Bihar in the eastern IGP. Using these data, we assess the impacts of a new fertilizer spreader technology and identify whether

  17. Ceramic Near-Net Shaped Processing Using Highly-Loaded Aqueous Suspensions

    NASA Astrophysics Data System (ADS)

    Rueschhoff, Lisa

    Ceramic materials offer great advantages over their metal counterparts, due to their lower density, higher hardness and wear resistance, and higher melting temperatures. However, the use of ceramics in applications where their properties would offer tremendous advantages are often limited due to the difficulty of forming them into complex and near-net shaped parts. Methods that have been developed to injection-mold or cast ceramics into more complicated shapes often use significant volume fractions of a carrier (often greater than 35 vol.% polymer), elevated temperature processing, or less-than-environmentally friendly chemicals where a complex chemical synthesis reaction must be timed perfectly for the approach to work. Furthermore, the continuing maturation of additive manufacturing methods requires a new approach for flowing/placing ceramic powders into useful designs. This thesis addresses the limitations of the current ceramic forming approaches by developing highly-stabilized and therefore high solids loading ceramic suspensions, with the requisite rheology for a variety of complex and near-net shaped forming techniques. Silicon nitride was chosen as a material of focus due to its high fracture toughness compared to other ceramic materials. Designing ceramic suspensions that are flowable at room temperature greatly simplifies processing as neither heating nor cooling are required during forming. Highly-loaded suspensions (>40 vol.%) are desired because all formed ceramic bodies have to be sintered to remove pores. Finally, using aqueous-based suspensions reduces any detrimental effect on the environment and tooling. The preparation of highly-loaded suspensions requires the development of a suitable dispersant through which particle-particle interactions are controlled. However, silicon nitride is difficult to stabilize in water due to complex surface and solution chemistry. In this study, aqueous silicon nitride suspensions up to 45 vol.% solids loading were

  18. Temporal Variability of Suspended Sediment Load, Dissolved Load, and Bedload for Two Small Oak Forested Catchments with Contrasting Disturbance Levels in the Lesser Himalaya of North-West India

    NASA Astrophysics Data System (ADS)

    Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.

    2014-12-01

    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.

  19. Critical acid load limits in a changing climate: implications and solutions

    Treesearch

    Steven G. McNulty

    2010-01-01

    The federal agencies of the United States are currently developing guidelines for critical nitrogen load limits for U.S. forest ecosystems. These guidelines will be used to develop regulations designed to maintain pollutant inputs below the level shown to damage specified ecosystems.

  20. Fluid flow and convective transport of solutes within the intervertebral disc.

    PubMed

    Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P

    2004-02-01

    Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.

  1. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles.

    PubMed

    Yang, Chuan; Attia, Amalina B Ebrahim; Tan, Jeremy P K; Ke, Xiyu; Gao, Shujun; Hedrick, James L; Yang, Yi-Yan

    2012-04-01

    A new series of acid- and urea-functionalized polycarbonate block copolymers were synthesized via organocatalytic living ring-opening polymerization using methoxy poly(ethylene glycol) (PEG) as a macroinitiator to form micelles as drug delivery carriers. The micelles were characterized for critical micelle concentration, particle size and size distribution, kinetic stability and loading capacity for a model anticancer drug, doxorubicin (DOX) having an amine group. The acid/urea groups were placed in block forms (i.e. acid as the middle block or the end block) or randomly distributed in the polycarbonate block to investigate molecular structure effect. The micelles formed from the polymers in both random and block forms provided high drug loading capacity due to strong ionic interaction between the acid in the polymer and the amine in DOX. However, the polymers with acid and urea groups placed in the block forms formed micelles with wider size distribution (two size populations), and their DOX-loaded micelles were less stable. The number of acid/urea groups in the random form was further varied from 5 to 8, 13 and 19 to study its effects on self-assembly behaviors and DOX loading. An increased number of acid/urea groups yielded DOX-loaded micelles with smaller size and enhanced kinetic stability because of improved inter-molecular polycarbonate-polycarbonate (urea-urea and urea-acid) hydrogen-bonding and polycarbonate-DOX (acid-amine) ionic interactions. However, when the number of acid/urea groups was 13 or higher, micelles aggregated in a serum-containing medium, and freeze-dried DOX-loaded micelles were unable to re-disperse in an aqueous solution. Among all the polymers synthesized in this study, 1b with 8 acid/urea groups in the random form had the optimum properties. In vitro release studies showed that DOX release from 1b micelles was sustained over 7 h without significant initial burst release. MTT assays demonstrated that the polymer was not toxic towards

  2. Pretreatment solution recycling and high-concentration output for economical production of bioethanol.

    PubMed

    Han, Minhee; Moon, Se-Kwon; Choi, Gi-Wook

    2014-11-01

    The purpose of this study was to enhance the economic efficiency of producing bioethanol. Pretreatment solution recycling is expected to increase economic efficiency by reducing the cost of pretreatment and the amount of wastewater. In addition, the production of high-concentration bioethanol could increase economic efficiency by reducing the energy cost of distillation. The pretreatment conditions were 95 °C, 0.72 M NaOH, 80 rpm twin-screw speed, and flow rate of 90 mL/min at 18 g/min of raw biomass feeding for pretreatment solution recycling. The pretreatment with NaOH solution recycling was conducted five times. All of the components and the pretreatment efficiency were similar, despite reuse. In addition, we developed a continuous biomass feeding system for production of high-concentration bioethanol. Using this reactor, the bioethanol productivity was investigated using various pretreated biomass feeding rates in a simultaneous saccharification and fermentation (SSF) process. The maximum ethanol concentration, yield, and productivity were 74.5 g/L, 89.5%, and 1.4 g/L h, respectively, at a pretreated biomass loading of approximately 25% (w/v) with an enzyme dosage of 30 FPU g/cellulose. The results presented here constitute an important contribution toward the production of bioethanol from Miscanthus.

  3. Experimental determination of the yield stress curve of the scotch pine wood materials

    NASA Astrophysics Data System (ADS)

    Günay, Ezgi; Aygün, Cevdet; Kaya, Şükrü Tayfun

    2013-12-01

    Yield stress curve is determined for the pine wood specimens by conducting a series of tests. In this work, pinewood is modeled as a composite material with transversely isotropic fibers. Annual rings (wood grain) of the wood specimens are taken as the major fiber directions with which the strain gauge directions are aligned. For this purpose, three types of tests are arranged. These are tensile, compression and torsion loading tests. All of the tests are categorized with respect to fiber orientations and their corresponding loading conditions. Each test within these categories is conducted separately. Tensile and compression tests are conducted in accordance with standards of Turkish Standards Institution (TSE) whereas torsion tests are conducted in accordance with Standards Australia. Specimens are machined from woods of Scotch pine which is widely used in boat building industries and in other structural engineering applications. It is determined that this species behaves more flexibly than the others. Strain gauges are installed on the specimen surfaces in such a way that loading measurements are performed along directions either parallel or perpendicular to the fiber directions. During the test and analysis phase of yield stress curve, orientation of strain gauge directions with respect to fiber directions are taken into account. The diagrams of the normal stress vs. normal strain or the shear stress vs. shear strain are plotted for each test. In each plot, the yield stress is determined by selecting the point on the diagram, the tangent of which is having a slope of 5% less than the slope of the elastic portion of the diagram. The geometric locus of these selected points constitutes a single yield stress curve on σ1-σ2 principal plane. The resulting yield stress curve is plotted as an approximate ellipse which resembles Tsai-Hill failure criterion. The results attained in this work, compare well with the results which are readily available in the literature.

  4. Preliminary assessment of chloride concentrations, loads, and yields in selected watersheds along the Interstate 95 corridor, southeastern Connecticut, 2008-09

    USGS Publications Warehouse

    Brown, Craig J.; Mullaney, John R.; Morrison, Jonathan; Mondazzi, Remo

    2011-01-01

    the spring and summer, specific conductance and estimated Cl concentrations decreased during discharge events because the low-ionic strength of stormwater had a diluting effect on stream-water quality. However, peaks in specific conductance and estimated Cl concentrations at Jordan Brook and Stony Brook corresponded to peaks in streamflow well after winter snow or ice events; these delayed peaks in Cl concentration likely resulted from deicing salts that remained in melting snow piles and (or) that were flushed from soils and shallow groundwater, then discharged downstream. Cl loads in streams generally were highest in the winter and early spring. The estimated load for the period of record at the four monitoring sites downstream from I-95 ranged from 0.33 ton per day (ton/d) at the Stony Brook watershed to 0.59 ton/d at the Jordan Brook watershed. The Cl yields ranged from 0.07 ton per day per square mile (ton/d/)mi2) at Oil Mill Brook, one of the least developed watersheds, to 0.21 (ton/d)/mi2) at Jordan Brook, the watershed with the highest percentage of urban development and impervious surfaces. The median estimates of Cl load from atmospheric deposition ranged from 11 to 19 tons, and contributed 4.3 to 7.1 percent of the Cl load in streamflow from the watershed areas. A comparison of the Cl load input and output estimates indicates that less Cl is leaving the watersheds than is entering through atmospheric deposition and application of deicers. The lag time between introduction of Cl to the watershed and transport to the stream, and uncertainty in the load estimates may be the reasons for this discrepancy. In addition, estimates of direct infiltration of Cl to groundwater from atmospheric deposition, deicer applications, and septic-tank drainfields to groundwater were outside the scope of the November 2008 to September 2009 assessment. However, increased concentrations of ions were observed between upstream and downstream sites and could result from deicer appli

  5. An approximate solution to improve computational efficiency of impedance-type payload load prediction

    NASA Technical Reports Server (NTRS)

    White, C. W.

    1981-01-01

    The computational efficiency of the impedance type loads prediction method was studied. Three goals were addressed: devise a method to make the impedance method operate more efficiently in the computer; assess the accuracy and convenience of the method for determining the effect of design changes; and investigate the use of the method to identify design changes for reduction of payload loads. The method is suitable for calculation of dynamic response in either the frequency or time domain. It is concluded that: the choice of an orthogonal coordinate system will allow the impedance method to operate more efficiently in the computer; the approximate mode impedance technique is adequate for determining the effect of design changes, and is applicable for both statically determinate and statically indeterminate payload attachments; and beneficial design changes to reduce payload loads can be identified by the combined application of impedance techniques and energy distribution review techniques.

  6. Mechanical design of mussel byssus: material yield enhances attachment strength

    PubMed

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  7. Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading.

    PubMed

    Ye, Guangying; Zeng, Defu; Zhang, Shuaishuai; Fan, Meishan; Zhang, Hongdan; Xie, Jun

    2018-06-01

    Various mixing ratios of alkali pretreated sugarcane bagasse and starch-rich waste Dioscorea composita hemls extracted residue (DER) were evaluated via simultaneous saccharification and fermentation (SSF) with 12% (w/w) solid loading, and the mixture ratio of 1:1 achieved the highest ethanol concentration and yield. When the solid loading was increased from 12% to 32%, the ethanol concentration was increased to 72.04 g/L, whereas the ethanol yield was reduced from 84.40% to 73.71%. With batch feeding and the addition of 0.1% (w/v) Tween 80, the final ethanol concentration and yield of SSF at 34% loading were 82.83 g/L and 77.22%, respectively. Due to the integration with existing starch-based ethanol industry, the co-fermentation is expected to be a competitive alternative form for cellulosic ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis.

    PubMed

    Dai, Shu-Wen; Hsu, Bo-Wei; Chen, Chien-Yu; Lee, Chia-An; Liu, Hsiao-Yun; Wang, Hsiao-Fang; Huang, Yu-Ching; Wu, Tien-Lin; Manikandan, Arumugam; Ho, Rong-Ming; Tsao, Cheng-Si; Cheng, Chien-Hong; Chueh, Yu-Lun; Lin, Hao-Wu

    2018-02-01

    In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W -1 , and extraordinary forward-direction luminescence of 8 500 000 cd m -2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    PubMed

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A Kind of Optimization Method of Loading Documents in OpenOffice.org

    NASA Astrophysics Data System (ADS)

    Lan, Yuqing; Li, Li; Zhou, Wenbin

    As a giant in open source community, OpenOffice.org has become the most popular office suite within Linux community. But OpenOffice.org is relatively slow while loading documents. Research shows that the most time consuming part is importing one page of whole document. If there are many pages in a document, the accumulation of time consumed can be astonishing. Therefore, this paper proposes a solution, which has improved the speed of loading documents through asynchronous importing mechanism: a document is not imported as a whole, but only part of the document is imported at first for display, then mechanism in the background is started to asynchronously import the remaining parts, and insert it into the drawing queue of OpenOffice.org for display. In this way, the problem can be solved and users don't have to wait for a long time. Application start-up time testing tool has been used to test the time consumed in loading different pages of documents before and after optimization of OpenOffice.org, then, we adopt the regression theory to analyse the correlation between the page number of documents and the loading time. In addition, visual modeling of the experimental data are acquired with the aid of matlab. An obvious increase in loading speed can be seen after a comparison of the time consumed to load a document before and after the solution is adopted. And then, using Microsoft Office compared with the optimized OpenOffice.org, their loading speeds are almost same. The results of the experiments show the effectiveness of this solution.

  11. Yield enhancement with DFM

    NASA Astrophysics Data System (ADS)

    Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok

    2012-03-01

    A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.

  12. On delay adjustment for dynamic load balancing in distributed virtual environments.

    PubMed

    Deng, Yunhua; Lau, Rynson W H

    2012-04-01

    Distributed virtual environments (DVEs) are becoming very popular in recent years, due to the rapid growing of applications, such as massive multiplayer online games (MMOGs). As the number of concurrent users increases, scalability becomes one of the major challenges in designing an interactive DVE system. One solution to address this scalability problem is to adopt a multi-server architecture. While some methods focus on the quality of partitioning the load among the servers, others focus on the efficiency of the partitioning process itself. However, all these methods neglect the effect of network delay among the servers on the accuracy of the load balancing solutions. As we show in this paper, the change in the load of the servers due to network delay would affect the performance of the load balancing algorithm. In this work, we conduct a formal analysis of this problem and discuss two efficient delay adjustment schemes to address the problem. Our experimental results show that our proposed schemes can significantly improve the performance of the load balancing algorithm with neglectable computation overhead.

  13. Occurrence, Distribution, Instantaneous Loads, and Yields of Dissolved Pesticides in the San Joaquin River Basin, California, During Summer Conditions, 1994 and 2001

    USGS Publications Warehouse

    Brown, Larry R.; Panshin, Sandra Y.; Kratzer, Charles R.; Zamora, Celia; Gronberg, JoAnn M.

    2004-01-01

    Water samples were collected from 22 drainage basins for analysis of 48 dissolved pesticides during summer flow conditions in 1994 and 2001. Of the 48 pesticides, 31 were reported applied in the basin in the 28 days preceding the June 1994 sampling, 25 in the 28 days preceding the June 2001 sampling, and 24 in the 28 days preceding the August 2001 sampling. The number of dissolved pesticides detected was similar among sampling periods: 26 were detected in June 1994, 28 in June 2001, and 27 in August 2001. Concentrations of chlorpyrifos exceeded the California criterion for the protection of aquatic life from acute exposure at six sites in June 1994 and at five sites in June 2001. There was a single exceedance of the criterion for diazinon in June 1994. The number of pesticides applied in tributary basins was highly correlated with basin area during each sampling period (Spearman's r = 0.85, 0.70, and 0.84 in June 1994, June 2001, and August 2001, respectively, and p < 0.01 in all cases). Larger areas likely include a wider variety of crops, resulting in more varied pesticide use. Jaccard's similarities, cluster analysis, principal components analysis, and instantaneous load calculations generally indicate that west-side tributary basins were different from east-side tributary basins. In general, west-side basins had higher concentrations, instantaneous loads, and instantaneous yields of dissolved pesticides than east-side basins, although there were a number of exceptions. These differences may be related to a number of factors, including differences in basin size, soil texture, land use, irrigation practices, and stream discharge.

  14. Purification of proteins from solutions containing residual host cell proteins via preparative crystallization.

    PubMed

    Hekmat, Dariusch; Breitschwerdt, Peter; Weuster-Botz, Dirk

    2015-09-01

    To investigate quantitatively and reproducibly a scalable, preparative crystallization method in novel stirred tanks using three different protein solutions containing residual microbial host cell proteins (HCP). Lysozyme from solutions being spiked with up to 15% host cell proteins (HCP) (corresponding to 176,500 ppm) was crystallized within a 2.4-4.6 h at 93.7% yield using NaCl and glycerol. Lipase was crystallized under comparable conditions using NaCl and a mixture of two polyethylene glycols (PEG). Enhanced green fluorescent protein (eGFP) was overexpressed in E. coli yielding a solution containing 23% target protein. Residual HCP content after pre-treatment was 7-16%. eGFP was crystallized from these solutions within 1.75-4 h at 88.7% step yield using ethanol and the same mixture of two PEG as in the case of lipase. HCP contained in the solvent channels of the protein crystals could be removed by diffusive washing yielding final purities at or above 99%. Preparative crystallization can be carried out with fast kinetics and high yields from solutions containing residual impurities and may represent an attractive alternative purification method compared to preparative chromatography, especially at large production scales.

  15. Concurrent Solution and Adsorption of Hydrocarbons in Gas Chromatographic Columns Packed with Different Loadings of 3-Methylsydnone on Chromosorb P

    PubMed

    Castells; Romero; Nardillo

    1997-08-01

    Thermodynamic properties of solution in 3-methylsydnone (3MS) and of adsorption at the nitrogen/3MS interface were gas chromatographically measured for a group of fifteen hydrocarbons at infinite dilution conditions. Retention volumes were measured at five temperatures within the range 37-52°C in six columns containing different loadings of 3MS on Chromosorb P AW. Partition and adsorption coefficients were calculated and from their temperature dependence the corresponding enthalpies were obtained, although with considerable error; infinite dilution activity coefficients of the hydrocarbons in the bulk and in the surface phases demonstrated a strong correlation. Bulk activity coefficients in 3MS were very much smaller than those previously measured for the same solutes in formamide (FA) and in ethyleneglycol (EG), and were also smaller than what could be predicted on account of 3MS cohesive energy density as estimated from the quotient sigma/v1/3 (sigma, surface tension; v, molar volume). There was not such a large difference between the surface activity coefficients in the three solvents; furthermore, the quotients (surface activity coefficient/bulk activity coefficient) for a given solute in 3MS were twice as large as in FA and about three times larger than in EG. These results make evident the difficulties inherent in the prediction of surface phase properties from those in the bulk and cast doubts on the pertinency of employing the surface tension to compare cohesive energy densities of polar solvents with important chemical differences.

  16. Wind Loads on Flat Plate Photovoltaic Array Fields

    NASA Technical Reports Server (NTRS)

    Miller, R.; Zimmerman, D.

    1979-01-01

    The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.

  17. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    PubMed

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  18. Cryoradiolytic reduction of heme proteins: Maximizing dose-dependent yield

    NASA Astrophysics Data System (ADS)

    Denisov, Ilia G.; Victoria, Doreen C.; Sligar, Stephen G.

    2007-04-01

    Radiolytic reduction in frozen solutions and crystals is a useful method for generation of trapped intermediates in protein-based radical reactions. In this communication we define the conditions which provide the maximum yield of one electron-reduced myoglobin at 77 K using 60Co γ-irradiation in aqueous glycerol glass. The yield reached 50% after 20 kGy, was almost complete at ˜160 kGy total dose, and does not depend on the protein concentration in the range 0.01-5 mM.

  19. A thermomechanical anisotropic model for shock loading of elastic-plastic and elastic-viscoplastic materials with application to jointed rock

    DOE PAGES

    Rubin, M. B.; Vorobiev, O.; Vitali, E.

    2016-04-21

    Here, a large deformation thermomechanical model is developed for shock loading of a material that can exhibit elastic and inelastic anisotropy. Use is made of evolution equations for a triad of microstructural vectors m i(i=1,2,3) which model elastic deformations and directions of anisotropy. Specific constitutive equations are presented for a material with orthotropic elastic response. The rate of inelasticity depends on an orthotropic yield function that can be used to model weak fault planes with failure in shear and which exhibits a smooth transition to isotropic response at high compression. Moreover, a robust, strongly objective numerical algorithm is proposed formore » both rate-independent and rate-dependent response. The predictions of the continuum model are examined by comparison with exact steady-state solutions. Also, the constitutive equations are used to obtain a simplified continuum model of jointed rock which is compared with high fidelity numerical solutions that model a persistent system of joints explicitly in the rock medium.« less

  20. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emission (AE) tests have been conducted on small-diameter Kevlar 49/epoxy pressure vessels subjected to long-term sustained load-to-failure tests. Single-cycle burst tests were used as a basis for determining the test pressure in the sustained-loading tests. AE data from two vessel locations were compared. The data suggest that AE from vessel wall-mounted transducers is quite different for identical vessels subjected to the same pressure loading. AE from boss-mounted transducers yielded relatively consistent values. These values were not a function of time for vessel failure. The development of an AE test procedure for predicting the residual service life or integrity of composite vessels is discussed.

  1. Steam-load-forecasting technique for central-heating plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, M.C.; Carnahan, J.V.

    Because boilers generally are most efficient at full loads, the Army could achieve significant savings by running fewer boilers at high loads rather than more boilers at low loads. A reliable load prediction technique could help ensure that only those boilers required to meet demand are on line. This report presents the results of an investigation into the feasibility of forecasting heat plant steam loads from historical patterns and weather information. Using steam flow data collected at Fort Benjamin Harrison, IN, a Box-Jenkins transfer function model with an acceptably small prediction error was initially identified. Initial investigation of forecast modelmore » development appeared successful. Dynamic regression methods using actual ambient temperatures yielded the best results. Box-Jenkins univariate models' results appeared slightly less accurate. Since temperature information was not needed for model building and forecasting, however, it is recommended that Box-Jenkins models be considered prime candidates for load forecasting due to their simpler mathematics.« less

  2. Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupoi, Jason; Smith, Emily

    2011-12-01

    Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification productsmore » and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 C. There was no significant accumulation (<250 {mu}g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.« less

  3. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt

    NASA Astrophysics Data System (ADS)

    Jain, M.; Singh, Balwinder; Srivastava, A. A. K.; Malik, R. K.; McDonald, A. J.; Lobell, D. B.

    2017-09-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps in India, one of the largest wheat producers globally, we produced 30 meter resolution yield maps from 2001 to 2015 across the Indo-Gangetic Plains (IGP), the nation’s main wheat belt. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region.

  4. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    NASA Astrophysics Data System (ADS)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-12-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  5. Evaluation of seeding depth and guage-wheel load effects on maize emergence and yield

    USDA-ARS?s Scientific Manuscript database

    Planting represents perhaps the most important field operation with errors likely to negatively affect crop yield and thereby farm profitability. Performance of row-crop planters are evaluated by their ability to accurately place seeds into the soil at an adequate and pre-determined depth, the goal ...

  6. Aggregation of concentrated monoclonal antibody solutions studied by rheology and neutron scattering

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Pathak, Jai; Colby, Ralph

    2013-03-01

    Protein solutions are studied using rheology and scattering techniques to investigate aggregation. Here we present a monoclonal antibody (mAb) that aggregates after incubation at 40 °C (below its unfolding temperature), with a decrease in monomer purity of 6% in 10 days. The mAb solution contains surfactant and behaves as a Newtonian fluid when reconstituted into solution from the lyophilized form (before incubation at 40 °C). In contrast, mAb solutions incubated at 40 °C for 1 month exhibit shear yielding in torsional bulk rheometers. Interfacial rheology reveals that interfacial properties are controlled by the surfactant, producing a negligible surface contribution to the bulk yield stress. These results provide evidence that protein aggregates formed in the bulk are responsible for the yield stress. Small-angle neutron scattering (SANS) measurements show an increase in intensity at low wavevectors (q < 4*10-2 nm-1) that we attribute to protein aggregation, and is not observed in solutions stored at 4 °C for 3 days before the measurement. This work suggests a correlation between the aggregated state of the protein (stability) and the yield stress from rheology. Research funded by MedImmune

  7. Real-time yield estimation based on deep learning

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Sheppard, Clay

    2017-05-01

    Crop yield estimation is an important task in product management and marketing. Accurate yield prediction helps farmers to make better decision on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits is very time consuming and expensive process and it is not practical for big fields. Robotic systems including Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), provide an efficient, cost-effective, flexible, and scalable solution for product management and yield prediction. Recently huge data has been gathered from agricultural field, however efficient analysis of those data is still a challenging task. Computer vision approaches currently face diffident challenges in automatic counting of fruits or flowers including occlusion caused by leaves, branches or other fruits, variance in natural illumination, and scale. In this paper a novel deep convolutional network algorithm was developed to facilitate the accurate yield prediction and automatic counting of fruits and vegetables on the images. Our method is robust to occlusion, shadow, uneven illumination and scale. Experimental results in comparison to the state-of-the art show the effectiveness of our algorithm.

  8. Experimental Techniques Verified for Determining Yield and Flow Surfaces

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Ellis, Rod; Lissenden, Cliff J.

    1998-01-01

    Structural components in aircraft engines are subjected to multiaxial loads when in service. For such components, life prediction methodologies are dependent on the accuracy of the constitutive models that determine the elastic and inelastic portions of a loading cycle. A threshold surface (such as a yield surface) is customarily used to differentiate between reversible and irreversible flow. For elastoplastic materials, a yield surface can be used to delimit the elastic region in a given stress space. The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory, but at elevated temperatures, material response can be highly time dependent. Thus, viscoplastic theories have been developed to account for this time dependency. Since the key to many of these theories is experimental validation, the objective of this work (refs. 1 and 2) at the NASA Lewis Research Center was to verify that current laboratory techniques and equipment are sufficient to determine flow surfaces at elevated temperatures. By probing many times in the axial-torsional stress space, we could define the yield and flow surfaces. A small offset definition of yield (10 me) was used to delineate the boundary between reversible and irreversible behavior so that the material state remained essentially unchanged and multiple probes could be done on the same specimen. The strain was measured with an off-the-shelf multiaxial extensometer that could measure the axial and torsional strains over a wide range of temperatures. The accuracy and resolution of this extensometer was verified by comparing its data with strain gauge data at room temperature. The extensometer was found to have sufficient resolution for these experiments. In addition, the amount of crosstalk (i.e., the accumulation of apparent strain in one direction when strain in the other direction is applied) was found to be negligible. Tubular specimens were induction heated to determine the flow

  9. Universality and depinning models for plastic yield in amorphous materials

    NASA Astrophysics Data System (ADS)

    Budrikis, Zoe; Fernandez Castellano, David; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    Plastic yield in amorphous materials occurs as a result of complex collective dynamics of local reorganizations, which gives rise to rich phenomena such as strain localization, intermittent dynamics and power-law distributed avalanches. While such systems have received considerable attention, both theoretical and experimental, controversy remains over the nature of the yielding transition. We present a new fully-tensorial coarsegrained model in 2D and 3D, and demonstrate that the exponents describing avalanche distributions are universal under a variety of loading conditions, system dimensionality and size, and boundary conditions. Our results show that while depinning-type models in general are apt to describe the system, mean field depinning models are not.

  10. The Distribution of Loads on Rivets Connecting a Plate to a Beam under Transverse Loads

    NASA Technical Reports Server (NTRS)

    Vogt, F.

    1947-01-01

    This report gives theoretical discussion of the distribution of leads on rivets connecting a plate to a beam under transverse leads. Two methods of solution are given which are applicable to loads up to the limit of proportionality; in the first the rivets are treated as discrete members, and in the second they are replaced by a continuous system of jointing. A method of solution is also given which is applicable to the case when nonlinear deformations occur in the rivets and the plate, but not in the beam. The methods are illustrated by numerical examples, and these show that the loads carried by the rivets and the plate are less than the values given by classical theory, which does not take into account the slip of the rivets, even below the limit of proportionality. The difference is considerably accentuated when nonlinear deformations occur in the restructure and the beam then carries the greater portion of the bending moment. If the material of the beam has a higher proportional limit and a higher ultimate strength than the material of the plate, there is thus a transfer of load from weaker to stronger material, and this is to the advantage of the structure. The methods given are of simple application and are recommended for use in the design of light-alloy structures when the design lead is likely to be above the proportional limit.

  11. Common stock solutions, buffers, and media.

    PubMed

    2001-05-01

    This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.

  12. Determination of stress intensity factors for interface cracks under mixed-mode loading

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    A simple technique was developed using conventional finite element analysis to determine stress intensity factors, K1 and K2, for interface cracks under mixed-mode loading. This technique involves the calculation of crack tip stresses using non-singular finite elements. These stresses are then combined and used in a linear regression procedure to calculate K1 and K2. The technique was demonstrated by calculating three different bimaterial combinations. For the normal loading case, the K's were within 2.6 percent of an exact solution. The normalized K's under shear loading were shown to be related to the normalized K's under normal loading. Based on these relations, a simple equation was derived for calculating K1 and K2 for mixed-mode loading from knowledge of the K's under normal loading. The equation was verified by computing the K's for a mixed-mode case with equal and normal shear loading. The correlation between exact and finite element solutions is within 3.7 percent. This study provides a simple procedure to compute K2/K1 ratio which has been used to characterize the stress state at the crack tip for various combinations of materials and loadings. Tests conducted over a range of K2/K1 ratios could be used to fully characterize interface fracture toughness.

  13. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  14. Sliding enhances fluid and solute transport into buried articular cartilage contacts.

    PubMed

    Graham, B T; Moore, A C; Burris, D L; Price, C

    2017-12-01

    Solutes and interstitial water are naturally transported from cartilage by load-induced interstitial fluid pressures. Fluid and solute recovery during joint articulation have been primarily attributed to passive diffusion and mechanical 'pumping' from dynamic loading. This paper tests if the sliding action of articulation is a significant and independent driver of fluid and solute transport in cartilage. The large osteochondral samples utilized in the present study preserve the convergent wedges necessary for physiological hydrodynamics. Following static load-induced fluid exudation and prior to sliding, a fluorescent solute (AlexaFluor 633) was added to the lubricant bath. In situ confocal microscopy was used to quantify the transport of solute from the bath into the buried stationary contact area (SCA) during sliding. Following static exudation, significant reductions in friction and strain during sliding at 60 mm/s were accompanied by significant solute transport into the inaccessible center of the buried contact; no such transport was detected for the 0- or 1 mm/s sliding conditions. The results suggest that external hydrodynamic pressures from sliding induced advective flows that carried solutes from the bath toward the center of contact. These results provide the first direct evidence that the action of sliding is a significant contributor to fluid and solute recovery by cartilage. Furthermore, they indicate that the sliding-induced transport of solutes into the buried interface was orders of magnitude greater than that attributable to diffusion alone, a result with critical implications for disease prevention and tissue engineering. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.

    1998-05-01

    Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict themore » densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.« less

  16. Control Allocation with Load Balancing

    NASA Technical Reports Server (NTRS)

    Bodson, Marc; Frost, Susan A.

    2009-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the actuator deflections. The paper discusses the alternative choice of the l(infinity) norm, or sup norm. Minimization of the control effort translates into the minimization of the maximum actuator deflection (min-max optimization). The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are also investigated through examples. In particular, the min-max criterion results in a type of load balancing, where the load is th desired command and the algorithm balances this load among various actuators. The solution using the l(infinity) norm also results in better robustness to failures and to lower sensitivity to nonlinearities in illustrative examples.

  17. Simultaneously Load and Extended Release of Betamethasone and Ciprofloxacin from Vitamin E-Loaded Silicone-Based Soft Contact Lenses.

    PubMed

    Rad, Maryam Shayani; Mohajeri, Seyed Ahmad

    2016-09-01

    The purpose of the present study was to evaluate the efficacy of commercial soft contact lenses, loaded with vitamin E, as ocular drug delivery systems for simultaneous loading and release of ciprofloxacin (Cipro) and betamethasone (BMZ) in artificial tears. In this study, we applied vitamin E as a barrier to increase BMZ-Cipro loading into three commercial silicone-based soft contact lenses and control their simultaneous release into the artificial lachrymal fluid. Two different concentrations of vitamin E solution (0.1 and 0.2 g/ml) were used, and various parameters including changes in lens diameter, water content, ultraviolet-visible light (UV-Vis) transmittance, drug-binding properties, and drug release profile were investigated. The obtained results indicated that vitamin E significantly reduced the swelling properties of contact lenses in aqueous media, while it enhanced the lens diameter in both dry and hydrated states. Vitamin E had no significant effects on visible transmittance, while it blocked UV radiation, which could be harmful for the eye surface. Our findings revealed that vitamin E improved the simultaneous loading amount of BMZ-Cipro into soft contact lenses. Additionally, BMZ and Cipro release rates significantly reduced after using vitamin E as a hydrophobic diffusion barrier. After soaking the lenses in 0.1 and 0.2 g/ml of vitamin E solution, BMZ release time increased by 28.8-81.6 and 182.4-201 folds, respectively. Moreover, Cipro release time increased by 12-18 and 1152-2313 folds, respectively. The results of the present study indicated the efficacy of vitamin E as a diffusion barrier in developing a controlled drug delivery system for the simultaneous loading of BMZ and Cipro and sustaining their release from soft contact lenses.

  18. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Riff, R.

    1987-01-01

    A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads are developed. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratcheting. Thus, geometric as well as material type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.

  19. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1987-01-01

    A general mathematical model and solution methodologies are being developed for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which were associated with these load conditions, were thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution process.

  20. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.

    1989-01-01

    The objective is to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and racheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.

  1. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    USGS Publications Warehouse

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  2. Mechanical response of unidirectional boron/aluminum under combined loading

    NASA Technical Reports Server (NTRS)

    Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1987-01-01

    Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.

  3. Local yield stress statistics in model amorphous solids

    NASA Astrophysics Data System (ADS)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  4. Changes in contaminant loading and hydro-chemical storm behavior after the Station Fire

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Hogue, T. S.; Barco, J.; Wessel, C. J.

    2010-12-01

    The 2009 Station Fire, currently noted as the largest fire in Los Angeles County history, consumed over 650 square kilometers of National Forest land in the San Gabriel Mountain Range. These mountains, located on the east side (leeward) of the Los Angeles basin, are known to have some of the highest deposition rates of atmospheric pollutants in the nation. Even pre-fire, urban-fringe basins in this mountain range serve as an upstream source of contaminants to downstream urban streams. Burned watersheds undergo significant physical and chemical changes that dramatically alter hydrologic flowpaths, erosion potential, surface soil chemistry, and pollutant delivery. Much of the degradation in water quality is attributed to the extensive soil erosion during post-fire runoff events which carry large sediment loads, mobilizing and transporting contaminants to and within downstream waters. High resolution storm samples collected from a small front range watershed provide a unique opportunity to investigate the impacts of wildfire contaminant loading in a watershed that is significantly impacted by high atmospheric deposition of urban contaminates. Data includes four events from WY 2009 (pre-fire) and WY 2010 (post-fire), along with inter-storm grab samples from each storm season. Samples were analyzed for basic anions, nutrients, trace metals, and total suspended solids. Following the fire, storms with similar precipitation patterns yielded loads up to three orders of magnitude greater than pre-fire for some toxic metals, including lead and cadmium. Dramatic increases were also observed in trace metal concentrations typically associated with particulates, while weathering solute concentrations decreased. Post fire intra-storm dynamics exhibited a shift back toward pre-fire behavior by the end of the first rainy season for most of the measured constituents. Additionally, some unexpected behaviors were observed; specifically mercury loads continued to increase throughout the

  5. Doxorubicin-loaded Zein in situ gel for interstitial chemotherapy.

    PubMed

    Cao, Xiaoying; Geng, Jianning; Su, Suwen; Zhang, Linan; Xu, Qian; Zhang, Li; Xie, Yinghua; Wu, Shaomei; Sun, Yongjun; Gao, Zibin

    2012-01-01

    A novel drug delivery system of doxorubicin (DOX)-loaded Zein in situ gel for interstitial chemotherapy was investigated in this study. The possible mechanisms of drug release were described according to morphological analysis by optical microscopy and scanning electronic microscope (SEM). In vitro and in vivo anti-tumor activity studies showed that DOX-loaded Zein in situ gel was superior to DOX solution. Local pharmacokinetics in tumor tissue was studied by quantitative analysis with confocal laser scanning microscopy (CLSM) combined with microdialysis technology. A pharmacokinetics mathematical model of DOX-loaded Zein in situ gel in tumors was then built.

  6. Characterization of salinity loads and selenium loads in the Smith Fork Creek region of the Lower Gunnison River Basin, western Colorado, 2008-2009

    USGS Publications Warehouse

    Richards, Rodney J.; Linard, Joshua I.; Hobza, Christopher M.

    2014-01-01

    . Annual tail-water salinity loads ranged from 48.0 to 2,750 tons in the Smith Fork Creek region. The largest tail-water salinity load was in subbasin SF3, and the lowest salinity load from tail water was in subbasin R1. The remaining four agricultural subbasins—AL1, B1, CK1, and SF2—had tail-water loads of 285 t/yr, 180 t/yr, 333 t/yr, and 1,700 t/yr, respectively. The deep percolation component of the agricultural salinity load ranged from 3,300 t/yr in subbasin AL1 to 51,800 t/yr in subbasin SF2. Subbasins R1, B1, CK1, and SF3 had deep percolation salinity loads of 4,940 t/yr, 15,200 t/yr, 21,200 t/yr, and 23,600 t/yr, respectively. The canal seepage component of the agricultural salinity load ranged from 1,100 t/yr in subbasin AL1 to 15,300 t/yr in subbasin CK1. Subbasins B1, R1, SF2, and SF3 had canal seepage salinity loads of 6,610 t/yr, 3,890 t/yr, 9,430 t/yr, and 12,100 t/yr, respectively. Four natural subbasins—RCG1, RCG2, SF1, and BkKm—were used to calculate natural salinity yields for the remaining subbasins. The appropriate salinity yield was applied to the corresponding number of acres and resulted in a natural salinity load for each subbasin. The annual salinity yields for the Dakota Sandstone and Burro Canyon Formation, Mancos Shale, and crystalline geologies are 0.217 tons per acre (t/acre), 0.113 t/acre, and 0.151 t/acre, respectively. Three of the four natural subbasins had little to no selenium load based on the measured data and calculated selenium loads. Subbasins RCG1 and RCG2 had surface-water selenium loads of 0.106±0.024 pounds (lb) and 0.00 lb, respectively. Subbasin BkKm did not have an estimated surface-water selenium load because of the lack of any water-quality samples during the study period. The subbasin designated by site CK1 had the highest selenium load with 135±38.7 lb, and the next highest subbasins in decreasing order are B1, SF3, AL1, SF1, and R1 with selenium loads of 69.6±28.4 lb, 56.5±23.8 lb, 30.5±16.6 lb, 26.8±6

  7. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears

    NASA Technical Reports Server (NTRS)

    Lee, Chinwai; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads.

  8. Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.

    2017-12-01

    Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical

  9. Probing Nanoscale Thermal Transport in Surfactant Solutions

    PubMed Central

    Cao, Fangyu; Liu, Ying; Xu, Jiajun; He, Yadong; Hammouda, B.; Qiao, Rui; Yang, Bao

    2015-01-01

    Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient. PMID:26534840

  10. Exact solutions for postbuckling of a graded porous beam

    NASA Astrophysics Data System (ADS)

    Ma, L. S.; Ou, Z. Y.

    2018-06-01

    An exact, closed-form solution for the postbuckling responses of graded porous beams subjected to axially loading is obtained. It was assumed that the properties of the graded porous materials vary continuously through thickness of the beams, the equations governing the axial and transverse deformations are derived based on the classical beam theory and the physical neutral surface concept. The two equations are reduced to a single nonlinear fourth-order integral-differential equation governing the transverse deformations. The nonlinear equation is directly solved without any use of approximation and a closed-form solution for postbuckled deformation is obtained as a function of the applied load. The exact solutions explicitly describe the nonlinear equilibrium paths of the buckled beam and thus are able to provide insight into deformation problems. Based on the exact solutions obtained herein, the effects of various factors such as porosity distribution pattern, porosity coefficient and boundary conditions on postbuckling behavior of graded porous beams have been investigated.

  11. Study on loading coefficient in steam explosion process of corn stalk.

    PubMed

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Protein Carbamylation in Peritoneal Dialysis and the Effect of Low Glucose Plus Amino Acid Solutions.

    PubMed

    Trottier, Caitlin; Perl, Jeffrey; Freeman, Megan; Thadhani, Ravi; Berg, Anders; Kalim, Sahir

    2018-01-01

    Protein carbamylation is a post-translational urea-driven protein modification associated with mortality. Free amino acids (AAs) competitively inhibit protein carbamylation and parenteral AA therapy reduces carbamylation in hemodialysis (HD) patients. Peritoneal dialysis (PD) yields differences in urea clearance and AA balance compared with HD, but the influence of PD and intraperitoneal AA solutions on carbamylation is unclear. Thus, we first measured carbamylated albumin (C-Alb; a marker of carbamylation load) in 100 diabetic HD patients frequency-matched by age, sex, and race to 98 diabetic PD subjects from the IMPENDIA trial, which originally compared the metabolic effects of low-glucose PD solutions (incorporating icodextrin and AAs) to a control group (dextrose-only solutions). We then determined the effects of the AA-enriched PD solutions by measuring the 6-month change in C-Alb within the IMPENDIA cohort by treatment allocation (48 treated vs 50 controls). Peritoneal dialysis patients, when compared with HD patients, had higher baseline urea and higher C-Alb. Among IMPENDIA participants, there was no difference in C-Alb change in either arm, but treated subjects showed a trend towards increased carbamylation. Treated subjects also demonstrated an increase in urea, possibly explaining the carbamylation trend. In summary, carbamylation levels in PD patients appeared higher than in matched HD patients. A regimen of AA and low-glucose PD solutions did not reduce C-Alb in IMPENDIA subjects. Copyright © 2018 International Society for Peritoneal Dialysis.

  13. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed

    USGS Publications Warehouse

    Oh, Neung-Hwan; Pellerin, Brian A.; Bachand, Philip A.M.; Hernes, Peter J.; Bachand, Sandra M.; Ohara, Noriaki; Kavvas, M. Levent; Bergamaschi, Brian A.; Horwath, William R.

    2013-01-01

    We investigated the role of land use/land cover and agriculture practices on stream dissolved organic carbon (DOC) dynamics in the Willow Slough watershed (WSW) from 2006 to 2008. The 415 km2watershed in the northern Central Valley, California is covered by 31% of native vegetation and the remaining 69% of agricultural fields (primarily alfalfa, tomatoes, and rice). Stream discharge and weekly DOC concentrations were measured at eight nested subwatersheds to estimate the DOC loads and yields (loads/area) using the USGS developed stream load estimation model, LOADEST. Stream DOC concentrations peaked at 18.9 mg L−1 during summer irrigation in the subwatershed with the highest percentage of agricultural land use, demonstrating the strong influence of agricultural activities on summer DOC dynamics. These high concentrations contributed to DOC yields increasing up to 1.29 g m−2 during the 6 month period of intensive agricultural activity. The high DOC yields from the most agricultural subwatershed during the summer irrigation period was similar throughout the study, suggesting that summer DOC loads from irrigation runoff would not change significantly in the absence of major changes in crops or irrigation practices. In contrast, annual DOC yields varied from 0.89 to 1.68 g m−2 yr−1 for the most agricultural watershed due to differences in winter precipitation. This suggests that variability in the annual DOC yields will be largely determined by the winter precipitation, which can vary significantly from year to year. Changes in precipitation patterns and intensities as well as agricultural practices have potential to considerably alter the DOC dynamics.

  14. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Riff, R.

    1988-01-01

    This research is performed to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.

  15. Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Riff, R.

    1988-01-01

    The objective of this research is to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and racheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.

  16. X-ray power and yield measurements at the refurbished Z machine

    DOE PAGES

    Jones, M. C.; Ampleford, D. J.; Cuneo, M. E.; ...

    2014-08-04

    Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch loads at the Z Machine with high accuracy. The Z-accelerator is capable of outputting 2MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments were conducted on the Z machine where the load and machine configuration were held constant. During this shot series,more » it was observed that total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, Kimfol filtered x-ray diode diagnostic and the Total Power and Energy diagnostic gave 450 TW and 327 TW respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring xray powers from z-pinch sources.« less

  17. Effect of Anisotropic Yield Function Evolution on Estimation of Forming Limit Diagram

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, K.; Basak, S.; Choi, H. J.; Panda, S. K.; Lee, M. G.

    2017-09-01

    In case of theoretical prediction of the FLD, the variations in yield stress and R-values along different material directions, were long been implemented to enhance the accuracy. Although influences of different yield models and hardening laws on formability were well addressed, anisotropic evolution of yield loci under monotonic loading with different deformation modes is yet to be explored. In the present study, Marciniak-Kuckzinsky (M-K) model was modified to incorporate the change in the shape of the initial yield function with evolution due to anisotropic hardening. Swift’s hardening law along with two different anisotropic yield criteria, namely Hill48 and Yld2000-2d were implemented in the model. The Hill48 yield model was applied with non-associated flow rule to comprehend the effect of variations in both yield stress and R-values. The numerically estimated FLDs were validated after comparing with FLD evaluated through experiments. A low carbon steel was selected, and hemispherical punch stretching test was performed for FLD evaluation. Additionally, the numerically estimated FLDs were incorporated in FE simulations to predict limiting dome heights for validation purpose. Other formability performances like strain distributions over the deformed cup surface were validated with experimental results.

  18. Enhancement of Buckling Load with the Use of Active Materials

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    2002-01-01

    In this paper, active buckling control of a beam using piezoelectric materials is investigated. Under small deformation, mathematical models are developed to describe the behavior of the beams subjected to an axial compressive load with geometric imperfections and load eccentricities under piezoelectric force. Two types of supports, simply supported and clamped, of the beam with a partially bonded piezoelectric actuator are used to illustrate the concept. For the beam with load eccentricities and initial geometric imperfections, the load- carrying capacity can be significantly enhanced by counteracting moments from the piezoelectric actuator. For the single piezoelectric actuator, using static feedback closed-loop control, the first buckling load can be eliminated. In the case of initially straight beams, analytical solutions of the enhanced first critical buckling load due to the increase of bending stiffness by piezoelectric actuators are derived based on linearized buckling analysis.

  19. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory.

    PubMed

    Meier, Beat; Zimmermann, Thomas D

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  20. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory

    PubMed Central

    Meier, Beat; Zimmermann, Thomas D.

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially. PMID:26082709

  1. T-load microchannel array and fabrication method

    DOEpatents

    Swierkowski, Stefan P.

    2000-01-01

    A three-dimensional (3-D) T-load for planar microchannel arrays for electrophoresis, for example, which enables sample injection directly onto a plane perpendicular to the microchannels' axis, at their ends. This is accomplished by forming input wells that extend beyond the ends of the microchannel thereby eliminating the right angle connection from the input well into the end of the microchannel. In addition, the T-load input well eases the placement of electrode in or adjacent the well and thus enables very efficient reproducible electrokinetic (ek) injection. The T-load input well eliminates the prior input well/microchannel alignment concerns, since the input well can be drilled after the top and bottom microchannel plates are bonded together. The T-load input well may extend partially or entirely through the bottom microchannel plate which enables more efficient gel and solution flushing, and also enables placement of multiple electrodes to assist in the ek sample injection.

  2. High power s-band vacuum load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Michael; Dudas, Alan; Krasnykh, Anatoly

    Through a combination of experimentation and calculation the components of a novel room temperature dry load were successfully fabricated. These components included lossy ceramic cylinders of various lengths, thicknesses, and percent of silicon carbide (SiC). The cylinders were then assembled into stainless steel compression rings by differential heating of the parts and a special fixture. Post machining of this assembly provided a means for a final weld. The ring assemblies were then measured for S-parameters, individually and in pairs using a low-cost TE10 rectangular to TE01 circular waveguide adapter specially designed to be part of the final load assembly. Matchedmore » pairs of rings were measured for assembly into the final load, and a sliding short designed and fabricated to assist in determining the desired short location in the final assembly. The plan for the project was for Muons, Inc. to produce prototype loads for long-term testing at SLAC. The STTR funds for SLAC were to upgrade and operate their test station to ensure that the loads would satisfy their requirements. Phase III was to be the sale to SLAC of loads that Muons, Inc. would manufacture. However, an alternate solution that involved a rebuild of the old loads, reduced SLAC budget projections, and a relaxed time for the replacement of all loads meant that in-house labor will be used to do the upgrade without the need for the loads developed in this project. Consequently, the project was terminated before the long term testing was initiated. However, SLAC can use the upgraded test stand to compare the long-term performance of the ones produced in this project with their rebuilt loads when they are available.« less

  3. Does Conspecific Fighting Yield Conditioned Taste Aversion in Rats?

    ERIC Educational Resources Information Center

    Nakajima, Sadahiko; Kumazawa, Gaku; Ieki, Hayato; Hashimoto, Aya

    2012-01-01

    Running in an activity wheel yields conditioned aversion to a taste solution consumed before the running, but its underlying physiological mechanism is unknown. According to the claim that energy expenditure or general stress caused by physical exercise is a critical factor for this taste-aversion learning, not only running but also other…

  4. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less

  5. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Margarita, E-mail: mpopova@orgchem.bas.bg; Szegedi, Agnes; Mavrodinova, Vesselina

    2014-11-15

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated.more » Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol.« less

  6. Cyclic mechanical loading enables solute transport and oxygen supply in bone healing: an in vitro investigation.

    PubMed

    Witt, Florian; Duda, Georg N; Bergmann, Camilla; Petersen, Ansgar

    2014-02-01

    Bone healing is a complex process with an increased metabolic activity and consequently high demand for oxygen. In the hematoma phase, inflammatory cells and mesenchymal stromal cells (MSCs) are initially cut off from direct nutritional supply via blood vessels. Cyclic mechanical loading that occurs, for example, during walking is expected to have an impact on the biophysical environment of the cells but meaningful quantitative experimental data are still missing. In this study, the hypothesis that cyclic mechanical loading within a physiological range significantly contributes to oxygen transport into the fracture hematoma was investigated by an in vitro approach. MSCs were embedded in a fibrin matrix to mimic the hematoma phase during bone healing. Construct geometry, culture conditions, and parameters of mechanical loading in a bioreactor system were chosen to resemble the in vivo situation based on data from human studies and a well-characterized large animal model. Oxygen tension was measured before and after mechanical loading intervals by a chemical optical microsensor. The increase in oxygen tension at the center of the constructs was significant and depended on loading time with maximal values of 9.9%±5.1%, 14.8%±4.9%, and 25.3%±7.2% of normal atmospheric oxygen tension for 5, 15, and 30 min of cyclic loading respectively. Histological staining of hypoxic cells after 48 h of incubation confirmed sensor measurements by showing an increased number of normoxic cells with intermittent cyclic compression compared with unloaded controls. The present study demonstrates that moderate cyclic mechanical loading leads to an increased oxygen transport and thus to substantially enhanced supply conditions for cells entrapped in the hematoma. This link between mechanical conditions and nutrition supply in the early regenerative phases could be employed to improve the environmental conditions for cell metabolism and consequently prevent necrosis.

  7. Alternate Methods in Refining the SLS Nozzle Plug Loads

    NASA Technical Reports Server (NTRS)

    Burbank, Scott; Allen, Andrew

    2013-01-01

    Numerical analysis has shown that the SLS nozzle environmental barrier (nozzle plug) design is inadequate for the prelaunch condition, which consists of two dominant loads: 1) the main engines startup pressure and 2) an environmentally induced pressure. Efforts to reduce load conservatisms included a dynamic analysis which showed a 31% higher safety factor compared to the standard static analysis. The environmental load is typically approached with a deterministic method using the worst possible combinations of pressures and temperatures. An alternate probabilistic approach, utilizing the distributions of pressures and temperatures, resulted in a 54% reduction in the environmental pressure load. A Monte Carlo simulation of environmental load that used five years of historical pressure and temperature data supported the results of the probabilistic analysis, indicating the probabilistic load is reflective of a 3-sigma condition (1 in 370 probability). Utilizing the probabilistic load analysis eliminated excessive conservatisms and will prevent a future overdesign of the nozzle plug. Employing a similar probabilistic approach to other design and analysis activities can result in realistic yet adequately conservative solutions.

  8. The structure of aqueous sodium hydroxide solutions: a combined solution x-ray diffraction and simulation study.

    PubMed

    Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál

    2008-01-28

    To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.

  9. Three decades of monitoring in the Rio Cordon instrumented basin: Sediment budget and temporal trend of sediment yield

    NASA Astrophysics Data System (ADS)

    Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G. R.; Lenzi, M. A.

    2017-08-01

    This paper investigates nearly 30 years of monitoring of sediment fluxes in an instrumented Alpine basin (Rio Cordon, Italy). The collected bedload and suspended sediment transport data allows sediment dynamics to be analyzed at different time scales, ranging from short- (single event) to long-term (three decades). The Rio Cordon monitoring station has been operating since 1986, continuously recording water discharge, bedload and suspended load. At the flood event scale, a good relationship was found between peak discharges (Qpeak) and sediment load (bedload and suspended load). The inter-annual sediment yields were analyzed, also assessing the contribution of the single floods to the total sediment budget. The annual suspended load ranges from 10 to 2524 t yr- 1, while the bedload varies from 0 to 1543 t yr- 1. The higher annual yields were recorded in the years when large floods occurred, highlighting that the sediment budget in the Rio Cordon is strongly controlled by the occurrence of high magnitude events. Investigation of the seasonal suspended load contribution demonstrated that from 1986 to 1993 most fine sediments were transported during the snowmelt/summer seasons, while autumn and snowmelt were the dominant seasons contributing to sediment yield in the periods 1994-2002 and 2003-2014, respectively. The mean annual sediment yield from 1986 to 2014 is equal to 103 t km- 2 yr- 1, and overall, bedload accounts for 21% of the total sediment yield. The ratio between the sediment transport and the effective runoff of the events allowed the temporal trends of transport efficiency to be inferred, highlighting the existence of periods characterized by different sediment availability. In particular, despite no significant changes in the hydrological variables (i.e. rainfall), nearly a decade (1994-2002) with high transport efficiency appears to have occurred after an exceptional event (recurrence interval > 100 years). This event affected the sediment availability

  10. Theoretical prediction on corrugated sandwich panels under bending loads

    NASA Astrophysics Data System (ADS)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  11. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure.

    PubMed

    Chae, K J; Jang, Am; Yim, S K; Kim, In S

    2008-01-01

    In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35 degrees C, with four feed loads of 5%, 10%, 20% and 40% (feed volume/digester volume). At a temperature of 30 degrees C, the methane yield was reduced by only 3% compared to 35 degrees C, while a 17.4% reduction was observed when the digestion was performed at 25 degrees C. Ultimate methane yields of 327, 389 and 403 mL CH(4)/g VS(added) were obtained at 25, 30 and 35 degrees C, respectively; with moderate feed loads from 5% to 20% (V/V). From the elemental analysis of swine manure, the theoretical biogas and methane yields at standard temperature and pressure were 1.12L biogas/g VS(destroyed) and 0.724 L CH(4)/g VS(destroyed), respectively. Also, the methane content increased with increasing digestion temperatures, but only to a small degree. Temperature shocks from 35 to 30 degrees C and again from 30 to 32 degrees C led to a decrease in the biogas production rate, but it rapidly resumed the value of the control reactor. In addition, no lasting damage was observed for the digestion performance, once it had recovered.

  12. Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes

    NASA Astrophysics Data System (ADS)

    Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.

    2017-12-01

    In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.

  13. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  14. Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  15. Yield strength of Cu and a CuPb alloy (1% Pb)

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Gray, G. T.; Fensin, S. J.; Grover, M.; Prime, M. B.; Stevens, G. D.; Stone, J. B.; Turley, W. D.

    2017-01-01

    With PBX9501 we explosively loaded fully annealed OFHC-Cu and an OFHC-CuPb (extruded with 1% Pb that aggregates at the Cu grain boundaries) to study the effects of the 1% Pb on the elastic-plastic yield Y of Cu. The yield-stress Y was studied through observation of surface velocimetry and total ejected mass ρA from periodic surface perturbations machined onto the sample surfaces. The perturbation's wavelengths were λ ≈ 65 µm, and their amplitudes h were varied to determine the wavenumber (2π/λ) amplitude product kh at which ejecta production for the Cu and CuPb begins, which relates to Y. The Y of the two materials is apparently different.

  16. Prediction of the Dynamic Yield Strength of Metals Using Two Structural-Temporal Parameters

    NASA Astrophysics Data System (ADS)

    Selyutina, N. S.; Petrov, Yu. V.

    2018-02-01

    The behavior of the yield strength of steel and a number of aluminum alloys is investigated in a wide range of strain rates, based on the incubation time criterion of yield and the empirical models of Johnson-Cook and Cowper-Symonds. In this paper, expressions for the parameters of the empirical models are derived through the characteristics of the incubation time criterion; a satisfactory agreement of these data and experimental results is obtained. The parameters of the empirical models can depend on some strain rate. The independence of the characteristics of the incubation time criterion of yield from the loading history and their connection with the structural and temporal features of the plastic deformation process give advantage of the approach based on the concept of incubation time with respect to empirical models and an effective and convenient equation for determining the yield strength in a wider range of strain rates.

  17. Inferential Framework for Autonomous Cryogenic Loading Operations

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry G.; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara

    2017-01-01

    We address problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA KSC. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.

  18. Anodizing And Sealing Aluminum In Nonchromated Solutions

    NASA Technical Reports Server (NTRS)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  19. Radiolysis of aqueous solutions of thiamine

    NASA Astrophysics Data System (ADS)

    Chijate, C.; Albarran, G.; Negron-Mendoza, A.

    1998-06-01

    The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.

  20. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films

    Treesearch

    Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar

    2017-01-01

    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...

  1. Deflection-Based Aircraft Structural Loads Estimation with Comparison to Flight

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. With a reliable strain and structural deformation measurement system this technique was examined. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  2. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2001-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.

  3. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.

  4. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&

  5. Nonlinear analysis of a shock-loaded membrane.

    NASA Technical Reports Server (NTRS)

    Madden, R.; Remington, P. J.

    1973-01-01

    Results from a computer method for analyzing the unsteady interaction of a fluid stream and a flat circular elastic membrane are presented. The loading on the membrane is assumed to be caused by the firing of a shock tube. The fluid pressures and velocities are determined from a scheme based on the numerical method of characteristics, and the membrane is analyzed using exact relations for membrane strain. The interactive solution is found to give peak stresses 40% lower than a solution which assumes a pressure invariant in space and time.

  6. Observation of tritium in gas/plasma loaded titanium samples

    NASA Astrophysics Data System (ADS)

    Srinivasan, M.; Shyam, A.; Kaushik, T. C.; Rout, R. K.; Kulkarni, L. V.; Krishnan, M. S.; Malhotra, S. K.; Nagvenkar, V. G.; Iyengar, P. K.

    1991-05-01

    The observation of significant neutron yield from gas loaded titanium samples at Frascati in April 1989 opened up an alternate pathway to the investigation of anomalous nuclear phenomena in deuterium/solid systems, complimenting the electrolytic approach. Since then at least six different groups have successfully measured burst neutron emission from deuterated titanium shavings following the Frascati methodology, the special feature of which was the use of liquid nitrogen to create repeated thermal cycles resulting in the production of non-equilibrium conditions in the deuterated samples. At Trombay several variations of the gas loading procedure have been investigated including induction heating of single machined titanium targets in a glass chamber as well as use of a plasma focus device for deuteriding its central titanium electrode. Stemming from earlier observations both at BARC and elsewhere that tritium yield is ≂108 times higher than neutron output in cold fusion experiments, we have channelised our efforts to the search for tritium rather than neutrons. The presence of tritium in a variety gas/plasma loaded titanium samples has been established successfully through a direct measurement of the radiations emitted as a result of tritium decay, in contradistinction to other groups who have looked for tritium in the extracted gases. In some samples we have thus observed tritium levels of over 10 MBq with a corresponding (t/d) ratio of ≳10-5.

  7. Aquifer-yield continuum as a guide and typology for science-based groundwater management

    NASA Astrophysics Data System (ADS)

    Pierce, Suzanne A.; Sharp, John M.; Guillaume, Joseph H. A.; Mace, Robert E.; Eaton, David J.

    2013-03-01

    Groundwater availability is at the core of hydrogeology as a discipline and, simultaneously, the concept is the source of ambiguity for management and policy. Aquifer yield has undergone multiple definitions resulting in a range of scientific methods to calculate and model availability reflecting the complexity of combined scientific, management, policy, and stakeholder processes. The concept of an aquifer-yield continuum provides an approach to classify groundwater yields along a spectrum, from non-use through permissive sustained, sustainable, maximum sustained, safe, permissive mining to maximum mining yields, that builds on existing literature. Additionally, the aquifer-yield continuum provides a systems view of groundwater availability to integrate physical and social aspects in assessing management options across aquifer settings. Operational yield describes the candidate solutions for operational or technical implementation of policy, often relating to a consensus yield that incorporates human dimensions through participatory or adaptive governance processes. The concepts of operational and consensus yield address both the social and the technical nature of science-based groundwater management and governance.

  8. A review of research in rotor loads

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Mantay, Wayne R.

    1988-01-01

    The research accomplished in the area of rotor loads over the last 13 to 14 years is reviewed. The start of the period examined is defined by the 1973 AGARD Milan conference and the 1974 hypothetical rotor comparison. The major emphasis of the review is research performed by the U.S. Army and NASA at their laboratories and/or by the industry under government contract. For the purpose of this review, two main topics are addressed: rotor loads prediction and means of rotor loads reduction. A limited discussion of research in gust loads and maneuver loads is included. In the area of rotor loads predictions, the major problem areas are reviewed including dynamic stall, wake induced flows, blade tip effects, fuselage induced effects, blade structural modeling, hub impedance, and solution methods. It is concluded that the capability to predict rotor loads has not significantly improved in this time frame. Future progress will require more extensive correlation of measurements and predictions to better understand the causes of the problems, and a recognition that differences between theory and measurement have multiple sources, yet must be treated as a whole. There is a need for high-quality data to support future research in rotor loads, but the resulting data base must not be seen as an end in itself. It will be useful only if it is integrated into firm long-range plans for the use of the data.

  9. A single-stage optical load-balanced switch for data centers.

    PubMed

    Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying

    2012-10-22

    Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.

  10. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.

  11. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  12. Antimicrobial efficiency of PAA/(PVP/CHI) erodible polysaccharide multilayer through loading and controlled release of antibiotics.

    PubMed

    Xu, Qingwen; Liu, Huihua; Ye, Zi; Nan, Kaihui; Lin, Sen; Chen, Hao; Wang, Bailiang

    2017-04-01

    The adhesion of bacteria and subsequent formation of biofilm on the surface of implants greatly affect the long-term use of the implants. The low molar mass gentamicin (GS) cations could hardly be directly incorporated into the multilayer films through alternately deposition with a polyanion. Herein, we have designed and constructed a (poly(acrylic acid)/(polyvinylpyrrolidone/chitosan)) n ((PAA/(PVP/CHI)) n ) multilayer films through layer-by-layer self-assembly method. Through increasing the pH to destroy hydrogen bonding between PAA and PVP, PVP released into the solution and GS simultaneously combined with PAA through electrostatic interactions. The loading dosage of GS into the (PAA/(PVP/CHI)) 10 multilayer film was up to 153.84±18.64μg/cm 2 and could be precisely tuned through changing the thickness of the films. The release behaviour of GS in phosphate buffer saline could also be regulated through thermal cross-linking of the films. The drug-loaded multilayer films displayed efficient against three kinds of Gram-positive and three kinds of Gram-negative bacteria and one kind of fungi, and good biocompatibility towards human lens epithelial cells. GS-loaded multilayer films-coated polydimethylsiloxane (PDMS) were compared with pristine PDMS in the rabbit subcutaneous S. aureus infection model. The antimicrobial-coated implants yielded a much lower degree of infections than pristine implants at day seven. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Closed-form Static Analysis with Inertia Relief and Displacement-Dependent Loads Using a MSC/NASTRAN DMAP Alter

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1995-01-01

    Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.

  14. Optimal load scheduling in commercial and residential microgrids

    NASA Astrophysics Data System (ADS)

    Ganji Tanha, Mohammad Mahdi

    Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.

  15. Recovery Act. Advanced Load Identification and Management for Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Casey, Patrick; Du, Liang

    2014-02-12

    In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the buildingmore » sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management

  16. Bed load transport over a broad range of timescales: Determination of three regimes of fluctuations

    NASA Astrophysics Data System (ADS)

    Ma, Hongbo; Heyman, Joris; Fu, Xudong; Mettra, Francois; Ancey, Christophe; Parker, Gary

    2014-12-01

    This paper describes the relationship between the statistics of bed load transport flux and the timescale over which it is sampled. A stochastic formulation is developed for the probability distribution function of bed load transport flux, based on the Ancey et al. (2008) theory. An analytical solution for the variance of bed load transport flux over differing sampling timescales is presented. The solution demonstrates that the timescale dependence of the variance of bed load transport flux reduces to a three-regime relation demarcated by an intermittency timescale (tI) and a memory timescale (tc). As the sampling timescale increases, this variance passes through an intermittent stage (≪tI), an invariant stage (tI < t < tc), and a memoryless stage (≫ tc). We propose a dimensionless number (Ra) to represent the relative strength of fluctuation, which provides a common ground for comparison of fluctuation strength among different experiments, as well as different sampling timescales for each experiment. Our analysis indicates that correlated motion and the discrete nature of bed load particles are responsible for this three-regime behavior. We use the data from three experiments with high temporal resolution of bed load transport flux to validate the proposed three-regime behavior. The theoretical solution for the variance agrees well with all three sets of experimental data. Our findings contribute to the understanding of the observed fluctuations of bed load transport flux over monosize/multiple-size grain beds, to the characterization of an inherent connection between short-term measurements and long-term statistics, and to the design of appropriate sampling strategies for bed load transport flux.

  17. An exact solution of a simplified two-phase plume model. [for solid propellant rocket

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Roberts, B. B.

    1974-01-01

    An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.

  18. FEM study of recrystallized tungsten under ELM-like heat loads

    NASA Astrophysics Data System (ADS)

    Du, J.; Yuan, Y.; Wirtz, M.; Linke, J.; Liu, W.; Greuner, H.

    2015-08-01

    FEM thermal analysis has been performed on rolled tungsten plate loaded with heat load of 23 MW/m2 for 1.5 s. Gradient temperature field is generated due to the Gaussian shape beam profile. Recrystallization and grain growth of various scales were found at different areas of the sample depending on the localized thermal field. FEM thermal-mechanical analyses have been performed on the recrystallized tungsten exposed to ELMs-like heat loads. The analyzed load conditions were 0.38 and 1.14 GW/m2 with different base temperatures. Material deterioration due to recrystallization was implemented by adopting decreased yield stress, tangent modulus, strength coefficient and ductility coefficients. Life time predicted by adopting strain life criterion indicates grain growth from 5 μm to 100 μm causes the life decrease of 80%. This result is gained by pure mathematical calculation based on the empiric assumptions of material properties.

  19. Comparison of modal superposition methods for the analytical solution to moving load problems.

    DOT National Transportation Integrated Search

    1994-01-01

    The response of bridge structures to moving loads is investigated using modal superposition methods. Two distinct modal superposition methods are available: the modedisplacement method and the mode-acceleration method. While the mode-displacement met...

  20. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework.

    PubMed

    Yang, Guoxiang; Best, Elly P H

    2015-09-15

    Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A High-Sensitivity Hydraulic Load Cell for Small Kitchen Appliances

    PubMed Central

    Pačnik, Roman; Novak, Franc

    2010-01-01

    In this paper we present a hydraulic load cell made from hydroformed metallic bellows. The load cell was designed for a small kitchen appliance with the weighing function integrated into the composite control and protection of the appliance. It is a simple, low-cost solution with small dimensions and represents an alternative to the existing hydraulic load cells in industrial use. A good non-linearity and a small hysteresis were achieved. The influence of temperature leads to an error of 7.5%, which can be compensated for by software to meet the requirements of the target application. PMID:22163665

  2. A high-sensitivity hydraulic load cell for small kitchen appliances.

    PubMed

    Pačnik, Roman; Novak, Franc

    2010-01-01

    In this paper we present a hydraulic load cell made from hydroformed metallic bellows. The load cell was designed for a small kitchen appliance with the weighing function integrated into the composite control and protection of the appliance. It is a simple, low-cost solution with small dimensions and represents an alternative to the existing hydraulic load cells in industrial use. A good non-linearity and a small hysteresis were achieved. The influence of temperature leads to an error of 7.5%, which can be compensated for by software to meet the requirements of the target application.

  3. Joint Procrustes Analysis for Simultaneous Nonsingular Transformation of Component Score and Loading Matrices

    ERIC Educational Resources Information Center

    Adachi, Kohei

    2009-01-01

    In component analysis solutions, post-multiplying a component score matrix by a nonsingular matrix can be compensated by applying its inverse to the corresponding loading matrix. To eliminate this indeterminacy on nonsingular transformation, we propose Joint Procrustes Analysis (JPA) in which component score and loading matrices are simultaneously…

  4. Partial Reductions in Mechanical Loading Yield Proportional Changes in Bone Density, Bone Architecture, and Muscle Mass

    PubMed Central

    Ellman, Rachel; Spatz, Jordan; Cloutier, Alison; Palme, Rupert; Christiansen, Blaine A; Bouxsein, Mary L

    2014-01-01

    Although the musculoskeletal system is known to be sensitive to changes in its mechanical environment, the relationship between functional adaptation and below-normal mechanical stimuli is not well defined. We investigated bone and muscle adaptation to a range of reduced loading using the partial weight suspension (PWS) system, in which a two-point harness is used to offload a tunable amount of body weight while maintaining quadrupedal locomotion. Skeletally mature female C57Bl/6 mice were exposed to partial weight bearing at 20%, 40%, 70%, or 100% of body weight for 21 days. A hindlimb unloaded (HLU) group was included for comparison in addition to age-matched controls in normal housing. Gait kinematics was measured across the full range of weight bearing, and some minor alterations in gait from PWS were identified. With PWS, bone and muscle changes were generally proportional to the degree of unloading. Specifically, total body and hindlimb bone mineral density, calf muscle mass, trabecular bone volume of the distal femur, and cortical area of the femur midshaft were all linearly related to the degree of unloading. Even a load reduction to 70% of normal weight bearing was associated with significant bone deterioration and muscle atrophy. Weight bearing at 20% did not lead to better bone outcomes than HLU despite less muscle atrophy and presumably greater mechanical stimulus, requiring further investigation. These data confirm that the PWS model is highly effective in applying controllable, reduced, long-term loading that produces predictable, discrete adaptive changes in muscle and bone of the hindlimb. PMID:23165526

  5. Metals in European roadside soils and soil solution--a review.

    PubMed

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-06-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Impact of Uncertainty from Load-Based Reserves and Renewables on Dispatch Costs and Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bowen; Maroukis, Spencer D.; Lin, Yashen

    2016-11-21

    Aggregations of controllable loads are considered to be a fast-responding, cost-efficient, and environmental-friendly candidate for power system ancillary services. Unlike conventional service providers, the potential capacity from the aggregation is highly affected by factors like ambient conditions and load usage patterns. Previous work modeled aggregations of controllable loads (such as air conditioners) as thermal batteries, which are capable of providing reserves but with uncertain capacity. A stochastic optimal power flow problem was formulated to manage this uncertainty, as well as uncertainty in renewable generation. In this paper, we explore how the types and levels of uncertainty, generation reserve costs, andmore » controllable load capacity affect the dispatch solution, operational costs, and CO2 emissions. We also compare the results of two methods for solving the stochastic optimization problem, namely the probabilistically robust method and analytical reformulation assuming Gaussian distributions. Case studies are conducted on a modified IEEE 9-bus system with renewables, controllable loads, and congestion. We find that different types and levels of uncertainty have significant impacts on dispatch and emissions. More controllable loads and less conservative solution methodologies lead to lower costs and emissions.« less

  7. SANS contrast variation study of magnetoferritin structure at various iron loading

    NASA Astrophysics Data System (ADS)

    Melnikova, Lucia; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Oleksandr I.; Bulavin, Leonid A.; Garamus, Vasil M.; Almásy, László; Mitroova, Zuzana; Kopcansky, Peter

    2015-03-01

    Magnetoferritin, a synthetic derivate of iron storage protein - ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded.

  8. Complete mechanical behavior analysis of FG Nano Beam under non-uniform loading using non-local theory

    NASA Astrophysics Data System (ADS)

    Ghaffari, I.; Parhizkar Yaghoobi, M.; Ghannad, M.

    2018-01-01

    The purpose of this study is to offer a complete solution to analyze the mechanical behavior (bending, buckling and vibration) of Nano-beam under non-uniform loading. Furthermore, the effects of size (nonlocal parameters), non-homogeneity constants, and different boundary conditions are investigated by using this method. The exact solution presented here reduces costs incurred by experiments. In this research, the displacement field obeys the kinematics of the Euler-Bernoulli beam theory and non-local elasticity theory has been used. The governing equations and general boundary conditions are derived for a beam by using energy method. The presented solution enables us to analyze any kind of loading profile and boundary conditions with no limitations. Furthermore, this solution, unlike previous studies, is not a series-solution; hence, there is no limitation prior to existing with the series-solution, nor does it need to check convergence. Based on the developed analytical solution, the influence of size, non-homogeneity and non-uniform loads on bending, buckling and vibration behaviors is discussed. Also, the obtained result is highly accurate and in good agreement with previous research. In theoretical method, the allowable range for non-local parameters can be determined so as to make a major contribution to the reduction of the cost of experiments determining the value of non-local parameters.

  9. Pollutant loading from low-density residential neighborhoods in California.

    PubMed

    Bale, Andrew E; Greco, Steven E; Pitton, Bruno J L; Haver, Darren L; Oki, Lorence R

    2017-08-01

    This paper presents a comparison of pollutant load estimations for runoff from two geographically distinct residential suburban neighborhoods in northern and southern California. The two neighborhoods represent a single urban land use type: low-density residential in small catchments (<0.3 km 2 ) under differing regional climates and irrigation practices. Pollutant loads of pesticides, nutrients, and drinking water constituents of concern are estimated for both storm and non-storm runoff. From continuous flow monitoring, it was found that a daily cycle of persistent runoff that peaks mid-morning occurs at both sites. These load estimations indicate that many residential neighborhoods in California produce significant non-storm pollutant loads year-round. Results suggest that non-storm flow accounted for 47-69% of total annual runoff and significantly contributed to annual loading rates of most nutrients and pesticides at both sites. At the Southern California site, annual non-storm loads are 1.2-10 times higher than storm loads of all conventional constituents and nutrients with one exception (total suspended solids). At the Northern California site, annual storm loads range from 51 to 76% of total loads for all conventional constituents and nutrients with one exception (total dissolved solids). Non-storm yields of pesticides at the Southern California site range from 1.3-65 times higher than those at the Northern California site. The disparity in estimated pollutant loads between the two sites indicates large potential variation from site-to-site within the state and suggests neighborhoods in drier and milder climates may produce significantly larger non-storm loads due to persistent dry season runoff and year-round pest control.

  10. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2016-07-01

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  11. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    PubMed

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  12. Monte Carlo track-structure calculations for aqueous solutions containing biomolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.E.; Hamm, R.N.; Ritchie, R.H.

    1993-10-01

    Detailed Monte Carlo calculations provide a powerful tool for understanding mechanisms of radiation damage to biological molecules irradiated in aqueous solution. This paper describes the computer codes, OREC and RADLYS, which have been developed for this purpose over a number of years. Some results are given for calculations of the irradiation of pure water. comparisons are presented between computations for liquid water and water vapor. Detailed calculations of the chemical yields of several products from X-irradiated, oxygen-free glycylglycine solutions have been performed as a function of solute concentration. Excellent agreement is obtained between calculated and measured yields. The Monte Carlomore » analysis provides a complete mechanistic picture of pathways to observed radiolytic products. This approach, successful with glycylglycine, will be extended to study the irradiation of oligonucleotides in aqueous solution.« less

  13. Solution dewatering with concomitant ion removal

    DOEpatents

    Peterson, Eric S.; Marshall, Douglas W.; Stone, Mark L.

    2003-08-05

    One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.

  14. A rare case of low-solute hyponatremia in a nonalcoholic person.

    PubMed

    Srisung, Weeraporn; Mankongpaisarnrung, Charoen; Anaele, Cyriacus; Dumrongmongcolgul, Nat; Ahmed, Vaqar

    2015-01-01

    Low-solute hyponatremia is a relatively uncommon entity of euvolemic hyponatremia. Classic cases were described in alcoholics as beer potomania, which is characterized by hyponatremia in the setting of low-solute intake due to heavy beer drinking. We report a case of low-solute hyponatremia in a nonalcoholic person who was given a solute load, and, subsequently, had excessive diuresis with the resultant rapid increase in serum sodium concentration.

  15. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    PubMed

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  16. Combining high biodiversity with high yields in tropical agroforests.

    PubMed

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-05-17

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland.

  17. Radiation induced degradation of xanthan gum in aqueous solution

    NASA Astrophysics Data System (ADS)

    Hayrabolulu, Hande; Demeter, Maria; Cutrubinis, Mihalis; Güven, Olgun; Şen, Murat

    2018-03-01

    In our previous study, we have investigated the effect of gamma rays on xanthan gum in the solid state and it was determined that dose rate was an important factor effecting the radiation degradation of xanthan gum. In the present study, in order to provide a better understanding of how ionizing radiation effect xanthan gum, we have investigated the effects of ionizing radiation on aqueous solutions of xanthan at various concentrations (0.5-4%). Xanthan solutions were irradiated with gamma rays in air, at ambient temperature, at different dose rates (0.1-3.3-7.0 kGy/h) and doses (2.5-50 kGy). Change in their molecular weights was followed by size exclusion chromatography (SEC). Chain scission yield (G(S)), and degradation rate constants (k) were calculated. It was determined that, solution concentration was a factor effecting the degradation chemical yield and degradation rate of xanthan gum. Chain scission reactions were more effective for lower solution concentrations.

  18. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    PubMed

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  19. The contribution of particles washed from rooftops to contaminant loading to urban streams.

    PubMed

    Van Metre, P C; Mahler, B J

    2003-09-01

    Rooftops are both a source of and a pathway for contaminated runoff in urban environments. To investigate the importance of particle-associated contamination in rooftop runoff, particles washed from asphalt shingle and galvanized metal roofs at sites 12 and 102 m from a major expressway were analyzed for major and trace elements and PAHs. Concentrations and yields from rooftops were compared among locations and roofing material types and to loads monitored during runoff events in the receiving urban stream to evaluate rooftop sources and their potential contribution to stream loading. Concentrations of zinc, lead, pyrene, and chrysene on a mass per mass basis in a majority of rooftop samples exceeded established sediment quality guidelines for probable toxicity of bed sediments to benthic biota. Fallout near the expressway was greater than farther away, as indicated by larger yields of all contaminants investigated, although some concentrations were lower. Metal roofing was a source of cadmium and zinc and asphalt shingles a source of lead. The contribution of rooftop washoff to watershed loading was estimated to range from 6 percent for chromium and arsenic to 55 percent for zinc. Estimated contributions from roofing material to total watershed load were greatest for zinc and lead, contributing about 20 and 18 percent, respectively. The contribution from atmospheric deposition of particles onto rooftops to total watershed loads in stormwater was estimated to be greatest for mercury, contributing about 46 percent.

  20. A Study of Poisson's Ratio in the Yield Region

    NASA Technical Reports Server (NTRS)

    Gerard, George; Wildhorn, Sorrel

    1952-01-01

    In the yield region of the stress-strain curve the variation in Poisson's ratio from the elastic to the plastic value is most pronounced. This variation was studied experimentally by a systematic series of tests on several aluminum alloys. The tests were conducted under simple tensile and compressive loading along three orthogonal axes. A theoretical variation of Poisson's ratio for an orthotropic solid was obtained from dilatational considerations. The assumptions used in deriving the theory were examined by use of the test data and were found to be in reasonable agreement with experimental evidence.

  1. The Research Doesn't Always Apply: Practical Solutions to Evidence-Based Training-Load Monitoring in Elite Team Sports.

    PubMed

    Burgess, Darren J

    2017-04-01

    Research describing load-monitoring techniques for team sport is plentiful. Much of this research is conducted retrospectively and typically involves recreational or semielite teams. Load-monitoring research conducted on professional team sports is largely observational. Challenges exist for the practitioner in implementing peer-reviewed research into the applied setting. These challenges include match scheduling, player adherence, manager/coach buy-in, sport traditions, and staff availability. External-load monitoring often attracts questions surrounding technology reliability and validity, while internal-load monitoring makes some assumptions about player adherence, as well as having some uncertainty around the impact these measures have on player performance This commentary outlines examples of load-monitoring research, discusses the issues associated with the application of this research in an elite team-sport setting, and suggests practical adjustments to the existing research where necessary.

  2. Normalized spectral damage of a linear system over different spectral loading patterns

    NASA Astrophysics Data System (ADS)

    Kim, Chan-Jung

    2017-08-01

    Spectral fatigue damage is affected by different loading patterns; the damage may be accumulated in a different manner because the spectral pattern has an influence on stresses or strains. The normalization of spectral damage with respect to spectral loading acceleration is a novel solution to compare the accumulated fatigue damage over different spectral loading patterns. To evaluate the sensitivity of fatigue damage over different spectral loading cases, a simple notched specimen is used to conduct a uniaxial vibration test for two representative spectral patterns-random and harmonic-between 30 and 3000 Hz. The fatigue damage to the simple specimen is analyzed for different spectral loading cases using the normalized spectral damage from the measured response data for both acceleration and strain. The influence of spectral loading patterns is discussed based on these analyses.

  3. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  4. Thermal stress analysis of symmetric shells subjected to asymmetric thermal loads

    NASA Technical Reports Server (NTRS)

    Negaard, G. R.

    1980-01-01

    The performance of the NASTRAN level 16.0 axisymmetric solid elements when subjected to both symmetric and asymmetric thermal loading was investigated. A ceramic radome was modeled using both the CTRAPRG and the CTRAPAX elements. The thermal loading applied contained severe gradients through the thickness of the shell. Both elements were found to be more sensitive to the effect of the thermal gradient than to the aspect ratio of the elements. Analysis using the CTRAPAX element predicted much higher thermal stresses than the analysis using the CTRAPRG element, prompting studies of models for which theoretical solutions could be calculated. It was found that the CTRAPRG element solutions were satisfactory, but that the CTRAPAX element was very geometry dependent. This element produced erroneous results if the geometry was allowed to vary from a rectangular cross-section. The most satisfactory solution found for this type of problem was to model a small segment of a symmetric structure with isoparametric solid elements and apply the cyclic symmetry option in NASTRAN.

  5. Solute atmospheres at dislocations

    DOE PAGES

    Hirth, John P.; Barnett, David M.; Hoagland, Richard G.

    2017-06-01

    In this study, a two-dimensional plane strain elastic solution is determined for the Cottrell solute atmosphere around an edge dislocation in an infinitely long cylinder of finite radius (the matrix), in which rows of solutes are represented by cylindrical rods with in-plane hydrostatic misfit (axial misfit is also considered). The periphery of the matrix is traction-free, thus introducing an image solute field which generates a solute-solute interaction energy that has not been considered previously. The relevant energy for the field of any distribution of solutes coexistent with a single edge dislocation along the (matrix) cylinder axis is determined, and coherencymore » effects are discussed and studied. Monte Carlo simulations accounting for all pertinent interactions over a range of temperatures are found to yield solute distributions different from classical results, namely, (1) Fermi-Dirac condensations at low temperatures at the free surface, (2) the majority of the atmosphere lying within an unexpectedly large non-linear interaction region near the dislocation core, and (3) temperature-dependent asymmetrical solute arrangements that promote bending. The solute distributions at intermediate temperatures show a 1/r dependence in agreement with previous linearized approximations. With a standard state of solute corresponding to a mean concentration, c 0, the relevant interaction energy expression presented in this work is valid when extended to large concentrations for which Henry's Law and Vegard's Law do not apply.« less

  6. Solute atmospheres at dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirth, John P.; Barnett, David M.; Hoagland, Richard G.

    In this study, a two-dimensional plane strain elastic solution is determined for the Cottrell solute atmosphere around an edge dislocation in an infinitely long cylinder of finite radius (the matrix), in which rows of solutes are represented by cylindrical rods with in-plane hydrostatic misfit (axial misfit is also considered). The periphery of the matrix is traction-free, thus introducing an image solute field which generates a solute-solute interaction energy that has not been considered previously. The relevant energy for the field of any distribution of solutes coexistent with a single edge dislocation along the (matrix) cylinder axis is determined, and coherencymore » effects are discussed and studied. Monte Carlo simulations accounting for all pertinent interactions over a range of temperatures are found to yield solute distributions different from classical results, namely, (1) Fermi-Dirac condensations at low temperatures at the free surface, (2) the majority of the atmosphere lying within an unexpectedly large non-linear interaction region near the dislocation core, and (3) temperature-dependent asymmetrical solute arrangements that promote bending. The solute distributions at intermediate temperatures show a 1/r dependence in agreement with previous linearized approximations. With a standard state of solute corresponding to a mean concentration, c 0, the relevant interaction energy expression presented in this work is valid when extended to large concentrations for which Henry's Law and Vegard's Law do not apply.« less

  7. High-Resolution Mapping of Yield Curve Shape and Evolution for Porous Rock: The Effect of Inelastic Compaction on Porous Bassanite

    NASA Astrophysics Data System (ADS)

    Bedford, John D.; Faulkner, Daniel R.; Leclère, Henri; Wheeler, John

    2018-02-01

    Porous rock deformation has important implications for fluid flow in a range of crustal settings as compaction can increase fluid pressure and alter permeability. The onset of inelastic strain for porous materials is typically defined by a yield curve plotted in differential stress (Q) versus effective mean stress (P) space. Empirical studies have shown that these curves are broadly elliptical in shape. Here conventional triaxial experiments are first performed to document (a) the yield curve of porous bassanite (porosity ≈ 27-28%), a material formed from the dehydration of gypsum, and (b) the postyield behavior, assuming that P and Q track along the yield surface as inelastic deformation accumulates. The data reveal that after initial yield, the yield surface cannot be perfectly elliptical and must evolve significantly as inelastic strain is accumulated. To investigate this further, a novel stress-probing methodology is developed to map precisely the yield curve shape and subsequent evolution for a single sample. These measurements confirm that the high-pressure side of the curve is partly composed of a near-vertical limb. Yield curve evolution is shown to be dependent on the nature of the loading path. Bassanite compacted under differential stress develops a heterogeneous microstructure and has a yield curve with a peak that is almost double that of an equal porosity sample that has been compacted hydrostatically. The dramatic effect of different loading histories on the strength of porous bassanite highlights the importance of understanding the associated microstructural controls on the nature of inelastic deformation in porous rock.

  8. Ketoprofen-loaded polymer carriers in bigel formulation: an approach to enhancing drug photostability in topical application forms

    PubMed Central

    Andonova, Velichka; Peneva, Petya; Georgiev, George S; Toncheva, Vencislava T; Apostolova, Elisaveta; Peychev, Zhivko; Dimitrova, Stela; Katsarova, Mariana; Petrova, Nadia; Kassarova, Margarita

    2017-01-01

    The purpose of the study was to investigate the stability and biopharmaceutical characteristics of ketoprofen, loaded in polymeric carriers, which were included into a bigel in a semisolid dosage form. The polymer carriers with in situ-included ketoprofen were obtained by emulsifier-free emulsion polymerization of the monomers in aqueous medium or a solution of the polymers used. The morphological characteristics of the carriers, the in vitro release and the photochemical stability of ketoprofen were evaluated. The model with optimal characteristics was included in a bigel formulation. The bigel was characterized in terms of pH, rheological behavior, spreadability, and in vitro drug release. Acute skin toxicity, antinociceptive activity, anti-inflammatory activity, and antihyperalgesic effects of the prepared bigel with ketoprofen-loaded polymer carrier were evaluated. The carriers of ketoprofen were characterized by a high yield and drug loading. The particle size distribution varied widely according to the polymer used, and a sustained release was provided for up to 6 hours. The polymer mixture poly(vinyl acetate) and hydroxypropyl cellulose as a drug carrier, alone or included in the bigel composition, improved the photostability of the drug compared with unprotected ketoprofen. The bigel with ketoprofen-loaded particles provided sustained release of the drug and had optimal rheological parameters. In vivo experiments on the bigel showed no skin inflammation or irritation. Four hours after its application, a well-defined analgesic, anti-inflammatory, and antihyperalgesic effect was registered. The polymer mixture of poly(vinyl acetate) and hydroxypropyl cellulose as a carrier of ketoprofen and the bigel in which it was included provided an enhanced photostability and sustained drug release. PMID:28894363

  9. Ketoprofen-loaded polymer carriers in bigel formulation: an approach to enhancing drug photostability in topical application forms.

    PubMed

    Andonova, Velichka; Peneva, Petya; Georgiev, George S; Toncheva, Vencislava T; Apostolova, Elisaveta; Peychev, Zhivko; Dimitrova, Stela; Katsarova, Mariana; Petrova, Nadia; Kassarova, Margarita

    2017-01-01

    The purpose of the study was to investigate the stability and biopharmaceutical characteristics of ketoprofen, loaded in polymeric carriers, which were included into a bigel in a semisolid dosage form. The polymer carriers with in situ-included ketoprofen were obtained by emulsifier-free emulsion polymerization of the monomers in aqueous medium or a solution of the polymers used. The morphological characteristics of the carriers, the in vitro release and the photochemical stability of ketoprofen were evaluated. The model with optimal characteristics was included in a bigel formulation. The bigel was characterized in terms of pH, rheological behavior, spreadability, and in vitro drug release. Acute skin toxicity, antinociceptive activity, anti-inflammatory activity, and antihyperalgesic effects of the prepared bigel with ketoprofen-loaded polymer carrier were evaluated. The carriers of ketoprofen were characterized by a high yield and drug loading. The particle size distribution varied widely according to the polymer used, and a sustained release was provided for up to 6 hours. The polymer mixture poly(vinyl acetate) and hydroxypropyl cellulose as a drug carrier, alone or included in the bigel composition, improved the photostability of the drug compared with unprotected ketoprofen. The bigel with ketoprofen-loaded particles provided sustained release of the drug and had optimal rheological parameters. In vivo experiments on the bigel showed no skin inflammation or irritation. Four hours after its application, a well-defined analgesic, anti-inflammatory, and antihyperalgesic effect was registered. The polymer mixture of poly(vinyl acetate) and hydroxypropyl cellulose as a carrier of ketoprofen and the bigel in which it was included provided an enhanced photostability and sustained drug release.

  10. Suspended-sediment loads from major tributaries to the Missouri River between Garrison Dam and Lake Oahe, North Dakota, 1954-98

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2000-01-01

    Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak.  The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek.  Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin.  Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998.  Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98.  Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River.  Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River.  Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River.  The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries.  The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile.  The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area. 

  11. A Model of Equilibrium Conditions of Roof Rock Mass Giving Consideration to the Yielding Capacity of Powered Supports

    NASA Astrophysics Data System (ADS)

    Jaszczuk, Marek; Pawlikowski, Arkadiusz

    2017-12-01

    The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support

  12. A temperature match based optimization method for daily load prediction considering DLC effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.

    This paper presents a unique optimization method for short term load forecasting. The new method is based on the optimal template temperature match between the future and past temperatures. The optimal error reduction technique is a new concept introduced in this paper. Two case studies show that for hourly load forecasting, this method can yield results as good as the rather complicated Box-Jenkins Transfer Function method, and better than the Box-Jenkins method; for peak load prediction, this method is comparable in accuracy to the neural network method with back propagation, and can produce more accurate results than the multi-linear regressionmore » method. The DLC effect on system load is also considered in this method.« less

  13. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  14. Recovery of fission product palladium from acidic high level waste solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizvi, G.H.; Mathur, J.N.; Murali, M.S.

    1996-07-01

    The recovery of palladium from a synthetic pressurized heavy water reactor high level waste (PHWR-HLW) solution has been carried out, and the best reagents to use for the actual HLW solutions are discussed. The extraction of palladium from nitric acid solutions has been carried out using Cyanex-471X (triisobutylphosphine sulfide, TIPS) as the extractant. The metal ion could be quantitatively extracted from solutions with nitric acid concentrations between 2.0 and 6.0 M. The species extracted into the organic phase was found to be Pd(NO{sub 3}){sub 2}{center_dot}TIPS. Nitric acid in the range of 2.0 to 5.0 M had no effect on TIPSmore » for at least 71 hours. A systematic study of gamma irradiation on loading and stripping of palladium from loaded organic phases using several potential extractants, TIPS, alpha benzoin oxime, dioctylsulfide, and dioctylsulfoxide has been made. A flow sheet for the recovery of palladium from actual HLW solutions using TIPS is proposed.« less

  15. Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading.

    PubMed

    Salminen, Esa A; Rintala, Jukka A

    2002-07-01

    We studied the effect of hydraulic retention time (HRT) and loading on anaerobic digestion of poultry slaughterhouse wastes, using semi-continuously fed, laboratory-scale digesters at 31 degrees C. The effect on process performance was highly significant: Anaerobic digestion appeared feasible with a loading of up to 0.8 kg volatile solids (VS)/m3 d and an HRT of 50-100 days. The specific methane yield was high, from 0.52 to 0.55 m3/kg VS(added). On the other hand, at a higher loading, in the range from 1.0 to 2.1 kg VS/m3 d, and a shorter HRT, in the range from 25 to 13 days, the process appeared inhibited and/or overloaded, as indicated by the accumulation of volatile fatty acids and long-chain fatty acids and the decline in the methane yield. However, the inhibition was reversible. The nitrogen in the feed, ca. 7.8% of total solids (TS), was organic nitrogen with little ammonia present, whereas in the digested material ammonia accounted for 52-67% (up to 3.8 g/l) of total nitrogen. The TS and VS removals amounted to 76% and 64%, respectively. Our results show that on a continuous basis under the studied conditions and with a loading of up to 0.8 kg VS/m3 d metric ton (wet weight) of the studied waste mixture could yield up to 140 m3 of methane.

  16. The effect of poorly absorbed solute on intestinal absorption.

    PubMed

    Menzies, I S; Jenkins, A P; Heduan, E; Catt, S D; Segal, M B; Creamer, B

    1990-12-01

    To determine the effects of poorly absorbed solute on intestinal absorption, the urinary recovery of ingested lactulose, L-rhamnose, D-xylose, and 3-O-methyl-D-glucose was measured after simultaneous ingestion of various 'loads' of mannitol given in iso-osmolar solution. Mannitol reduced intestinal uptake of the poorly absorbed test sugars, lactulose and L-rhamnose; uptake of D-xylose and 3-O-methyl-D-glucose, which are absorbed by carrier-mediated transport largely from the jejunum, was less affected. The dose-response effect of mannitol on the absorption of L-rhamnose was approximately exponential; doses of 5, 10, and 20 g mannitol reduced the average urinary excretion of L-rhamnose by 34.7%, 51.7%, and 61.2%, respectively. In this respect, an osmotically equivalent load of lactulose, ingested as 'solute', was approximately twice as effective as mannitol in reducing L-rhamnose absorption, probably because lactulose is more poorly absorbed than mannitol (less than 1.0% versus 32-41%). Ingestion of other poorly absorbed solutes such as raffinose, sorbitol, xylitol, magnesium sulphate, and sodium sulphate also significantly depressed the absorption of L-rhamnose; in contrast, more efficiently absorbed solutes, such as sodium chloride, glucose, glycerol, and urea had little effect.

  17. Load Balancing in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Zhu, Yingwu

    In this chapter we start by addressing the importance and necessity of load balancing in structured P2P networks, due to three main reasons. First, structured P2P networks assume uniform peer capacities while peer capacities are heterogeneous in deployed P2P networks. Second, resorting to pseudo-uniformity of the hash function used to generate node IDs and data item keys leads to imbalanced overlay address space and item distribution. Lastly, placement of data items cannot be randomized in some applications (e.g., range searching). We then present an overview of load aggregation and dissemination techniques that are required by many load balancing algorithms. Two techniques are discussed including tree structure-based approach and gossip-based approach. They make different tradeoffs between estimate/aggregate accuracy and failure resilience. To address the issue of load imbalance, three main solutions are described: virtual server-based approach, power of two choices, and address-space and item balancing. While different in their designs, they all aim to improve balance on the address space and data item distribution. As a case study, the chapter discusses a virtual server-based load balancing algorithm that strives to ensure fair load distribution among nodes and minimize load balancing cost in bandwidth. Finally, the chapter concludes with future research and a summary.

  18. Yield gaps and yield relationships in US soybean production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...

  19. Digital PCR provides absolute quantitation of viral load for an occult RNA virus.

    PubMed

    White, Richard Allen; Quake, Stephen R; Curr, Kenneth

    2012-01-01

    Using a multiplexed LNA-based Taqman assay, RT-digital PCR (RT-dPCR) was performed in a prefabricated microfluidic device that monitored absolute viral load in native and immortalized cell lines, overall precision of detection, and the absolute detection limit of an occult RNA virus GB Virus Type C (GBV-C). RT-dPCR had on average a 10% lower overall coefficient of variation (CV, a measurement of precision) for viral load testing than RT-qPCR and had a higher overall detection limit, able to quantify as low as three 5'-UTR molecules of GBV-C genome. Two commercial high-yield in vitro transcription kits (T7 Ribomax Express by Promega and Ampliscribe T7 Flash by Epicentre) were compared to amplify GBV-C RNA genome with T7-mediated amplification. The Ampliscribe T7 Flash outperformed the T7 Ribomax Express in yield of full-length GBV-C RNA genome. THP-1 cells (a model of monocytic derived cells) were transfected with GBV-C, yielding infectious virions that replicated over a 120h time course and could be infected directly. This study provides the first evidence of GBV-C replication in monocytic derived clonal cells. Thus far, it is the only study using a microfluidic device that measures directly viral load of mammalian RNA virus in a digital format without need for a standard curve. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Combining high biodiversity with high yields in tropical agroforests

    PubMed Central

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H.; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-01-01

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland. PMID:21536873

  1. Mechanics of advancing pin-loaded contacts with friction

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.

    2010-11-01

    This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in

  2. Real - time Optimization of Distributed Energy Storage System Operation Strategy Based on Peak Load Shifting

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Lu, Guangqi; Li, Xiaoyu; Zhang, Yichi; Yun, Zejian; Bian, Di

    2018-01-01

    To take advantage of the energy storage system (ESS) sufficiently, the factors that the service life of the distributed energy storage system (DESS) and the load should be considered when establishing optimization model. To reduce the complexity of the load shifting of DESS in the solution procedure, the loss coefficient and the equal capacity ratio distribution principle were adopted in this paper. Firstly, the model was established considering the constraint conditions of the cycles, depth, power of the charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic programming method was used to real-time solve the model in which the difference of power Δs, the real-time revised energy storage capacity Sk and the permission error of depth of charge-discharge were introduced to optimize the solution process. The simulation results show that the optimized results was achieved when the load shifting in the load variance was not considered which means the charge-discharge of the energy storage system was not executed. In the meantime, the service life of the ESS would increase.

  3. THE INACTIVATION OF DILUTE SOLUTIONS OF CRYSTALLINE TRYPSIN BY X-RADIATION

    PubMed Central

    McDonald, Margaret R.

    1954-01-01

    The activity of dilute solutions of crystalline trypsin is destroyed by x-rays. The inactivation is an exponential function of the radiation dose. The reaction yield of inactivation is independent of the intensity at which the radiation is delivered or the quality of the x-rays. The reaction yield increases with increasing concentration of trypsin, varying from 0.06 to 0.7 micromoles per liter per 1000 r for trypsin solutions ranging from 1 x 10–7 to 2 x 10–4 M. PMID:13192318

  4. Tuning the Hydration and Lubrication of the Embedded Load-Bearing Hydrogel Fibers.

    PubMed

    Zhang, Ran; Feng, Yange; Ma, Shuanhong; Cai, Meirong; Yang, Jun; Yu, Bo; Zhou, Feng

    2017-03-07

    One of the most prominent properties of hydrogels is their excellent hydrolubrication that derives from the strong hydration of the gel network. However, excessive hydration makes hydrogels exhibit a very poor mechanical property, which limits their practical applications. Here, we prepared a novel composite surface of hydrogel nanofibers embedded in an anodic aluminum oxide substrate which exhibited both excellent lubrication and a high load-bearing capacity. Through the copolymerization of acrylic acid and 3-sulfopropyl methacrylate potassium salt, the gel network swelled sufficiently in aqueous solution and caused high osmotic pressure repulsion to bear heavy loads and hence exhibited excellent aqueous lubrication (μ ≈ 0.01). Notably, the friction coefficient of gels showed no dependence on the load in the experiment, whereas it was strongly influenced by the sliding velocity. Additionally, both electrolyte solution and ionic surfactants affect the conformation of the polymer chains, which results in a significant impact on the friction properties of hydrogel fibers.

  5. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery.

    PubMed

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin.

  6. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

    PubMed Central

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452

  7. Effect of polymers in solution culture on growth and mineral composition of tomatoes. [Lycopersicon esculentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.

    Tomato (Lycopersicon esculentum Mill. cv. Tropic) plants were grown for 26 days from transplanting in full nutrient solution with and without polymers in nutrient solution at two different pH values. An aninoic polyacrylamide and a polysaccharide (from guar bean) each at 100 mg L/sup -1/ in solution slightly improved yields at both pH values. A cationic polymer at the same concentration decreased yields. There were no apparent nutritional reasons for the effects. 1 table.

  8. Optimization of grapevine yield by applying mathematical models to obtain quality wine products

    NASA Astrophysics Data System (ADS)

    Alina, Dobrei; Alin, Dobrei; Eleonora, Nistor; Teodor, Cristea; Marius, Boldea; Florin, Sala

    2016-06-01

    Relationship between the crop load and the grape yield and quality is a dynamic process, specific for wine cultivars and for fresh consumption varieties. Modeling these relations is important for the improvement of technological works. This study evaluated the interrelationship of crop load (B - buds number) and several production parameters (Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric index; AP - alcoholic potential; F - flavorings, WA - wine alcohol; SR - sugar residue, in Muscat Ottonel wine cultivar and Y - yield; S - sugar; A - acidity; GaI - Glucoacidimetric Index; CP - commercial production; BS - berries size in the Victoria table grape cultivar). In both varieties have been identified correlations between the independent variable (B - buds number as a result of pruning and training practices) and quality parameters analyzed (r = -0.699 for B vsY relationship; r = 0.961 for the relationship B vs S; r = -0.959 for B vs AP relationship; r = 0.743 for the relationship Y vs S, p <0.01, in the Muscat Ottonel cultivar, respectively r = -0.907 for relationship B vs Y; r = -0.975 for B vs CP relationship; r = -0.971 for relationship B vs BS; r = 0.990 for CP vs BS relationship in the Victoria cultivar. Through regression analysis were obtained models that describe the variation concerning production and quality parameters in relation to the independent variable (B - buds number) with statistical significance results.

  9. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwar, A., E-mail: akashiwar@gmail.com; Vennela, N. Phani, E-mail: phanivennela@gmail.com; Kamath, S.L., E-mail: kamath@iitb.ac.in

    2012-12-15

    In the present study, effect of solution annealing temperature (1050 Degree-Sign C and 1100 Degree-Sign C) and isothermal ageing (700 Degree-Sign C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel ({approx} 45% ferrite and {approx} 55% austenite) undergoes a series of metallurgical transformations during ageing-formation ofmore » secondary austenite ({gamma}{sub 2}) and precipitation of Cr and Mo rich intermetallic (chi-{chi} and sigma-{sigma}) phases. For solution annealing at 1050 Degree-Sign C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 Degree-Sign C. {chi} Phase precipitated after the precipitation of carbides-preferentially at the ferrite-ferrite and also at the ferrite-austenite boundaries. {sigma} Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 Degree-Sign C was found to be carbides {yields} {chi} {yields} {sigma}. On the contrary, for samples solution annealed at 1100 Degree-Sign C, the precipitation of {chi} phase was negligible. {chi} Phase precipitated before {sigma} phase, preferentially along the ferrite-ferrite grain boundaries and was later consumed in the {sigma} phase precipitation. The {sigma} phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite {gamma}{sub 2} and {sigma} phase in the ferrite and along the ferrite-austenite grain boundaries. An increase in the volume fraction of {gamma}{sub 2} and {sigma} phase with simultaneous decrease in the ferrite was evidenced with ageing

  10. Dual-action gas thrust bearing for improving load capacity

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films to improve the load carrying capacity in gas thrust bearings is discussed. A new concept of a dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and can improve their efficiency.

  11. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2017-03-09

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  12. Invited review: A commentary on predictive cheese yield formulas.

    PubMed

    Emmons, D B; Modler, H W

    2010-12-01

    . Composition of cheese was estimated using a predictive formula; actual yield was needed for estimation of composition. Adjusted formulas are recommended for estimating target yields and cheese yield efficiency. Constants for solute exclusion, protein-associated milk salts, and whey solids could be used and reduced the complexity of the General formula. Normalization of fat recovery increased variability of predicted yields. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    NASA Astrophysics Data System (ADS)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

  14. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications

    NASA Astrophysics Data System (ADS)

    Arakcheev, A. S.; Skovorodin, D. I.; Burdakov, A. V.; Shoshin, A. A.; Polosatkin, S. V.; Vasilyev, A. A.; Postupaev, V. V.; Vyacheslavov, L. N.; Kasatov, A. A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya

    2015-12-01

    A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle-ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating-cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.

  15. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes

    NASA Astrophysics Data System (ADS)

    Klein, Fred W.

    2016-04-01

    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  16. Effect of protein load on stability of immobilized enzymes.

    PubMed

    Fernandez-Lopez, Laura; Pedrero, Sara G; Lopez-Carrobles, Nerea; Gorines, Beatriz C; Virgen-Ortíz, Jose J; Fernandez-Lafuente, Roberto

    2017-03-01

    Different lipases have been immobilized on octyl agarose beads at 1mg/g and at maximum loading, via physical interfacial activation versus the octyl layer on the support. The stability of the preparations was analyzed. Most biocatalysts had the expected result: the apparent stability increased using the highly loaded preparations, due to the diffusional limitations that reduced the initial observed activity. However, lipase B from Candida antarctica (CALB) was significantly more stable using the lowly loaded preparation than the maximum loaded one. This negative effect of the enzyme crowding on enzyme stability was found in inactivations at pH 5, 7 or 9, but not in inactivations in the presence of organic solvents. The immobilization using ethanol to reduce the immobilization rate had no effect on the stability of the lowly loaded preparation, while the highly loaded enzyme biocatalysts increased their stabilities, becoming very similar to that of the lowly loaded preparation. Results suggested that CALB molecules immobilized on octyl agarose may be closely packed together due to the high immobilization rate and this produced some negative interactions between immobilized enzyme molecules during enzyme thermal inactivation. Slowing-down the immobilization rate may be a solution for this unexpected problem. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations

    NASA Technical Reports Server (NTRS)

    Chrisochoides, Nikos

    1995-01-01

    We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.

  18. Concentration of perrhenate and pertechnetate solutions

    DOEpatents

    Knapp, F.F.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.

    1998-03-17

    A method is described for preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: (a) providing a generator column loaded with a composition containing a parent radioisotope; (b) eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate; (c) eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; (d) eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and (e) eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution. 1 fig.

  19. Concentration of perrhenate and pertechnetate solutions

    DOEpatents

    Knapp, Furn F.; Beets, Arnold L.; Mirzadeh, Saed; Guhlke, Stefan

    1998-01-01

    A method of preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: a. providing a generator column loaded with a composition containing a parent radioisotope; b. eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate. c. eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; d. eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and e. eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution.

  20. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  1. Optimal Load-Side Control for Frequency Regulation in Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Mallada, Enrique; Low, Steven

    Frequency control rebalances supply and demand while maintaining the network state within operational margins. It is implemented using fast ramping reserves that are expensive and wasteful, and which are expected to become increasingly necessary with the current acceleration of renewable penetration. The most promising solution to this problem is the use of demand response, i.e., load participation in frequency control. Yet it is still unclear how to efficiently integrate load participation without introducing instabilities and violating operational constraints. In this paper, we present a comprehensive load-side frequency control mechanism that can maintain the grid within operational constraints. In particular, ourmore » controllers can rebalance supply and demand after disturbances, restore the frequency to its nominal value, and preserve interarea power flows. Furthermore, our controllers are distributed (unlike the currently implemented frequency control), can allocate load updates optimally, and can maintain line flows within thermal limits. We prove that such a distributed load-side control is globally asymptotically stable and robust to unknown load parameters. We illustrate its effectiveness through simulations.« less

  2. Shallow water equations: viscous solutions and inviscid limit

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Perepelitsa, Mikhail

    2012-12-01

    We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.

  3. Using Multiple Ways to Investigate Cognitive Load Theory in the Context of Physics Instruction

    NASA Astrophysics Data System (ADS)

    Zu, Tianlong

    type of cognitive load (germane) was indirectly ascertained. We found that different eye-movement based parameters were most sensitive to different types of cognitive load. These results indicate that it is possible to monitor the three kinds of cognitive load separately using eye movement parameters. We also compared the up-to-date cognitive load theory model with an alternative model using a multi-level model analysis and we found that Sweller's (2010) up-to-date model is supported by our data. In educational settings, active learning based methodologies such as peer instruction have been shown to be effective in facilitating students' conceptual understanding. In study two, we discussed the effect of peer interaction on conceptual test performance of students from a cognitive load perspective. Based on the literature, a self-reported cognitive load survey was developed to measure each type of cognitive load. We found that a certain level of prior knowledge is necessary for peer interaction to work and that peer interaction is effective mainly through significantly decreasing the intrinsic load experienced by students, even though it may increase the extraneous load. In study three, we compared the effect of guided instruction in the form of worked examples using narrated-animated video solutions and semi-guided instruction using visual cues on students' performance, shift of visual attention during transfer, and extraneous cognitive load during learning. We found that multimedia video solutions can be more effective in promoting transfer performance of learners than visual cues. We also found evidence that guided instruction in the form of multimedia video solutions can decrease extraneous cognitive load of students during learning, more so than semi-guided instruction using visual cues.

  4. Nonlinear material behaviour of spider silk yields robust webs.

    PubMed

    Cranford, Steven W; Tarakanova, Anna; Pugno, Nicola M; Buehler, Markus J

    2012-02-01

    Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.

  5. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    With an increasing and increasingly affluent population, there has been tremendous effort to examine strategies for sustainably increasing agricultural production to meet this surging global demand. Before developing new solutions from scratch, though, we believe it is important to consult our recent agricultural history to see where and how agricultural production changes have already taken place. By utilizing the newly created temporal M3 cropland datasets, we can for the first time examine gridded agricultural yields and area, both spatially and temporally. This research explores the historical drivers of agricultural production changes, from 1965-2005. The results will be presented spatially at the global-level (5-min resolution), as well as at the individual country-level. The primary research components of this study are presented below, including the general methodology utilized in each phase and preliminary results for soybean where available. The complete assessment will cover maize, wheat, rice, soybean, and sugarcane, and will include country-specific analysis for over 200 countries, states, territories and protectorates. Phase 1: The first component of our research isolates changes in agricultural production due to variation in planting decisions (harvested area) from changes in production due to intensification efforts (yield). We examine area/yield changes at the pixel-level over 5-year time-steps to determine how much each component has contributed to overall changes in production. Our results include both spatial patterns of changes in production, as well as spatial maps illustrating to what degree the production change is attributed to area and/or yield. Together, these maps illustrate where, why, and by how much agricultural production has changed over time. Phase 2: In the second phase of our research we attempt to determine the impact that area and yield changes have had on agricultural production at the country-level. We calculate a production

  6. Antiangiogenic activity of a bevacizumab-loaded polyurethane device in animal neovascularization models.

    PubMed

    Ferreira, A E R; Castro, B F M; Vieira, L C; Cassali, G D; Souza, C M; Fulgêncio, G O; Ayres, E; Oréfice, R L; Jorge, R; Silva-Cunha, A; Fialho, S L

    2017-03-01

    To evaluate the antiangiogenic activity of bevacizumab-loaded polyurethane using two animal models of neovascularization. The percentage of blood vessels was evaluated in a chicken chorioallantoic membrane model (n=42) and in the rabbit cornea (n=24) with neovascularization induced by alkali injury. In each model, the animals were randomly divided into the groups treated with the bevacizumab-loaded polyurethane device, phosphate-buffered-saline (negative control) and bevacizumab commercial solution (positive control). Clinical examination, as well as histopathological and immunohistochemical evaluation, were performed in the rabbit eyes. Microvascular density in hot spot areas was determined in semi-thin sections of corneal tissue by hematoxylin-eosin staining and factor VIII immunohistochemistry. Immunohistochemical analysis was also performed to evaluate VEGF expression. In the evaluated models, the use of bevacizumab (Avastin ® ) and the bevacizumab-loaded polyurethane device led to similar results with regard to inhibition of neovascularization. In the chorioallantoic membrane model, the bevacizumab-loaded polyurethane device reduced angiogenesis by 50.27% when compared to the negative control group. In the rabbit model of corneal neovascularization, the mean density of vessels/field was reduced by 46.87% on analysis of factor VIII immunohistochemistry photos in the bevacizumab-loaded polyurethane device group as compared to the negative control (PBS) sections. In both models, no significant difference could be identified between the bevacizumab-loaded polyurethane device and the positive control group, leading to similar results with regard to inhibition of neovascularization. The present study shows that the bevacizumab-loaded polyurethane device may release bevacizumab and inhibit neovascularization similarly to commercial bevacizumab solution in the short-term. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Al-asadi, M.; Miskolczi, N.

    2018-05-01

    In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.

  8. Acoustic Emission Characteristics of Red Sandstone Specimens Under Uniaxial Cyclic Loading and Unloading Compression

    NASA Astrophysics Data System (ADS)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong

    2018-04-01

    To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.

  9. Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.

    PubMed

    Pang, Jianmei; Luan, Yuxia; Li, Feifei; Cai, Xiaoqing; Du, Jimin; Li, Zhonghao

    2011-01-01

    Ibuprofen- (IBU) loaded biocompatible poly(lactic-co-glycolic acid) (PLGA) films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.

  10. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum

    DOE PAGES

    Papanek, Beth A.; Biswas, Ranjita; Rydzak, Thomas; ...

    2015-09-12

    Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, we study a mutant strain of C. thermocellum that was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulosemore » Avicel, effectively eliminating formate, acetate, and lactate production and reducing H 2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4 mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO 2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1 mM ethanol on 10 g/L Avicel. In conclusion, with the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.« less

  11. Recommendations for numerical solution of reinforced-panel and fuselage-ring problems

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Libby, Paul A

    1949-01-01

    Procedures are recommended for solving the equations of equilibrium of reinforced panels and isolated fuselage rings as represented by the external loads and the operations table established according to Southwell's method. From the solution of these equations the stress distribution can be easily determined. The method of systematic relaxations, the matrix-calculus method, and several other methods applicable in special cases are discussed. Definite recommendations are made for obtaining the solution of reinforced-panel problems which are generally designated as shear lag problems. The procedures recommended are demonstrated in the analysis of a number of panels. In the case of fuselage rings it is not possible to make definite recommendations for the solution of the equilibrium equations for all rings and loadings. However, suggestions based on the latest experience are made and demonstrated on several rings.

  12. Common drive to the upper airway muscle genioglossus during inspiratory loading

    PubMed Central

    Woods, Michael J.; Nicholas, Christian L.; Semmler, John G.; Chan, Julia K. M.; Jordan, Amy S.

    2015-01-01

    Common drive is thought to constitute a central mechanism by which the efficiency of a motor neuron pool is increased. This study tested the hypothesis that common drive to the upper airway muscle genioglossus (GG) would increase with increased respiratory drive in response to an inspiratory load. Respiration, GG electromyographic (EMG) activity, single-motor unit activity, and coherence in the 0–5 Hz range between pairs of GG motor units were assessed for the 30 s before an inspiratory load, the first and second 30 s of the load, and the 30 s after the load. Twelve of twenty young, healthy male subjects provided usable data, yielding 77 pairs of motor units: 2 Inspiratory Phasic, 39 Inspiratory Tonic, 15 Expiratory Tonic, and 21 Tonic. Respiratory and GG inspiratory activity significantly increased during the loads and returned to preload levels during the postload periods (all showed significant quadratic functions over load trials, P < 0.05). As hypothesized, common drive increased during the load in inspiratory modulated motor units to a greater extent than in expiratory/tonic motor units (significant load × discharge pattern interaction, P < 0.05). Furthermore, this effect persisted during the postload period. In conclusion, common drive to inspiratory modulated motor units was elevated in response to increased respiratory drive. The postload elevation in common drive was suggestive of a poststimulus activation effect. PMID:26378207

  13. Electroelastic fields in a layered piezoelectric cylindrical shell under dynamic load

    NASA Astrophysics Data System (ADS)

    Saviz, M. R.; Shakeri, M.; Yas, M. H.

    2007-10-01

    The objective of this paper is to demonstrate layerwise theory for the analysis of thick laminated piezoelectric shell structures. A general finite element formulation using the layerwise theory is developed for a laminated cylindrical shell with piezoelectric layers, subjected to dynamic loads. The quadratic approximation of the displacement and electric potential in the thickness direction is considered. The governing equations are reduced to two-dimensional (2D) differential equations. The three-dimensional (3D) elasticity solution is also presented. The resulting equations are solved by a proper finite element method. The numerical results for static loading are compared with exact solutions of benchmark problems. Numerical examples of the dynamic problem are presented. The convergence is studied, as is the influence of the electromechanical coupling on the axisymmetric free-vibration characteristics of a thick cylinder.

  14. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    PubMed

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Light-Responsive and pH-Responsive DNA Microcapsules for Controlled Release of Loads.

    PubMed

    Huang, Fujian; Liao, Wei-Ching; Sohn, Yang Sung; Nechushtai, Rachel; Lu, Chun-Hua; Willner, Itamar

    2016-07-20

    A method to assemble light-responsive or pH-responsive microcapsules loaded with different loads (tetramethylrhodamine-modified dextran, TMR-D; microperoxidase-11, MP-11; CdSe/ZnS quantum dots; or doxorubicin-modified dextran, DOX-D) is described. The method is based on the layer-by-layer deposition of sequence-specific nucleic acids on poly(allylamine hydrochloride)-functionalized CaCO3 core microparticles, loaded with the different loads, that after the dissolution of the core particles with EDTA yields the stimuli-responsive microcapsules that include the respective loads. The light-responsive microcapsules are composed of photocleavable o-nitrobenzyl-phosphate-modified DNA shells, and the pH-responsive microcapsules are made of a cytosine-rich layer cross-linked by nucleic acid bridges. Irradiating the o-nitrobenzyl phosphate-functionalized microcapsules, λ = 365 nm, or subjecting the pH-responsive microcapsules to pH = 5.0, results in the cleavage of the microcapsule shells and the release of the loads. Preliminary studies address the cytotoxicity of the DOX-D-loaded microcapsules toward MDA-MB-231 breast cancer cells and normal MCF-10A breast epithelial cells. Selective cytotoxicity of the DOX-D-loaded microcapsules toward cancer cells is demonstrated.

  16. In-plane dynamic Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Kang, Zeqing; Liang, Jianwen

    2018-04-01

    The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic (TI) half-space. The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces, which are then applied to the total system with the opposite sign. By adding solutions restricted in the loaded layer to solutions from the reaction forces, the global solutions in the wavenumber domain are obtained, and the dynamic Green's functions in the space domain are recovered by the inverse Fourier transform. The presented formulations can be reduced to the isotropic case developed by Wolf (1985), and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI half-space subjected to horizontally distributed loads which are special cases of the more general problem addressed. The deduced Green's functions, in conjunction with boundary element methods, will lead to significant advances in the investigation of a variety of wave scattering, wave radiation and soil-structure interaction problems in a layered TI site. Selected numerical results are given to investigate the influence of material anisotropy, frequency of excitation, inclination angle and layered on the responses of displacement and stress, and some conclusions are drawn.

  17. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  18. Relations among storage, yield, and instream flow

    NASA Astrophysics Data System (ADS)

    Vogel, Richard M.; Sieber, Jack; Archfield, Stacey A.; Smith, Mark P.; Apse, Colin D.; Huber-Lee, Annette

    2007-05-01

    An extensive literature documents relations between reservoir storage capacity and water supply yield and the properties of instream flow needed to support downstream aquatic ecosystems. However, the literature that evaluates the impact of reservoir operating rules on instream flow properties is limited to a few site-specific studies, and as a result, few general conclusions can be drawn to date. This study adapts the existing generalized water evaluation and planning model (WEAP) to enable general explorations of relations between reservoir storage, instream flow, and water supply yield for a wide class of reservoirs and operating rules. Generalized relationships among these variables document the types of instream flow policies that when combined with drought management strategies, are likely to provide compromise solutions to the ecological and human negotiations for water for different sized reservoir systems. The concept of a seasonal ecodeficit/ecosurplus is introduced for evaluating the impact of reservoir regulation on ecological flow regimes.

  19. Yield asymmetry design of magnesium alloys by integrated computational materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Joshi, Vineet; Lavender, Curt

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures,more » such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less

  20. Mathematical solution of the stone column effect on the load bearing capacity and settlement using numerical analysis

    NASA Astrophysics Data System (ADS)

    Madun, A.; Meghzili, S. A.; Tajudin, SAA; Yusof, M. F.; Zainalabidin, M. H.; Al-Gheethi, A. A.; Dan, M. F. Md; Ismail, M. A. M.

    2018-04-01

    The most important application of various geotechnical construction techniques is for ground improvement. Many soil improvement project had been developed due to the ongoing increase in urban and industrial growth and the need for greater access to lands. Stone columns are one of the best effective and feasible techniques for soft clay soil improvement. Stone columns increase the bearing capacity and reduce the settlement of soil. Finite element analyses were performed using the program PLAXIS 2D. An elastic-perfectly plastic constitutive relation, based on the Mohr–Coulomb criterion, governs the soft clay and stone column behaviour. This paper presents on how the response surface methodology (RSM) software is used to optimize the effect of the diameters and lengths of column on the load bearing capacity and settlement of soft clay. Load tests through the numerical modelling using Plaxis 2D were carried out on the loading plate at 66 mm. Stone column load bearing capacity increases with the increasing diameter of the column and settlement decreases with the increasing length of the column. Results revealed that the bigger column diameter, the higher load bearing capacity of soil while the longer column length, the lower settlement of soil. However, the optimum design of stone column was varied with each factor (diameter and length) separately for improvement.

  1. The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.; Dudzinski, D.; Minners, R. S.

    1987-01-01

    Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.

  2. Ionic solutions of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cullen, Patrick L.; Cox, Kathleen M.; Bin Subhan, Mohammed K.; Picco, Loren; Payton, Oliver D.; Buckley, David J.; Miller, Thomas S.; Hodge, Stephen A.; Skipper, Neal T.; Tileli, Vasiliki; Howard, Christopher A.

    2017-03-01

    Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.

  3. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  4. Alternative formulations of the Laplace transform boundary element (LTBE) numerical method for the solution of diffusion-type equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, G.

    1992-03-01

    The Laplace Transform Boundary Element (LTBE) method is a recently introduced numerical method, and has been used for the solution of diffusion-type PDEs. It completely eliminates the time dependency of the problem and the need for time discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE solutions are obtained in the Laplace spare, and are then inverted numerically to yield the solution in time. The Stehfest and the DeHoog formulations of LTBE, based on two different inversion algorithms, are investigated. Both formulations produce comparable, extremely accurate solutions.

  5. The influence of void and porosity on deformation behaviour of nanocrystalline Ni under tensile followed by compressive loading

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Nayak, Shradha; Krishanjeet, Kumar; Pal, Snehanshu

    2018-03-01

    In this paper, we present a lucid understanding about the deformation behaviour of nanocrystalline (NC) Ni with and without defects subjected to tensile followed by compressive loading using molecular dynamic (MD) simulations. The embedded atom method (EAM) potential have been incorporated in the simulation for three kinds of samples-i.e. for NC Ni (without any defect), porous NC Ni and NC Ni containing a centrally located void. All the three samples, which have been prepared by implementing the Voronoi method and using Atom Eye software, consist of 16 uniform grains. The total number of atoms present in NC Ni, porous NC Ni and NC Ni containing a void are 107021, 105968 and 107012 respectively. The stress-strain response of NC Ni under tensile followed by compressive loading are simulated at a high strain rate of 107 s-1 and at a constant temperature of 300K. The stress-strain curves for the NC Ni with and without defects have been plotted for three different types of loading: (a) tensile loading (b) compressive loading (c) forward tensile loading followed by reverse compressive loading. Prominent change in yield strength of the NC Ni is observed due to the introduction of defects. For tensile followed by compressive loading (during forward loading), the yield point for NC Ni with void is lesser than the yield point of NC Ni and porous NC Ni. The saw tooth shape or serration portion of the stress-strain curve is mainly due to three characteristic phenomena, dislocation generation and its movement, dislocation pile-up at the junctions, and dislocation annihilation. Both twins and stacking faults are observed due to plastic deformation as the deformation mechanism progresses. The dislocation density, number of clusters and number of vacancy of the NC sample with and without defects are plotted against the strain developed in the sample. It is seen that introduction of defects brings about change in mechanical properties of the NC Ni. The crystalline nature of NC Ni

  6. Performance of a cognitive load inventory during simulated handoffs: Evidence for validity.

    PubMed

    Young, John Q; Boscardin, Christy K; van Dijk, Savannah M; Abdullah, Ruqayyah; Irby, David M; Sewell, Justin L; Ten Cate, Olle; O'Sullivan, Patricia S

    2016-01-01

    Advancing patient safety during handoffs remains a public health priority. The application of cognitive load theory offers promise, but is currently limited by the inability to measure cognitive load types. To develop and collect validity evidence for a revised self-report inventory that measures cognitive load types during a handoff. Based on prior published work, input from experts in cognitive load theory and handoffs, and a think-aloud exercise with residents, a revised Cognitive Load Inventory for Handoffs was developed. The Cognitive Load Inventory for Handoffs has items for intrinsic, extraneous, and germane load. Students who were second- and sixth-year students recruited from a Dutch medical school participated in four simulated handoffs (two simple and two complex cases). At the end of each handoff, study participants completed the Cognitive Load Inventory for Handoffs, Paas' Cognitive Load Scale, and one global rating item for intrinsic load, extraneous load, and germane load, respectively. Factor and correlational analyses were performed to collect evidence for validity. Confirmatory factor analysis yielded a single factor that combined intrinsic and germane loads. The extraneous load items performed poorly and were removed from the model. The score from the combined intrinsic and germane load items associated, as predicted by cognitive load theory, with a commonly used measure of overall cognitive load (Pearson's r = 0.83, p < 0.001), case complexity (beta = 0.74, p < 0.001), level of experience (beta = -0.96, p < 0.001), and handoff accuracy (r = -0.34, p < 0.001). These results offer encouragement that intrinsic load during handoffs may be measured via a self-report measure. Additional work is required to develop an adequate measure of extraneous load.

  7. Stiffness and relaxation components of the exponential and logistic time constants may be used to derive a load-independent index of isovolumic pressure decay.

    PubMed

    Shmuylovich, Leonid; Kovács, Sándor J

    2008-12-01

    In current practice, empirical parameters such as the monoexponential time constant tau or the logistic model time constant tauL are used to quantitate isovolumic relaxation. Previous work indicates that tau and tauL are load dependent. A load-independent index of isovolumic pressure decline (LIIIVPD) does not exist. In this study, we derive and validate a LIIIVPD. Recently, we have derived and validated a kinematic model of isovolumic pressure decay (IVPD), where IVPD is accurately predicted by the solution to an equation of motion parameterized by stiffness (Ek), relaxation (tauc), and pressure asymptote (Pinfinity) parameters. In this study, we use this kinematic model to predict, derive, and validate the load-independent index MLIIIVPD. We predict that the plot of lumped recoil effects [Ek.(P*max-Pinfinity)] versus resistance effects [tauc.(dP/dtmin)], defined by a set of load-varying IVPD contours, where P*max is maximum pressure and dP/dtmin is the minimum first derivative of pressure, yields a linear relation with a constant (i.e., load independent) slope MLIIIVPD. To validate the load independence, we analyzed an average of 107 IVPD contours in 25 subjects (2,669 beats total) undergoing diagnostic catheterization. For the group as a whole, we found the Ek.(P*max-Pinfinity) versus tauc.(dP/dtmin) relation to be highly linear, with the average slope MLIIIVPD=1.107+/-0.044 and the average r2=0.993+/-0.006. For all subjects, MLIIIVPD was found to be linearly correlated to the subject averaged tau (r2=0.65), tauL(r2=0.50), and dP/dtmin (r2=0.63), as well as to ejection fraction (r2=0.52). We conclude that MLIIIVPD is a LIIIVPD because it is load independent and correlates with conventional IVPD parameters. Further validation of MLIIIVPD in selected pathophysiological settings is warranted.

  8. Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu

    2017-09-01

    Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.

  9. Transverse Stress Decay in a Specially Orthotropic Strip Under Localizing Normal Edge Loading

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    2000-01-01

    Solutions are presented for the stresses in a specially orthotropic infinite strip which is subjected to localized uniform normal loading on one edge while the other edge is either restrained against normal displacement only, or completely fixed. The solutions are used to investigate the diffusion of load into the strip and in particular the decay of normal stress across the width of the strip. For orthotropic strips representative of a broad range of balanced and symmetric angle-ply composite laminates, minimum strip widths are found that ensure at least 90% decay of the normal stress across the strip. In addition, in a few cases where, on the fixed edge the peak shear stress exceeds the normal stress in magnitude, minimum strip widths that ensure 90% decay of both stresses are found. To help in putting these results into perspective, and to illustrate the influence of material properties on load 9 orthotropic materials, closed-form solutions for the stresses in similarly loaded orthotropic half-planes are obtained. These solutions are used to generate illustrative stress contour plots for several representative laminates. Among the laminates, those composed of intermediate-angle plies, i.e., from about 30 degrees to 60 degrees, exhibit marked changes in normal stress contour shape with stress level. The stress contours are also used to find 90% decay distances in the half-planes. In all cases, the minimum strip widths for 90% decay of the normal stress exceed the 90% decay distances in the corresponding half-planes, in amounts ranging from only a few percent to about 50% of the half-plane decay distances. The 90% decay distances depend on both material properties and the boundary conditions on the supported edge.

  10. Capsaicin-loaded nanolipoidal carriers for topical application: design, characterization, and in vitro/in vivo evaluation.

    PubMed

    Wang, Xia-Rong; Gao, Si-Qian; Niu, Xiao-Qian; Li, Long-Jian; Ying, Xiao-Ying; Hu, Zhong-Jie; Gao, Jian-Qing

    2017-01-01

    Capsaicin has been used in clinical applications for the treatment of pain disorders and inflammatory diseases. Given the strong pungency and high oil/water partition coefficient of capsaicin, capsaicin-loaded nanolipoidal carriers (NLCs) were designed to increase permeation and achieve the analgesic, anti-inflammatory effect with lower skin irritation. Capsaicin-loaded NLCs were prepared and later optimized by the Box-Behnken design. The physicochemical characterizations, morphology, and encapsulation of the capsaicin-loaded NLCs were subsequently confirmed. Capsaicin-loaded NLCs and capsaicin-loaded NLCs gel exhibited sustained release and no cytotoxicity properties. Also, they could significantly enhance the penetration amount, permeation flux, and skin retention amounts of capsaicin due to the application of NLCs. To study the topical permeation mechanism of capsaicin, 3,3'-dioctadecyloxacarbocyanine perchlorate (Dio) was used as a fluorescent dye. Dio-loaded NLCs and Dio-loaded NLCs gel could effectively deliver Dio up to a skin depth of 260 and 210 μm, respectively, primarily through the appendage route on the basis of version skin sections compared with Dio solution, which only delivered Dio up to 150 μm. In vivo therapeutic experiments demonstrated that capsaicin-loaded NLCs and capsaicin-loaded NLCs gel could improve the pain threshold in a dose-dependent manner and inhibit inflammation, primarily by reducing the prostaglandin E2 levels in the tissue compared with capsaicin cream and capsaicin solution. Meanwhile, skin irritation was reduced, indicating that application of NLCs could decrease the irritation caused by capsaicin. Overall, NLCs may be a potential carrier for topical delivery of capsaicin for useful pain and inflammation therapy.

  11. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  12. Real-time POD-CFD Wind-Load Calculator for PV Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huayamave, Victor; Divo, Eduardo; Ceballos, Andres

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such asmore » those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the Sun

  13. Intervertebral disc response to cyclic loading--an animal model.

    PubMed

    Ekström, L; Kaigle, A; Hult, E; Holm, S; Rostedt, M; Hansson, T

    1996-01-01

    The viscoelastic response of a lumbar motion segment loaded in cyclic compression was studied in an in vivo porcine model (N = 7). Using surgical techniques, a miniaturized servohydraulic exciter was attached to the L2-L3 motion segment via pedicle fixation. A dynamic loading scheme was implemented, which consisted of one hour of sinusoidal vibration at 5 Hz, 50 N peak load, followed by one hour of restitution at zero load and one hour of sinusoidal vibration at 5 Hz, 100 N peak load. The force and displacement responses of the motion segment were sampled at 25 Hz. The experimental data were used for evaluating the parameters of two viscoelastic models: a standard linear solid model (three-parameter) and a linear Burger's fluid model (four-parameter). In this study, the creep behaviour under sinusoidal vibration at 5 Hz closely resembled the creep behaviour under static loading observed in previous studies. Expanding the three-parameter solid model into a four-parameter fluid model made it possible to separate out a progressive linear displacement term. This deformation was not fully recovered during restitution and is therefore an indication of a specific effect caused by the cyclic loading. High variability was observed in the parameters determined from the 50 N experimental data, particularly for the elastic modulus E1. However, at the 100 N load level, significant differences between the models were found. Both models accurately predicted the creep response under the first 800 s of 100 N loading, as displayed by mean absolute errors for the calculated deformation data from the experimental data of 1.26 and 0.97 percent for the solid and fluid models respectively. The linear Burger's fluid model, however, yielded superior predictions particularly for the initial elastic response.

  14. Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey

    PubMed Central

    Zoha, Ahmed; Gluhak, Alexander; Imran, Muhammad Ali; Rajasegarar, Sutharshan

    2012-01-01

    Appliance Load Monitoring (ALM) is essential for energy management solutions, allowing them to obtain appliance-specific energy consumption statistics that can further be used to devise load scheduling strategies for optimal energy utilization. Fine-grained energy monitoring can be achieved by deploying smart power outlets on every device of interest; however it incurs extra hardware cost and installation complexity. Non-Intrusive Load Monitoring (NILM) is an attractive method for energy disaggregation, as it can discern devices from the aggregated data acquired from a single point of measurement. This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing. We review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions. PMID:23223081

  15. Developing a passive load reduction blade for the DTU 10 MW reference turbine

    NASA Astrophysics Data System (ADS)

    de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.

    2016-09-01

    This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.

  16. Changing ecosystem response to nitrogen load into Buzzards Bay, MA

    NASA Astrophysics Data System (ADS)

    Williamson, S.; Rheuban, J. E.; Costa, J. E.; Glover, D. M.; Doney, S. C.

    2016-02-01

    Nitrogen (N) and chlorophyll-a (Chla) concentration in estuarine systems often correlate positively with increased N inputs. Evaluation of a long-term water quality data set (1992 -2013) for Buzzards Bay, MA, however reveals that ecosystem response to N inputs may be changing over time, as represented by increased yield of Chla per unit total nitrogen (TN) from 1992-2013. To determine if this change is caused by changes in nitrogen sources, we estimate nitrogen input from 28 watersheds. Combining parcel specific waste water disposal, land use, and atmospheric deposition data, we estimated N loads into Buzzards Bay from 1985-2013 using a previously verified Nitrogen Loading Model. Of the 28 watersheds analyzed, the six largest watersheds released the largest absolute N loads into receiving estuaries ranging from approximately 50,000-220,000 kg N yr-1. Normalizing N loads by watershed and estuarine areas revealed that smaller watersheds release some of the greatest relative loads into estuaries making these watersheds more vulnerable to increases in N load. A linear regression analysis of N load through time revealed decreasing N loads for most watersheds on the western side of Buzzards Bay which we believe is reflecting decreased atmospheric N from 1985-2013. Out of the ten sub-watersheds on the eastern side, increases in human waste, driven primarily by increased parcels on septic have resulted in overall N load increases for 9 watersheds. Comparison of in situ TN and Chla concentrations with N load estimates for several watersheds and adjoining estuaries suggest that varied ecosystem responses to N load may be reflecting differences in physical stressors such as estuarine morphology, residence time, and climate change. Results of this study also reveal the importance of watershed specific mitigation efforts to best accommodate dominant N sources which may be influenced regionally (atmospheric N) and locally (fertilizer and human waste).

  17. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates.

    PubMed

    Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Improved dynamic analysis method using load-dependent Ritz vectors

    NASA Technical Reports Server (NTRS)

    Escobedo-Torres, J.; Ricles, J. M.

    1993-01-01

    The dynamic analysis of large space structures is important in order to predict their behavior under operating conditions. Computer models of large space structures are characterized by having a large number of degrees of freedom, and the computational effort required to carry out the analysis is very large. Conventional methods of solution utilize a subset of the eigenvectors of the system, but for systems with many degrees of freedom, the solution of the eigenproblem is in many cases the most costly phase of the analysis. For this reason, alternate solution methods need to be considered. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. The load dependent Ritz vector method is presented as an alternative to the classical normal mode methods for obtaining dynamic responses of large space structures. A simplified model of a space station is used to compare results. Results show that the load dependent Ritz vector method predicts the dynamic response better than the classical normal mode method. Even though this alternate method is very promising, further studies are necessary to fully understand its attributes and limitations.

  19. A computer solution for the dynamic load, lubricant film thickness, and surface temperatures in spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Chao, H. C.; Baxter, M.; Cheng, H. S.

    1983-01-01

    A computer method for determining the dynamic load between spiral bevel pinion and gear teeth contact along the path of contact is described. The dynamic load analysis governs both the surface temperature and film thickness. Computer methods for determining the surface temperature, and film thickness are presented along with results obtained for a pair of typical spiral bevel gears.

  20. Specific yield: compilation of specific yields for various materials

    USGS Publications Warehouse

    Johnson, A.I.

    1967-01-01

    Specific yield is defined as the ratio of (1) the volume of water that a saturated rock or soil will yield by gravity to (2) the total volume of the rock or soft. Specific yield is usually expressed as a percentage. The value is not definitive, because the quantity of water that will drain by gravity depends on variables such as duration of drainage, temperature, mineral composition of the water, and various physical characteristics of the rock or soil under consideration. Values of specific yields nevertheless offer a convenient means by which hydrologists can estimate the water-yielding capacities of earth materials and, as such, are very useful in hydrologic studies. The present report consists mostly of direct or modified quotations from many selected reports that present and evaluate methods for determining specific yield, limitations of those methods, and results of the determinations made on a wide variety of rock and soil materials. Although no particular values are recommended in this report, a table summarizes values of specific yield, and their averages, determined for 10 rock textures. The following is an abstract of the table. [Table

  1. Portevin-Le Chatelier effect under cyclic loading: experimental and numerical investigations

    NASA Astrophysics Data System (ADS)

    Mazière, M.; Pujol d'Andrebo, Q.

    2015-10-01

    The Portevin-Le Chatelier (PLC) effect is generally evidenced by the apparition of serrated yielding under monotonic tensile loading conditions. It appears at room temperature in some aluminium alloys, around ? in some steels and in many other metallic materials. This effect is associated with the propagation of bands of plastic deformation in tensile specimens and can in some cases lead to unexpected failures. The PLC effect has been widely simulated under monotonic conditions using finite elements and an appropriate mechanical model able to reproduce serrations and strain localization. The occurrence of serrations can be predicted using an analytical stability analysis. Recently, this serrated yielding has also been observed in specimens made of Cobalt-based superalloy under cyclic loading, after a large number of cycles. The mechanical model has been identified in this case to accurately reproduce this critical number of cycle where serrations appear. The associated apparition of localized bands of deformation in specimens and their influence on its failure has also been investigated using finite element simulations.

  2. A numerical solution of Duffing's equations including the prediction of jump phenomena

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.; Ghasghai-Abdi, E.

    1987-01-01

    Numerical methodology for the solution of Duffing's differential equation is presented. Algorithms for the prediction of multiple equilibrium solutions and jump phenomena are developed. In addition, a filtering algorithm for producing steady state solutions is presented. The problem of a rigidly clamped circular plate subjected to cosinusoidal pressure loading is solved using the developed algorithms (the plate is assumed to be in the geometrically nonlinear range). The results accurately predict regions of solution multiplicity and jump phenomena.

  3. Yield and yield gaps in central U.S. corn production systems

    USDA-ARS?s Scientific Manuscript database

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield. Quantile regression analysis was applied to county maize (Zea mays L.) yields (1972 – 2011) from Kentucky, Iowa and Nebraska (irrigated) (total of 115 counties) to e...

  4. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  5. Quantifying uncertainty on sediment loads using bootstrap confidence intervals

    NASA Astrophysics Data System (ADS)

    Slaets, Johanna I. F.; Piepho, Hans-Peter; Schmitter, Petra; Hilger, Thomas; Cadisch, Georg

    2017-01-01

    Load estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been developed considerably over the last few years, measures of uncertainty on constituent loads are rarely reported. Loads are the product of two predictions, constituent concentration and discharge, integrated over a time period, which does not make it straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are required. The method was tested for a small watershed in Northwest Vietnam for the period 2010-2011. The results showed that confidence intervals were asymmetric, with the highest uncertainty in the upper limit, and that a load of 6262 Mg year-1 had a 95 % confidence interval of (4331, 12 267) in 2010 and a load of 5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap median estimates. These results imply that constituent loads predicted from regression-type water quality models could frequently be underestimating sediment yields and their environmental impact.

  6. The effect of high anionomer loading with silver nanowire catalysts on the oxygen reduction reaction in alkaline environment

    NASA Astrophysics Data System (ADS)

    Lemke, Adam J.; O'Toole, Alexander W.; Phillips, Richard S.; Eisenbraun, Eric T.

    2014-06-01

    The effect of ionomer content on the oxygen kinetics in fuel cells and metal-oxide batteries was investigated by varying ionomer loading with constant loadings of a silver nanowire catalyst. Silver nanowire inks were produced in which commercially available anionomer solution constituted 10, 25, 40, 50, and 75% of the total ink volume. Constant loadings of Ag nanowire catalyst were then deposited onto glassy carbon electrodes by varying the amount of ink deposited. These were then used in rotating disc electrode (RDE) experiments using a 0.1 M KOH electrolyte solution. From these experiments, using ORR polarization curves and Koutecky-Levich analysis, it was found that not only did the anionomer loading affect the total activity (given a constant Ag nanowire loading) but, that the anionomer content also had an impact upon the apparent kinetic limited current as well as whether the ORR proceeded through the 2e- or 4e- pathway. Although the total activity declined with very high anionomer loadings, the ORR appeared to proceed more through the 4e- pathway with increased anionomer content.

  7. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery.

    PubMed

    Han, Lina; Zhao, Yuefang; Yin, Lifang; Li, Ruiming; Liang, Yang; Huang, Huan; Pan, Shirong; Wu, Chuanbin; Feng, Min

    2012-09-01

    In the present study, we developed novel insulin-loaded hyaluronic acid (HA) nanoparticles for insulin delivery. The insulin-loaded HA nanoparticles were prepared by reverse-emulsion-freeze-drying method. This method led to a homogenous population of small HA nanoparticles with average size of 182.2 nm and achieved high insulin entrapment efficiencies (approximately 95%). The pH-sensitive HA nanoparticles as an oral delivery carrier showed advantages in protecting insulin against the strongly acidic environment of the stomach, and not destroying the junction integrity of epithelial cells which promise long-term safety for chronic insulin treatment. The results of transport experiments suggested that insulin-loaded HA nanoparticles were transported across Caco-2 cell monolayers mainly via transcellular pathway and their apparent permeability coefficient from apical to basolateral had more than twofold increase compared with insulin solution. The efflux ratio of P (app) (B to A) to P (app) (A to B) less than 1 demonstrated that HA nanoparticle-mediated transport of insulin across Caco-2 cell monolayers underwent active transport. The results of permeability through the rat small intestine confirmed that HA nanoparticles significantly enhanced insulin transport through the duodenum and ileum. Diabetic rats treated with oral insulin-loaded HA nanoparticles also showed stronger hypoglycemic effects than insulin solution. Therefore, these HA nanoparticles could be a promising candidate for oral insulin delivery.

  8. Versatile Loading of Diverse Cargo into Functional Polymer Capsules.

    PubMed

    Richardson, Joseph J; Maina, James W; Ejima, Hirotaka; Hu, Ming; Guo, Junling; Choy, Mei Y; Gunawan, Sylvia T; Lybaert, Lien; Hagemeyer, Christoph E; De Geest, Bruno G; Caruso, Frank

    2015-02-01

    Polymer microcapsules are of particular interest for applications including self-healing coatings, catalysis, bioreactions, sensing, and drug delivery. The primary way that polymer capsules can exhibit functionality relevant to these diverse fields is through the incorporation of functional cargo in the capsule cavity or wall. Diverse functional and therapeutic cargo can be loaded into polymer capsules with ease using polymer-stabilized calcium carbonate (CaCO 3 ) particles. A variety of examples are demonstrated, including 15 types of cargo, yielding a toolbox with effectively 500+ variations. This process uses no harsh reagents and can take less than 30 min to prepare, load, coat, and form the hollow capsules. For these reasons, it is expected that the technique will play a crucial role across scientific studies in numerous fields.

  9. Evolution and manipulation of parasitoid egg load.

    PubMed

    Gandon, Sylvain; Varaldi, Julien; Fleury, Frédéric; Rivero, Ana

    2009-11-01

    In proovigenic parasitoids such as Leptopilina boulardi, the female emerges with a limited egg load and no further eggs are produced during its adult life. A female thus runs the risk of exhausting this limited supply of eggs before the end of her life. Given that the production of an egg is costly, what is the evolutionarily stable egg load at emergence? This question has attracted a lot of attention in the last decade. Here, we analyze a model that allows us to track both the evolution and the population dynamics of a solitary, proovigenic parasitoid. First, we show how host-parasitoid dynamics feedbacks on the evolution of parasitoid egg load. Second, we use this model to consider the situation in which the parasitoid can be infected by a virus that manipulates the oviposition behavior of the females. In particular, we model the effect of the LbFV virus in L. boulardi, a virus that is known to enhance its horizontal transmission by increasing superparasitism (i.e., the laying of eggs in a host already parasitized). Specifically, we model (1) the effect of the virus on parasitoid egg load strategies, and (2) the evolution of egg load manipulation by the virus. This analysis yields two alternative, yet not mutually exclusive, adaptive explanations for the observation that females infected by the virus harbor higher egg loads than uninfected females. Infected females could either respond plastically to the infection status, or be manipulated by the virus. Further experimental work is required to distinguish between these two hypotheses. In a broader context, we present a general theoretical framework that allows us to study the epidemiology, the evolution, the coevolution, and the evolution of manipulation of various reproductive strategies of parasitoids.

  10. Simple practical approach for sample loading prior to DNA extraction using a silica monolith in a microfluidic device.

    PubMed

    Shaw, Kirsty J; Joyce, Domino A; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-12-07

    A novel DNA loading methodology is presented for performing DNA extraction on a microfluidic system. DNA in a chaotropic salt solution was manually loaded onto a silica monolith orthogonal to the subsequent flow of wash and elution solutions. DNA was successfully extracted from buccal swabs using electro-osmotic pumping (EOP) coupled with in situ reagents contained within a 1.5% agarose gel matrix. The extracted DNA was of sufficient quantity and purity for polymerase chain reaction (PCR) amplification.

  11. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    USGS Publications Warehouse

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from

  12. Radial current high power dummy load for characterizing the high power laser triggered transformer-type accelerator.

    PubMed

    Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang

    2010-09-01

    A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.

  13. Radial current high power dummy load for characterizing the high power laser triggered transformer-type accelerator

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang

    2010-09-01

    A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.

  14. Dynamic axle and wheel loads identification: laboratory studies

    NASA Astrophysics Data System (ADS)

    Zhu, X. Q.; Law, S. S.

    2003-12-01

    Two methods have been reported by Zhu and Law to identify moving loads on the top of a bridge deck. One is based on the exact solution (ESM) and the other is based on the finite element formulation (FEM). Simulation studies on the effect of different influencing factors have been reported previously. This paper comparatively studies the performances of these two methods with experimental measurements obtained from a bridge/vehicle system in the laboratory. The strains of the bridge deck are measured when a model car moves across the bridge deck along different paths. The moving loads on the bridge deck are identified from the measured strains using these two methods, and the responses are reconstructed from the identified loads for comparison with the measured responses to verify the performances of these methods. Studies on the identification accuracy due to the effect of the number of vibration mode used, the number of measuring points and eccentricities of travelling paths are performed. Results show that the ESM could identify the moving loads individually or as axle loads when they are travelling at an eccentricity with the sensors located close to the travelling path of the forces. And the accuracy of the FEM is dependent on the amount of measured information used in the identification.

  15. Reuse of hydroponic waste solution.

    PubMed

    Kumar, Ramasamy Rajesh; Cho, Jae Young

    2014-01-01

    Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.

  16. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.

    PubMed

    Lin, Yi-Chung; Walter, Jonathan P; Pandy, Marcus G

    2018-04-18

    We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.

  17. On the anomaly of velocity-pressure decoupling in collocated mesh solutions

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Vanoverbeke, Thomas

    1991-01-01

    The use of various pressure correction algorithms originally developed for fully staggered meshes can yield a velocity-pressure decoupled solution for collocated meshes. The mechanism that causes velocity-pressure decoupling is identified. It is shown that the use of a partial differential equation for the incremental pressure eliminates such a mechanism and yields a velocity-pressure coupled solution. Example flows considered are a three dimensional lid-driven cavity flow and a laminar flow through a 90 deg bend square duct. Numerical results obtained using the collocated mesh are in good agreement with the measured data and other numerical results.

  18. Characterization of the Solution Structure of Human Serum Albumin Loaded with a Metal Porphyrin and Fatty Acids

    PubMed Central

    Junk, Matthias J.N.; Spiess, Hans W.; Hinderberger, Dariush

    2011-01-01

    The structure of human serum albumin loaded with a metal porphyrin and fatty acids in solution is characterized by orientation-selective double electron-electron resonance (DEER) spectroscopy. Human serum albumin, spin-labeled fatty acids, and Cu(II) protoporphyrin IX—a hemin analog—form a fully self-assembled system that allows obtaining distances and mutual orientations between the paramagnetic guest molecules. We report a simplified analysis for the orientation-selective DEER data which can be applied when the orientation selection of one spin in the spin pair dominates the orientation selection of the other spin. The dipolar spectra reveal a dominant distance of 3.85 nm and a dominant orientation of the spin-spin vectors between Cu(II) protoporphyrin IX and 16-doxyl stearic acid, the electron paramagnetic resonance reporter group of the latter being located near the entry points to the fatty acid binding sites. This observation is in contrast to crystallographic data that suggest an asymmetric distribution of the entry points in the protein and hence the occurrence of various distances. In conjunction with the findings of a recent DEER study, the obtained data are indicative of a symmetric distribution of the binding site entries on the protein's surface. The overall anisotropic shape of the protein is reflected by one spin-spin vector orientation dominating the DEER data. PMID:21539799

  19. Numerical solutions for heat flow in adhesive lap joints

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, William P.

    1992-01-01

    The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.

  20. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.

    PubMed

    Little, Brian K; Lockhart, PaviElle; Slaten, B L; Mills, G

    2013-05-23

    Photolysis of air-saturated aqueous solutions containing sulphonated poly(ether etherketone) and poly(vinyl alcohol) results in the generation of hydrogen peroxide. Consumption of oxygen and H2O2 formation are initially concurrent processes with a quantum yield of peroxide generation of 0.02 in stirred or unstirred solutions within the range of 7 ≤ pH ≤ 9. The results are rationalized in terms of O2 reduction by photogenerated α-hydroxy radicals of the polymeric ketone in competition with radical-radical processes that consume the macromolecular reducing agents. Generation of H2O2 is controlled by the photochemical transformation that produces the polymer radicals, which is most efficient in neutral and slightly alkaline solutions. Quenching of the excited state of the polyketone by both H3O(+) and OH(-) affect the yields of the reducing macromolecular radicals and of H2O2. Deprotonation of the α-hydroxy polymeric radicals at pH > 9 accelerate their decay and contribute to suppressing the peroxide yields in basic solutions. Maxima in [H2O2] are observed when illuminations are performed with static systems, where O2 reduction is faster than diffusion of oxygen into the solutions. Under such conditions H2O2 can compete with O2 for the reducing radicals resulting in a consumption of the peroxide.