Sample records for yield nutrient content

  1. Switchgrass harvest time management can impact biomass yield and nutrient content

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a dedicated energy crop native to much of North America. While high-biomass yield is of significant importance for the development of switchgrass as a bioenergy crop, nutrient content in the biomass as it relates to biofuel conversion efficiency is also critical...

  2. Predicted harvest time effects on switchgrass moisture content, nutrient concentration, yield, and profitability

    USDA-ARS?s Scientific Manuscript database

    Production costs change with harvest date of switchgrass (Panicum virgatum L.) as a result of nutrient recycling and changes in yield of this perennial crop. This study examines the range of cost of production from an early, yield-maximizing harvest date to a late winter harvest date at low moisture...

  3. Nutrient retention values and cooking yield factors for three South African lamb and mutton cuts.

    PubMed

    van Heerden, Salomina M; Strydom, Phillip E

    2017-11-01

    Nutrient content of raw and cooked foods is important for formulation of healthy diets. The retention of nutrients during cooking can be influenced by various factors, including animal age, carcass characteristics and cooking method, and these factors are often unique to specific countries. Here the effects of animal age (lamb and mutton) and carcass cut (shoulder, loin and leg) combined with cooking method (moist heat and dry heat) on yield and nutrient retention of selected nutrients of South African sheep carcasses were studied. Cooking yields and moisture retention were lower for lamb loin but higher for lamb leg. Energy and fat retention were higher for all cuts of mutton compared with lamb, while higher retention values for cholesterol were recorded for lamb. Mutton retained more iron (P = 0.10) and zinc and also more vitamin B 2 , B 6 and B 12 than lamb. Shoulder cooked according to moist heat cooking method retained more magnesium, potassium and sodium. Incorporating these retention and yield values into the South African Medical Research Council's Food Composition Tables provides a reliable reference to all concerned with nutrient content of food. It will also guide practitioners and primary industry to adjust animal production aimed at optimum nutrient content to specific diets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    PubMed

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers' practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  5. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China

    PubMed Central

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M.; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543

  6. BANR: A Program to Predict Biomass Yield and Nutrient Withdrawal by Harvest of Southern Hardwood Stands

    Treesearch

    John K. Francis

    1986-01-01

    Intensive harvest of southern hardwoods can yield biomass in a greatly varied mix. This causes variation in the withdrawal rates of nutrients. A need exists for a computer program to perform biomass and nutrient content calculations on diverse stands. such a program BANR (Biomass And Nutrient Removal) - is described in this paper. It was written for the Hewlett-Packard...

  7. Detecting temporal change in watershed nutrient yields

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2008-01-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...

  8. Detecting Temporal Change in Watershed Nutrient Yields

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2008-01-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...

  9. Yield and Nutrient Removal by Whole-Tree Harvest of a Young Bottomland Hardwood Stand

    Treesearch

    John K. Francis

    1984-01-01

    The yield and nutrient withdrawal by whole-tree harvest of young bottomland hardwoods has heretofore been unknown. In this study of intensive harvest, samples of chipped whole trees and soil from 16 test plots were analyzed for nutrient content. Eighty-two percent of the stems and 59 percent of the dry weight were green ash. The balance was divided among a number of...

  10. 9 CFR 381.460 - Nutrient content claims for calorie content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Nutrient content claims for calorie content. 381.460 Section 381.460 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... § 381.460 Nutrient content claims for calorie content. (a) General requirements. A claim about the...

  11. 9 CFR 317.360 - Nutrient content claims for calorie content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Nutrient content claims for calorie content. 317.360 Section 317.360 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Labeling § 317.360 Nutrient content claims for calorie content. (a) General requirements. A claim about the...

  12. Food labeling: nutrient content claims, expansion of the nutrient content claim "lean". Final rule.

    PubMed

    2007-01-12

    The Food and Drug Administration (FDA) is amending its food labeling regulations for the expanded use of the nutrient content claim "lean" on the labels of foods categorized as "mixed dishes not measurable with a cup" that meet certain criteria for total fat, saturated fat, and cholesterol content. This final rule responds to a nutrient content claim petition submitted by Nestlé Prepared Foods Co. (Nestlé) under the Federal Food, Drug, and Cosmetic Act (the act). This action is also being taken to provide reliable information that would assist consumers in maintaining healthy dietary practices.

  13. Switchgrass growth and effects on biomass accumulation, moisture content, and nutrient removal

    USDA-ARS?s Scientific Manuscript database

    Temporal patterns of plant growth, composition, and nutrient removal impact development of models for predicting optimal harvest times of switchgrass (Panicum virgatum L.) for bioenergy. Objectives were to characterize seasonal trends in yield, tissue moisture, ash content, leaf area index (LAI), in...

  14. Nutrient content of some winter grouse foods

    USGS Publications Warehouse

    Treichler, R.R.; Stow, R.W.; Nelson, A.L.

    1946-01-01

    Seventeen preferred grouse foods were collected during the late winter and analyzed for nutrient content. The results include moisture, crude protein, ether extract, crude fiber, nitrogenfree extract, ash, calcium, phosphorus, and gross energy content expressed both on moisture free and fresh bases.....The preferred winter foods of grouse are characterized by a high content of dry substance and of nitrogen-free extract......On the basis of nutrient content, the foods examined are well qualified as sources of energy and other essential nutrients required for maintenance of grouse during the winter season.

  15. Potato growth and yield using nutrient film technique (NFT)

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Hinkle, C. R.

    1990-01-01

    Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.

  16. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    PubMed

    Tian, Xiaofei; Li, Chengliang; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  17. Impacts of elevated atmospheric CO2 on nutrient content and yield of important food crops

    USDA-ARS?s Scientific Manuscript database

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we p...

  18. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield

    PubMed Central

    Tian, Xiaofei; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0–100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0–15.8%, 9.3–13.9%, and 9.2–21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0–20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching. PMID:29324750

  19. Effect of compost-, sand-, or gypsum-amended waste foundry sands on turfgrass yield and nutrient content

    USDA-ARS?s Scientific Manuscript database

    To prevent the 7-11 million metric tons of waste foundry sand (WFS) produced annually in the U.S. from entering landfills, current research is focused on the reuse of WFSs as soil amendments. The effects of different WFS-containing amendments on turfgrass growth and nutrient content were tested by ...

  20. Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment.

    PubMed

    Chibarabada, Tendai Polite; Modi, Albert Thembinkosi; Mabhaudhi, Tafadzwanashe

    2017-10-26

    There is a need to incorporate nutrition into aspects of crop and water productivity to tackle food and nutrition insecurity (FNS). The study determined the nutritional water productivity (NWP) of selected major (groundnut, dry bean) and indigenous (bambara groundnut and cowpea) grain legumes in response to water regimes and environments. Field trials were conducted during 2015/16 and 2016/17 at three sites in KwaZulu-Natal, South Africa (Ukulinga, Fountainhill and Umbumbulu). Yield and evapotranspiration (ET) data were collected. Grain was analysed for protein, fat, Ca, Fe and Zn nutrient content (NC). Yield, ET and NC were then used to compute NWP. Overall, the major legumes performed better than the indigenous grain legumes. Groundnut had the highest NWP fat . Groundnut and dry bean had the highest NWP protein . For NWP Fe, Zn and Ca , dry bean and cowpea were more productive. Yield instability caused fluctuations in NWP. Water treatments were not significant ( p > 0.05). While there is scope to improve NWP under rainfed conditions, a lack of crop improvement currently limits the potential of indigenous grain legumes. This provides an initial insight on the nutrient content and NWP of a limited number of selected grain legumes in response to the production environment. There is a need for follow-up research to include cowpea data. Future studies should provide more experimental data and explore effects of additional factors such as management practices (fertiliser levels and plant density), climate and edaphic factors on nutrient content and NWP of crops.

  1. Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment

    PubMed Central

    Chibarabada, Tendai Polite; Modi, Albert Thembinkosi

    2017-01-01

    There is a need to incorporate nutrition into aspects of crop and water productivity to tackle food and nutrition insecurity (FNS). The study determined the nutritional water productivity (NWP) of selected major (groundnut, dry bean) and indigenous (bambara groundnut and cowpea) grain legumes in response to water regimes and environments. Field trials were conducted during 2015/16 and 2016/17 at three sites in KwaZulu-Natal, South Africa (Ukulinga, Fountainhill and Umbumbulu). Yield and evapotranspiration (ET) data were collected. Grain was analysed for protein, fat, Ca, Fe and Zn nutrient content (NC). Yield, ET and NC were then used to compute NWP. Overall, the major legumes performed better than the indigenous grain legumes. Groundnut had the highest NWPfat. Groundnut and dry bean had the highest NWPprotein. For NWPFe, Zn and Ca, dry bean and cowpea were more productive. Yield instability caused fluctuations in NWP. Water treatments were not significant (p > 0.05). While there is scope to improve NWP under rainfed conditions, a lack of crop improvement currently limits the potential of indigenous grain legumes. This provides an initial insight on the nutrient content and NWP of a limited number of selected grain legumes in response to the production environment. There is a need for follow-up research to include cowpea data. Future studies should provide more experimental data and explore effects of additional factors such as management practices (fertiliser levels and plant density), climate and edaphic factors on nutrient content and NWP of crops. PMID:29072620

  2. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  3. NUTRIENT CONTENT OF THE FOOD SUPPLY, 1909 - 1999

    EPA Science Inventory

    Under Secretary Shirley Watkins the publication the "Nutrient Content of the U.S. Food Supply, 1909-94" was released. It was prepared by the USDA Center for Nutrition Policy and Promotion and presents historical data on the nutrient content of the U.S. food supply through 1994, w...

  4. DETECTING TEMPORAL CHANGE IN WATERSHED NUTRIENT YIELDS

    EPA Science Inventory

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increase...

  5. 9 CFR 317.360 - Nutrient content claims for calorie content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Nutrient content claims for calorie content. 317.360 Section 317.360 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION...

  6. 9 CFR 381.460 - Nutrient content claims for calorie content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Nutrient content claims for calorie content. 381.460 Section 381.460 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION...

  7. 9 CFR 317.360 - Nutrient content claims for calorie content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Nutrient content claims for calorie content. 317.360 Section 317.360 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION...

  8. 9 CFR 317.360 - Nutrient content claims for calorie content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Nutrient content claims for calorie content. 317.360 Section 317.360 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION...

  9. 9 CFR 381.460 - Nutrient content claims for calorie content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Nutrient content claims for calorie content. 381.460 Section 381.460 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION...

  10. 9 CFR 381.460 - Nutrient content claims for calorie content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Nutrient content claims for calorie content. 381.460 Section 381.460 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION...

  11. [Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China].

    PubMed

    Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming

    2017-11-01

    A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack

  12. Hydrology, nutrient concentrations, and nutrient yields in nearshore areas of four lakes in northern Wisconsin, 1999-2001

    USGS Publications Warehouse

    Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.

    2003-01-01

    The effects of shoreline development on water quality and nutrient yields in nearshore areas of four lakes in northern Wisconsin were investigated from October 1999 through September 2001. The study measured surface runoff and ground-water flows from paired developed (sites containing lawn, rooftops, sidewalks, and driveways) and undeveloped (mature and immature woods) catchments adjacent to four lakes in northern Wisconsin. Water samples from surface runoff and ground water were collected and analyzed for nutrients. Coupled with water volumes, loads and subsequent yields of selected constituents were computed for developed and undeveloped catchments. The median runoff from lawn surfaces ranged from 0.0019 to 0.059 inch over the catchment area. Median surface runoff estimates from the wooded catchments were an order of magnitude less than those from the lawn catchments. The increased water volumes from the lawn catchments resulted in greater nutrient loads and subsequent annual nutrient yields from the developed sites. Soil temperature and soil moisture were measured at two sites with mixed lawn and wooded areas. At both of these sites, the area covered with a lawn commonly was warmer than the wooded area. No consistent differences in soil moisture were found. A ground-water model was constructed to simulate the local flow systems at two of the paired catchments. Model simulations showed that much of the ground water delivered to the lake originated from distant areas that did not contribute runoff directly to the lake. Surface runoff and ground-water nutrient concentrations from the lawn and wooded catchments did not have apparent patterns. Some of the median concentrations from lawns were significantly different (at the 0.05 significance level) from those at wooded catchments. Water wells and piezometers were sampled for chemical analyses three times during the study period. Variability in the shallow ground-water chemistry over time in the lawn samples was

  13. 21 CFR 101.62 - Nutrient content claims for fat, fatty acid, and cholesterol content of foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cholesterol content of foods. 101.62 Section 101.62 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Nutrient Content Claims § 101.62 Nutrient content claims for fat, fatty acid, and cholesterol content of foods. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a food...

  14. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    NASA Technical Reports Server (NTRS)

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  15. 21 CFR 101.67 - Use of nutrient content claims for butter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Use of nutrient content claims for butter. 101.67....67 Use of nutrient content claims for butter. (a) Claims may be made to characterize the level of nutrients, including fat, in butter if: (1) The claim complies with the requirements of § 101.13 and with...

  16. 9 CFR 381.461 - Nutrient content claims for the sodium content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Nutrient content claims for the sodium content. 381.461 Section 381.461 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATIO...

  17. 9 CFR 381.461 - Nutrient content claims for the sodium content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Nutrient content claims for the sodium content. 381.461 Section 381.461 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATIO...

  18. 9 CFR 317.361 - Nutrient content claims for the sodium content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Nutrient content claims for the sodium content. 317.361 Section 317.361 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATIO...

  19. 9 CFR 317.361 - Nutrient content claims for the sodium content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Nutrient content claims for the sodium content. 317.361 Section 317.361 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATIO...

  20. 9 CFR 381.461 - Nutrient content claims for the sodium content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Nutrient content claims for the sodium content. 381.461 Section 381.461 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATIO...

  1. 9 CFR 317.361 - Nutrient content claims for the sodium content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Nutrient content claims for the sodium content. 317.361 Section 317.361 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATIO...

  2. 9 CFR 381.461 - Nutrient content claims for the sodium content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Nutrient content claims for the sodium content. 381.461 Section 381.461 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATIO...

  3. 9 CFR 317.361 - Nutrient content claims for the sodium content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Nutrient content claims for the sodium content. 317.361 Section 317.361 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATIO...

  4. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    USGS Publications Warehouse

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from

  5. Effect of harvesting frequency, variety and leaf maturity on nutrient composition, hydrogen cyanide content and cassava foliage yield.

    PubMed

    Hue, Khuc Thi; Thanh Van, Do Thi; Ledin, Inger; Wredle, Ewa; Spörndly, Eva

    2012-12-01

    The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter), K98-7 (medium bitter) and a local (sweet), were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM) and crude protein (CP) production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF), acid detergent fibre (ADF) and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN) content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05). Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves.

  6. Effect of Harvesting Frequency, Variety and Leaf Maturity on Nutrient Composition, Hydrogen Cyanide Content and Cassava Foliage Yield

    PubMed Central

    Hue, Khuc Thi; Thanh Van, Do Thi; Ledin, Inger; Wredle, Ewa; Spörndly, Eva

    2012-01-01

    The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter), K98-7 (medium bitter) and a local (sweet), were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM) and crude protein (CP) production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF), acid detergent fibre (ADF) and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN) content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05). Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves. PMID:25049534

  7. Environmental modification of yield and nutrient composition of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Chun, C.; Brandt, W. E.; Nielsen, S. S.

    1997-01-01

    Leaf number, dry weight, and nutrient composition of Lactuca sativa L. cv. Waldmann's Green leaves were compared following 9 days of treatment in a controlled environment room under various combinations of photosynthetic photon flux (PPF:350 vs 800 micromoles m-2 s-1), atmospheric CO2 level (ambient vs 1500 micromoles mol-1), and single-strength (1X:15 mM) vs double-strength (2X:30 mM) nitrogen (N) as NO3- alone or as NH4(+) + NO3- (1:5 molar ratio). CO2 enrichment greatly enhanced leaf number under all PPF and N conditions, but increased leaf dry weight only at high PPF. Conditions favoring high photosynthesis enhanced leaf starch content 3-fold, and protein content increased as much as 64% with 2X NH4(+)+NO3-. Free sugar content was 6 to 9% of leaf dry weight for all treatment combinations, while fat was 1.5 to 3.5%. Ash content varied from 15 to 20% of leaf dry weight. Modified controlled environments can be used to enhance the nutritional content as well as the yield of crops to be used for life support in space-deployed, self-sustaining human habitats. Leaf lettuce is a useful model crop for demonstrating the potential of nutritional value added by environmental manipulation.

  8. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China

    PubMed Central

    Zheng, Huaiguo; Xu, Xinpeng

    2016-01-01

    In order to make clear the recent status and trend of wheat (Triticum aestivum L.) production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000–2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied) values of N (PFP-N), P (PFP-P) and K (PFP-K) were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied) values of N (AEN), P (AEP) and K (AEK) were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application) values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R’s nutrient management (right time, right rate, right site

  9. Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley.

    PubMed

    Schneider, Hannah M; Wojciechowski, Tobias; Postma, Johannes A; Brown, Kathleen M; Lücke, Andreas; Zeisler, Viktoria; Schreiber, Lukas; Lynch, Jonathan P

    2017-08-01

    The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress. © 2017 John Wiley & Sons Ltd.

  10. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato.

    PubMed

    McKeehen, J D; Mitchell, C A; Wheeler, R M; Bugbee, B; Nielsen, S S

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  11. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  12. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  13. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves.

    PubMed

    Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf

    2003-10-01

    In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.

  14. Combined Application of Biofertilizers and Inorganic Nutrients Improves Sweet Potato Yields

    PubMed Central

    Mukhongo, Ruth W.; Tumuhairwe, John B.; Ebanyat, Peter; AbdelGadir, AbdelAziz H.; Thuita, Moses; Masso, Cargele

    2017-01-01

    Sweet potato [Ipomoea batatas (L) Lam] yields currently stand at 4.5 t ha−1 on smallholder farms in Uganda, despite the attainable yield (45–48 t ha−1) of NASPOT 11 cultivar comparable to the potential yield (45 t ha−1) in sub-Saharan Africa (SSA). On-farm field experiments were conducted for two seasons in the Mt Elgon High Farmlands and Lake Victoria Crescent agro-ecological zones in Uganda to determine the potential of biofertilizers, specifically arbuscular mycorrhizal fungi (AMF), to increase sweet potato yields (NASPOT 11 cultivar). Two kinds of biofertilizers were compared to different rates of phosphorus (P) fertilizer when applied with or without nitrogen (N) and potassium (K). The sweet potato response to treatments was variable across sites (soil types) and seasons, and significant tuber yield increase (p < 0.05) was promoted by biofertilizer and NPK treatments during the short-rain season in the Ferralsol. Tuber yields ranged from 12.8 to 20.1 t ha−1 in the Rhodic Nitisol (sandy-clay) compared to 7.6 to 14.9 t ha−1 in the Ferralsol (sandy-loam) during the same season. Root colonization was greater in the short-rain season compared to the long-rain season. Biofertilizers combined with N and K realized higher biomass and tuber yield than biofertilizers alone during the short-rain season indicating the need for starter nutrients for hyphal growth and root colonization of AMF. In this study, N0.25PK (34.6 t ha−1) and N0.5PK (32.9 t ha−1) resulted in the highest yield during the long and the short-rain season, respectively, but there was still a yield gap of 11.9 and 13.6 t ha−1 for the cultivar. Therefore, a combination of 90 kg N ha−1 and 100 kg K ha−1 with either 15 or 30 kg P ha−1 can increase sweet potato yield from 4.5 to >30 t ha−1. The results also show that to realize significance of AMF in nutrient depleted soils, starter nutrients should be included. PMID:28348569

  15. 21 CFR 101.67 - Use of nutrient content claims for butter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Use of nutrient content claims for butter. 101.67 Section 101.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101...

  16. 21 CFR 101.67 - Use of nutrient content claims for butter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Use of nutrient content claims for butter. 101.67 Section 101.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101...

  17. 21 CFR 101.67 - Use of nutrient content claims for butter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Use of nutrient content claims for butter. 101.67 Section 101.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101...

  18. 21 CFR 101.67 - Use of nutrient content claims for butter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Use of nutrient content claims for butter. 101.67 Section 101.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101...

  19. Comparison of Nutrient Content and Cost of Home-Packed Lunches to Reimbursable School Lunch Nutrient Standards and Prices

    ERIC Educational Resources Information Center

    Johnson, Cara M.; Bednar, Carolyn; Kwon, Junehee; Gustof, Alissa

    2009-01-01

    Purpose: The purpose of this study was to compare nutrient content and cost of home-packed lunches to nutrient standards and prices for reimbursable school lunches. Methods: Researchers observed food and beverage contents of 333 home packed lunches at four north Texas elementary schools. Nutritionist Pro was used to analyze lunches for calories,…

  20. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be...

  1. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be...

  2. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be...

  3. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be...

  4. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to..., and cholesterol in a product may only be made on the label or in labeling of products if: (1) The...

  5. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to..., and cholesterol in a product may only be made on the label or in labeling of products if: (1) The...

  6. Switchgrass cultivar, yield, and nutrient removal responses to harvest timing

    USDA-ARS?s Scientific Manuscript database

    Finite nutrients, such as P (phosphorus) and K (potassium) are remobilized post-growing season in herbaceous feedstocks such as swichgrass (Panicum virgatum L.) as a function of environmental signaling and genotype. However, harvesting early during the maturation process may result in yield reductio...

  7. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be... fat. (iv) A synonym for “___ percent fat free” is “___ percent lean.” (c) Fatty acid content claims...

  8. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. (a) General requirements. A claim about the level of fat, fatty acid, and cholesterol in a product may only be.... (iv) A synonym for “___ percent fat free” is “___ percent lean.” (c) Fatty acid content claims. (1...

  9. 9 CFR 381.462 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... acids, and cholesterol content. 381.462 Section 381.462 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 381.462 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to... level of fat, fatty acid, and cholesterol in a product may only be made on the label or in labeling of...

  10. 9 CFR 317.362 - Nutrient content claims for fat, fatty acids, and cholesterol content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... acids, and cholesterol content. 317.362 Section 317.362 Animals and Animal Products FOOD SAFETY AND... Nutrition Labeling § 317.362 Nutrient content claims for fat, fatty acids, and cholesterol content. Link to... level of fat, fatty acid, and cholesterol in a product may only be made on the label or in labeling of...

  11. Nutrient content of precipitation over Iowa

    Treesearch

    M. A. Tabatabai; J. M. Laflen

    1976-01-01

    Nutrient content and pH of precipitation samples collected at six sites during 1971-1973 were studied to determine the reaction of rainfall and snowmelt and the amounts of N, S, and P added by precipitation over Iowa. The amount of NH4-N added by precipitation per hectare annually at each site was about equal to that added as NO3...

  12. Effects of diurnal control in the mineral concentration of nutrient solution on tomato yield and nutrient absorption in hydroponics.

    PubMed

    Higashide, T; Shimaji, H; Takaichi, M

    1996-12-01

    We researched effects of diurnal change of the mineral concentration on tomato yield and nutrient absorption. First, we examined the effect on yield in a spray culture, in the experiment 1-1, when nitrate concentration of solution (N) and potassium concentration (K) were low and phosphate concentration (P) was high during the daytime, while N and K were high and P was low during the night, the yield was low. In the experiment 1-2, when N and K were high and P was low during the daytime, while N and K were low and P was high during the night, the yield was low. Second, we examined the effect on nutrient absorption in a water culture. Concentration of KNO3, of solution was changed in the daytime or the night. When KNO3 level was low during the daytime, while it was high during the night, total nitrate and potassium absorption for 24 hours was the highest. It were showed the possibility of the efficient supply of minerals to plants by the diurnal control in minerals.

  13. Nutrient Content of Brown Marmorated Stink Bug Eggs and Comparisons Between Experimental Uses

    PubMed Central

    Skillman, Victoria P

    2017-01-01

    Abstract Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), the brown marmorated stink bug (BMSB), has become a major pest. Seven experiments examined the nutrient content of their eggs in the context of female reproductive investment and use for experiments. Among 542 clusters examined, an average egg contained 23.50 ± 0.561 µg lipid, 3.17 ± 0.089 µg glycogen, and 3.08 ± 0.056 µg sugar. Mature eggs within a female’s ovary can make up 61% of her total lipid, 35% of glycogen, and 20% of sugar levels. Eggs obtained from a colony reared on a steady diet are expected to have consistent nutrient content. The age of a parental female only slightly affected the lipid level of oviposited eggs but did not affect glycogen or sugar levels. However, egg nutrient content can differ substantially by the source of the parental females; wild eggs had higher lipid but lower sugar content than colony-produced eggs. Further, the length of time that eggs are frozen influenced egg nutrient content. Freshly laid eggs had higher lipid and lower sugar levels than eggs frozen for 1 or 2 yr. Whether an egg turned grey following removal from cold storage did not affect nutrient content, nor did being frozen within 1 or 3 d of oviposition. The temperature at which eggs were left exposed did not impact egg nutrient content, but glycogen decreased and sugar increased with deployment time. This information combined with how factors affect host selection by natural enemies will help refine future experiments that use BMSB egg clusters.

  14. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    USGS Publications Warehouse

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater

  15. Measurement of broiler litter production rates and nutrient content using recycled litter.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    It is important for broiler producers to know litter production rates and litter nutrient content when developing nutrient management plans. Estimation of broiler litter production varies widely in the literature due to factors such as geographical region, type of housing, size of broiler produced, and number of flocks reared on the same litter. Published data for N, P, and K content are also highly variable. In addition, few data are available regarding the rate of production, characteristics, and nutrient content of caked litter (cake). In this study, 18 consecutive flocks of broilers were reared on the same litter in experimental pens under simulated commercial conditions. The mass of litter and cake produced was measured after each flock. Samples of all litter materials were analyzed for pH, moisture, N, P, and K. Average litter and cake moisture content were 26.4 and 46.9%, respectively. Significant variation in litter and cake nutrient content was observed and can largely be attributed to ambient temperature differences. Average litter, cake, and total litter (litter plus cake) production rates were 153.3, 74.8, and 228.2 g of dry litter material per kg of live broiler weight (g/kg) per flock, respectively. Significant variation in litter production rates among flocks was also observed. Cumulative litter, cake, and total litter production rates after 18 flocks were 170.3, 78.7, and 249.0 g/kg, respectively. The data produced from this research can be used by broiler producers to estimate broiler litter and cake production and the nutrient content of these materials.

  16. Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production

    PubMed Central

    Moreira-Ascarrunz, Sergio Daniel; Larsson, Hans; Prieto-Linde, Maria Luisa; Johansson, Eva

    2016-01-01

    The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha−1). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated “balanced genotypes” for the four minerals and for the aforementioned characteristics. Selection and breeding of such “balanced genotypes” may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population. PMID:28231184

  17. Socioeconomic Status, Energy Cost, and Nutrient Content of Supermarket Food Purchases

    PubMed Central

    Appelhans, Bradley M.; Milliron, Brandy-Joe; Woolf, Kathleen; Johnson, Tricia J.; Pagoto, Sherry L.; Schneider, Kristin L.; Whited, Matthew C.; Ventrelle, Jennifer C.

    2013-01-01

    Background The relative affordability of energy-dense versus nutrient-rich foods may promote socioeconomic disparities in dietary quality and obesity. Although supermarkets are the largest food source in the American diet, the associations between SES and the cost and nutrient content of freely chosen food purchases have not been described. Purpose To investigate relationships of SES with the energy cost ($/1000 kcal) and nutrient content of freely chosen supermarket purchases. Methods Supermarket shoppers (n=69) were recruited at a Phoenix AZ supermarket in 2009. The energy cost and nutrient content of participants’ purchases were calculated from photographs of food packaging and nutrition labels using dietary analysis software. Data were analyzed in 2010–2011. Results Two SES indicators, education and household income as a percentage of the federal poverty guideline (FPG), were associated with the energy cost of purchased foods. Adjusting for covariates, the amount spent on 1000 kcal of food was $0.26 greater for every multiple of the FPG, and those with a baccalaureate or postbaccalaureate degree spent an additional $1.05 for every 1000 kcal of food compared to those with no college education. Lower energy cost was associated with higher total fat and less protein, dietary fiber, and vegetables per 1000 kcal purchased. Conclusions Low-SES supermarket shoppers purchase calories in inexpensive forms that are higher in fat and less nutrient-rich. PMID:22424253

  18. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    PubMed

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning.

  19. Testing consumer perception of nutrient content claims using conjoint analysis.

    PubMed

    Drewnowski, Adam; Moskowitz, Howard; Reisner, Michele; Krieger, Bert

    2010-05-01

    The US Food and Drug Administration (FDA) proposes to establish standardized and mandatory criteria upon which front-of-pack (FOP) nutrition labelling must be based. The present study aimed to estimate the relative contribution of declared amounts of different nutrients to the perception of the overall 'healthfulness' of foods by the consumer. Protein, fibre, vitamin A, vitamin C, calcium and iron were nutrients to encourage. Total fat, saturated fat, cholesterol, total and added sugar, and sodium were the nutrients to limit. Two content claims per nutrient used the FDA-approved language. An online consumer panel (n 320) exposed to multiple messages (n 48) rated the healthfulness of each hypothetical food product. Utility functions were constructed using conjoint analysis, based on multiple logistic regression and maximum likelihood estimation. Consumer perception of healthfulness was most strongly driven by the declared presence of protein, fibre, calcium and vitamin C and by the declared total absence of saturated fat and sodium. For this adult panel, total and added sugar had lower utilities and contributed less to the perception of healthfulness. There were major differences between women and men. Conjoint analysis can lead to a better understanding of how consumers process information about the full nutrition profile of a product, and is a powerful tool for the testing of nutrient content claims. Such studies can help the FDA develop science-based criteria for nutrient profiling that underlies FOP and shelf labelling.

  20. Socioeconomic status, energy cost, and nutrient content of supermarket food purchases.

    PubMed

    Appelhans, Bradley M; Milliron, Brandy-Joe; Woolf, Kathleen; Johnson, Tricia J; Pagoto, Sherry L; Schneider, Kristin L; Whited, Matthew C; Ventrelle, Jennifer C

    2012-04-01

    The relative affordability of energy-dense versus nutrient-rich foods may promote socioeconomic disparities in dietary quality and obesity. Although supermarkets are the largest food source in the American diet, the associations between SES and the cost and nutrient content of freely chosen food purchases have not been described. To investigate relationships of SES with the energy cost ($/1000 kcal) and nutrient content of freely chosen supermarket purchases. Supermarket shoppers (n=69) were recruited at a Phoenix AZ supermarket in 2009. The energy cost and nutrient content of participants' purchases were calculated from photographs of food packaging and nutrition labels using dietary analysis software. Data were analyzed in 2010-2011. Two SES indicators, education and household income as a percentage of the federal poverty guideline (FPG), were associated with the energy cost of purchased foods. Adjusting for covariates, the amount spent on 1000 kcal of food was $0.26 greater for every multiple of the FPG, and those with a baccalaureate or postbaccalaureate degree spent an additional $1.05 for every 1000 kcal of food compared to those with no college education. Lower energy cost was associated with higher total fat and less protein, dietary fiber, and vegetables per 1000 kcal purchased. Low-SES supermarket shoppers purchase calories in inexpensive forms that are higher in fat and less nutrient-rich. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. 9 CFR 381.413 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... whether or not they meet the definition of the descriptive term. (7) Implied nutrient content claims may...

  2. 9 CFR 381.413 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... whether or not they meet the definition of the descriptive term. (7) Implied nutrient content claims may...

  3. 9 CFR 381.413 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... whether or not they meet the definition of the descriptive term. (7) Implied nutrient content claims may...

  4. 9 CFR 381.413 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... whether or not they meet the definition of the descriptive term. (7) Implied nutrient content claims may...

  5. 9 CFR 381.413 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... whether or not they meet the definition of the descriptive term. (7) Implied nutrient content claims may...

  6. [Effects of two phenolic acids on root zone soil nutrients, soil enzyme activities and pod yield of peanut].

    PubMed

    Li, Qing Kai; Liu, Ping; Tang, Zhao Hui; Zhao, Hai Jun; Wang, Jiang Tao; Song, Xiao Zong; Yang, Li; Wan, Shu Bo

    2016-04-22

    In order to investigate the relationship between the accumulation of phenolic acids in peanut continuous cropping soil and the continuous cropping obstacle of peanut, the effects of p-hydroxy benzoic acid and cinnamic acid on peanut root zone soil nutrients, soil enzyme activities and yield of peanut were studied by pot experiment at three stages of peanut, i.e. the pegging stage of peanut (45 days after seedling), the early podding (75 days after seedling) and the end of podding (105 days after seedling) stages. The results showed that the peanut root zone soil nutrients and enzyme activities changed obviously under the two phenolic acids treatment, especially at the pegging stage of peanut. The soil alkali-hydrolyzable nitrogen, available phosphorus, available potassium, and soil enzyme activities (urease, sucrose, neutral phosphatase) were decreased significantly. At the early and end of podding stages of peanut, the effects of the two phenolic acids on peanut root zone soil nutrients and soil enzyme activities were under a weakening trend. The allelopathy of cinnamic acid was stronger than that of p-hydroxy benzoic acid at the same initial content. The pod yield per pot was reduced by 45.9% and 52.8%, while the pod number of per plant was reduced by 46.2% and 48.9% at higher concentration (80 mg·kg -1 dry soil) of p-hydroxy benzoic acid and cinnamic acid treatments, respectively.

  7. Genetic parameters of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process.

    PubMed

    Bittante, G; Cipolat-Gotet, C; Cecchinato, A

    2013-01-01

    Cheese yield (CY) is an important technological trait in the dairy industry, and the objective of this study was to estimate the genetic parameters of cheese yield in a dairy cattle population using an individual model-cheese production procedure. A total of 1,167 Brown Swiss cows belonging to 85 herds were sampled once (a maximum of 15 cows were sampled per herd on a single test day, 1 or 2 herds per week). From each cow, 1,500 mL of milk was processed according to the following steps: milk sampling and heating, culture addition, rennet addition, gelation-time recording, curd cutting, whey draining and sampling, wheel formation, pressing, salting in brine, weighing, and cheese sampling. The compositions of individual milk, whey, and curd samples were determined. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), which represented the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding nutrient in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese versus that in the milk. For statistical analysis, a Bayesian animal model was implemented via Gibbs sampling. The effects of parity (1 to ≥4), days in milk (6 classes), and laboratory vat (15 vats) were assigned flat priors; those of herd-test-date, animal, and residual were given Gaussian prior distributions. Intra-herd heritability estimates of %CY(CURD), %CY(SOLIDS), and %CY(WATER) ranged from 0.224 to 0.267; these were larger than the estimates obtained for milk yield (0.182) and milk fat

  8. 9 CFR 317.313 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... definition of the descriptive term. (7) Implied nutrient content claims may be used as part of a brand name...

  9. 9 CFR 317.313 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... definition of the descriptive term. (7) Implied nutrient content claims may be used as part of a brand name...

  10. 9 CFR 317.313 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... definition of the descriptive term. (7) Implied nutrient content claims may be used as part of a brand name...

  11. 9 CFR 317.313 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... definition of the descriptive term. (7) Implied nutrient content claims may be used as part of a brand name...

  12. 9 CFR 317.313 - Nutrient content claims; general principles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ‘product’ ”). This statement of identity must be immediately followed by the comparative statement such as... definition of the descriptive term. (7) Implied nutrient content claims may be used as part of a brand name...

  13. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat.

    PubMed

    Ahmad, Shakeel; Imran, Muhammad; Hussain, Sabir; Mahmood, Sajid; Hussain, Azhar; Hasnain, Muhammad

    2017-08-01

    The fertilizer use efficiency (FUE) of agricultural crops is generally low, which results in poor crop yields and low economic benefits to farmers. Among the various approaches used to enhance FUE, impregnation of mineral fertilizers with plant growth-promoting bacteria (PGPB) is attracting worldwide attention. The present study was aimed to improve growth, yield and nutrient use efficiency of wheat by bacterially impregnated mineral fertilizers. Results of the pot study revealed that impregnation of diammonium phosphate (DAP) and urea with PGPB was helpful in enhancing the growth, yield, photosynthetic rate, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) of wheat. However, the plants treated with F8 type DAP and urea, prepared by coating a slurry of PGPB (Bacillus sp. strain KAP6) and compost on DAP and urea granules at the rate of 2.0 g 100 g -1 fertilizer, produced better results than other fertilizer treatments. In this treatment, growth parameters including plant height, root length, straw yield and root biomass significantly (P ≤ 0.05) increased from 58.8 to 70.0 cm, 41.2 to 50.0 cm, 19.6 to 24.2 g per pot and 1.8 to 2.2 g per pot, respectively. The same treatment improved grain yield of wheat by 20% compared to unimpregnated DAP and urea (F0). Likewise, the maximum increase in photosynthetic rate, grain NP content, grain NP uptake, NUE and PUE of wheat were also recorded with F8 treatment. The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Survey on nutrient content of different organic fertilisers.

    PubMed

    Rajan, Jagadish; Anandhan, Shanmugaselvan Veilumuthu

    2015-06-01

    The knowledge of nutrient aspects of organic fertilisers is of much relevance in assessing their availability and long-term effect to the soil and crop and in formulating sound fertiliser recommendation. Around 619 organic fertiliser samples under different categories, which were received by the analytical laboratory of UPASI Tea Research Institute, Valparai, were examined for their nutrient status. The trend in the number of samples received every year for the past 5 years showed that there is a gradual, steady and linear increase in the number of samples received by the laboratory which, in turn, authenticates the increase in the production and utilisation of organic fertilisers in agricultural sector. This also reveals the awareness of organic farming among farmers in recent times. The organic fertilisers received by the laboratory were categorised into different groups based on their nomenclature. The number of samples received each year under different categories varies to a larger extent. The nutritional status was unpredictable based on the nomenclature of the sample received. In addition to this frequency distribution, the nutritional values analysed are discussed in this paper. Correlation matrix was worked out between all the parameters estimated. It is evident that if maintenance of proper carbon-to-nitrogen ratio and moisture content is ascertained in the finished product, one can guarantee the quality of the organic fertiliser in terms of nutrient content.

  15. 21 CFR 101.61 - Nutrient content claims for the sodium content of foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... consumption with water or a diluent containing an insignificant amount, as defined in § 101.9(f)(1), of all... (for dehydrated foods that must be reconstituted before typical consumption with water or a diluent... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content...

  16. 21 CFR 101.61 - Nutrient content claims for the sodium content of foods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... consumption with water or a diluent containing an insignificant amount, as defined in § 101.9(f)(1), of all... (for dehydrated foods that must be reconstituted before typical consumption with water or a diluent... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content...

  17. 21 CFR 101.61 - Nutrient content claims for the sodium content of foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... consumption with water or a diluent containing an insignificant amount, as defined in § 101.9(f)(1), of all... (for dehydrated foods that must be reconstituted before typical consumption with water or a diluent... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content...

  18. 21 CFR 101.61 - Nutrient content claims for the sodium content of foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... consumption with water or a diluent containing an insignificant amount, as defined in § 101.9(f)(1), of all... (for dehydrated foods that must be reconstituted before typical consumption with water or a diluent... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content...

  19. 21 CFR 101.61 - Nutrient content claims for the sodium content of foods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consumption with water or a diluent containing an insignificant amount, as defined in § 101.9(f)(1), of all... (for dehydrated foods that must be reconstituted before typical consumption with water or a diluent... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content...

  20. [Nutrient content and adequacy of roughage for horse nutrition: an investigation under Swiss conditions].

    PubMed

    Nater, S; Wanner, M; Wichert, B

    2007-03-01

    For horses no special tables related to nutrients for Swiss roughage exist. For this reason samples of hay, straw, silage/haylage and green forage were taken from 46 horse keeping farms in 22 cantons. The samples were judged by sense and following the nutrient--and macromineral--content as well as the content of fructans were analysed. Regarding its quality no sample was totally inadequate for horses. The mean contents of crude protein in Swiss hay for horses were clearly lower than in hay for ruminants and in German hay for horses. The mineral contents (calcium, magnesium, phosphorus) showed a wide range. On average they were also lower than the values provided in tables for ruminants. Except for one sample the silages/haylages showed a dry matter content of more than 40 %. No nutrient tables for silage or haylage, which are such high in dry matter contents, were found in the literature. The contents offructans in silage/haylage and green forage also showed a wide range with a maximum of 94 g/kg DM fructan.

  1. Comparison of the nutritional content of products, with and without nutrient claims, targeted at children in Brazil.

    PubMed

    Rodrigues, Vanessa Mello; Rayner, Mike; Fernandes, Ana Carolina; de Oliveira, Renata Carvalho; Proença, Rossana Pacheco da Costa; Fiates, Giovanna Medeiros Rataichesck

    2016-06-01

    Many children's food products highlight positive attributes on their front-of-package labels in the form of nutrient claims. This cross-sectional study investigated all retailed packaged foods (n 5620) in a major Brazilian supermarket, in order to identify the availability of products targeted at children, and to compare the nutritional content of products with and without nutrient claims on labels. Data on energy, carbohydrate, protein, fibre, Na and total and SFA content, along with the presence and type of nutrient claims, were obtained in-store from labels of all products. Products targeted at children were identified, divided into eight food groups and compared for their nutritional content per 100 g/ml and the presence of nutrient claims using the Mann-Whitney U test (P<0·05). Of the 535 food products targeted at children (9·5 % of all products), 270 (50·5 %) displayed nutrient claims on their labels. Children's products with nutrient claims had either a similar or worse nutritional content than their counterparts without nutrient claims. The major differences among groups were found in Group 8 (e.g. sauces and ready meals), in which children's products bearing nutrient claims had higher energy, carbohydrate, Na and total and SFA content per 100 g/ml than products without nutrient claims (P<0·05). This suggests that, to prevent misleading parents who are seeking healthier products for their children, the regulation on the use of nutrient claims should be revised, so that only products with appropriate nutrient profiles are allowed to display them.

  2. Soil Nutrient Content Influences the Abundance of Soil Microbes but Not Plant Biomass at the Small-Scale

    PubMed Central

    Koorem, Kadri; Gazol, Antonio; Öpik, Maarja; Moora, Mari; Saks, Ülle; Uibopuu, Annika; Sõber, Virve; Zobel, Martin

    2014-01-01

    Small-scale heterogeneity of abiotic and biotic factors is expected to play a crucial role in species coexistence. It is known that plants are able to concentrate their root biomass into areas with high nutrient content and also acquire nutrients via symbiotic microorganisms such as arbuscular mycorrhizal (AM) fungi. At the same time, little is known about the small-scale distribution of soil nutrients, microbes and plant biomass occurring in the same area. We examined small-scale temporal and spatial variation as well as covariation of soil nutrients, microbial biomass (using soil fatty acid biomarker content) and above- and belowground biomass of herbaceous plants in a natural herb-rich boreonemoral spruce forest. The abundance of AM fungi and bacteria decreased during the plant growing season while soil nutrient content rather increased. The abundance of all microbes studied also varied in space and was affected by soil nutrient content. In particular, the abundance of AM fungi was negatively related to soil phosphorus and positively influenced by soil nitrogen content. Neither shoot nor root biomass of herbaceous plants showed any significant relationship with variation in soil nutrient content or the abundance of soil microbes. Our study suggests that plants can compensate for low soil phosphorus concentration via interactions with soil microbes, most probably due to a more efficient symbiosis with AM fungi. This compensation results in relatively constant plant biomass despite variation in soil phosphorous content and in the abundance of AM fungi. Hence, it is crucial to consider both soil nutrient content and the abundance of soil microbes when exploring the mechanisms driving vegetation patterns. PMID:24637633

  3. Variability of arginine content and yield components in Valencia peanut germplasm.

    PubMed

    Aninbon, Chorkaew; Jogloy, Sanun; Vorasoot, Nimitr; Nuchadomrong, Suporn; Holbrook, C Corley; Kvien, Craig; Puppala, Naveen; Patanothai, Aran

    2017-06-01

    Peanut seeds are rich in arginine, an amino acid that has several positive effects on human health. Establishing the genetic variability of arginine content in peanut will be useful for breeding programs that have high arginine as one of their goals. The objective of this study was to evaluate the variation of arginine content, pods/plant, seeds/pod, seed weight, and yield in Valencia peanut germplasm. One hundred and thirty peanut genotypes were grown under field condition for two years. A randomized complete block design with three replications was used for this study. Arginine content was analyzed in peanut seeds at harvest using spectrophotometry. Yield and yield components were recorded for each genotype. Significant differences in arginine content and yield components were found in the tested Valencia peanut germplasm. Arginine content ranged from 8.68-23.35 μg/g seed. Kremena was the best overall genotype of high arginine content, number of pods/plant, 100 seed weight and pod yield.

  4. Impacts of elevated atmospheric CO₂ on nutrient content of important food crops.

    PubMed

    Dietterich, Lee H; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D B; Bloom, Arnold J; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N Michele; Nelson, Randall L; Norton, Robert; Ottman, Michael J; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S

    2015-01-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.

  5. Corn grain yield and nutrient uptake from application of enhanced-efficiency nitrogen fertilizers

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for food and agricultural products directly impact the use of chemical fertilizers particularly nitrogen (N). This study examined corn grain yield and nutrient uptake resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitr...

  6. Performance test of nutrient control equipment for hydroponic plants

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  7. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization-A Global Meta-analysis.

    PubMed

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2017-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

  8. Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra.

    PubMed

    Manjunath, Mallappa; Kanchan, Amrita; Ranjan, Kunal; Venkatachalam, Siddarthan; Prasanna, Radha; Ramakrishnan, Balasubramanian; Hossain, Firoz; Nain, Lata; Shivay, Yashbir Singh; Rai, Awadhesh Bahadur; Singh, Bijendra

    2016-02-01

    Microorganisms in the rhizosphere mediate the cycling of nutrients, their enhanced mobilisation and facilitate their uptake, leading to increased root growth, biomass and yield of plants. We examined the promise of beneficial cyanobacteria and eubacteria as microbial inoculants, applied singly or in combination as consortia or biofilms, to improve growth and yields of okra. Interrelationships among the microbial activities and the micro/macro nutrient dynamics in soils and okra yield characteristics were assessed along with the changes in the soil microbiome. A significant effect of microbial inoculation on alkaline phosphatase activity was recorded both at the mid-crop and harvest stages. Microbial biomass carbon values were highest due to the Anabaena sp. - Providencia sp. (CR1 + PR3) application. The yield of okra ranged from 444.6-478.4 g(-1) plant and a positive correlation (0.69) recorded between yield and root weight. The application of Azotobacter led to the highest root weight and yield. The concentration of Zn at mid-crop stage was 60-70% higher in the Azotobacter sp. and Calothrix sp. inoculated soils, as compared to uninoculated control. Iron concentration in soil was more than 2-3 folds higher than control at the mid-crop stage, especially due to the application of Anabaena-Azotobacter biofilm and Azotobacter sp. Both at the mid-crop and harvest stages, the PCR-DGGE profiles of eubacterial communities were similar among the uninoculated control, the Anabaena sp. - Providencia sp. (CW1 + PW5) and the Anabaena-Azotobacter biofilm treatments. Although the profiles of the Azotobacter, Calothrix and CR1 + PR3 treatments were identical at these stages of growth, the profile of CR1 + PR3 was clearly distinguishable. The performance of the inoculants, particularly Calothrix (T6) and consortium of Anabaena and Providencia (CR1 + PR3; T5), in terms of microbiological and nutrient data, along with generation of distinct PCR-DGGE profiles suggested their

  9. Weight and Nutrient Content of the Aboveground Parts of Some Loblolly Pines

    Treesearch

    Louis J. Metz; Carol G. Wells

    1965-01-01

    During the course of a study on the nutrient content of foliage of loblolly pine (Pinus taeda), weight determinations and nutrient analyses were made on all aboveground parts of 10 trees. The data, although limited in scope, are being presented because of the scarcity of such information in the literature, and should be helpful to those interested in...

  10. Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the nutrient uptake, biomass production and yield of the major compounds in the essential oil of five genotypes of Coriandrum sativum L. The treatments were four accessions donated by the National Genetic Resources Advisory Council (NGRAC), U.S. Department...

  11. Effects of Liming on Forage Availability and Nutrient Content in a Forest Impacted by Acid Rain

    PubMed Central

    Pabian, Sarah E.; Ermer, Nathan M.; Tzilkowski, Walter M.; Brittingham, Margaret C.

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890

  12. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    PubMed

    Pabian, Sarah E; Ermer, Nathan M; Tzilkowski, Walter M; Brittingham, Margaret C

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.

  13. 9 CFR 317.354 - Nutrient content claims for “good source,” “high,” and “more.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Nutrient content claims for âgood... Nutrition Labeling § 317.354 Nutrient content claims for “good source,” “high,” and “more.” (a) General... nutrient content claims in § 317.313; and (3) The product for which the claim is made is labeled in...

  14. 9 CFR 381.454 - Nutrient content claims for “good source,” “high,” and “more.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Nutrient content claims for âgood... Nutrition Labeling § 381.454 Nutrient content claims for “good source,” “high,” and “more.” (a) General... nutrient content claims in § 381.413; and (3) The product for which the claim is made is labeled in...

  15. Effect of sulphur and phosphorus on yield, quality and nutrient status of pigeonpea (Cajanus cajan).

    PubMed

    Deshbhratar, P B; Singh, P K; Jambhulkar, A P; Ramteke, D S

    2010-11-01

    A field experiment was conducted to study the impact of Sulphur(S) and Phosphorus (P) on yield, nutrient status of soil and their contents in pigeonpea (Cajanus cajan) during the year 2008-2009. Seven treatments were studied in Factorial Randomized Block Design with three replications. The treatment combinations were derived from three levels of sulphur (0, 20 and 40 kg S ha(-1)) and four levels of phosphorus (0, 25, 50 and 75 kg ha(-1)). The experimental soil was medium black, slightly calcareous, clay in texture and slightly alkaline in reaction. The results indicated a significant increase in grain yield (14.81 q ha(-1)) and straw yield (41.26 q ha(-1)) of pigeonpea after 20 kg S ha(-1) and 50 kg P2O5 ha(-1) treatment with common dose of nitrogen @ 30 kg ha(-1). The increase in grain and straw yield was 102.77 and 52.87% as compare to higher over control. Maximum number of pods plant(-1), maximum number of grains pod and test weight by this treatment was also observed as compared to control. Application of S and P improved soil fertility status and S alone did not influence P availability. Hence, in order to maintain the fertility status of the soil at high level, combine application of 20 kg S ha(-1) with 50 kg P2O5 ha(-1) is essential. The residual fertility status of soil is advocated for rainfed pigeonpea crop grown on vertisol in Vidarbha region.

  16. Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions.

    PubMed

    Gupta, M L; Prasad, Arun; Ram, Muni; Kumar, Sushil

    2002-01-01

    The effects of inoculation with vesicular-arbuscular mycorrhizal (VAM) fungus Glomusfasciculatum on the root colonization, growth, essential oil yield and nutrient acquisition of three cultivars of menthol mint (Mentha arvensis); Kalka, Shivalik and Gomti, were studied under field conditions. The VAM inoculation significantly increased the root colonization, plant height, fresh herbage and dry matter yield. oil content and oil yield as compared to non-inoculated cultivars. The effect of VAM inoculation on the root colonization, growth and yield of mint was more pronounced with the cv Shivalik than the cvs Kalka and Gomati, indicating Shivalik as a highly mycorrhizal dependent genotype. VAM inoculation significantly increased the uptake of N, P and K by shoot tissues of mint, but most markedly increased the uptake of P. The VAM-inoculated mint plants depleted the available N, P and K in the rhizosphere soil as compared to non-inoculated control plants, however the extent of nutrient depletion was greater for P than N and K. We conclude that the VAM inoculation could significantly increase the root colonization, growth, essential oil yield and nutrient acquisition of mint for obtaining economic production under field conditions.

  17. Impacts of elevated atmospheric CO2 on nutrient content of important food crops

    NASA Astrophysics Data System (ADS)

    Dietterich, Lee H.; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D. B.; Bloom, Arnold J.; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N. Michele; Nelson, Randall L.; Norton, Robert; Ottman, Michael J.; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A.; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S.

    2015-07-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.

  18. Impacts of elevated atmospheric CO2 on nutrient content of important food crops

    PubMed Central

    Dietterich, Lee H.; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D. B.; Bloom, Arnold J.; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N. Michele; Nelson, Randall L.; Norton, Robert; Ottman, Michael J.; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A.; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S.

    2015-01-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients. PMID:26217490

  19. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis

    PubMed Central

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2018-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers. PMID:29375594

  20. [Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation].

    PubMed

    Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua

    2015-09-01

    Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss.

  1. Nutrient Contents of the Freshwater Crab, Isolapotamon bauense from Sarawak, Malaysia (Borneo).

    PubMed

    Grinang, Jongkar; Tyan, Pang Sing; Tuen, Andrew Alek; Das, Indraneil

    2017-07-01

    Data on nutrient contents of freshwater crabs are important for ecological studies and species conservation assessments, especially when the species concerned is threatened among others by habitat destruction and uncontrolled resources utilisation. Indeed comprehensive biological information is required to reconcile the needs between sustainable resources utilisation and conservation of the species. This study documents the nutrient contents of a freshwater crab, Isolapotamon bauense which is listed as 'Vulnerable' in the IUCN Red List of Threatened Species and also being harvested by local community for dietary supplement. Results show that muscles of the freshwater crab contain a substantial amount of nutrients in particular water content (male = 79.31 ± 2.30 %, female = 77.63 ± 0.56 %), protein (male = 77.47 ± 6.11 %, female = 63.28 ± 3.62 %), magnesium (male = 51.48 ± 16.10 mg/g, female = 39.73 ± 6.99 mg/g) and calcium (male = 25.50 ± 6.98 mg/g, female = 39.73 ± 6.99 mg/g). Means of nutrient contents between male and female crabs are not significantly different. It is estimated that an individual of I. bauense with weight range of 56-139 g contained on average of 0.35 ± 0.15 g of protein. Our estimation also shows that the number of individuals of the freshwater crab required to meet the recommended daily protein intakes of the community concerned is in the range 35-96 individuals for children, 130-188 individuals for adolescents, 171-179 individuals for men and 149-159 individuals for women. The results imply that harvesting of wild I. bauense as a source of protein supplement naturally may not be practical because of its relatively low population abundance, and conservation of the species for its ecological roles may thus be preferred.

  2. Nutrient Contents of the Freshwater Crab, Isolapotamon bauense from Sarawak, Malaysia (Borneo)

    PubMed Central

    Grinang, Jongkar; Tyan, Pang Sing; Tuen, Andrew Alek; Das, Indraneil

    2017-01-01

    Data on nutrient contents of freshwater crabs are important for ecological studies and species conservation assessments, especially when the species concerned is threatened among others by habitat destruction and uncontrolled resources utilisation. Indeed comprehensive biological information is required to reconcile the needs between sustainable resources utilisation and conservation of the species. This study documents the nutrient contents of a freshwater crab, Isolapotamon bauense which is listed as ‘Vulnerable’ in the IUCN Red List of Threatened Species and also being harvested by local community for dietary supplement. Results show that muscles of the freshwater crab contain a substantial amount of nutrients in particular water content (male = 79.31 ± 2.30 %, female = 77.63 ± 0.56 %), protein (male = 77.47 ± 6.11 %, female = 63.28 ± 3.62 %), magnesium (male = 51.48 ± 16.10 mg/g, female = 39.73 ± 6.99 mg/g) and calcium (male = 25.50 ± 6.98 mg/g, female = 39.73 ± 6.99 mg/g). Means of nutrient contents between male and female crabs are not significantly different. It is estimated that an individual of I. bauense with weight range of 56–139 g contained on average of 0.35 ± 0.15 g of protein. Our estimation also shows that the number of individuals of the freshwater crab required to meet the recommended daily protein intakes of the community concerned is in the range 35–96 individuals for children, 130–188 individuals for adolescents, 171–179 individuals for men and 149–159 individuals for women. The results imply that harvesting of wild I. bauense as a source of protein supplement naturally may not be practical because of its relatively low population abundance, and conservation of the species for its ecological roles may thus be preferred. PMID:28890762

  3. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    PubMed

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Yield, Quality, and Nutrient Concentrations of Strawberry (Fragaria ×ananassa Duch. cv. 'Sonata') Grown with Different Organic Fertilizer Strategies.

    PubMed

    Pokhrel, Bhaniswor; Laursen, Kristian Holst; Petersen, Karen Koefoed

    2015-06-17

    Four combinations of two solid organic fertilizers (Monterra Malt and chicken manure) applied before planting and two liquid organic fertilizers (broad bean and Pioner Hi-Fruit/K-Max) given through drip irrigation (fertigation) were compared with inorganic fertilization regarding growth, yield, nutrient concentration, and fruit quality of strawberries. Broad bean fertigation combined with Monterra Malt resulted in a similar fruit yield as inorganic fertilizer and a higher yield than Monterra Malt combined with Pioner; however, total soluble solids, firmness, and titratable acid were improved with Pioner fertigation, although these parameters were more affected by harvest time than the applied fertilizers. The concentrations of most nutrients in fruits and leaves were higher in inorganically fertigated plants. The reductions in fruit yield in three of four treatments and fruit weight in all organic treatments may be due to a combination of the following conditions in the root zone: (1) high pH and high NH4(+)/NO3(-) ratio; (2) high EC and/or high NaCl concentration; (3) cation imbalance; and (4) nutrient deficiency.

  5. The nutrient content of US household food purchases by store types

    PubMed Central

    Stern, Dalia; Ng, Shu Wen; Popkin, Barry M

    2015-01-01

    Introduction Little is known about where households shop for packaged foods, what foods and beverages they purchase, and the nutrient content of these purchases. The objectives are to describe volume trends and nutrient content (food groups and nutrient profiles) of household packaged foods purchases (PFP) by store-type. Methods Cross-sectional analysis of US households’ food purchases (Nielsen Homescan) from 2000 to 2012 (n=652,023 household-year observations) with survey weights used for national representativeness. Household PFP trends (% volume) by store-type, household purchases of key food and beverage groups based on caloric contribution by store-type, and mean caloric and nutrient densities (sugars, saturated fat and sodium) of household PFP by store-type are analyzed. Data were collected from 2000–2012. Analyses were conducted in 2014–2015. Results The proportion of total volume of household PFP significantly increased from 2000 to 2012 for mass-merchandisers (13.1 to 23.9%), convenience-stores (3.6 to 5.9%) and warehouse-club (6.2 to 9.8%), and significantly decreased for grocery-chains (58.5 to 46.3%) and non-chain grocerys (10.3 to 5.2%). Top common sources of calories (%) from household PFP by food/beverage group include: savory snacks, grain-based desserts and regular soft-drinks. The energy, total sugar, sodium and saturated fat densities of household PFP from mass-merchandisers, warehouse-club and convenience-stores were higher, compared to grocery-stores. Conclusions PFP from stores with poorer nutrient density (more energy, total sugar, sodium and saturated fat-dense), such as warehouse-club, mass-merchandisers and convenience-stores are growing, representing a potential US public health concern. PMID:26437868

  6. Biogas slurry pricing method based on nutrient content

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  7. Phytotoxic effects of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) achenes.

    PubMed

    Ahmad, Muhammad Sajid Aqeel; Ashraf, Muhammad; Hussain, Mumtaz

    2011-01-30

    The phytotoxic effects of varying levels of nickel (0, 10, 20, 30, and 40 mg L(-1)) on growth, yield and accumulation of macro- and micro-nutrients in leaves and achenes of sunflower (Helianthus annuus L.) were appraised in this study. A marked reduction in root and shoot fresh biomass was recorded at higher Ni levels. Nickel stress also caused a substantial decrease in all macro- and micro-nutrients in leaves and achenes. The lower level of Ni (10 mg L(-1)) had a non-significant effect on various yield attributes, but higher Ni levels considerably decreased these parameters. Higher Ni levels decreased the concentrations of Ca, Mn and Fe in achenes. In contrast, achene N, K, Zn, Mn and Cu decreased consistently with increasing level of Ni, even at lower level (10 mg L(-1)). Sunflower hybrid Hysun-33 had better yield and higher most of the nutrients in achenes as compared with SF-187. The maximum reduction in all parameters was observed at the maximum level of nickel (40 mg L(-1)) where almost all parameters were reduced more than 50% of those of control plants. In conclusion, the pattern of uptake and accumulation of different nutrients in sunflower plants were nutrient- and cultivar-specific under Ni-stress. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Effects of pasture renovation on hydrology, nutrient runoff, and forage yield.

    PubMed

    de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B

    2011-01-01

    Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.

  9. Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: Nutrient contents and translocation.

    PubMed

    Carvalho Bertoli, Alexandre; Gabriel Cannata, Marcele; Carvalho, Ruy; Ribeiro Bastos, Ana Rosa; Puggina Freitas, Matheus; dos Santos Augusto, Amanda

    2012-12-01

    The increasing number of cases on soil contamination by heavy metals has affected crop yields, besides representing an imminent risk to food. Some of these contaminants, such as cadmium, are very similar to micronutrients and thus more easily absorbed by the plants. This study assessed the effect of increasing amounts of cadmium on the content and translocation of micro and macronutrients in tomato. Tomatoes were grown in Clark's nutrient solution and subjected to increasing levels of Cd: 0, 0.025, 0.1, 0.5 and 1.0mg L(-1). The plants contaminated by cadmium had a maximum reduction in the aerial part compared to the control of: 2.25g kg(-1), 2.80g kg(-1), 18.93mg kg(-1) and 14.15mg kg(-1) for K, Ca, Mn and Zn, respectively. In other parts of the tomato were reduced from 2.3g kg(-1) K in fruits and 280.5mg kg(-1) of Mn in the roots. In addition to changes in the levels of some nutrients, the restricted Cd translocation in 1.15 percent P and 2.8 percent Cu to shoots compared to control, but did not affect the translocation of K, Ca, Mg and Zn. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effect of CO2 levels on nutrient content of lettuce and radish.

    PubMed

    McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  11. Effect of CO_2 levels on nutrient content of lettuce and radish

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.

  12. Effect of CO2 levels on nutrient content of lettuce and radish

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  13. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    NASA Astrophysics Data System (ADS)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  14. Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes

    USDA-ARS?s Scientific Manuscript database

    The information on genotypic variation for inulin content, inulin yield and water use efficiency of inulin yield (WUEi) in response to drought is limited. This study was to investigate the genetic variability in inulin content, inulin yield and WUEi of Jerusalem artichoke (Helianthus tuberosus L.) ...

  15. Energy, nutrient and food content of snacks in French adults.

    PubMed

    Si Hassen, Wendy; Castetbon, Katia; Tichit, Christine; Péneau, Sandrine; Nechba, Anouar; Ducrot, Pauline; Lampuré, Aurélie; Bellisle, France; Hercberg, Serge; Méjean, Caroline

    2018-02-27

    Snacking raises concern since it may lead to an additional energy intake and poor nutrient quality. A snacking occasion can be defined as any eating occasion apart from main meals, regardless of the amount or type of foods consumed. We described the frequency of snacking occasions according to daily timing in French adults, and compared them between each other, and with the main meals, in terms of energy intake, energy and nutrient density, and food content. This cross-sectional analysis included 104,265 adults from the NutriNet-Santé cohort. Food intake was estimated using 24-h records of weekdays. For each eating occasion, nutrient density and energy content and density were computed. After weighting, 47.6% of our sample were men and mean age was 45.6 (15.3). Overall, 68% of participants ate at least one snack during the reported record, mainly in the morning or afternoon. Overall snack had a lower nutrient density [22.8 (SD = 278.3)] than main meals [25.8 (36.9) to 30.0 (30.4)]; but higher energy density [222.2 (163.3) kcal/100 g] than meals [133.9 (57.3) to 175.9 (99.6) kcal/100 g]. Morning snack was the snacking occasion with the lowest energy density [211 kcal/100 g], the lowest energy intake [104.1 kcal] and the highest nutrient density [60.1]. Afternoon and evening snacks had the highest energy loads [192.4 kcal and 207.6 kcal], but low nutrient scores [16 and 13, respectively]. The main food groups contributing to energy intake from snacks were fatty-sweet and sugary foods, fruit, hot beverages, and bread. Our findings highlight the frequency of snacking and the varying nutritional quality of snacks over the day. The morning snack was shown to be healthier than afternoon and evening snacks. This study was conducted according to guidelines laid down in the Declaration of Helsinki, and all procedures were approved by the Institutional Review Board of the French Institute for Health and Medical Research (IRB Inserm No. 0000388FWA00005831) and the

  16. Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta.

    PubMed

    Zotz, Gerhard; Richter, Andreas

    2006-05-01

    This study examined the physiological basis of the cost of reproduction in the epiphytic bromeliad Werauhia sanguinolenta, growing in situ in a tropical lowland forest in Panama. Entire mature plants were sampled repeatedly over the course of 2 years, which represents the common interval between reproductive events. Due to the uncertainty concerning the appropriate currency of resource allocation to reproduction, the temporal changes of the contents of total non-structural carbohydrates (TNC) and of all major nutrient elements in different plant parts were studied (stems, green leaves, non-green leaf bases, roots and reproductive structures when present). Although TNC varied with time in all compartments, this variation was more related to seasonal fluctuations than to reproductive status. The contents of the nutrient elements, N, P, K, Mg and S, on the other hand, showed significant differences between reproductive and non-reproductive individuals, while Ca did not change with reproductive status. Differences in nutrient contents were most pronounced in stems. Seeds were particularly enriched in P, much less so in N and the other nutrient elements. Model calculations of nutrient fluxes indicate that a plant needs about 2 years to accumulate the amount of P invested in a fruit crop, while the estimated uptake rates for N were much faster. Since most mature individuals of this species fruit every other year, it is hypothesized that P is the prime limiting factor for reproduction. These findings therefore add to an increasing body of evidence that P rather than N is limiting growth and reproduction in vascular epiphytes.

  17. Breast milk nutrient content and infancy growth.

    PubMed

    Prentice, Philippa; Ong, Ken K; Schoemaker, Marieke H; van Tol, Eric A F; Vervoort, Jacques; Hughes, Ieuan A; Acerini, Carlo L; Dunger, David B

    2016-06-01

    Benefits of human breast milk (HM) in avoiding rapid infancy weight gain and later obesity could relate to its nutrient content. We tested the hypothesis that differential HM total calorie content (TCC) or macronutrient contents may be associated with infancy growth. HM hindmilk samples were collected at ages 4-8 weeks from 614 mothers participating in a representative birth cohort, with repeated infancy anthropometry. HM triglyceride (fat), lipid analytes and lactose (carbohydrate) were measured by (1) H-NMR, and protein content by the Dumas method. TCC and %macronutrients were determined. In 614 HM samples, fat content was as follows: [median(IQR)]: 2.6 (1.7-3.6) g/100 mL, carbohydrate: 8.6 (8.2-8.8) g/100 mL, protein: 1.2 (1.1-1.2) g/100 mL; TCC: 61.8 (53.7-71.3) kcal/100 mL. HM of mothers exclusively breast feeding vs. mixed feeding was more calorific with higher %fat, lower %carbohydrate and lower %protein. Higher HM TCC was associated with lower 12-months body mass index (BMI)/adiposity, and lower 3-12 months gains in weight/BMI. HM %fat was inversely related to 3-12 months gains in weight, BMI and adiposity, whereas %carbohydrate was positively related to these measures. HM %protein was positively related to 12-months BMI. HM analysis showed wide variation in %macronutrients. Although data on milk intakes were unavailable, our findings suggest functional relevance of HM milk composition to infant growth. ©2016 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  18. Interactions between plant nutrients, water and carbon dioxide as factors limiting crop yields

    PubMed Central

    Gregory, P. J.; Simmonds, L. P.; Warren, G. P.

    1997-01-01

    Biomass production of annual crops is often directly proportional to the amounts of radiation intercepted, water transpired and nutrients taken up. In many places the amount of rainfall during the period of rapid crop growth is less than the potential rate of evaporation, so that depletion of stored soil water is commonplace. The rate of mineralization of nitrogen (N) from organic matter and the processes of nutrient loss are closely related to the availability of soil water. Results from Kenya indicate the rapid changes in nitrate availability following rain.
    Nutrient supply has a large effect on the quantity of radiation intercepted and hence, biomass production. There is considerable scope for encouraging canopy expansion to conserve water by reducing evaporation from the soil surface in environments where it is frequently rewetted, and where the unsaturated hydraulic conductivity of the soil is sufficient to supply water at the energy limited rate (e.g. northern Syria). In regions with high evaporative demand and coarse-textured soils (e.g. Niger), transpiration may be increased by management techniques that reduce drainage.
    Increases in atmospheric [CO2] are likely to have only a small impact on crop yields when allowance is made for the interacting effects of temperature, and water and nutrient supply.

  19. An examination of the nutrient content and on-package marketing of novel beverages.

    PubMed

    Dachner, Naomi; Mendelson, Rena; Sacco, Jocelyn; Tarasuk, Valerie

    2015-02-01

    Changing regulatory approaches to fortification in Canada have enabled the expansion of the novel beverage market, but the nutritional implications of these new products are poorly understood. This study assessed the micronutrient composition of energy drinks, vitamin waters, and novel juices sold in Canadian supermarkets, and critically examined their on-package marketing at 2 time points: 2010-2011, when they were regulated as Natural Health Products, and 2014, when they fell under food regulations. We examined changes in micronutrient composition and on-package marketing among a sample of novel beverages (n = 46) over time, compared micronutrient content with Dietary Reference Intakes and the results of the 2004 Canadian Community Health Survey to assess potential benefits, and conducted a content analysis of product labels. The median number of nutrients per product was 4.5, with vitamins B6, B12, C, and niacin most commonly added. Almost every beverage provided at least 1 nutrient in excess of requirements, and most contained 3 or more nutrients at such levels. With the exception of vitamin C, there was no discernible prevalence of inadequacy among young Canadian adults for the nutrients. Product labels promoted performance and emotional benefits related to nutrient formulations that go beyond conventional nutritional science. Label graphics continued to communicate these attributes even after reformatting to comply with food regulations. In contrast with the on-package marketing of novel beverages, there is little evidence that consumers stand to benefit from the micronutrients most commonly found in these products.

  20. [Effects of different water and fertilizer supply on cucumber soil nutrient content, enzyme activity, and microbial diversity].

    PubMed

    Wei, Ze-Xiu; Liang, Yin-Li; Inoue, Mitsuhiro; Zhou, Mao-Juan; Huang, Mao-Lin; Gu, Jian-Feng; Wu, Yan

    2009-07-01

    With cucumber (Cucumis sativus L.) variety Jinyou 1 as test material, a greenhouse experiment was conducted to study the effects of different water and fertilizer supply on the cucumber soil nutrient content, enzyme activity, and microbial diversity. Three water regimes (50%-60%, 70%-80%, and 90%-100% soil relative moisture content) and two fertilization practices (600 kg N x hm(-2) + 420 kg P2O5 x hm(-2) and 420 kg N x hm(-2) + 294 kg P2O5 x hm(-2)) were designed. The increase of water and fertilizer supply benefited the increase of soil available P content and sucrase activity. Increasing fertilization rate increased soil NH(4+)-N content but decreased soil protease activity, and increasing soil relative moisture content decreased the soil NH(4+)-N content and urease activity. Soil microbial diversity had no significant correlations with soil nutrient contents, but significantly positively correlated with soil urease activity and negatively correlated with soil sucrase activity. Among the treatments, the treatment 70%-80% soil relative moisture content + 600 kg N x hm(-2) and 420 kg P2O5 x hm(-2) had the highest soil nutrient contents, soil urease, sucrase, and phosphatase activities, and soil microbial diversity and evenness, being the best in soil potential productivity.

  1. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth.

    PubMed

    Finke, Mark D

    2015-11-01

    Commercially raised feeder insects used to feed captive insectivores are a good source of many nutrients but are deficient in several key nutrients. Current methods used to supplement insects include dusting and gut-loading. Here, we report on the nutrient composition of four species of commercially raised feeder insects fed a special diet to enhance their nutrient content. Crickets, mealworms, superworms, and waxworms were analyzed for moisture, crude protein, fat, ash, acid detergent fiber, total dietary fiber, minerals, amino acids, fatty acids, vitamins, taurine, carotenoids, inositol, and cholesterol. All four species contained enhanced levels of vitamin E and omega 3 fatty acids when compared to previously published data for these species. Crickets, superworms, and mealworms contained β-carotene although using standard conversion factors only crickets and superworms would likely contain sufficient vitamin A activity for most species of insectivores. Waxworms did not contain any detectable β-carotene but did contain zeaxanthin which they likely converted from dietary β-carotene. All four species contained significant amounts of both inositol and cholesterol. Like previous reports all insects were a poor source of calcium and only superworms contained vitamin D above the limit of detection. When compared to the nutrient requirements as established by the NRC for growing rats or poultry, these species were good sources of most other nutrients although the high fat and low moisture content of both waxworms and superworms means when corrected for energy density these two species were deficient in more nutrients than crickets or mealworms. These data show the value of modifying the diet of commercially available insects as they are growing to enhance their nutrient content. They also suggest that for most insectivores properly supplemented lower fat insects such as crickets, or smaller mealworms should form the bulk of the diet. © 2015 The Authors. Zoo Biology

  2. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters.

    PubMed

    Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata

    2017-01-01

    Microorganisms are considered a genetic resource with great potential for achieving sustainable development of agricultural areas. The objective of this research was to determine the effect of microorganism application forms on the production of biomass, gas exchange, and nutrient content in upland rice. The experiment was conducted under greenhouse conditions in a completely randomized design in a factorial 7 × 3 + 1, with four replications. The treatments consisted of combining seven microorganisms with three application forms (microbiolized seed; microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS); and microbiolized seed + plant sprayed with a microorganism suspension at 7 and 15 DAS) and a control (water). Treatments with Serratia sp. (BRM32114), Bacillus sp. (BRM32110 and BRM32109), and Trichoderma asperellum pool provided, on average, the highest photosynthetic rate values and dry matter biomass of rice shoots. Plants treated with Burkolderia sp. (BRM32113), Serratia sp. (BRM32114), and Pseudomonas sp. (BRM32111 and BRM32112) led to the greatest nutrient uptake by rice shoots. Serratia sp. (BRM 32114) was the most effective for promoting an increase in the photosynthetic rate, and for the greatest accumulation of nutrients and dry matter at 84 DAS, in rice shoots, which differed from the control treatment. The use of microorganisms can bring numerous benefits of rice, such as improving physiological characteristics, nutrient uptake, biomass production, and grain yield.

  3. Cultivar and Harvest Month Influence the Nutrient Content of Opuntia spp. Cactus Pear Cladode Mucilage Extracts.

    PubMed

    du Toit, Alba; de Wit, Maryna; Hugo, Arno

    2018-04-16

    Mucilage extracted from cactus pear cladodes is a hydrocolloid gum. It is a novel, natural, low-kilojoule, cost-effective texture-modifying ingredient in functional food products. Yet, the cultivar with the most optimal nutrient content and the preferred harvest times are as yet unknown. For this reason, mucilage from three Opuntia ficus-indica (Algerian, Morado and Gymno-Carpo) and one Opuntia robusta (Robusta) cultivar were investigated to determine their nutrient content over six months. Nutrients that contribute energy (10.2 kJ/g) were low. The mineral content was high (ash 17.7/100 g), particularly calcium (3.0 g/100 g) and phosphorous (109.5 mg/kg). Low insoluble acid-detergent fibre (1.4 g/kg) and neutral-detergent fibre (2.1 g/kg) values indicated that mucilage was mostly soluble fibre. Calcium oxalate crystals were not detected in dried mucilage. Opuntia robusta powders had higher protein, extractable fat and potassium content, while Opuntia ficus-indica mucilage powders had higher polyunsaturated (Linoleic and α-Linolenic acid) fat content. O. robusta Robusta mucilage, harvested after the fruit harvest (February) had the lowest energy content and the highest mineral and protein content. Mucilage powders were highly soluble, low-kilojoule and mineral-rich. This is a functional ingredient that is produced from an easily cultivated crop, as cactus pears grow in areas with poor soil, extremely high daytime temperatures and limited water supplies.

  4. Growth, morphometrics and nutrient content of farmed eastern oysters, Crassostrea virginica (Gmelin), in New Hampshire, USA

    EPA Science Inventory

    When harvested, oysters represent a removal from the ecosystem of nutrients such as nitrogen (N)and carbon (C). A number of factors potentially affect nutrient content, but a quantitative understanding across the geographical range of the eastern oysters is lacking. This study wa...

  5. EuroFIR Guideline on calculation of nutrient content of foods for food business operators.

    PubMed

    Machackova, Marie; Giertlova, Anna; Porubska, Janka; Roe, Mark; Ramos, Carlos; Finglas, Paul

    2018-01-01

    This paper presents a Guideline for calculating nutrient content of foods by calculation methods for food business operators and presents data on compliance between calculated values and analytically determined values. In the EU, calculation methods are legally valid to determine the nutrient values of foods for nutrition labelling (Regulation (EU) No 1169/2011). However, neither a specific calculation method nor rules for use of retention factors are defined. EuroFIR AISBL (European Food Information Resource) has introduced a Recipe Calculation Guideline based on the EuroFIR harmonized procedure for recipe calculation. The aim is to provide food businesses with a step-by-step tool for calculating nutrient content of foods for the purpose of nutrition declaration. The development of this Guideline and use in the Czech Republic is described and future application to other Member States is discussed. Limitations of calculation methods and the importance of high quality food composition data are discussed. Copyright © 2017. Published by Elsevier Ltd.

  6. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean

  7. Effects of Organic and Waste-Derived Fertilizers on Yield, Nitrogen and Glucosinolate Contents, and Sensory Quality of Broccoli (Brassica oleracea L. var. italica).

    PubMed

    Øvsthus, Ingunn; Breland, Tor Arvid; Hagen, Sidsel Fiskaa; Brandt, Kirsten; Wold, Anne-Berit; Bengtsson, Gunnar B; Seljåsen, Randi

    2015-12-23

    Organic vegetable production attempts to pursue multiple goals concerning influence on environment, production resources, and human health. In areas with limited availability of animal manure, there is a need for considering various off-farm nutrient resources for such production. Different organic and waste-derived fertilizer materials were used for broccoli production at two latitudes (58° and 67°) in Norway during two years. The fertilizer materials were applied at two rates of total N (80 and 170 kg ha(-1)) and compared with mineral fertilizer (170 kg ha(-1)) and no fertilizer. Broccoli yield was strongly influenced by fertilizer materials (algae meal < unfertilized control < sheep manure < extruded shrimp shell < anaerobically digested food waste < mineral fertilizer). Yield, but not glucosinolate content, was linearly correlated with estimated potentially plant-available N. However, extruded shrimp shell and mineral NPK fertilizer gave higher glucosinolate contents than sheep manure and no fertilizer. Sensory attributes were less affected by fertilizer material and plant-available N.

  8. Food photography II: use of food photographs for estimating portion size and the nutrient content of meals.

    PubMed

    Nelson, M; Atkinson, M; Darbyshire, S

    1996-07-01

    The aim of the present study was to determine the errors in the conceptualization of portion size using photographs. Male and female volunteers aged 18-90 years (n 136) from a wide variety of social and occupational backgrounds completed 602 assessments of portion size in relation to food photographs. Subjects served themselves between four and six foods at one meal (breakfast, lunch or dinner). Portion sizes were weighed by the investigators at the time of serving, and any waste was weighed at the end of the meal. Within 5 min of the end of the meal, subjects were shown photographs depicting each of the foods just consumed. For each food there were eight photographs showing portion sizes in equal increments from the 5th to the 95th centile of the distribution of portion weights observed in The Dietary and Nutritional Survey of British Adults (Gregory et al. 1990). Subjects were asked to indicate on a visual analogue scale the size of the portion consumed in relation to the eight photographs. The nutrient contents of meals were estimated from food composition tables. There were large variations in the estimation of portion sizes from photographs. Butter and margarine portion sizes tended to be substantially overestimated. In general, small portion sizes tended to be overestimated, and large portion sizes underestimated. Older subjects overestimated portion size more often than younger subjects. Excluding butter and margarine, the nutrient content of meals based on estimated portion sizes was on average within +/- 7% of the nutrient content based on the amounts consumed, except for vitamin C (21% overestimate), and for subjects over 65 years (15-20% overestimate for energy and fat). In subjects whose BMI was less than 25 kg/m2, the energy and fat contents of meals calculated from food composition tables and based on estimated portion size (excluding butter and margarine) were 5-10% greater than the nutrient content calculated using actual portion size, but for those

  9. Effects of nutrient content claims, sports celebrity endorsements and premium offers on pre-adolescent children's food preferences: experimental research.

    PubMed

    Dixon, H; Scully, M; Niven, P; Kelly, B; Chapman, K; Donovan, R; Martin, J; Baur, L A; Crawford, D; Wakefield, M

    2014-04-01

    To assess pre-adolescent children's responses to common child-oriented front-of-pack food promotions. Between-subjects, web-based experiment with four front-of-pack promotion conditions on energy-dense and nutrient-poor (EDNP) foods: no promotion [control]; nutrient content claims; sports celebrity endorsements (male athletes) and premium offers. Participants were 1302 grade 5 and 6 children (mean age 11 years) from Melbourne, Australia. Participants chose their preferred product from a randomly assigned EDNP food pack and comparable healthier food pack then completed detailed product ratings. Child-oriented pack designs with colourful, cartooned graphics, fonts and promotions were used. Compared to the control condition, children were more likely to choose EDNP products featuring nutrient content claims (both genders) and sports celebrity endorsements (boys only). Perceptions of nutritional content were enhanced by nutrient content claims. Effects of promotions on some product ratings (but not choice) were negated when children referred to the nutrition information panel. Premium offers did not enhance children's product ratings or choice. Nutrient content claims and sports celebrity endorsements influence pre-adolescent children's preferences towards EDNP food products displaying them. Policy interventions to reduce the impact of unhealthy food marketing to children should limit the use of these promotions. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  10. Nutrient database improvement project: the influence of U.S.D.A. Quality and Yield Grade on the separable components and proximate composition of raw and cooked retail cuts from the beef rib and plate.

    PubMed

    Martin, J N; Brooks, J C; Thompson, L D; Savell, J W; Harris, K B; May, L L; Haneklaus, A N; Schutz, J L; Belk, K E; Engle, T; Woerner, D R; Legako, J F; Luna, A M; Douglass, L W; Douglass, S E; Howe, J; Duvall, M; Patterson, K Y; Leheska, J L

    2013-11-01

    Beef nutrition is important to the worldwide beef industry. The objective of this study was to analyze proximate composition of eight beef rib and plate cuts to update the USDA National Nutrient Database for Standard Reference (SR). Furthermore, this study aimed to determine the influence of USDA Quality Grade on the separable components and proximate composition of the examined retail cuts. Carcasses (n=72) representing a composite of Yield Grade, Quality Grade, gender and genetic type were identified from six regions across the U.S. Beef plates and ribs (IMPS #109 and 121C and D) were collected from the selected carcasses and shipped to three university meat laboratories for storage, retail fabrication, cooking, and dissection and analysis of proximate composition. These data provide updated information regarding the nutrient content of beef and emphasize the influence of common classification systems (Yield Grade and Quality Grade) on the separable components, cooking yield, and proximate composition of retail beef cuts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    PubMed

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  12. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    PubMed

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-04-25

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

  13. Growth and nutrient content of herbaceous seedlings associated with biological soil crusts

    Treesearch

    R. L. Pendleton; B. K. Pendleton; G. L. Howard; S. D. Warren

    2003-01-01

    Biological soil crusts of arid and semiarid lands contribute significantly to ecosystem stability by means of soil stabilization, nitrogen fixation, and improved growth and establishment of vascular plant species. In this study, we examined growth and nutrient content of Bromus tectorum, Elymus elymoides, Gaillardia pulchella, and Sphaeralcea munroana grown in soil...

  14. Nutrient Content of Consumed Elementary School Lunches: A Pilot Study from Sweden

    ERIC Educational Resources Information Center

    Rosander, Ulla; Rumpunen, Kimmo; Lindmark-Mansson, Helena; Gullberg, Bo; Paulsson, Marie; Holm, Ingvar

    2013-01-01

    Purpose/Objectives: Purpose was to investigate the nutrient content of Swedish school meals consumed by students in the context of national recommendations regarding food composition and intake. Methods: Composite samples of lunch meals consumed by six students during a five-day period were collected using the double portion method and analyzed…

  15. Litter accumulation and nutrient content of roadside plant communities in Sichuan Basin, China

    USDA-ARS?s Scientific Manuscript database

    It is widely recognized that plant community composition strongly influences plant litter, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. We characterized litter accumulation and nutrient content (i.e., organic C, tota...

  16. Molecular characterization of freshwater microalgae and nutritional exploration to enhance their lipid yield.

    PubMed

    Mandal, Madan Kumar; Chaurasia, Neha

    2018-05-01

    Biomass and lipid yield under nutrient depleted and supplemented conditions of N and Mg in two freshwater isolates, Chlorella sp. NC-MKM and Scenedesmus acutus NC-M2 from Meghalaya were investigated for biodiesel production. Both the strains, Chlorella sp. NC-MKM and Scenedesmus acutus NC-M2 are oleaginous in nature having lipid content of 40.2 ± 1.4 and 37.3 ± 2.6% DCW, respectively. The significant increase (92.8%) in lipid content was found in N-depleted condition while an increase (46.65%) in biomass yield was observed under Mg-supplemented condition in Chlorella sp. NC-MKM. Studying the interactive effects of nutrient depletion and supplementation, combination of N-depleted and Mg-supplemented condition was selected for further investigation to check enhanced lipid yield in Chlorella sp. NC-MKM. The results showed a significant increase in biomass yield, lipid yield and lipid content (30, 66.8, and 28.66%, respectively). Under this condition, accumulation of neutral lipid was also enhanced (47.17% M2 gated cells) compared to control (21.37% M2 gated cells). Further, FAMEs revealed that the relative percentage of saturated and mono-unsaturated fatty acids increased (66.16%) in Chlorella sp. NC-MKM compared to control that improves biodiesel properties.

  17. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Nutrient content claims for âgood source,â âhigh,â âmore,â and âhigh potency.â 101.54 Section 101.54 Food and Drugs FOOD AND DRUG ADMINISTRATION... Requirements for Nutrient Content Claims § 101.54 Nutrient content claims for “good source,” “high,” “more...

  18. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Nutrient content claims for âgood source,â âhigh,â âmore,â and âhigh potency.â 101.54 Section 101.54 Food and Drugs FOOD AND DRUG ADMINISTRATION... Requirements for Nutrient Content Claims § 101.54 Nutrient content claims for “good source,” “high,” “more...

  19. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Nutrient content claims for âgood source,â âhigh,â âmore,â and âhigh potency.â 101.54 Section 101.54 Food and Drugs FOOD AND DRUG ADMINISTRATION... Requirements for Nutrient Content Claims § 101.54 Nutrient content claims for “good source,” “high,” “more...

  20. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain.

    PubMed

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn.

  1. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain

    PubMed Central

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn. PMID

  2. Yields and trends of nutrients and total suspended solids in nontidal areas of the Chesapeake Bay basin, 1985-96

    USGS Publications Warehouse

    Langland, Michael J.

    1998-01-01

    Excessive concentrations of nutrients and suspended solids in water adversely affect water quality in the Chesapeake Bay. High levels of nutrients in the Bay result in algal blooms and suspended solids reduce water clarity, both of which decrease the amount of light reaching submerged aquatic vegetation (SAV). The die off and decomposition of algae and SAV deplete oxygen supplies in the water. Low dissolved oxygen (DO) levels (less than 5.0 milligrams per liter for aquatic life, U.S. Environmental Protection Agency, 1986) can lead to fish kills and stress other living resources in the Bay. In 1987, the Chesapeake Bay Agreement called for a 40-percent reduction in the amount of controllable nutrients reaching the Chesapeake Bay by the year 2000. This goal was based on results of computer simulations that predicted that periods of low DO would be reduced or eliminated if nutrient inputs to the Bay were reduced by that amount. In an effort to achieve that goal, nutrient-reduction strategies, including banning phosphate detergents, upgrading sewagetreatment plants, controlling runoff from agricultural and urban areas, and preserving forest and wetland areas (Zynjuk, 1995), were implemented in many areas of the basin to help reduce nutrient inputs to the Bay. In 1997, a basinwide reevaluation of the 40-percent reduction goal was initiated to determine if that goal is achievable and to identify and document any changes in water quality and living resources in response to nutrient-reduction strategies. In support of this reevaluation, the U.S. Geological Survey (USGS) designed a database and retrieved water-quality data from approximately 1,300 nontidal stream sites in the Chesapeake Bay Basin (Langland and others, 1995). At 84 of the 1,300 sites, where sufficient data were available, trends, yields, and annual loads of nutrients and suspended solids were estimated for 1985 through 1996. This report presents: (1) spatial distribution of available nutrient and suspended

  3. 21 CFR 101.65 - Implied nutrient content claims and related label statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., physiological, pathological, or other condition, where the claim identifies the special diet of which the food... certain amount (e.g., “high in oat bran”) are implied nutrient content claims and must comply with... the ingredient or type of preparation. If a more specific level is claimed (e.g., “high in ___), that...

  4. 21 CFR 101.65 - Implied nutrient content claims and related label statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., physiological, pathological, or other condition, where the claim identifies the special diet of which the food... certain amount (e.g., “high in oat bran”) are implied nutrient content claims and must comply with... the ingredient or type of preparation. If a more specific level is claimed (e.g., “high in ___), that...

  5. 21 CFR 101.65 - Implied nutrient content claims and related label statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., physiological, pathological, or other condition, where the claim identifies the special diet of which the food... certain amount (e.g., “high in oat bran”) are implied nutrient content claims and must comply with... the ingredient or type of preparation. If a more specific level is claimed (e.g., “high in ___), that...

  6. Gastric volume rather than nutrient content inhibits food intake.

    PubMed

    Phillips, R J; Powley, T L

    1996-09-01

    To evaluate the separate contributions of distension and nutrient stimulation of the stomach to the inhibition of short-term food intake and, particularly, to reassess previous analyses based on the inflatable gastrointestinal cuff, four experiments were performed. Rats equipped with pyloric cuffs and indwelling gastric catheters consumed a liquid diet ad libitum. Their consumption during short-term (30 min) feeding bout was measured after gastric infusions on cuff-open and cuff-closed trials. Animals taking meals (approximately 5 ml) with cuffs closed immediately after receiving intragastric infusions of 2.5, 5, 7.5, or 10 ml of normal saline exhibited both suppression at the smallest infusion and a dose-dependent reduction across the other volumes (experiment 1). Additionally, when the test diet concentration was varied, animals with their cuffs closed consumed a constant volume, not a constant number of calories (experiment 2). Furthermore, cuff-closed animals exhibited no more suppression to 5-ml intragastric infusions of nutrients (including, on different trials, 50 and 100% Isocal diet; 10, 20, and 40% glucose; and 40% sucrose and 40% fructose) than to the same volume of saline (experiments 3 and 4). In contrast, on cuff-open trials in which gastric contents could empty into the duodenum, these same nutrient loads were more effective (except fructose) than saline in producing suppression of food intake. In summary, although both limited gastric distension with the pylorus occluded and intestinal nutrient stimulation with the cuff open effectively reduced intake, cuff-closed gastric loads of mixed macronutrients or carbohydrate solutions of 2-8 kcal, pH from 5.8 to 6.7, and osmolarities between 117 and 2,294 mosM/kg produced only the distension-based suppression generated by the same volume of saline.

  7. Comparison of the nutrient content of children's menu items at US restaurant chains, 2010-2014.

    PubMed

    Deierlein, Andrea L; Peat, Kay; Claudio, Luz

    2015-08-15

    To determine changes in the nutritional content of children's menu items at U.S. restaurant chains between 2010 and 2014. The sample consisted of 13 sit down and 16 fast-food restaurant chains ranked within the top 50 US chains in 2009. Nutritional information was accessed in June-July 2010 and 2014. Descriptive statistics were calculated for nutrient content of main dishes and side dishes, as well as for those items that were added, removed, or unchanged during the study period. Nutrient content of main dishes did not change significantly between 2010 and 2014. Approximately one-third of main dishes at fast-food restaurant chains and half of main dishes at sit down restaurant chains exceeded the 2010 Dietary Guidelines for Americans recommended levels for sodium, fat, and saturated fat in 2014. Improvements in nutrient content were observed for side dishes. At sit down restaurant chains, added side dishes contained over 50% less calories, fat, saturated fat, and sodium, and were more likely to contain fruits/vegetables compared to removed sides (p < 0.05 for all comparisons). Added side dishes at fast-food restaurant chains contained less saturated fat (p < 0.05). The majority of menu items, especially main dishes, available to children still contain high amounts of calories, fat, saturated fat, and sodium. Efforts must be made by the restaurant industry and policy makers to improve the nutritional content of children's menu items at restaurant chains to align with the Dietary Guidelines for Americans. Additional efforts are necessary to help parents and children make informed choices when ordering at restaurant chains.

  8. [A survey on the contents of nutrient and nutrition in the orderings of customers when eating at three restaurants in Beijing].

    PubMed

    Liang, Baojing; Zhao, Nanxi; Li, Liming; Lyu, Jun

    2016-04-01

    To study the median nutrient content of customers' ordering in the restaurants in Beijing. The median contents of nutrients regarding ordering/per person from the customers were estimated, via combining the nutrient content of menu offering. Data, based on all weights of ingredients and Chinese food composition with all the ordered records from customers, was collected within a set period of time, from 2011 to 2013. Nutrition status was then estimated, under the Nutrient-Rich Foods (NRF). The median energy intake reached 4 973.9 (P25-P75: 3 575.6-6 971.0) kJ and 88.2% of the tables were exceeding the recommended energy limits, respectively, with 3 347.2 kJ for lunch and 2 510.4 kJ for dinner. Data was gathered from three restaurants in Beijing. In all the three restaurants, the median nutrient contents appeared 70% outnumbered the daily value of fat and cholesterol. The median sodium contents (87.9%) were also over the standard set for sodium adequate intake. In addition, the median nutrition on fibers, calcium, vitamin A, vitamin C and vitamin E were far below the recommended nutritional intakes (RNI), in the ordering. For NRF9.3, the Wenzhou restaurant showed the highest score (5.50) but the restaurant in Yunnan appeared the lowest (2.26), with difference statistically significant (P<0.001). Eating-out habit ended in taking low nutrition with higher limited nutrients, but with low recommended nutrients, when compared to the recommended Chinese Dietary Reference Intake.

  9. Breed of cow and herd productivity affect milk nutrient recovery in curd, and cheese yield, efficiency and daily production.

    PubMed

    Stocco, G; Cipolat-Gotet, C; Gasparotto, V; Cecchinato, A; Bittante, G

    2018-02-01

    Little is known about cheese-making efficiency at the individual cow level, so our objective was to study the effects of herd productivity, individual herd within productivity class and breed of cow within herd by producing, then analyzing, 508 model cheeses from the milk of 508 cows of six different breeds reared in 41 multi-breed herds classified into two productivity classes (high v. low). For each cow we obtained six milk composition traits; four milk nutrient (fat, protein, solids and energy) recovery traits (REC) in curd; three actual % cheese yield traits (%CY); two theoretical %CYs (fresh cheese and cheese solids) calculated from milk composition; two overall cheese-making efficiencies (% ratio of actual to theoretical %CYs); daily milk yield (dMY); and three actual daily cheese yield traits (dCY). The aforementioned phenotypes were analyzed using a mixed model which included the fixed effects of herd productivity, parity, days in milk (DIM) and breed; the random effects were the water bath, vat, herd and residual. Cows reared in high-productivity herds yielded more milk with higher nutrient contents and more cheese per day, had greater theoretical %CY, and lower cheese-making efficiency than low-productivity herds, but there were no differences between them in terms of REC traits. Individual herd within productivity class was an intermediate source of total variation in REC, %CY and efficiency traits (10.0% to 17.2%), and a major source of variation in milk yield and dCY traits (43.1% to 46.3%). Parity of cows was an important source of variation for productivity traits, whereas DIM affected almost all traits. Breed within herd greatly affected all traits. Holsteins produced more milk, but Brown Swiss cows produced milk with higher actual and theoretical %CYs and cheese-making efficiency, so that the two large-framed breeds had the same dCY. Compared with the two large-framed breeds, the small Jersey cows produced much less milk, but with greater actual

  10. The influence of soil pH and humus content on received by Mehlich 3 method nutrients analysis results

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Krebstein, Kadri; Rodima, Ako; Kõlli, Raimo; Künnapas, Allan; Rebane, Jaanus; Penu, Priit; Vennik, Kersti; Soobik, Liina

    2015-04-01

    Soils provide vital ecosystem functions, playing an important role in our economy and in healthy living environment. However, soils are increasingly degrading in Europe and at the global level. Knowledge about the content of major plant available nutrients, i.e. calcium, magnesium, potassium and phosphorus, plays an important role in the sustainable soil management. Mobility of nutrients depends directly on the environmental conditions, two of the most important factors are the pH and organic matter content. Therefore it is essential to have correct information about the content and behaviour of the above named elements in soil, both from the environmental and agronomical viewpoint. During the last decades several extracting solutions which are suitable for the evaluation of nutrient status of soils have been developed for this purpose. One of them is called Mehlich 3 which is widely used in USA, Canada and some European countries (e.g. Estonia, Czech Republic) because of its suitability to extract several major plant nutrients from the soil simultaneously. There are several different instrumental methods used for the analysis of nutrient elements in the soil extract. Potassium, magnesium and calcium are widely analysed by the AAS (atomic absorption spectroscopic) method or by the ICP (inductively coupled plasma) spectroscopic methods. Molecular spectroscopy and ICP spectroscopy were used for the phosphorus determination. In 2011 a new multielemental instrumental method MP-AES (microwave plasma atomic emission spectroscopy) was added to them. Due to its lower detection limits and multielemental character, compared with AAS, and lower exploitation costs, compared with ICP, the MP-AES has a good potential to achieve a leading position in soil nutrient analysis in the future. The objective of this study was to investigate: (i) the impact of soil pH and humus content and (ii) applicability of MP-AES instrumental method for the determination of soil nutrients extracted

  11. Specific Yield--Column drainage and centrifuge moisture content

    USGS Publications Warehouse

    Johnson, A.I.; Prill, R.C.; Morris, D.A.

    1963-01-01

    The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the

  12. Health and Nutrient Content Claims in Food Advertisements on Hispanic and Mainstream Prime-Time Television

    ERIC Educational Resources Information Center

    Abbatangelo-Gray, Jodie; Byrd-Bredbenner, Carol; Austin, S. Bryn

    2008-01-01

    Objective: Characterize frequency and type of health and nutrient content claims in prime-time weeknight Spanish- and English-language television advertisements from programs shown in 2003 with a high viewership by women aged 18 to 35 years. Design: Comparative content analysis design was used to analyze 95 hours of Spanish-language and 72 hours…

  13. The use of Fourier-transform infrared spectroscopy to predict cheese yield and nutrient recovery or whey loss traits from unprocessed bovine milk samples.

    PubMed

    Ferragina, A; Cipolat-Gotet, C; Cecchinato, A; Bittante, G

    2013-01-01

    Cheese yield is an important technological trait in the dairy industry in many countries. The aim of this study was to evaluate the effectiveness of Fourier-transform infrared (FTIR) spectral analysis of fresh unprocessed milk samples for predicting cheese yield and nutrient recovery traits. A total of 1,264 model cheeses were obtained from 1,500-mL milk samples collected from individual Brown Swiss cows. Individual measurements of 7 new cheese yield-related traits were obtained from the laboratory cheese-making procedure, including the fresh cheese yield, total solid cheese yield, and the water retained in curd, all as a percentage of the processed milk, and nutrient recovery (fat, protein, total solids, and energy) in the curd as a percentage of the same nutrient contained in the milk. All individual milk samples were analyzed using a MilkoScan FT6000 over the spectral range from 5,000 to 900 wavenumber × cm(-1). Two spectral acquisitions were carried out for each sample and the results were averaged before data analysis. Different chemometric models were fitted and compared with the aim of improving the accuracy of the calibration equations for predicting these traits. The most accurate predictions were obtained for total solid cheese yield and fresh cheese yield, which exhibited coefficients of determination between the predicted and measured values in cross-validation (1-VR) of 0.95 and 0.83, respectively. A less favorable result was obtained for water retained in curd (1-VR=0.65). Promising results were obtained for recovered protein (1-VR=0.81), total solids (1-VR=0.86), and energy (1-VR=0.76), whereas recovered fat exhibited a low accuracy (1-VR=0.41). As FTIR spectroscopy is a rapid, cheap, high-throughput technique that is already used to collect standard milk recording data, these FTIR calibrations for cheese yield and nutrient recovery highlight additional potential applications of the technique in the dairy industry, especially for monitoring cheese

  14. Nutrient Regulation by Continuous Feeding Removes Limitations on Cell Yield in the Large-Scale Expansion of Mammalian Cell Spheroids

    PubMed Central

    Weegman, Bradley P.; Nash, Peter; Carlson, Alexandra L.; Voltzke, Kristin J.; Geng, Zhaohui; Jahani, Marjan; Becker, Benjamin B.; Papas, Klearchos K.; Firpo, Meri T.

    2013-01-01

    Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications. PMID:24204645

  15. Factors affecting variation of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process.

    PubMed

    Cipolat-Gotet, C; Cecchinato, A; De Marchi, M; Bittante, G

    2013-01-01

    Cheese yield (CY) is the most important technological trait of milk, because cheese-making uses a very high proportion of the milk produced worldwide. Few studies have been carried out at the level of individual milk-producing animals due to a scarcity of appropriate procedures for model-cheese production, the complexity of cheese-making, and the frequent use of the fat and protein (or casein) contents of milk as a proxy for cheese yield. Here, we report a high-throughput cheese manufacturing process that mimics all phases of cheese-making, uses 1.5-L samples of milk from individual animals, and allows the simultaneous processing of 15 samples per run. Milk samples were heated (35°C for 40 min), inoculated with starter culture (90 min), mixed with rennet (51.2 international milk-clotting units/L of milk), and recorded for gelation time. Curds were cut twice (10 and 15 min after gelation), separated from the whey, drained (for 30 min), pressed (3 times, 20 min each, with the wheel turned each time), salted in brine (for 60 min), weighed, and sampled. Whey was collected, weighed, and sampled. Milk, curd, and whey samples were analyzed for pH, total solids, fat content, and protein content, and energy content was estimated. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), representing the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese compared with that in the milk. This

  16. Losses of nutrients and anti-nutrients in red and white sorghum cultivars after decorticating in optimised conditions.

    PubMed

    Galán, María Gimena; Llopart, Emilce Elina; Drago, Silvina Rosa

    2018-05-01

    The aims were to optimise pearling process of red and white sorghum by assessing the effects of pearling time and grain moisture on endosperm yield and flour ash content and to assess nutrient and anti-nutrient losses produced by pearling different cultivars in optimised conditions. Both variables significantly affected both responses. Losses of ashes (58%), proteins (9.5%), lipids (54.5%), Na (37%), Mg (48.5%) and phenolic compounds (43%) were similar among red and white hybrids. However, losses of P (30% vs. 51%), phytic acid (47% vs. 66%), Fe (22% vs. 55%), Zn (32% vs. 62%), Ca (60% vs. 66%), K (46% vs. 61%) and Cu (51% vs. 71%) were lower for red than white sorghum due to different degree of extraction and distribution of components in the grain. Optimised pearling conditions were extrapolated to other hybrids, indicating these criteria could be applied at industrial level to obtain refined flours with proper quality and good endosperm yields.

  17. Responses of inulin content and inulin yield of Jerusalem artichoke genotypes to seasonal environments

    USDA-ARS?s Scientific Manuscript database

    Seasonal variation (e.g. temperature and photoperiod) between growing seasons might affect inulin content and inulin yield of Jerusalem artichoke. However, there is limited information on genotypic response to seasons for inulin content and inulin yield. The objective of this study was to investig...

  18. Nutrient content of brown marmorated stink bug eggs and comparisons between experimental uses

    USDA-ARS?s Scientific Manuscript database

    Halyomorpha halys (Stål), the brown marmorated stink bug (BMSB), has become a major crop and nuisance pest across the US. Here, seven experiments examined the currently unknown nutrient content of their eggs in the context of female reproductive investment and typical egg clusters used for biologica...

  19. Nutrient homeostasis, C:N:S ratios, protein, and oil content in Cuphea seed

    USDA-ARS?s Scientific Manuscript database

    Macro- and micro-nutrient densities, carbon:nitrogen (C:N), nitrogen:sulphur (N:S), protein, and oil contents and interrelationships were assessed during a 3-year study in seeds of the indeterminate Cuphea germplasm line PSR23 selected from an inter-specific cross between two species of the Lythrace...

  20. Fungicidal seed coatings exert minor effects on arbuscular mycorrhizal fungi and plant nutrient content

    USDA-ARS?s Scientific Manuscript database

    Aims: Determine if contemporary, seed-applied fungicidal formulations inhibit colonization of plant roots by arbuscular mycorrhizal (AM) fungi, plant development, or plant nutrient content during early vegetative stages of several commodity crops. Methods: We evaluated seed-applied commercial fungic...

  1. Dry matter production and nutrient content of longan grown on an acid Ultisol

    USDA-ARS?s Scientific Manuscript database

    Little is known about the adaptability of longan (Dimocarpus longan) to acidic soils high in aluminum (Al). A 2-year field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient content in shoots of four cultivars of longan. S...

  2. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    PubMed

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. Copyright © 2014. Published by Elsevier Ltd.

  3. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Soil salinity and sodicity can not only directly restrain crop growth by osmotic and specific ion stresses, it also may reduce grain yield indirectly by impacting plant absorption of essential nutrients. Ensuring adequate nitrogen is an important management aspect of rice production in saline-sodic ...

  4. The Effects of Inorganic Nitrogen form and CO2 Concentration on Wheat Yield and Nutrient Accumulation and Distribution

    PubMed Central

    Carlisle, Eli; Myers, Samuel; Raboy, Victor; Bloom, Arnold

    2012-01-01

    Inorganic N is available to plants from the soil as ammonium (NH4+) and nitrate (NO3-). We studied how wheat grown hydroponically to senescence in controlled environmental chambers is affected by N form (NH4+ vs. NO3−) and CO2 concentration (“subambient,” “ambient,” and “elevated”) in terms of biomass, yield, and nutrient accumulation and partitioning. Wheat supplied with NH4+ as a sole N source had the strongest response to CO2 concentration. Plants exposed to subambient and ambient CO2 concentrations typically had the greatest biomass and nutrient accumulation under both N forms. In general NH4+-supplied plants had higher concentrations of total N, P, K, S, Ca, Zn, Fe, and Cu, while NO3--supplied plants had higher concentrations of Mg, B, Mn, and NO3- - N. NH4+-supplied plants contained amounts of phytate similar to NO3−-supplied plants but had higher bioavailable Zn, which could have consequences for human health. NH4+-supplied plants allocated more nutrients and biomass to aboveground tissues whereas NO3+-supplied plants allocated more nutrients to the roots. The two inorganic nitrogen forms influenced plant growth and nutrient status so distinctly that they should be treated as separate nutrients. Moreover, plant growth and nutrient status varied in a non-linear manner with atmospheric CO2 concentration. PMID:22969784

  5. [Effects of nitrogen application levels on yield and active composition content of Desmodium styracifolium].

    PubMed

    Zhou, Jiamin; Yin, Xiaohong; Chen, Chaojun; Huang, Min; Peng, Fuyuan; Zhu, Xiaoqi

    2010-06-01

    To find out the optimal nitrogen application level of Desmodium styracifolium. A field experiment using randomized block design was carried out to study the effects of 5 nitrogen application levels (150, 187.5, 225.0, 262.5 and 300.0 kg x hm(-2)) on yield and active component content of D. styracifolium. Nitrogen application could increase the yield and contents of polysaccharide, total flavonoides and total saponins of D. styracifolium. However, the enhancing extent of the active component content and the yield were not always significant with the increase of nitrogen level. In which, the yield were not significantly different among the nitrogen application levels of 225.0, 262.5, 300.0 kg x hm(-2) the polysaccharide content was no significantly difference among the nitrogen application levels of 225.0, 262. 5 and 300.0 kg x hm(-2), the total flavonoides content under the nitrogen level of 300.0 kg x hm(-2) was significantly lower than that of 150.0 kg hm(-2) (P < 0.01), and the total saponins content under the nitrogen level of 300.0 kg x hm(-2) was no significant difference compared with that of 262.5 kg x hm(-2). The optimal nitrogen application level of D. styracifolium was 225.0-262.5 kg x hm(-2).

  6. Nutrients content and quality of liquid fertilizer made from goat manure

    NASA Astrophysics Data System (ADS)

    Sunaryo, Yacobus; Purnomo, Djoko; Theresia Darini, Maria; Ratri Cahyani, Vita

    2018-05-01

    Quality of liquid fertilizer is determined by the content of nutrients and other chemical factors such as pH and EC. This research aimed to examine nutrient contents and dynamic of pH and EC of liquid fertilizer made from goat manure in combination with sugar and ammonium sulfate (ZA) and using Effective Microorganisms (EM) as the decomposer. This research was conducted by employing 3 x 3 factorial experiment with three replications. Each treatment combination was applied in 20 L of water. The first factor was the quantity of sugar which consisted of 3 levels: 12.5, 25, and 50 g L-1 of water. The second factor was the quantity of ZA which consisted of 3 levels: 25, 37.5, and 50 g L-1 of water. All combinations were added by 100 g of air dried goat manure L-1 of water and EM solution 1 ml L-1 of water, and incubated for five months. Results of the experiment indicated that the increasing concentration of ZA resulted in the significantly increase of N total and S total. Increasing concentration of sugar resulted in decreasing pH and increasing lactic acid; whereas, increasing concentration of ZA followed by increasing Electrical Conductivity (EC). There was no significantly change of pH and EC of the liquid fertilizer during five months incubation.

  7. Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments.

    PubMed

    Bott, Terry; Meyer, Gretchen A; Young, Erica B

    2008-01-01

    * Plasticity of leaf nutrient content and morphology, and macronutrient limitation were examined in the northern pitcher plant, Sarracenia purpurea subsp. purpurea, in relation to soil nutrient availability in an open, neutral pH fen and a shady, acidic ombrotrophic bog, over 2 yr following reciprocal transplantation of S. purpurea between the wetlands. * In both wetlands, plants were limited by nitrogen (N) but not phosphorus (P) (N content < 2% DW(-1), N : P < 14) but photosynthetic quantum yields were high (F(V)/F(M) > 0.79). Despite carnivory, leaf N content correlated with dissolved N availability to plant roots (leaf N vs , r(2) = 0.344, P < 0.0001); carnivorous N acquisition did not apparently overcome N limitation. * Following transplantation, N content and leaf morphological traits changed in new leaves to become more similar to plants in the new environment, reflecting wetland nutrient availability. Changes in leaf morphology were faster when plants were transplanted from fen to bog than from bog to fen, possibly reflecting a more stressful environment in the bog. * Morphological plasticity observed in response to changes in nutrient supply to the roots in natural habitats complements previous observations of morphological changes with experimental nutrient addition to pitchers.

  8. Effect of Fertilization on Soil Fertility and Nutrient Use Efficiency at Potatoes

    NASA Astrophysics Data System (ADS)

    Neshev, Nesho; Manolov, Ivan

    2016-04-01

    The effect of fertilization on soil fertility, yields and nutrient use efficiency of potatoes grown under field experimental conditions was studied. The trail was conducted on shallow brown forest soil (Cambisols-coarse) during the vegetation periods of 2013 to 2015. The variants of the experiment were: control, N140; P80; K100; N140P80; N140K100; P80K100; N140P80K100; N140P80K100Mg33. The applied fertilization slightly decreased soil's pH after the harvest of potatoes compared to the soil pH their planting. Decreasing of pH was more severe at variant N (from 5,80 to 4,19 in 2014). The mineral nitrogen content in the soil after the harvest of potatoes was lower for the variants P, K and PK. The positive effect of fertilization on soil fertility after the end of the trails was more pronounced at variants NPK and NPKMg. The content of available nitrogen, phosphorus and potassium forms for these variants was the highest for each year. The highest content of mineral nitrogen was observed in 2013 (252,5 and 351,1 mg/1000g, respectively for variants NPK and NPKMg). It was due to extremely dry weather conditions during the vegetation in this year. Soil content of mineral N for the next two years was lower. The same tendency was observed for phosphorus and potassium was observed. In 2013 the P2O5 and K2O content in soil was the highest for the variants with full mineral fertilization - NPK (64,4 and 97,6 mg 100g-1 respectively for P2O5 and K2O) and NPKMg (65,2 and 88,0 mg 100g-1 respectively for P2O5 and K2O). The highest yields were recorded at variants NPK and NPKMg - 24,21 and 22,01 t ha-1, average for the studied period. The yield of variant NPK was 25 % higher than the yield from variant NP and 68 % higher than control. The partial factor productivity (PFPN, PFPP and PFPK) of the applied fertilizers was the highest at variant NPK. The PFPN (80,10 kg kg-1) for the yields of variant N was 57 % lower than the PFPN at variant NPK (180,36 kg kg-1). The PFPP and PFPK at

  9. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Treesearch

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  10. Controlled environments alter nutrient content of soybeans

    NASA Astrophysics Data System (ADS)

    Jurgonski, L. J.; Smart, D. J.; Bugbee, B.; Nielsen, S. S.

    1997-01-01

    Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO_2 and 1000 ppm CO_2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO_2 than at 1000 ppm CO_2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO_2 than with 1000 ppm CO_2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.

  11. Nutrient Content And Acceptability Of Snakehead-Fish (Ophiocephalus Striatus) And Pumpkin (Cucurbita Moschata) Based Complementary Foods

    NASA Astrophysics Data System (ADS)

    Ratna Noer, Etika; Candra, Aryu; Panunggal, Binar

    2017-02-01

    Poor nutrient-dense complementary foods is one of the common factors contributed for decline growth pattern in children. Snakehead-fish and Pumpkin Complementary Feeding (SPCF) base on locally food can help to reduce child malnutrition. Specifically, high protein and vitamin A in SPCF may improve immunity and nutrition status of malnutrition children. This study aimed to formulate low-cost, nutritive value and acceptable of SPCF on malnutrition children in coastal area. Carbohydrate content was determined by difference, protein by Kjeldahl, betacaroten by spectofotometri and sensory evaluation using a five point hedonic scale. Fe and zinc was determined by AAS. There is an effect of the substitution of snake-head fish flour and yellow pumpkin flour toward the nutrient content and the acceptability

  12. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... antioxidant activity; that is, when there exists scientific evidence that, following absorption from the... of the nutrients with recognized antioxidant activity. The list of nutrients shall appear in letters... the term “antioxidant.” A nutrient content claim that characterizes the level of antioxidant nutrients...

  13. 21 CFR 101.54 - Nutrient content claims for “good source,” “high,” “more,” and “high potency.”

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... antioxidant activity; that is, when there exists scientific evidence that, following absorption from the... of the nutrients with recognized antioxidant activity. The list of nutrients shall appear in letters... the term “antioxidant.” A nutrient content claim that characterizes the level of antioxidant nutrients...

  14. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality.

    PubMed

    Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun

    2015-02-15

    In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. [Nutrient contents and microbial populations of aeolian sandy soil in Sanjiangyuan region of Qinghai Province].

    PubMed

    Lin, Chao-feng; Chen, Zhan-quan; Xue, Quan-hong; Lai, Hang-xian; Chen, Lai-sheng; Zhang, Deng-shan

    2007-01-01

    Sanjiangyuan region (the headstream of three rivers) in Qinghai Province of China is the highest and largest inland alpine wetland in the world. The study on the nutrient contents and microbial populations of aeolian sandy soils in this region showed that soil organic matter content increased with the evolution of aeolian sand dunes from un-stabilized to stabilized state, being 5.9 and 3.8 times higher in stabilized sand dune than in mobile and semi-stabilized sand dunes, respectively. Soil nitrogen and phosphorus contents increased in line with the amount of organic matter, while potassium content and pH value varied slightly. The microbial populations changed markedly with the development of vegetation, fixing of mobile sand, and increase of soil nutrients. The quantities of soil bacteria, fungi and actinomycetes were 4.0 and 2.8 times, 19.6 and 6.3 times, and 12.4 and 2.6 times higher in stabilized and semi-stabilized sand dunes than in mobile sand dune, respectively, indicating that soil microbial bio-diversity was increased with the evolution of aeolian sand dunes from mobile to stabilized state. In addition, the quantities of soil microbes were closely correlated with the contents of soil organic matter, total nitrogen, and available nitrogen and phosphorus, but not correlated with soil total phosphorus, total and available potassium, or pH value.

  16. Nutrient management

    USDA-ARS?s Scientific Manuscript database

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  17. Health and nutrient content claims in food advertisements on Hispanic and mainstream prime-time television.

    PubMed

    Abbatangelo-Gray, Jodie; Byrd-Bredbenner, Carol; Austin, S Bryn

    2008-01-01

    Characterize frequency and type of health and nutrient content claims in prime-time weeknight Spanish- and English-language television advertisements from programs shown in 2003 with a high viewership by women aged 18 to 35 years. Comparative content analysis design was used to analyze 95 hours of Spanish-language and 72 hours of English-language television programs (netting 269 and 543 food ads, respectively). A content analysis instrument was used to gather information on explicit health and nutrient content claims: nutrition information only; diet-disease; structure-function; processed food health outcome; good for one's health; health care provider endorsement. Chi-square statistics detected statistically significant differences between the groups. Compared to English-language television, Spanish-language television aired significantly more food advertisements containing nutrition information and health, processed food/health, and good for one's health claims. Samples did not differ in the rate of diet/disease, structure/function, or health care provider endorsement claims. Findings indicate that Spanish-language television advertisements provide viewers with significantly more nutrition information than English-language network advertisements. Potential links between the deteriorating health status of Hispanics acculturating into US mainstream culture and their exposure to the less nutrition-based messaging found in English-language television should be explored.

  18. 'Economy' line foods from four supermarkets and brand name equivalents: a comparison of their nutrient contents and costs.

    PubMed

    Cooper, S; Nelson, M

    2003-10-01

    Achieving healthy eating targets for low income households can be difficult because of economic barriers. Several UK supermarkets have introduced 'value line' or 'economy line' foods to improve their attractiveness to low income consumers. The costs and nutrient contents of five 'economy' line products of four major English supermarkets - Asda, KwikSave, Sainsbury and Tesco - were compared with branded (but not 'own label') equivalents. Single samples of tinned tomatoes, long-life orange juice, potatoes, sausages and white bread were purchased in each supermarket. They represented items of potential importance in relation to 'healthy' choices in the shopping baskets of low income households. Nutrients analysed were fat, sodium, potassium, iron, calcium, vitamin C, and energy. Economy line foods had a nutrient composition similar to and often better than the branded goods. The economy line products frequently had nutrient contents more in line with the Balance of Good Health (e.g. lower fat and sodium) compared with the branded goods. In terms of nutrients per pence, the economy line products were far better value for money compared with the branded lines. Economy line foods represent excellent value for money and are not nutritionally inferior to the branded products. They have a potentially important role to play in the promotion of healthy eating, especially amongst low income households.

  19. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    ERIC Educational Resources Information Center

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  20. Is nutrient content and other label information for prescription prenatal supplements different from nonprescription products?

    USDA-ARS?s Scientific Manuscript database

    Prenatal supplements are often recommended to pregnant women to help meet their nutrient needs. Many products are available, making it difficult to choose a suitable supplement because little is known about their labeling and contents to evaluate their appropriateness. To determine differences bet...

  1. Effect of decapitation and nutrient applications on shoot branching, yield, and accumulation of secondary metabolites in leaves of Stevia rebaudiana Bertoni.

    PubMed

    Pal, Probir Kumar; Prasad, Ramdeen; Pathania, Vijaylata

    2013-11-15

    The axillary buds of stevia (Stevia rebaudiana Bertoni) often remain dormant for a long time and sometimes remain dormant permanently until the plants enter into the reproductive stage. The present study was conducted to ascertain whether decapitation and foliar fertilization enhance the productivity and quality of stevia through breaking the apical dominance and increasing physiological activities. Ten treatment combinations comprising two cultural operations (non-decapitation and decapitation) and five foliar spray treatments (water spray control, KNO3 @ 5.0gL(-1), Ca(NO3)2 @ 4.06gL(-1), CuSO4·5H2O 2.0gL(-1) and (NH4)6Mo7O24 @ 1.0gL(-1)) were applied. The decapitation of apical buds of stevia increased the branches and increased dry leaf yield by 13 and 17% compared with non-decapitation during 2010 and 2011, respectively, without affecting quality. Foliar application of nutrient solutions also exerted a considerable effect on growth parameters, yield attributes and chlorophyll content, and significantly (P=0.05) higher dry leaf yield ranging from 8 to 26% over the control. Among the foliar spray treatments, KNO3 @ 5.0gL(-1) and Ca (NO3)2 4.06gL(-1) were found most effective in dry leaf yield. Thus, the decapitation of apical buds and foliar application of KNO3 and Ca (NO3)2 could enhance the productivity of stevia through improving the growth of axillary buds and physiological activities. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Variation in nutrients formulated and nutrients supplied on 5 California dairies.

    PubMed

    Rossow, H A; Aly, S S

    2013-01-01

    Computer models used in ration formulation assume that nutrients supplied by a ration formulation are the same as the nutrients presented in front of the cow in the final ration. Deviations in nutrients due to feed management effects such as dry matter changes (i.e., rain), loading, mixing, and delivery errors are assumed to not affect delivery of nutrients to the cow and her resulting milk production. To estimate how feed management affects nutrients supplied to the cow and milk production, and determine if nutrients can serve as indexes of feed management practices, weekly total mixed ration samples were collected and analyzed for 4 pens (close-up cows, fresh cows, high-milk-producing, and low-milk-producing cows, if available) for 7 to 12 wk on 5 commercial California dairies. Differences among nutrient analyses from these samples and nutrients from the formulated rations were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Milk fat and milk protein percentages did not vary as much [coefficient of variation (CV) = 18 to 33%] as milk yield (kg; CV = 16 to 47 %) across all dairies and pens. Variability in nutrients delivered were highest for macronutrient fat (CV = 22%), lignin (CV = 15%), and ash (CV = 11%) percentages and micronutrients Fe (mg/kg; CV = 48%), Na (%; CV = 42%), and Zn (mg/kg; CV = 38%) for the milking pens across all dairies. Partitioning of the variability in random effects of nutrients delivered and intraclass correlation coefficients showed that variability in lignin percentage of TMR had the highest correlation with variability in milk yield and milk fat percentage, followed by fat and crude protein percentages. But, variability in ash, fat, and lignin percentages of total mixed ration had the highest correlation with variability in milk protein percentage. Therefore, lignin, fat, and ash may be the best indices of feed management to include effects of variability in nutrients on variability in milk yield, milk fat, and milk

  3. Engineering crop nutrient efficiency for sustainable agriculture.

    PubMed

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  4. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk.

    PubMed

    Gidrewicz, Dominica A; Fenton, Tanis R

    2014-08-30

    Breast milk nutrient content varies with prematurity and postnatal age. Our aims were to conduct a meta-analysis of preterm and term breast milk nutrient content (energy, protein, lactose, oligosaccharides, fat, calcium, and phosphorus); and to assess the influence of gestational and postnatal age. Additionally we assessed for differences by laboratory methods for: energy (measured vs. calculated estimates) and protein (true protein measurement vs. the total nitrogen estimates). Systematic review results were summarized graphically to illustrate the changes in composition over time for term and preterm milk. Since breast milk fat content varies within feeds and diurnally, to obtain accurate estimates we limited the meta-analyses for fat and energy to 24-hour breast milk collections. Forty-one studies met the inclusion criteria: 26 (843 mothers) preterm studies and 30 (2299 mothers) term studies of breast milk composition. Preterm milk was higher in true protein than term milk, with differences up to 35% (0.7 g/dL) in colostrum, however, after postnatal day 3, most of the differences in true protein between preterm and term milk were within 0.2 g/dL, and the week 10-12 estimates suggested that term milk may be the same as preterm milk by that age. Colostrum was higher than mature milk for protein, and lower than mature milk for energy, fat and lactose for both preterm and term milk. Breast milk composition was relatively stable between 2 and 12 weeks. With milk maturation, there was a narrowing of the protein variance. Energy estimates differed whether measured or calculated, from -9 to 13%; true protein measurement vs. the total nitrogen estimates differed by 1 to 37%. Although breast milk is highly variable between individuals, postnatal age and gestational stage (preterm versus term) were found to be important predictors of breast milk content. Energy content of breast milk calculated from the macronutrients provides poor estimates of measured energy, and protein

  5. Genome-wide association study for cheese yield and curd nutrient recovery in dairy cows.

    PubMed

    Dadousis, C; Biffani, S; Cipolat-Gotet, C; Nicolazzi, E L; Rosa, G J M; Gianola, D; Rossoni, A; Santus, E; Bittante, G; Cecchinato, A

    2017-02-01

    Cheese production and consumption are increasing in many countries worldwide. As a result, interest has increased in strategies for genetic selection of individuals for technological traits of milk related to cheese yield (CY) in dairy cattle breeding. However, little is known about the genetic background of a cow's ability to produce cheese. Recently, a relatively large panel (1,264 cows) of different measures of individual cow CY and milk nutrient and energy recoveries in the cheese (REC) became available. Genetic analyses showed considerable variation for CY and for aptitude to retain high proportions of fat, protein, and water in the coagulum. For the dairy industry, these characteristics are of major economic importance. Nevertheless, use of this knowledge in dairy breeding is hampered by high costs, intense labor requirement, and lack of appropriate technology. However, in the era of genomics, new possibilities are available for animal breeding and genetic improvement. For example, identification of genomic regions involved in cow CY might provide potential for marker-assisted selection. The objective of this study was to perform genome-wide association studies on different CY and REC measures. Milk and DNA samples from 1,152 Italian Brown Swiss cows were used. Three CY traits expressing the weight (wt) of fresh curd (%CY CURD ), curd solids (%CY SOLIDS ), and curd moisture (%CY WATER ) as a percentage of weight of milk processed, and 4 REC (REC FAT , REC PROTEIN , REC SOLIDS , and REC ENERGY , calculated as the % ratio between the nutrient in curd and the corresponding nutrient in processed milk) were analyzed. Animals were genotyped with the Illumina BovineSNP50 Bead Chip v.2. Single marker regressions were fitted using the GenABEL R package (genome-wide association using mixed model and regression-genomic control). In total, 103 significant associations (88 single nucleotide polymorphisms) were identified in 10 chromosomes (2, 6, 9, 11, 12, 14, 18, 19, 27

  6. Phosphorus, zinc, and boron influence yield components in Earliglow strawberry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, G.M.; Pritts, M.P.

    1993-01-01

    The main effects and interactions of soil-applied P, B, and Zn on yield and its components were examined in the field at two pH levels with Earliglow' strawberries (Fragaria ananassa Duch.). Applied nutrients had significant effects on several yield components, but responses depended on the levels of other nutrients or the soil pH. At a soil pH of 5.5, yield responded linearly to B and quadratically to P. At pH 6.5, P interacted with B and Zn. Fruit count per inflorescence was the yield component most strongly associated with yield, followed by individual fruit weight. However, these two yield componentsmore » responded differently to soil-applied nutrients. Foliar nutrient levels generally did not increase with the amount of applied nutrient, but often an applied nutrient had a strong effect on the level of another nutrient. Leaf nutrient levels were often correlated with fruit levels, but foliar and fruit levels at harvest were not related to reproductive performance. The study identifies some of the problems inherent in using foliar nutrient levels to predict a yield response and demonstrates how plant responses to single nutrients depend on soil chemistry and the presence of other nutrients.« less

  7. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content?

    PubMed

    Poti, Jennifer M; Braga, Bianca; Qin, Bo

    2017-12-01

    The aim of this narrative review was to summarize and critique recent evidence evaluating the association between ultra-processed food intake and obesity. Four of five studies found that higher purchases or consumption of ultra-processed food was associated with overweight/obesity. Additional studies reported relationships between ultra-processed food intake and higher fasting glucose, metabolic syndrome, increases in total and LDL cholesterol, and risk of hypertension. It remains unclear whether associations can be attributed to processing itself or the nutrient content of ultra-processed foods. Only three of nine studies used a prospective design, and the potential for residual confounding was high. Recent research provides fairly consistent support for the association of ultra-processed food intake with obesity and related cardiometabolic outcomes. There is a clear need for further studies, particularly those using longitudinal designs and with sufficient control for confounding, to potentially confirm these findings in different populations and to determine whether ultra-processed food consumption is associated with obesity independent of nutrient content.

  8. [Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape].

    PubMed

    Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei

    2012-05-01

    A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.

  9. 9 CFR 317.356 - Nutrient content claims for “light” or “lite.”

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... âlite.â 317.356 Section 317.356 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Labeling § 317.356 Nutrient content claims for “light” or “lite.” (a) General requirements. A claim using... claims in § 317.313; and (3) The product for which the claim is made is labeled in accordance with § 317...

  10. 9 CFR 317.356 - Nutrient content claims for “light” or “lite.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... âlite.â 317.356 Section 317.356 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Labeling § 317.356 Nutrient content claims for “light” or “lite.” (a) General requirements. A claim using... claims in § 317.313; and (3) The product for which the claim is made is labeled in accordance with § 317...

  11. 9 CFR 317.356 - Nutrient content claims for “light” or “lite.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... âlite.â 317.356 Section 317.356 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Labeling § 317.356 Nutrient content claims for “light” or “lite.” (a) General requirements. A claim using... claims in § 317.313; and (3) The product for which the claim is made is labeled in accordance with § 317...

  12. 9 CFR 317.356 - Nutrient content claims for “light” or “lite.”

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... âlite.â 317.356 Section 317.356 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Labeling § 317.356 Nutrient content claims for “light” or “lite.” (a) General requirements. A claim using... claims in § 317.313; and (3) The product for which the claim is made is labeled in accordance with § 317...

  13. Trends in Nutrient Content of Children's Menu Items in U.S. Chain Restaurants

    PubMed Central

    Moran, Alyssa J.; Block, Jason P.; Goshev, Simo G.; Bleich, Sara N.; Roberto, Christina A.

    2017-01-01

    Introduction Restaurant food is widely consumed by children and is associated with poor diet quality. Although many restaurants have made voluntary commitments to improve the nutritional quality of children's menus, it is unclear whether this has led to meaningful changes. Methods Nutrients in children's menu items (n=4,016) from 45 chain restaurants were extracted from the nutrition information database MenuStat. Bootstrapped mixed linear models estimated changes in mean calories, saturated fat, and sodium in children's menu items between 2012 and 2013, 2014, and 2015. Changes in nutrient content of these items over time were compared among restaurants participating in the Kids LiveWell initiative and non-participating restaurants. Types of available children's beverages were also examined. Data were analyzed in 2016. Results There was a significant increase in mean beverage calories from 2012 to 2013 (6, 95% CI=0.8, 10.6) and from 2012 to 2014 (11, 95% CI=3.7, 18.3), but no change between 2012 and 2015, and no differences in nutrient content of other items over time. Restaurants participating in Kids LiveWell reduced entrée calories between 2012 and 2013 (−24, 95% CI= −40.4, −7.2) and between 2012 and 2014 (−40, 95% CI= −68.1, −11.4) and increased side dish calories between 2012 and 2015 (49, 95% CI=4.6, 92.7) versus non-participating restaurants. Sugar-sweetened beverages consistently constituted 80% of children's beverages, with soda declining and flavored milks increasing between 2012 and 2015. Conclusions Results suggest little progress toward improving nutrition in children's menu items. Efforts are needed to engage restaurants in offering healthful children's meals. PMID:28089130

  14. Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting.

    PubMed

    Haynes, R J; Belyaeva, O N; Zhou, Y-F

    2015-01-01

    In order to better characterize mechanically shredded municipal green waste used for composting, five samples from different origins were separated into seven particle size fractions (>20mm, 10-20mm, 5-10mm, 2-5mm, 1-2mm, 0.5-1.0mm and <0.5mm diameter) and analyzed for organic C and nutrient content. With decreasing particle size there was a decrease in organic C content and an increase in macronutrient, micronutrient and ash content. This reflected a concentration of lignified woody material in the larger particle fractions and of green stems and leaves and soil in the smaller particle sizes. The accumulation of nutrients in the smaller sized fractions means the practice of using large particle sizes for green fuel and/or mulch does not greatly affect nutrient cycling via green waste composting. During a 100-day incubation experiment, using different particle size fractions of green waste, there was a marked increase in both cumulative CO2 evolution and mineral N accumulation with decreasing particle size. Results suggested that during composting of bulk green waste (with a high initial C/N ratio such as 50:1), mineral N accumulates because decomposition and net N immobilization in larger particles is slow while net N mineralization proceeds rapidly in the smaller (<1mm dia.) fractions. Initially, mineral N accumulated in green waste as NH4(+)-N, but over time, nitrification proceeded resulting in accumulation of NO3(-)-N. It was concluded that the nutrient content, N mineralization potential and decomposition rate of green waste differs greatly among particle size fractions and that chemical analysis of particle size fractions provides important additional information over that of a bulk sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Yield, fruit quality traits and leaf nutrient concentration of sapodilla cv ‘Prolific’ grafted onto 16 rootstocks in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Research on sapodilla has been very limited. A field study was conducted to determine the yield potential, fruit quality traits, leaf nutrient composition and scion/rootstock compatibility of cultivar ‘Prolific’ grafted onto 16 sapodilla rootstocks. For this purpose cultivars ‘Adelaide’, ‘Arcilago’...

  16. Effects of hydrology on short term plant decomposition and nutrient content in a re-created Everglades wetland

    NASA Astrophysics Data System (ADS)

    Serna, A.; Richards, J.; Scinto, L.

    2012-12-01

    The effect of water depth and flow on tissue nutrients and decomposition rates of marsh plant species, and soil chemistry in vegetated plots was measured in the Loxahatchee Impoundment Landscape Assessment (LILA) facility in Boynton Beach, Florida, USA. The LILA facility consists of replicated wetland macrocosms that mimic Everglades ridge-and-slough landscape features. The experiments were conducted in two macrocosms that each had three habitats at different water depths (ridge, shallow slough and deep slough) but differed in flow. Decomposition rates of three common Everglades species, Cladium jamaicense (sawgrass), Eleocharis cellulosa (spikerush), and Nymphaea odorata (white water lily), were measured using litter bags incubated during both a wet and dry condition. Litter bag losses were more pronounced under wet conditions, and decomposition rates were not affected by the hydrologic conditions in this experiment, but rather by litter nutrient content and species. Litter nutrient (TC, TN, TP) concentrations varied over time. Species rich in the limiting nutrient (P) in the ecosystem decomposed faster. Therefore, N. odorata decomposed faster than C. jamaicense and E. cellulosa, confirming the importance of P availability in controlling microbial processes in the Everglades. Planted species had no effect on soil nutrient content over the 3 yrs period of plant growth in these plots. Our results have contributed to defining potential flow targets for restoration in Florida's Everglades by showing that average water velocities of 0.5 cm s-1 may not be sufficient to drive ecosystem changes in decomposition rates for the native species and soil chemistry.

  17. Yield, nutrient utilization and soil properties in a melon crop amended with wine-distillery waste compost

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2014-05-01

    In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed

  18. Nutritional plane and selenium supply during gestation impact yield and nutrient composition of colostrum and milk in primiparous ewes

    USDA-ARS?s Scientific Manuscript database

    Objectives were to investigate effects of nutritional plane and Se supply during gestation on yield and nutrient composition of colostrum and milk in first parity ewes. Rambouillet ewe lambs (n = 84, age = 240 +/- 17 d, BW = 52.1 +/- 6.2 kg), were allocated to 6 treatments in a 2 x 3 factorial array...

  19. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    PubMed

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  20. Quantitative assessment of the relationship between biomarker content and biomass in marine phytoplankton in responses to temperature and nutrient supply ratio changes

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Chen, X.; Bi, R.; Zhang, L. H.; Li, L.; Zhao, M.

    2016-12-01

    Alkenones and sterols are useful biomarkers to construct past productivity and community structure changes in aquatic environments. Until now, the quantitative relationship between biomarker content and biomass in marine phytoplankton remains understudied, which hinders the quantitative reconstruction of ocean changes. In this study, we carried out laboratory culture experiments to determine the quantitative relationship between biomarker content and biomass under three temperatures (15°, 20° and 25°) and three N:P supply ratios (N:P=10:1, 24:1 and 63:1 mol mol-1) for three common phytoplankton groups, diatoms (Phaeodactylum tricornutum Bohlin, Skeletonema costatum, Chaetoceros muelleri), dinoflagellates (Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum), and coccolithophores (Emiliania huxleyi). Alkenones were only detected in E. huxleyiand dinosterol was only detected in dinoflagellates, confirming that they are the biomarkers for these two groups of phytoplankton, respectively. Brassicasterol was detected in all three groups of phytoplankton, but its content was higher in diatoms, suggesting that it is still a useful biomarker for diatoms. Cell-normalized alkenone content (pg/cell) increases with increasing growth temperature by up to 30%; while the effect of nutrients on alkenone content is minimum. On the other hand, cell-normalized dinosterol content is not temperature dependent, but it is strongly affected by nutrient ratio changes. The effects of temperature and nutrients on cell-normalized brassicasterol content are phytoplankton dependent. For diatoms, the temperature effect is minimum while the nutrient effect is significant but also varies with temperatures. Our results have strong implications for understanding how different phytoplankton respond to global changes, and for more quantitative reconstruction of past productivity and community structure changes using these biomarkers.

  1. Effects of Moringa oleifera silage on milk yield, nutrient digestibility and serum biochemical indexes of lactating dairy cows.

    PubMed

    Zeng, B; Sun, J J; Chen, T; Sun, B L; He, Q; Chen, X Y; Zhang, Y L; Xi, Q Y

    2018-02-01

    This study investigated the effects of Moringa oleifera (MO) as a partial substitute of alfalfa hay on milk yield, nutrient apparent digestibility and serum biochemical indexes of dairy cows. MO was harvested at 120 days post-seeding. Fresh MO was cut, mixed with chopped oat hay (425:575 on a DM basis), ensiled and stored for 60 days. Sixty healthy Holstein dairy cows were allocated to one of three groups: NM (no MO or control), LM (low MO; 25% alfalfa hay and 50% maize silage were replaced by MO silage) or HM (high MO; 50% alfalfa hay and 100% maize silage were replaced by MO silage). The feeding trial lasted 35 days. The LM and HM diets did not affect dry matter (DM) intake, milk yield or milk composition (lactose, milk fat, milk protein and somatic cell count). The apparent digestibility of DM and NDF was lower for HM group than NM group. Additionally, there were no significant differences in serum biochemical indexes between the LM and NM groups. The HM group had lower serum concentrations of total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and higher serum concentrations of urea than the NM group. The partial replacement of alfalfa hay (≤50%) and maize silage with MO silage had no negative effects on milk yield, in vivo nutrient apparent digestibility or serum biochemical indexes of lactating cows. © 2017 Blackwell Verlag GmbH.

  2. Effect of Calf Gender on Milk Yield and Fatty Acid Content in Holstein Dairy Cows.

    PubMed

    Gillespie, Amy V; Ehrlich, James L; Grove-White, Dai H

    2017-01-01

    The scale of sexed semen use to avoid the birth of unwanted bull calves in the UK dairy industry depends on several economic factors. It has been suggested in other studies that calf gender may affect milk yield in Holsteins- something that would affect the economics of sexed semen use. The present study used a large milk recording data set to evaluate the effect of calf gender (both calf born and calf in utero) on both milk yield and saturated fat content. Linear regression was used to model data for first lactation and second lactation separately. Results showed that giving birth to a heifer calf conferred a 1% milk yield advantage in first lactation heifers, whilst giving birth to a bull calf conferred a 0.5% advantage in second lactation. Heifer calves were also associated with a 0.66kg reduction in saturated fatty acid content of milk in first lactation, but there was no significant difference between the genders in second lactation. No relationship was found between calf gender and milk mono- or polyunsaturated fatty acid content. The observed effects of calf gender on both yield and saturated fatty acid content was considered minor when compared to nutritional and genetic influences.

  3. Effect of Calf Gender on Milk Yield and Fatty Acid Content in Holstein Dairy Cows

    PubMed Central

    Ehrlich, James L.; Grove-White, Dai H.

    2017-01-01

    The scale of sexed semen use to avoid the birth of unwanted bull calves in the UK dairy industry depends on several economic factors. It has been suggested in other studies that calf gender may affect milk yield in Holsteins- something that would affect the economics of sexed semen use. The present study used a large milk recording data set to evaluate the effect of calf gender (both calf born and calf in utero) on both milk yield and saturated fat content. Linear regression was used to model data for first lactation and second lactation separately. Results showed that giving birth to a heifer calf conferred a 1% milk yield advantage in first lactation heifers, whilst giving birth to a bull calf conferred a 0.5% advantage in second lactation. Heifer calves were also associated with a 0.66kg reduction in saturated fatty acid content of milk in first lactation, but there was no significant difference between the genders in second lactation. No relationship was found between calf gender and milk mono- or polyunsaturated fatty acid content. The observed effects of calf gender on both yield and saturated fatty acid content was considered minor when compared to nutritional and genetic influences. PMID:28068399

  4. Trends in Nutrient Content of Children's Menu Items in U.S. Chain Restaurants.

    PubMed

    Moran, Alyssa J; Block, Jason P; Goshev, Simo G; Bleich, Sara N; Roberto, Christina A

    2017-03-01

    Restaurant food is widely consumed by children and is associated with poor diet quality. Although many restaurants have made voluntary commitments to improve the nutritional quality of children's menus, it is unclear whether this has led to meaningful changes. Nutrients in children's menu items (n=4,016) from 45 chain restaurants were extracted from the nutrition information database MenuStat. Bootstrapped mixed linear models estimated changes in mean calories, saturated fat, and sodium in children's menu items between 2012 and 2013, 2014, and 2015. Changes in nutrient content of these items over time were compared among restaurants participating in the Kids LiveWell initiative and non-participating restaurants. Types of available children's beverages were also examined. Data were analyzed in 2016. There was a significant increase in mean beverage calories from 2012 to 2013 (6, 95% CI=0.8, 10.6) and from 2012 to 2014 (11, 95% CI=3.7, 18.3), but no change between 2012 and 2015, and no differences in nutrient content of other items over time. Restaurants participating in Kids LiveWell reduced entrée calories between 2012 and 2013 (-24, 95% CI= -40.4, -7.2) and between 2012 and 2014 (-40, 95% CI= -68.1, -11.4) and increased side dish calories between 2012 and 2015 (49, 95% CI=4.6, 92.7) versus non-participating restaurants. Sugar-sweetened beverages consistently constituted 80% of children's beverages, with soda declining and flavored milks increasing between 2012 and 2015. Results suggest little progress toward improving nutrition in children's menu items. Efforts are needed to engage restaurants in offering healthful children's meals. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass.

    PubMed

    Hynes, D N; Stergiadis, S; Gordon, A; Yan, T

    2016-11-01

    Although many studies have investigated mitigation strategies for methane (CH 4 ) output from dairy cows fed a wide variety of diets, research on the effects of concentrate crude protein (CP) content on CH 4 emissions from dairy cows offered fresh grass is limited. The present study was designed to evaluate the effects of cow genotype and concentrate CP level on nutrient digestibility, energy utilization, and CH 4 emissions in dairy cows offered fresh-grass diets. Twelve multiparous lactating dairy cows (6 Holstein and 6 Holstein × Swedish Red) were blocked into 3 groups for each breed and assigned to a low-, medium-, or high-CP concentrate diet [14.1, 16.1, and 18.1% CP on a dry matter (DM) basis, respectively], in a 3-period changeover study (25d per period). Total diets contained (DM basis) 32.8% concentrates and 67.2% perennial ryegrass, which was harvested daily. All measurements were undertaken during the final 6d of each period: digestibility measurements for 6d and calorimetric measurements in respiration chambers for 3d. Feed intake and milk production data were reported in a previous paper. We observed no significant interaction between concentrate CP level and cow genotype on any parameter. Concentrate CP level had no significant effect on any energy utilization parameter, except for urinary energy output, which was positively related to concentrate CP level. Similarly, concentrate CP content had no effect on CH 4 emission (g/d), CH 4 per kg feed intake, or nutrient digestibility. Cross breeding of Holstein cows significantly reduced gross energy, digestible energy, and metabolizable energy intake, heat production, and milk energy output. However, cow genotype had no significant effect on energy utilization efficiency or CH 4 parameters. Furthermore, the present study yielded a value for gross energy lost as CH 4 (5.6%) on fresh grass-based diets that was lower than the widely accepted value of 6.5%. The present findings indicate that reducing

  6. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.

  7. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection.

    PubMed

    Rapp, M; Lein, V; Lacoudre, F; Lafferty, J; Müller, E; Vida, G; Bozhanova, V; Ibraliu, A; Thorwarth, P; Piepho, H P; Leiser, W L; Würschum, T; Longin, C F H

    2018-06-01

    Simultaneous improvement of protein content and grain yield by index selection is possible but its efficiency largely depends on the weighting of the single traits. The genetic architecture of these indices is similar to that of the primary traits. Grain yield and protein content are of major importance in durum wheat breeding, but their negative correlation has hampered their simultaneous improvement. To account for this in wheat breeding, the grain protein deviation (GPD) and the protein yield were proposed as targets for selection. The aim of this work was to investigate the potential of different indices to simultaneously improve grain yield and protein content in durum wheat and to evaluate their genetic architecture towards genomics-assisted breeding. To this end, we investigated two different durum wheat panels comprising 159 and 189 genotypes, which were tested in multiple field locations across Europe and genotyped by a genotyping-by-sequencing approach. The phenotypic analyses revealed significant genetic variances for all traits and heritabilities of the phenotypic indices that were in a similar range as those of grain yield and protein content. The GPD showed a high and positive correlation with protein content, whereas protein yield was highly and positively correlated with grain yield. Thus, selecting for a high GPD would mainly increase the protein content whereas a selection based on protein yield would mainly improve grain yield, but a combination of both indices allows to balance this selection. The genome-wide association mapping revealed a complex genetic architecture for all traits with most QTL having small effects and being detected only in one germplasm set, thus limiting the potential of marker-assisted selection for trait improvement. By contrast, genome-wide prediction appeared promising but its performance strongly depends on the relatedness between training and prediction sets.

  8. Food labeling; nutrient content claims, definition of sodium levels for the term "healthy." Final rule.

    PubMed

    2005-09-29

    The Food and Drug Administration (FDA) is amending its regulations concerning the maximum sodium levels permitted for foods that bear the implied nutrient content claim "healthy." The agency is retaining the currently effective, less restrictive, "first-tier" sodium level requirements for all food categories, including individual foods (480 milligrams (mg)) and meals and main dishes (600 mg), and is dropping the "second-tier" (more restrictive) sodium level requirements for all food categories. Based on the comments received about technological barriers to reducing sodium in processed foods and poor sales of products that meet the second-tier sodium level, the agency has determined that requiring the more restrictive sodium levels would likely inhibit the development of new "healthy" food products and risk substantially eliminating existing "healthy" products from the marketplace. After reviewing the comments and evaluating the data from various sources, FDA has become convinced that retaining the higher first-tier sodium level requirements for all food products bearing the term "healthy" will encourage the manufacture of a greater number of products that are consistent with dietary guidelines for a variety of nutrients. The agency has also revised the regulatory text of the "healthy" regulation to clarify the scope and meaning of the regulation and to reformat the nutrient content requirements for "healthy" into a more readable set of tables, consistent with the Presidential Memorandum instructing that regulations be written in plain language.

  9. No-tillage effects on grain yield, N use efficiency, and nutrient runoff losses in paddy fields.

    PubMed

    Liang, Xinqiang; Zhang, Huifang; He, Miaomiao; Yuan, Junli; Xu, Lixian; Tian, Guangming

    2016-11-01

    The effect of no-tillage (NT) on rice yield and nitrogen (N) behavior often varies considerably from individual studies. A meta-analysis was performed to assess quantitatively the effect of NT on rice yield and N uptake by rice, N use efficiency (NUE, i.e., fertilizer N recovery efficiency), and nutrient runoff losses. We obtained data from 74 rice-field experiments reported during the last three decades (1983-2013). Results showed the NT system brought a reduction of 3.8 % in the rice yield compared with conventional tillage (CT). Soil pH of 6.5-7.5 was favorable for the improvement of rice yield with the NT system, while a significant negative NT effect on rice yield was observed in sandy soils (p < 0.05). N rate, ranging from 120 to 180 kg N ha -1 , for at least 3 years was necessary for NT to enable rice yield comparable with that of CT. Furthermore, the observations indicated NT reduced N uptake and NUE of the rice by 5.4 and 16.9 %, while increased the N and P exports via runoff by 15.4 and 40.1 % compared with CT, respectively. Seedling cast transplantation, N rate within the range 120-180 kg N ha -1 , and employing NT for longer than 3 years should be encouraged to compromise between productivity and environmental effects of NT implementation in rice fields.

  10. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Comparison of Energy and Nutrient Contents of Commercial and Noncommercial Enteral Nutrition Solutions

    PubMed Central

    Jolfaie, Nahid Ramezani; Rouhani, Mohammad Hossein; Mirlohi, Maryam; Babashahi, Mina; Abbasi, Saeid; Adibi, Peiman; Esmaillzadeh, Ahmad; Azadbakht, Leila

    2017-01-01

    Background: Nutritional support plays a major role in the management of critically ill patients. This study aimed to compare the nutritional quality of enteral nutrition solutions (noncommercial vs. commercial) and the amount of energy and nutrients delivered and required in patients receiving these solutions. Materials and Methods: This cross-sectional study was conducted among 270 enterally fed patients. Demographic and clinical data in addition to values of nutritional needs and intakes were collected. Moreover, enteral nutrition solutions were analyzed in a food laboratory. Results: There were 150 patients who fed noncommercial enteral nutrition solutions (NCENS) and 120 patients who fed commercial enteral nutrition solutions (CENSs). Although energy and nutrients contents in CENSs were more than in NCENSs, these differences regarding energy, protein, carbohydrates, phosphorus, and calcium were not statistically significant. The values of energy and macronutrients delivered in patients who fed CENSs were higher (P < 0.001). Energy, carbohydrate, and fat required in patients receiving CENSs were provided, but protein intake was less than the required amount. In patients who fed NCENSs, only the values of fat requirement and intake were not significantly different, but other nutrition delivered was less than required amounts (P < 0.001). CENSs provided the nutritional needs of higher numbers of patients (P < 0.001). In patients receiving CENSs, nutrient adequacy ratio and also mean adequacy ratio were significantly higher than the other group (P < 0.001). Conclusion: CENSs contain more energy and nutrients compared with NCENSs. They are more effective to meet the nutritional requirements of entirely fed patients. PMID:29142894

  12. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems.

    PubMed

    Bass, Adrian M; Bird, Michael I; Kay, Gavin; Muirhead, Brian

    2016-04-15

    The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO3, NH4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Preharvest Application of Methyl Jasmonate as an Elicitor Improves the Yield and Phenolic Content of Artichoke.

    PubMed

    Martínez-Esplá, Alejandra; Valero, Daniel; Martínez-Romero, Domingo; Castillo, Salvador; Giménez, María José; García-Pastor, Maria Emma; Serrano, María; Zapata, Pedro Javier

    2017-10-25

    The effects of methyl jasmonate (MeJa) treatment as an elicitor of artichoke plants [Cynara cardunculus var. scolymus (L.) Fiori] on the yield and quality attributes of artichokes, especially those related to individual phenolic content and antioxidant activity, at two harvest dates and along storage were analyzed in this research. Plants treated gave a higher yield of artichokes in comparison to control plants, with 0.55 kg more per plant. MeJa treatment also increased artichoke quality and phenolic content in the edible fraction at harvest and during storage at 2 °C for 28 days as a result of the accumulation of hydroxycinnamic acids and luteolin derivatives. In addition, antioxidant activity was enhanced by MeJa treatment and correlated with the total phenolic content. Results suggest that MeJa foliar application could be a simple and practical tool to improve the yield and phytochemical content on artichokes, with elicitation being a cheap and environmentally friendly procedure to improve the health-beneficial effects of artichoke consumption.

  14. Carrot, Corn, Lettuce and Soybean Nutrient Contents are ...

    EPA Pesticide Factsheets

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from some feedstocks also could adversely affect crop quality by changing soil pH and reducing nutrients (e.g., Ca, K, Mg, N, Na, and P) in plant tissues. To evaluate effects of biochar on the nutrient quality of four crops, we conducted a greenhouse study using pots with: carrot (Daucus carota cv. Tendersweet), corn (Zea mays, cv. Golden Bantam), lettuce (Lactuca sativa, cv. Black-Seeded Simpson) and soybean (Glycine max cv. Viking 2265). Plants were grown in one of two South Carolina sandy Coastal Plain soils (Norfolk and Coxville Soil Series), along with biochar (1% by weight) produced from pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG), and two blends of pine chips plus poultry litter (PC/PL, 50/50% and 80/20%). Each of the feedstocks and feedstock blends was pyrolyzed at 350, 500, and 700 ̊ C to produce the biochar used to amend the Norfolk and Coxville soils. Effects of biochar on leaf nutrients (% dry weight) statistically varied with species, soil, feedstock and temperature and nutrient. For carrot and lettuce, the PL, PL/PC, and SS biochars generally decreased leaf N, Ca, Mg, and P; while PL and PL/PC increased K and Na. Biochars had little effect on lea

  15. Growth, yield and movement of phosphate nutrients in soybean on P fertilizer, straw mulch and difference of plant spacing

    NASA Astrophysics Data System (ADS)

    Hanum, C.

    2018-02-01

    Soybean is one of the plants that require much amounts of phosphate. P nutrient, microclimate modification and plant spacing arrangement is the efforts to improve grain yield. The objective of the research was to study the effect of P fertilization, mulching straw and plant spacing on growth, yield and movement of P nutrient on soybean. The study was conducted at Cengkeh Turi Binjai using factorial randomized block design with 3 factors. The first factors was P fertilizer 0, 100, and 200 kg/ha, the second factor was thickness of rice straw mulch 0 and 5 cm, and third factors was plant spacing 30 cm x 15 cm, 40 cm x 20 cm, and 50 cm x 25 cm. The results of the research showed that phosphate fertilizer (200 kg/ha) significantly increased levels of phosphate in the shoot. Plant spacing (50 cm x 25 cm) increased root volume. The interaction of phosphate fertilizer (200 kg/ha) and spacing (50 cm x 25 cm) increased the phosphate level by 93.33% in shoot. Plant spacing (50 cm x 25 cm) produced the largest of 100 grains weight as compared to other plant spacing.

  16. Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals

    PubMed Central

    García-Mier, Lina; Guevara-González, Ramón G.; Mondragón-Olguín, Víctor M.; Verduzco-Cuellar, Beatriz del Rocío; Torres-Pacheco, Irineo

    2013-01-01

    Plants are fundamental elements of the human diet, either as direct sources of nutrients or indirectly as feed for animals. During the past few years, the main goal of agriculture has been to increase yield in order to provide the food that is needed by a growing world population. As important as yield, but commonly forgotten in conventional agriculture, is to keep and, if it is possible, to increase the phytochemical content due to their health implications. Nowadays, it is necessary to go beyond this, reconciling yield and phytochemicals that, at first glance, might seem in conflict. This can be accomplished through reviewing food requirements, plant consumption with health implications, and farming methods. The aim of this work is to show how both yield and phytochemicals converge into a new vision of agricultural management in a framework of integrated agricultural practices. PMID:23429238

  17. Nitrogen, phosphorus, and potassium effects on biomass yield and flavonoid content of American Skullcap (Scutellaria Lateriflora)

    USDA-ARS?s Scientific Manuscript database

    Information on optimum dosage of nitrogen (N), phosphorus (P) and potassium (K) fertilizer for high dry matter yield and flavonoid yield of American Skullcap is lacking. Greenhouse experiments were conducted to determine the effects of N, P and K fertilizer on biomass yield and flavonoid content of...

  18. Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content

    NASA Astrophysics Data System (ADS)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Adolfsson, Lisa; Niyonzima, Felix; Nsabimana, Donat; Uddling, Johan

    2014-05-01

    Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax to Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better

  19. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    NASA Astrophysics Data System (ADS)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  20. Water content and porosity effect on hydrogen radiolytic yields of geopolymers

    NASA Astrophysics Data System (ADS)

    Chupin, Frédéric; Dannoux-Papin, Adeline; Ngono Ravache, Yvette; d'Espinose de Lacaillerie, Jean-Baptiste

    2017-10-01

    The behavior of geopolymers under irradiation is a topic that has not been thoroughly investigated so far. However, if geopolymers are considered to be used as radioactive waste embedding matrices, their chemical and mechanical stability under ionizing radiation as well as low hydrogen production must be demonstrated. For that purpose, a particular focus is put on water radiolysis. Various formulations of geopolymers have been irradiated either with γ-rays (60Co source) or 95 MeV/amu 36Ar18+ ions beams and the hydrogen production has been quantified. This paper presents the results of radiolytic gas analysis in order to identify important structural parameters that influence confined water radiolysis. A correlation between geopolymers nature, water content on the one side, and the hydrogen radiolytic yield (G(H2)) on the other side, has been demonstrated. For both types of irradiations, a strong influence of the water content on the hydrogen radiolytic yield G(H2) is evidenced. The geopolymers porosity effect has been only highlighted under γ-rays irradiation.

  1. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    USGS Publications Warehouse

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    San Joaquin Basin but decreased in the Sacramento and Santa Ana Basins from 1982 to 2002. Tile drainage accounted for 22 percent of the total nitrogen load in the San Joaquin River near Vernalis for 1985-2004. Nutrient loads and trends were calculated by using the log-linear multiple-regression model, LOADEST. Loads were calculated for water years 1975-2004 for 22 sites in the Sacramento Basin, 15 sites in the San Joaquin Basin, and 6 sites in the Santa Ana Basin. The average annual load of total nitrogen and total phosphorus for 1985-2004 in subbasins in the Sacramento and San Joaquin Basins were divided by their drainage areas to calculate average annual yield. Total nitrogen yields were greater than 2.45 tons per square mile per year [(tons/mi2)/yr] in about 61 percent of the valley floor in the San Joaquin Basin compared with only about 12 percent of the valley floor in the Sacramento Basin. Total phosphorus yields were greater than 0.34 (tons/mi2)/yr in about 43 percent of the valley floor in the San Joaquin Basin compared with only about 5 percent in the valley floor of the Sacramento Basin. In a stepwise multiple linear-regression analysis of 30 subbasins in the Sacramento and San Joaquin Basins, the most important explanatory variables (out of 11 variables) for the response variable (total nitrogen yield) were the percentage of land use in (1) orchards and vineyards, (2) row crops, and (3) urban categories. For total phosphorus yield, the most important explanatory variable was the amount of fertilizer application plus manure production. Trends were evaluated for three time periods: 1975-2004, 1985-2004, and 1993-2004. Most trends in flow-adjusted concentrations of nutrients in the Sacramento Basin were downward for all three time periods. The decreasing nutrient trends in the American River at Sacramento and the Sacramento River at Freeport for 1975-2004 were attributed to the consolidation of wastewater in the Sacramento metropolitan area in December 1982 to

  2. Nutrient database improvement project: the influence of USDA quality and yield grade on the separable components and proximate composition of raw and cooked retail cuts from the beef chuck.

    PubMed

    West, S E; Harris, K B; Haneklaus, A N; Savell, J W; Thompson, L D; Brooks, J C; Pool, J K; Luna, A M; Engle, T E; Schutz, J S; Woerner, D R; Arcibeque, S L; Belk, K E; Douglass, L; Leheska, J M; McNeill, S; Howe, J C; Holden, J M; Duvall, M; Patterson, K

    2014-08-01

    This study was designed to provide updated information on the separable components, cooking yields, and proximate composition of retail cuts from the beef chuck. Additionally, the impact the United States Department of Agriculture (USDA) Quality and Yield Grade may have on such factors was investigated. Ultimately, these data will be used in the USDA - Nutrient Data Laboratory's (NDL) National Nutrient Database for Standard Reference (SR). To represent the current United States beef supply, seventy-two carcasses were selected from six regions of the country based on USDA Yield Grade, USDA Quality Grade, gender, and genetic type. Whole beef chuck primals from selected carcasses were shipped to three university laboratories for subsequent retail cut fabrication, raw and cooked cut dissection, and proximate analyses. The incorporation of these data into the SR will improve dietary education, product labeling, and other applications both domestically and abroad, thus emphasizing the importance of accurate and relevant beef nutrient data. Copyright © 2014. Published by Elsevier Ltd.

  3. Effects of Prey Macronutrient Content on Body Composition and Nutrient Intake in a Web-Building Spider

    PubMed Central

    Hawley, Jesse; Simpson, Stephen J.; Wilder, Shawn M.

    2014-01-01

    The nutritional composition of diets can vary widely in nature and have large effects on the growth, reproduction and survival of animals. Many animals, especially herbivores, will tightly regulate the nutritional composition of their body, which has been referred to as nutritional homeostasis. We tested how experimental manipulation of the lipid and protein content of live prey affected the nutrient reserves and subsequent diet regulation of web-building spiders, Argiope keyserlingi. Live locusts were injected with experimental solutions containing specific amounts of lipid and protein and then fed to spiders. The nutrient composition of the spiders' bodies was directly related to the nutrient composition of the prey on which they fed. We then conducted an experiment where spiders were fed either high lipid or high protein prey and subsequently provided with two large unmanipulated locusts. Prior diet did not affect the amount or ratio of lipid and protein ingested by spiders when feeding on unmanipulated prey. Argiope keyserlingi were flexible in the storage of lipid and protein in their bodies and did not bias their extraction of nutrients from prey to compensate for previously biased diets. Some carnivores, especially those that experience frequent food limitation, may be less likely to strictly regulate their body composition than herbivores because food limitation may encourage opportunistic ingestion and assimilation of nutrients. PMID:24911958

  4. [Effects of long-term different fertilizations on biomass and nutrient content of maize root].

    PubMed

    Cai, Miao; Meng, Yan; Mohammad Amin, Ahmadzai; Zhou, Jian-bin

    2015-08-01

    Taking two long-term local field trials at the south edge of the Loess Plateau, which were found in 1990 and 2003, respectively, as test subjects, the effects of different fertilization practices on the maize root biomass and nutrient content were investigated in this paper. Maize roots in the 0-20 cm top soil post-maize harvest from the different fertilization practices were collected by hand in October 2011. The results showed that compared with control without fertilization and N, NK, or PK treatments, the NP, NPK, fertilizers plus manure (M1NPK and M2NPK) or plus straw return (SNPK) treatments significantly increased the dry mass of maize root. The C, N, P and K contents in maize roots in the NP, NPK, M1 NPK, M2NPK and SNPK treatments were also significantly higher than those of control, especially in the NPK plus organic manure treatments (M1 NPK and M2NPK) in the trial. Compared with the N fertilizer free treatment (N0), root biomass in the 120 kg N · hm(-2) (N120) and 240 kg N · hm(-2) ( N240) fertilization treatments increased by 38% and 45%, respectively, but there was no significant difference between N120 and N240 treatments. Nitrogen fertilizer application (N120 and N240) also improved the C, N, P and K contents in maize root. The water soluble organic C and total soluble N contents of maize root in the NP, NPK, M1NPK, M2NPK, SNPK and the N120 and N240 treatments were greater than those of control and other treatments. Otherwise, the cellulose and lignin contents in maize roots declined in the NPK, M1NPK, M2NPK, and SNPK treatments compared with other treatments. So the root C/N and lignin/N ratios in the control, PK and N0 treatments were significantly higher than those in the NP, NPK, M1NPK, M2NPK and SNPK treatments. We concluded that the optimum fertilization (e. g., NP, NPK, MNPK and SNPK treatments) could increase maize root growth and nutrient content and improve soil fertility and carbon sequestration through root residue into soil.

  5. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress.

    PubMed

    Torabian, Shahram; Farhangi-Abriz, Salar; Rathjen, Judith

    2018-05-31

    This research was conducted to evaluate effects of biochar (50 and 100 g kg -1 soil) and lignite (50 and 100 g kg -1 soil) treatments on H + -ATPase and H + -PPase activity of root tonoplast, nutrient content, and performance of mung bean under salt stress. High saline conditions increased H + -ATPase and H + -PPase activities in root tonoplast, sodium (Na) content, reactive oxygen species (H 2 O 2 and O 2 - ) generation, relative electrolyte leakage (REL) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) activity in root and leaf, but decreased relative water content (RWC), chlorophyll content index, leaf area, potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) content of plant tissues, root and shoot dry weight of mung bean. Lignite and biochar treatments decreased the H + -ATPase and H + -PPase activities of root tonoplast under salt stress. Moreover, these treatments increased the cation exchange capacity of soil and nutrient values in plant tissues. Biochar and lignite diminished the generation of reactive oxygen species and DPPH activity in root and leaf cells, and these superior effects improved chlorophyll content index, leaf area and growth of mung bean under both conditions. In general, the results of this study demonstrated that biochar and lignite decreased the entry of Na ion into the cells, enriched plant cells with nutrients, and consequently improved mung bean performance under salt toxicity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes

    PubMed Central

    Cabrera-Bosquet, Llorenç; Sánchez, Ciro; Araus, José Luis

    2009-01-01

    Background and Aims Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Δ18O despite the potential relevance of this trait in C4 crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C3 cereals, but little is known of the usefulness of this measure in C4 cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Δ13C and Δ18O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize. Methods A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Δ13C were determined in leaves and kernels. In addition, Δ18O was measured in kernels. Key Results Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink–source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Δ18O, whilst Δ13C did not explain a significant percentage of such variation. Conclusions Ash content in leaves and kernels proved a useful alternative or complementary criterion to Δ18O in kernels for assessing yield performance in maize grown under drought conditions. PMID:19773272

  7. 75 FR 39026 - Disclosure of Nutrient Content Information for Standard Menu Items Offered for Sale at Chain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES> Food and Drug Administration [Docket No. FDA-2010-N-0298] Disclosure of Nutrient Content Information for Standard Menu Items Offered for Sale at Chain Restaurants or Similar Retail Food Establishments and for Articles of Food Sold From Vending Machines AGENCY: Food and...

  8. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  9. [Effects of tillage pattern on the flag leaf senescence and grain yield of winter wheat under dry farming].

    PubMed

    Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke

    2009-06-01

    A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.

  10. Coapplication of Chicken Litter Biochar and Urea Only to Improve Nutrients Use Efficiency and Yield of Oryza sativa L. Cultivation on a Tropical Acid Soil

    PubMed Central

    Maru, Ali; Haruna, Osumanu Ahmed; Charles Primus, Walter

    2015-01-01

    The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%. PMID:26273698

  11. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    PubMed

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  12. Differential Impact of Message Appeals, Food Healthiness, and Poverty Status on Evaluative Responses to Nutrient-Content Claimed Food Advertisements.

    PubMed

    Choi, Hojoon; Reid, Leonard N

    2015-01-01

    A 2 × 3 × 2 mixed factorial experimental design was used to examine how three message appeals (benefit-seeking vs. risk-avoidance vs. taste appeals), food healthiness (healthy vs. unhealthy foods), and consumer poverty status (poverty vs. nonpoverty groups) impact evaluative responses to nutrient-content claimed food advertisements. Subjects were partitioned into two groups, those below and those above the poverty line, and exposed to nutrient-content claimed advertisement treatments for healthy and unhealthy foods featuring the three appeals. The findings reaffirmed the interaction effects between perceivably healthy and unhealthy foods and different appeals reported in previous studies, and found interaction effects between consumer poverty level and response to the message appeals featured in the experimental food advertisements. Age, body mass index, current dieting status, education, and gender were examined as covariates.

  13. Nutrient and sediment concentrations, yields, and loads in impaired streams and rivers in the Taunton River Basin, Massachusetts, 1997-2008

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Sorenson, Jason R.

    2013-01-01

    Rapid development, population growth, and the changes in land and water use accompanying development are placing increasing stress on water resources in the Taunton River Basin. An assessment by the Massachusetts Department of Environmental Protection determined that a number of tributary streams to the Taunton River are impaired for a variety of beneficial uses because of nutrient enrichment. Most of the impaired reaches are in the Matfield River drainage area in the vicinity of the City of Brockton. In addition to impairments of stream reaches in the basin, discharge of nutrient-rich water from the Taunton River contributes to eutrophication of Mount Hope and Narragansett Bays. To assess water quality and loading in the impaired tributary stream reaches in the basin, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection compiled existing water-quality data from previous studies for the period 1997-2006, developed and calibrated a Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model to simulate streamflow in areas of the basin that contain the impaired reaches for the same time period, and collected additional streamflow and water-quality data from sites on the Matfield and Taunton Rivers in 2008. A majority of the waterquality samples used in the study were collected between 1999 and 2006. Overall, the concentration, yield, and load data presented in this report represent water-quality conditions in the basin for the period 1997-2008. Water-quality data from 52 unique sites were used in the study. Most of the samples from previous studies were collected between June and September under dry weather conditions. Simulated or measured daily mean streamflow and water-quality data were used to estimate constituent yields and loads in the impaired tributary stream reaches and the main stem of the Taunton River and to develop yield-duration plots for reaches with sufficient water-quality data. Total

  14. Biochar boosts tropical but not temperate crop yields

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Abalos, Diego; Prodana, Marija; Catarina Bastos, Ana; van Groenigen, Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-05-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services.

  15. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)

    NASA Astrophysics Data System (ADS)

    Neu, Silke; Schaller, Jörg; Dudel, E. Gert

    2017-01-01

    Silicon (Si) is known as beneficial element for graminaceous plants. The importance of Si for plant functioning of cereals was recently emphasized. However, about the effect of Si availability on biomass production, grain yield, nutrient status and nutrient use efficiency for wheat (Triticum aestivum L.), as one of the most important crop plants worldwide, less is known so far. Consequently, we assessed the effect of a broad range of supply levels of amorphous SiO2 on wheat plant performance. Our results revealed that Si is readily taken up and accumulated basically in aboveground vegetative organs. Carbon (C) and phosphorus (P) status of plants were altered in response to varying Si supply. In bulk straw biomass C concentration decreased with increasing Si supply, while P concentration increased from slight limitation towards optimal nutrition. Thereby, aboveground biomass production increased at low to medium supply levels of silica whereas grain yield increased at medium supply level only. Nutrient use efficiency was improved by Si insofar that biomass production was enhanced at constant nitrogen (N) status of substrate and plants. Consequently, our findings imply fundamental influences of Si on C turnover, P availability and nitrogen use efficiency for wheat as a major staple crop.

  16. Nutrient changes and antinutrient contents of beniseed and beniseed soup during cooking using a Nigerian traditional method.

    PubMed

    Agiang, M A; Umoh, I B; Essien, A I; Eteng, M U

    2010-10-15

    Evaluations of the effect of prolong cooking on the nutrient and antinutrient composition ofbeniseed and beniseed soup were carried out in this study. Proximate, mineral, vitamin A and C and antinutrient compositions of raw beniseed (BS-R), beniseed boiled (BSB) for 15, 30, 45 and 60 min and beniseed soup (BSS) cooked for the same intervals of time were assessed. Results of the proximate composition analyses showed that raw and boiled beniseed had lower moisture content (5.39-5.51%) than beniseed soups (10.06-15.20%). Nitrogen-free extract (total carbohydrates), fats and phosphorus contents were improved in both the boiled beniseed and beniseed soup while calcium and potassium were increased in the boiled seeds and soup samples respectively. Moisture (in the raw and boiled beniseed), ash, magnesium, zinc, iron contents in both the seed and soup were unchanged in all the samples. Vitamins A and C levels of both boiled beniseed and beniseed soup samples were reduced with increase in cooking time. Beniseed soup had higher protein contents than both the raw and boiled beniseed which decreased with increase in cooking time. Beniseed samples provided good sources of energy (572.97-666.05 kcal/100 g). Except for phytate, the levels of antinutrients tested were lower in the raw and boiled beniseed than in the soup samples which decreased with increase in cooking time. The results are discussed with reference to the effect of prolonged cooking on the nutrient requirements of consumers.

  17. Taste-nutrient relationships in commonly consumed foods.

    PubMed

    van Dongen, Mirre Viskaal; van den Berg, Marjolijn C; Vink, Nicole; Kok, Frans J; de Graaf, Cees

    2012-07-14

    Taste is expected to represent a food's nutrient content. The objective was to investigate whether taste acts as nutrient-sensor, within the context of the current diet, which is high in processed foods. Intensities of the five basic tastes of fifty commonly consumed foods were rated by nineteen subjects (aged 21·0 (SD 1·7) years, BMI 21·5 (SD 2·0) kg/m(2)). Linear regression was used to test associations between taste and nutrient contents. Food groups based on taste were identified using cluster analysis; nutrient content was compared between food groups, using ANOVA. Sweetness was associated with mono- and disaccharides (R(2) 0·45, P < 0·01). Saltiness and savouriness were correlated, with r 0·92 (P < 0·01) and both were associated with Na (both: R(2) 0·33, P < 0·01) and protein (R(2) 0·27, P < 0·01 and R(2) 0·33, P < 0·01, respectively). Cluster analysis indicated four food groups: neutral, salty and savoury, sweet-sour and sweet foods. Mono- and disaccharide content was highest in sweet foods (P < 0·01). In salty and savoury foods, protein content (P = 0·01 with sweet-sour foods, not significant with neutral or sweet foods) and Na content (P < 0·05) were the highest. Associations were more pronounced in raw and moderately processed foods, than in highly processed foods. The findings suggest that sweetness, saltiness and savouriness signal nutrient content, particularly for simple sugars, protein and Na. In highly processed foods, however, the ability to sense nutrient content based on taste seems limited.

  18. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.

    PubMed

    Waclawovsky, Alessandro J; Sato, Paloma M; Lembke, Carolina G; Moore, Paul H; Souza, Glaucia M

    2010-04-01

    An increasing number of plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops. Research is increasingly focused on how to design crops specifically for bioenergy production and increased biomass generation for biofuel purposes. The most important biofuel to date is bioethanol produced from sugars (sucrose and starch). Second generation bioethanol is also being targeted for studies to allow the use of the cell wall (lignocellulose) as a source of carbon. If a crop is to be used for bioenergy production, the crop should be high yielding, fast growing, low lignin content and requiring relatively small energy inputs for its growth and harvest. Obtaining high yields in nonprime agricultural land is a key for energy crop development to allow sustainability and avoid competition with food production. Sugarcane is the most efficient bioenergy crop of tropical and subtropical regions, and biotechnological tools for the improvement of this crop are advancing rapidly. We focus this review on the studies of sugarcane genes associated with sucrose content, biomass and cell wall metabolism and the preliminary physiological characterization of cultivars that contrast for sugar and biomass yield.

  19. [Contents of nutrient elements in NH4(+)-N fertilizer and urea].

    PubMed

    Wang, Zheng-Rui; Qu, Gui-Qin; Rui, Yu-Kui; Shen, Jian-Bo; Zhang, Fu-Suo

    2009-03-01

    Fertilizer contains not only one compound or one element, so it is important to determine the contents of other elements necessitous and beneficial to plant. All the other nutrient elements for plant, including necessitous elements and beneficial elements in ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2, were analyzed by method of ICP-MS. The results showed that ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2 both contain many necessitous elements, Mg, P, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo, thereinto the contents of Mg, P, K, Ca, Mn and Fe were on microg x g(-1) the level, and Ni, Cu, Zn and Mo were on the ng x g(-1) level; compared with CO(NH2)2, ammonia nitrogen fertilizer ((NH4)2SO4) contains more necessitous elements and beneficial elements except Mo and Si. All the above elements could influence the results of nitrogen fertilizer efficiency experiments, so pure fertilizer should be used in the future nitrogen fertilizer efficiency experiments and the comparative experiments of different form nitrogen fertilizer.

  20. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.)*

    PubMed Central

    Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-wei; Wang, Wen-ming; Zhang, Zhen-hua; Yang, Yong; Song, Hai-xing; Guan, Chun-yun

    2016-01-01

    Background: Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm2), SF2/CRF2 (3000 kg/hm2), SF3/CRF3 (2250 kg/hm2), SF4/CRF4 (1500 kg/hm2), SF5/CRF5 (750 kg/hm2), and also using no fertilizer (CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm2, respectively), followed by CRF3 (1929.97 kg/hm2) and SF4 (1839.40 kg/hm2). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points

  1. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.).

    PubMed

    Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-Wei; Wang, Wen-Ming; Zhang, Zhen-Hua; Yang, Yong; Song, Hai-Xing; Guan, Chun-Yun

    Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011-2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm 2 ), SF2/CRF2 (3000 kg/hm 2 ), SF3/CRF3 (2250 kg/hm 2 ), SF4/CRF4 (1500 kg/hm 2 ), SF5/CRF5 (750 kg/hm 2 ), and also using no fertilizer (CK). CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm 2 , respectively), followed by CRF3 (1929.97 kg/hm 2 ) and SF4 (1839.40 kg/hm 2 ). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm 2 ) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared

  2. Cheesemaking in highland pastures: Milk technological properties, cream, cheese and ricotta yields, milk nutrients recovery, and products composition.

    PubMed

    Bergamaschi, M; Cipolat-Gotet, C; Stocco, G; Valorz, C; Bazzoli, I; Sturaro, E; Ramanzin, M; Bittante, G

    2016-12-01

    (before and after natural creaming), the whole morning milk, and the mixed vat milk had different chemical compositions, traditional coagulation properties, and curd-firming modeling parameters. These variations over the pasture season were similar to the residual variations with respect to chemical composition, and much lower with respect to coagulation and curd-firming traits. Much larger variations were noted in cream, cheese, and ricotta yields, as well as in nutrient recoveries in curd during the pasture season. The protein content of forage was correlated with some of the coagulation and curd-firming traits, the ether extract of forage was positively correlated with milk fat content and cheese yields, and fiber fractions of forage were unfavorably correlated with some of the chemical and technological traits. Traditional cheese- and ricotta-making procedures showed average cream, cheese, and ricotta yields of 6.3, 14.2, and 4.9%, respectively, and an overall recovery of almost 100% of milk fat, 88% of milk protein, and 60% of total milk solids. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    PubMed Central

    Efthimiadou, Aspasia; Katsenios, Nikolaos; Papastylianou, Panayiota; Triantafyllidis, Vassilios; Travlos, Ilias; Bilalis, Dimitrios J.

    2014-01-01

    The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT) has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences. PMID:25097875

  4. [Effects of interaction between vermicompost and probiotics on soil nronerty, yield and quality of tomato].

    PubMed

    Shen, Fei; Zhu, Tong-bin; Teng, Ming-jiao; Chen, Yue; Liu, Man-qiang; Hu, Feng; Li, Hui-xin

    2016-02-01

    In this study, we investigated the effects of two strains of probiotic bacteria (Bacillus megaterium BM and Bacillus amyloliquefaciens BA) combined with chemical fertilizers and vermicompost on the soil property, the yield and quality of tomato. The results showed that under the same nutrient level, vermicompost significantly increased the yield, soluble sugar and protein contents of fruit, the soil pH and available phosphorus when compared with chemical fertilizers. Vermicompost combined with probiotics not only increased the tomato yield, soluble sugar, protein and vitamin C contents, sugar/acid ratio of fruit, and reduced the organic acid and nitrate nitrogen contents of fruit, also increased the soil pH and nitrate nitrogen content, and reduced soil electric conductivity when compared with vermicompost treatment. This improved efficiency was better than that by chemical fertilizers combined with probiotics. For BA and BM applied with chemical fertilizers or vermicompost, both stains had no significant effect on tomato quality. When co-applied with vermicompost, BA and BM showed significant difference in tomato yield. High soil available phosphorus content was determined when BM was combined with chemical fertilizers, while high soil available potassium content was obtained when BA was combined with vermicompost. Our results suggested that probiotics and vermicompost could be used as alternatives of chemical fertilizers in tomato production and soil fertility improvement.

  5. Plant–herbivore–decomposer stoichiometric mismatches and nutrient cycling in ecosystems

    PubMed Central

    Cherif, Mehdi; Loreau, Michel

    2013-01-01

    Plant stoichiometry is thought to have a major influence on how herbivores affect nutrient availability in ecosystems. Most conceptual models predict that plants with high nutrient contents increase nutrient excretion by herbivores, in turn raising nutrient availability. To test this hypothesis, we built a stoichiometrically explicit model that includes a simple but thorough description of the processes of herbivory and decomposition. Our results challenge traditional views of herbivore impacts on nutrient availability in many ways. They show that the relationship between plant nutrient content and the impact of herbivores predicted by conceptual models holds only at high plant nutrient contents. At low plant nutrient contents, the impact of herbivores is mediated by the mineralization/immobilization of nutrients by decomposers and by the type of resource limiting the growth of decomposers. Both parameters are functions of the mismatch between plant and decomposer stoichiometries. Our work provides new predictions about the impacts of herbivores on ecosystem fertility that depend on critical interactions between plant, herbivore and decomposer stoichiometries in ecosystems. PMID:23303537

  6. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    PubMed

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  7. Harvesting number and timing effects on shoot yield and flavonoid content in American skullcap (Scutellaria lateriflora)

    USDA-ARS?s Scientific Manuscript database

    Information on optimal management practices for high dry matter and flavonoid yield in American skullcap is lacking. A field experiment was conducted in central Alabama to determine the effect of timing and frequency of harvest on shoot yield and flavonoid content of American skullcap. In the first ...

  8. Available nutrients in biochar

    USDA-ARS?s Scientific Manuscript database

    Biochar technology may contribute to the recovery and recycling of plant nutrients and thus add a fertilizer value to the biochar. Total nutrient content in biochars varies greatly and is mainly dependent on feedstock elemental composition and to a lesser extent on pyrolysis conditions. Availability...

  9. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    PubMed

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  10. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.

    PubMed

    Kim, Kyoung Hyoun; Choi, In Seong; Kim, Ho Myeong; Wi, Seung Gon; Bae, Hyeun-Jong

    2014-02-01

    The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    PubMed

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost

  12. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands

    PubMed Central

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  13. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    PubMed

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  14. Estimating nutrient uptake requirements for soybean using QUEFTS model in China

    PubMed Central

    Yang, Fuqiang; Xu, Xinpeng; Wang, Wei; Ma, Jinchuan; Wei, Dan; He, Ping; Pampolino, Mirasol F.; Johnston, Adrian M.

    2017-01-01

    Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear–parabolic–plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha−1 and the linear part was continuing until the yield reached about 60–70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean. PMID:28498839

  15. Genetic and environmental relationships of different measures of individual cheese yield and curd nutrients recovery with coagulation properties of bovine milk.

    PubMed

    Cecchinato, A; Bittante, G

    2016-03-01

    The aim of this study was to elucidate the relationships between various cheesemaking-related traits, namely the well-known traditional milk coagulation properties (MCP), the new curd firming and syneresis traits, the cheese yield, and the curd nutrient recoveries or whey losses (all measured at the individual level). Data were obtained from 1,167 Brown Swiss cows reared in 85 herds. A 2-L milk sample was collected once from each animal and assessed for 10 phenotypes related to changes in curd firmness (CF) over time, plus 7 cheesemaking traits. The CF-related traits included 4 traditional single-point lactodynamographic properties [rennet coagulation time (RCT, min); time to a CF of 20mm, min; and the CF 30 and 45 min after rennet addition (a30 and a45, respectively)], 4 parameters used to model the 360 CF data recorded over time for each milk sample [the potential asymptotic CF at infinite time (CFP, mm); the CF instant rate constant, % × min(-1); the syneresis instant rate constant, % × min(-1); and the RCT obtained from modeling individual samples], and 2 traits calculated from individual equations [the maximum CF(CFmax, mm); and the time at CFmax, min]. The cheesemaking traits included 3 cheese yield traits (weights of the fresh curd, curd solids and curd moisture as percent of the weights of the processed milk) and 4 milk nutrient recoveries in the curd (calculated as the percent ratios between a given nutrient in the curd versus that in the processed milk). Bayesian methodology-based multivariate analyses were used to estimate the phenotypic, additive genetic, herd/date, and residual relationships between the aforementioned traits, whereas statistical inferences were based on the marginal posterior distributions of the parameters of concern. The a45, CFP, and CFmax traits were genetically associated with all of the percent cheese yield traits (the additive genetic correlations varied from 0.752 to 0.855 for a45; 0.496 to 0.583 for CFP; and 0.750 to 0

  16. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease

    PubMed Central

    Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B.; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2017-01-01

    In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes. PMID:28498348

  17. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease.

    PubMed

    Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2017-05-12

    In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes.

  18. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia

    NASA Astrophysics Data System (ADS)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.

    2017-08-01

    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  19. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    PubMed Central

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-01-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge. PMID:26586114

  20. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    PubMed

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  1. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  2. Aflatoxin and nutrient contents of peanut collected from local market and their processed foods

    NASA Astrophysics Data System (ADS)

    Ginting, E.; Rahmianna, A. A.; Yusnawan, E.

    2018-01-01

    Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.

  3. Investigation of nutrient feeding strategies in a countercurrent mixed-acid multi-staged fermentation: experimental data.

    PubMed

    Smith, Aaron Douglas; Lockman, Nur Ain; Holtzapple, Mark T

    2011-06-01

    Nutrients are essential for microbial growth and metabolism in mixed-culture acid fermentations. Understanding the influence of nutrient feeding strategies on fermentation performance is necessary for optimization. For a four-bottle fermentation train, five nutrient contacting patterns (single-point nutrient addition to fermentors F1, F2, F3, and F4 and multi-point parallel addition) were investigated. Compared to the traditional nutrient contacting method (all nutrients fed to F1), the near-optimal feeding strategies improved exit yield, culture yield, process yield, exit acetate-equivalent yield, conversion, and total acid productivity by approximately 31%, 39%, 46%, 31%, 100%, and 19%, respectively. There was no statistical improvement in total acid concentration. The traditional nutrient feeding strategy had the highest selectivity and acetate-equivalent selectivity. Total acid productivity depends on carbon-nitrogen ratio.

  4. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake.

    PubMed

    Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao

    2017-12-31

    Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability

    PubMed Central

    Vázquez-de-Aldana, Beatriz R.; García-Ciudad, Antonia; García-Criado, Balbino; Vicente-Tavera, Santiago; Zabalgogeazcoa, Iñigo

    2013-01-01

    Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+) and non-infected (E−) plants of two half-sib lines (PEN and RAB) were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%), Zn (58%) and N (19%) than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands. PMID:24367672

  6. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Organic Matters and P Fertilizer Application on Andisol

    NASA Astrophysics Data System (ADS)

    Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.

    2017-04-01

    Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).

  8. Characterization of Edible Pork By-products by Means of Yield and Nutritional Composition

    PubMed Central

    Moon, Sung Sil

    2014-01-01

    Basic information regarding the yield and nutritional composition of edible pork by-products, namely heart, liver, lung, stomach, spleen, uterus, pancreas, and small and large intestines, was studied. Our results revealed that the yields varied widely among the pork by-products examined; in particular, liver had the highest yield (1.35%); whereas, spleen had the lowest yield (0.16%). The approximate composition range (minimum to maximum) of these by-products was found to be: moisture 71.59-82.48%; fat 0.28-19.54%; ash 0.155-1.34%, and protein 8.45-22.05%. The highest protein, vitamin A, B2, B6, and total essential amino acid (EAA) contents were found in liver. Large intestine had the highest fat content and lowest EAA content. Heart had the highest vitamin B1 content, whereas pancreas had the highest niacin and vitamin B3 contents. The concentrations of Fe and Zn were highest in liver and pancreas. Total saturated fatty acids (SFA) levels and polyunsaturated fatty acids (PUFA) levels between the by-products ranged from 43.15-50.48%, and 14.92-30.16%, respectively. Furthermore, with the exception of large intestine, all the by-products showed favorable PUFA/SFA ratios. The study indicated that almost all of the pork by-products examined were good sources of important nutrients, and that these data will be of great importance in the promotion of the consumption of edible pork by-products, as well as their utilization in meat processing. PMID:26761170

  9. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    PubMed

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  10. Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions.

    PubMed

    Cely, Martha V T; de Oliveira, Admilton G; de Freitas, Vanessa F; de Luca, Marcelo B; Barazetti, André R; Dos Santos, Igor M O; Gionco, Barbara; Garcia, Guilherme V; Prete, Cássio E C; Andrade, Galdino

    2016-01-01

    Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF) enhance plant nutrition by providing especially phosphorus, improving plant growth and increasing crop production. Unfortunately, the use of AMF as an inoculant on a large scale is not yet widely used, because of several limitations in obtaining a large amount of inoculum due to several factors, such as low growth, the few species of AMF domesticated under in vitro conditions, and high competition with native AMF. The objective of this work was to test the infectivity of a Rhizophagus clarus inoculum and its effectiveness as an alternative for nutrient supply in soybean (Glycine max L.) and cotton (Gossypium hirsutum L.) when compared with conventional chemical fertilization under field conditions. The experiments were carried out in a completely randomized block design with five treatments: Fertilizer, AMF, AMF with Fertilizer, AMF with 1/2 Fertilizer, and the Control with non-inoculated and non-fertilized plants. The parameters evaluated were AMF root colonization and effect of inoculation on plant growth, nutrient absorption and yield. The results showed that AMF inoculation increased around 20 % of root colonization in both soybean and cotton; nutrients analyses in vegetal tissues showed increase of P and nitrogen content in inoculated plants, these results reflect in a higher yield. Our results showed that, AMF inoculation increase the effectiveness of fertilizer application in soybean and reduce the fertilizer dosage in cotton.

  11. Guava Waste to Sustain Guava (Psidium guajava) Agroecosystem: Nutrient "Balance" Concepts.

    PubMed

    Souza, Henrique A; Parent, Serge-Étienne; Rozane, Danilo E; Amorim, Daniel A; Modesto, Viviane C; Natale, William; Parent, Leon E

    2016-01-01

    The Brazilian guava processing industry generates 5.5 M Mg guava waste year(-1) that could be recycled sustainably in guava agro-ecosystems as slow-release fertilizer. Our objectives were to elaborate nutrient budgets and to diagnose soil, foliar, and fruit nutrient balances in guava orchards fertilized with guava waste. We hypothesized that (1) guava waste are balanced fertilizer sources that can sustain crop yield and soil nutrient stocks, and (2) guava agroecosystems remain productive within narrow ranges of nutrient balances. A 6-year experiment was conducted in 8-year old guava orchard applying 0-9-18-27-36 Mg ha(-1) guava waste (dry mass basis) and the locally recommended mineral fertilization. Nutrient budgets were compiled as balance sheets. Foliar and fruit nutrient balances were computed as isometric log ratios to avoid data redundancy or resonance due to nutrient interactions and the closure to measurement unit. The N, P, and several other nutrients were applied in excess of crop removal while K was in deficit whatever the guava waste treatment. The foliar diagnostic accuracy reached 93% using isometric log ratios and knn classification, generating reliable foliar nutrient and concentration ranges at high yield level. The plant mined the soil K reserves without any significant effect on fruit yield and foliar nutrient balances involving K. High guava productivity can be reached at lower soil test K and P values than thought before. Parsimonious dosage of fresh guava waste should be supplemented with mineral K fertilizers to recycle guava waste sustainably in guava agroecosystems. Brazilian growers can benefit from this research by lowering soil test P and K threshold values to avoid over-fertilization and using fresh guava waste supplemented with mineral fertilizers, especially K. Because yield was negatively correlated with fruit acidity and Brix index, balanced plant nutrition and fertilization diagnosis will have to consider not only fruit yield

  12. 21 CFR 130.10 - Requirements for foods named by use of a nutrient content claim and a standardized term.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... properties, flavor characteristics, functional properties, shelf life) of the food shall be similar to those... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Requirements for foods named by use of a nutrient content claim and a standardized term. 130.10 Section 130.10 Food and Drugs FOOD AND DRUG ADMINISTRATION...

  13. 21 CFR 130.10 - Requirements for foods named by use of a nutrient content claim and a standardized term.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... properties, flavor characteristics, functional properties, shelf life) of the food shall be similar to those... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Requirements for foods named by use of a nutrient content claim and a standardized term. 130.10 Section 130.10 Food and Drugs FOOD AND DRUG ADMINISTRATION...

  14. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    PubMed

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  15. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis

    NASA Astrophysics Data System (ADS)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  16. Effect of processing on proximate composition, anti-nutrient status and amino acid content in three accessions of African locust bean (Parkia biglobosa (jacq.) benth.

    PubMed

    Urua, Ikootobong Sunday; Uyoh, Edak Aniedi; Ntui, Valentine Otang; Okpako, Elza Cletus

    2013-02-01

    Proximate composition, amino acid levels and anti-nutrient factors (polyphenols, phytic acid and oxalate) in the seeds of Parkia biglobosa were determined at three stages: raw, boiled and fermented. The highest anti-nutrient factor present in the raw state was oxalate, while phytic acid was the least. The amino acid of the raw seeds matched favourably to the World Health Organization reference standard. After processing, boiling increased fat, crude fibre and protein, while it reduced moisture, ash and the anti-nutrient content in 64% of the cases examined. Fermentation reduced ash, crude fibre and carbohydrate in all the accessions. It increased the moisture, fat and protein, while reducing the anti-nutrient factors in 78% of the cases. The high levels of protein, fat and amino acids coupled with the low levels of the anti-nutrients in the boiled and fermented seeds make Parkia a good source of nutrients for humans and livestock.

  17. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration

  18. [Ecological adaptability evaluation of peanut cultivars based on biomass and nutrient accumulation].

    PubMed

    Wang, Xue; Cui, Shao-xiong; Sun, Zhi-mei; Mu, Guo-jun; Cui, Shun-li; Wang, Peng-chao; Liu, Li-feng

    2015-07-01

    To identify the good peanut cultivars with the properties of high yield, high nutrient use efficiency and wide adaptability, 19 selected peanut cultivars were planted in the low champaign area and piedmont plain area of Hebei Province. By using principal component analysis, the adaptability of these 19 cultivars was evaluated for different ecological regions through comparing their 16 main traits including biomass and nutrient parameters. According to the critical value of principal component (>1.0), the 16 biomass and nutrient characteristics were integrated into 4 principal components which accounted for 85% of the original information. The results indicated that there were obvious differences in yield and nutrient use efficiency for the peanut cultivars in different ecological regions. The 19 peanut cultivars were classified into 2 groups according to their ecological adaptability, and the cultivars from the group with wide adaptability could further be divided into 3 categories according to their yield and nutrient use efficiency. Among these cultivars, Yuhua 9719, Jihua 0212-4, Weihua 10, Yuhua 15, Puhua 28 and Jihua 10 were selected as the better peanut cultivars with the properties of high yield, high nutrient use efficiency and wide adaptability.

  19. Peatland simulator connecting drainage, nutrient cycling, forest growth, economy and GHG efflux in boreal and tropical peatlands

    NASA Astrophysics Data System (ADS)

    Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Lehtonen, Aleksi

    2016-04-01

    Forest growth in peatlands is nutrient limited; principal source of nutrients is the decomposition of organic matter. Excess water decreases O2 diffusion and slows down the nutrient release. Drainage increases organic matter decomposition, CO2 efflux, and nutrient supply, and enhances the growth of forest. Profitability depends on costs, gained extra yield and its allocation into timber assortments, and the rate of interest. We built peatland simulator Susi to define and parameterize these interrelations. We applied Susi-simulator to compute water and nutrient processes, forest growth, and CO2 efflux of forested drained peatland. The simulator computes daily water fluxes and storages in two dimensions for a peatland forest strip located between drainage ditches. The CO2 efflux is made proportional to peat bulk density, soil temperature and O2 availability. Nutrient (N, P, K) release depends on decomposition and peat nutrient content. Growth limiting nutrient is detected by comparing the need and supply of nutrients. Increased supply of growth limiting nutrient is used to quantify the forest growth response to improved drainage. The extra yield is allocated into pulpwood and sawlogs based on volume of growing stock. The net present values of ditch cleaning operation and the gained extra yield are computed under different rates of interest to assess the profitability of the ditch cleaning. The hydrological sub-models of Susi-simulator were first parameterized using daily water flux data from Hyytiälä SMEAR II-site, after which the predictions were tested against independent hydrologic data from two drained peatland forests in Southern Finland. After verification of the hydrologic model, the CO2 efflux, nutrient release and forest growth proportionality hypothesis was tested and model performance validated against long-term forest growth and groundwater level data from 69 forested peatland sample plots in Central Finland. The results showed a clear relation between

  20. Integrated effect of nutrients from a recirculation aquaponic system and foliar nutrition on the yield of tomatoes Solanum lycopersicum L. and Solanum pimpinellifolium.

    PubMed

    Gullian Klanian, Mariel; Delgadillo Diaz, Mariana; Aranda, Javier; Rosales Juárez, Carolina

    2018-06-01

    The objective of this study was to evaluate the potential of tomato plants to efficiently use the nitrogen (N) of a recirculation aquaponic system (RAS) and to evaluate the effects of foliar fertilization as a complement to the water nutrition on the growth of the two tomato cultivars. The significant effect of six macro- and seven micronutrients was evaluated on the plant growth and on the fruit yield. Two experiments were performed in a nutrient film aquaponic unit. The first experiment was designed to study the effects of foliar fertilization on the seedlings of two tomato cultivars Costoluto Genovese (CG) (Solanum lycopersicum L.) and Currant tomato (Ct) (Solanum pimpinellifolium) with 8% of weekly water exchange (WE8%-RAS). The foliar fertilizer was formulated with N restriction in the last 11 weeks (TF1). In the second experiment, two other foliar fertilization treatments (TF2 and TF3) were applied with a concentration of nutrients twice and triple that in TF1, but with a lower proportion of NPK ratio. These treatments were tested on the cultivar CG in a RAS with zero water exchange (WE0%-RAS). The data from the 1st experiment showed a positive effect of the foliar fertilization on the yield of both cultivars. The fertilization markedly influenced the dry matter weight of the CG; however, this effect was not observed in the Ct. The root length of both cultivars was positively influenced by the P content, whereas the plant height was affected by the excess of Co and S. According to the results from the 2nd experiment, the TF2 plants had the highest number of fruits with a high mean weight. The system was efficient in utilizing N from fish tank; the water K favored the yield of the CG fruit and the foliar K favored the growth of the TF2 plants. With a decrease in the foliar N, the CG plants were able to absorb 27.5% of the NO 3 - and 7.06% of total ammonia nitrogen from water. The absolute and relative growth rate of Nile tilapia was not affected by the rate

  1. Effects of different irrigation practices using treated wastewater on tomato yields, quality, water productivity, and soil and fruit mineral contents.

    PubMed

    Demir, Azize Dogan; Sahin, Ustun

    2017-11-01

    Wastewater use in agricultural irrigation is becoming a common practice in order to meet the rising water demands in arid and semi-arid regions. The study was conducted to determine the effects of the full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation practices using treated municipal wastewater (TWW) and freshwater (FW) on tomato yield, water use, fruit quality, and soil and fruit heavy metal concentrations. The TWW significantly increased marketable yield compared to the FW, as well as decreased water consumption. Therefore, water use efficiency (WUE) in the TWW was significantly higher than in the FW. Although the DI and the PRD practices caused less yields, these practices significantly increased WUE values due to less irrigation water applied. The water-yield linear relationships were statistically significant. TWW significantly increased titratable acidity and vitamin C contents. Reduced irrigation provided significantly lower titratable acidity, vitamin C, and lycopene contents. TWW increased the surface soil and fruit mineral contents in response to FW. Greater increases were observed under FI, and mineral contents declined with reduction in irrigation water. Heavy metal accumulation in soils was within safe limits. However, Cd and Pb contents in fruits exceeded standard limits given by FAO/WHO. Higher metal pollution index values determined for fruits also indicated that TWW application, especially under FI, might cause health risks in long term.

  2. Effects of soil applications of micro-nutrients and chelating agent citric acid on mineral nutrients in soybean seeds

    USDA-ARS?s Scientific Manuscript database

    Micro-nutrients deficiency in soil result in crop yield loss and poor seed quality. Correcting this deficiency is normally conducted by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) with a ...

  3. The sum of its parts--effects of gastric distention, nutrient content and sensory stimulation on brain activation.

    PubMed

    Spetter, Maartje S; de Graaf, Cees; Mars, Monica; Viergever, Max A; Smeets, Paul A M

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural

  4. The Sum of Its Parts—Effects of Gastric Distention, Nutrient Content and Sensory Stimulation on Brain Activation

    PubMed Central

    Spetter, Maartje S.; de Graaf, Cees; Mars, Monica; Viergever, Max A.; Smeets, Paul A. M.

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural

  5. Utilizing Anaerobically Digested Dairy Manure for the Cultivation of Duckweed for Biomass Production, Nutrient Assimilation, and Sugar Production

    NASA Astrophysics Data System (ADS)

    Kruger, Kevin C.

    Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0

  6. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit.

    PubMed

    Rahman, Mosaddiqur; Sabir, Abdullah As; Mukta, Julakha Akter; Khan, Md Mohibul Alam; Mohi-Ud-Din, Mohammed; Miah, Md Giashuddin; Rahman, Mahfuzur; Islam, M Tofazzal

    2018-02-06

    Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.

  7. Biochar from "Kon Tiki" flame curtain and other kilns: Effects of nutrient enrichment and kiln type on crop yield and soil chemistry.

    PubMed

    Pandit, Naba Raj; Mulder, Jan; Hale, Sarah Elisabeth; Schmidt, Hans Peter; Cornelissen, Gerard

    2017-01-01

    Biochar application to soils has been investigated as a means of improving soil fertility and mitigating climate change through soil carbon sequestration. In the present work, the invasive shrub "Eupatorium adenophorum" was utilized as a sustainable feedstock for making biochar under different pyrolysis conditions in Nepal. Biochar was produced using several different types of kilns; four sub types of flame curtain kilns (deep-cone metal kiln, steel shielded soil pit, conical soil pit and steel small cone), brick-made traditional kiln, traditional earth-mound kiln and top lift up draft (TLUD). The resultant biochars showed consistent pH (9.1 ± 0.3), cation exchange capacities (133 ± 37 cmolc kg-1), organic carbon contents (73.9 ± 6.4%) and surface areas (35 to 215 m2/g) for all kiln types. A pot trial with maize was carried out to investigate the effect on maize biomass production of the biochars made with various kilns, applied at 1% and 4% dosages. Biochars were either pretreated with hot or cold mineral nutrient enrichment (mixing with a nutrient solution before or after cooling down, respectively), or added separately from the same nutrient dosages to the soil. Significantly higher CEC (P< 0.05), lower Al/Ca ratios (P< 0.05), and high OC% (P<0.001) were observed for both dosages of biochar as compared to non-amended control soils. Importantly, the study showed that biochar made by flame curtain kilns resulted in the same agronomic effect as biochar made by the other kilns (P > 0.05). At a dosage of 1% biochar, the hot nutrient-enriched biochar led to significant increases of 153% in above ground biomass production compared to cold nutrient-enriched biochar and 209% compared to biochar added separately from the nutrients. Liquid nutrient enhancement of biochar thus improved fertilizer effectiveness compared to separate application of biochar and fertilizer.

  8. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia).

    PubMed

    Kole, Chittaranjan; Kole, Phullara; Randunu, K Manoj; Choudhary, Poonam; Podila, Ramakrishna; Ke, Pu Chun; Rao, Apparao M; Marcus, Richard K

    2013-04-26

    Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues.

  9. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia)

    PubMed Central

    2013-01-01

    Background Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. Results We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. Conclusions While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues. PMID:23622112

  10. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai-Tibetan Plateau.

    PubMed

    Yang, Chuntao; Gao, Peng; Hou, Fujiang; Yan, Tianhai; Chang, Shenghua; Chen, Xianjiang; Wang, Zhaofeng

    2018-04-02

    To better utilize native pasture at the high altitude region, three-consecutive-year feeding experiments and a total of seven metabolism trials were conducted to evaluate the impact of three forage stages of maturity on the chemical composition, nutrient digestibility, and energy metabolism of native forage in Tibetan sheep on the Qinghai-Tibetan Plateau (QTP). Forages were harvested from June to July, August to October, and November to December of 2011 to 2013, corresponding to the vegetative, bloom, and senescent stages of the annual forages. Twenty male Tibetan sheep were selected for each study and fed native forage ad libitum. The digestibility of DM, OM, CP, NDF, ADF, DE, DE/GE, and ME/GE were greatest (P < 0.01) from the vegetative stage, intermediate (P < 0.01) from the bloom stage, and least (P < 0.01) from the senescent stage. Nutrient digestibility and energy parameters correlated positively (linear, 0.422 to 0.778; quadratic, 0.568 to 0.815; P < 0.01) with the CP content of forage but correlated negatively with the content of NDF (linear, 0.343 to 0.689; quadratic, 0.444 to 0.777; P ≤ 0.02), ADF (linear, 0.563 to 0.766; quadratic, 0.582 to 0.770; P < 0.01), and ether extract (EE, linear, 0.283 to 0.574; quadratic, 0.366 to 0.718; P ≤ 0.04) of forage. For each predicted variable, the prediction of DMI expressed as grams per kilogram of BW (g/kg BW·d) yielded a greater R2 value (0.677 to 0.761 vs. 0.616 to 0.711) compared with the equations of DMI expressed as g/kg metabolic BW by step-wise regression. The results suggest that parameters of forage CP, NDF, and ADF content were most closely related to nutrient digestibility. Contrary to previous studies, in this study, ADF content had a greater linear relationship (0.766 vs. 0.563 to 0.732) with OM digestibility than the other parameters of nutrient digestibility. The quadratic relationship between forage CP content and CP digestibility indicates that when forage CP content exceeds the peak point (9

  11. Quantifying the sensitivity of feedstock properties and process conditions on hydrochar yield, carbon content, and energy content.

    PubMed

    Li, Liang; Wang, Yiying; Xu, Jiting; Flora, Joseph R V; Hoque, Shamia; Berge, Nicole D

    2018-08-01

    Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature. A Sobol analysis was subsequently conducted to identify parameters that most influence hydrochar characteristics. Results from this analysis indicate that for each investigated hydrochar property, the model fit and predictive capability associated with the random forest models is superior to both the linear and regression tree models. Based on results from the Sobol analysis, the feedstock properties and process conditions most influential on hydrochar yield, carbon content, and energy content were identified. In addition, a variational process parameter sensitivity analysis was conducted to determine how feedstock property importance changes with process conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Guava Waste to Sustain Guava (Psidium guajava) Agroecosystem: Nutrient “Balance” Concepts

    PubMed Central

    Souza, Henrique A.; Parent, Serge-Étienne; Rozane, Danilo E.; Amorim, Daniel A.; Modesto, Viviane C.; Natale, William; Parent, Leon E.

    2016-01-01

    The Brazilian guava processing industry generates 5.5 M Mg guava waste year−1 that could be recycled sustainably in guava agro-ecosystems as slow-release fertilizer. Our objectives were to elaborate nutrient budgets and to diagnose soil, foliar, and fruit nutrient balances in guava orchards fertilized with guava waste. We hypothesized that (1) guava waste are balanced fertilizer sources that can sustain crop yield and soil nutrient stocks, and (2) guava agroecosystems remain productive within narrow ranges of nutrient balances. A 6-year experiment was conducted in 8-year old guava orchard applying 0–9–18–27–36 Mg ha−1 guava waste (dry mass basis) and the locally recommended mineral fertilization. Nutrient budgets were compiled as balance sheets. Foliar and fruit nutrient balances were computed as isometric log ratios to avoid data redundancy or resonance due to nutrient interactions and the closure to measurement unit. The N, P, and several other nutrients were applied in excess of crop removal while K was in deficit whatever the guava waste treatment. The foliar diagnostic accuracy reached 93% using isometric log ratios and knn classification, generating reliable foliar nutrient and concentration ranges at high yield level. The plant mined the soil K reserves without any significant effect on fruit yield and foliar nutrient balances involving K. High guava productivity can be reached at lower soil test K and P values than thought before. Parsimonious dosage of fresh guava waste should be supplemented with mineral K fertilizers to recycle guava waste sustainably in guava agroecosystems. Brazilian growers can benefit from this research by lowering soil test P and K threshold values to avoid over-fertilization and using fresh guava waste supplemented with mineral fertilizers, especially K. Because yield was negatively correlated with fruit acidity and Brix index, balanced plant nutrition and fertilization diagnosis will have to consider not only fruit

  13. Improving fruit quality and phytochemical content through better nutrient management practices

    USDA-ARS?s Scientific Manuscript database

    Consumer preference quality traits (e.g. taste, texture) of muskmelons (Cucumis melo L.) and many other fruits are strongly influenced by cultivar as well as soil properties, such as soil type and nutrient supply capacity. Among nutrients, potassium (K) has the strongest influence on quality parame...

  14. Weak leaf photosynthesis and nutrient content relationships from tropical vegetation

    NASA Astrophysics Data System (ADS)

    Domingues, T. F.; Ishida, F. Y.; Feldpaush, T.; Saiz, G.; Grace, J.; Meir, P.; Lloyd, J.

    2015-12-01

    Evergreen rain forests and savannas are the two major vegetations of tropical land ecosystems, in terms of land area, biomass, biodiversity, biogeochemical cycles and rates of land use change. Mechanistically understanding ecosystem functioning on such ecosystems is still far from complete, but important for generation of future vegetation scenarios in response to global changes. Leaf photosynthetic rates is a key processes usually represented on land surface-atmosphere models, although data from tropical ecosystems is scarce, considering the high biodiversity they contain. As a shortcut, models usually recur to relationships between leaf nutrient concentration and photosynthetic rates. Such strategy is convenient, given the possibility of global datasets on leave nutrients derived from hyperspectral remote sensing data. Given the importance of Nitrogen on enzyme composition, this nutrient is usually used to infer photosynthetic capacity of leaves. Our experience, based on individual measurements on 1809 individual leaves from 428 species of trees and shrubs naturally occurring on tropical forests and savannas from South America, Africa and Australia, indicates that the relationship between leaf nitrogen and its assimilation capacity is weak. Therefore, leaf Nitrogen alone is a poor predictor of photosynthetic rates of tropical vegetation. Phosphorus concentrations from tropical soils are usually low and is often implied that this nutrient limits primary productivity of tropical vegetation. Still, phosphorus (or other nutrients) did not exerted large influence over photosynthetic capacity, although potassium influenced vegetation structure and function. Such results draw attention to the risks of applying universal nitrogen-photosynthesis relationships on biogeochemical models. Moreover, our data suggests that affiliation of plant species within phylogenetic hierarchy is an important aspect in understanding leaf trait variation. The lack of a strong single

  15. Differences in nutrient and energy contents of commonly consumed dishes prepared in restaurants v. at home in Hunan Province, China.

    PubMed

    Jia, Xiaofang; Liu, Jiawu; Chen, Bo; Jin, Donghui; Fu, Zhongxi; Liu, Huilin; Du, Shufa; Popkin, Barry M; Mendez, Michelle A

    2018-05-01

    Eating away from home is associated with poor diet quality, in part due to less healthy food choices and larger portions. However, few studies account for the potential additional contribution of differences in food composition between restaurant- and home-prepared dishes. The present study aimed to investigate differences in nutrients of dishes prepared in restaurants v. at home. Eight commonly consumed dishes were collected in twenty of each of the following types of locations: small and large restaurants, and urban and rural households. In addition, two fast-food items were collected from ten KFC, McDonald's and food stalls. Five samples per dish were randomly pooled from every location. Nutrients were analysed and energy was calculated in composite samples. Differences in nutrients of dishes by preparation location were determined. Hunan Province, China. Na, K, protein, total fat, fatty acids, carbohydrate and energy in dishes. On average, both the absolute and relative fat contents, SFA and Na:K ratio were higher in dishes prepared in restaurants than households (P < 0·05). Protein was 15 % higher in animal food-based dishes prepared in households than restaurants (P<0·05). Quantile regression models found that, at the 90th quantile, restaurant preparation was consistently negatively associated with protein and positively associated with the percentage of energy from fat in all dishes. Moreover, restaurant preparation also positively influenced the SFA content in dishes, except at the highest quantiles. These findings suggest that compared with home preparation, dishes prepared in restaurants in China may differ in concentrations of total fat, SFA, protein and Na:K ratio, which may further contribute, beyond food choices, to less healthy nutrient intakes linked to eating away from home.

  16. Differences in nutrient and energy content of commonly-consumed dishes prepared in restaurants vs. at home in Hunan province, China

    PubMed Central

    Jia, Xiaofang; Liu, Jiawu; Chen, Bo; Jin, Donghui; Fu, Zhongxi; Liu, Huilin; Du, Shufa; Popkin, Barry M.; Mendez, Michelle A.

    2017-01-01

    Objective Eating away from home is associated with poor diet quality, in part due to less healthy food choices and larger portions. However, few studies take into account the potential additional contribution of differences in food composition between restaurant- and home-prepared dishes. This study aimed to investigate differences in nutrients of dishes prepared in restaurants vs. at home. Design Eight commonly consumed dishes were collected in 20 of each of the following types of locations: small and large restaurants, and urban and rural households. In addition, two fast-food items were collected from 10 KFC’s, McDonald’s, and food stalls. Five samples per dish were randomly pooled from every location. Nutrients were analyzed and energy was calculated in composite samples. Differences in nutrients of dishes by preparation location were determined. Setting Urban and rural. Subjects Sodium, potassium, protein, total fat, fatty acids, carbohydrate, and energy in dishes. Results On average, both the absolute and relative fat content, saturated fatty acid (SFA) and sodium/potassium ratio were higher in dishes prepared in restaurants than households (P<0.05). Protein was 15% higher in animal food-based dishes prepared in households than restaurants (P <0.05). Quantile regression models found that, at the 90th quantile, restaurant preparation was consistently negatively associated with protein and positively associated with the percentage energy from fat in all dishes. Moreover, restaurant preparation also positively influenced the SFA content in dishes, except at the highest quantiles. Conclusions These findings suggest that compared to home preparation, dishes prepared in restaurants in China may differ in concentrations of total fat, SFA, protein, and sodium/potassium ratio, which may further contribute, beyond food choices, to less healthy nutrient intake linked to eating away from home. PMID:29306339

  17. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean

    USDA-ARS?s Scientific Manuscript database

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect mineral content (especially Mg, Mn, and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at si...

  18. Estimated loads and yields of suspended soils and water-quality constituents in Kentucky streams

    USGS Publications Warehouse

    Crain, Angela S.

    2001-01-01

    Loads and yields of suspended solids, nutrients, major ions, trace elements, organic carbon, fecal coliform, dissolved oxygen, and alkalinity were estimated for 22 streams in 11 major river basins in Kentucky. Mean daily discharge was estimated at ungaged stations or stations with incomplete discharge records using drainage-area ratio, regression analysis, or a combination of the two techniques. Streamflow was partitioned into total and base flow and used to estimate loads and yields for suspended solids and water-quality constituents by use of the ESTIMATOR and FLUX computer programs. The relative magnitude of constituent transport to streams from groundand surface-water sources was determined for the 22 stations. Nutrient and suspended solids yields for drainage basins with relatively homogenous land use were used to estimate the total-flow and base-flow yields of nutrient and suspended solids for forested, agricultural, and urban land. Yields of nutrients?nitrite plus nitrate, ammonia plus organic nitrogen, and total phosphorus?in forested drainage basins were generally less than 1 ton per square mile per year ((ton/mi2)/yr) and were generally less than 2 (ton/mi2)/yr in agricultural drainage basins. The smallest total-flow yields for nitrogen (nitrite plus nitrate) was estimated at Levisa Fork at Paintsville in which 95 percent of the land is forested. This site also had one of the smallest total-flow yields for ammonia plus organic nitrogen. In general, nutrient yields from forested lands were lower than those from urban and agricultural land. Some of the largest estimated total-flow yields of nutrients among agricultural basins were for streams in the Licking River Basin, the North Fork Licking River near Milford, and the South Fork Licking River at Cynthiana. Agricultural land constitutes greater than 75 percent of the drainage area in these two basins. Possible sources of nutrients discharging into the Licking River are farm and residential fertilizers

  19. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor.

    PubMed

    Worland, Belinda; Robinson, Nicole; Jordan, David; Schmidt, Susanne; Godwin, Ian

    2017-09-01

    Crops only use ∼50% of applied nitrogen (N) fertilizer creating N losses and pollution. Plants need to efficiently uptake and utilize N to meet growing global food demands. Here we investigate how the supply and timing of nitrate affects N status and yield in Sorghum bicolor (sorghum). Sorghum was grown in pots with either 10mM (High) or 1mM (Low) nitrate supply. Shortly before anthesis the nitrate supply was either maintained, increased 10-fold or eliminated. Leaf sheaths of sorghum grown with High nitrate accumulated nitrate in concentrations >3-times higher than leaves. Removal of nitrate supply pre-anthesis resulted in the rapid reduction of stored nitrate in all organs. Plants receiving a 10-fold increase in nitrate supply pre-anthesis achieved similar grain yield and protein content and 29% larger grains than those maintained on High nitrate, despite receiving 24% less nitrate over the whole growth period. In sorghum, plant available N is important throughout development, particularly anthesis and grain filling, for grain yield and grain protein content. Nitrate accumulation in leaf sheaths presents opportunities for the genetic analysis of mechanisms behind nitrate storage and remobilization in sorghum to improve N use efficiency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Both riverine detritus and dissolved nutrients drive lagoon fisheries

    NASA Astrophysics Data System (ADS)

    Bonthu, Subbareddy; Ganguly, Dipnarayan; Ramachandran, Purvaja; Ramachandran, Ramesh; Pattnaik, Ajit K.; Wolanski, Eric

    2016-12-01

    The net ecosystem metabolism in lagoons has often been estimated from the net budget of dissolved nutrients. Such is the case of the LOICZ estuarine biogeochemistry nutrient budget model that considers riverine dissolved nutrients, but not riverine detritus. However the neglect of detritus can lead to inconsistencies; for instance, it results in an estimate of 5-10 times more seaward export of nutrients than there is import from rivers in Chilika Lagoon, India. To resolve that discrepancy the UNESCO estuarine ecohydrology model, that considers both dissolved nutrients and detritus, was used and, for Chilika Lagoon, it reproduced successfully the spatial distribution of salinity, dissolved nutrients, phytoplankton and zooplankton as well as the fish yield data. Thus the model suggests that the riverine input of both detritus and dissolved nutrients supports the pelagic food web. The model also reproduces well the observation of decreased fish yield when the mouth of the lagoon was choked in the 1990s, demonstrating the importance of the physics that determine the flushing rate of waterborne matter. Thus, both farming in the watershed by driving the nutrient and detritus inputs to the lagoon, and dredging and engineering management of the mouth by controlling the flushing rate of the lagoon, have a major influence on fish stocks in the lagoon.

  1. No Fat, No Sugar, No Salt . . . No Problem? Prevalence of "Low-Content" Nutrient Claims and Their Associations with the Nutritional Profile of Food and Beverage Purchases in the United States.

    PubMed

    Taillie, Lindsey Smith; Ng, Shu Wen; Xue, Ya; Busey, Emily; Harding, Matthew

    2017-09-01

    Nutrient claims are a commonly used marketing tactic, but the association between claims and nutritional quality of products is unknown. The objective of this study was to examine trends in the proportion of packaged food and beverage purchases with a nutrient claim, whether claims are associated with improved nutritional profile, and whether the proportion of purchases with claims differs by race/ethnicity or socioeconomic status. This cross-sectional study examined nutrient claims on more than 80 million food and beverage purchases from a transaction-level database of 40,000 US households from 2008 to 2012. χ 2 Tests were used to examine whether the proportion of purchases with a low/no-content claim changed over time or differed by race/ethnicity or household socioeconomic status. Pooled transactions were examined using t-tests to compare products' nutritional profiles overall and by food and beverage group. Thirteen percent of food and 35% of beverage purchases had a low-content claim. Prevalence of claims among purchases did not change over time. Low-fat claims were most prevalent for both foods and beverages (10% and 19%, respectively), followed by low-calorie (3% and 9%), low-sugar (2% and 8%), and low-sodium (2% for both) claims. Compared to purchases with no claim, purchases with any low-content claim had lower mean energy, total sugar, total fat, and sodium densities. However, the association between particular claim types and specific nutrient densities varied substantially, and purchases featuring a given low-content claim did not necessarily offer better overall nutritional profiles or better profiles for the claimed nutrient, relative to products without claims. In addition, there was substantial heterogeneity in associations between claims and nutrient densities within food and beverage groups. Variations in nutrient density by claim type and food and beverage group suggests that claims may have differential utility for certain foods or nutrients

  2. Nutrient availability and nutrient use efficiency in plants growing in the transition zone between land and water.

    PubMed

    Cavalli, G; Baattrup-Pedersen, A; Riis, T

    2016-03-01

    The transition zone between terrestrial and freshwater habitats is highly dynamic, with large variability in environmental characteristics. Here, we investigate how these characteristics influence the nutritional status and performance of plant life forms inhabiting this zone. Specifically, we hypothesised that: (i) tissue nutrient content differs among submerged, amphibious and terrestrial species, with higher content in submerged species; and (ii) PNUE gradually increases from submerged over amphibious to terrestrial species, reflecting differences in the availability of N and P relative to inorganic C across the land-water ecotone. We found that tissue nutrient content was generally higher in submerged species and C:N and C:P ratios indicated that content was limiting for growth for ca. 20% of plant individuals, particularly those belonging to amphibious and terrestrial species groups. As predicted, the PNUE increased from submerged over amphibious to terrestrial species. We suggest that this pattern reflects that amphibious and terrestrial species allocate proportionally more nutrients into processes of importance for photosynthesis at saturating CO2 availability, i.e. enzymes involved in substrate regeneration, compared to submerged species that are acclimated to lower availability of CO2 in the aquatic environment. Our results indicate that enhanced nutrient loading may affect relative abundance of the three species groups in the land-water ecotone of stream ecosystems. Thus, species of amphibious and terrestrial species groups are likely to benefit more from enhanced nutrient availability in terms of faster growth compared to aquatic species, and that this can be detrimental to aquatic species growing in the land-water ecotone, e.g. Ranunculus and Callitriche. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. 9 CFR 381.454 - Nutrient content claims for “good source,” “high,” and “more.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... labeling of the product if: (1) The claim uses one of the terms defined in this section in accordance with... nutrient content claims in § 381.413; and (3) The product for which the claim is made is labeled in accordance with § 381.409. (b) “High” claims. (1) The terms “high,” “rich in,” or “excellent source of” may...

  4. 9 CFR 317.354 - Nutrient content claims for “good source,” “high,” and “more.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... labeling of the product if: (1) The claim uses one of the terms defined in this section in accordance with... nutrient content claims in § 317.313; and (3) The product for which the claim is made is labeled in accordance with § 317.309. (b) “High” claims. (1) The terms “high,” “rich in,” or “excellent source of” may...

  5. 9 CFR 317.354 - Nutrient content claims for “good source,” “high,” and “more.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... labeling of the product if: (1) The claim uses one of the terms defined in this section in accordance with... nutrient content claims in § 317.313; and (3) The product for which the claim is made is labeled in accordance with § 317.309. (b) “High” claims. (1) The terms “high,” “rich in,” or “excellent source of” may...

  6. 9 CFR 381.454 - Nutrient content claims for “good source,” “high,” and “more.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... labeling of the product if: (1) The claim uses one of the terms defined in this section in accordance with... nutrient content claims in § 381.413; and (3) The product for which the claim is made is labeled in accordance with § 381.409. (b) “High” claims. (1) The terms “high,” “rich in,” or “excellent source of” may...

  7. Ecophysiological and metabolic responses to interactive exposure to nutrients and copper excess in the brown macroalga Cystoseira tamariscifolia.

    PubMed

    Celis-Plá, Paula S M; Brown, Murray T; Santillán-Sarmiento, Alex; Korbee, Nathalie; Sáez, Claudio A; Figueroa, Félix L

    2018-03-01

    Global scenarios evidence that contamination due to anthropogenic activities occur at different spatial-temporal scales, being important stressors: eutrophication, due to increased nutrient inputs; and metal pollution, mostly derived from industrial activities. In this study, we investigated ecophysiological and metabolic responses to copper and nutrient excess in the brown macroalga Cystoseira tamariscifolia. Whole plants were incubated in an indoor system under control conditions, two levels of nominal copper (0.5 and 2.0μM), and two levels of nutrient supply for two weeks. Maximal quantum yield (F v /F m ) and maximal electron transport rate (ETR max ) increased under copper exposure. Photosynthetic pigments and phenolic compounds (PC) increased under the highest copper levels. The intra-cellular copper content increased under high copper exposure in both nutrient conditions. C. tamariscifolia from the Atlantic displayed efficient metal exclusion mechanisms, since most of the total copper accumulated by the cell was bound to the cell wall. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato.

    PubMed

    Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N; Owusu-Mensah, Eric; Carey, Edward E; Mwanga, Robert O M; Yencho, G Craig

    2017-03-01

    Molecular markers are needed for enhancing the development of elite sweetpotato ( Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between 'New Kawogo' × 'Beauregard'. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H 2 ) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = -0.59, P < 0.001) and starch (r = -0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future.

  9. Modification of yield and chlorophyll content in leaf lettuce by HPS radiation and nitrogen treatments.

    PubMed

    Mitchell, C A; Leakakos, T; Ford, T L

    1991-11-01

    This study evaluated the potential of high photosynthetic photon flux (PPF) from high-pressure sodium (HPS) lamps, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce growth, with or without N supplementation. Varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown Black-Seeded Simpson' lettuce (Lactuca sativa L.) seedlings. Cumulative leaf dry weight declined with increasing exposure, up to 20 hours per day, to 660 micromoles m-2 s-1 of photosynthetically active radiation (PAR) from HPS lamps concomitant with constant 20 hours per day of 400 micromoles m-2 s-1 from MH + QI lamps. Leaves progressively yellowed with increasing exposure to radiation from the three-lamp combination, corresponding to lower specific chlorophyll content but not to specific carotenoid content. Lettuce grown under 20-hour photoperiods of 400, 473, or 668 micromoles m-2 s-1 from HPS radiation alone had the highest leaf dry weight at a PPF of 473 micromoles m-2 s-1. Chlorophyll, but not carotenoid specific content, decreased with each incremental increase in PPF from HPS lamps. Doubling the level of N in nutrient solution and supplying it as a combination of NH4+ and NO3- partially ameliorated adverse effects of high PPF on growth and pigment content relative to treatments using single-strength N as NO3-.

  10. Genetic parameters of cheese yield and curd nutrient recovery or whey loss traits predicted using Fourier-transform infrared spectroscopy of samples collected during milk recording on Holstein, Brown Swiss, and Simmental dairy cows.

    PubMed

    Cecchinato, A; Albera, A; Cipolat-Gotet, C; Ferragina, A; Bittante, G

    2015-07-01

    Cheese yield is the most important technological parameter in the dairy industry in many countries. The aim of this study was to infer (co)variance components for cheese yields (CY) and nutrient recoveries in curd (REC) predicted using Fourier-transform infrared (FTIR) spectroscopy of samples collected during milk recording on Holstein, Brown Swiss, and Simmental dairy cows. A total of 311,354 FTIR spectra representing the test-day records of 29,208 dairy cows (Holstein, Brown Swiss, and Simmental) from 654 herds, collected over a 3-yr period, were available for the study. The traits of interest for each cow consisted of 3 cheese yield traits (%CY: fresh curd, curd total solids, and curd water as a percent of the weight of the processed milk), 4 curd nutrient recovery traits (REC: fat, protein, total solids, and the energy of the curd as a percent of the same nutrient in the processed milk), and 3 daily cheese production traits (daily fresh curd, total solids, and the water of the curd per cow). Calibration equations (freely available upon request to the corresponding author) were used to predict individual test-day observations for these traits. The (co)variance components were estimated for the CY, REC, milk production, and milk composition traits via a set of 4-trait analyses within each breed. All analyses were performed using REML and linear animal models. The heritabilities of the %CY were always higher for Holstein and Brown Swiss cows (0.22 to 0.33) compared with Simmental cows (0.14 to 0.18). In general, the fresh cheese yield (%CYCURD) showed genetic variation and heritability estimates that were slightly higher than those of its components, %CYSOLIDS and %CYWATER. The parameter RECPROTEIN was the most heritable trait in all the 3 breeds, with values ranging from 0.32 to 0.41. Our estimation of the genetic relationships of the CY and REC with milk production and composition revealed that the current selection strategies used in dairy cattle are expected

  11. Dietary composition and nutrient content of the New Nordic Diet.

    PubMed

    Mithril, Charlotte; Dragsted, Lars Ove; Meyer, Claus; Tetens, Inge; Biltoft-Jensen, Anja; Astrup, Arne

    2013-05-01

    To describe the dietary composition of the New Nordic Diet (NND) and to compare it with the Nordic Nutrition Recommendations (NNR)/Danish Food-based Dietary Guidelines (DFDG) and with the average Danish diet. Dietary components with clear health-promoting properties included in the DFDG were included in the NND in amounts at least equivalent to those prescribed by the DFDG. The quantities of the other dietary components in the NND were based on scientific arguments for their potential health-promoting properties together with considerations of acceptability, toxicological concerns, availability and the environment. Calculations were conducted for quantifying the dietary and nutrient composition of the NND. Denmark. None. The NND is characterized by a high content of fruits and vegetables (especially berries, cabbages, root vegetables and legumes), fresh herbs, potatoes, plants and mushrooms from the wild countryside, whole grains, nuts, fish and shellfish, seaweed, free-range livestock (including pigs and poultry) and game. Overall, the average daily intakes of macro- and micronutrients in the NND meet the NNR with small adjustments based on evidence of their health-promoting properties. The NND is a prototype regional diet that takes palatability, health, food culture and the environment into consideration. Regionally appropriate healthy diets could be created on similar principles anywhere in the world.

  12. Biochar from "Kon Tiki" flame curtain and other kilns: Effects of nutrient enrichment and kiln type on crop yield and soil chemistry

    PubMed Central

    Pandit, Naba Raj; Mulder, Jan; Hale, Sarah Elisabeth; Schmidt, Hans Peter

    2017-01-01

    Biochar application to soils has been investigated as a means of improving soil fertility and mitigating climate change through soil carbon sequestration. In the present work, the invasive shrub "Eupatorium adenophorum" was utilized as a sustainable feedstock for making biochar under different pyrolysis conditions in Nepal. Biochar was produced using several different types of kilns; four sub types of flame curtain kilns (deep-cone metal kiln, steel shielded soil pit, conical soil pit and steel small cone), brick-made traditional kiln, traditional earth-mound kiln and top lift up draft (TLUD). The resultant biochars showed consistent pH (9.1 ± 0.3), cation exchange capacities (133 ± 37 cmolc kg-1), organic carbon contents (73.9 ± 6.4%) and surface areas (35 to 215 m2/g) for all kiln types. A pot trial with maize was carried out to investigate the effect on maize biomass production of the biochars made with various kilns, applied at 1% and 4% dosages. Biochars were either pretreated with hot or cold mineral nutrient enrichment (mixing with a nutrient solution before or after cooling down, respectively), or added separately from the same nutrient dosages to the soil. Significantly higher CEC (P< 0.05), lower Al/Ca ratios (P< 0.05), and high OC% (P<0.001) were observed for both dosages of biochar as compared to non-amended control soils. Importantly, the study showed that biochar made by flame curtain kilns resulted in the same agronomic effect as biochar made by the other kilns (P > 0.05). At a dosage of 1% biochar, the hot nutrient-enriched biochar led to significant increases of 153% in above ground biomass production compared to cold nutrient-enriched biochar and 209% compared to biochar added separately from the nutrients. Liquid nutrient enhancement of biochar thus improved fertilizer effectiveness compared to separate application of biochar and fertilizer. PMID:28448621

  13. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  14. Salinity impact on yield, water use, mineral and essential oil content of fennel (Foeniculum vulgare Mill.)

    USDA-ARS?s Scientific Manuscript database

    The experimental study was carried out to determine the effects of salinity on water consumption, plant height, fresh and seed yields, biomass production, ion accumulation and essential oil content of fennel (Foeniculum vulgare Mill.) under greenhouse conditions. The experiment was conducted with a ...

  15. Physiological responses of the seagrass Thalassia hemprichii (Ehrenb.) Aschers as indicators of nutrient loading.

    PubMed

    Zhang, Jingping; Huang, Xiaoping; Jiang, Zhijian

    2014-06-30

    To select appropriate bioindicators for the evaluation of the influence of nutrients from human activities in a Thalassia hemprichii meadow, environmental variables and plant performance parameters were measured in Xincun Bay, Hainan Island, South China. Nutrient concentrations in the bay decreased along a gradient from west to southeast. Moreover, the nutrients decreased with an increase in the distance from the shore on the southern side of the bay. Among the candidate indicators, the P content of the tissues closely mirrored the two nutrient loading gradients. The epiphytic algae biomass and the N content in the tissues mirrored one of the two nutrient loading trends. The leaf length, however, exhibited a significant negative correlation with the nutrient gradients. We propose that changes in the P content of T. hemprichii, followed by epiphytic algae biomass and N content of the tissues, may be the useful indicators of nutrient loading to coastal ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).

    PubMed

    Nishanth, D; Biswas, D R

    2008-06-01

    An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.

  18. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato

    PubMed Central

    Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N.; Owusu-Mensah, Eric; Carey, Edward E.; Mwanga, Robert O.M.; Yencho, G. Craig

    2017-01-01

    Molecular markers are needed for enhancing the development of elite sweetpotato (Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between ‘New Kawogo’ × ‘Beauregard’. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H2) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = −0.59, P < 0.001) and starch (r = −0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future. PMID:28588391

  19. Seasonal changes in environmental variables, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia.

    PubMed

    Erftemeijer, Paul L A; Herman, Peter M J

    1994-09-01

    Seasonal dynamics were studied by monthly monitoring of biological and environmental variables in permanent quadrats in two contrasting intertidal seagrass beds in South Sulawesi, Indonesia, from February 1991 to January 1992. Datasets were analysed with canonical correlation analysis for correlations between environmental and biological variables. Considerable variation in biomass, production and plant tissue nutrient contents in a monospecific seagrass bed of Enhalus acoroides, growing on a coastal terrigenous mudbank (Gusung Tallang), was assumed to be related to riverine influences of the nearby Tallo River. The variation in seagrass variables at this site could, however, not be significantly correlated to seasonal patterns in rainfall, salinity, tides, nutrient availability, water motion or turbidity. A seasonal cycle in biomass, production and nutrient contents in a mixed seagrass bed of Thalassia hemprichii and E. acoroides, growing on carbonate sand on the reef flat of an offshore coral island (Barang Lompo), was found to be largely determined by tidal exposure and water motion. Exposure of the intertidal seagrass bed during hours of low water during spring tides showed a gradual shift from exposure during the night (January-June) to exposure during daylight (July-December). Daylight exposure resulted in a significant loss of above-ground plant biomass through desiccation and 'burning' of leaves. The observed seasonal dynamics of the seagrass bed on reef sediment contrast with reports from the Caribbean, where the effect of tidal exposure on comparable shallow-water seagrass communities is relatively insignificant due to a small tidal amplitude.

  20. Soil Nutrient Stocks in Sub-Saharan Africa: Modeling Soil Nutrients Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Cooper, M. W.; Hengl, T.; Shepherd, K.; Heuvelink, G. B. M.

    2017-12-01

    We present the results of our work modeling 15 target soil nutrients at 250 meter resolution across Sub-Saharan Africa. We used a large stack of GIS layers as covariates, including layers on topography, climate, geology, hydrology and land cover. As training data we used ca. 59,000 soil samples harmonized across a number of projects and datasets, and we modeled each nutrient using an ensemble of random forest and gradient boosting algorithms, implemented using the R packages ranger and xgboost. Using cross validation, we determined that significant models can be produced for organic Carbon, total (organic) Nitrogen, total Phosphorus, and extractable Phosphorous, Potassium, Calcium, Magnesium, Sulfur, Sodium, Iron, Manganese, Zinc, Copper, Aluminum and Boron, with an R-square value between 40 and 95%. The main covariates explaining spatial distribution of nutrients were precipitation and land form parameters. However, we were unable to significantly predict Sulfur, Phosphorus and Boron as these could not be correlated with any environmental covariates we used. Although the accuracy of predictions looks promising, our predictions likely suffer from the significant spatial clustering of the sampling locations, as well as a lack of more detailed data on geology and parent material at a continental scale. These results will contribute to targeting agricultural investments and interventions, as well as targeting restoration efforts and estimating yield potential and yield gaps. These results were recently published in the journal Nutrient Cycling in Agroecosystems (DOI: 10.1007/s10705-017-9870-x) and the maps are available for download under the ODC Open Database License.

  1. Nutrient uptake of peanut genotypes under different water regimes

    USDA-ARS?s Scientific Manuscript database

    Drought is a serious environmental stress limiting growth and productivity in peanut and other crops. Nutrient uptake of peanut is reduced under drought conditions, which reduces yield. The objectives of this study were to investigate nutrient uptake of peanut genotypes in response to drought and ...

  2. Nutrient concentrations and loads in the northeastern United States - Status and trends, 1975-2003

    USGS Publications Warehouse

    Trench, Elaine C. Todd; Moore, Richard B.; Ahearn, Elizabeth A.; Mullaney, John R.; Hickman, R. Edward; Schwarz, Gregory E.

    2012-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) began regional studies in 2003 to synthesize information on nutrient concentrations, trends, stream loads, and sources. In the northeastern United States, a study area that extends from Maine to central Virginia, nutrient data were evaluated for 130 USGS water-quality monitoring stations. Nutrient data were analyzed for trends in flow-adjusted concentrations, modeled instream (non-flow-adjusted) concentrations, and stream loads for 32 stations with 22 to 29 years of water-quality and daily mean streamflow record during 1975-2003 (termed the long-term period), and for 46 stations during 1993-2003 (termed the recent period), by using a coupled statistical model of streamflow and water quality developed by the USGS. Recent trends in flow-adjusted concentrations of one or more nutrients also were analyzed for 90 stations by using Tobit regression. Annual stream nutrient loads were estimated, and annual nutrient yields were calculated, for 47 stations for the long-term and recent periods, and for 37 additional stations that did not have a complete streamflow and water-quality record for 1993-2003. Nutrient yield information was incorporated for 9 drainage basins evaluated in a national NAWQA study, for a total of 93 stations evaluated for nutrient yields. Long-term downward trends in flow-adjusted concentrations of total nitrogen and total phosphorus (18 and 19 of 32 stations, respectively) indicate regional improvements in nutrient-related water-quality conditions. Most of the recent trends detected for total phosphorus were upward (17 of 83 stations), indicating possible reversals to the long-term improvements. Concentrations of nutrients in many streams persist at levels that are likely to affect aquatic habitat adversely and promote freshwater or coastal eutrophication. Recent trends for modeled instream concentrations, and modeled reference concentrations, were evaluated relative to

  3. Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits.

    PubMed

    Romero-Huelva, M; Ramos-Morales, E; Molina-Alcaide, E

    2012-10-01

    The effects of replacing 35% of cereals-based concentrate with feed blocks (FB) containing waste fruits of tomato, cucumber, or barley grain in diets for lactating goats on nutrient utilization, ruminal fermentation, microbial N flow to the duodenum, milk yield and quality, methane emissions, and abundances of total bacteria and methanogens were studied. Eight Murciano-Granadina goats (39.4 ± 5.39 kg of body weight, mean ± SD) in the middle of the third lactation were used and 4 diets were studied in a replicated 4×4 Latin square experimental design. Diets consisted of alfalfa hay (A) plus concentrate (C) in a 1:1 ratio (diet AC) or diets in which 35% of the concentrate was replaced with FB including wastes of tomato fruit, cucumber, or barley. In each period, 2 goats were randomly assigned to 1 of the dietary treatments. Intakes of FB including tomato, cucumber, and barley were 208 ± 65, 222 ± 52, and 209 ± 83 g of dry matter per animal and day, respectively. The replacement of 35% of concentrate with FB did not compromise nutrient apparent digestibility, total purine derivative urinary excretion, milk yield and composition, and total bacteria and methanogen abundances. Digestible energy and that in methane and urine were higher for AC than for FB-containing diets, whereas the metabolizable energy value was not affected by diet. The inclusion of tomato and cucumber fruits in FB decreased N in urine and CH(4) emissions compared with AC, which is environmentally relevant. However, tomato-based FB decreased microbial N flow in the rumen, whereas goats fed cucumber-based FB had the highest values for this measurement. Moreover, FB containing barley or tomato and cucumber led to lower rumen volatile fatty acid and NH(3)-N concentrations, respectively. Milk from goats fed diets including tomato and cucumber-based FB had higher linoleic, linolenic, and total polyunsaturated fatty acid concentrations than that from goats fed AC. Overall, our study suggests that

  4. Nitrogen and phosphorus fluxes from watersheds of the northeast U.S. from 1930 to 2000: Role of anthropogenic nutrient inputs, infrastructure, and runoff

    NASA Astrophysics Data System (ADS)

    Hale, Rebecca L.; Grimm, Nancy B.; Vörösmarty, Charles J.; Fekete, Balazs

    2015-03-01

    An ongoing challenge for society is to harness the benefits of nutrients, nitrogen (N) and phosphorus (P), while minimizing their negative effects on ecosystems. While there is a good understanding of the mechanisms of nutrient delivery at small scales, it is unknown how nutrient transport and processing scale up to larger watersheds and whole regions over long time periods. We used a model that incorporates nutrient inputs to watersheds, hydrology, and infrastructure (sewers, wastewater treatment plants, and reservoirs) to reconstruct historic nutrient yields for the northeastern U.S. from 1930 to 2002. Over the study period, yields of nutrients increased significantly from some watersheds and decreased in others. As a result, at the regional scale, the total yield of N and P from the region did not change significantly. Temporal variation in regional N and P yields was correlated with runoff coefficient, but not with nutrient inputs. Spatial patterns of N and P yields were best predicted by nutrient inputs, but the correlation between inputs and yields across watersheds decreased over the study period. The effect of infrastructure on yields was minimal relative to the importance of soils and rivers. However, infrastructure appeared to alter the relationships between inputs and yields. The role of infrastructure changed over time and was important in creating spatial and temporal heterogeneity in nutrient input-yield relationships.

  5. Biomass production, anaerobic digestion, and nutrient recycling of small benthic or floating seaweeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryther, J.H.

    1982-02-01

    A number of experiments have been carried out supporting the development of a seaweed-based ocean energy farm. Beginning in 1976, forty-two species of seaweed indigenous to the coastal waters of Central Florida were screened for high biomass yields in intensive culture. Gracilaria tikvahiae achieved the highest annual yield of 34.8 g dry wt/m/sup 2/ day. Yield has been found to vary inversely with seawater exchange rate, apparently because of carbon dioxide limitation at low exchange rates. Gracilaria was anaerobically digested in 120 liter and 2 liter reactors. Gas yields in the large digesters averaged 0.4 1/g volatile solids (.24 1more » CH/sub 4//gv.s.) with a bioconversion efficiency of 48%. Studies of the suitability of digester residue as a nutrient source for growing Gracilaria have been conducted. Nitrogen recycling efficiency from harvested plant through liquid digestion residue to harvested plant approached 75%. Studies of nutrient uptake and storage by Gracilaria, Ascophyllum, and Sargassum showed that nutrient starved plants are capable of rapidly assimilating and storing inorganic nutrients which may be used later for growth when no nutrients are present in the medium. A shallow water seaweed farm was proposed which would produce methane from harvested seaweed and use digester residues as a concentrated source of nutrients for periodic fertilizations.« less

  6. Nutrient Digestibility and Metabolizable Energy Content of Mucuna pruriens Whole Pods Fed to Growing Pelibuey Lambs.

    PubMed

    Loyra-Tzab, Enrique; Sarmiento-Franco, Luis Armando; Sandoval-Castro, Carlos Alfredo; Santos-Ricalde, Ronald Herve

    2013-07-01

    The nutrient digestibility, nitrogen balance and in vivo metabolizable energy supply of Mucuna pruriens whole pods fed to growing Pelibuey lambs was investigated. Eight Pelibuey sheep housed in metabolic crates were fed increasing levels of Mucuna pruriens pods: 0 (control), 100 (Mucuna100), 200 (Mucuna200) and 300 (Mucuna300) g/kg dry matter. A quadratic (p<0.002) effect was observed for dry matter (DM), neutral detergent fibre (aNDF), nitrogen (N) and gross energy (GE) intakes with higher intakes in the Mucuna100 and Mucuna200 treatments. Increasing M. pruriens in the diets had no effect (p>0.05) on DM and GE apparent digestibility (p<0.05). A linear reduction in N digestibility and N retention was observed with increasing mucuna pod level. This effect was accompanied by a quadratic effect (p<0.05) on fecal-N and N-balance which were higher in the Mucuna100 and Mucuna200 treatments. Urine-N excretion, GE retention and dietary estimated nutrient supply (metabolizable protein and metabolizable energy) were not affected (p>0.05). DM, N and GE apparent digestibility coefficient of M. pruriens whole pods obtained through multiple regression equations were 0.692, 0.457, 0.654 respectively. In vivo DE and ME content of mucuna whole pod were estimated in 11.0 and 9.7 MJ/kg DM. It was concluded that whole pods from M. pruriens did not affect nutrient utilization when included in an mixed diet up to 200 g/kg DM. This is the first in vivo estimation of mucuna whole pod ME value for ruminants.

  7. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.).

    PubMed

    Siddiqi, Ejaz Hussain; Ashraf, Muhammad; Al-Qurainy, Fahad; Akram, Nudrat Aisha

    2011-12-01

    Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry.

  8. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparison of the nutrient and chemical contents of traditional Korean Chungtaejeon and green teas.

    PubMed

    Park, Yong-Seo; Lee, Mi-Kyung; Heo, Buk-Gu; Ham, Kyung-Sik; Kang, Seong-Gook; Cho, Ja-Yong; Gorinstein, Shela

    2010-06-01

    This study was conducted in order to compare the nutrient and chemical contents of two Korean teas: traditional Chungtaejeon tea (CTJ) with that of green tea (GT). Main bioactive compounds and the antioxidant activities using four radical scavenging assays (ABTS, CUPRAC, FRAP and DPPH) in methanol and acetone extracts of both teas were determined. It was found that the contents of vitamin C, amino acids and total nitrogen in CTJ were lower than that of GT (p < 0.05). Caffeine, reducing sugar and chlorophyll contents in CTJ were similar to GT. Catechin (C), epicatechin (EC), and epigallocatechin (EGC) contents were lower in CTJ than in green tea (p < 0.05), but gallocatechin (GC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG) and catechin gallate (CG) showed no significant differences between CTJ and GT (p >/= 0.05). The contents of polyphenols, flavonoids, flavanols and tannins in CTJ methanol were 229.30 +/- 11.3 mg GAE/g dry weight (DW), 15.24 +/- 0.8 mg CE/g DW, 109.10 +/- 5.1 mg CE/g DW and 25.68 +/- 1.2 mg CE/g DW, respectively, and significantly higher than in acetone extracts (p < 0.05). Flavonoids (quercetin and kaempferol) were higher in GT than in CTJ and myricetin was higher in CTJ (p < 0.05). Threonine and aspartic acid was lower, and glutamic acid was higher in CTJ compared with GT (p < 0.05). Free amino acid content in CTJ and GT showed no significant difference. Potassium and magnesium in CTJ were lower compared to GT, but no significant difference was found for iron, manganese and calcium. Also, the level of the antioxidant activity by all four used assays was significantly higher in CTJ and in methanol was higher than in acetone extracts (p < 0.05). In conclusion, traditional fermented Korean tea Chungtaejeon contains high quantities of bioactive compounds and possesses high antioxidant activity. The contents of the bioactive compounds and the levels of antioxidant activities are significantly higher in methanol than in acetone

  10. Influence of dietary nutrient density, feed form, and lighting on growth and meat yield of broiler chickens.

    PubMed

    Brickett, K E; Dahiya, J P; Classen, H L; Gomis, S

    2007-10-01

    The objective of this study was to examine main and interactive effects of nutrient density (ND), feed form (FF; mash, pellet), and lighting program (12L:12D, 20L:4D) on production characteristics and meat yield of broilers raised to 35 d of age. Diets (starter, grower, and finisher) were formulated so that amino acid levels were in proportion to the dietary energy level. Lighting programs were initiated at 4 d of age. Body weight was not affected by ND when diets were fed in a pellet form but decreased in a linear manner with lower ND when fed as a mash. Final BW of birds fed mash were less than those of birds fed pellet diets. Feed to gain ratio decreased with increasing ND but was not affected by FF. Feed intake decreased with increasing ND and was lower for birds fed mash. The effect of ND on feed intake was less when birds were fed mash in contrast to pellet diets (P(ND x F) < 0.0001). Dietary ND had no effect on mortality, but feeding mash decreased mortality (3.8%) compared with feeding pelleted feed (5.6%). Lighting programs affected production characteristics independently of ND and FF. Use of 12L:12D reduced BW, feed to gain ratio, feed intake, and mortality compared with 20L:4D. Similarly, carcass components were not affected by ND when fed in pellet form but decreased with lower ND when fed as a mash. Overall, carcass yields were reduced when broilers were fed mash or provided with 12L:12D. Female birds had higher carcass yields and increased proportional breast meat deposition compared with males.

  11. Nutrient properties of five West Virginia forest soils

    Treesearch

    L. R. Auchmoody

    1972-01-01

    Nutrient levels in five well-drained forest soils of the northern mountain section of West Virginia were generally associated with the type of parent rocks from which the soils had formed. But in some instances, different rock types yielded soils of similar nutrient composition. Soils formed from limestone and calcareous shale were usually higher in fertility than...

  12. Opposing effects of different soil organic matter fractions on crop yields.

    PubMed

    Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A

    2016-10-01

    Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes. © 2016 by the Ecological Society of America.

  13. Dairy manure nutrient analysis using quick tests.

    PubMed

    Singh, A; Bicudo, J R

    2005-05-01

    Rapid on-farm assessment of manure nutrient content can be achieved with the use of quick tests. These tests can be used to indirectly measure the nutrient content in animal slurries immediately before manure is applied on agricultural fields. The objective of this study was to assess the reliability of hydrometers, electrical conductivity meter and pens, and Agros N meter against standard laboratory methods. Manure samples were collected from 34 dairy farms in the Mammoth Cave area in central Kentucky. Regression equations were developed for combined and individual counties located In the area (Barren, Hart and Monroe). Our results indicated that accuracy in nutrient estimation could be improved if separate linear regressions were developed for farms with similar facilities in a county. Direct hydrometer estimates of total nitrogen were among the most accurate when separate regression equations were developed for each county (R2 = 0.61, 0.93, and 0.74 for Barren, Hart and Monroe county, respectively). Reasonably accurate estimates (R2 > 0.70) were also obtained for total nitrogen and total phosphorus using hydrometers, either by relating specific gravity to nutrient content or to total solids content. Estimation of ammoniacal nitrogen with Agros N meter and electrical conductivity meter/pens correlated well with standard laboratory determinations, especially while using the individual data sets from Hart County (R2 = 0.70 to 0.87). This study indicates that the use of quick test calibration equations developed for a small area or region where farms are similar in terms of manure handling and management, housing, and feed ration are more appropriate than using "universal" equations usually developed with combined data sets. Accuracy is expected to improve if individual farms develop their own calibration curves. Nevertheless, we suggest confidence intervals always be specified for nutrients estimated through quick testing for any specific region, county, or farm.

  14. Unprecedented Synergistic Effects of Nanoscale Nutrients on Growth, Productivity of Sweet Sorghum [Sorghum bicolor (L.) Moench], and Nutrient Biofortification.

    PubMed

    Naseeruddin, Ramapuram; Sumathi, Vupprucherla; Prasad, Tollamadugu N V K V; Sudhakar, Palagiri; Chandrika, Velaga; Ravindra Reddy, Balam

    2018-02-07

    Evidence-based synergistic effects of nanoscale materials (size of <100 nm in at least one dimension) were scantly documented in agriculture at field scale. Herein, we report for the first time on effects of nanoscale zinc oxide (n-ZnO), calcium oxide (n-CaO), and magnesium oxide (n-MgO) on growth and productivity of sweet sorghum [Sorghum bicolor (L.) Moench]. A modified sol-gel method was used to prepare nanoscale materials under study. Characterization was performed using transmission and scanning electron microscopies, X-ray diffraction, and dynamic light scattering. Average sizes (25, 53.7, and 53.5 nm) and ζ potentials (-10.9, -28.2, and -16.2 mV) of n-ZnO, n-CaO, and n-MgO were measured, respectively. The significant grain yield (17.8 and 14.2%), cane yield (7.2 and 8.0%), juice yield (10 and 12%), and higher sucrose yield (21.8 and 20.9%) were recorded with the application of nanoscale materials in the years 2014 and 2015, respectively. Nutrient uptake was significant with foliar application of nanoscale nutrients.

  15. Comparative values of various wastewater streams as a soil nutrient source.

    PubMed

    Shilpi, Sonia; Seshadri, Balaji; Sarkar, Binoy; Bolan, Nanthi; Lamb, Dane; Naidu, Ravi

    2018-02-01

    In order to assess whether wastewaters from different industries (winery, abattoir, dairy and municipal) could be used safely to irrigate agricultural crops, a pot experiment in glass house was conducted in a sandy clay loam soil (pH = 6.12) from South Australia. Different concentrations (0, 0.05, 5, 25, 50, 75 and 100%) of the wastewaters diluted in an ordinary tap water were applied to soils sown with sunflower and maize seeds, and the effect of these irrigation treatments were evaluated at the early crop growth stages by recording the biomass yields, plant mineral nutrient contents, and also the soil chemical properties. Results showed that the winery effluent reduced the early growth of maize and sunflower when applied without any dilution, but increased yields of both plants when applied at 25% dilution with tap water. At this dilution of the winery wastewater, 80% more dry shoot yield (DSY) of sunflower and 58% more DSY of maize were obtained in comparison to the application of 100% concentration of the wastewater. Abattoir wastewater showed the highest yields at 100% concentration. Furthermore, municipal effluent did not show any inhibitory effect on both the crops. It was observed that metal contents in both the crops were different due to the application of different wastewaters, but did not exceed any toxic level. This study demonstrated that abattoir wastewater as such, and winery and dairy wastewaters at appropriate dilutions could be used for irrigation in agricultural fields to enhance crop productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Streamflow chemistry and nutrient yields from upland-peatland watersheds in Minnesota

    Treesearch

    Elon S. Verry

    1975-01-01

    Twenty-two water quality parameters were determined for the streamflow from complex but typical upland-peatland watersheds over a period of 5 yr. Five watersheds with oligotrophic peatlands and one with a minerotrophic peatland were studied. Concentrations of organically derived nutrients are highest in the streamflow from watersheds containing oligotrophic peatlands;...

  17. Nutrient content and yield of burned or mowed Japanese honeysuckle

    Treesearch

    John J. Stransky; James N. Hale; Lowell K. Halls

    1976-01-01

    Burning reduced the dense growth between 3-year-old Japanese honeysuckle plants and prevented the resprouting of runners. Mowing removed the dense accumulation of vines, but the severed runners resprouted to create a uniformly dense carpet. Crude protein of foliage was highest on the burned plots, but neither calcium nor phosphorus were significantly affected by...

  18. Surprising yields with no-till cropping systems

    USDA-ARS?s Scientific Manuscript database

    Producers using no-till systems have found that crop yields often exceed their expectation based on nutrient and water supply. For example, corn yields 7% higher in a no-till system in central South Dakota than in a tilled system in eastern South Dakota. This is surprising because rainfall is 5 in...

  19. Surprising yields with no-till cropping systems

    USDA-ARS?s Scientific Manuscript database

    Producers using no-till practices have observed that crop yields can greatly exceed expectations based on nutrient and water supply. For example, Ralph Holzwarth, who farms near Gettysburg, SD, has averaged 150 bu/ac of corn on his farm for the past 6 years. We were surprised with this yield, as c...

  20. Comparison of controlled release and soluble granular fertilizers on cranberry growth, yield, and soil nutrients

    USDA-ARS?s Scientific Manuscript database

    Cranberry growers are looking for ways to reduce off-site movement of nitrogen (N) and phosphorus (P). Controlled-release fertilizers (CRF) may increase nutrient uptake efficiency in cranberry and decrease potential for nutrient leaching or lateral movement into drainage. Data regarding N and P in...

  1. Nutrient Digestibility and Metabolizable Energy Content of Mucuna pruriens Whole Pods Fed to Growing Pelibuey Lambs

    PubMed Central

    Loyra-Tzab, Enrique; Sarmiento-Franco, Luis Armando; Sandoval-Castro, Carlos Alfredo; Santos-Ricalde, Ronald Herve

    2013-01-01

    The nutrient digestibility, nitrogen balance and in vivo metabolizable energy supply of Mucuna pruriens whole pods fed to growing Pelibuey lambs was investigated. Eight Pelibuey sheep housed in metabolic crates were fed increasing levels of Mucuna pruriens pods: 0 (control), 100 (Mucuna100), 200 (Mucuna200) and 300 (Mucuna300) g/kg dry matter. A quadratic (p<0.002) effect was observed for dry matter (DM), neutral detergent fibre (aNDF), nitrogen (N) and gross energy (GE) intakes with higher intakes in the Mucuna100 and Mucuna200 treatments. Increasing M. pruriens in the diets had no effect (p>0.05) on DM and GE apparent digestibility (p<0.05). A linear reduction in N digestibility and N retention was observed with increasing mucuna pod level. This effect was accompanied by a quadratic effect (p<0.05) on fecal-N and N-balance which were higher in the Mucuna100 and Mucuna200 treatments. Urine-N excretion, GE retention and dietary estimated nutrient supply (metabolizable protein and metabolizable energy) were not affected (p>0.05). DM, N and GE apparent digestibility coefficient of M. pruriens whole pods obtained through multiple regression equations were 0.692, 0.457, 0.654 respectively. In vivo DE and ME content of mucuna whole pod were estimated in 11.0 and 9.7 MJ/kg DM. It was concluded that whole pods from M. pruriens did not affect nutrient utilization when included in an mixed diet up to 200 g/kg DM. This is the first in vivo estimation of mucuna whole pod ME value for ruminants. PMID:25049876

  2. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement

    PubMed Central

    Chatzav, Merav; Peleg, Zvi; Ozturk, Levent; Yazici, Atilla; Fahima, Tzion; Cakmak, Ismail; Saranga, Yehoshua

    2010-01-01

    Background and Aims Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. Methods A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. Key Results Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. Conclusions Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool. PMID

  3. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Nutrition for details. If any part of the material submitted is in a foreign language, it shall be... nutrition by virtue of its presence or absence at the levels that such claim would describe. This... specifically address the intake of nutrients that have beneficial and negative consequences in the total diet...

  4. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Nutrition for details. If any part of the material submitted is in a foreign language, it shall be... nutrition by virtue of its presence or absence at the levels that such claim would describe. This... specifically address the intake of nutrients that have beneficial and negative consequences in the total diet...

  5. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Nutrition for details. If any part of the material submitted is in a foreign language, it shall be... nutrition by virtue of its presence or absence at the levels that such claim would describe. This... specifically address the intake of nutrients that have beneficial and negative consequences in the total diet...

  6. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Nutrition for details. If any part of the material submitted is in a foreign language, it shall be... nutrition by virtue of its presence or absence at the levels that such claim would describe. This... specifically address the intake of nutrients that have beneficial and negative consequences in the total diet...

  7. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok).

    PubMed

    Trang, Nguyen Thi Thuy; Shrestha, Sangam; Shrestha, Manish; Datta, Avishek; Kawasaki, Akiyuki

    2017-01-15

    Assessment of the climate and land-use change impacts on the hydrology and water quality of a river basin is important for the development and management of water resources in the future. The objective of this study was to examine the impact of climate and land-use change on the hydrological regime and nutrient yield from the 3S River Basin (Sekong, Srepok, and Sesan) into the 3S River system in Southeast Asia. The 3S Rivers are important tributaries of the Lower Mekong River, accounting for 16% of its annual flow. This transboundary basin supports the livelihoods of nearly 3.5 million people in the countries of Laos, Vietnam, and Cambodia. To reach a better understanding of the process and fate of pollution (nutrient yield) as well as the hydrological regime, the Soil and Water Assessment Tool (SWAT) was used to simulate water quality and discharge in the 3S River Basin. Future scenarios were developed for three future periods: 2030s (2015-2039), 2060s (2045-2069), and 2090s (2075-2099), using an ensemble of five GCMs (General Circulation Model) simulations: (HadGEM2-AO, CanESM2, IPSL-CM5A-LR, CNRM-CM5, and MPI-ESM-MR), driven by the climate projection for RCPs (Representative Concentration Pathways): RCP4.5 (medium emission) and RCP8.5 (high emission) scenarios, and two land-use change scenarios. The results indicated that the climate in the study area would generally become warmer and wetter under both emission scenarios. Discharge and nutrient yield is predicted to increase in the wet season and decrease in the dry. Overall, the annual discharge and nutrient yield is projected to increase throughout the twenty-first century, suggesting sensitivity in the 3S River Basin to climate and land-use change. The results of this study can assist water resources managers and planners in developing water management strategies for uncertain climate change scenarios in the 3S River Basin. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Increased bone mineral content of preterm infants fed with a nutrient enriched formula after discharge from hospital.

    PubMed Central

    Bishop, N J; King, F J; Lucas, A

    1993-01-01

    Bone disease with persistent reduced bone mineralisation is common in premature infants. To test the hypothesis that enhancement of nutritional intake after discharge from hospital improves bone mineralisation, 31 formula fed preterm infants were randomly assigned to receive standard or multinutrient enriched milk from the time of discharge. The calcium and phosphorus contents of the enriched milk were 70 and 35 mg/100 ml v 35 and 29 mg/100 ml for the standard formula. Bone mineral content was measured before discharge from hospital in 21 of the infants; there was no difference in the bone mineral content between the groups at that time (35 mg/cm for the two groups). There was a significant increase in bone mineral content for those infants receiving the enriched v standard formula at 3 and 9 months corrected postnatal age: at 3 months the bone mineral content was 83 v 63 mg/cm and at 9 months 115 v 95 mg/cm. The difference between the groups was thus maintained although not increased at a corrected age of 9 months, when the bone mineral content of infants fed the enriched but not the standard formula was no longer significantly different from that of normal infants after adjusting for body size. The difference was not explained by the larger body size in infants fed the enriched formula. The results suggest that the use of a special nutrient enriched postdischarge formula has a significant positive effect on bone growth and mineralisation during a period of rapid skeletal development. PMID:8323358

  9. Wide Variability in Caloric Density of Expressed Human Milk Can Lead to Major Underestimation or Overestimation of Nutrient Content.

    PubMed

    Sauer, Charles W; Boutin, Mallory A; Kim, Jae H

    2017-05-01

    Very-low-birth-weight infants continue to face significant difficulties with postnatal growth. Human milk is the optimal form of nutrition for infants but may exhibit variation in nutrient content. This study aimed to perform macronutrient analysis on expressed human milk from mothers whose babies are hospitalized in the neonatal intensive care unit. Up to five human milk samples per participant were analyzed for protein, carbohydrate, and fat content using reference chemical analyses (Kjeldahl for protein, high pressure liquid chromatography for carbohydrates, and Mojonnier for fat). Calorie content was calculated. A total of 64 samples from 24 participants was analyzed. Wide variability was found in calorie, protein, carbohydrate, and fat composition. The authors found an average of 17.9 kcal/ounce, with only 34% of samples falling within 10% of the expected caloric density. The assumption that human milk contains 20 kcal/ounce is no longer supported based on this study. This supports promoting an individualized nutrition strategy as a crucial aspect to optimal nutrition.

  10. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.

    PubMed

    Bohutskyi, Pavlo; Chow, Steven; Ketter, Ben; Fung Shek, Coral; Yacar, Dean; Tang, Yuting; Zivojnovich, Mark; Betenbaugh, Michael J; Bouwer, Edward J

    2016-12-01

    An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber®, harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production (<2%), both whole biomass and lipid-extracted algal residues (LEA) yielded ∼0.2LmethanepergVS at loading rates up to 5gVS/L-day. Importantly, essential macro-nutrients and trace elements captured from stormwater were released into the AD effluent as soluble nutrients and were successfully tested as fertilizer replacement for cultivation of lipid-accumulating C. sorokiniana in a subsequent stage. Accordingly, filamentous algae poly-culture was exploited for waste nutrient capturing and biofuel feedstock generation. These nutrients were recovered and reused as a concentrated supplement for potentially high-value microalgae. Published by Elsevier Ltd.

  11. Use of hydroponics culture to assess nutrient supply by treated wastewater.

    PubMed

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume

    2013-09-30

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. [Research on output and quality of Panax notoginseng and annual change characteristics of N, P and K nutrients of planting soil under stereo-cultivation].

    PubMed

    Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye

    2015-08-01

    The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P

  13. Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment

    NASA Astrophysics Data System (ADS)

    Armitage, A. R.; Fourqurean, J. W.

    2016-01-01

    The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50-100 %. Soil carbon content slightly decreased ( ˜ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen : phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded an approximate threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m-2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.

  14. Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment

    NASA Astrophysics Data System (ADS)

    Armitage, A. R.; Fourqurean, J. W.

    2015-10-01

    The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50-100 %. Soil carbon content slightly decreased (~ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen: phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded a threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m-2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.

  15. Examination of the food and nutrient content of school lunch menus of two school districts in Mississippi.

    PubMed

    Addison, Clifton C; Jenkins, Brenda W; White, Monique S; Young, Lavon

    2006-09-01

    This study examined the diet quality of the school meals in two Mississippi school districts and compared them to the national guidelines. We examined the lunch menus of the two school districts that participated in the National School Lunch Program and School Breakfast Program focusing on food quality and assessing both healthy and unhealthy foods and eating behaviors. This analysis was completed through a computerized review used to accurately determine the nutrient content. Both the standard and the alternative meals provided by the cafeterias in the two school districts exceeded the minimum requirement for calories for all grade levels. The meals from the urban schools cafeteria provide more calories than meals from the cafeteria in the rural school district. Although schools believe that they are making positive changes to children's diets, the programs are falling short of the nutrient recommendations. Poor nutrition and improper dietary practices are now regarded as important risk factors in the emerging problems of obesity, diabetes mellitus, hypertension and other chronic diseases, with excessive energy intake listed as a possible reason. Dieticians, school professionals and other health care practitioners need to accurately assess energy intake and adequately promote a dietary responsible lifestyle among children.

  16. Effects of processing methods on nutrient and antinutrient composition of yellow yam (Dioscorea cayenensis) products.

    PubMed

    Adepoju, Oladejo Thomas; Boyejo, Oluwatosin; Adeniji, Paulina Olufunke

    2018-01-01

    There is dearth of documented information on nutrient retention of Dioscorea cayenensis products. This study was carried out to evaluate effects of processing methods on nutrient and antinutrient retention of yellow yam products. Fresh Dioscorea cayenensis tubers were purchased from Bodija market in Ibadan, peeled, cut into small pieces, divided into nine portions. One portion was treated as raw sample, and others processed into local delicacies. All nine samples were analysed for proximate, mineral, vitamin and antinutrient composition using AOAC methods. Data were analysed using ANOVA at p=0.05. Raw yam contained 66.79g moisture, 2.62g crude protein, 0.27g lipid, 0.17g fibre, 0.63g ash, 29.69g carbohydrates, 262.30mg potassium, 61.53mg magnesium, 0.79mg iron, 0.39mg zinc, and yielded 108.26kcal energy with insignificant vitamin content/100g edible portion. Processing significantly improved macronutrients and energy content with significant reduction in all antinutrients of products (p<0.05). The yam products can serve as staple source of energy to consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    PubMed

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  18. Nutrient storage cells isolation from mantle tissue of Mytilus galloprovincialis: glucose release and glycogen content.

    PubMed

    Crespo, C A; Espinosa, J

    1990-09-01

    A method for obtaining isolated mantle nutrient storage cells and purifying vesicular (VC) and adipogranular (ADG) cells from mantle tissue of Mytilus galloprovincialis is reported. Tissue digestion is partly mechanical (stirring) and partly enzymatic (collagenase + dispase). Purification is carried out through continuous and discontinuous Percoll gradients. VC appears in fraction 3 (d = 1.05-1.08 g/ml) and ADG in fraction 2 (d = 1.09 g/ml). Intracellular glycogen and free-glucose content in September-April period is studied. When glycogen is detectable it is always accompanied by intracellular free-glucose pool in a concentration relationship glycogen/glucose 10:1. Furthermore, a glucose releasing activity elicited by the Ca2(+)-ionophore A23187 was found in isolated cells, which reproduce the former behaviour found with mantle tissue fragments in our laboratory.

  19. Topographic controls on soil nutrient variations in a Silvopasture system

    USDA-ARS?s Scientific Manuscript database

    Topography plays a crucial role in the spatial distribution of nutrients in soils because of its influence on the flow and (re)distribution of water and energy in a landscape. Information on the spatial pattern of soil nutrient distribution would benefit management decisions to maximize crop yield a...

  20. The 9-MilCA method as a rapid, partly automated protocol for simultaneously recording milk coagulation, curd firming, syneresis, cheese yield, and curd nutrients recovery or whey loss.

    PubMed

    Cipolat-Gotet, C; Cecchinato, A; Stocco, G; Bittante, G

    2016-02-01

    The aim of this study was to propose and test a new laboratory cheesemaking procedure [9-mL milk cheesemaking assessment (9-MilCA)], which records 15 traits related to milk coagulation, curd firming, syneresis, cheese yield, and curd nutrients recovery or whey loss. This procedure involves instruments found in many laboratories (i.e., heaters and lacto-dynamographs), with an easy modification of the sample rack for the insertion of 10-mL glass tubes. Four trials were carried out to test the 9-MilCA procedure. The first trial compared 8 coagulation and curd firming traits obtained using regular or modified sample racks to process milk samples from 60 cows belonging to 5 breeds and 3 farms (480 tests). The obtained patterns exhibited significant but irrelevant between-procedure differences, with better repeatability seen for 9-MilCA. The second trial tested the reproducibility and repeatability of the 7 cheesemaking traits obtained using the 9-MilCA procedure on individual samples from 60 cows tested in duplicate in 2 instruments (232 tests). The method yielded very repeatable outcomes for all 7 tested cheese yield and nutrient recovery traits (repeatability >98%), with the exception of the fresh cheese yield (84%), which was affected by the lower repeatability (67%) of the water retained in the curd. In the third trial (96 tests), we found that using centrifugation in place of curd cooking and draining (as adopted in several published studies) reduced the efficiency of whey separation, overestimated all traits, and worsened the repeatability. The fourth trial compared 9-MilCA with a more complex model cheese-manufacturing process that mimics industry practices, using 1,500-mL milk samples (72 cows, 216 tests). The average results obtained from 9-MilCA were similar to those obtained from the model cheeses, with between-method correlations ranging from 78 to 99%, except for the water retained in the curd (r=54%). Our results indicate that new 9-MilCA method is a

  1. Generalized Nutrient Taxes Can Increase Consumer Welfare.

    PubMed

    Bishai, David

    2015-11-01

    Certain nutrients can stimulate appetite making them fattening in a way that is not fully conveyed by the calorie content on the label. For rational eaters, this information gap could be corrected by more labeling. As an alternative, this paper proposes a set of positive and negative taxes on the fattening and slimming nutrients in food rather than on the food itself. There are conditions under which this tax plus subsidy system could increase welfare by stopping unwanted weight gain while leaving the final retail price of food unchanged. A nutrient tax system could improve welfare if fattening nutrients, net of their effect on weight, are inferior goods and the fiscal cost of administering the tax is sufficiently low. More data on the price elasticity of demand for nutrients as well as data on how specific nutrients affect satiety and how total calorie intake would be necessary before one could be sure a nutrient tax would work in practice. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array.

    PubMed

    Schönhals, Elske Maria; Ding, Jia; Ritter, Enrique; Paulo, Maria João; Cara, Nicolás; Tacke, Ekhard; Hofferbert, Hans-Reinhard; Lübeck, Jens; Strahwald, Josef; Gebhardt, Christiane

    2017-08-22

    Tuber yield and starch content of the cultivated potato are complex traits of decisive importance for breeding improved varieties. Natural variation of tuber yield and starch content depends on the environment and on multiple, mostly unknown genetic factors. Dissection and molecular identification of the genes and their natural allelic variants controlling these complex traits will lead to the development of diagnostic DNA-based markers, by which precision and efficiency of selection can be increased (precision breeding). Three case-control populations were assembled from tetraploid potato cultivars based on maximizing the differences between high and low tuber yield (TY), starch content (TSC) and starch yield (TSY, arithmetic product of TY and TSC). The case-control populations were genotyped by restriction-site associated DNA sequencing (RADseq) and the 8.3 k SolCAP SNP genotyping array. The allele frequencies of single nucleotide polymorphisms (SNPs) were compared between cases and controls. RADseq identified, depending on data filtering criteria, between 6664 and 450 genes with one or more differential SNPs for one, two or all three traits. Differential SNPs in 275 genes were detected using the SolCAP array. A genome wide association study using the SolCAP array on an independent, unselected population identified SNPs associated with tuber starch content in 117 genes. Physical mapping of the genes containing differential or associated SNPs, and comparisons between the two genome wide genotyping methods and two different populations identified genome segments on all twelve potato chromosomes harboring one or more quantitative trait loci (QTL) for TY, TSC and TSY. Several hundred genes control tuber yield and starch content in potato. They are unequally distributed on all potato chromosomes, forming clusters between 0.5-4 Mbp width. The largest fraction of these genes had unknown function, followed by genes with putative signalling and regulatory functions. The

  3. Characterization of Hanwoo Bovine By-products by Means of Yield, Physicochemical and Nutritional Compositions

    PubMed Central

    Moon, Sung Sil

    2014-01-01

    Though the edible bovine by-products are widely used for human consumption in most countries worldwide but the scientific information regarding the nutritional quality of these by-products is scarce. In the present study, the basic information regarding the yields, physicochemical and nutritional compositions of edible Hanwoo bovine by-products was studied. Our results showed that the yields, physicochemical and nutritional composition widely varied between the by-products examined. The highest pH values were found in rumen, reticulum, omasum and reproductive organ. Heart, liver, kidney and spleen had the lowest CIE L* values and highest CIE a* values. Liver had the highest vitamin A, B2 and niacin contents whereas the highest B1 and B5 contents were found in kidney. The highest Ca content was found in rumen, reticulum, omasum, head and leg while the highest Mn and Fe contents were found in rumen, omasum and spleen, respectively. Liver had the highest Cu content. Total essential amino acids (EAA)/amino acids (AA) ratios ranged between the by-products from 38.37% to 47.41%. Total polyunsaturated fatty acids (PUFA) levels ranged between the by-products from 2.26% to 26.47%, and most by-products showed favorable PUFA/SFA ratios. It is concluded that most of by-products examined are good sources of essential nutrients and these data will be of great importance for promotion of consumption and utilization of beef by-products in future. PMID:26761281

  4. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content?

    NASA Astrophysics Data System (ADS)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan

    2017-04-01

    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., < 2 ha) under different forest fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes

  5. The influence of spruce on acidity and nutrient content in soils of Northern Taiga dwarf shrub-green moss spruce forests

    NASA Astrophysics Data System (ADS)

    Orlova, M. A.; Lukina, N. V.; Smirnov, V. E.; Artemkina, N. A.

    2016-11-01

    Presently, among the works considering the influence of forest trees on soil properties, the idea that spruce ( Picea abies) promotes the acidification of soils predominates. The aim of this work is to assess the effects of spruce trees of different ages and Kraft classes on the acidity and content of available nutrient compounds in the soils under boreal dwarf shrub-green moss spruce forests by the example of forest soils in the Kola Peninsula. The soils are typical iron-illuvial podzols (Albic Rustic Podzols (Arenic)). Three probable ways of developing soils under spruce forests with the moss-dwarf shrub ground cover are considered. The soils under windfall-soil complexes of flat mesodepressions present the initial status. The acidity of organic soil horizons from the initial stage of mesodepression overgrowth to the formation of adult trees changed nonlinearly: the soil acidity reached its maximum under the 30-40-year-old trees and decreased under the trees older than 100 years. The contents of nitrogen and available nutrients increased. The acidity of the mineral soil horizons under the trees at the ages of 110-135 and 190-220 years was comparable, but higher than that under the 30-40-year-old trees. The differences in the strength and trends of the trees' effect on the soils are explained by the age of spruce trees and their belonging to different Kraft classes.

  6. Nitrogen source and application method impact on corn yield and nutrient uptake

    USDA-ARS?s Scientific Manuscript database

    Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...

  7. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.

    PubMed

    Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv

    2017-03-01

    The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic

  8. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  9. Nutrient management effects on sweetpotato genotypes under controlled environment

    NASA Technical Reports Server (NTRS)

    David, P. P.; Bonsi, C. K.; Trotman, A. A.; Douglas, D. Z.

    1996-01-01

    Sweetpotato is one of several crops recommended by National Aeronautics and Space Administration (NASA) for bioregenerative life support studies. One of the objectives of the Tuskegee University NASA Center is to optimize growth conditions for adaptability of sweetpotatoes for closed bioregenerative systems. The role of nutrient solution management as it impacts yield has been one of the major thrusts in these studies. Nutrient solution management protocol currently used consists of a modified half Hoagland solution that is changed at 14-day intervals. Reservoirs are refilled with deionized water if the volume of the nutrient solution was reduced to 8 liters or less before the time of solution change. There is the need to recycle and replenish nutrient solution during crop growth, rather than discard at 14 day intervals as previously done, in order to reduce waste. Experiments were conducted in an environmental growth room to examine the effects of container size on the growth of several sweetpotato genotypes grown under a nutrient replenishment protocol. Plants were grown from vine cuttings of 15cm length and were planted in 0.15 x 0.15 x 1.2m growth channels using a closed nutrient film technique system. Nutrient was supplied in a modified half strength Hoagland's solution with a 1:2.4 N:K ratio. Nutrient replenishment protocol consisted of daily water replenishment to a constant volume of 30.4 liters in the small containers and 273.6 liters in the large container. Nutrients were replenished as needed when the EC of the nutrient solution fell below 1200 mhos/cm. The experimental design used was a split-plot with the main plot being container size and genotypes as the subplot. Nine sweetpotato genotypes were evaluated. Results showed no effect of nutrient solution container size on storage root yield, foliage fresh and dry mass, leaf area or vine length. However, plants grown using the large nutrient solution container accumulated more storage root dry mass than

  10. Processes in ranking nutrients of foods in a food data base.

    PubMed

    Khan, A S

    1996-01-01

    Depending on the type of user, it is possible that there are many purposes for retrieval of foods from a computerised nutrient data base. A Dietitian on one occasion may need to come up with a qualified assessment of foods in the process of diet construction so that the process of balancing nutrients for the diet takes less time. On another occasion the dietitian may want to recommend a food for a client which requires knowledge of the standing of that food with respect to one or more of its contents of nutrients. A dietitian is not able to memorise all the foods and their nutrient content. Moreover if the number of foods is many then the dietitian's ability to refer foods according to their standing may become impossible. Ranking foods with respect to their nutrient contents within a reasonable number could be very useful for dietetic purposes. This paper discusses the processes of ranking of foods as high, medium and low only, and proposes guidelines which can be referred to for rejecting inappropriate ranking schemes of foods. The proposed guidelines are based on the results of experiments which are included in this paper.

  11. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.

    PubMed

    Nath, Manoj; Tuteja, Narendra

    2016-05-01

    Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input.

  12. Nutrient elements in large Chinese estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Jing

    1996-07-01

    Based on comprehensive observations since 1983, this study summarizes major features of nutrient elements (nitrogen, phosphorus and silicon) in large Chinese river/estuary systems. Elevated nutrient element levels were observed in Chinese rivers, when compared to large and less disturbed aquatic systems (e.g. the Amazon, Zaire and Orinoco). Data from this study are similar to those obtained from the polluted and/or eutrophic rivers in Europe and North America (e.g. the Rhóne and Loire). Nutrient elements may have either conservative or active distributions, or both, in the mixing zone, depending on the element and the estuary. For example, non-conservative behaviors were observed in the upper estuary, where nutrient elements may be remobilized due to the strong desorption and variations of the fresh water end-member, but conservative distributions were found afterwards in the lower estuary. Outside the riverine effluent plumes, nutrient elements may be depleted in surface waters relative to elevated bioproduction, whereas the regeneration with respect to decomposition of organic material and/or nitrification/denitrification offshore, may sustain high levels of nutrient elements in near-bottom waters. Laboratory experiment data generally compares well with field observations. The high fluxes and area] yields of nutrient elements from large Chinese rivers, indicate the extensive use of chemical fertilizers and domestic waste drainage over watersheds in China.

  13. Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest

    USGS Publications Warehouse

    Romero, L.M.; Smith, T. J.; Fourqurean, J.W.

    2005-01-01

    1 Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2 Wood disks (8-10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3 A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4 Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ?? 2% of dry weight), while Laguncularia racemosa had the lowest (10 ?? 2%). Labile components decayed at rates of 0.37-23.71% month -1, while refractory components decayed at rates of 0.001-0.033% month-1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5 Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6 Newly deposited wood from living trees was

  14. Effects of inclusion level on nutrient digestibility and energy content of wheat middlings and soya bean meal for growing pigs.

    PubMed

    Huang, Qiang; Piao, Xiangshu; Liu, Ling; Li, Defa

    2013-01-01

    Two experiments were conducted to determine the effects of inclusion level of wheat middlings and soya bean meal on apparent total tract digestibility (ATTD) of energy and chemical components of these ingredients in growing pigs. Furthermore, the effects of the inclusion level on their contents of digestible energy (DE) and metabolisable energy (ME) were also determined by the difference method. In Experiment 1, six diets were fed to 36 growing pigs according to a completely randomised design. The basal diet was a corn-soya bean meal diet while the other five diets contained 9.6%, 19.2%, 28.8%, 38.4% or 48.0% of wheat middlings added at the expense of corn and soya bean meal. The measured digestibility of energy and most nutrients of wheat middlings increased (p < 0.05) with increasing levels of that ingredient. Equations were obtained to predict digestibility by inclusion level. At an inclusion level of 9.6% wheat middlings, their DE contents were significantly lower (8.9 MJ/kg DM) than for the higher levels (10.7 to 11.9 MJ/kg DM, p < 0.01). In Experiment 2, three diets were fed to 18 growing pigs according to a completely randomised block design. The basal diet was a corn-based diet while the other two diets were based on corn and two levels of soya bean meal (22.2% and 33.6%). The content of DE in soya bean meal did not differ at 22.2% and 33.6% inclusion levels (16.2 and 16.3 MJ/kg DM, respectively), but the digestibility of dry matter (DM), organic matter and carbohydrates was increased at a higher inclusion level (p < 0.05). This study revealed that the estimated digestibility of nutrients from soya bean meal and wheat middlings was affected by their dietary inclusion levels. For soya bean meal, the estimated energy contents was independent of its inclusion level, but not for wheat middlings. Therefore, the inclusion level of wheat middlings has to be considered for estimating their energy value.

  15. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    NASA Technical Reports Server (NTRS)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  16. The nonlinear effect of somatic cell count on milk composition, coagulation properties, curd firmness modeling, cheese yield, and curd nutrient recovery.

    PubMed

    Bobbo, T; Cipolat-Gotet, C; Bittante, G; Cecchinato, A

    2016-07-01

    The aim of this study was to investigate the relationships between somatic cell count (SCC) in milk and several milk technological traits at the individual cow level. In particular, we determined the effects of very low to very high SCC on traits related to (1) milk yield and composition; (2) coagulation properties, including the traditional milk coagulation properties (MCP) and the new curd firming model parameters; and (3) cheese yield and recovery of milk nutrients in the curd (or loss in the whey). Milk samples from 1,271 Brown Swiss cows from 85 herds were used. Nine coagulation traits were measured: 3 traditional MCP [rennet coagulation time (RCT, min), curd firming rate (k20, min), and curd firmness after 30 min (a30, mm)] and 6 new curd firming and syneresis traits [potential asymptotic curd firmness at infinite time (CFP, mm), curd firming instant rate constant (kCF, % × min(-1)), syneresis instant rate constant (kSR, % × min(-1)), rennet coagulation time estimated using the equation (RCTeq, min), maximum curd firmness achieved within 45 min (CFmax, mm), and time at achievement of CFmax (tmax, min)]. The observed cheese-making traits included 3 cheese yield traits (%CYCURD, %CYSOLIDS, and %CYWATER, which represented the weights of curd, total solids, and water, respectively, as a percentage of the weight of the processed milk) and 4 nutrient recoveries in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY, which each represented the percentage ratio between the nutrient in the curd and milk). Data were analyzed using a linear mixed model with the fixed effects of days in milk, parity, and somatic cell score (SCS), and the random effect of herd-date. Somatic cell score had strong influences on casein number and lactose, and also affected pH; these were traits characterized by a quadratic pattern of the data. The results also showed a negative linear relationship between SCS and milk yield. Somatic cell score influenced almost all of the tested

  17. Examination of the Food and Nutrient Content of School Lunch Menus of Two School Districts in Mississippi

    PubMed Central

    Addison, Clifton C.; Jenkins, Brenda W.; White, Monique S.; Young, Lavon

    2006-01-01

    This study examined the diet quality of the school meals in two Mississippi school districts and compared them to the national guidelines. We examined the lunch menus of the two school districts that participated in the National School Lunch Program and School Breakfast Program focusing on food quality and assessing both healthy and unhealthy foods and eating behaviors. This analysis was completed through a computerized review used to accurately determine the nutrient content. Both the standard and the alternative meals provided by the cafeterias in the two school districts exceeded the minimum requirement for calories for all grade levels. The meals from the urban schools cafeteria provide more calories than meals from the cafeteria in the rural school district. Although schools believe that they are making positive changes to children’s diets, the programs are falling short of the nutrient recommendations. Poor nutrition and improper dietary practices are now regarded as important risk factors in the emerging problems of obesity, diabetes mellitus, hypertension and other chronic diseases, with excessive energy intake listed as a possible reason. Dieticians, school professionals and other health care practitioners need to accurately assess energy intake and adequately promote a dietary responsible lifestyle among children. PMID:16968975

  18. The Nutrient Balance Concept: A New Quality Metric for Composite Meals and Diets

    PubMed Central

    Fern, Edward B; Watzke, Heribert; Barclay, Denis V.; Roulin, Anne; Drewnowski, Adam

    2015-01-01

    Background Combinations of foods that provide suitable levels of nutrients and energy are required for optimum health. Currently, however, it is difficult to define numerically what are ‘suitable levels’. Objective To develop new metrics based on energy considerations—the Nutrient Balance Concept (NBC)—for assessing overall nutrition quality when combining foods and meals. Method The NBC was developed using the USDA Food Composition Database (Release 27) and illustrated with their MyPlate 7-day sample menus for a 2000 calorie food pattern. The NBC concept is centered on three specific metrics for a given food, meal or diet—a Qualifying Index (QI), a Disqualifying Index (DI) and a Nutrient Balance (NB). The QI and DI were determined, respectively, from the content of 27 essential nutrients and 6 nutrients associated with negative health outcomes. The third metric, the Nutrient Balance (NB), was derived from the Qualifying Index (QI) and provided key information on the relative content of qualifying nutrients in the food. Because the Qualifying and Disqualifying Indices (QI and DI) were standardized to energy content, both become constants for a given food/meal/diet and a particular consumer age group, making it possible to develop algorithms for predicting nutrition quality when combining different foods. Results Combining different foods into composite meals and daily diets led to improved nutrition quality as seen by QI values closer to unity (indicating nutrient density was better equilibrated with energy density), DI values below 1.0 (denoting an acceptable level of consumption of disqualifying nutrients) and increased NB values (signifying complementarity of foods and better provision of qualifying nutrients). Conclusion The Nutrient Balance Concept (NBC) represents a new approach to nutrient profiling and the first step in the progression from the nutrient evaluation of individual foods to that of multiple foods in the context of meals and total

  19. Effect of temperature, time, and milling process on yield, flavonoid, and total phenolic content of Zingiber officinale water extract

    NASA Astrophysics Data System (ADS)

    Andriyani, R.; Kosasih, W.; Ningrum, D. R.; Pudjiraharti, S.

    2017-03-01

    Several parameters such as temperature, time of extraction, and size of simplicia play significant role in medicinal herb extraction. This study aimed to investigate the effect of those parameters on yield extract, flavonoid, and total phenolic content in water extract of Zingiber officinale. The temperatures used were 50, 70 and 90°C and the extraction times were 30, 60 and 90 min. Z. officinale in the form of powder and chips were used to study the effect of milling treatment. The correlation among those variables was analysed using ANOVA two-way factors without replication. The result showed that time and temperature did not influence the yield of extract of Powder simplicia. However, time of extraction influenced the extract of simplicia treated without milling process. On the other hand, flavonoid and total phenolic content were not influenced by temperature, time, and milling treatment.

  20. 9 CFR 317.369 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS Nutrition... of the food component characterized by the claim is of importance in human nutrition by virtue of its... intake of nutrients that have beneficial and negative consequences in the total diet. If the claim is...

  1. 9 CFR 317.369 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS Nutrition... of the food component characterized by the claim is of importance in human nutrition by virtue of its... intake of nutrients that have beneficial and negative consequences in the total diet. If the claim is...

  2. 9 CFR 381.469 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Nutrition Labeling... of the food component characterized by the claim is of importance in human nutrition by virtue of its... intake of nutrients that have beneficial and negative consequences in the total diet. If the claim is...

  3. 9 CFR 317.369 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS Nutrition... of the food component characterized by the claim is of importance in human nutrition by virtue of its... intake of nutrients that have beneficial and negative consequences in the total diet. If the claim is...

  4. 9 CFR 317.369 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS Nutrition... of the food component characterized by the claim is of importance in human nutrition by virtue of its... intake of nutrients that have beneficial and negative consequences in the total diet. If the claim is...

  5. 9 CFR 381.469 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Nutrition Labeling... of the food component characterized by the claim is of importance in human nutrition by virtue of its... intake of nutrients that have beneficial and negative consequences in the total diet. If the claim is...

  6. 9 CFR 381.469 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Nutrition Labeling... of the food component characterized by the claim is of importance in human nutrition by virtue of its... intake of nutrients that have beneficial and negative consequences in the total diet. If the claim is...

  7. 9 CFR 381.469 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Nutrition Labeling... of the food component characterized by the claim is of importance in human nutrition by virtue of its... intake of nutrients that have beneficial and negative consequences in the total diet. If the claim is...

  8. Adding worms during composting of organic waste with red mud and fly ash reduces CO2 emissions and increases plant available nutrient contents.

    PubMed

    Barthod, J; Rumpel, C; Calabi-Floody, M; Mora, M-L; Bolan, N S; Dignac, M-F

    2018-09-15

    Alkaline industrial wastes such as red mud and fly ash are produced in large quantities. They may be recycled as bulking agent during composting and vermicomposting, converting organic waste into soil amendments or plant growth media. The aim of this study was to assess the microbial parameters, greenhouse gas emissions and nutrient availability during composting and vermicomposting of household waste with red mud and fly ash 15% (dry weight). CO 2 , CH 4 and N 2 O emissions were monitored during 6 months in controlled laboratory conditions and microbial biomass and phospholipid acids, N and P availability were analysed in the end-products. Higher CO 2 emissions were observed during vermicomposting compared to composting. These emissions were decreased by red mud addition, while fly ash had no effect. Nitrate (NO 3 -N) content of the end-products were more affected by worms than by alkaline materials, while higher ammonium (NH 4 -N) contents were recorded for composts than vermicomposts. Red mud vermicompost showed higher soluble P proportion than red mud compost, suggesting that worm presence can counterbalance P adsorption to the inorganic matrix. Final composts produced with red mud showed no harmful heavy metal concentrations. Adding worms during composting thus improved the product nutrient availability and did not increase metal toxicity. From a practical point of view, this study suggests that for carbon stabilisation and end-product quality, the addition of red mud during composting should be accompanied by worm addition to counterbalance negative effects on nutrient availability. Copyright © 2018. Published by Elsevier Ltd.

  9. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    PubMed

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Soil redistribution and nutrient delivery in a Mediterranean rain-fed agro-ecosystem with different crops and management: environmental and economic aspects

    NASA Astrophysics Data System (ADS)

    López-Vicente, Manuel; Álvarez, Sara

    2017-04-01

    Mediterranean agro-ecosystems are characterised by fragmented fields and patched vegetation. This shape governs the spatial patterns of water, soil and nutrient redistribution. Rainfall parameters, human infrastructures, crop management, support practices, and land use changes (set aside crops, land abandonment) control the magnitude of these processes. Under rain-fed water supply conditions, runoff generation and soil water content are two important factors in determining crop yield. Soil erosion and nutrient delivery are two of the factors which limit crop yield and thus, the gross earning of the landowner. In hilly landscapes, farmers usually supply extra soil to fill in the ephemeral gullies, and nutrient replenishment with fertilizers is a common practice. The aim of this study is to evaluate the environmental (runoff yield, soil erosion and nutrient delivery) and economic (replenishment of soil and nutrient losses with new soil and fertilizers) consequences of different conventional and conservative practices (fallow/crop rotation, cover crops, land abandonment, buffer strips) in a Mediterranean rain-fed agro-ecosystem (27 ha) with vineyards, cereal crops, cultivated and abandoned olive orchards, several trails and patches of natural vegetation. The five winter cereal fields (wheat and barley) follow fallow/crop rotation. The four vineyards are devoted to the Garnacha variety: one planted in 2007 with white wine grapes, and three planted in 2008 with red wine grapes. The inter-crop strips are managed with a mixture of plant species as cover crop (CC), including: i) spontaneous vegetation, and ii) plantation of common sainfoin (Onobrychis viciifolia). The maintenance of the CC includes one mowing pass at the end of spring, between May and June. The appearance and development of ephemeral gullies and the deposition of soil at the bottom of the hillslope are two of the main concerns of the landowners. In some places, the accumulation of soil complicates grape

  11. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2013-07-01

    The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress

  12. Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.

    PubMed

    Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M

    2017-06-01

    This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 9 CFR 317.369 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and scientific data sufficient for such purpose, and data and information to the extent necessary to... accordance with 317.309(h). If no USDA or AOAC methods are available, the applicant shall submit the assay method used, and data establishing the validity of the method for assaying the nutrient in the particular...

  14. 9 CFR 381.469 - Labeling applications for nutrient content claims.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and scientific data sufficient for such purpose, and data and information to the extent necessary to... accordance with 381.409(h). If no USDA or AOAC methods are available, the applicant shall submit the assay method used, and data establishing the validity of the method for assaying the nutrient in the particular...

  15. Impact of Salt and Nutrient Content on Biofilm Formation by Vibrio fischeri.

    PubMed

    Marsden, Anne E; Grudzinski, Kevin; Ondrey, Jakob M; DeLoney-Marino, Cindy R; Visick, Karen L

    2017-01-01

    Vibrio fischeri, a marine bacterium and symbiont of the Hawaiian bobtail squid Euprymna scolopes, depends on biofilm formation for successful colonization of the squid's symbiotic light organ. Here, we investigated if culture conditions, such as nutrient and salt availability, affect biofilm formation by V. fischeri by testing the formation of wrinkled colonies on solid media. We found that V. fischeri forms colonies with more substantial wrinkling when grown on the nutrient-dense LBS medium containing NaCl relative to those formed on the more nutrient-poor, seawater-salt containing SWT medium. The presence of both tryptone and yeast extract was necessary for the production of "normal" wrinkled colonies; when grown on tryptone alone, the colonies displayed a divoting phenotype and were attached to the agar surface. We also found that the type and concentration of specific seawater salts influenced the timing of biofilm formation. Of the conditions assayed, wrinkled colony formation occurred earliest in LBS(-Tris) media containing 425 mM NaCl, 35 mM MgSO4, and 5 mM CaCl2. Pellicle formation, another measure of biofilm development, was also enhanced in these growth conditions. Therefore, both nutrient and salt availability contribute to V. fischeri biofilm formation. While growth was unaffected, these optimized conditions resulted in increased syp locus expression as measured by a PsypA-lacZ transcriptional reporter. We anticipate these studies will help us understand how the natural environment of V. fischeri affects its ability to form biofilms and, ultimately, colonize E. scolopes.

  16. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  17. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens

    PubMed Central

    Emsens, Willem-Jan; Aggenbach, Camiel J. S.; Schoutens, Ken; Smolders, Alfons J. P.; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  18. Nutrient and antinutrient composition of yellow yam (Dioscorea cayenensis) products.

    PubMed

    Adepoju, Oladejo Thomas; Boyejo, Oluwatosin; Adeniji, Paulina Olufunke

    2017-04-01

    The data presented in this article are related to research article titled "Effects of processing methods on nutrient and antinutrient composition of yellow yam ( Dioscorea cayenensis ) products" (Adepoju et al., 2016) [1]. This article documented information on nutrient and antinutrient composition as well as nutrient retention of Dioscorea cayenensis products. Fresh Dioscorea cayenensis tubers obtained from Bodija market were prepared into raw sample and local delicacies and analysed for proximate, mineral, vitamin and antinutrient composition using AOAC methods [2]. Data obtained were analysed using ANOVA, and level of significance set at p<0.05. Processing significantly improved macronutrients and energy content of yam products, and led to significant reduction in values of all antinutrient content of the products (p<0.05).

  19. Drug-nutrient interactions and their implications for safety evaluations.

    PubMed

    Conner, M W; Newberne, P M

    1984-06-01

    In order to assess the relevance of the drug-nutrient interactions described in this chapter to routine toxicologic studies, the range of nutrient concentrations within which these interactions may occur must be compared to the range of nutrient concentrations found in routinely used rodent diets. While obviously deficient levels of some nutrients were supplied to demonstrate some of the interactions, others occur when the nutrients are present in adequate or excess levels, such as might be found in commercially available diets. These diets are known to vary from batch to batch in nutrient content. A lifetime toxicity/carcinogenicity bioassay using rodents may last longer than 2 years, during which time several batches of diet will be used. The variation in diet composition, coupled with inadequate diet description, makes nutrient-toxin interactions not only possible, but difficult to recognize. These considerations raise the practical and philosophical question as to what type of diet is most appropriate for rodents used for safety evaluation of drugs and chemicals. Is it appropriate to use diets that vary unpredictably in nutrient content, that infer a degree of protection against chemical carcinogenesis and which supply some nutrients such as protein in great excess of dietary needs? Is the increase in sensitivity to chemical carcinogens of animals fed purified diets desirable or does this increased sensitivity of the bioassay exceed that required to assess the risk of human exposure? In other words, is the use of purified diets likely to increase the number of false positive results? Proper interpretation and extrapolation of safety evaluation studies requires adequate description of the test system. Given the profound influence of diet on the response to some toxins, the composition of the diet should, ideally, be defined with the same rigor as are the test compound and the strain, age, sex, and housing conditions of the animals. It is likely, however, that

  20. Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile.

    PubMed

    González, Angélica L; Fariña, José Miguel; Pinto, Raquel; Pérez, Cecilia; Weathers, Kathleen C; Armesto, Juan J; Marquet, Pablo A

    2011-11-01

    Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which

  1. Soils and nutrient considerations

    Treesearch

    Thomas H. DeLuca

    2000-01-01

    Fire suppression has resulted in a buildup of forest litter and an accumulation of organic nitrogen, and a decrease in available potassium. This has changed the historic structure of soils and their nutrient content. Studies at 15 sites in Montana have looked at a wide range of changes in soil productivity following prescribed fire. Results indicate obvious benefits to...

  2. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil.

    PubMed

    Saleem, Muhammad; Asghar, Hafiz Naeem; Zahir, Zahir Ahmad; Shahid, Muhammad

    2018-03-01

    Present study was conducted to evaluate the effect of lead tolerant plant growth promoting rhizobacteria (LTPGPR) on growth, physiology, yield, antioxidant activities and lead uptake in sunflower in soil contaminated with lead under pot conditions. Three pre-characterized LTPGP strains (S2 (Pseudomonas gessardii strain BLP141), S5 (Pseudomonas fluorescens A506) and S10 (Pseudomonas fluorescens strain LMG 2189)) were used to inoculate sunflower growing in soil contaminated with different levels (300, 600 and 900 mg kg -1 ) of lead by using lead nitrate salt as source of lead. Treatments were arranged according to completely randomized design with factorial arrangements. At harvesting, data regarding growth attributes (root shoot length, root shoot fresh and dry weights), yield per plant, physiological attributes (Chlorophyll 'a', 'b' and carotenoids content), antioxidant activities (Ascorbate peroxidase, catalase, superoxide dismutase and glutathione reductase), proline and malanodialdehyde content, and lead content in root, shoot and achenes of sunflower were recorded. Data were analysed by standard statistical procedures. Results showed that lead contamination reduced the plants growth, physiology and yield at all levels of lead stress. But application of LTPGPR in soil contaminated with lead improved plant growth, physiology, yield, and antioxidant activities, proline, and reduced the malanodialdehyde content (that is reduced by the application of different strains in lead contamination) of sunflower as compared to plants grown in soil without inoculation. Inoculation also promoted the uptake of lead in root, shoots and reduced the uptake of lead in achenes of plants as compared to plants in lead contamination without inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dairy cows fed on tropical legume forages: effects on milk yield, nutrients use efficiency and profitability.

    PubMed

    Castro-Montoya, J M; García, R A; Ramos, R A; Flores, J M; Alas, E A; Corea, E E

    2018-04-01

    Two trials with multiparous dairy cows were conducted. Experiment 1 tested the effects of increasing forage proportion in the diet (500, 600, and 700 g/kg DM) when a mixed sorghum (Sorghum bicolor) and jackbean (Cannavalia ensiformis) silage was used as forage. Experiment 2 studied the substitution of sorghum silage and soybean meal by jackbean silage or fresh cowpea (Vigna unguiculata) forage in the diet. All diets were iso-energetic and iso-proteic. In each experiment, 30 cows were used and separated into three groups. In experiment 1, there were no differences in dry matter intake (DMI), milk yield (MY), or apparent total tract digestibility (aTTd) among the three diets, but milk fat content increased with increasing forage proportion, even though the similar neutral detergent fiber of all diets. Nitrogen use efficiency was highest in the diet containing 600 g forage/kg DM, and some evidence was observed for a better profitability with this forage proportion. In experiment 2, feeding legumes increased DMI despite no effects on aTTd. Milk yield increased in line with DMI, with a larger increase for the fresh cowpea. Nitrogen use efficiency and milk composition were not affected by the diets. The increased MY and lower feed costs increased the economic benefits when feeding legumes, particularly when feeding fresh cowpea. Feeding fresh cowpea or jackbean silage to dairy cows appears to be an alternative to soybean as protein source, ideally at a forage proportions of 600 g/kg DM, without altering milk yield and quality and increasing the farm profitability.

  4. High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae)

    PubMed Central

    He, Tianhua; Fowler, William M.; Causley, Casey L.

    2015-01-01

    Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea. PMID:26607493

  5. Plant response to nutrient availability across variable bedrock geologies

    USGS Publications Warehouse

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  6. Nutrient Database improvement project: Separable components and proximate composition of retail cuts from the beef chuck

    USDA-ARS?s Scientific Manuscript database

    This study was designed to provide updated information on the separable components, cooking yields, and nutrient values of retail cuts from the beef chuck. Ultimately, these data will be used in the United States Department of Agriculture (USDA) Nutrient Data Laboratory’s (NDL) National Nutrient Da...

  7. Carrot, Corn, Lettuce and Soybean Nutrient Contents are Affected by Biochar

    EPA Science Inventory

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from so...

  8. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    PubMed

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Nutrient removal from swine lagoon effluent by duckweed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, B.A.; Cheng, J.; Classen, J.

    2000-04-01

    Three duckweed geographic isolates were grown on varying concentrations of swine lagoon effluent in a greenhouse to determine their ability to remove nutrients from the effluent. Duckweed biomass was harvested every other day over a 12-day period. Duckweed biomass production, nutrient loss from the swine lagoon effluent, and nutrient content of duckweed biomass were used to identify effluent concentrations/geographic isolate combinations that are effective in terms of nutrient utilization from swine lagoon effluent and production of healthy duckweed biomass. When Lemna minor geographic isolate 8627 was grown on 50% swine lagoon effluent, respective losses of TKN, NH{sub 3}-N, TP, OPO{submore » 4}-P, TOC, K, Cu, and Zn were 83, 100, 49, 31, 68, 21, 28 and 67%.« less

  10. Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America

    NASA Astrophysics Data System (ADS)

    Faith, J. Tyler

    2011-06-01

    This study proposes an ecological mechanism for the terminal Pleistocene population collapse and subsequent extinction of North American megafauna. Observations of modern ecosystems indicate that feedback mechanisms between plant nutrient content, nitrogen cycling, and herbivore-plant interactions can vary between a nutrient accelerating mode favoring increased herbivore biomass and a nutrient decelerating mode characterized by reduced herbivore biomass. These alternate modes are determined largely by plant nitrogen content. Plant nitrogen content is known to be influenced by atmospheric CO 2 concentrations, temperature, and precipitation. It is argued that Lateglacial climate change, particularly increases in atmospheric CO 2, shifted herbivore-ecosystem dynamics from a nutrient accelerating mode to a nutrient decelerating mode at the end of the Pleistocene, leading to reduced megafaunal population densities. An examination of Sporormiella records - a proxy for megaherbivore biomass - indicates that megafaunal populations collapsed first in the east and later in the west, possibly reflecting regional differences in precipitation or vegetation structure. The fortuitous intersection of the climatically driven nitrogen sink, followed by any one or combination of subsequent anthropogenic, environmental, or extra-terrestrial mechanisms could explain why extinctions took place at the end of the Pleistocene rather than during previous glacial-interglacial cycles.

  11. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).

    PubMed

    Lu, Qin; He, Zhenli L; Graetz, Donald A; Stoffella, Peter J; Yang, Xiaoe

    2010-01-01

    Water quality impairment by nutrient enrichment from agricultural activities has been a concern worldwide. Phytoremediation technology using aquatic plants in constructed wetlands and stormwater detention ponds is increasingly applied to remediate eutrophic waters. The objectives of this study were to evaluate the effectiveness and potential of water lettuce (Pistia stratiotes L.) in removing nutrients including nitrogen (N) and phosphorus (P) from stormwater in the constructed water detention systems before it is discharged into the St. Lucie Estuary, an important surface water system in Florida, using phytoremediation technologies. In this study, water lettuce (P. stratiotes) was planted in the treatment plots of two stormwater detention ponds (East and West Ponds) in 2005-2007 and water samples from both treatment and control plots were weekly collected and analyzed for water quality properties including pH, electrical conductivity, turbidity, suspended solids, and nutrients (N and P). Optimum plant density was maintained and plant samples were collected monthly and analyzed for nutrient contents. Water quality in both ponds was improved, as evidenced by decreases in water turbidity, suspended solids, and nutrient concentrations. Water turbidity was decreased by more than 60%. Inorganic N (NH(4) (+) and NO(3) (-)) concentrations in treatment plots were more than 50% lower than those in control plots (without plant). Reductions in both PO(4) (3-) and total P were approximately 14-31%, as compared to the control plots. Water lettuce contained average N and P concentrations of 17 and 3.0 g kg(-1), respectively, and removed 190-329 kg N ha(-1) and 25-34 kg P ha(-1) annually. Many aquatic plants have been used to remove nutrients from eutrophic waters but water lettuce proved superior to most other plants in nutrient removal efficiency, owing to its rapid growth and high biomass yield potential. However, the growth and nutrient removal potential are affected by many

  12. Influence of conventional biochar and ageing biochar application to arable soil on soil fertility and plant yield

    NASA Astrophysics Data System (ADS)

    Dvořáčková, Helena; Záhora, Jaroslav; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    Biochar represents very controversial material which is product of pyrolysis. According to many studies biochar has positive effect on physical and chemical properties such as pH, conductivity, aggregates stability etc. Unfortunately biochar is product of combustion, so it can content toxic substance as are aromatic compound. These substances may have a negative effect on yield and microbial activities in soil. Our aim was eliminated concentration of toxic compound but preserved positive effect of biochar on soil properties. We was ageing/ activating of biochar in water environment and for soil inoculum we used native soil from landscape. Moreover two types of biochar was tested by pot experiment with seven variants, where conventional biochar from residual biomass and ageing biochar were applied in different doses: 10 t/ha, 20t/ha and 50 t/ha. Pots were placed in green house for 90 days and after the end of experiment the following parameters of soil fertility, health and quality were evaluated: content of soil organic matter, arbuscular mycorrhizal colonisation of Lactuca sativa L. roots, leaching of mineral nitrogen, changes in plant available nutrient content, EC and pH. Above all the total yield of indicator plant was observed. The significant (P < 0.05) differences in plant yield and soil properties were found. The application of conventional biochar didn't have positive effect on plant yield in comparison with ageing biochar. The positive effect of ageing biochar addition on soil fertility was directly proportional to the dose which were applied - increasing in dose of ageing biochar resulted in increase of plant yield. Moreover the special experimental containers were used, where we was able to monitor the development of root in soil with and without addition of biochar (conventional or ageing). The positive influence of ageing biochar addition into soil on development of Lactuca sativa L. roots was observed.

  13. Model-Based Nutrient Feeding Strategies for the Increased Production of Polyhydroxybutyrate (PHB) by Alcaligenes latus.

    PubMed

    Gahlawat, Geeta; Srivastava, Ashok K

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers which are considered as an effective alternative for conventional plastics due to their mechanical properties similar to the latter. However, the widespread use of these polymers is still hampered due to their higher cost of production as compared to plastics. The production cost could be overcome by obtaining high yields and productivity. The goal of the present research was to enhance the yield of polyhydroxybutyrate (PHB) with the help of two simple fed-batch cultivation strategies. In the present study, average batch kinetic and substrate limitation/inhibition study data of Alcaligenes latus was used for the development of PHB model which was then adopted for designing various off-line nutrient feeding strategies to enhance PHB accumulation. The predictive ability of the model was validated by experimental implementation of two fed-batch strategies. One such dynamic strategy of fed-batch cultivation under pseudo-steady state with respect to nitrogen and simultaneous carbon feeding strategy resulted in significantly high biomass and PHB concentration of 39.17 g/L and 29.64 g/L, respectively. This feeding strategy demonstrated a high PHB productivity and PHB content of 0.6 g/L h and 75%, respectively, which were remarkably high in comparison to batch cultivation. The mathematical model can also be employed for designing various other nutrient feeding strategies.

  14. All washed out? Foliar nutrient resorption and leaching in senescing switchgrass

    USDA-ARS?s Scientific Manuscript database

    Ideal bioenergy feedstocks are low in nutrients that act as anti-quality factors during conversion processes. Research has shown that delaying harvest of temperate perennial grasses until late winter reduces nutrient content, primarily due to end-season resorption, but also indicates a role for foli...

  15. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  16. Nutrient-induced intestinal adaption and its effect in obesity.

    PubMed

    Dailey, Megan J

    2014-09-01

    Obese and lean individuals respond differently to nutrients with changes in digestion, absorption and hormone release. This may be a result of differences in intestinal epithelial morphology and function driven by the hyperphagia or the type of diet associated with obesity. It is well known that the maintenance and growth of the intestine is driven by the amount of luminal nutrients, with high nutrient content resulting in increases in cell number, villi length and crypt depth. In addition, the type of nutrient appears to contribute to alterations in the morphology and function of the epithelial cells. This intestinal adaptation may be what is driving the differences in nutrient processing in lean versus obese individuals. This review describes how nutrients may be able to induce changes in intestinal epithelial cell proliferation, differentiation and function and the link between intestinal adaptation and obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Analysis of factors which limited the spatial variation of barley yield on the forest-steppe chernozems of Kursk region

    NASA Astrophysics Data System (ADS)

    Belik, Anton; Vasenev, Ivan; Jablonskikh, Lidia; Bozhko, Svetlana

    2017-04-01

    The crop yield is the most important indicator of the efficiency of agricultural production. It is the function that depends on a large number of groups of independent variables, such as the weather, soil fertility and overall culture agriculture. A huge number of combinations of these factors contribute to the formation of high spatial variety of crop yields within small areas, includes the slope agrolandscapes in Kursk region. Spatial variety of yield leads to a significant reduction in the efficiency of agriculture. In this connection, evaluation and analysis of the factors, which limits the yield of field crops is a very urgent proble in agroecology. The research was conducted in the period of 2003-2004 on a representative field. The typical and leached chernozems with the varying thickness and of erosion degree are dominated in soil cover. At the time of field research studied areas were busy by barley. The reseached soils have an average and increased fertility level. Chernozem typical full-face, and the leached contain an average of 4.5-6% humus, close to neutral pH, favorable values of physico-chemical parameters, medium and high content of nutrients. The eroded chernozems differs agrogenic marked declining in fertility parameters. The diversity of meso- and micro-relief in the fields and soil cover influence to significant spatial variety of fertility. For example the content of nutrients in the soil variation can be up to 5-fold level. High spatial heterogeneity of soils fertility ifluence to barley yield variety. During research on the productivity of the field varied in the range of 20-43 c/ha, and 7-44 c/ha (2004). Analysis of the factors, which limited the yield of barley, showed that the first priorities occupy unregulated characterises: slope angle and the classification of soils (subtype and race of chernozem and the difference in the degree of erosion), which determines the development of erosion processes and redistribution available to plants

  18. Nutrient-rich versus nutrient-poor foods for depressed patients based on Iranian Traditional Medicine resources.

    PubMed

    Tavakkoli-Kakhki, Mandana; Eslami, Saeid; Motavasselian, Malihe

    2015-01-01

    Considering the positive effects of certain nutrients on depression, increasingly prevalent in the contemporary societies, we investigated the nutritional content of prescribed and prohibited foodstuffs for depressed patients in Iranian Traditional Medicine resources. In order to conduct the study, credible sources of Iranian Traditional Medicine were primarily reviewed for the prescribed and prohibited foodstuffs for depressed patients. USDA database, as a well-known and valuable source, was then visited to determine the amount of effective nutrients in each foodstuff. Finally, the obtained amounts were compared with each other in three food groups, namely vegetables, fruits and nuts and also high protein products. In Iranian Traditional Medicine texts, the following are prescribed for depression management: basil, coriander, spinach, lettuce, squash, peppermint, dill, chicory, celery, chard, quince, cucumber, watermelon, grape, peach, pomegranate, banana, apple, currant, pistachio, dried fig, almond, egg, chicken, lamb, and trout; cabbage, eggplant, onion, garlic, broad beans, lentils, and beef, meanwhile, are prohibited. In this regard, the effective nutritional content of these foodstuffs was obtained and then compared in the three food groups. This study revealed that spinach, lettuce, chicory, and squash (vegetables), pomegranate and almond (fruits and nuts) and ultimately trout (high protein products) are the best effective foodstuffs on depressed patients from nutritional content aspect.

  19. Marketing foods to children: a comparison of nutrient content between children's and non-children's products.

    PubMed

    Lythgoe, Amelia; Roberts, Caireen; Madden, Angela M; Rennie, Kirsten L

    2013-12-01

    The predominance of marketing of products high in fat, sugar and/or salt to children has been well documented and implicated in the incidence of obesity. The present study aimed to determine whether foods marketed to children in UK supermarkets are nutritionally similar to the non-children's equivalent, focusing on food categories that may be viewed as healthier options. Nutritional data were collected on yoghurts (n 147), cereal bars (n 145) and ready meals (n 144) from seven major UK supermarkets and categorised as children's or non-children's products based on the characteristics, promotional nature or information on the product packaging. Fat, sugar and salt content was compared per 100 g and per recommended portion size. UK. Per 100 g, children's yoghurts and cereal bars were higher in total sugars, fat and saturated fat than the non-children's; this was significant for all except sugar and total fat in cereal bars. Per portion these differences remained, except for sugars in yoghurts. Conversely children's ready meals were significantly lower in these nutrients per portion than non-children's, but not when expressed per 100 g. Children's yoghurts and ready meals had significantly lower sodium content than non-children's both per portion and per 100 g. Significant differences between the nutritional composition of children's and non-children's products were observed but varied depending on the unit reference. A significant number of products marketed towards children were higher in fat, sugar and salt than those marketed to the general population.

  20. Comparison of the nutrient content of fresh fruit juices vs commercial fruit juices.

    PubMed

    Densupsoontorn, Narumon; Jirapinyo, Pipop; Thamonsiri, Nuchnoi; Wongarn, Renu; Phosuya, Panarat; Tritiprat, Amornrat; Patraarat, Siriphan; Pidatcha, Pannee; Suwannthol, Lerson

    2002-08-01

    To compare the types and quantities of carbohydrate, electrolytes, pH and osmolarity of fresh fruit juices and commercial fruit juices. Forty kinds of fresh fruits available in Thai markets were analyzed for types and quantities of carbohydrate, electrolyte, pH and osmolarity and compared with previously obtained data for commercial fruit juices. Most fresh fruit juices did not contain sucrose, whereas, commercial fruit juices mostly have sucrose in the range of 3-112 g/L. Although both fruit juices were acidic (pH varied from 3.6-6.7 and 3.2-5.8 of fresh juice and commercial juice), fresh fruit juices had a more neutral pH than commercial fruit juices. Apple, guava, orange, pear, and pineapple juices from commercial fruit juices had a high osmolarity compared with fresh fruit juices. All types of fresh fruit juices contained less sodium than commercial ones, whereas, most fresh fruit juices contained more potassium, phosphorus, and magnesium than commercial fluids. The nutrient content of fresh fruit juices and commercial fruit juices from the same kinds of fruits are not the same, possibly due to the manufacturing process. Therefore, physicians should know the composition of fruit juices in order to advise patients properly.

  1. Recycling coffee grounds and tea leaf wastes to improve the yield and mineral content of grains of paddy rice.

    PubMed

    Morikawa, Claudio K; Saigusa, M

    2011-08-30

    Coffee grounds and tea leaf wastes exhibit strong affinity for metals such as Fe and Zn. The objective of this experiment was to evaluate the effect of top-dressing application of Fe- and Zn-enriched coffee grounds and tea leaf wastes at the panicle initiation stage on the mineral content of rice grains and the yield of paddy rice. The Fe and Zn contents of brown rice grains increased significantly on application of both coffee and tea waste materials. The concentration of Mn was increased by top-dressing application of coffee waste material only. For Cu, no significant (P < 0.05) differences were found between the control and ferrous sulfate/zinc sulfate treatment. The application of coffee and tea waste materials led to a significant (P < 0.05) increase in the number of grains per panicle, which was reflected in increases in the total number of grains per hill and in grain yield. The top-dressing application of these materials is an excellent method to recycle coffee grounds and tea wastes from coffee shops. Use of these novel materials would not only reduce the waste going to landfill but would also benefit the mineral nutrition of rice consumers at low cost by increasing Fe and Zn levels of rice grains as well as grain yield. Copyright © 2011 Society of Chemical Industry.

  2. Innovations in Food Chemistry and Processing to Enhance the Nutrient Profile of the White Potato in All Forms12

    PubMed Central

    Decker, Eric A.; Ferruzzi, Mario G.

    2013-01-01

    Potatoes can be an important part of a balanced diet because they are an excellent source of many nutrients, including nutrients that are commonly underconsumed (dietary fiber and potassium). Despite the existence of many positive nutrients in potatoes, the popular press has recently aligned potatoes, and particularly fried potatoes, with an unhealthy diet. This article examines the nutritional content of potatoes and how these nutrients are affected by cooking and other food-processing operations. In addition, it examines how the nutritional content of potatoes is altered by cooking methods and how fried potatoes can have wide variations in fat content depending on the cooking method. Finally, the potential of new food-processing technologies to improve the nutritional content of cooked potatoes is evaluated. PMID:23674803

  3. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    PubMed Central

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  4. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply.

    PubMed

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  5. Using smart card technology to monitor the eating habits of children in a school cafeteria: 2. The nutrient contents of all meals chosen by a group of 8- to 11-year-old boys over 78 days.

    PubMed

    Lambert, N; Plumb, J; Looise, B; Johnson, I T; Harvey, I; Wheeler, C; Robinson, M; Rolfe, P

    2005-08-01

    The aim of the study was to test the abilities of the newly created smart card system to track the nutrient contents of foods chosen over several months by individual diners in a school cafeteria. From the food choice and composition of food data sets, an Access database was created encompassing 30 diners (aged 8-11 years), 78 days and eight nutrients. Data were available for a total of 1909 meals. Based upon population mean values the cohort were clearly choosing meals containing higher than the recommended maximum amounts for sugar and lower than the recommended minimum amounts of fibre, iron and vitamin A. Protein and vitamin C contents of meals chosen were well above minimum requirements. Over the 1909 meals, nutrient requirements were met 41% of the time. The system created was very effective at continually monitoring food choices of individual diners over limitless time. The data generated raised questions on the common practice of presenting nutrient intakes as population mean values calculated over a few days. The impact of heavily fortified foods on such studies in general is discussed.

  6. Calculating the nutrient composition of recipes with computers.

    PubMed

    Powers, P M; Hoover, L W

    1989-02-01

    The objective of this research project was to compare the nutrient values computed by four commonly used computerized recipe calculation methods. The four methods compared were the yield factor, retention factor, summing, and simplified retention factor methods. Two versions of the summing method were modeled. Four pork entrée recipes were selected for analysis: roast pork, pork and noodle casserole, pan-broiled pork chops, and pork chops with vegetables. Assumptions were made about changes expected to occur in the ingredients during preparation and cooking. Models were designed to simulate the algorithms of the calculation methods using a microcomputer spreadsheet software package. Identical results were generated in the yield factor, retention factor, and summing-cooked models for roast pork. The retention factor and summing-cooked models also produced identical results for the recipe for pan-broiled pork chops. The summing-raw model gave the highest value for water in all four recipes and the lowest values for most of the other nutrients. A superior method or methods was not identified. However, on the basis of the capabilities provided with the yield factor and retention factor methods, more serious consideration of these two methods is recommended.

  7. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops.

    PubMed

    Szostek, Radosław; Ciećko, Zdzisław

    2017-03-01

    The research was based on a pot experiment, in which the response of eight species of crops to soil contamination with fluorine was investigated. In parallel, some inactivating substances were tested in terms of their potential use for the neutralization of the harmful influence of fluorine on plants. The response of crops to soil contamination with fluorine was assessed according to the volume of biomass produced by aerial organs and roots as well as their content of N-total, N-protein, and N-NO 3 - . The following crops were tested: maize, yellow lupine, winter oilseed rape, spring triticale, narrow-leaf lupine, black radish, phacelia, and lucerne. In most cases, soil pollution with fluorine stimulated the volume of biomass produced by the plants. The exceptions included grain and straw of spring triticale, maize roots, and aerial parts of lucerne, where the volume of harvested biomass was smaller in treatments with fluorine-polluted soil. Among the eight plant species, lucerne was most sensitive to the pollution despite smaller doses of fluorine in treatments with this plant. The other species were more tolerant to elevated concentrations of fluorine in soil. In most of the tested plants, the analyzed organs contained more total nitrogen, especially aerial organs and roots of black radish, grain and straw of spring triticale, and aerial biomass of lucerne. A decrease in the total nitrogen content due to soil contamination with fluorine was detected only in the aerial mass of yellow lupine. With respect to protein nitrogen, its increase in response to fluorine as a soil pollutant was found in grain of spring triticale and roots of black radish, whereas the aerial biomass of winter oilseed rape contained less of this nutrient. Among the analyzed neutralizing substances, lime most effectively alleviated the negative effect of soil pollution with fluorine. The second most effective substance was loam, while charcoal was the least effective in this respect. Our

  8. Nutrient removal and starch production through cultivation of Wolffia arrhiza.

    PubMed

    Fujita, M; Mori, K; Kodera, T

    1999-01-01

    Wolffia arrhiza, a small weed found mostly in tropical and subtropical water environments, exhibits a high growth rate and consequently absorbs large amounts of nitrogen and phosphorus. Its vegetative frond contains 40% protein on a dry weight basis and its turion, which is the dormant form, has a similar starch content. The applicability of this weed to nutrient removal from secondary-treated waste water combined with starch resource production was evaluated. The nitrogen and phosphorus removal capabilities of the vegetative frond and the optimal conditions for inducing of the formation of turions from harvested biomass of vegetative fronds for the production of starch were investigated using artificial nutrient solutions. The vegetative frond showed high contents of nitrogen (6-7% of the total dry weight) and phosphorus (1-2% of the total dry weight). The nutrient removal rates of the vegetative frond were estimated to be 126 mg-N/m(2)/d and 38 mg-P/m(2)/d under a continuous flow condition. For turion formation from the vegetative fronds, a low nutrient concentration and a high plant density were most effective. Under the optimum conditions, the starch production rate was estimated to be 6 g-starch/m(2) (nutrient removal tank)/d.

  9. Seasonal nutrient yield and digestibility of deer forage from a young pine plantation

    Treesearch

    Robert M. Blair; Henry L. Short; E.A. Epps

    1977-01-01

    Six classes of current herbaceous and woody forage were collected seasonally from a 5-year-old mixed loblolly (Pinus taeda)-shortleaf pine (Pinus echinata) plantation (in Texas) and subjected to nutrient analyses and nylon bag dry-matter digestion trials. Forages were most nutritious and digestible in the spring when tissues were succulent and growing rapidly. Browse...

  10. Nutrient export from watersheds on Mt. Desert Island, maine, as a function of land use and fire history

    USGS Publications Warehouse

    Nielsen, M.G.; Kahl, J.S.

    2007-01-01

    A study of 13 small (less than 7.5 km2) watersheds on Mt. Desert Island, Maine, was conducted from January 1999 to September 2000 to determine nutrient export delivery to coastal waters around the island, and to determine whether a series of wildfires in 1947 have affected nutrient export in burned watersheds. Nutrient export (nitrate-nitrogen, total nitrogen, total phosphorus) was determined for each watershed during the study period, and was normalized by watershed area. The yield of nitrate-nitrogen (N) ranged from 10 to 140 kg/km2/year. Total N yield ranged from 42 to 250 kg/ km2/year. Total phosphorus (P) yield ranged from 1.4 to 7.9 kg/km2/year. Watersheds entirely within Acadia National Park (lacking human land-based nutrient sources) exported significantly less total N and total P than watersheds that were partly or entirely outside the park boundary. Nitrate-N export was not significantly different in these two groups of watersheds, perhaps because atmospheric deposition is a dominant source of nitrate in the study area. No relation was observed between burn history and nutrient export. Any effect of burn history may be masked by other landscape-level factors related to nutrient export. ?? Springer Science + Business Media B.V. 2007.

  11. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland.

    PubMed

    Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Hu, Guojie; Yue, Guangyang; Sheng, Yu; Wu, Jichun; Chen, Ji; Wang, Zhiwei; Li, Wangping; Zou, Defu; Ping, Chien-Lu; Shang, Wen; Zhao, Yuguo; Zhang, Ganlin

    2018-05-01

    Soil nutrient stoichiometry and its environmental controllers play vital roles in understanding soil-plant interaction and nutrient cycling under a changing environment, while they remain poorly understood in alpine grassland due to lack of systematic field investigations. We examined the patterns and controls of soil nutrients stoichiometry for the top 10cm soils across the Tibetan ecosystems. Soil nutrient stoichiometry varied substantially among vegetation types. Alpine swamp meadow had larger topsoil C:N, C:P, N:P, and C:K ratios compared to the alpine meadow, alpine steppe, and alpine desert. In addition, the presence or absence of permafrost did not significantly impact soil nutrient stoichiometry in Tibetan grassland. Moreover, clay and silt contents explained approximately 32.5% of the total variation in soil C:N ratio. Climate, topography, soil properties, and vegetation combined to explain 10.3-13.2% for the stoichiometry of soil C:P, N:P, and C:K. Furthermore, soil C and N were weakly related to P and K in alpine grassland. These results indicated that the nutrient limitation in alpine ecosystem might shifts from N-limited to P-limited or K-limited due to the increase of N deposition and decrease of soil P and K contents under the changing climate conditions and weathering stages. Finally, we suggested that soil moisture and mud content could be good predictors of topsoil nutrient stoichiometry in Tibetan grassland. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  13. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  14. Effects of prey of different nutrient quality on elemental nutrient budgets in Noctiluca scintillans.

    PubMed

    Zhang, Shuwen; Liu, Hongbin; Glibert, Patricia M; Guo, Cui; Ke, Ying

    2017-08-08

    Noctiluca scintillans (Noctiluca) is a cosmopolitan red tide forming heterotrophic dinoflagellate. In this study, we investigated its ingestion, elemental growth yield and excretion when supplied with different quality food (nutrient-balanced, N-limited and P-limited). Total cellular elemental ratios of Noctiluca were nearly homeostatic, but the ratio of its intracellular NH 4 + and PO 4 3- was weakly regulated. Noctiluca thus seems able to differentially allocate N and P to organic and inorganic pools to maintain overall homeostasis, and it regulated its internal N more strongly and efficiently than P. The latter was substantiated by its comparatively stable C:N ratio and compensatory feeding on N-limited prey. Using both starvation experiments and mass balance models, it was found that excretion of C, N, and P by Noctiluca is highly affected by prey nutritional quality. However, based on modeling results, nutrients seem efficiently retained in actively feeding Noctiluca for reproduction rather than directly released as was shown experimentally in starved cells. Moreover, actively feeding Noctiluca tend to retain P and preferentially release N, highlighting its susceptible to P-limitation. Recycling of N and P by Noctiluca may supply substantial nutrients for phytoplankton growth, especially following bloom senescence.

  15. A mathematical model of water and nutrient transport in xylem vessels of a wheat plant.

    PubMed

    Payvandi, S; Daly, K R; Jones, D L; Talboys, P; Zygalakis, K C; Roose, T

    2014-03-01

    At a time of increasing global demand for food, dwindling land and resources, and escalating pressures from climate change, the farming industry is undergoing financial strain, with a need to improve efficiency and crop yields. In order to improve efficiencies in farming, and in fertiliser usage in particular, understanding must be gained of the fertiliser-to-crop-yield pathway. We model one aspect of this pathway; the transport of nutrients within the vascular tissues of a crop plant from roots to leaves. We present a mathematical model of the transport of nutrients within the xylem vessels in response to the evapotranspiration of water. We determine seven different classes of flow, including positive unidirectional flow, which is optimal for nutrient transport from the roots to the leaves; and root multidirectional flow, which is similar to the hydraulic lift process observed in plants. We also investigate the effect of diffusion on nutrient transport and find that diffusion can be significant at the vessel termini especially if there is an axial efflux of nutrient, and at night when transpiration is minimal. Models such as these can then be coupled to whole-plant models to be used for optimisation of nutrient delivery scenarios.

  16. Similar taste-nutrient relationships in commonly consumed Dutch and Malaysian foods.

    PubMed

    Teo, Pey Sze; van Langeveld, Astrid W B; Pol, Korrie; Siebelink, Els; de Graaf, Cees; Yan, See Wan; Mars, Monica

    2018-06-01

    Three recent studies showed that taste intensity signals nutrient content. However, current data reflects only the food patterns in Western societies. No study has yet been performed in Asian culture. The Malaysian cuisine represents a mixture of Malay, Chinese and Indian foods. This study aimed to investigate the associations between taste intensity and nutrient content in commonly consumed Dutch (NL) and Malaysian (MY) foods. Perceived intensities of sweetness, sourness, bitterness, umami, saltiness and fat sensation were assessed for 469 Dutch and 423 Malaysian commonly consumed foods representing about 83% and 88% of an individual's average daily energy intake in each respective country. We used a trained Dutch (n = 15) and Malaysian panel (n = 20) with quantitative sensory Spectrum™ 100-point rating scales and reference solutions, R1 (13-point), R2 (33-point) and R3 (67-point). Dutch and Malaysian foods had relatively low mean sourness and bitterness (content (R 2  = 0.56 (NL), 0.17(MY)) in Dutch and Malaysian foods (all, p < 0.001). The associations between taste intensity and nutrient content are not different between different countries, except for fat sensation-fat content. The two dimensional basic taste-nutrient space, representing the variance and associations between tastes and nutrients, is similar between Dutch and Malaysian commonly consumed foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. SMART lunch box intervention to improve the food and nutrient content of children's packed lunches: UK wide cluster randomised controlled trial.

    PubMed

    Evans, C E L; Greenwood, D C; Thomas, J D; Cleghorn, C L; Kitchen, M S; Cade, J E

    2010-11-01

    Government standards are now in place for children's school meals but not for lunches prepared at home. The aim of this trial is to improve the content of children's packed lunches. A cluster randomised controlled trial in 89 primary schools across the UK involving 1291 children, age 8-9 years at baseline. Follow-up was 12 months after baseline. A "SMART" lunch box intervention programme consisted of food boxes, bag and supporting materials. The main outcome measures were weights of foods and proportion of children provided with sandwiches, fruit, vegetables, dairy food, savoury snacks and confectionery in each packed lunch. Levels of nutrients provided including energy, total fat, saturated fat, protein, non-milk extrinsic sugar, sodium, calcium, iron, folate, zinc, vitamin A and vitamin C. Moderately higher weights of fruit, vegetables, dairy and starchy food and lower weights of savoury snacks were provided to children in the intervention group. Children in the intervention group were provided with slightly higher levels of vitamin A and folate. 11% more children were provided with vegetables/salad in their packed lunch, and 13% fewer children were provided with savoury snacks (crisps). Children in the intervention group were more likely to be provided with packed lunches meeting the government school meal standards. The SMART lunch box intervention, targeting parents and children, led to small improvements in the food and nutrient content of children's packed lunches. Further interventions are required to bring packed lunches in line with the new government standards for school meals. Current controlled trials ISRCTN77710993.

  18. Low-cost composited accelerants for anaerobic digestion of dairy manure: Focusing on methane yield, digestate utilization and energy evaluation.

    PubMed

    Zhang, Chen; Yun, Sining; Li, Xue; Wang, Ziqi; Xu, Hongfei; Du, Tingting

    2018-05-11

    To improve the methane yield and digestate utilization of anaerobic digestion (AD), low-cost composited accelerants consisting of urea (0.2-0.5%), bentonite (0.5-0.8%), active carbon (0.6-0.9%), and plant ash (0.01-0.3%) were designed and tested in batch experiments. Total biogas yield (485.7-681.9 mL/g VS) and methane content (63.0-66.6%) were remarkably enhanced in AD systems by adding accelerants compared to those of control group (361.9 mL/g VS, 59.4%). Composited accelerant addition led to the highest methane yield (454.1 mL/g VS), more than double that of control group. The TS, VS, and CODt removal rates (29.7-55.3%, 50.9-63.0%, and 46.8-69.1%) for AD with accelerants were much higher than control group (26.2%, 37.1%, and 39.6%). The improved digestate stability and enhanced fertilizer nutrient content (4.95-5.66%) confirmed that the digestate of AD systems with composited accelerants could safely serve as a potential component of bioorganic fertilizer. These findings open innovative avenues in composited accelerant development and application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    NASA Astrophysics Data System (ADS)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  20. Environmental Nutrient Supply Directly Alters Plant Traits but Indirectly Determines Virus Growth Rate

    PubMed Central

    Lacroix, Christelle; Seabloom, Eric W.; Borer, Elizabeth T.

    2017-01-01

    Ecological stoichiometry and resource competition theory both predict that nutrient rates and ratios can alter infectious disease dynamics. Pathogens such as viruses hijack nutrient rich host metabolites to complete multiple steps of their epidemiological cycle. As the synthesis of these molecules requires nitrogen (N) and phosphorus (P), environmental supply rates, and ratios of N and P to hosts can directly limit disease dynamics. Environmental nutrient supplies also may alter virus epidemiology indirectly by changing host phenotype or the dynamics of coinfecting pathogens. We tested whether host nutrient supplies and coinfection control pathogen growth within hosts and transmission to new hosts, either directly or through modifications of plant tissue chemistry (i.e., content and stoichiometric ratios of nutrients), host phenotypic traits, or among-pathogen interactions. We examined two widespread plant viruses (BYDV-PAV and CYDV-RPV) in cultivated oats (Avena sativa) grown along a range of N and of P supply rates. N and P supply rates altered plant tissue chemistry and phenotypic traits; however, environmental nutrient supplies and plant tissue content and ratios of nutrients did not directly alter virus titer. Infection with CYDV-RPV altered plant traits and resulted in thicker plant leaves (i.e., higher leaf mass per area) and there was a positive correlation between CYDV-RPV titer and leaf mass per area. CYDV-RPV titer was reduced by the presence of a competitor, BYDV-PAV, and higher CYDV-RPV titer led to more severe chlorotic symptoms. In our experimental conditions, virus transmission was unaffected by nutrient supply rates, co-infection, plant stoichiometry, or plant traits, although nutrient supply rates have been shown to increase infection and coinfection rates. This work provides a robust test of the role of plant nutrient content and ratios in the dynamics of globally important pathogens and reveals a more complex relationship between within

  1. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis.

    PubMed

    Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to

  2. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

    PubMed Central

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-01-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530

  3. Stoichiometry and estimates of nutrient standing stocks of larval salamanders in Appalachian headwater streams

    Treesearch

    Joseph R. Milanovich; John C. Maerz; Amy D. Rosemond

    2015-01-01

    1.Because of their longevity and skeletal phosphorus demand, vertebrates can have distinct influences on the uptake, storage and recycling of nutrients in ecosystems. Quantification of body stoichiometry, combined with estimates of abundance or biomass, can provide insights into the effect of vertebrates on nutrient cycling. 2.We measured the nutrient content and...

  4. Mineral content of complementary foods.

    PubMed

    Jani, Rati; Udipi, S A; Ghugre, P S

    2009-01-01

    To document mineral contents iron, zinc, calcium, energy contents and nutrient densities in complementary foods commonly given to young urban slum children. Information on dietary intake was collected from 892 mothers of children aged 13-24 months, using 24 hour dietary recall and standardized measures. Three variations of 27 most commonly prepared recipes were analyzed and their energy (Kcal/g) and nutrient densities (mg/100 Kcal) were calculated. Considerable variations were observed in preparation of all items fed to the children. Cereal-based items predominated their diets with only small amount of vegetables/fruits. Fenugreek was the only leafy vegetable included, but was given to only 1-2% of children. Iron, calcium, zinc contents of staple complementary foods ranged from: 0.33 mg to 3.73 mg, 4 mg to 64 mg, and 0.35 mg to 2.99 mg/100 respectively. Recipes diluted with less water and containing vegetables, spices had higher mineral content. Minerals densities were higher for dals, fenugreek vegetable, khichdi and chapatti. Using the median amounts of the various recipes fed to children, intakes of all nutrients examined especially calcium and iron was low. There is an urgent need to educate mothers about consistency, dilution, quantity, frequency, method of preparation, inclusion of micronutrient-rich foods, energy-dense complementary foods and gender equality.

  5. Nutrient recycle from defatted microalgae (Aurantiochytrium) with hydrothermal treatment for microalgae cultivation.

    PubMed

    Aida, Taku Michael; Maruta, Ryouma; Tanabe, Yuuhiko; Oshima, Minori; Nonaka, Toshiyuki; Kujiraoka, Hiroki; Kumagai, Yasuaki; Ota, Masaki; Suzuki, Iwane; Watanabe, Makoto M; Inomata, Hiroshi; Smith, Richard L

    2017-03-01

    Defatted heterotrophic microalgae (Aurantiochytrium limacinum SR21) was treated with high temperature water (175-350°C, 10-90min) to obtain nitrogen and phosphorous nutrients as a water soluble fraction (WS). Yields of nitrogen and phosphorous recovered in WS varied from 38 to 100% and from 57 to 99%, respectively. Maximum yields of nitrogen containing compounds in WS were proteins (43%), amino acids (12%) and ammonia (60%) at treatment temperatures of 175, 250 and 350°C, respectively. Maximum yield of phosphorous in WS was 99% at a treatment temperature of 250°C. Cultivation experiments of microalgae (A. limacinum SR21) using WS obtained at 200 and 250°C showed positive growth. Water soluble fractions from hydrothermal treatment of defatted microalgae are effective nitrogen and phosphorous nutrient sources for microalgae cultivation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sediment and nutrients transport in watershed and their impact on coastal environment

    PubMed Central

    Ikeda, Syunsuke; Osawa, Kazutoshi; Akamatsu, Yoshihisa

    2009-01-01

    Sediment and nutrients yields especially from farmlands were studied in a watershed in Ishigaki island, Okinawa, Japan. The transport processes of these materials in rivers, mangrove, lagoon and coastal zones were studied by using various observation methods including stable isotope analysis. They were simulated by using a WEPP model which was modified to be applicable to such small islands by identifying several factors from the observations. The model predicts that a proper combination of civil engineering countermeasure and change of farming method can reduce the sediment yield from the watershed by 74%. Observations of water quality and coral recruitment test in Nagura bay indicate that the water is eutrophicated and the corals cannot grow for a long time. Based on these observations, a quantitative target of the reduction of sediment and nutrients yield in watershed can be decided rationally. PMID:19907124

  7. Fertilizer recommendations for switchgrass: Quantifying economic effects on quality and yield

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a native, perennial warm season grass that is suited for biomass production for conversion to renewable fuels as well as feed production on marginal soils. Yield responses to macro nutrients of N, P and K, have shown N to be the major driver for capturing yield p...

  8. Relationship between assimilable-nutrient content and physicochemical properties of topsoil

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Przemysław; Bednarek, Wiesław; Dresler, Sławomir; Krzyszczak, Jaromir; Baranowski, Piotr; Sławiński, Cezary

    2017-10-01

    In the years 2008-2011, an environmental study was conducted for Polish soils, focusing on the south-eastern Poland soils, as they exhibit significant acidification. This study aimed at assessing the current pHKCl and the supply of basic macro- (P, K, Mg and S-SO4) and microelements (B, Cu, Fe, Mn and Zn) in the collected soil samples, and also at determining their relationship with the soil agronomic category, humus content and pH class. Soil reaction and humus and macronutrient content were positively correlated with the amount of colloidal clay and particles < 0.02 mm. In the majority of cases, the macro-element content in the soil was positively correlated with soil pH and humus content. As for microelements, a usually significant and positive correlation was found between the soil agronomic category and the content of manganese, iron and zinc, whereas for the content of boron and copper, no such relationship was observed. A significant and positive correlation between soil reaction and the content of manganese, iron and boron was also found. Such correlations were not observed in relation to copper and zinc content. Statistical analysis indicated that the content of boron and manganese depended to the greatest extent on the investigated physicochemical properties.

  9. Improving fermented quality of cider vinegar via rational nutrient feeding strategy.

    PubMed

    Qi, Zhengliang; Dong, Die; Yang, Hailin; Xia, Xiaole

    2017-06-01

    This work aimed to find a rational nutrient feeding strategy for cider vinegar fermentation based on adequate information on the nutritional requirement of acetic acid bacteria. Through single nutrient lack experiment assay, necessary nutrient recipe for Acetobacter pasteurianus CICIM B7003 in acetous fermentation was confirmed. Compounds from the essential nutrient recipe were tested further to find out the key substrates significantly influencing cider vinegar fermentation. The findings showed that aspartate, glutamate, proline and tryptophan should be considered in detail for optimizing nutritional composition of cider. Finally, a nutrient feeding strategy that simultaneously adds proline, glutamate, aspartate and tryptophan to form final concentrations of 0.02g/L, 0.03g/L, 0.01g/L and 0.005g/L in cider was achieved by orthogonal experiment design. Comparing to the original fermentation, the yield of acetic acid from alcohol reached 93.3% and the concentration of most volatile flavor compounds increased with the rational nutrient feeding strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Corn yield and nutrient uptake response to subsurface-lateral bands application of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is nutrient rich and traditionally land-applied by broadcast on the soil surface which can lead to potential environmental hazards. This application method leaves PL vulnerable to transport from the field to nearby water bodies and contributes significant amounts of greenhouse gases (...

  11. Chicken manure enhanced yield and quality of field-grown kale and collard greens.

    PubMed

    Antonious, George F; Turley, Eric T; Hill, Regina R; Snyder, John C

    2014-01-01

    Organic matter and nutrients in municipal sewage sludge (SS) and chicken manure (CM) could be recycled and used for land farming to enhance fertility and physical properties of soils. Three soil management practices were used at Kentucky State University Research Farm, Franklin County, to study the impact of soil amendments on kale (Brassica oleracea cv. Winterbar) and collard (Brassica oleracea cv. Top Bunch) yields and quality. The three soil management practices were: (i) SS mixed with native soil at 15 t acre(-1), (ii) CM mixed with native soil at 15 t acre(-1), and (iii) no-mulch (NM) native soil for comparison purposes. At harvest, collard and kale green plants were graded according to USDA standards. Plants grown in CM and SS amended soil produced the greatest number of U.S. No. 1 grade of collard and kale greens compared to NM native soil. Across all treatments, concentrations of ascorbic acid and phenols were generally greater in kale than in collards. Overall, CM and SS enhanced total phenols and ascorbic acid contents of kale and collard compared to NM native soil. We investigated the chemical and physical properties of each of the three soil treatments that might explain variability among treatments and the impact of soil amendments on yield, phenols, and ascorbic acid contents of kale and collard green grown under this practice.

  12. Effects of Potassium Mineral Fertilization on Potato (Solanum tuberosum L.) Yield on a Chernozem Soil in Hungary

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    /ha, obtained at Stockbridge House in 1973 which contained 487 kg K2O in the tubers. The effects of potassium fertilizer on yield The averages of 1267 experimental results (607 from 8 developed countries and 660 from 10 developing countries) were estimated. Yields increased by 14, 10 and 11% for 1-100, 101-200 and 201-300 kg/ha K2O rates, respectively. The greater average effect of potassium on yield at the 1-100 kg/ha K2O rate as compared to higher doses was due to the strong effect of this nutrient in experiments. 1 kg K2O produces 32, 16 and 13 kg tubers when 1-100, 101-200 and 201-300 kg/ha K2O are applied. An example of the effect of potassium on yield is in the Siebold (1971) reports that heavy potash dressing had spectacular effects on yield on a soil which fixed potassium strongly. Nutrient interactions In 17 years of a long- term experiment at Aspach (France) (Loué 1977) positive interactions between N and K were recorded in 15 years and negative in 2. Yadav and Tripathi (1973) recorded an NxK interaction amounting to 4.44 t/ha tubers in India. Materials and Methods The NPK fertilization field trial was set up at the Nagyhörcsök Experiment Station of the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences by Imre Kádár in the autumn of 1973. The method of the experiment was 43 design of the mixed factorial with 64 treatments, in 2 repetitions with 128 plots. The gross and net size of the plots were 6 x 6 = 36 m2 and 24.5 m2 respectivly. N fertilization was repeated yearly. As regards P and K residual effects of nutrient levels brought about by build-up fertilization in autumn 1973, were recorded. The experiment was carried out in South-East Hungary on a calcareous chernozem soil. The clay fraction (0.002 mm) content of the soil was 20 % and silt fraction (0.02 mm) 40 %. The 0.05-0.02 mm fraction was 35-50 %. The main characteristics of the soil (plough layer) are as follows: CaCO3 5 %, humus 3 %, pH(KCl) = 7

  13. Possible nutrient limiting factor in long term operation of closed aquatic ecosystem

    NASA Astrophysics Data System (ADS)

    Hao, Zongjie; Li, Yanhui; Cai, Wenkai; Wu, Peipei; Liu, Yongding; Wang, Gaohong

    2012-03-01

    To investigate nutrient limitation effect on the community metabolism of closed aquatic ecosystem and possible nutrient limiting factors in the experimental food chains, depletion of inorganic chemicals including carbon, nitrogen and phosphorous was tested. A closed aquatic ecosystem lab module consisting of Chlorella pyrenoidosa and Chlamydomonas reinhardtii, Daphnia magna and associated unidentified microbes was established. Closed ecological systems receive no carbon dioxide; therefore, we presumed carbon as a first limiting factor. The results showed that the algae population in the nutrient saturated group was statistically higher than that in the nutrient limited groups, and that the chlorophyll a content of algae in the phosphorus limited group was the highest among the limited groups. However, the nitrogen limited group supported the most Daphnia, followed by the carbon limited group, the nutrient saturated group and the phosphorus limited group. Redundancy analysis showed that the total phosphorus contents were correlated significantly with the population of algae, and that the amount of soluble carbohydrate as feedback of nutrient depletion was correlated with the number of Daphnia. Thus, these findings suggest that phosphorus is the limiting factor in the operation of closed aquatic ecosystem. The results presented herein have important indications for the future construction of long term closed ecological system.

  14. Including spatial data in nutrient balance modelling on dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.

  15. Energy and nutrient density of foods in relation to their carbon footprint.

    PubMed

    Drewnowski, Adam; Rehm, Colin D; Martin, Agnes; Verger, Eric O; Voinnesson, Marc; Imbert, Philippe

    2015-01-01

    A carbon footprint is the sum of greenhouse gas emissions (GHGEs) associated with food production, processing, transporting, and retailing. We examined the relation between the energy and nutrient content of foods and associated GHGEs as expressed as g CO2 equivalents. GHGE values, which were calculated and provided by a French supermarket chain, were merged with the Composition Nutritionnelle des Aliments (French food-composition table) nutrient-composition data for 483 foods and beverages from the French Agency for Food, Environmental and Occupational Health and Safety. Foods were aggregated into 34 food categories and 5 major food groups as follows: meat and meat products, milk and dairy products, frozen and processed fruit and vegetables, grains, and sweets. Energy density was expressed as kcal/100 g. Nutrient density was determined by using 2 alternative nutrient-density scores, each based on the sum of the percentage of daily values for 6 or 15 nutrients, respectively. The energy and nutrient densities of foods were linked to log-transformed GHGE values expressed per 100 g or 100 kcal. Grains and sweets had lowest GHGEs (per 100 g and 100 kcal) but had high energy density and a low nutrient content. The more-nutrient-dense animal products, including meat and dairy, had higher GHGE values per 100 g but much lower values per 100 kcal. In general, a higher nutrient density of foods was associated with higher GHGEs per 100 kcal, although the slopes of fitted lines varied for meat and dairy compared with fats and sweets. Considerations of the environmental impact of foods need to be linked to concerns about nutrient density and health. The point at which the higher carbon footprint of some nutrient-dense foods is offset by their higher nutritional value is a priority area for additional research. © 2015 American Society for Nutrition.

  16. Nutrient Supplying Potential of Different Spent Mushroom Substrate Preparations as Soil Amendment in a Potting Media

    NASA Astrophysics Data System (ADS)

    Ultra, VU, Jr.; Ong Sotto, JME; Punzalan, MR

    2018-03-01

    A three consecutive cropping experiment was conducted to evaluate the nutrient supplying potential of different preparations of the spent mushroom substrate as an amendment of growing media for potted plants using pechay as test plant. There are 12 treatment combinations consisted 4 types of growing media containing soil alone and mixtures of soil with fresh SMS (FSMS), weathered SMS (WSMS) and carbonized SMS (CSMS) in combination with 0%, 50% or 100% recommended rate (RR) of nitrogen fertilizer. Succeeding two trials were conducted on the same pots and treatment assignments. The high yield of pechay during the first and second crop was observed on WSMS and CSMS treatments FSMS media produced high yields only during the 3rd crop. Yield was increased by N fertilizer in WSMS and CSMS treatments but not in FSMS. The growth differences is attributed to differences in available nutrients and C/N ratio between treatments. WSMS and CSMS increased the available N while FSMS immobilized N and other nutrients indicting that weathered SMS and carbonized SMS are more suitable as a component of potting media or as soil amendments without detrimental effect on immobilization and availability of nutrients.

  17. Research on the degradation of tropical arable land soil: Part II. The distribution of soil nutrients in eastern part of Hainan Island

    NASA Astrophysics Data System (ADS)

    Wang, Dengfeng; Wei, Zhiyuan; Qi, Zhiping

    Research on the temporal and spatial distribution of soil nutrients in tropical arable land is very important to promote the tropical sustainable agriculture development. Take the Eastern part of Hainan as research area, applying GIS spatial analysis technique, analyzing the temporal and spatial variation of soil N, P and K contents in arable land. The results indicate that the contents of soil N, P and K were 0.28%, 0.20% and 1.75% respectively in 2005. The concentrations of total N and P in arable land soil increased significantly from 1980s to 2005. The variances in contents of soil nutrients were closely related to the application of chemical fertilizers in recent years, and the uneven distribution of soil nutrient contents was a reflection of fertilizer application in research area. Fertilization can be planned based on the distribution of soil nutrients and the spatial analysis techniques, so as to sustain balance of soil nutrients contents.

  18. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of

  19. Nutrient transport in runoff as affected by diet, tillage and manure application rate

    USDA-ARS?s Scientific Manuscript database

    Including distillers grains in feedlot finishing diets may increase feedlot profitability. However the nutrient content of by-products are concentrated about three during the distillation process. Manure can be applied to meet single or multiple year crop nutrient requirements. The water quality eff...

  20. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    USGS Publications Warehouse

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville

  1. [Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching].

    PubMed

    Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang

    2012-08-01

    In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.

  2. Linking runoff and erosion dynamics to nutrient fluxes in a degrading dryland landscape

    NASA Astrophysics Data System (ADS)

    Michaelides, Katerina; Lister, Debbie; Wainwright, John; Parsons, Anthony J.

    2012-12-01

    Current theories of land degradation assume that shifts in vegetation communities result in changes to the rates and patterns of water and sediment movement, which are vectors of nutrient redistribution. This nutrient redistribution is hypothesized to reinforce, through positive feedbacks, progressive vegetation changes toward a more degraded ecosystem. A key component of this theory, which is currently poorly resolved, is the relative role of runoff and erosion in driving nutrient fluxes from different vegetation types. We address this gap through a series of field-based, rainfall-simulation experiments designed to explore plant-level dynamics of runoff- and erosion-driven nutrient fluxes of N, P and K species. Our results highlight important linkages between physical and biogeochemical processes that are controlled by plant structure. We found that: 1) the magnitude of sediment-bound nutrient export is determined by the grain-size distribution of the eroded sediment and the total sediment yield; 2) the partitioning of nutrients in dissolved and sediment-bound form is determined by the availability and concentration of different nutrient species in the soil or rainfall; 3) these processes varied according to vegetation type and resulted in stark differences between degrading and invading plant communities. Specifically, we observed that grassland areas consistently exported the highest yields of sediment-bound N, P and K despite producing similar erosion rates to shrub and intershrub areas. Our results have implications for better understanding how grassland areas are being replaced by shrubs and provide insights into the mechanisms of continuing land degradation in drylands.

  3. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China

    PubMed Central

    Yuan, Jie; Hou, Lin; Wei, Xin; Shang, Zhengchun; Cheng, Fei; Zhang, Shuoxin

    2017-01-01

    As an ecological unit, coarse woody debris (CWD) plays an essential role in productivity, nutrient cycling, carbon sequestration, community regeneration and biodiversity. However, thus far, the information on quantification the decomposition and nutrient content of CWD in forest ecosystems remains considerably limited. In this study, we conducted a long-term (1996–2013) study on decay and nutrient dynamics of CWD for evaluating accurately the ecological value of CWD on the Huoditang Experimental Forest Farm in the Qinling Mountains, China. The results demonstrated that there was a strong correlation between forest biomass and CWD mass. The single exponential decay model well fit the CWD density loss at this site, and as the CWD decomposed, the CWD density decreased significantly. Annual temperature and precipitation were all significantly correlated with the annual mass decay rate. The K contents and the C/N ratio of the CWD decreased as the CWD decayed, but the C, N, P, Ca and Mg contents increased. We observed a significant CWD decay effect on the soil C, N and Mg contents, especially the soil C content. The soil N, P, K, Ca and Mg contents exhibited large fluctuations, but the variation had no obvious regularity and changed with different decay times. The results showed that CWD was a critical component of nutrient cycling in forest ecosystems. Further research is needed to determine the effect of diameter, plant tissue components, secondary wood compounds, and decomposer organisms on the CWD decay rates in the Qinling Mountains, which will be beneficial to clarifying the role of CWD in carbon cycles of forest ecosystems. PMID:28384317

  4. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of

  5. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, Jayne; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of

  6. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: Implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological

  7. Water, weed, and nutrient management practices in organic blackberries

    USDA-ARS?s Scientific Manuscript database

    The purpose of our study is to investigate the effects of organic management on plant and soil water and nutrient relations, plant growth, yield, and fruit quality in an organic trailing blackberry production system. Treatments include: cultivar ('Marion' and 'Black Diamond'); irrigation (post-harve...

  8. Improvement of cloud stability, yield and β-carotene content of carrot juice by process modification.

    PubMed

    Yu, Li Juan; Rupasinghe, H P Vasantha

    2013-10-01

    This study investigated the effects of three processing factors, acid blanching, centrifugation and dynamic high pressure homogenization, on cloud stability of carrot juice. Results indicated that the optimum processing condition for stabilized carrot juice were with dynamic high pressure homogenization at 100 MPa combined with 2% citric acid blanching at 95-100  for 2 min followed by 2000 r/min centrifugation for 10 min. The improvement of juice yield was also investigated using a pre-treatment of three commercial enzymes: Pectinex 3XL® (pectinase), Celluclast 1.5 L® (cellulase) and Novozyme 188™ (β-glucosidase). The combination of 0.1 g/kg of Pectinex 3XL®, 0.1 g/kg of Celluclast 1.5 L® and 0.1 g/kg of Novozyme 188™ at 50  and pH 4.0 for 90 min was the most effective condition to improve carrot juice yield from 49% to 67%. The enzymatic treatment increased juice total soluble solids from 7.5 to 8.9°Brix and β-carotene content from 21.4 to 33.7 mg/kg.

  9. 9 CFR 319.10 - Requirements for substitute standardized meat food products named by use of an expressed nutrient...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... standardized meat food products named by use of an expressed nutrient content claim and a standardized term. 319.10 Section 319.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Requirements for substitute standardized meat food products named by use of an expressed nutrient content claim...

  10. 9 CFR 319.10 - Requirements for substitute standardized meat food products named by use of an expressed nutrient...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... standardized meat food products named by use of an expressed nutrient content claim and a standardized term. 319.10 Section 319.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Requirements for substitute standardized meat food products named by use of an expressed nutrient content claim...

  11. 9 CFR 319.10 - Requirements for substitute standardized meat food products named by use of an expressed nutrient...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... standardized meat food products named by use of an expressed nutrient content claim and a standardized term. 319.10 Section 319.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Requirements for substitute standardized meat food products named by use of an expressed nutrient content claim...

  12. 9 CFR 319.10 - Requirements for substitute standardized meat food products named by use of an expressed nutrient...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... standardized meat food products named by use of an expressed nutrient content claim and a standardized term. 319.10 Section 319.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Requirements for substitute standardized meat food products named by use of an expressed nutrient content claim...

  13. 9 CFR 319.10 - Requirements for substitute standardized meat food products named by use of an expressed nutrient...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... standardized meat food products named by use of an expressed nutrient content claim and a standardized term. 319.10 Section 319.10 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Requirements for substitute standardized meat food products named by use of an expressed nutrient content claim...

  14. Seed removal by scatter-hoarding rodents: the effects of tannin and nutrient concentration.

    PubMed

    Wang, Bo; Yang, Xiaolan

    2015-04-01

    The mutualistic interaction between scatter-hoarding rodents and seed plants have a long co-evolutionary history. Plants are believed to have evolved traits that influence the foraging behavior of rodents, thus increasing the probability of seed removal and caching, which benefits the establishment of seedlings. Tannin and nutrient content in seeds are considered among the most essential factors in this plant-animal interaction. However, most previous studies used different species of plant seeds, rendering it difficult to tease apart the relative effect of each single nutrient on rodent foraging behavior due to confounding combinations of nutrient contents across seed species. Hence, to further explore how tannin and different nutritional traits of seed affect scatter-hoarding rodent foraging preferences, we manipulated tannin, fat, protein and starch content levels, and also seed size levels by using an artificial seed system. Our results showed that both tannin and various nutrients significantly affected rodent foraging preferences, but were also strongly affected by seed size. In general, rodents preferred to remove seeds with less tannin. Fat addition could counteract the negative effect of tannin on seed removal by rodents, while the effect of protein addition was weaker. Starch by itself had no effect, but it interacted with tannin in a complex way. Our findings shed light on the effects of tannin and nutrient content on seed removal by scatter-hoarding rodents. We therefore, believe that these and perhaps other seed traits should interactively influence this important plant-rodent interaction. However, how selection operates on seed traits to counterbalance these competing interests/factors merits further study. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Influence of Pre- and Postharvest Summer Pruning on the Growth, Yield, Fruit Quality, and Carbohydrate Content of Early Season Peach Cultivars

    PubMed Central

    Ikinci, Ali

    2014-01-01

    Winter and summer pruning are widely applied processes in all fruit trees, including in peach orchard management. This study was conducted to determine the effects of summer prunings (SP), as compared to winter pruning (WP), on shoot length, shoot diameter, trunk cross sectional area (TCSA) increment, fruit yield, fruit quality, and carbohydrate content of two early ripening peach cultivars (“Early Red” and “Maycrest”) of six years of age, grown in semiarid climate conditions, in 2008 to 2010. The trees were grafted on GF 677 rootstocks, trained with a central leader system, and spaced 5 × 5 m apart. The SP carried out after harvesting in July and August decreased the shoot length significantly; however, it increased its diameter. Compared to 2009, this effect was more marked in year 2010. In general, control and winter pruned trees of both cultivars had the highest TCSA increment and yield efficiency. The SP increased the average fruit weight and soluble solids contents (SSC) more than both control and WP. The titratable acidity showed no consistent response to pruning time. The carbohydrate accumulation in shoot was higher in WP and in control than in SP trees. SP significantly affected carbohydrate accumulation; postharvest pruning showed higher carbohydrate content than preharvest pruning. PMID:24737954

  16. New metrics of affordable nutrition: which vegetables provide most nutrients for least cost?

    PubMed

    Drewnowski, Adam

    2013-09-01

    Measuring food prices per gram, rather than per calorie, is one way to make healthful vegetables appear less expensive. However, a better measure of affordability would take the nutrient content of vegetables into account. This study, based on analyses of US Department of Agriculture datasets, aimed to identify which vegetables, including juices and soups, provided the most nutrients per unit cost. Nutrient density was measured using the Nutrient Rich Foods (NRF) index, based on nine nutrients to encourage: protein; fiber; vitamins A, C, and E; calcium; iron; magnesium; and potassium; and on three nutrients to limit: saturated fat, added sugar, and sodium. Food cost in dollars was calculated per 100 g, per 100 kcal, per serving, and per nutrient content. One-way analyses of variance with post hoc tests were used to determine statistical significance. Results showed that tomato juices and tomato soups, dark green leafy and nonleafy vegetables, and deep yellow vegetables, including sweet potatoes, had the highest NRF scores overall. Highest NRF scores per dollar were obtained for sweet potatoes, white potatoes, tomato juices and tomato soups, carrots, and broccoli. Tomato sauces, raw tomatoes, and potato chips were eaten more frequently than were many other vegetables that were both more affordable and more nutrient-rich. These new measures of affordable nutrition can help foodservice and health professionals identify those vegetables that provide the highest nutrient density per unit cost. Processed vegetables, including soups and juices, can contribute to the quality and the affordability of the diet. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  17. Concentrations, loads, and yields of nutrients and suspended sediment in the South Pacolet, North Pacolet, and Pacolet Rivers, northern South Carolina and southwestern North Carolina, October 2005 to September 2009

    USGS Publications Warehouse

    Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year

  18. Soil nutrient concentration and distribution at riverbanks undergoing different land management practices: Implications for riverbank management

    NASA Astrophysics Data System (ADS)

    Xue, X. H.; Chang, S.; Yuan, L. Y.

    2017-08-01

    Riverbanks are important boundaries for the nutrient cycling between lands and freshwaters. This research aimed to explore effects of different land management methods on the soil nutrient concentration and distribution at riverbanks. Soils from the reed-covered riverbanks of middle Yangtze River were studied, including the soils respectively undergoing systematic agriculture (gathering young tender shoots, reaping reed straws, and burning residual straws), fires and no disturbances. Results showed that the agricultural activities sharply decreased the contents of soil organic matter (SOM), N, P and K in subsurface soils but less decreased the surface SOM, N and K contents, whereas phosphorus were evidently decreased at both surface and subsurface layers. In contrast, the single application of fires caused a marked increase of SOM, N, P and K contents in both surface and subsurface soils but had little impacts on soil nutrient distributions. Soils under all the three conditions showed a relative increase of soil nutrients at riverbank foot. This comparative study indicated that the different or even contrary effects of riverbank management practices on soil nutrient statuses should be carefully taken into account when assessing the ecological effects of management practices.

  19. Compost supplementation with nutrients and microorganisms in composting process.

    PubMed

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  20. Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices.

    PubMed

    Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P

    2013-10-01

    Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.